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ALTERATIONS IN GABAERGIC NTS NEURON FUNCTION IN ASSOCIATION 
WITH TLE AND SUDEP 

 

Epilepsy is a neurological disorder that is characterized by aberrant electrical 
activity in the brain resulting in at least two unprovoked seizures over a period 
longer than 24 hours. Approximately 60% of individuals with epilepsy are 
diagnosed with temporal lobe epilepsy (TLE) and about one third of those 
individuals do not respond well to anti-seizure medications. This places those 
individuals at high risk for sudden unexpected death in epilepsy (SUDEP). SUDEP 
is defined as when an individual with epilepsy, who is otherwise healthy, dies 
suddenly and unexpectedly for unknown reasons. SUDEP is one of the leading 
causes of death in individuals with acquired epilepsies (i.e. not due to genetic 
mutations), such as TLE. Previous studies utilizing genetic models of epilepsy 
have suggested that circuitry within the vagal complex of the brainstem may play 
a role in SUDEP risk. Gamma-aminobutyric acid (GABA) neurons of the nucleus 
tractus solitarius (NTS) within the vagal complex receive, filter, and modulate 
cardiorespiratory information from the vagus nerve. GABAergic NTS neurons then 
project to cardiac vagal motor neurons, eventually effecting parasympathetic 
output to the periphery. In this study, a mouse model of TLE was used to assess 
the effect of epileptogenesis on GABAergic NTS neuron function and determine if 
functional alterations in these neurons impact SUDEP risk. It was discovered that 
mice with TLE (i.e. TLE mice) have significantly increased mortality rates 
compared to control animals, suggesting that SUDEP occurs in this model. Using 
whole cell electrophysiology synaptic and intrinsic properties of GABAergic NTS 
neurons were investigated in TLE and control mice. Results suggest that during 
epileptogenesis, GABAergic NTS neurons become hyperexcitable, potentially due 
to a reduction in A-type potassium channel current and increased excitatory 
synaptic input. Increases in hyperexcitability have been shown to be associated 
with an increased risk of spreading depolarization and action potential inactivation 
leading to neuronal quiescence. This may lead to a decreased inhibition of 
parasympathetic tone, causing cardiorespiratory collapse and SUDEP in TLE.  
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Chapter 1 Introduction 

1.1 Sudden unexpected death in epilepsy 

1.1.1 History and Definitions 

The International League Against Epilepsy defines epilepsy as when an 

individual has at least two unprovoked seizures occurring greater than 24 hours 

apart (Fisher et al., 2014). It has been well-established that death in individuals 

with epilepsy can be attributed to the epilepsy itself or to a seizure that is unable 

to stopped by medication (Mackenzie Bacon, 1868; Spratling, 1902; Munson, 

1910; Hauser et al., 1980; Nashef and Brown, 1996; Nashef and Sander, 1996). 

According to the Centers for Disease Control, about 1.2% of the United States 

population have epilepsy, which amounts to about 3.4 million individuals 

nationwide. Individuals with epilepsy have a 2.5-fold increase in the risk for sudden 

death compared to a healthy individual (Shackleton et al., 1999). One of the 

leading causes of death in individuals with epilepsy is sudden unexpected death 

in epilepsy (SUDEP) (Nashef, 1997; Nashef et al., 1998; Kloster and Engelskjon, 

1999; Lhatoo and Sander, 2005; Tomson et al., 2008; Tolstykh and Cavazos, 

2013; Ellis and Szabo, 2018). Case studies of SUDEP first appear in the literature 

in the early 1970’s via investigation of death certificates of individuals with epilepsy  

(Hirsch and Martin, 1971). Up until the use of translational animal models of 

epilepsy, SUDEP research focused on postmortem investigations and single-

patient case studies (Terrence et al., 1975; Sarkioja and Hirvonen, 1984; Leestma 

et al., 1989; Dasheiff, 1991). By the mid-1990’s SUDEP research experienced a 

resurgence, and several definitions of SUDEP were developed.  



 2 

The definition of SUDEP, first published in 1997, is: “sudden, unexpected, 

unwitnessed or witnessed, non-traumatic and non-drowning death in patients with 

epilepsy, with or without status epilepticus, in which postmortem examination does 

not reveal a toxicologic or anatomic cause for death” (Nashef, 1997). More 

recently, the definition has been slightly modified to include that the death was not 

directly caused by a seizure (Annegers, 1997; Annegers and Coan, 1999). SUDEP 

cases are also divided into four categories: definite, probable, possible, and 

unlikely SUDEP (Annegers, 1997). Definite SUDEP meets all the definition criteria 

and has a description of the circumstances of death. Probable SUDEP meets the 

criteria but does not have postmortem information. Possible SUDEP includes 

cases where SUDEP cannot be ruled out, but also cannot be sufficiently confirmed 

based on medical records. Unlikely SUDEP includes deaths for which other causes 

are clearly established or circumstances make SUDEP improbable (Annegers, 

1997). It can be difficult to ascertain if individuals with epilepsy have died from 

SUDEP because most individuals are not continuously monitored in the home 

setting. Presently, it is difficult to accurately identify individuals at risk for SUDEP 

and research has yet to identify underlying biomarkers for and mechanisms of 

SUDEP.  

1.1.2 Patient Characteristics 

The incidence of SUDEP in the United States is about 1.2 out of every 1000 

individuals with epilepsy (Harden et al., 2017). Early studies examining individuals 

with epilepsy focused on potential cardiac and respiratory abnormalities. 

Individuals with epilepsy that are not previously diagnosed with a cardiac pathology 
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have an increased heart rate and electrocardiographic (ECG) abnormalities (e.g. 

QT lengthening) (Drake et al., 1993). Individuals with epilepsy were also shown to 

have apnea during a generalized tonic-clonic seizure (GTCS) (Fish, 1997). As 

early as 1987, it was hypothesized that autonomic nervous system imbalance, 

cardiac arrhythmia, and epilepsy may be linked (Lathers et al., 1987). 

There have been many studies assessing potential risk factors for SUDEP 

in individuals with epilepsy. The risk for SUDEP has been well-established to 

increase with the duration of epilepsy, seizure severity, and seizure frequency 

(Ficker et al., 1998; Sperling, 2001; Devinsky, 2011), potentially because these 

individuals have a longer history of seizure events. It has been shown that the 

frequency of GTCS is strongly associated with SUDEP risk, regardless of the 

number of medications the individual has previously been prescribed (Lamberts et 

al., 2012). Therefore, it is crucial to decrease seizure frequency in order to 

attenuate SUDEP risk. However, not all individuals with epilepsy have seizures 

that are well-controlled with the first medication they are prescribed. Often, 

treatment with two or three medications is necessary before seizure frequency 

decreases. Even so, about 30% of individuals are unable to resolve their seizures 

by medication or surgery and have refractory epilepsy. This patient population is 

one of the highest at risk for SUDEP (Devinsky, 2011; Tolstykh and Cavazos, 

2013; Thurman et al., 2014). Another patient risk factor is compliance with anti-

epileptic medications (AEMs). It has been shown that if an individual with epilepsy 

does not follow their treatment regimen, their risk for seizures increases, thus 

increasing the risk for SUDEP. The environment in which a patient sleeps may also 



 4 

play a role in increasing the likelihood of SUDEP. Patient studies have shown that 

individuals who have suffered from SUDEP, tend to have a lack of nighttime 

supervision and tend to be found in the prone position (Devinsky, 2011).  

 Autonomic imbalance relating to cardiorespiratory function in epilepsy 

patients may also be a risk factor for SUDEP. A study examining data from epilepsy 

monitoring units (EMUs) world-wide found that many individuals that suffered from 

SUDEP experienced respiratory abnormalities such as apnea (Ryvlin et al., 2013). 

During a seizure event, individuals with epilepsy have displayed cardiac 

arrhythmias, postictal bradycardia, and asystole (Surges and Sander, 2012). 

Additionally, some individuals have displayed lengthy postictal EEG suppression 

(PGES), characterized by a flat-lining of the electroencephalogram (EEG) after a 

seizure event. These individuals have a higher risk for SUDEP compared to those 

with shorter PGES (Lhatoo et al., 2010a; Surges et al., 2010). However, specific 

mechanisms that elucidate these risk factors or identify biomarkers for SUDEP 

remain to be established. 

1.2 Suggested Mechanisms of SUDEP 

In the past 5-10 years there has been an increased amount of research 

focused on potential mechanisms of SUDEP. Many of these studies utilize 

genetic mouse models of SUDEP, which will be further detailed in a following 

section. Dlouhy et al. hypothesized that a generalized tonic-clonic seizure 

(GTCS) spreads to three areas eventually resulting in SUDEP: the midbrain, 

respiratory centers and brainstem cardiovascular centers (Dlouhy et al., 2016). 
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1.2.1 The Midbrain 

The midbrain is a portion of the central nervous system that is associated 

with vision, hearing, motor control, wakefulness, arousal, and temperature 

regulation. It contains the following structures: tectum, tegmentum, cerebral 

aqueduct, and peduncles. It adjoins to the pons, cerebellum, thalamus, and 

hypothalamus. Upon spread to the midbrain, seizures inhibit the ascending arousal 

system, located in the brainstem, which plays a role in sleep-wake consciousness 

(Dlouhy et al., 2016). Individuals with epilepsy that have suffered from SUDEP are 

often found lying in the prone position and researchers have hypothesized that this 

is due to dysfunction within the arousal system (Langan et al., 2000; Ryvlin et al., 

2013; Sowers et al., 2013; Ellis and Szabo, 2018). The ascending arousal system, 

or ascending reticular activating system (ARAS), originates in the upper brainstem 

and is involved in regulating sleep-wake transitions via its interaction with the 

ventrolateral preoptic nucleus (VLPO). The primary neurotransmitter in the VLPO, 

γ-aminobutyric acid (GABA) inhibits ARAS during sleep. Interactions between the 

VLPO and ARAS maintains a sleep-wake switch (Edlow et al., 2012). In individuals 

with epilepsy this switch may malfunction, which could be an underlying factor in 

the correlation between nighttime seizures, inability to wake up at that time, and 

SUDEP (Lamberts et al., 2012; Sowers et al., 2013; Gumusyayla et al., 2016). 

Additionally, patients with epilepsy show dysfunction in the ARAS when measured 

via polysomnography and magnetic resonance imaging (MRI) (Gumusyayla et al., 

2016; Englot et al., 2017b). Dysfunction within the arousal system does put 
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individuals with epilepsy at a higher risk for SUDEP but the neuronal mechanisms 

that contribute to this dysfunction remain to be elucidated.  

1.2.2 Postictal EEG Suppression 

PGES is defined as the absence of EEG activity (i.e. less than 10 µV in 

amplitude allowing for muscle movement, breathing, and electrode artifacts) 

(Lhatoo et al., 2010a). PGES is characterized by a short collapse of cardiac and 

respiratory rates post-seizure. There have been several studies examining patient 

incidence of PGES in association with seizures and SUDEP. An early study did a 

post-hoc examination of video EEG of individuals with epilepsy, some of whom 

went on to die of SUDEP (Lhatoo et al., 2010a). Fifty percent of patients had PGES 

following a seizure and its duration was significantly longer in the individuals that 

eventually died of SUDEP (Lhatoo et al., 2010a). Another study examined the 

association between PGES, seizure type, and SUDEP. While they found that 

PGES occurred postictally, neither the presence nor duration of PGES was 

significantly associated with SUDEP as an independent risk factor (Surges et al., 

2011). Another study concluded that PGES is not related to seizure duration or 

severity, but that it is related to oxygen desaturation during a seizure (Seyal et al., 

2012). Lee et al. did a retrospective analysis of heart rate and PGES in individuals 

with nocturnal seizures and also found that PGES did not impact SUDEP risk (Lee 

et al., 2013). Similarly, Lamberts et al., found that PGES was not significantly 

correlated with autonomic instability but did find an association with nocturnal 

seizures (Lamberts et al., 2013). Kuo et al., monitored patients with GTCS for 

PGES and found that it was not associated with seizure phase or duration (Kuo et 
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al., 2016). However, another study found that PGES duration was increased when 

seizure onset occurred during sleep (Peng et al., 2017). Contradictory to the 

previously mentioned studies, it was recently found that individuals that died of 

SUDEP had a shorter, not longer, PGES duration in association with SUDEP risk 

(Kang et al., 2017). Overall, the evidence regarding whether PGES is related to 

SUDEP remains inconclusive. However, alterations in both the arousal system and 

PGES in SUDEP have led researchers to postulate that the serotonergic system 

(5-HT), in addition to the respiratory centers may play a role. 

1.2.3 Respiratory Centers 

Recently respiratory dysfunction has been more closely examined as a 

potential mechanism for SUDEP because hypoxia, apnea, and other respiratory-

related dysfunction have been shown to occur during seizures. (Watanabe et al., 

1982; Coulter, 1984; James et al., 1991). Recently, respiratory dysfunction has 

been more closely examined as a potential mechanism for SUDEP. Nelson and 

Ray in 1968 published one of the first accounts of respiratory arrest after seizure 

but it was not until 1999 that parameters were published to monitor these changes 

in individuals with epilepsy (Fish, 1997). Apnea (i.e. temporary cessation of 

breathing) occurs in 100% of generalized seizures and since it is associated with 

hypoxia, researchers concluded that respiratory function should be monitored in 

epilepsy patients (Fish, 1997). In 1996, Nashef et al. showed that greater than 50% 

of patients had apnea in concert with seizures (Nashef et al., 1996). Additionally, 

these respiratory parameters are associated with impaired ventilation, O2 

desaturation, and hypoxia (Blum et al., 2000; Sowers et al., 2013). O2 saturation 
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has been shown to drop to below 90% in some individuals and the longer a seizure 

lasts, the lower saturation becomes. In what is thought to be a seminal study by 

Ryvlin et al., respiratory and cardiac data from international EMUs was examined 

in cases where individuals died of SUDEP (Ryvlin et al., 2013). One of their major 

conclusions was that SUDEP was preceded by terminal apnea, followed by cardiac 

arrest and death (Ryvlin et al., 2013). This study is problematic for several reasons, 

one of which being that all respiratory measurements were done by visual 

inspection of EMU patient videos. No quantitative measurements were taken and 

no mention is made regarding the quality of the video or how visible the lack of 

respiratory movement was. Additionally, there was no effort made to resuscitate 5 

out of the 16 patients that died of SUDEP. It was also not stated if individuals in 

this study had been previously diagnosed with any pulmonary dysfunction, which 

may have played a role in SUDEP.  

 Stimulation of higher brainstem centers to elicit seizures has been shown 

to be associated with respiratory depression. Stimulation in the orbital frontal 

cortex, temporal lobe, and amygdala can result in respiratory depression and 

central apnea (Kaada and Jasper, 1952; Bonvallet and Bobo, 1972). More 

recently, high resolution brain mapping has shown that seizures originating in the 

frontotemporal region, spread to the amygdala, eliciting central apnea (Dlouhy et 

al., 2015). Interestingly, during these procedures individuals were awake, but not 

aware that the apnea occurred. These data suggest that seizures may spread to 

and affect brain regions that are crucial for basic functions. There are other higher 

brain pathways that project downstream; for example, the temporal lobe connects 
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to respiratory centers (Bateman et al., 2010a; Faingold et al., 2010; Faingold, 

2012). While these areas and the spread of seizures to respiratory nuclei may be 

involved in SUDEP, the neurons in these brain regions have yet to be directly 

examined in this context. In examining respiratory function and SUDEP, there are 

few studies that make direct measurements of breathing, so this potential 

mechanism remains poorly understood. One of the things that PGES and 

respiratory function have in common is signaling through serotonergic/5-

hydroxytryptamine (5-HT) neurons (Ellis and Szabo, 2018).  

1.2.4 5-HT Neurons 

5-HT is a monoamine neurotransmitter that is primarily found within the 

raphe nuclei of the brainstem (Jacobs and Azmitia, 1992; Sowers et al., 2013). 5-

HT neurons receive connections from a wide variety of regions, including the 

cortex, hypothalamus, and brainstem, and projects to many regions within the 

central nervous system (Sowers et al., 2013). 5-HT is involved in many brain 

functions, such as respiration, arousal, anxiety, depression, and central 

chemoreception (Sowers et al., 2013; Kennedy and Seyal, 2015). Since 5-HT 

neurons stimulate respiration and arousal, dysfunction in this system has been 

hypothesized to sudden death (Richerson and Buchanan, 2011).  

 The Pre-Bötzinger complex (BPC) in the brainstem is responsible for 

breathing, hypoxia, and gasping responses. The proper function of the BPC is 

dependent on 5-HT receptor activation by serotonin (Richerson, 2004; Hodges and 

Richerson, 2010; Massey et al., 2014). In mice where 5-HT receptors are deleted, 

they have apnea, increased mortality, and defects in arousal (Hodges et al., 2008; 
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Hodges et al., 2009; Buchanan et al., 2014). A separate study examined neuronal 

inhibition of 5-HT neurons with Designer Receptors Exclusively Activated by 

Designer Drugs (DREADDs) and found that ventilation was significantly blunted 

(Ray et al., 2011). Medullary 5-HT neurons act as chemoreceptors and respond to 

small changes in physiologic pH (Wang et al., 1998; Wang et al., 2001c; Richerson 

et al., 2005; Corcoran et al., 2009). Increased firing of 5-HT neurons increases 

respiratory output (Ptak et al., 2009). 5-HT neurons in the midbrain act as 

chemoreceptors by inducing arousal in response to changes in arterial carbon 

dioxide, which has been hypothesized to be defective in SUDEP. It is postulated 

that after a seizure, the individual would be unresponsive as the pillow blocks the 

airway and being unable to relieve the obstruction would result in hypoxia and 

death (Sowers et al., 2013). Earlier work with animals that lack the 5-HT2C receptor, 

provides evidence of serotonin’s involvement with SUDEP, as these mice suffer 

from respiratory depression and mortality (Brennan et al., 1997). In the DBA/2 

mouse, administration of a selective serotonin reuptake inhibitor (SSRI) reduces 

respiratory depression and mortality (Tupal and Faingold, 2006). These mice also 

have abnormal 5-HT receptor expression in the brainstem (Uteshev et al., 2010). 

In some individuals with epilepsy, SSRIs reduced the incidence of seizure-induced 

apnea (Bateman et al., 2010b; Dlouhy et al., 2016). The SSRI fluoxetine has also 

been shown to prevent respiratory arrest in the DBA/2 and DBA/1 mouse models 

(Faingold et al., 2011b; Faingold et al., 2011a). There are several AEMs that also 

increase 5-HT extracellular concentrations as a by-product of their function (Bagdy 

et al., 2007). Previous studies have also shown that there is a decrease in 5-HT1A 
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receptor binding in individuals with epilepsy (Toczek et al., 2003; Savic et al., 2004; 

Richerson and Buchanan, 2011). However, there is no evidence of 5-HT gene 

mutations in patients that are directly linked to epilepsy (Richerson and Buchanan, 

2011). In 2016, Zhan et al. showed a decrease in 5-HT neuronal firing in the 

medullary raphe after an electrically induced seizure (Zhan et al., 2016). While this 

study was able to show a direct link between a single seizure and 5-HT function, 

individuals at risk for SUDEP have a history of seizures. This study does not 

address the potential effect multiple seizures, over a period of time, has on 5-HT 

function and subsequent respiratory output. Another study examined postictal 

serotonin levels in individuals with epilepsy. They found that serum serotonin was 

significantly increased post-GTCS compared to interictal levels, suggesting that 5-

HT is acutely altered post-seizure. While it appears that 5-HT is generally involved 

in epilepsy, it is does not conclusively cause of SUDEP. Further work needs to be 

done in brainstem regions to provide direct evidence of 5-HT and SUDEP. 

1.2.5 Cardiac and Autonomic Dysfunction  

Another focus of potential SUDEP mechanisms are cardiac and autonomic 

changes in relation to epilepsy that may contribute to sudden death. Peri-ictal 

autonomic dysregulation in individuals with epilepsy has been published as early 

as 1972 by Gastaut (Gastaut, 1972). The autonomic nervous system is responsible 

for regulating sympathetic and parasympathetic output to the periphery, including 

partially modulating cardiac activity. Information regarding cardiac function and 

blood pressure is relayed to the brainstem via the afferent fibers of the vagus 

nerve. Blood pressure changes are influenced primarily by the baroreceptor reflex, 
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which involves baroreceptors located on the carotid sinus and aortic arch. The 

baroreceptors travel up the afferent fibers of the vagus nerve, directly to neurons 

within the brainstem, in a region called the nucleus tractus solitarius (NTS). 

Excitatory NTS neurons synapse to the caudal ventrolateral medulla (CVLM), 

which projects to the rostral ventrolateral medulla (RVLM), inhibiting those 

neurons. As the primary regulator of sympathetic output to the periphery, the 

RVLM projects glutamatergic fibers to sympathetic preganglionic neurons in the 

spinal cord. When blood pressure increases, the baroreceptors are activated and 

the NTS increases excitatory neurotransmission to the CVLM, inhibiting the RVLM, 

decreasing excitatory neurotransmission to the heart and decreasing blood 

pressure. When blood pressure is low, the baroreceptors receive less tonic 

activation and the sympathetic output increases to maintain a steady blood 

pressure. GABAergic NTS neurons synapse to cardiac vagal motor neurons 

(CVMNs) in the nucleus ambiguus (NA) and the dorsal motor nucleus of the vagus 

(DMV) to regulate vagal tone, slowing heart rate. This is further increased when 

blood pressure is high. It is important to note that the circuitry relating to the 

parasympathetic nervous system is primarily directed toward regulating heart rate 

(Gordan et al., 2015). 

 With regard to cardiac function, the sympathetic nervous system serves to 

increase heart rate and myocardial contractility under various pathological 

conditions. The parasympathetic nervous system serves to reduce heart rate and 

functions primarily during sleep or resting conditions. An additional factor in heart 

rate that is influenced by the autonomic nervous system is heart rate variability 
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(HRV), which is defined as the variation in the time between each heartbeat. 

Clinically, two measures of HRV are the standard deviation between the R-R 

intervals (SDNN) and the root mean squared of the R-R interval (RMSSD) (Stein 

and Kleiger, 1999). The SDNN is interpreted as the general HRV and the RMSSD 

as the parasympathetic or vagal tone component of HRV (Shaffer and Ginsberg, 

2017).  Studies examining individuals with epilepsy in association with cardiac 

function have focused primarily on changes in blood pressure, heart rhythms, and 

HRV as potential mechanisms of SUDEP. There have  been a paucity of studies 

investigating blood pressure changes as a potential mechanism for SUDEP. The 

first paper was a patient case study which examined an individual with epilepsy 

and measured systolic, diastolic, and mean arterial blood pressure. In this case, a 

GTCS during sleep increased blood pressure measurements, and the patient 

showed a period of post-ictal hypotension that concluded with PGES (Bozorgi et 

al., 2013). Since this patient had no prior history of cardiac dysfunction, this study 

suggests that the seizure had an impact on autonomic control of blood pressure. 

It would have been more impactful to measure interictal blood pressure to see if it 

is altered without a seizure event as a measure of autonomic dysfunction. Another 

study compared awake interictal blood pressure and heart rate in individuals that 

eventually died of SUDEP to refractory and AEM controlled individuals (Nei et al., 

2016). Their retrospective analysis showed that there was a trend towards an 

increase in diastolic blood pressure in individuals who eventually died of SUDEP 

(Nei et al., 2016). However, the authors only used heart rate and blood pressure 

measurements from the three most recent outpatient visits and available peri-
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mortem data was not reported. Another study measured mean arterial blood 

pressure, heart rate, and O2 saturation in individuals with focal and bilateral 

seizures (Hampel et al., 2016). This study found no changes in O2 saturation but 

mean arterial blood pressure was increased (Hampel et al 2016). However, they 

did not state if this change was post-seizure, and therefore cannot make 

conclusions regarding autonomic changes related to seizure activity.  Conflictingly, 

another study by the same group found that there were no alterations in the 

baroreflex response in individuals with focal seizures (Hampel et al., 2017). While 

the data suggest that blood pressure and baroreflex sensitivity is altered in 

individuals with epilepsy, it has not been shown that these changes cause SUDEP. 

More work needs to be done where blood pressure and the baroreflex response 

are consistently monitored in individuals with epilepsy over time.  

 Epilepsy researchers have also hypothesized that autonomic dysfunction 

manifesting itself as a change in HRV, arrhythmia, tachycardia, asystole, 

bradycardia, and QT lengthening, occurring pre-ictally, ictally, post-ictally, and 

peri-ictally contribute to SUDEP (Stollberger and Finsterer, 2004; Massey et al., 

2014; Bermeo-Ovalle et al., 2015). However, in many of these patients, information 

regarding prior cardiovascular disease diagnoses or medications is often lacking, 

making it difficult to account for confounding variables.  

Several forebrain structures including the hippocampus, medial frontal 

cortex, and hypothalamus are involved in seizure networks and autonomic output  

(Cechetto and Chen, 1990). These areas project to the brainstem, regulating 

sympathetic and parasympathetic function. HRV is primarily dependent on vagal 
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tone and modulates heart rate in response to breathing, activity, wakefulness, and 

sleep (Hartikainen et al., 1996; Stein and Kleiger, 1999; Gordan et al., 2015; 

Shaffer and Ginsberg, 2017). In addition to the SDNN and RMSDD (i.e. time 

domain parameters), HRV can be analyzed via frequency domain parameters (i.e. 

low frequency, high frequency) (Stein and Kleiger, 1999). The frequency domain 

provides information regarding the amount of variance in heart rhythms explained 

by oscillations in heart rate at various frequencies allowing for the interpretation of 

autonomic balance (Stein and Kleiger, 1999). High frequency (HF) power is 

mediated by vagal tone and respiratory sinus arrhythmia, while low frequency (LF) 

power is mediated by a combination of parasympathetic tone, sympathetic tone, 

and the baroreflex response (Hyndman et al., 1971; Pomeranz et al., 1985; Fallen 

et al., 1988; Stein and Kleiger, 1999; Jansen and Lagae, 2010). There have been 

several studies that found alterations in measurements of HRV in individuals with 

epilepsy and concluded that it may be associated with SUDEP (Harnod et al., 

2008; DeGiorgio and DeGiorgio, 2010; Toth et al., 2010; Lotufo et al., 2012; Sarkis 

et al., 2015; Sivakumar et al., 2016; DeGiorgio et al., 2017; Stollberger and 

Finsterer, 2017). The majority of these studies have found either a decrease in 

vagal tone with an increase in sympathetic drive after a GTCS (Sarkis et al., 2015; 

Sivakumar et al., 2016), with one study finding that this persisted 5-6 hours post-

seizure (Toth et al., 2010). When examining inter-ictal HRV, the research shows 

that time and frequency domain measures are lower, suggestive of a reduction in 

vagal tone and long-term autonomic imbalance in individuals with epilepsy 

(Ansakorpi et al., 2000; Ansakorpi et al., 2002; Harnod et al., 2008). These data 
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also suggest that epilepsy impacts autonomic function outside of the pre-ictal, ictal, 

and post-ictal periods. There have also been a few studies stating that there is no 

association between autonomic dysfunction, epilepsy, and SUDEP (Persson et al., 

2007; Lee et al., 2013). One study found that while there was a decrease in heart 

rate just prior to a nighttime seizure, there were no post-ictal changes in heart rate, 

leading to the conclusion that there was no evidence that SUDEP is associated 

with postictal autonomic dysfunction (Lee et al 2013). Additionally, an older study 

found that there were no changes in time or frequency measurements in 

individuals with untreated epilepsy (Persson et al., 2007). There was another study 

that examined respiratory sinus arrhythmia (RSA) and heart rate in adolescents 

with epilepsy and found that in 5 of the non-epileptic individuals had increased 

RSA and decreased heart rate, suggestive of autonomic imbalance and were later 

diagnosed with epilepsy (Sivakumar et al., 2016). This suggests that autonomic 

dysfunction may precede the onset of epilepsy and may be a useful predictive 

marker for SUDEP. Many studies have also found changes in cardiac function in 

individuals with epilepsy who have not been diagnosed with any prior cardiac 

dysfunction (Surges et al., 2010; Velagapudi et al., 2012; Massey et al., 2014; 

Dlouhy et al., 2016). While overall, the data suggest that autonomic and cardiac 

dysfunction occurs in individuals with epilepsy, alterations in the function of 

brainstem neurons that regulate autonomic output should be investigated to 

determine if changes in their function are associated with autonomic imbalance 

and SUDEP. 
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1.3 Genetic Models of SUDEP 

1.3.1 Dravet’s Syndrome 

Developing genetic models of epilepsy where the animals suffer from 

SUDEP has been popular due to the ease of gene deletion that leads to a seizure 

phenotype. Two of the most well-established models are the Dravet’s syndrome 

(DS) and the KCNA1-null mouse. DS is an epilepsy channelopathy characterized 

by mutations in the voltage-gated Na+ channel, Nav1.1, which is encoded by the 

SCN1A gene. There are several different mutations in the SCN1A gene can that 

lead to altered function in Nav1.1 and epilepsy. These mutations can occur in the 

regions of the gene that encode for any part of the six transmembrane spanning 

unit that comprises the channel and/or on the C- and N-termini (Catterall et al., 

2010; Catterall, 2012). Additionally, complete deletion of SCN1A in humans and 

mice is embryonically lethal (Catterall et al., 2010). These mutations can be 

responsible for various forms of inherited epilepsies, including DS (Escayg et al., 

2000; Catterall et al., 2010).  Individuals with DS suffer from SUDEP and display 

depressed HRV and abnormal cardiac rhythms (Le Gal et al., 2010; Delogu et al., 

2011; Sakauchi et al., 2011; Goldman et al., 2016). In mouse models, the mutation 

known to cause Dravet’s Syndrome in humans was introduced into the SCN1A 

gene to create reduced Nav1.1 channel function, subsequently leading to a 

spontaneous seizure phenotype (Yu et al., 2006; Oakley et al., 2009; Oakley et al., 

2011; Cheah et al., 2012; Auerbach et al., 2013; Kalume et al., 2013; Ogiwara et 

al., 2013; Aiba and Noebels, 2015). In this model, mice begin to have spontaneous 

seizures by postnatal day 21 and sudden death begins to occur around postnatal 
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day 23 (Yu et al., 2006; Ogiwara et al., 2007; Cheah et al., 2012; Kalume et al., 

2013). DS mice have a decrease in the density of GABA interneurons, reduced 

Na+ current, and action potential firing without any changes in excitatory neurons 

(Yu et al., 2006; Cheah et al., 2013). The imbalance between inhibition and 

excitation may be responsible for the seizure phenotype. Additionally, these mice 

display altered cardiorespiratory function, such as QT prolongation, bradycardia, 

suppressed inter-ictal HRV, and gasping (Kalume et al., 2013; Aiba and Noebels, 

2015). It has been hypothesized that significant post-ictal bradycardia due to 

increased vagal tone contributes to SUDEP in DS (Kalume et al., 2013). This 

model implicates the involvement of central autonomic neurons, because animals 

have cardiac dysfunction, even in a GABA forebrain neuron specific knockout 

(Kalume et al., 2013). Additionally, causing seizures to spread from the cortex to 

brainstem leads to cardiorespiratory collapse and sudden death (Aiba and 

Noebels, 2015). This model has provided significant insight into potential 

mechanisms for SUDEP, but it only affects a small percent of the total epilepsy 

population. 

1.3.2 Potassium Channel Mutations 

Another common genetic model of epilepsy is the KCNA1-null mouse 

model. This involves the deletion of the KCNA1 gene that encodes the Kv1.1 

voltage-gated K+ channel (Glasscock et al., 2010; Moore et al., 2014; Gautier and 

Glasscock, 2015; Simeone et al., 2018). Kv1.1 is expressed in the brain and the 

vagus nerve (Glasscock et al., 2010; Glasscock et al., 2012; Glasscock, 2013; 

Goldman et al., 2016). In addition to displaying an epilepsy phenotype, Kv1.1 
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knockout mice die suddenly and prematurely (Smart et al., 1998; Glasscock et al., 

2007; Glasscock et al., 2010). They also have a high frequency of atrio-ventricular 

(AV) blocks that can be prevented by atropine administration, suggestive of 

autonomic imbalance (Glasscock et al., 2010). Additionally, Kv1.1 mice display 

hyperexcitability in axons from the mouse vagus nerve, indicative of increased 

excitatory transmission to central autonomic neurons (Glasscock et al., 2012). 

These mice also have increased respiratory drive and apnea (Simeone et al., 

2018). Although this study showed that respiratory dysfunction occurs in Kv1.1 

knockout mice, the authors did not show that sudden death occurred in concert 

with respiratory dysfunction. Researchers have also shown that increased 

activation of KCNQ2, which encodes the Kv7.2 potassium channel, in vagal nerve 

fibers rescues hyperexcitability seen in Kv1.1 knockout mice (Glasscock et al., 

2012) and that SCN2A deletion improves survival rates in Kv1.1 knockout mice 

(Mishra et al., 2017). 

 Another genetic epilepsy model for SUDEP introduces a mutation into 

KCNQ1 gene that encodes the Kv7.1 channel, one of the most common genes for 

long-QT syndrome in humans. Individuals with long-QT are at high risk for sudden 

death due to their propensity to have fatal ventricular arrhythmias (Goldman et al., 

2016). When a dominant point mutation is introduced into the gene, it reproduces 

the human phenotype and these mice display dysfunctional neuronal 

repolarization, seizures, and sudden death (Goldman et al., 2009). The 

examination of genes encoding voltage-gated K+ channels in the brain and the 

heart has provided valuable insight into how their dysfunction contributes to 
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epileptogenesis, autonomic dysfunction and SUDEP, however it is difficult to 

separate the genetic mutation from the seizures and sudden death. 

1.3.3 Audiogenic Seizure Models  

Researchers have used DBA/1 and DBA/2 mice to study mechanisms of 

SUDEP because they are susceptible to seizures when exposed to high-intensity 

acoustic stimulation (i.e. audiogenic seizures) (Faingold et al., 2010). Faingold et 

al. has shown that an audiogenic seizure leads to respiratory arrest in 30% of these 

mice (Faingold et al., 2010). However, this study did not complete any quantitative 

respiratory measures and only visual assessment of the chest rising and falling 

was done. Administration of SSRIs in these mice reduced the incidence of seizure-

induced respiratory arrest (Tupal and Faingold, 2006; Zeng et al., 2015; Faingold 

et al., 2016). These mice also displayed altered expression of 5-HT receptors in 

the caudal brainstem (Uteshev et al., 2010). However, there are several pitfalls 

with this model: 1) they do not develop spontaneous seizures; 2) mice sometimes 

die after the first seizure, which does not meet the criteria for SUDEP; 3) It does 

not appear that autonomic dysfunction has been examined in this model. While 

genetic models of epilepsy have been informative to the field of SUDEP, they are 

lacking in that they only apply to a very small percent of individuals with epilepsy. 

Acquired epilepsies, (i.e. not caused by genetic mutations), affect a much larger 

percentage of individuals with epilepsy who are at risk for SUDEP and acquired 

epilepsy mouse models need to be utilized to determine biomarkers and 

preventative options for these individuals as well. 
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1.4 Acquired Epilepsies 

1.4.1 Definitions and Epidemiology 

Acquired epilepsies are broadly defined as a neurological disorder that is 

initiated by some type of insult to the brain (Delorenzo et al., 2005; Dudek and 

Staley, 2012). While epilepsy affects 1-2% of the population, about half of those 

individuals have acquired epilepsy (Delorenzo et al., 2005; McNamara and 

Scharfman, 2012). The other 50% of epilepsies are either idiopathic (i.e. no known 

cause in the absence of brain abnormalities) or genetic (Delorenzo et al., 2005). 

In acquired epilepsy, there is typically a known cause of the neurological insult that 

induces a permanent change in a previously normal brain leading to the 

development of epilepsy (Delorenzo et al., 2005). This occurs in 3 phases: the 

initial insult, the latent period of epileptogenesis, and spontaneous recurrent 

seizures (Delorenzo et al., 2005). 

1.4.2 Temporal Lobe Epilepsy 

The most common type of acquired epilepsy is TLE which affects 60% of 

all individuals with epilepsy according to the Epilepsy Foundation. TLE involves an 

imbalance in the excitatory and inhibitory networks within the temporal lobe. This 

includes the hippocampus, amygdala, auditory cortex, and the entorhinal cortex. 

TLE is form of partial or focal epilepsy that can be further split into 2 types: medial 

TLE and neocortical TLE. Medial TLE is the most common of the two (Tellez-

Zenteno et al., 2005; McNamara and Scharfman, 2012). While there is little 

research done on the epidemiology of TLE, the reported incidence is 10.4 per 

100,000 individuals (Tellez-Zenteno and Hernandez-Ronquillo, 2012). 
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1.4.3 Pathophysiology of TLE 

As in acquired epilepsy, an initial insult followed by a latent period 

culminates in recurrent seizure pathology (White, 2012). The pathogenesis of TLE 

is progressive in nature and it is hypothesized that synaptic reorganization and a 

disruption in the balance of excitation and inhibition play key roles in the 

development of spontaneous seizures (Dudek and Staley, 2012). The death of 

GABAergic interneurons directly following the insult and during the latent phase is 

hypothesized to be responsible for decreases in GABA-mediated inhibition, 

allowing for increases in network excitation (Kobayashi and Buckmaster, 2003; 

Ben-Ari and Dudek, 2010; Dudek and Staley, 2012). Axon sprouting also 

contributes to the development of increased excitation in TLE (de Lanerolle et al., 

1989; Sutula et al., 1989; Dudek and Staley, 2012), as the majority of these nerve 

connections are excitatory.  

1.5 Animal Models of TLE 

1.5.1 Electrical Kindling 

Kindling is a process that consists of daily electrical stimuli delivered to brain 

structures such as the amygdala or hippocampus. When repeated over time, this 

induces a generalized convulsive seizure and mice eventually develop a shorter 

latency to seize as a response to stimulation. However, it is still debated if kindling 

accurately reflects the human condition since rodents do not develop recurrent 

spontaneous seizures (Loscher and Brandt, 2010).  In terms of changes to cellular 

pathology, increased recurrent excitation and altered GABA interneuron 
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dysfunction does occur in this model (Lynch and Sutula, 2000; Sutula and Dudek, 

2007; White, 2012). 

1.5.2 Kainic-Acid Model 

Kainic acid (KA) is an excitatory neurotransmitter agonist that activates 

glutamate receptors and produces cell death via excitotoxicity when administered 

to rodents (Cronin and Dudek, 1988). A single injection of KA leads to seizure 

development in 50% of rats (Cronin and Dudek, 1988) and multiple low-dose 

injections of KA leads to SE and subsequent TLE in 75-90% of rats (Hellier et al., 

1998; Hellier and Dudek, 2005; Williams et al., 2009). Recurrent neuronal 

excitation and synaptic reorganization also occurs in this model. However, some 

mouse strains, such as C57BL/6 and BALB/c mice, are more resistant to KA-

induced cell death and degeneration at single and multiple injections 

(Schauwecker and Steward, 1997; McKhann et al., 2003). Recurrent seizure 

activity can reliably occur when KA is injected directly into the hippocampus 

(Bouilleret et al., 1999), although this technique is more invasive than 

intraperitoneal injections.  

1.5.3 The Pilocarpine-Induced Status Epilepticus Model of TLE 

The pilocarpine-induced status epilepticus (pilo-SE) model of TLE was 

discovered to cause an initial period of severe seizures by Turski et al. in the early 

1980’s. They observed that administration of pilocarpine results in a 1-2 hour 

period of behavioral limbic seizures (Turski et al., 1983; Turski et al., 1984). It was 

later found that following a latent period of 4-6 weeks, mice that developed SE, 

also developed spontaneous seizures (Turski et al., 1989; Cavalheiro et al., 1994; 
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Cavalheiro et al., 1996; Shibley and Smith, 2002; Winokur et al., 2004). About 30-

40% of mice develop SE from the pilocarpine injection, there is  an ~30% mortality 

rate, and the rest of the mice that do not have SE do not develop spontaneous 

seizures (Shibley and Smith, 2002).  

 The pilo-SE model of TLE will be used in this dissertation because it more 

accurately models the human form of TLE. Additionally, various mouse strains 

reliably develop spontaneous seizures, whereas other models vary across strain 

in terms of TLE development. It follows the previously set forth hypothesis of an 

initial insult, followed by a latent period, and then spontaneous seizures. 

Pilocarpine has been shown to induce cell death within a few days of 

administration (Kobayashi and Buckmaster, 2003). Research has suggested 

eventual development of recurrent seizures in this model is associated with 

synaptic reorganization and aberrant sprouting in the hippocampus (Dudek and 

Spitz, 1997; Dudek, 2002). Additionally, pilocarpine causes an insult in the same 

structures within the temporal lobe that are affected in individuals with TLE. There 

are mouse strain differences in the mortality and cell death in the hippocampus 

following the pilocarpine treatment (Schauwecker, 2012). For the purposes of this 

dissertation, mouse strains were used that have been well-established to develop 

chronic spontaneous seizures or were monitored for seizure activity (Shibley and 

Smith, 2002; Winokur et al., 2004; Bhaskaran and Smith, 2010b). 

1.6 Significance of SUDEP in Individuals with TLE 

About 60% of all individuals with epilepsy have TLE and about half of those 

individuals have refractory TLE. Refractory TLE is defined by the Epilepsy 
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Foundation as seizures that are not controlled by medications. In this case, the 

individual has failed to become and stay seizure free with two or more trials of 

AEMs. In fact, refractory epilepsy is one of the biggest SUDEP risk factors 

(Tomson et al., 2008; Lhatoo et al., 2010b). Additionally, individuals with refractory 

TLE have a higher frequency of seizures compared to those on AEMs, placing 

them at an even higher risk for sudden death (Devinsky, 2011; Lamberts et al., 

2012; Tolstykh and Cavazos, 2013; Thurman et al., 2014). 

 There have been several studies showing that individuals with TLE have 

cardiac and autonomic dysfunction. Increases in heart rate can occur in children 

and adolescents with TLE (Mayer et al., 2004) and in newly diagnosed individuals, 

who show ictal sympathetic overdrive, indicative of autonomic imbalance (Romigi 

et al., 2016). While the evidence in patient studies is suggestive of autonomic and 

cardiac dysfunction, it is conflicting as to whether this is associated with an 

increase in sympathetic drive, a decrease in vagal tone or a combination of both 

leads to autonomic imbalance. Many studies have found there to be an increase 

in the time and frequency measurements of HRV, including impaired baroreflex 

sensitivity potentially contributing to SUDEP risk (Dutsch et al., 2006; Romigi et 

al., 2016). Others have observed a decrease in HRV, indicative of a decrease in 

vagal tone (Massetani et al., 1997; Tomson et al., 1998; Ansakorpi et al., 2002; 

Ronkainen et al., 2005; Jansen and Lagae, 2010; Surges et al., 2010; Suorsa et 

al., 2011). HRV measurements seem to improve if TLE is controlled by medication 

or surgery (Tomson et al., 1998; Hilz et al., 2002; Suorsa et al., 2011). Suorsa et 

al. measured heart rate and HRV in individuals with TLE and in a follow-up study 
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6 years later found that individuals with refractory TLE had decreased HRV over 

time (Suorsa et al., 2011). This suggests that recurrent seizure activity has a 

progressive effect on worsening autonomic imbalance. Many studies have also 

found that individuals with TLE have ictal tachycardia, increased ictal and post-

ictal heart rate, arrhythmia, and pathologic repolarization, suggestive of cardiac 

dysfunction (Massetani et al., 1997; Jansen and Lagae, 2010; Surges et al., 2010). 

HRV and vagal suppression may also have a circadian component, as individuals 

with TLE have more pronounced HRV suppression at night compared to healthy 

individuals (Ronkainen et al., 2005). Interestingly, no respiratory abnormalities 

were found in individuals with TLE, but respiration was only measured in the inter-

ictal periods (Scorza et al., 2007). Additional evidence linking TLE to brainstem 

dysfunction regulating autonomic output comes via functional MRI studies. There 

was found to be lower connectivity from the temporal lobe to the ARAS and 

brainstem in TLE individuals at high risk for SUDEP (Allen et al., 2017; Englot et 

al., 2017a). Studies examining pilocarpine-induced SE in rodents also suggest 

cardiac and autonomic imbalance occurs. In acute pilocarpine-induced SE, there 

is an increase in heart rate and blood pressure in the hour following SE (Metcalf et 

al., 2009b; Metcalf et al., 2009a). This suggests that an increase in sympathetic 

drive occurs in the weeks following pilo-SE. Another study found altered autonomic 

control of heart rate in rats 1-2 weeks after pilo-SE (Bealer et al., 2010). This 

alteration in sympathovagal balance may increase the risk for arrhythmia and 

sudden death. However, there has been a paucity of studies examining the effect 

of spontaneous recurrent seizures in the pilocarpine-induced SE (i.e. pilo-SE) 
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model of TLE in relation to SUDEP. The focus of this dissertation will be on the 

association between the pilo-SE model of TLE, central autonomic dysfunction, and 

SUDEP. 

1.7 The Vagal Complex 

1.7.1 Vagal Complex Anatomy 

The vagal complex is located in the caudal brainstem and is a critical central 

regulator of autonomic function. Viscerosensory inputs from the afferent fibers of 

the vagus, glossopharyngeal, and facial nerves end in a bundle of primary sensory 

fibers called the solitary tract (ST). The ST also conveys information from the 

baroreceptors and chemoreceptors in the cardiovascular and respiratory systems. 

The terminals of the ST release glutamate onto neurons within the nucleus tractus 

solitarius (NTS). The NTS contains a heterogeneous population of both GABAergic 

and glutamatergic neurons. These neurons serve as critical filters, integrators, and 

modulators of sensory afferent information in order to regulate sympathetic and 

parasympathetic output to the periphery. NTS neurons project their axons to 

preganglionic parasympathetic motor neurons in the DMV and NA (Andresen and 

Kunze, 1994; Doyle and Andresen, 2001; Wang et al., 2001a; Travagli et al., 2006; 

Bailey et al., 2008). Glutamatergic neurons are responsible for the regulation of 

sympathetic output of cardiac activity. Their axons project and synapse to inhibitory 

neurons in the CVLM. CVLM neurons project to the RVLM, which send 

glutamatergic fibers to preganglionic neurons in the spinal cord (Gordan et al., 

2015). Glutamatergic NTS neurons also regulate the DMV by providing phasic 

excitation (Travagli et al., 1991; Gao and Smith, 2010). 
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 GABAergic NTS neurons maintain tonic inhibition that aids in the regulation 

of vagal outflow (Davis et al., 2004; Travagli et al., 2006). About 20% of neurons 

in the DMV influence the regulation of vagal tone to the periphery. The rest of the 

GABA NTS neurons project to cardiac vagal motor neurons (CVMNs) in the 

nucleus ambiguus (NA). CVMNs are motor neurons that synapse onto 

postganglionic neurons in the cardiac ganglia at the base of the heart (Kunze and 

Ritchie, 1990; Dergacheva et al., 2013). Vagal circuit plasticity has been shown to 

occur in other disease states that affect autonomic regulation of homeostasis (Mei 

et al., 2003; Bach et al., 2015; Boychuk et al., 2015a). It therefore stands to reason 

that vagal complex neurons may have altered function in response to 

epileptogenesis, especially since patient data suggests altered autonomic function 

in TLE (Ronkainen et al., 2005; Romigi et al., 2016).  
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Figure 1.1 Schematic of vagal complex circuitry.  
NTS = nucleus tractus solitarius; DMV = dorsal motor nucleus of the vagus 
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1.7.2 Characteristics of GABA NTS Neurons 

GABAergic neurons make up a large proportion of NTS neurons and are 

interspersed throughout the lateral and medial NTS (Blessing, 1990; Minson et al., 

1997; Fong et al., 2005). While GABA NTS neurons project to the DMV and NA, 

they can also act as local interneurons, inhibiting NTS signaling (Davies et al., 

1987; Ezure and Tanaka, 1996; Davis et al., 2004; Kubin et al., 2006; Travagli et 

al., 2006). The medial NTS tends to receive major input from arterial baroreceptors 

(Andresen and Kunze, 1994; Andresen and Yang, 1995). Lateral NTS neurons 

also play a role in respiratory regulation (Wasserman et al., 2002). 

 GABA is synthesized from glutamate via the enzyme glutamate 

decarboxylase (GAD). GAD is present only in cells that use GABA as a 

neurotransmitter (Simon et al., 1985; Erlander and Tobin, 1991; Roth and 

Draguhn, 2012). Cytosolic GABA is shuttled into vesicles by vesicular GABA 

transporter (VGAT), which is highly concentrated in presynaptic terminals 

(Chaudhry et al., 1998; Jin et al., 2003). When a depolarization of the presynaptic 

neuron prompts the release of the GABA into the synaptic cleft, GABA binds to 

postsynaptic receptors, hyperpolarizing the postsynaptic neuron. GABA’s action is 

terminated via reuptake into the presynaptic terminals and/or nearby glial cells. 

Then GABA can be degraded by GABA transaminase into glutamate and succinic 

semialdehyde (Roth and Draguhn, 2012).  

 GABA NTS neurons are important to many processes for autonomic 

homeostasis as they are central integrators of peripheral cardiovascular, 

respiratory, and gastrointestinal systems. GABA NTS neurons are able to directly 
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modulate heart rate, as microinjection of GABA antagonists into the NA decreases 

heart rate (DiMicco et al., 1979; Wang et al., 2001a). GABA NTS neurons also play 

a role in hypoxia and respiration (Accorsi-Mendonca et al., 2015), gastrointestinal 

regulation, and glucose sensing (Browning et al., 2002; Bach and Smith, 2012; 

Boychuk et al., 2015b; Boychuk et al., 2017). 

1.8 Voltage-Gated K+ Channels 

1.8.1 Structure and Function of Voltage-Gated K+ Channels 

Voltage-gated K+ (Kv) channels are widely expressed in the brain and 

throughout the central and peripheral nervous system (Coetzee et al., 1999; 

Birnbaum et al., 2004; Villa and Combi, 2016). The human genome contains at 

least 100 different Kv channel subunits (Cooper, 2012). All Kv channels and their 

variants are built similarly with six transmembrane spanning (TM) domains. The 

ion conducting pore is made up of four polypeptide domains arranged around a 

central water-filled transmembrane region. There are four pore-forming segments 

with intracellular N- and C-termini, 2 transmembrane segments, and an 

extracellular loop that partially dips into the pore acting as a K+ selectivity filter. 

There is also a very short, highly conserved length of polypeptide that allows for 

the movement of the voltage-sensor by pulling open the pore during depolarization, 

and pushing it closed at rest (Cooper, 2012). Humans have 36 6TM Kv channel 

subunit genes that vary in their biophysical properties (Coetzee et al., 1999; 

Cooper, 2012). 
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Figure 1.2 Schematic of Kv4 ion channel 
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Kv4 channels are one subfamily of the voltage-gated K+ channels that are 

in both the cortex and the NTS. There are 3 different Kv4 subtypes: Kv4.1, Kv4.2, 

and Kv4.3 (Birnbaum et al., 2004). These channels influence neuronal firing 

properties and cellular excitability (Jerng et al., 2004; Covarrubias et al., 2008; 

Strube et al., 2015). Various K+ channel subunits have been found to modulate 

Kv4 activity. The most well-characterized of those subunits are known as K+ 

channel interacting proteins (KChIPs). KChIPs are neuronal calcium sensors that 

have a variable amino acid terminal domain and a conserved carboxyl terminal 

with calcium binding motifs (Birnbaum et al., 2004). There are 4 different types of 

KChIPs (KChIP1, KChIP2, KChIP3, KChIP4) that are found in the brain and 

colocalize with the Kv4 family of channels (Birnbaum et al., 2004; Jerng et al., 

2004). KChIP1-4 have been shown to colocalize with all members of the Kv4 family 

in a nonspecific manner (An et al., 2000; Bahring et al., 2001; Birnbaum et al., 

2004; Covarrubias et al., 2008; Cheng et al., 2016). When co-expressed with Kv4 

channels, KChIPs increase current density by increasing the surface expression 

Kv4 channels (Birnbaum et al., 2004; Jerng et al., 2004; Covarrubias et al., 2008; 

Schwenk et al., 2008). Additionally, KChIPs can alter the kinetics of activation and 

inactivation of Kv4 channels, such as hyperpolarizing the activation curve, quicken 

recovery from inactivation, and slowing the rate of inactivation (Birnbaum et al., 

2004; Covarrubias et al., 2008). KChIPs can also promote channel trafficking to 

the membrane (An et al., 2000; Jerng et al., 2004; Covarrubias et al., 2008). 
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1.8.2 Association with TLE 

While there are many Kv subtypes that have been associated with epilepsy 

in humans and animals, this dissertation places particular focus on the Kv4 

subfamily (D'Adamo et al., 2013; Villa and Combi, 2016). The Kv4 subfamily has 

been shown to be associated with human epilepsies and it is also expressed in the 

vagal complex (Singh et al., 2006; Smets et al., 2015; Villa and Combi, 2016).  

Voltage-gated K+ (Kv) channels have been shown to be altered in individuals with 

epilepsy with TLE (Singh et al., 2006; Villa and Combi, 2016).  Kv channels play a 

major role in neuronal excitability and K+ channelopathies can contribute to 

seizures (Brenner and Wilcox, 2012; D'Adamo et al., 2013; Villa and Combi, 2016). 

A truncated Kv4.2 subunit has been found to cause seizures in a patient case study 

(Singh et al., 2006) and other gain of function mutations in Kv4.2 were found in 

intractable epilepsy (Smets et al., 2015). 

 Kv4 channels are essential for the regulation of neuronal excitability, 

specifically modulating the A-type current (IA). The modulation of IA is crucial in the 

repolarization phase of the action potential and prevents action potential back 

propagation. Bernard et al. has shown hippocampal neurons from pilo-SE mice 

have decreased Kv4.2 subunit expression and altered IA (Bernard et al., 2004). 

However, in this study, there was no mention of how long the mice had 

spontaneous seizures prior to being used in their experiments. This is crucial as 

many rodents develop spontaneous seizures at different time points (Shibley and 

Smith, 2002), which may have an effect on Kv4.2 expression. A separate study 

found a decrease in Kv4.2 and KChIP2 expression in the hippocampus 4 and 12 
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weeks after pilo-SE treatment (Monaghan et al., 2008). Another study measured 

Kv4.2 expression in the chronic spontaneous seizure phase and found that there 

was a decrease in Kv4.2 and KChIP1 protein levels in the hippocampus (Su et al., 

2008). Alterations in these channels have yet to be investigated in brain regions 

outside of the hippocampus in a mouse model of TLE. 

Kv4 subtypes and IA have been shown to be expressed in the NTS and be 

altered in pathological states. IA modulates synaptic transmission to other vagal 

complex pathways, current amplitude, activation kinetics, and protects against 

excitotoxicity (Bailey et al., 2002; Yang et al., 2005; Bailey et al., 2007; Covarrubias 

et al., 2008; Strube et al., 2015). In pathological states, IA has been shown to be 

altered in hypertension (Sundaram et al., 1997; Belugin and Mifflin, 2005). 

Additionally, pharmacologic blockade of IA modulates electrophysiological 

properties of NTS neurons and attenuates baroreflex regulation of heart rate 

(Butcher and Paton, 1998). Therefore, if the NTS altered during TLE, IA may also 

have altered function as well. 

1.9 Study Aims and Significance 

This study will focus on the association between the pilo-SE induced model 

of TLE, central control of autonomic function, and SUDEP. This study will further 

focus on alterations in GABA NTS neuron function during epileptogenesis. Other 

studies examined cardiac function acutely following pilocarpine; therefore, this 

study will have longer time points allowing for the investigation of long-term effects 

of epilepsy development with chronic spontaneous seizures on cardiac and GABA 

NTS function. The investigation into mechanisms of SUDEP in TLE could lead to 
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the development of SUDEP biomarkers or preventative treatments in an under-

researched population that is at high risk for SUDEP. The hypothesis that the 

pilocarpine-induced SE model of TLE is associated with SUDEP, altered cardiac, 

and alterations in the synaptic and functional properties of GABAergic NTS 

neurons was tested. 

 The specific aims of this project are as follows: 

1) Determine if pilo-SE mice suffer from SUDEP with related changes in 

cardiac and GABA NTS neuron function.  Because the pilocarpine-

induced SE model of TLE has not been used to study SUDEP, it was first 

determined if pilo-SE mice die suddenly in the weeks following survival from 

the initial pilocarpine-induced SE. Cardiac and autonomic dysfunction 

occurs in individuals with TLE, thus ECG was used to investigate these 

factors in the weeks following pilocarpine-induced SE. Lastly, as GABAergic 

NTS neurons directly modulate autonomic output to the periphery, 

electrophysiology was used to assess their function 1, 6, and 12 weeks after 

pilocarpine-induced SE. 

2) Determine if Kv4 subunits and IA are altered in the pilo-SE model of 

TLE in GABA NTS neurons. Immunohistochemistry and western blot have 

shown that Kv4 subunits are downregulated in the hippocampus following 

pilocarpine-induced SE. No studies have assessed alterations in Kv4 

expression or IA in the context of TLE within vagal complex. Whole-cell 

patch-clamp electrophysiology was used to measure action potential 
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frequency and half-width, and to isolate IA density. Differential expression 

of Kv4.1, Kv4.2, Kv4.3 and KChIPs1,3, and 4 was also measured.  

3) Utilize chemogenetic manipulation of GABA NTS neurons to 

determine if activation of these neurons can alter seizure threshold. 

Designer receptors exclusively activated by designer drugs (DREADDs) 

have been shown to selectively excite or inhibit specific neuronal subtypes 

in order to modulate both animal behavior and neuronal function. The 

excitatory DREADD, pAAV8-hSyn-DIO-hM3D(Gq)-mCherry, was used to 

selectively excite GABAergic NTS neurons in pilo-SE mice. In vivo studies 

were done to determine if behavioral seizures could be elicited via DREADD 

activation or if seizure latency could be modulated. Electrophysiology was 

used to determine the effect of DREADD activation on firing properties of 

GABA NTS neurons and synaptic properties of local DMV neurons. 
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Chapter 2 Materials and Methods 

2.1 Mice 

 For the survival study and in vivo electrocardiography (ECG) in Chapter 3, 

5 week old male CD-1 mice (Harlan Laboratories were used). For 

electrophysiology studies in Chapters 3 and 4, 4-6 week old male Green Inhibitory 

Neuron (i.e. GIN; FVB-Tg (GADGFP) 4570Swn/J; The Jackson Laboratory) was 

used. GIN mice utilize GFP as a fluorescent reporter for somatostatin expressing 

GABAergic neurons within the NTS, which allows for the targeted recording of 

these neurons (Oliva A.A. et al., 2000). For chemogenetic studies in Chapter 5, 4-

6 week old male Slc32a1tm2(cre)Lowl/J (i.e. Vgat-ires-cre; The Jackson Laboratory) 

were used. Vgat-ires-cre mice express cre recombinase activity in GABAergic 

neurons without interrupting endogenous vesicular GABA transport activity. All 

procedures were approved by the University of Kentucky Animal Care and Use 

Committee and NIH guidelines were adhered to for the care and use of animals. 

All animals were housed in Association for Assessment and Accreditation of 

Laboratory Animal Care approved facilities, on a 14:10 light:dark cycle with food 

and water available ad libitum.  

2.2 The Pilocarpine-Induced Model of TLE 

 TLE was induced in all experimental mice following procedures similar to 

that of Shibley and Smith 2002 (Shibley and Smith, 2002). First, all mice were 

given an intraperitoneal (i.p.) injection of methylscopolamine (1 mg/kg in 0.9% 

saline). Methylscopolamine is a muscarinic antagonist that does not cross the 

blood brain barrier and its administration serves to reduce the peripheral 
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convulsant effects of pilocarpine. After 20 minutes, mice were given either an i.p. 

injection of pilocarpine (280-285 mg/kg in 0.9% saline) or vehicle (0.9% saline). 

Pilocarpine is a tertiary amine that readily crosses the blood brain barrier and acts 

as a nonselective muscarinic receptor agonist (Geller, 1984). Twenty to 30 minutes 

after pilocarpine injection, mice began to display behavioral seizures which are 

rated on based on a modified Racine scale, from category 1-5, with 5 being the 

most severe (Racine, 1972). All mice were monitored for behavioral seizures for 2 

hours post-injection. Category 1 and 2 consist of tail-stiffening, freezing, wet dog 

shakes, and facial automatisms. All mice exhibited some or all of these behaviors. 

Category 3 (i.e. unilateral forelimb myoclonus), category 4 (i.e. bilateral forelimb 

myoclonus and rearing), and category 5 (i.e. bilateral fore- and hindlimb myoclonus 

and transient loss of postural control) were considered to be generalized 

convulsive seizures. Seizures were typically 30-90 seconds in duration and 

separated by periods of relative inactivity. Mice that displayed a minimum of 3 

category 3-5 seizures were considered to have undergone status epilepticus (SE) 

and were subsequently classified as pilo-SE mice. Greater than 90% of pilo-SE 

mice went on to develop spontaneous seizure activity 4-6 weeks post-injection 

(Shibley and Smith, 2002; Winokur et al., 2004; Bhaskaran and Smith, 2010b).  No 

seizure activity was observed in control mice at any time post-injection.  

In addition to standard diet, mice were given water-moistened food and a 

5% glucose solution in their cage for 4 days post-treatment. Animals were also 

given diet gel to supplement their standard chow and aid in avoiding dehydration. 

Animals were weighed twice a day for 4 days following SE. If an animals weight 
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decreased by more than 20% following SE and they did not recuperate following 

subcutaneous ringer solution injections, they were euthanized.  

A small cohort of GIN mice were observed two weeks prior to their use in 

electrophysiology experiments for behavioral seizure activity. Mice were observed 

for 2 hours, 3 times per week (Shibley and Smith, 2002; Winokur et al., 2004; Hunt 

et al., 2013). Using this same protocol, behavioral observation for seizures were 

conducted in a small cohort of Vgat-ires-cre animals in order to establish that they 

developed chronic spontaneous seizures, as some mouse strains are resistant to 

seizure morphology (Schauwecker, 2012). 

2.3 Brainstem Slice Preparation 

 Patch-clamp recordings were made in brainstem slices from mice. Mice 

were deeply anesthetized via inhalation of isofluorane to effect (i.e. lack of 

response to toe-pinch) and decapitated. The brain was removed and placed into 

ice-cold (2-4 C) artificial cerebrospinal fluid (ACSF) containing (in mM): 124 NaCl, 

3 KCl, 2 CaCl2, 1.3 MgCl2, 1.4 NaH2PO4, 26 NaHCO3, and 11 glucose (pH 7.2-

7.4). The brain was blocked on an ice-cold stand and glued on a platform for 

sectioning in the coronal plane. Transverse 300 m thick sections from the caudal 

brainstem were made in cold ACSF using a vibrating microtome (Vibratome series 

1000; Technical Products International) and transferred to a holding chamber 

containing warmed (30-32C) oxygenated ACSF. Slices were incubated for at least 

one hour in the holding chamber prior to use in electrophysiological experiments. 

These brainstem slices contain the NTS and DMV and preserve primary afferent 

connections in the solitary tract.  
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2.4 Electrophysiological Recordings 

 Brainstem slices were transferred to a chamber mounted on a fixed stage 

under an upright microscope (BX51WI; Olympus, Center Valley, PA), where it was 

superfused with continuously warmed (30-32C) oxygenated ACSF. Somatostatin 

containing GABAergic EGFP neurons were targeted under epifluorescence. Patch 

pipettes for recordings were pulled from borosilicate glass (open tip resistance 3-

5 M; King Precision Glass Co, Claremont, CA). The pipette solution contained 

(in mM): 130 K+ gluconate, 1 NaCl, 5 EGTA, 10 HEPES, 1 MgCl2, 1 CaCl2, 3 KOH, 

and 2 ATP. Recordings were obtained using an Axon 700B amplifier (Molecular 

Devices, San Jose, CA), low pass filtered at 2-3 kHz, digitized at 20 kHz, and 

recorded onto a computer (Digidata 1440A, Molecular Devices). Seal resistance 

was between 2 and 5 G for on-cell and whole-cell recordings.  

 On-cell patch-clamp recordings of spontaneous action potentials were 

recorded in voltage clamp mode at resting membrane potential in GABAergic NTS 

neurons. For whole-cell patch-clamp recordings, cells were voltage-clamped at       

-70 mV and allowed to equilibrate with the pipette recording solution for 

approximately five minutes. Spontaneous and miniature excitatory postsynaptic 

currents (sEPSCs and mEPSCs) were recorded in voltage-clamp mode at a 

holding potential of -70 mV. Resting membrane potential was recorded in I=0 

mode, where no holding current was applied. Occasionally, spontaneous firing 

activity was seen in I=0, in which case the resting membrane potential was 

calculated by averaging regions where there was not firing activity. Spontaneous 

action potentials and current-voltage (I-V) curves were recorded in current-clamp 
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mode at resting membrane potential (i.e. I=0 pA). I-V curves were completed to 

measure GABAergic NTS neuron input resistance (Rin) and consisted of 6 current 

injections (-20 pA to +30 pA, 10 pA increments, 500 ms duration) with the resulting 

change in membrane potential being measured. Rin was calculated by plotting the 

linear portion of the I-V curve and calculating the slope. Series resistance was less 

than 25 M and monitored periodically throughout the recordings. If the series 

resistance changed by more than 20% over the course of the experiment, the 

recording was discarded. 

2.5 Drugs Used for Electrophysiological Recordings 

 The drugs and their respective concentrations used for experiments were: 

Tetrodotoxin (TTX; 1 M; Alomone Labs), 4-Aminopyridine (4-AP; 5 mM; Sigma-

Aldrich), (-)-Bicuculline Methiodide (BIC; 30 M; Tocris Biosciences), Kynurenic 

Acid (KYN; 1 mM; Sigma-Aldrich); Tetraethylammonium Chloride (TEA-Cl; 10 mM; 

Sigma-Aldrich). 

2.6 Statistical Analyses 

 For the survival study, a Kaplan-Meier survival curve was generated to 

assess mortality differences between control and pilo-SE mice. A log-rank (Mantel-

Cox) test was used to assess statistical significance. This is a nonparametric test 

used to compare the survival of two samples. Data analysis was performed using 

GraphPad Prism (La Jolla, CA). 

 Electrophysiology measurements included sEPSC frequency, sEPSC 

amplitude, mEPSC frequency, mEPSC amplitude, spontaneous action potential 

frequency (on-cell and whole-cell), paired-pulse ratio (PPr), frequency dependent 



 43 

depression, spontaneous action potential half-width, A-type K+ current amplitude, 

sIPSC frequency, sIPSC amplitude, resting membrane potential and Rin. Analysis 

of electrophysiology measurements was performed using pClamp 10.2, 

MiniAnalysis (version 6.0.7, Synaptosoft; Decatur, GA) and GraphPad (La Jolla, 

CA) software programs. To measure sEPSC, mEPSC, whole and on-cell 

spontaneous action potential firing frequencies a 2-minute segment of continuous 

firing activity was used. For sEPSCs and mEPSCs only events with five times the 

root mean squared baseline noise were included. Events characterized by a fast 

rise phase and exponential decay were automatically detected and then manually 

verified by MiniAnalysis. An unpaired t-test was used to compare on and whole-

cell action potential frequency, sEPSC frequency, sEPSC amplitude, mEPSC 

frequency, mEPSC amplitude, PPr, frequency dependent depression, and action 

potential half-width between control and pilo-SE mice. A two-way ANOVA with a 

Sidak’s post hoc was used to compare the peak transient outward K+ current at 

each voltage step between control and pilo-SE mice in normal ACSF and before 

and after the application of 4-AP. A 2-way ANOVA (Tukey’s post hoc) was done to 

test for differences in the voltage dependence of activation and inactivation 

between control and pilo-SE mice. A 2-way ANOVA (Tukey’s post hoc) was 

completed to assess differences in steady state values between control and pilo-

SE mice. All data are presented as mean  SEM and statistical significance was 

set at p < 0.05.  
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Chapter 3 Functional neuroplasticity in the nucleus tractus solitarius and 

increased risk of sudden unexpected death in mice with acquired temporal 

lobe epilepsy 

This chapter was published in eNeuro, Sept/Oct. 2017; 4(5). Brian P. Delisle and 

Bret N. Smith are additional authors for this paper and this chapter is similar to the 

published manuscript.  

3.1 Introduction 

 Sudden unexpected death in epilepsy (SUDEP) occurs when an individual 

with epilepsy who is otherwise healthy dies suddenly for unknown reasons 

(Annegers, 1997; Nashef, 1997; Nashef et al., 2012; Tolstykh and Cavazos, 2013). 

For epilepsy patients, the risk of sudden unexpected death is >20-fold  higher than 

in the general population and accounts for ~17% of epilepsy-related deaths 

(Nashef, 1997; Kalume et al., 2013; Tolstykh and Cavazos, 2013), so it is 

imperative to elucidate its underlying mechanisms. Patients with longstanding 

epilepsy characterized by frequent generalized tonic-clonic seizures that are 

relatively poorly controlled are at highest risk (Tolstykh and Cavazos, 2013; 

Thurman et al., 2014). Patients with TLE represent ~60% of all epilepsies, and 

seizures are medically intractable in about 30% of these patients, making this the 

largest population at risk of SUDEP, yet mechanisms underlying increased SUDEP 

risk have not been identified in animal models of acquired TLE. Peri-ictal, centrally 

originating or peripheral autonomic irregularities leading to cardiorespiratory 

collapse may be the immediate cause of death in SUDEP (Ryvlin et al., 2013), but 

few studies have been aimed at identifying mechanisms of autonomic failure. 
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Seizures can increase activity of neurons in brainstem autonomic areas, 

independently of physical activity or peripheral metabolic influences (Kanter et al., 

1995; Takakura et al., 2011) and autonomic irregularities often develop over time 

in individuals with epilepsy, implicating central or peripheral autonomic reactive 

neuroplasticity as a potential driver of increased SUDEP risk in patients and rodent 

epilepsy models (Glasscock et al., 2010; Massey et al., 2014; Biet et al., 2015). 

Thus, recurrent seizures might induce changes in central or system physiologic 

functions that increase the risk for sudden death.  

 The brainstem vagal complex is the principal neural center mediating 

parasympathetic visceral regulation. Within the vagal complex, neurons of the 

nucleus tractus solitarius (NTS) receive viscerosensory information via vagal 

afferents and project their axons to preganglionic parasympathetic motor neurons 

in the dorsal motor nucleus of the vagus (DMV) and the nucleus ambiguus (NA; 

(Andresen and Kunze, 1994; Doyle and Andresen, 2001; Wang et al., 2001a; 

Wang et al., 2001b; Davis et al., 2004; Travagli et al., 2006; Glatzer et al., 2007; 

Bailey et al., 2008) as well as to brainstem and hypothalamic areas responsible for 

premotor sympathetic regulation and respiratory reflexes (Takenaka et al., 1995; 

Fontes et al., 2001; Irnaten et al., 2001; Bonham et al., 2006; Affleck et al., 2012; 

Zoccal et al., 2014). Inhibitory GABAergic NTS neurons participate in vagal 

reflexes and prominently regulate parasympathetic output (Davis et al., 2004; 

Travagli et al., 2006). Evidence from genetic epilepsy models suggests that 

epilepsy-related alterations in peripheral or central vagal function contribute to 

cardiorespiratory collapse and SUDEP (Glasscock et al., 2010; Cheah et al., 2012; 
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Glasscock et al., 2012; Kalume et al., 2013; Aiba and Noebels, 2015). Central 

vagal circuit plasticity is prominent in disease states that affect autonomic 

homeostasis (Mei et al., 2003; Bach et al., 2015; Bhagat et al., 2015; Boychuk et 

al., 2015a) and seizure-related derangement of central vagal system function has 

been briefly described, manifesting as increased likelihood of spreading 

depolarization in the NTS (Aiba and Noebels, 2015). Reactive neuroplasticity in 

the central vagal complex, however, has not been investigated in animals with 

acquired TLE. 

 We used the pilocarpine-induced status epilepticus (pilo-SE) model of TLE 

in mice (Shibley and Smith, 2002; Borges et al., 2003; Winokur et al., 2004; 

Groticke et al., 2007; Bhaskaran and Smith, 2010a; Bhaskaran and Smith, 2010b; 

Hunt et al., 2013) to identify long-term changes in NTS neuron function coinciding 

with the development of TLE. Because the NTS is the primary integration center 

for cardiorespiratory reflexes, and GABA neurons in particular are principal 

participants in vagal reflex activity (Glatzer et al., 2007; Bailey et al., 2008) 

increased excitability of these neurons would be consistent with an increased 

propensity for central autonomic failure that could lead to SUDEP in TLE. We 

tested the hypothesis that reactive plasticity of GABAergic circuitry in the NTS 

emerges over time in mice that survive pilocarpine-induced SE. 

3.2 Methods 

3.2.1 ECG Telemetry 

 Mice were anesthetized with 2.5% isofluorane in 100% O2 at 1.5 L/min and 

2-inch midline incision was made through the skin of the abdomen exposing the 
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fascia. Hemostats were used to separate the fascia from the skin and create space 

for the ECG leads underneath the skin. The telemeter body (model ETA-F10; Data 

Sciences International, St.Paul, MN) was implanted on the right flank with the 

positive lead near the right pectoral muscle and the negative lead on the left side 

of the abdomen. The leads were secured by being embedded in the fascia 

underneath the skin. The incision was closed with staples (autoclips, Kent 

Scientific Corporation, Torrington, CT) and allowed to heal for two weeks prior to 

use.  

 Telemeters were turned on at least 24 hours prior to recordings in order to 

minimize disturbances and stress to the mice. Data were recorded for 24 hours 

pre-injection of vehicle or pilocarpine, 24 hours after injection and at 6 and 12 

weeks after injection. ECG data were collected with DSI DataQuest A.R.T. 4.31 

and Ponemah 6.10 and analyzed with Ponemah 6.10 telemetry software.  Data 

were acquired at a sampling rate of 1000 Hz, which is the standard rate used for 

mice and results in a smooth physiologic signal when the ECG waveforms are 

graphed; the telemetry device used a factory preset sampling rate of 200 Hz. No 

low-pass or high-pass filtering was applied during data acquisition. For ECG 

waveform analysis, the software was set to use a 40% QRS detection threshold 

(percentage of the largest derivative peak in QRS segment resulting in an R that 

satisfies the minimum heart rate criteria), a minimum of R deflection of 0.25 mV, a 

maximum heart rate of 1000 bpm, and a minimum heart rate of 80 bpm.  

 Average heart rate was calculated from data from 1 hour recording periods, 

as described previously (Metcalf et al., 2009a; Ho et al., 2011; Schroder et al., 
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2015); all recordings were performed during seizure-free periods. The RR interval 

was manually examined and filtered for abnormal beats by sorting the RR interval 

from shortest to longest and deleting cycles that were two standard deviations from 

the average RR interval, and the ECG channel was subsequently reanalyzed by 

setting upper and lower limits on RR values (Thireau et al., 2008). Areas of the 

recording that contained skipped beats or loss of signal were also deleted. The 

remaining cycles were then averaged to comprise the NN (i.e. RR) interval, which 

was then used to calculate the standard deviation of the N-to-N interval (SDNN) 

and the root mean squared of the standard deviation of the RR interval (RMSSD). 

The SDNN was calculated by taking the square root of the averaged NN interval. 

The RMSSD was calculated with the following steps: (1) the difference between 

the NN interval and delayed NN interval was squared; (2) the squared difference 

was summed; (3) the number of NN intervals was counted; and (4) the sum of the 

difference squared was divided by the count of NN intervals. RMSSD is reported 

as the square root of this value.  

3.2.2 Electrophysiological Stimulation 

 Electrical stimulation was performed using a platinum-iridium concentric 

bipolar electrode (125 m diameter, FHC, Bowdoinham, ME) that was placed in 

the solitary tract (ST) (Glatzer and Smith, 2005; Glatzer et al., 2007). Sets of 5 

current pulses (30-50 A; 400 s) were delivered at interpulse intervals of 30 ms 

at 50 Hz to the ST and responses in NTS neurons voltage-clamped at -70 mV were 

recorded and the constant latency and amplitude evoked EPSC (eEPSC) 

responses were measured. The stimulus intensity was adjusted so that eEPSCs 
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occurred > 80% of the time in GABAergic NTS neurons when stimulation was 

applied to the ST. Thirty stimulation sweeps were applied to each cell and 

averaged for further assessment. The ratio of the second to the first eEPSC (i.e. 

paired-pulse ratio, PPr) was measured in order to infer changes in the probability 

of excitatory neurotransmitter release. An increase in the release ratio typically 

correlates with a decrease in the probability of presynaptic neurotransmitter 

release, in this case presynaptic input arising from the ST (Schild et al., 1995; 

Zucker and Regehr, 2002; Pamidimukkala and Hay, 2004; Chen and Bonham, 

2005; Glatzer and Smith, 2005; Glatzer et al., 2007; Laaris and Weinreich, 2007). 

Frequency-dependent depression (FFD) is a common characteristic of second-

order NTS neurons that receive input from the ST (Miles, 1986; Doyle and 

Andresen, 2001; Bailey et al., 2008; Kline, 2008). In order to assess the FDD, the 

ratio of the amplitudes of the 5th eEPSC to the 1st eEPSC are measured.  Stimulus 

sweeps were only included if an eEPSC was elicited after each stimulation in that 

sweep and the constant latency was less than 0.2 ms to ensure that responses to 

stimulation were monosynaptic in nature (Glatzer et al., 2007; Bailey et al., 2008). 

 Methods for Chapter 3 also included: methylscopolamine and pilocarpine 

injections, seizure assessment, and on- and whole-cell patch-clamp 

electrophysiology as described in Chapter 2 of this dissertation.  

3.3 Results 

3.3.1 Pilocarpine-induced SE as a model of SUDEP  

 Spontaneous seizure activity was monitored in a cohort of mice (n=6 control 

mice; n=6 pilo-SE mice) for 1 week between 11 and 12 weeks post-SE. Similar to 
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previous reports (Shibley and Smith, 2002; Winokur et al., 2004; Hunt et al., 2013) 

spontaneous seizures were observed during this period in 83% (5 of 6) pilocarpine-

treated mice that survived SE. A separate cohort of mice were monitored for long-

term survival after pilocarpine-induced SE. Similar to previous reports (Shibley and 

Smith, 2002; Winokur et al., 2004), all vehicle-injected mice survived the duration 

of the monitoring period of 150 days (100%; n=10 mice). Between 1 and 7 days 

after pilocarpine-induced SE, there was a 13.33% mortality rate (2/15 mice). These 

mice were not considered to have died of SUDEP, as epilepsy (i.e. with 

spontaneous seizures) likely had not developed by this time. Of the 13 pilocarpine-

treated mice that survived for greater than 7 days post-SE, only 3 mice (23%) 

survived to 150 days post-treatment, with no obvious trauma or other incident; 60% 

died after greater than 40 days post-SE (Fig. 3.1). Thus, the survival rate of mice 

that survived pilo-SE was significantly decreased at 150 days compared to with 

vehicle-treated control mice (log-rank Mantel-Cox; p = 0.0002).  
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Figure 3.1 Pilocarpine-induced SE (pilo-SE) increases the risk of sudden death. 
Pilocarpine-treated mice (Pilo-SE; n=15) have a decreased survival rate (23%) 
compared to control mice (n=10, 100%; Log-rank Mantel-Cox; p = 0.0002). Mice 
that survived SE died suddenly and unexpectedly at post-SE time points 
associated with the development of spontaneous seizures. 
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3.3.2 Increased action potential firing in GABAergic NTS neurons from 

pilo-SE mice is glutamate receptor dependent 

 Seizure-induced depolarization in the NTS of mice with genetic epilepsies 

originates in the lateral NTS (Aiba and Noebels, 2015), and area densely 

comprised of GABAergic neurons (Blessing, 1990; Fong et al., 2005; Glatzer et 

al., 2007). We hypothesized that GABAergic NTS neurons, most of which receive 

primary viscerosensory input from the vagus nerve (Glatzer et al., 2007; Bailey et 

al., 2008), are altered functionally post-SE. On-cell recordings of GABAergic NTS 

neurons were performed to determine whether spontaneous action potential firing 

differed between control and pilo-SE mice (Fig. 3.2A,B,E). One week post-

treatment, GABAergic NTS neurons from seven pilo-SE mice displayed 

significantly higher action potential firing frequency (3.35 ± 0.46 Hz; n=20 cells) 

compared with NTS GABAergic neurons from seven age-matched control mice 

(1.32 ± 0.30 Hz; n=15 cells; p = 0.002). Spontaneous action potential firing in 

GABAergic NTS neurons was also significantly increased 6 weeks after treatment 

in five pilo-SE mice (3.32 ± 0.65 Hz; n=16 cells) compared with eight age-matched 

control mice (2.10 ± 0.25 Hz; n=26 cells; p = 0.046). Similarly, action potential firing 

frequency remained significantly greater in GABAergic NTS neurons from seven 

age-matched pilo-SE (4.27 ± 0.96 Hz; n=24 cells) than seven age-matched control 

mice (2.21 ± 0.27 Hz, n=23 cells; p = 0.0048) 12 weeks post-treatment (Fig.3.2E). 

Therefore, action potential frequency was consistently higher in GABAergic NTS 

neurons in mice that survived SE than in control mice. 



 53 

 To determine whether the increase in firing frequency was due to increased 

activation of ionotropic glutamate receptors, spontaneous action potential firing 

was recorded in the presence of the ionotropic glutamate receptor antagonist, 

kynurenic acid (KYN; 1mM; Fig.3.2C,D,F). In the presence of KYN, the action 

potential firing frequency in GABAergic NTS neurons from pilo-SE mice was similar 

to that of control mice 1, 6, and 12 weeks post-treatment (week 1: p = 0.47; week 

6: p = 0.83; week 12: p = 0.78; Fig.3.2F). Therefore, increased action potential 

firing in GABAergic NTS neurons from mice that survived SE depended on 

activation of ionotropic glutamate receptors, implicating increased glutamate-

mediated, excitatory synaptic drive to these neurons during epileptogenesis.  
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Figure 3.2 Action potential frequency in GABAergic nucleus tractus solitarius 
(NTS) neurons from pilo-SE mice is dependent on glutamate receptor activation. 
A) Representative traces showing action potential firing (Na+ currents) in 
GABAergic NTS neurons in slices from control mice recorded in normal ACSF 
(nACSF) at three different time points (i.e., 1, 6, and 12 weeks) after vehicle 
treatment. (B) Representative traces showing action potential firing in GABAergic 
NTS neurons from mice that survived pilo-SE under normal recording conditions 
(nACSF) at three different time points after SE. (C) Representative traces of action 
potential firing in control mice in the presence of kynurenic acid (KYN; 1mM) at 
these same time points. (D) Representative traces of action potential firing in the 
presence of KYN in pilo-SE mice. (E) Action potential firing frequency is 
significantly greater in pilo-SE mice compared to age-matched control mice at 1, 
6, and 12 weeks post-treatment (unpaired t-test; *denotes significance at p<0.05). 
(F) In the presence of KYN, action potential firing frequency in NTS GABA neurons 
from pilo-SE mice was not significantly different than in control mice (unpaired t-
test; p>0.05).  
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3.3.3 GABAergic NTS neurons display increased excitatory regulation 

 An increase in spontaneous action potential firing in GABAergic NTS 

neurons from pilo-SE mice could occur because of altered intrinsic and/or synaptic 

properties. To determine whether intrinsic properties were altered post-SE, we 

measured the resting membrane potential and input resistance in GABAergic NTS 

neurons and found that there were no significant differences between control and 

pilo-SE mice at any time point (Table 3.1). Because firing rate differences were 

abrogated by KYN, we hypothesized that excitatory glutamatergic synaptic input 

was increased after pilo-SE. To test this hypothesis, whole-cell patch-clamp 

recordings were used to examine the frequency and amplitude of spontaneous and 

miniature EPSCs in GABAergic NTS neurons from age-matched control and pilo-

SE mice (Fig 3.3). One week post-treatment, sEPSC frequency in GABAergic NTS 

neurons from six pilo-SE mice (4.98 ± 0.98 Hz; 12 cells) was significantly greater 

than seven control mice (1.61 ± 0.40 Hz; n=10 cells; p = 0.007). The increased 

sEPSC frequency was also seen at 6 weeks post-SE (five control mice: 2.17 ± 

0.46 Hz; n=9 cells; seven pilo-SE mice: 3.40 ± 0.36 Hz; n=13 cells; p = 0.045) and 

12 weeks post-treatment in seven pilo-SE mice (2.57 ± 0.46 Hz; n=15 cells) 

compared with 11 age-matched control mice (1.55 ± 0.27 Hz; n=20 cells; p = 0.03; 

Fig3.3C). There was no significant difference in sEPSC amplitude at any time point 

post-treatment (week 1: p = 0.82; week 6: p = 0.89; week 12: p = 0.20; Fig3.3D). 

Therefore, glutamate release onto NTS GABAergic neurons was increased after 

pilo-SE, and this increased release period persisted for at least 3 months post-SE. 
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Table 3.1 Resting Membrane Potential and Input Resistance.  
Resting membrane potential (RMP) and input resistance of GABAergic NTS 
neurons in mice that survived SE is not significantly different from age-matched 
control mice at any time point (unpaired t-test; p > 0.05). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Input Resistance (MΩ) 
Resting Membrane Potential 
(mV) 

  Control Pilo-SE Control Pilo-SE 

Week 1 1160 ± 600 1590 ± 490 -47.65 ± 5.35 -51.69 ± 4.25 

Week 6 1369 ± 346 1180 ± 293 -52.23 ± 3.69 -53.32 ± 3.63 

Week 12 2477 ± 611 1905 ± 429 -55.93 ± 3.31 -57.57 ± 3.33 
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Figure 3.3 Significantly increased sEPSC frequency in GABAergic NTS neurons 
from pilo-SE mice.  
(A) Representative traces showing sEPSCs in a GABAergic NTS neuron from 
control mice 1, 6, and 12 weeks post-treatment. (B) Representative traces showing 
sEPSCs in a GABAergic NTS neuron from pilo-SE mice 1, 6, and 12 weeks post-
treatment. (C) sEPSC frequency is significantly higher in GABAergic NTS neurons 
from pilo-SE mice compared to control mice 1, 6, and 12 weeks post-treatment 
(unpaired t-test; *denotes significance). (D) sEPSC amplitude is not significantly 
different (unpaired t-test; p>0.05) between control and pilo-SE mice at any time 
point. 
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The hypothesis that the increased release of glutamate depended on action 

potentials in afferent neurons within the slice was tested by measuring the 

frequency and amplitude of mEPSCs in the presence of tetrodotoxin (TTX, 1 µM), 

which was added to ACSF to block Na+ channels and prevent action potential firing 

(Fig.3.4). Unlike for sEPSCs at 1 week post-treatment, mEPSC frequency was not 

significantly increased in five pilo-SE mice (2.37 ± 0.35 Hz; n=9 cells) compared 

with three control mice (1.88 ± 0.34 Hz; n=8 cells; p = 0.33). Miniature EPSC 

frequency was significantly increased, however in GABAergic NTS neurons at 6 

weeks (five control mice: 1.36 ± 0.24 Hz; n=15 cells; six pilo-SE mice: 3.10 ± 0.47 

Hz; n=13 cells; p = 0.003) and 12 weeks (five control mice: 1.46 ± 0.13 Hz; n=15 

cells; seven pilo-SE mice: 2.52 ± 0.38 Hz; n=12 cells; p = 0.007; Fig 3.4C). 

Miniature EPSC amplitude in GABAergic NTS neurons from control and pilo-SE 

mice was not significantly different at any time point post-treatment (week 1, p = 

0.85; week 6, p = 0.18; week 12, p =.10; Fig 3.4D). Therefore, glutamate release 

was increased in GABAergic NTS neurons after pilo-SE, and the increase detected 

after 6 weeks did not depend on action potential firing in glutamatergic neurons 

contained within the slice preparation, suggesting that changes at the level of the 

synaptic terminals contributed to the development of altered glutamate release in 

the NTS during epileptogenesis.  
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Figure 3.4 Significantly increased mEPSC frequency in GABAergic NTS neurons 
from pilo-SE mice.  
(A) Representative traces showing mEPSCs in a GABAergic NTS neuron from a 
control mouse 1, 6, and 12 weeks post-treatment. (B) Representative traces 
showing mEPSCs in a GABAergic NTS neuron from a pilo-SE mouse 1, 6, and 12 
weeks post-treatment. (C) mEPSC frequency is significantly higher in GABAergic 
NTS neurons from pilo-SE mice compared to control mice at 6 and 12 weeks post-
treatment (unpaired t-test; *denotes significance at p<0.05). (D) mEPSC amplitude 
is not significantly different between control and pilo-SE mice at any time point 
(unpaired t-test). 
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3.3.4 Primary vagal afferent input to GABAergic NTS neurons was not 

altered in pilo-SE mice 

 The increase in mEPSC frequency in GABAergic NTS neurons from pilo-

SE mice suggests an increase in the probability of presynaptic glutamate release, 

possibly including from vagal afferent terminals. Nerve terminals of viscerosensory 

primary vagal afferents synapse directly onto second order sensory NTS neurons, 

including GABAergic neurons, the majority of which receive primary vagal input 

(Glatzer et al., 2007; Bailey et al., 2008). Synaptic responses evoked after 

stimulating vagal afferents exhibit paired-pulse inhibition and frequency-dependent 

depression (Miles, 1986; Doyle and Andresen, 2001; Glatzer and Smith, 2005; 

Bailey et al., 2008). We therefore tested the hypothesis that glutamate release from 

primary vagal afferents was enhanced in pilo-SE mice by measuring synaptic 

responses to stimulation of the ST in GABAergic NTS neurons. Examples of 

responses in NTS GABA neurons to repetitive stimulation of the ST in each group 

are shown in Fig 3.5. One week post-treatment, the PPr was not significantly 

different between three control mice (0.71 ± 0.07; n=8 cells) and three pilo-SE mice 

(0.87 ± 0.10; n=8 cells; p = 0.27). At 6 weeks post-treatment, the PPr was not 

significantly altered in four pilo-SE mice (1.02 ± 0.13; n=8 cells) compared with five 

control mice (0.75 ± 0.14; n=5 cells; p = 0.16). There was also no significant 

difference in the PPr at 12 weeks post-treatment between five control mice (0.71 

± 0.06; n=11 cells) and six pilo-SE mice (0.82 ± 0.06; n=14 cells; p = 0.12; Fig 

3.5D). Thus, the increased glutamate release in GABAergic NTS neurons that 
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developed after pilo-SE was likely not due to modification of synaptic release 

probability in vagal afferents. 

 Although changes in the PPr after SE survival are an indicator of alterations 

in the releasable vesicle pool (Schild et al., 1995; Zucker and Regehr, 2002; 

Pamidimukkala and Hay, 2004), frequency-dependent depression provides insight 

into synaptic communication between the vagal afferent fibers and GABAergic 

NTS neurons that may rely on additional mechanisms (Chen et al., 1999; Atwood 

and Karunanithi, 2002; Kline, 2008; Zhao et al., 2015). Frequency-dependent 

depression is a common characteristic of second-order NTS neurons receiving 

viscerosensory afferent input and has been hypothesized to contribute to central 

adaptation during cardiovascular and respiratory reflexes (Miles, 1986; Doyle and 

Andresen, 2001; Kline et al., 2005; Glatzer et al., 2007; Bailey et al., 2008; Kline, 

2008). 

 We also tested the hypothesis that frequency-dependent depression was 

altered in mice that survived SE by analyzing the amplitude ratios of the 5th to the 

1st eEPSC in a train (Fig 3.5F). Similar to the PPr analysis, there was no significant 

difference between three control mice 1 week (0.55 ± 0.09; n=8 cells) and three 

pilo-SE mice (0.56 ± 0.08; n=8 cells; p = 0.89), 6 weeks (control: 0.52 ± 0.08; n-=5 

cells; pilo-SE: 0.78 ± 0.12; n=8 cells; p = 0.14), or 12 weeks post-treatment (control: 

0.56 ± 0.07; n=11 cells; pilo-SE: 0.71 ± 0.07; n=14 cells; p = 0.31; Fig3.5F). These 

data are consistent with the hypothesis that release properties at vagal afferent 

synapses with GABAergic NTS neurons are not altered after pilo-SE. 
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Figure 3.5 Paired pulse ratio (PPr) and frequency dependent depression are 
transiently altered in pilo-SE mice.  
(A) Representative traces of eEPSC responses in GABAergic NTS neurons 1 
week post-treatment from control and pilo-SE mice. (B) Representative traces of 
eEPSC responses in GABAergic NTS neurons 6 weeks post-treatment from 
control and pilo-SE mice. (C) Representative traces of eEPSC responses in 
GABAergic NTS neurons 12 weeks post-treatment from control and pilo-SE mice. 
(D) The PPr was not significantly different between control and pilo-SE mice at any 
time point post-treatment (unpaired t-test; p>0.05). (E) The ratio of the 5th response 
amplitude to that of the 1st response was also not significantly altered in pilo-SE 
mice at any time point (unpaired t-test; p>0.05). 
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3.3.5 Heart rate and heart rate variability in mice surviving SE is not 

altered long-term 

 In chemoconvulsant-induced SE models of acquired TLE in rats, changes 

in cardiac rhythmicity that may reflect plasticity of either central or peripheral vagal 

regulatory function or cardiac remodeling are detected coincident with 

epileptogenesis (Metcalf et al., 2009b; Bealer et al., 2010; Biet et al., 2015). We 

examined mouse ECG activity for changes in heart rate and HRV over time to 

assess whether ongoing cardiac rhythms were altered following SE. Table 3.2 

describes heart rate and two measures of HRV in six control mice and eight 

pilocarpine-treated mice that survived SE. Heart rate was significantly increased 

in mice that survived SE compared with their heart rate 24 hours before treatment 

(baseline, 525.8 ± 22.02 bpm; post-SE, 636.1 ± 39.12 bpm; n=8 mice; p = 0.018). 

This was also true for the SDNN, a measure of HRV. The SDNN was significantly 

decreased 24 hours post-SE (baseline, 10.77 ± 0.21 ms; post-treatment, 9.85 ± 

0.34 ms; p= 0.038). No significant differences were detected at any other time 

points after SE induction in these same mice, nor were any differences detected 

over the 12-week recording period in the RMSSD (two-way ANOVA; F 

(3,46)=0.135; p = 0.939, Table 3.2). 

 

 

 

 

 



 64 

Table 3.2 Heat rate and heart rate variability (HRV) in mice that survived SE.  
Heart rate and the standard deviation of the N-to-N interval (SDNN) were 
increased 24 hours after SE, but no differences were detected at other time points 
(Heart Rate: Two-Way ANOVA, F(3,46) = 2.52, p = .069; SDNN: Two-Way 
ANOVA, F (3,46) = 2.25, p = 0.094). The root mean squared of the standard 
deviation (RMSSD) was not significantly different at any time point (Two-Way 
ANOVA, F (3,46) = 0.135, p = 0.939). 
 

  Control (n=6) Pilo-SE (n=8) 

  
Heart Rate 
(bpm) 

SDNN 
(ms) 

RMSSD 
(ms) 

Heart Rate 
(bpm) 

SDNN 
(ms) 

RMSSD 
(ms) 

Baseline 
539.42 ±  
14.23 

10.60 ± 
0.13 

2.96 ± 
0.65 

525.8 ±  
22.02 

10.77 ± 
0.21 

3.22 ± 
0.38 

24 h 
534.66 ±  
8.92 

10.68 ± 
0.08 

3.37 ± 
0.51 

636.10 ± 
39.12 

9.85 ±  
0.34 

2.86 ± 
0.59 

Week 6 
549.96 ±  
12.93 

10.48 ± 
0.13 

3.21 ± 
1.25 

556.90 ± 
26.26 

10.47 ± 
0.23 

3.32 ± 
0.45 

Week 12 
530.54 ±  
9.28 

10.68 ± 
0.09 

3.12 ± 
0.66 

524.10 ± 
18.19 

10.75 ± 
0.19 

3.27 ± 
0.62 
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3.4 Discussion 

 The present study investigated survival rates and changes in GABAergic 

NTS neuron function in mice that survived pilo-SE. Mice that died within 1 week of 

SE were considered to have failed to recover from SE and therefore not to have 

died of SUDEP, since they likely did not have epilepsy. Of the mice that survived 

the first week after pilocarpine-induced SE, just 23% survived to 150 days post-

SE, whereas 100% of control mice survived the duration of the study. Patients with 

longstanding epilepsy characterized by frequent generalized tonic-clonic seizures 

that are relatively poorly controlled are at highest risk for SUDEP (Surges and 

Sander, 2012; Tolstykh and Cavazos, 2013; Massey et al., 2014; Thurman et al., 

2014; Dlouhy et al., 2016). SUDEP risk in patient populations with relatively rare 

genetic epilepsies such as Dravet’s syndrome, which accounts for about 3% of 

patients with epilepsy, is high (Wu et al., 2015), and many studies have been aimed 

at elucidating the causes of SUDEP in genetic epilepsies. Patients with TLE 

represent ~60% of all epilepsies, however, and seizures are medically intractable 

in about one-third of TLE patients, making this the largest epilepsy population at 

risk of SUDEP. The pilocarpine-induced SE model in mice represents a consistent 

and highly replicable TLE model in which mice develop spontaneous seizures 

within a few weeks after recovery from SE (Shibley and Smith, 2002; Winokur et 

al., 2004; Scorza et al., 2009; Bhaskaran and Smith, 2010b), promoting this mouse 

as a reasonable model of SUDEP in TLE. Pilocarpine plasma and brain levels peak 

in the minutes after injection and fall to almost zero by 2 hours post-injection; it is 

therefore doubtful that the single exposure to pilocarpine itself is responsible for 
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our findings, which were measured days to months after injection (Romermann et 

al., 2015). Additionally, microinjection of muscarinic receptor agonists in the NTS 

alters function for 4-6 minutes after application without sustained changes 

(Sundaram et al., 1988). Thus, decreased survivability and increased NTS circuit 

excitability likely develop coincident with epileptogenesis in this model, rather than 

as a result of a brief exposure to the muscarinic agonist.  

 Sudden unexpected death has been documented in mouse models of 

genetic epilepsy (Goldman et al., 2009; Glasscock et al., 2010; Cheah et al., 2012; 

Aiba and Noebels, 2015) and unexpected death has been noted anecdotally in 

models of acquired TLE. In murine Kv1.1-null and Dravet’s syndrome genetic 

epilepsy models, mice begin having seizures by approximately the third week of 

life, and most animals do not survive past day 90 (Cheah et al., 2012). These 

models use genetically mediated ion channel derangement to induce epilepsy, and 

the channelopathies themselves could increase the likelihood of sudden death. 

They can also result in altered electrical properties of cardiomyocytes, 

complicating interpretations of the contribution of the effects of seizures-versus the 

channelopathy itself to death (Auerbach et al., 2013). Conversely, seizures in the 

pilocarpine-SE model induce reactive neuroplasticity, including ion channel and 

synaptic reorganization in cortical structures (Shibley and Smith, 2002; Su et al., 

2008; Metcalf et al., 2009b; Bealer et al., 2010; Guo et al., 2013), and the present 

results indicate they also induce remodeling in brainstem neurons or circuits, which 

could contribute to central autonomic dysregulation. After the initial post-SE period, 

heart rate and HRV were not affected in this mouse model, but cardiac arrhythmias 
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have been detected in rats with acquired epilepsy (Powell et al., 2014). An increase 

in baseline heart rate that coincided with sympathovagal imbalance has been 

described in rats 2 weeks after pilocarpine injection, before the development of 

spontaneous seizures (Metcalf et al., 2009a; Bealer et al., 2010). Although similar 

changes were not detected in the mouse model of TLE used here, further work is 

necessary to determine whether seizure-related peripheral changes in 

cardiorespiratory function accompany epileptogenesis in mice, perhaps using 

isolated hearts to limit the influence of central autonomic regulatory mechanisms 

(Powell et al., 2014). Our results are consistent with the hypothesis that central 

autonomic plasticity develops during epileptogenesis in mice, regardless of any 

potential for cardiac remodeling. Given the critical importance of the vagal complex 

in regulating cardiac and respiratory reflex function, the development of increased 

excitability in the NTS during epileptogenesis could reasonably be predicted to 

increase the propensity for SUDEP in pilocarpine-treated mice. 

 The vagal complex in the caudal brainstem controls autonomic output to the 

thoracic and most abdominal viscera. Within the vagal complex, GABAergic 

neurons in the NTS receive, filter, and integrate viscerosensory information 

regarding cardiorespiratory function and modulate both vagal and sympathetic 

tone. Neuroplasticity in the vagal complex occurs in a variety of diseases (Mei et 

al., 2003; Zsombok and Smith, 2009; Bach et al., 2015) and these neurons also 

displayed functional changes weeks to months after SE. GABAergic neurons 

displayed significantly and chronically increased spontaneous action potential 

firing after SE. Significant differences in the passive membrane properties of 
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GABAergic NTs neurons in pilo-SE mice were not detected, but the increase in 

excitability was accompanied by increased glutamate release, evidence by 

significantly higher sEPSC and mEPSC frequency versus age-matched controls. 

Notably, age-related increases in NTS neuron excitability have been documented 

(Johnson and Felder, 1993), so all comparisons here were made between age-

matched groups. The increased activity was eliminated when ionotropic glutamate 

receptors were blocked, providing further evidence that long-term changes in 

synaptic function are associated with epileptogenesis in this model. 

 The increased glutamate release shortly after pilo-SE was action potential 

dependent, suggesting an initial increase in excitability of local interneurons. Action 

potential-independent release, however, was significantly increased by 6 weeks, 

suggesting the development of altered presynaptic release properties or formation 

of new synapses in the NTS during epileptogenesis. Most GABAergic NTS 

neurons receive direct vagal input (Glatzer et al., 2007; Bailey et al., 2008) 

evidenced by eEPSCs with constant response latency (i.e. synaptic jitter <0.2 ms) 

after ST stimulation. Reduced expression of K+ channels in the vagus nerve of 

Kv1.1-null mice with epilepsy has been reported (Goldman et al., 2009; Glasscock 

et al., 2010; Glasscock et al., 2012), and seizure-induced K+ channel remodeling 

in vagal or other afferents could contribute to the increase in glutamate release 

onto the GABAergic NTS neurons in pilocarpine-treated mice. However, changes 

in synaptic release properties of vagal afferent terminals were not detected. In 

addition to synaptic vagal afferent input, these receive glutamatergic synapses 

originating from local NTS neurons and from other brain areas (Nishimura and 
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Oomura, 1987; Zhang et al., 1999; Glatzer et al., 2007), consistent with the 

hypothesis that synaptic reorganization of central neurons contributes to the 

increased glutamate release in the NTS during epileptogenesis. 

 The cellular mechanisms underlying the increased glutamate release and 

enhanced excitability of NTS GABA neurons have yet to be elucidated, but the 

increase in synaptic excitation is reminiscent of the synaptic rearrangement that 

occurs in cortical inhibitory interneurons during epileptogenesis (Hunt et al., 2011; 

Zhang et al., 2011) and is consistent with dysregulation of autonomic control of the 

thoracic and abdominal viscera. Increased synaptic excitation of GABAergic NTS 

neurons would be expected to inhibit parasympathetic motor output and suppress 

autonomic reflex responses in pilo-SE mice. Because NTS neurons also project to 

neurons that inhibit medullary synaptic circuits (Card et al., 2006), increased 

activity might also chronically disinhibit sympathetic motor output. Respiratory 

centers receiving input from NTS neurons with altered excitability may also be 

affected (Stornetta and Guyenet, 1999).  

 The chronic increase in glutamate-mediated cellular excitability after SE 

may also make GABAergic NTS neurons more susceptible to sodium channel 

inactivation in the event of excessive depolarization, as can occur if seizures 

spread to this brainstem area (Aiba and Noebels, 2015). Spreading depression 

and depolarization block have been well studied in cortical neurons and implicated 

in the pathophysiology of migraine and stroke (Dreier and Reiffurth, 2015; Dreier 

et al., 2015). NTS neurons are normally resistant to spreading depression 

(Somjen, 2001; Dreier and Reiffurth, 2015), but focal cortical seizures in mice with 
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epilepsy induced spreading depolarization in the NTS under conditions of 

metabolic deprivation, which was followed by cardiorespiratory collapse and 

sudden death in genetic epilepsy models (Aiba and Noebels, 2015). Spreading 

depression is typically initiated in the lateral NTS, an area of the nucleus that 

receives inspiratory vagal afferent input from the lung (Donnelly et al., 1989) and 

is enriched in GABAergic neurons (Blessing, 1990; Fong et al., 2005; Glatzer et 

al., 2007). The elevated synaptic excitability in GABAergic NTS neurons in mice 

that survived pilocarpine-induced SE is consistent with an increased propensity for 

depolarization block and action potential inactivation in these neurons, which could 

increase the likelihood that depolarization block and spreading depression could 

evolve in the NTS (Haller et al., 2001; Larrosa et al., 2006; Sawant-Pokam et al., 

2017). Whereas cortical seizures that spread to the NTS can evoke spreading 

depolarization associated with SUDEP, other coordinated input to the nucleus, 

such as that which occurs during vagal reflex initiation, might also render the region 

susceptible to spreading depolarization in mice with TLE. GABAergic NTS neurons 

play a critical role as mediators of cardiac, respiratory, and baroreceptor reflexes 

(Andresen and Kunze, 1994; Kanter et al., 1995; Wang et al., 2001a; Wang et al., 

2001b; Zoccal et al., 2014). Because we did not see any cardiac-specific 

phenotypes in the mice with pilocarpine-induced TLE, we hypothesize that the 

increase in NTS neuron excitability leads to an increased propensity for 

depolarization block and spreading depression centrally, resulting in sudden death 

under specific conditions (Aiba and Noebels, 2015). Notably, this is not necessarily 

superimposed on chronic changes in cardiac function in this model. These central 
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mechanisms may lead to aberrant baroreceptor or cardiorespiratory reflexes in the 

pilo-SE mice, but intrinsic changes in cardiac function may not be expressed under 

nominal conditions.  

 The present results show that mice that survive SE are susceptible to 

SUDEP after several weeks. Our findings are consistent with the hypothesis that 

glutamate release is persistently elevated in the NTS after SE, evidenced by an 

increase in glutamatergic synaptic input to GABAergic NTS neurons and a 

corresponding increase in neuronal activity. Chronically increased activity in 

GABAergic NTS neurons would be expected to impact parasympathetic or 

sympathetic tone, autonomic reflexes, including cardiorespiratory reflexes, and 

may underlie seizure-induced depolarization block and spreading depression in 

the nucleus, leading to cardiorespiratory collapse and SUDEP. Our results also 

suggest multiple components contribute to the altered excitation of NTS GABA 

neurons, including an initial increase in glutamate release driven by action 

potentials in local neurons and a delayed, persistent increase in presynaptic 

glutamate release from synaptic terminals of central neurons. These changes likely 

involve seizure-induced synaptic or channel reorganization within the central vagal 

system. Although the mechanistic cause of SUDEP per se has been debated 

(Surges and Sander, 2012; Ryvlin et al., 2013; Aiba and Noebels, 2015), it is most 

likely not due to a single etiology such as cardiac changes, at least in mice with 

TLE. We posit that in TLE, SUDEP may result from multiple factors (e.g. cardiac 

or respiratory failure), and the triggers for these are superimposed on dysregulated 

NTS circuits. Understanding the cellular changes in the NTS that are associated 
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with seizures may prompt the development of predictive biomarkers for SUDEP in 

those populations most at risk, and eventually therapies to prevent SUDEP.  
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Chapter 4 Alterations in A-type current in the nucleus tractus solitarius in 

acquired temporal lobe epilepsy 

 

4.1 Introduction 

Approximately 60% of all individuals with epilepsy have temporal lobe 

epilepsy (TLE), which is characterized by recurrent, unprovoked electrical activity 

originating in the medial portions of the temporal lobe. In about 30% of these 

individuals, seizures are medically intractable. Sudden Unexpected Death in 

Epilepsy (SUDEP) is defined as when an individual who is otherwise healthy, dies 

suddenly and unexpectedly for unknown reasons and is one of the leading causes 

of death in individuals with epilepsy and risk is increased in patients with 

uncontrolled seizures (Annegers, 1997; Nashef, 1997; Nashef et al., 2012; 

Tolstykh and Cavazos, 2013; Ellis and Szabo, 2018). Previous studies in mouse 

models of genetic epilepsy have suggested that functional seizure-related that 

alterations in brainstem centers that modulate peripheral autonomic and 

cardiorespiratory reflexes are associated with an increased risk for SUDEP 

(Goldman et al., 2009; Glasscock et al., 2010; Cheah et al., 2012; Kalume et al., 

2013; Simeone et al., 2018). It has also been shown in mouse models of genetic 

epilepsy that seizures can spread from the cortex to the brainstem, leading to 

cardiorespiratory collapse and sudden death (Aiba and Noebels, 2015). 

Importantly, we have recently shown in a model of acquired TLE that -

aminobutyric acid (GABA) neurons in the nucleus tractus solitarius (NTS), the 

primary central autonomic integration area in the caudal brainstem, are 
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hyperexcitable in a mouse model of TLE, which may contribute to increased 

SUDEP risk in this model (Derera et al., 2017). 

The NTS is located in the dorsal vagal complex of the caudal brainstem and 

is the principal central locus of visceral autonomic integration. NTS neurons 

receive primary glutamatergic inputs from vagal afferent fibers and project their 

axons to preganglionic parasympathetic motor neurons in the dorsal motor nucleus 

of the vagus (DMV) and the nucleus ambiguus (NA) (Andresen and Kunze, 1994; 

Doyle and Andresen, 2001; Wang et al., 2001b; Davis et al., 2004; Travagli et al., 

2006; Glatzer et al., 2007; Browning and Travagli, 2010). Neurons of the NTS 

project to the hypothalamus and pre-sympathetic areas of the ventral brainstem as 

well; therefore the nucleus is well-situated to regulate premotor sympathetic and 

parasympathetic output (Takenaka et al., 1995; Fontes et al., 2001; Irnaten et al., 

2001; Affleck et al., 2012; Zoccal et al., 2014). NTS neurons have been shown to 

alter their function in response to many disease states, including hypertension, 

hypoxia, and diabetes, and a reduction in voltage-gated K+ current as been shown 

to be associated with these pathologies (Mei et al., 2003; Kline et al., 2005; Bach 

et al., 2015; Boychuk et al., 2015a). While voltage-gated K+ currents have been 

investigated in hypertension and hypoxia (Belugin and Mifflin, 2005; Accorsi-

Mendonca et al., 2015), epilepsy-related changes in voltage-gated K+ currents of 

NTS neurons have not been examined in a mouse model of acquired TLE. We 

postulate that a portion of the hyperexcitability previously seen in GABAergeric 

NTS neurons in TLE may be due to a similar reduction in voltage-gated K+ current.  
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Several voltage-gated K+ channels are known to be associated with 

epilepsy and are expressed in NTS neurons (Moak and Kunze, 1993; Kline et al., 

2005; Ramirez-Navarro et al., 2011; Villa and Combi, 2016). Of particular interest 

is the Kv4 family of voltage-gated K+ channels, which underlie the A-type K+ current 

in NTS neurons (Belugin and Mifflin, 2005; Bailey et al., 2007; Strube et al., 2015). 

Voltage-gated K+ channels play a major role in neuronal excitability and K+ 

channelopathies can contribute to seizures (Brenner and Wilcox, 2012; D'Adamo 

et al., 2013; Villa and Combi, 2016). The Kv4 family of voltage-gated K+ channels 

prevent action potential back-propagation and regulate neuronal excitability 

(Birnbaum et al., 2004). There are three subunits that comprise the Kv4 subfamily: 

Kv4.1, Kv4.2, and Kv4.3. There are also four K+ channel interacting proteins 

(KChIPs) that can modulate Kv4 activity and surface expression (Birnbaum et al., 

2004; Covarrubias et al., 2008). The Kv4.2 subunit has specifically been 

associated with TLE and mutations in KCND2, which encodes for the Kv4.2 

subunit, have been shown to occur in individuals diagnosed with TLE (Singh et al., 

2006; Lee et al., 2014). Additionally, when Kv4.2 is deleted in mice, susceptibility 

to kainite-induced seizures is increased (Barnwell et al., 2009). Several studies 

have shown a downregulation in Kv4.2, KChIPs, and A-type K+ currents following 

pilocarpine-induced status epilepticus (SE). Importantly, these changes occurred 

not only in the days following SE, but in the chronic seizure phase, months post-

SE (Lugo et al., 2008; Monaghan et al., 2008; Su et al., 2008). However, A-type 

K+ current has not been examined in NTS neurons in a mouse model of TLE. 
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We hypothesize that there is an alteration in A-type K+ current and Kv4 

expression is associated with increased excitability of GABAergic NTS neurons 

that develops during temporal lobe epileptogenesis. Increased excitability in this 

neuronal subtype may decrease the threshold for spreading depolarization, 

leading to an increased risk for cardiorespiratory collapse and SUDEP. We used 

the pilocarpine-induced SE model of TLE to test this hypothesis (Shibley and 

Smith, 2002; Winokur et al., 2004; Derera et al., 2017).  

4.2 Methods 

4.2.1  A-Type Potassium Current Recordings 

A-type K+ current (IA) activation and inactivation were measured in 

GABAergic NTS neurons using a series of voltage-step protocols. Total K+ currents 

(IK) were determined using the following protocol: from holding potential (-70 mV), 

a 500 ms hyperpolarizing pre-pulse (-110 mV) was delivered followed by a series 

of depolarizing voltage steps (-60 mV to +30 mV; 500 ms; 10 mV increments), 

evoking transient and sustained outward currents. The delayed rectifier K+ current 

(IKDR) was determined by delivering a 500 ms depolarizing pre-pulse at -30 mV 

from holding potential (-70 mV) followed by 500 ms depolarizing voltage steps from 

-60 mV to +30 mV in 10 mV increments. IA was calculated by offline subtraction of 

IKDR from IK in Clampfit 10.3 (Molecular Devices). IA inactivation was revealed with 

the following protocol: from holding potential (-70 mV), conditioning steps from         

-120 mV to +60 mV (10 mV increments, 500 ms duration), were followed by a test 

pulse at -30 mV (500 ms duration). The ACSF for all IA recordings contained 

tetrodotoxin (TTX, 1 µM), bicuculline (BIC, 30 µM), kynurenic acid (KYN, 1mM), 
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and tetraethylammonium chloride (TEA-Cl, 10 mM). In order to confirm the 

presence of IA, 4-AP (5mM) was added to the ACSF, and the activation and 

inactivation protocols were repeated. Current is presented as pA/pF in order to 

adjust for differences in cell size. Series resistance was less than 15 MΩ and 

compensated between 30% and 70% for all recordings. Series resistance was 

evaluated between each voltage-step protocol to ensure cell health. 

4.2.2 qRT-PCR 

Three to four brainstem slices per animal that contained the vagal complex 

(300 µM) were isolated as previously described for electrophysiological recordings. 

The vagal complex, including the NTS, was visualized under a dissecting 

microscope and excised from the rest of the brainstem using a 1 mm diameter 

punch (Miltex Inc., York, PA). This approach allowed for a more homogenous 

tissue sample with minimal sampling from other brainstem areas (Boychuk et al., 

2015a; Halmos et al., 2015; Boychuk et al., 2017). Tissue samples from one animal 

were pooled into one sample. RNA was isolated using the RNeasy miniPrep kit 

(Qiagen, Hilden Germany). Spectrophotometry (ThermoScientific, NanoDrop 2000 

Spectrophotometer) was used to determine cDNA quality and quantity. All qRT-

PCR reactions were run in triplicate in 96-well optical grade plates using a 7500 

Fast Real-Time PCR System (Applied Biosystems, Foster City, CA). Total volume 

for each run was 20 µL containing 50-100 ng of cDNA. The reaction times and 

temperatures were 50˚C for 2 minutes, 95 ̊ C for 10 minutes, followed by 50 cycles 

of 95 ˚C for 15s, and 60 ˚C for 1 minute. Primers and probe sets for -actin 

(Mm.PT.39a.22214843), Kv4.1(mostly microglia; Mm.PT.58.1430675), Kv4.2 
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(oligodendrocytes and neurons; Mm.PT.58.29624161), Kv4.3 (neurons); 

Mm.PT.58.7819122, KChIP1 (neurons; Mm.PT.58.41994313), KChIP3 

(astrocytes; Mm.PT.58.43828062) and KChIP4 (neurons; Mm.PT.58.9880505) 

were purchased from Integrated DNA Technologies (IDT, Skokie, IL). Fold change 

in each gene of interest was calculated using the formula 2-CT; -actin was used 

as a reference gene. Water-only (i.e. no primer/probe) and no-RT controls were 

also run in each reaction. The positive control contained the whole brainstem 

instead of the vagal complex tissue sample (Livak and Schmittgen, 2001). The 

CT was used to determine statistical significance using an unpaired t-test (Wood 

and Giroux, 2003). 

Methods for Chapter 4 also included: methylscopolamine and pilocarpine 

injections, brainstem slice preparation, and whole-cell patch-clamp 

electrophysiology as described in Chapter 2 of this dissertation. 

4.3 Results 

4.3.1 Action potential frequency and half-width are altered in GABAergic 

NTS neurons from Pilo-SE mice 

In order to investigate the hyperexcitability seen in GABAergic NTS neurons 

during epileptogenesis, we assessed action potential firing frequency and half-

width in control and pilo-SE mice 9-12 weeks post-treatment. Action potential 

frequency was significantly greater in GABAergic NTS neurons from pilo-SE mice 

(2.54  0.37 Hz, n = 10 cells) compared to control mice (1.46  0.24 Hz, n = 11 

cells, p = 0.03, Fig. 4.1A,C). When measured at a membrane potential of -70 mV, 

action potential half-width was significantly greater in GABAergic NTS neurons 
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from pilo-SE mice (2.14  0.16 ms, n = 10 cells) compared to control mice (1.69  

0.13 ms, n = 11 cells, p = 0.04, Fig. 4.1B,D). The increase in action potential half-

width in neurons from pilo-SE mice is suggestive of a lengthening in the 

repolarization phase of the action potential. 
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Figure 4.1 GABA NTS neurons from pilo-SE mice have increased action potential 
firing frequency and half-width.  
(A) Representative traces showing action potential firing in GABAergic NTS 
neurons from a control and pilo-SE animal. (B) Representative traces showing 
action potential half-width in GABAergic NTS neurons from a control and pilo-SE 
animal. (C) Action potential frequency is significantly increased in GABAergic NTS 
neurons from pilo-SE mice (unpaired t-test; *p < 0.05). (D) Action potential half-
width is significantly increased in GABAergic NTS neurons from pilo-SE mice 
(unpaired t-test; *p < 0.05). 
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Various families of voltage-gated K+ channels modulate the repolarization 

phase of the action potential. We hypothesized that in pilo-SE mice there may be 

a decrease in voltage-gated K+ channel function that contributes to both the 

increase in the action potential half-width and the hyperexcitability seen in 

GABAergic NTS neurons. In order to test this hypothesis, we measured action 

potential frequency and half-width before and after bath application of 4-AP (5 

mM), a voltage-gated K+ channel blocker, in GABAergic NTS neurons from control 

and pilo-SE mice 9-12 weeks post-treatment. Action potential frequency was 

significantly greater after application of 4-AP in GABAergic NTS neurons from 

control mice (no 4-AP: 1.56  0.31 Hz, n=13 cells; after 4-AP: 3.1  0.65 Hz, n= 6 

cells, p = 0.02). However, there was no significant difference in action potential 

frequency in GABAergic NTS neurons in normal ACSF (3.20  0.32, n = 13 cells) 

and after application of 4-AP (4.39  0.82, n= 8 cells, p = 0.13 Fig. 4.2). When 

examining action potential half-width, we found that it was significantly longer after 

application of 4-AP in GABAergic NTS neurons control mice (before 4-AP: 1.63  

0.15 ms, n=8 cells; after 4-AP: 3.52  0.42ms, n= 5 cells, p = 0.0005). We did not 

detect a significant difference in action potential half-width in GABAergic NTS 

neurons from pilo-SE mice in the absence (2.63  0.44 ms, n= 10 cells) or presence 

(2.90  0.22 ms, n= 6 cells, p = 0.66, Fig. 4.3) of 4-AP. The decrease in sensitivity 

to 4-AP seen in GABAergic NTS neurons from pilo-SE mice suggests that there 

may be a decrease in the function of voltage-gated K+ channels, potentially those 

contributing to the A-type current.  
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Figure 4.2 The effect of 4-AP on action potential firing frequency in GABA NTS 
neurons.  
(A) Representative trace showing action potential firing in a GABA NTS neuron 
from a control animal in normal ACSF (nACSF). (B) Action potential firing in the 
same GABA NTS neuron in the presence of 4-AP (5mM). (C) Representative trace 
showing action potential firing in a GABA NTS neuron from a pilo-SE mouse in 
nACSF. (D) Representative trace showing action potential firing in the same GABA 
NTS neuron in the presence of 4-AP. (E) Action potential frequency is significantly 
higher after application of 4-AP in GABA NTS neurons form control mice. There is 
no significant difference in action potential frequency before and after 4-AP 
application in GABA NTS neurons from pilo-SE mice (unpaired t-test; *p < 0.05).  
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Figure 4.3 GABA NTS neurons from pilo-SE mice are less sensitive to 4-AP.  
(A) Representative traces showing action potential half-width in a GABAergic NTS 
neuron from a control animal in normal ACSF (nACSF) and in the presence of 4-
AP (5mM). (B) Representative traces showing action potential half-width in a 
GABAergic NTS neuron from a pilo-SE mouse in nACSF and in the presence of 4-
AP. (C) Action potential half-width is significantly increased in GABAergic NTS 
neurons from control mice after 4-AP application. There is no significant difference 
in action potential half-width before and after 4-AP application in GABA NTS 
neurons from pilo-SE mice (unpaired t-test; *p < 0.05).  
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4.3.2 The effect of 4-AP on sEPSC frequency and amplitude in 

GABAergic NTS neurons 

 We also assessed the effect of 4-AP on frequency and amplitude of 

sEPSCs in GABAergic NTS neurons from control and pilo-SE mice 9-12 weeks 

post-treatment. There was a significant increase in sEPSC frequency in 

GABAergic NTs neurons after application of 4-AP (before 4-AP: 1.17  0.23 Hz, 

n= 7 cells; after 4-AP: 5.34  0.78 Hz, n= 7, p = 0.003). sEPSC frequency was not 

significantly different following 4-AP application (before 4-AP: 3.77  0.87 Hz, n= 

6 cells; after 4-AP: 4.54  0.74 Hz, n= 14 cells, p = 0.55). Application of 4-AP had 

no significant effect on sEPSC amplitude in either control or pilo-SE mice (control: 

p = 0.59; pilo-SE: p = 0.67; Fig. 4.4). Changes in synaptic frequency with addition 

of 4-AP are consistent with previous studies in both the hippocampus (Buckle and 

Haas, 1982) and NTS (Haji and Ohi, 2010), and the absence of detectable change 

in pilo-SE mice suggests a functional reduction in 4-AP sensitive channels in 

GABA NTS neurons. 
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Figure 4.4 The effect of 4-AP on sEPSC frequency and amplitude in GABA NTS 
neurons.  
(A, B) Representative traces showing sEPSCs in a GABA NTS neuron from a 
control animal in normal ACSF (nACSF) and in the presence of 4-AP (5mM). (C,D) 
Representative traces showing sEPSCs in a GABA NTS neuron from a pilo-SE 
animal in nACSF and in the presence of 4-AP. (E) There is significantly higher 
sEPSC frequency in GABA NTS neurons from control mice after 4-AP and no 
significant difference in pilo-SE mice after 4-AP application (unpaired t-test; *p < 
0.05). (F) There is no significant difference in sEPSC amplitude before and after 
4-AP application in GABA NTS neurons from control or pilo-SE mice (unpaired t-
test; p > 0.05).  
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4.3.3 A-type potassium current is reduced in GABA NTS neurons from 

pilo-SE mice 

Since 4-AP is a specific blocker of A-type K+ currents, we hypothesized that 

the decrease in sensitivity to 4-AP in pilo-SE mice may be due a decrease in A-

type K+ current. First, we assessed the amplitude of the transient outward currents 

(TOCs) in GABAergic NTS neurons from control and pilo-SE mice. The membrane 

capacitance was not different between GABAergic NTS neurons from control and 

pilo SE mice (control: 6.57  0.20 pF; pilo-SE: 7.39  0.79 pF; p = 0.14). The series 

resistance also did not differ between groups (control: 8.69  0.76 MΩ; pilo-SE: 

7.86  1.29 MΩ; p = 0.59). The amplitude of the TOCs (measured 20-30 ms after 

the voltage step onset) were significantly different between GABAergic NTS 

neurons from control and pilo-SE mice (F (9,160) = 1.96, P = 0.04, control n= 10 

cells, pilo-SE n=8 cells, Fig 4.5C). At activation voltages from +10 to +30 mV, the 

TOCs were significantly reduced in GABAergic NTS neurons from pilo-SE mice 

compared to control mice (+10 mV: p = 0.04; +20 mV: p = 0.01; +30 mV: p = 0.003). 

We did not see any significant differences in longer-lasting steady state amplitude 

in GABAergic NTS neurons between control and pilo-SE mice (F 9,160) = 0.18, P 

= 0.99, Fig 4.5D), measured in the last 50 ms of the voltage step. In a separate 

cohort of GABAergic NTS neurons, 4-AP was added to the bath solution in order 

to validate that the A-type voltage-gated K+ current was being measured (Fig 4.6). 

We also examined the voltage dependence of activation and inactivation in 

GABAergic NTS neurons from control and pilo-SE mice. There was no significant 

difference in the voltage dependence of activation (2-way ANOVA, F (9,330) = 
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0.21, p = 0.99, Fig 4.7A) or inactivation (2-way ANOVA, F (18, 475) = 0.18, p = 

0.99, Fig 4.7B) in GABAergic NTS neurons from control mice and pilo-SE mice. 
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Figure 4.5 Transient outward current amplitude is reduced in pilo-SE mice.  
(A) Representative trace of IA activation in a GABAergic NTS neuron from a control 
animal. (B) Representative trace of IA activation in a GABAergic NTS neuron from 
a pilo-SE animal. (C) Mean amplitude of TOCs (measured as peak-steady state 
values). GABA NTS neurons from pilo-SE mice had significantly lower TOCs 
compared to those from control mice (2-way ANOVA, *P < 0.05). (D) There was 
no significant difference in steady-state outward currents in GABA NTS neurons 
from control and pilo-SE mice (2-way ANOVA, p > 0.05). 
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Figure 4.6 The effect of 4-AP on transient outward current amplitudes in 
GABAergic NTS neurons.  
(A) Representative trace of IA activation in a GABAergic NTS neuron from a 
control animal in normal ACSF (nACSF) and in the presence of 4-AP (5 mM). (B) 
Representative trace of IA activation in a GABAergic NTS neuron from a pilo-SE 
animal in nACSF and in the presence of 4-AP. (C) 4-AP significantly reduced 
TOCs in GABAergic NTS neurons from both control and pilo-SE mice (2-way 
ANOVA, *p < 0.05).  
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Figure 4.7 Activation and Inactivation of TOCs in GABAergic NTS neurons from 
control and pilo-SE mice.   
(A) Voltage dependence activation of TOCs in GABAergic NTS neurons from 
control and pilo-SE mice. (B) Voltage dependence inactivation of TOCs in 
GABAergic NTS neurons from control and pilo-SE mice.  (2-way ANOVA, p > 
0.05). 
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4.3.4 Quantitative reverse transcriptase PCR 

 Quantitative RT-PCR was utilized to determine if the reduction in IA is due 

to a down regulation in the expression of the genes that encode the Kv4 subfamily 

of voltage-gated K+ channels and their associated accessory subunits, KChIP1, 

KChIP3, and KChIP4. There were no significant differences in the expression of 

any Kv4 genes or their associated accessory subunits in pilo-SE mice relative to 

control mice (Kv4.1: p = 0.81; Kv4.2: p = 0.83; Kv4.3: p = 0.81; KChIP1: p = 0.61; 

KChIP3: p = 0.40; KChIP4: p = 0.47; Fig. 4.8).  
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Figure 4.8 Kv4 and KChIP expression levels in the vagal complex from control 
and pilo-SE mice.  
There was no significant difference in expression of Kv4.1, Kv4.2, Kv4.3, KChIP1, 
KChIP2, KChIP3, or KChIP4 (Unpaired t-test, p > 0.05).  These analyses were 
performed by Dr. Katalin Smith. 
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4.4 Discussion 

The present study investigated the 4-AP sensitive A-type voltage-gated K+ 

current in a mouse model of pilocarpine-induced TLE. Previous studies have 

shown that there is a downregulation in the A-type current as well as voltage-gated 

K+ channel protein in the hippocampus of pilocarpine-treated mice. This change 

was seen both in the hours and months following SE induction (Lugo et al., 2008; 

Monaghan et al., 2008; Su et al., 2008). SUDEP in genetic epilepsy models 

established by Kv1.1 channelopathy have been described in the NTS (Glasscock 

et al., 2010; Vanhoof-Villalba et al., 2018). Since the channelopathies induced the 

epilepsy phenotype, however, the relevance of the seizure disorder to autonomic 

dysfunction and SUDEP cannot be easily separated from the effect of the channel 

mutation itself in these models. Conversely, the functional modification of voltage-

gated channels described here develops concurrently with epileptogenesis, 

implying that epilepsy-related changes in channel function can contribute to central 

vagal dysfunction in acquired epilepsy.  

There have been several previous studies examining functional plasticity of 

NTS neurons in other disease states (Mei et al., 2003; Belugin and Mifflin, 2005; 

Kline et al., 2005; Dergacheva et al., 2013; Bach et al., 2015; Boychuk et al., 

2015a; Boychuk and Smith, 2016). We have also recently shown that in the 

pilocarpine-induced SE model of TLE, GABAergic NTS neurons display 

hyperexcitability 6 and 12 weeks post-SE (Derera et al., 2017). The A-type current 

has been described in NTS neurons (Moak and Kunze, 1993; Bailey et al., 2002; 

Bailey et al., 2007) and prominently regulates neuronal excitability and action 
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potential morphology and repolarization. We first examined action potential 

frequency and half-width and found that they were significantly increased in 

GABAergic NTS neurons from pilo-SE mice compared to control mice suggesting 

a decrease in the function of the voltage-gated K+ currents that underlie action 

potential repolarization develops during epileptogenesis. More specifically, the 

decrease in sensitivity of GABAergic NTS neurons from pilo-SE mice to 4-AP 

suggests a reduction in A-type voltage-gated K+ current and Kv4 channel function.  

The effect of 4-AP on synaptic activity in GABAergic NTS neurons between 

control and pilo-SE mice was also assessed. We found that 4-AP elicited a 

significant increase in sEPSC frequency, consistent with an increase in 

presynaptic excitatory neurotransmission. This effect of 4-AP has previously been 

shown in CA1 pyramidal neurons, as well as in NTS neurons involved in the cough 

reflex (Buckle and Haas, 1982; Gu et al., 2004; Haji and Ohi, 2010). Interestingly, 

we did not observe a similar increase in sEPSC frequency in GABAergic NTS 

neurons from pilo-SE mice. These neurons already receive an increase in 

excitatory neurotransmission (Derera et al., 2017), and combined with the 

alterations in voltage-gated K+ current, may contribute to the lack of effect of 4-AP 

in neurons from pilo-SE mice. Similar to what was reported by others (Haji and 

Ohi, 2010), there was no significant effect of 4-AP on sEPSC amplitude in either 

group. Overall, the exact mechanism as to why there is not a significant increase 

in sEPSC frequency with 4-AP in pilo-SE mice, needs to be fully elucidated and 

the increase in excitatory neurotransmission may be one factor of many that is 
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contributing to the hyperexcitability of GABAergic NTS neurons in this model of 

TLE.  

The Kv4 subfamily of voltage-gated K+ channels is the primary regulator of 

the A-type current and includes the Kv4.1, Kv4.2, and Kv4.3 subunits, which are 

widely expressed in brain tissue (Rudy, 1988; Salkoff et al., 1992; Birnbaum et al., 

2004; Covarrubias et al., 2008). More specifically, immunolabelling has revealed 

the presence of Kv4.2 and Kv4.3 subunits in neurons of the NTS (Strube et al., 

2015). Our data on average TOC amplitude and voltage dependence of activation 

and inactivation in control animals are consistent with results from previous studies 

in NTS neurons (Moak and Kunze, 1993; Bailey et al., 2002). Interestingly, we 

found a reduction in average TOC amplitude in GABAergic NTS neurons from pilo-

SE mice, but no changes in voltage-dependent activation or inactivation were 

observed. This suggests that there may be a decrease in the number of voltage-

gated K+ channels at the membrane, rather than an alteration in the channel or 

voltage-sensing pore contributing to a reduction in the A-type current amplitude.  

The cellular mechanisms involved in Kv4 membrane expression and 

function in TLE in the NTS remains to be elucidated. We did not detect a significant 

decrease in the molecular expression of Kv4.1, Kv4.2, or Kv4.3 in pilocarpine-

treated mice relative to control mice. IA can also be modulated via KChIPs, which 

associate with Kv4 subunits and increase their surface expression and 

conductance (Hoffman et al., 1997; Beck et al., 2002; Lien et al., 2002; Birnbaum 

et al., 2004; Covarrubias et al., 2008). Previous studies suggest that expression of 

these accessory subunits is reduced in pilocarpine-treated mice (Monaghan et al., 
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2008; Su et al., 2008). Upon measuring mRNA levels of KChIP1, KChIP3, and 

KChIP4 there was no significant difference in expression in pilocarpine-treated 

mice relative to controls. Kv4 function and expression can be altered in several 

different ways other than through accessory subunit modulation. A decrease in the 

export of Kv4 subunits from the endoplasmic reticulum, potentially via 

phosphorylation of the PDZ domain of the channel can also decrease surface 

expression of the channel (Birnbaum et al., 2004). Once the Kv4 channel is 

shuttled from the endoplasmic reticulum to the membrane, surface expression and 

channel opening can also be modified through phosphorylation by several kinases, 

including protein kinase C (PKC), protein kinase A (PKA), calmodulin-dependent 

protein kinase II (CAMKII), extracellular signal-related kinases/mitogen-activated 

protein kinases (ERK/MAPK), and protein tyrosine kinase (PTK) (Birnbaum et al., 

2004). It has been shown in kainate-induced SE, that a decrease in the surface 

expression Kv4.2 correlates with ERK phosphorylation of the channel suggesting 

additional mechanisms for a decrease in the A-type current associated with 

epilepsy (Lugo et al., 2008). An increase in PKC-mediated phosphorylation in 

concert with a decrease in channel expression has been shown to be associated 

with a reduction of IA in a rat model of TLE (Bernard et al., 2004). Other post-

translational modifications, such as glycosylation and palmitoylation are known to 

increase channel stability and enhance surface localization of the channel 

(Birnbaum et al., 2004), but if and how this may occur during epileptogenesis is 

unclear.  
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This region of the brain has played a significant role in the research for 

potential SUDEP mechanisms. A previous study using genetic epilepsy models 

has showed that after a chemically-induced cortical seizure spreads to the 

brainstem, NTS neurons undergo spreading depolarization and the animal suffers 

from cardiorespiratory collapse and death (Aiba and Noebels, 2015). In other brain 

regions, increases in neuronal excitability have been associated with a decreased 

threshold for spreading depression (Somjen, 2001; Dreier and Reiffurth, 2015). 

Additionally, previous studies in individuals with TLE have shown evidence of Kv4 

modification (Villa and Combi, 2016). We propose that reduced A-type current 

contributes to the increase in GABA NTS neuron hyperexcitability seen during TLE 

and that this may increase the risk for cardiorespiratory collapse. Understanding 

both the cellular mechanisms and functional consequences of alterations in the A-

type current in the context of TLE and SUDEP may allow for the development of 

novel biomarkers and/or treatment options for individuals at risk of sudden death. 
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Chapter 5 Chemogenetic manipulation of GABA NTS neurons in TLE 

5.1 Introduction 

 Sudden unexpected death in epilepsy (SUDEP) is one of the leading causes 

of death in individuals with temporal lobe epilepsy (TLE), which comprises 60% of 

the total epilepsy population (Nashef, 1997; Tolstykh and Cavazos, 2013). Patients 

with TLE display autonomic dysfunction such has depressed heart rate variability 

and abnormal cardiac rhythms (Tomson et al., 1998; Mayer et al., 2004; Ronkainen 

et al., 2005; Suorsa et al., 2011; Romigi et al., 2016). Additionally, studies utilizing 

genetic epilepsy models have suggested that dysfunction in central autonomic 

control centers in the caudal brainstem are involved in SUDEP (Glasscock et al., 

2010; Aiba and Noebels, 2015).  

 The autonomic nuclei that receive information regarding cardiorespiratory 

function and subsequently modulate output to the periphery are located in the 

dorsal vagal complex (DVC) of the causal brainstem. The DVC receives 

viscerosensory information via the afferent fibers of the vagus nerve, which 

synapse onto neurons in the nucleus tractus solitarius (NTS). NTS neurons project 

to preganglionic motor neurons within the nucleus ambiguus and dorsal motor 

nucleus of the vagus (DMV) to regulate parasympathetic output (Andresen and 

Kunze, 1994; Doyle and Andresen, 2001; Wang et al., 2001b; Davis et al., 2004; 

Glatzer et al., 2007). We have recently shown that GABAergic neurons in the NTS 

are hyperexcitable in a mouse model of TLE (Derera et al., 2017). However, it is 

still unknown if direct GABAergic NTS neuron activation is involved in seizures or 

SUDEP.  



 99 

 The aim of this study is to determine if selective activation of GABAergic 

NTS neurons can modulate in vivo seizure threshold and in vitro 

electrophysiological properties of neurons within the DVC.  An excitatory designer 

receptor exclusively activated by designer drugs (DREADDs) was used to 

selectively modulate GABAergic NTS neuron function in a mouse model of 

pilocarpine-induced TLE. Excitatory DREADDS have been used to modulate 

animal behavior in other brain regions and pathologies but have yet to been utilized 

in a mouse model of TLE and SUDEP (Armbruster et al., 2007; Urban and Roth, 

2015; Roman et al., 2017). We hypothesized that if GABAergic NTS neurons are 

directly involved in TLE, activation of these neurons via an excitatory DREADD 

may either induce a seizure or decrease seizure threshold in TLE mice.  

5.2 Methods 

5.2.1 Stereotaxic Injection of DREADD Virus 

 Four weeks after pilocarpine or vehicle treatment, age-matched Vgat-ires-

Cre mice were injected with the excitatory DREAAD, pAAV8-hSyn-DIO-

hM3D(Gq)-mCherry into the NTS (pAAV8-hSyn-DIO-hM3D(Gq)-mCherry was a 

gift from Bryan Roth, Addgene, Cambridge, MA; plasmid #44361) (Krashes et al., 

2011). Mice were weighed and placed under 5% isofluorane and 1.5% 100% O2 

for initial anesthesia. Once the animal was fully anesthetized, isofluorane was 

reduced to 2.5 % with 1.5% 100% O2 and the animals head was shaved. Animals 

were then placed in a stereotaxic device and given a subcutaneous injection of the 

analgesic buprenorphine (0.1 mg/kg in 0.9% saline) to mitigate post-operative 

pain. A midline incision was made across the scalp and bregma, lambda, and the 
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occipital bone were exposed. Stereotaxic coordinates were measured from 

bregma: AP: 7.0, ML: 0.1, DV: 0.36. A drill was used to make small hole (<1 mm 

in diameter) at the injection site and 250-500 nL of pAAV8-hSyn-DIO-hM3D(Gq)-

mCherry was slowly injected into the NTS. Mice were given 1 mg/kg carprofen 

post-operatively. After 10-14 days sutures were removed. Mice were used for in 

vivo and in vitro studies 3-4 weeks after the injection of the DREADD.  

5.2.2 Flurothyl-Induced Seizures 

 Flurothyl (Bis(2,2,2-trifluroethyl)ether (10% flurothyl in 95% ethanol; Sigma) 

was used to induced a single acute seizure in Vgat-ires-Cre control and pilo-SE 

mice 3 weeks after intracranial injection of pAAV8-hSyn-DIO-hM3D(Gq)-mCherry. 

All experiments using flurothyl were performed within a certified fume hood. Mice 

were given an i.p. injection of either saline mixed with DMSO or CNO (1mg/kg) 15-

20 minutes prior to being exposed to flurothyl. Each animal received the opposite 

treatment 3-4 days later to have a counter-balanced design. The 10% flurothyl was 

dripped at a rate of 6 mL/hour with a syringe pump (KD Scientific, Holliston, MA) 

onto a gauze pad within the plexiglass container. One animal at a time was placed 

in the container for each trial. Once the animal developed a seizure (i.e. loss of 

posture), the flurothyl was stopped and the animal was exposed to open air, after 

which the seizure ended (Kadiyala et al., 2016; Ferland, 2017; Kadiyala and 

Ferland, 2017).  Once the animal resumed normal behaviors (i.e. after five to 10 

minutes), it was returned to its home cage and the latency to seize was recorded.  
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5.2.3 Electrophysiological Recordings 

 Brainstem slices were transferred to a chamber mounted on a fixed stage 

under an upright microscope (BX51WI; Olympus) where they were superfused with 

continuously warmed (30-32C) oxygenated ACSF. VGAT-containing neurons in 

the NTS that were transfected with pAAV8-hSyn-DIO-hM3D(Gq)-mCherry, were 

mCherry-expressing and were targeted under epifluorescence (Krashes et al., 

2011). DMV neurons were targeted based on their morphological characteristics 

(Bach and Smith, 2012; Bach et al., 2015). Patch pipettes for recordings were 

pulled from borosilicate glass (open tip resistance 3-5 M; King Precision Glass 

Co, Claremont, CA). The pipette solution contained (in mM): 130 K+ gluconate, 1 

NaCl, 5EGTA, 10 HEPES, 1 MgCl2, 1 CaCl2, 3 KOH, 2 ATP. Recordings were 

obtained using an Axon 700B amplifier (Molecular Devices; San Jose, CA), low 

pass filtered at 2-3 kHz, digitized at 20 kHz, and recorded onto a computer 

(Digidata 1440A, Molecular Devices).  

 Prior to recording, cells were allowed to equilibrate with the pipette 

recording solution for approximately five minutes. Whole-cell patch clamp 

recordings of spontaneous action potentials in NTS neurons were recorded in 

current-clamp at resting membrane potential. Resting membrane potential was 

recorded in I=0 in NTS neurons. Spontaneous inhibitory postsynaptic currents 

(sIPSCs) were recorded in voltage-clamp in DMV neurons. DMV neurons were 

clamped at a holding potential of 0 mV to isolate inhibitory currents. The effect of 

clozapine-N-oxide (CNO, 30 M) was assessed on resting membrane potential 

and action potential frequency in NTS neurons and on sIPSC frequency and 



 102 

amplitude in DMV neurons from control and pilo-SE mice. Series resistance was 

less than 25 M and monitored periodically throughout the recordings. If the series 

resistance changed by more than 20% over the course of a recording, it was 

discarded.  

5.2.4 Statistical Analyses 

 A repeated measures two-way ANOVA (Tukey’s post hoc) was used to 

determine the effect of CNO treatment on flurothyl induced seizure latency 

between control and pilo-SE mice (GraphPad Prism; La Jolla, CA). Action potential 

frequency (2-minute recording segment) and resting membrane potential were 

analyzed using Clampfit 10.2 (Molecular Devices). Two-minute segments of 

continuous recordings of sIPSCs from DMV neurons was assessed with 

MiniAnalysis (Synaptosoft, Decatur, GA). For electrophysiology data, a paired t-

test was used to determine the effect of CNO on NTS and DMV neurons from 

control and pilo-SE mice. Statistical significance for all measurements was set at 

p < 0.05.  

Methods for Chapter 5 also included: mice used, methylscopolamine and 

pilocarpine injections, and brainstem slice preparation as described in Chapter 2 

of this dissertation. 

5.3 Results 

5.3.1 Spontaneous Seizures 

It has been previously established in various mouse strains that pilocarpine-

induced SE leads to the development of chronic spontaneous seizures four to six 

weeks after treatment (Shibley and Smith, 2002; Groticke et al., 2007). However, 
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spontaneous seizure development has not yet been established in the Vgat-ires-

Cre mouse strain. Mice were passively monitored for seizures as described in 

Chapter 2 beginning at four weeks post-pilocarpine treatment. None of the mice 

that received vehicle treatment or did not have SE developed spontaneous 

seizures, whereas 100% of mice that survived pilocarpine-induced SE developed 

spontaneous seizures (Table 5.1). 
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Table 5.1 Development of spontaneous seizures. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Spontaneous Seizures 

 

Occurrence in 
SE survivors 

Days after SE to 1st 
Spontaneous Seizure 

Seizure Rate 
(seizures/h) 

Control (n=4)  -    -   0 
Mice that survived SE (> 
3 S3 seizures; n=3) 100% 

48.67 ± 16.44 (range: 30-
61) 0.13 ± .04 

Mice that died during SE 
(n=8)  -    -    -   

Non-SE mice (n=3) 0%  -   0 
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5.3.2 Effect of GABAergic NTS neuron activation on Flurothyl-Induced 

Seizure Latency  

 Control and pilo-SE mice were randomly administered either CNO or saline 

and the latency to seize upon flurothyl exposure was measured. Three to four days 

later, animals that were previously given saline, received CNO treatment, and vice-

versa. A repeated measures two-way ANOVA showed a significant interaction 

effect between saline and CNO administration in control and pilo-SE mice 

(F(1,13)=5.71; p = 0.03). Pilo-SE mice had a significantly shorter seizure latency 

(462  37 sec; n=7 mice) compared to control mice (609  38 sec; n=8 mice; p = 

0.03) when administered saline. While CNO did not significantly alter seizure 

latency in pilo-SE mice (saline: 462  37 sec; CNO: 482  37 sec; n=7 mice; p = 

0.99), it did significantly shorten the seizure latency in control mice (saline: 609  

38 sec; CNO: 458  22 sec; p = 0.02, Fig.5.1).  
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Figure 5.1 Chemogenetic modulation of seizure latency in control and pilo-SE 
mice.  
There was a significantly shorter latency to seize in pilo-SE mice (n=7) compared 
to control mice (n=8) when treated with saline. CNO alone reduced seizure latency 
in control mice, but this did not further shortern the latency in pilo-SE mice. (p > 
0.05). Two-way repeated measures ANOVA: F (1,13) = 5.71; p = 0.03. *p < 0.05.  
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5.3.3 GABAergic NTS neuron activation in control and pilo-SE mice 

 The effect of GABAergic NTS neuron activation on action potential 

frequency and resting membrane potential was assessed in control and pilo-SE 

mice. The resting membrane potential was significantly more depolarized after 

CNO application in control mice (ACSF: -46.06 ± 1.48 mV; CNO: -42.57 ± 0.76 

mV; p = 0.02, n= 10 cells, Fig. 5.2D). Activation of GABAergic NTS neurons from 

pilo-SE mice also had a significantly depolarized resting membrane potential 

(ACSF: -45.83 ± 0.82 mV; CNO: -41.21 ± 1.06 mV; p = 0.001; n=10 cells Fig. 5.2D). 

In the same cells, the CNO-induced activation of GABAergic NTS neurons was 

concomitant with an increase in action potential frequency in both control (ACSF: 

1.72 ± 0.39 Hz; CNO: 2.36 ± 0.38 Hz; p = 0.03; n=10 cells) and pilo-SE mice 

(ACSF: 2.49 ± 0.47 Hz; CNO: 3.90 ± 0.80 Hz; p = 0.03; n=10 cells; Fig. 5.2C). 
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Figure 5.2 Chemogenetic modulation of GABAergic NTS neurons from control 
and pilo-SE mice.  
(A) Illustration of pipette location in the NTS. (B) Representative image of 
mCherry expression in the NTS four weeks after DREADD injection. (C) 
Representative traces showing the effect of clozapine-N-oxide (CNO, 30 µM) on 
action potential firing in a GABAergic NTS neuron from a control animal. (D) 
Representative traces showing the effect of CNO on action potential firing in 
GABAergic NTS neuron from a pilo-SE animal. (E) CNO significantly increases 
the action potential frequency in control mice and pilo-SE mice. (F) CNO 
significantly depolarizes membrane potential in GABAergic NTS neurons from 
control and pilo-SE mice. Sample Sizes: control: n=8 mice; pilo-SE: n=8 mice. *p 
< 0.05.  
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5.3.4 Inhibition of Vagal Motor Neurons via GABAergic NTS Neuron 

Activation 

 GABAergic NTS neurons project to preganglionic parasympathetic motor 

neurons in the DMV (Travagli et al., 1991; Davis et al., 2004; Babic et al., 2011). 

We tested the hypothesis that activation of mCherry-expressing NTS neurons 

would increase inhibition of DMV neurons, assessed via sIPSC frequency and 

amplitude. GABAergic NTS neuron activation in slices from control animals 

significantly increased sIPSC frequency (ACSF: 0.53 ± 0.1 Hz; CNO: 0.96 ± 0.21 

Hz; p = 0.02) but not amplitude (ACSF: 36.97 ± 4.45 pA; CNO: 30.73 ± 1.75 pA; p 

= 0.22; n=6 cells) of DMV neurons. There was a similar effect in DMV neurons 

from pilo-SE mice, where sIPSC frequency increased (ACSF: 0.98 ± 0.35 Hz; 

CNO: 1.72 ± 0.45 Hz; p = 0.001), but there was no significant change in amplitude 

(ACSF: 43.39 ± 9.20 pA; CNO: 53.58 ± 19.28 pA; p = 0.48; n=8 cells; Fig. 5.3). 
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Figure 5.3 Inhibition of preganglionic parasympathetic motor neurons in control 
and pilo-SE mice.  
(A) Representative traces showing the effects of CNO (30 µM) on sIPSCs in a 
DMV neuron from a control mouse. (B) Representative traces showing the effect 
of CNO on sIPSCs in a DMV neuron from a pilo-SE mouse. (C) Application of CNO 
significantly increases sIPSC frequency in DMV neurons from control and and pilo-
SE mice. (D) CNO does not significantly alter sIPSC amplitude in DMV neurons 
from control and pilo-SE mice. Sample sizes: control: n=4 mice; pilo-SE: n=5 mice. 
*p < 0.05.  
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5.4 Discussion 

Previous research has utilized DREADDs to excite or inhibit specific 

neuronal subtypes in order to modulate whole animal behavior and neuron function 

(Krashes et al., 2011; MacLaren et al., 2016; Roth, 2016; Whissell et al., 2016). 

Inhibitory DREADDs have been used to block seizure activity in organotypic slice 

cultures and kindling models (Avaliani et al., 2016; Wicker and Forcelli, 2016). 

While blocking seizure activity with inhibitory DREADDs in these studies has been 

successful, there have been no studies using excitatory DREADDs to induce 

seizure activity. This study tested the hypothesis that activation of GABAergic NTS 

neurons via the excitatory DREADD, pAAV8-hSyn-DIO-hM3D(Gq)-mCherry, can 

modulate whole animal seizure threshold and single vagal complex neuron activity.  

 We first investigated the effect of DREADD-mediated activation of 

GABAergic NTS neurons on animal behavior, namely on flurothyl-induced seizure 

latency. When pilo-SE mice received no treatment, their latency to seize was 

significantly shorter compared to control animals. While CNO did not appear to 

have a significant effect on seizure latency in pilo-SE mice, it did significantly 

reduce seizure latency in control mice.  This result was unexpected as I 

hypothesized that CNO would decrease seizure latency in pilo-SE mice when 

compared to control mice. Because GABAergic NTS neurons from pilo-SE mice 

have been shown to become hyperexcitable, it is possible that there is a ceiling 

effect, which could explain why CNO activation of mCherry-expressing NTS 

neurons does not further shorten seizure latency. Control animals did not exhibit 

any prior seizure activity and therefore may be more susceptible to a reduction in 
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seizure latency when mCherry-expressing neurons are activated via CNO 

administration. Aiba and Noebels have shown that when a seizure is chemically 

elicited in the cortex of an anesthetized mouse with Dravet’s Syndrome, it spreads 

to the brainstem initiating cardiorespiratory collapse and sudden death (Aiba and 

Noebels, 2015). Additionally, they have shown that chemically-induced 

depolarization of NTS neurons in Kv1.1 knockout mice results in seizure-like 

waveforms and brief EEG suppression in the cortex. This suggests that spreading 

depression in the brainstem effects cortical activity, supporting the hypothesis that 

seizures propagation can affect NTS function and vice-versa, potentially 

influencing SUDEP risk. Perhaps similar studies would be necessary for a seizure 

in pilo-SE mice administered CNO to occur.  

 There has also been concern that CNO may not be as specific as initially 

shown, as recent studies have suggested that CNO metabolizes into clozapine, 

which may produce off-target effects (Gomez et al., 2017; Manvich et al., 2018). 

While there is the possibility that this occurred in the whole animal studies, effects 

of CNO were seen in less than 5 minutes during in vitro slice electrophysiology. 

Electrophysiological results suggest that CNO increases excitation of GABAergic 

NTS neurons, subsequently leading to increased inhibition of downstream motor 

neurons that go on to regulate parasympathetic function. This would be expected 

to increase the inhibition of parasympathetic output to the periphery, thus leading 

to autonomic imbalance, similar to what is seen in patients with TLE (Ronkainen 

et al., 2005; Romigi et al., 2016). Additionally, GABAergic NTS neurons were 

slightly more sensitive to CNO-induced excitation (mV: control: 7.58%; pilo-SE: 
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10.08%). This small differential effect may partially be due to epileptogenesis this 

model.  

 These data show that pilo-SE mice have a reduced seizure latency and are 

more easily excited by CNO compared to control animals, leading to increased 

inhibition of preganglionic parasympathetic motor neurons. While CNO 

administration decreased seizure latency in control mice, the lack of effect in pilo-

mice suggests that increased excitability in GABAergic NTS neurons is not the sole 

factor responsible for influencing seizure threshold and contributing to SUDEP. 

Others have suggested that brainstem autonomic nuclei are the prime mediators 

of SUDEP in models of genetic epilepsy (Glasscock et al., 2010; Aiba and Noebels, 

2015), however, acquired epilepsies may be more complicated and SUDEP could 

be due to a multitude of factors including altered respiratory function (Ryvlin et al., 

2013; Sowers et al., 2013; Zhan et al., 2016). More work needs to be done 

examining the function of neurons in other brain regions that may contribute to 

SUDEP in concert with autonomic nuclei. This would provide greater insights to 

mechanisms of SUDEP and allow for the development of potential biomarkers or 

preventative treatment options.  
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Chapter 6 Discussion 

6.1 Summary of Findings 

 This dissertation focused on alterations in GABAergic NTS neuron function 

in a mouse model of pilocarpine-induced TLE and SUDEP. While several studies 

have used genetic epilepsy models to study SUDEP (Faingold et al., 2010; 

Glasscock et al., 2010; Cheah et al., 2012; Auerbach et al., 2013; Kalume et al., 

2013; Aiba and Noebels, 2015), this dissertation is the first to examine sudden 

death and NTS neuron function in a model of acquired TLE. The main findings of 

this dissertation are as follows: 1) the pilocarpine-induced SE model of TLE is a 

model of SUDEP, 2) pilo-SE mice did not display long-term, chronic abnormal 

heart rhythms or heart rate variability, 3) GABAergic NTS neurons display acute 

(i.e. 1 week post-SE) and long-term (i.e. 6-12 weeks post-SE) hyperexcitability, 4) 

reduced A-type current contributes to hyperexcitability, 5) chemogenetic activation 

of GABAergic NTS neurons alone is not sufficient to induce a seizure or SUDEP, 

but lowers seizure latency in control mice, 6) Activation of an excitatory DREADD 

in GABAergic NTS neurons increases inhibition of preganglionic parasympathetic 

motor neurons. This study is the first to examine the pilocarpine-induced SE model 

of TLE in the context of SUDEP. This study is the first to quantify mortality rates 

from SUDEP in pilo-SE mice. Additionally, these results indicate that GABAergic 

NTS neurons, which modulate parasympathetic output to the periphery are 

functionally altered in TLE mice, potentially contributing to SUDEP.  
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6.2 The Pilo-SE model of TLE as a model of SUDEP 

6.2.1 Survival of Pilo-SE mice 

 Many studies have examined SUDEP in the context of genetic epilepsies, 

with a focus on channelopathies that are associated with seizures. In studies using 

a mouse model of Dravet’s Syndrome, sudden death has ranged from postnatal 

day 16 to postnatal day 150 (Yu et al., 2006; Cheah et al., 2012; Auerbach et al., 

2013; Cheah et al., 2013; Kalume et al., 2013). There does appear to be difference 

in the onset of sudden death occurrences in a global heterozygous Nav1.1 knock-

in model (Yu et al., 2006) versus a cre-driven deletion of Nav1.1 (Cheah et al., 

2012). However, mice with genetic mutations to recapitulate Dravet’s Syndrome 

only have a small number of seizures (e.g. 1-12 seizures total) before dying 

suddenly (Ogiwara et al., 2007; Cheah et al., 2012; Auerbach et al., 2013). By 

comparison, pilo-SE mice have approximately 2 seizures per day beginning at 4-6 

weeks post-SE (Shibley and Smith, 2002; Groticke et al., 2007; Hunt et al., 2013). 

KCNA1-null mice also experience behavioral seizures and SUDEP beginning at 

postnatal day 14-21 (Glasscock et al., 2010), presumably as consequence of the 

deletion of Kv1.1 potassium channels, but no data has been published regarding 

seizure frequency prior to death (Gautier and Glasscock, 2015). 

Not including mice that died 1-7 days post-SE, there is a 23% survival rate 

150 days post-treatment in pilo-SE mice compared to control mice. Mice that died 

within the week following pilocarpine treatment were not considered to have died 

of SUDEP because they did not develop spontaneous seizures. Additionally, mice 

begin to suffer from SUDEP 16 days post-SE, with 60% having died after 6 weeks 
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(Derera et al., 2017). This study is the first to show the mice that develop and 

survive status epilepticus go on to die of SUDEP.  

6.2.2 Cardiac changes in pilo-SE mice 

 Individuals with TLE who are at risk for SUDEP or eventually die from 

SUDEP display cardiac abnormalities such as increased heart rate, depressed 

HRV, and arrhythmias (Mayer et al., 2004; Ronkainen et al., 2005; Suorsa et al., 

2011; Romigi et al., 2016). Mouse models of genetic epilepsy also display cardiac 

abnormalities, such as in Dravet’s syndrome, where mice have increased heart 

rate directly preceding sudden death (Auerbach et al., 2013). KCNA1 knockout 

mice have arrhythmias and autonomic blockade decreases the frequency of 

atrioventricular block, suggesting that a central autonomic change might be 

responsible for these abnormal heart rhythms (Glasscock et al., 2010).  

 This dissertation examined heart rate and heart rate variability at 4 time 

points: 24 hours pre-treatment, 24 hours post-treatment, 6 weeks, and 12 week 

post-treatment in control and pilo-SE mice. While there was a significant increase 

in heart rate and decrease in HRV 24 hours post-treatment in pilo-SE mice, there 

were no significant differences in the later time points when animals should have 

developed spontaneous seizure activity. Previous studies using the pilocarpine-

induced SE model of TLE had examined heart rhythms and autonomic balance 1-

2 weeks post-treatment and used rats instead of mice (Metcalf et al., 2009a; Bealer 

et al., 2010; Bealer et al., 2011). At rest, mice have a significantly higher heart rate 

compared to rats, which may contribute to heart rate differences seen in 

pilocarpine-treated rats compared to mice (Lujan et al., 2012).  Within 30 minutes 
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of SE, there is a significant increase in heart rate in pilocarpine-treated rats 

(Metcalf et al., 2009b). This increase persists 1 and 2 weeks post-SE (Metcalf et 

al., 2009a). This study also concluded that a decrease in vagal tone, leading to a 

dominance in sympathetic drive is responsible for autonomic imbalance and a 

persistent increase in heart rate, increasing the risk for sudden death (Metcalf et 

al., 2009a). Overall, alterations heart rate and HRV occur acutely in pilo-SE mice, 

but more work needs to be done to determine if long-term changes occur as a 

result of chronic spontaneous seizure activity resulting in increased SUDEP risk.  

6.2.3 Future directions 

 While this study shows that pilo-SE mice die from SUDEP, it was unable to 

pinpoint seizures in relation to sudden death or the actual death itself. It would 

have been more impactful to record video-EEG in these animals. This would have 

allowed for the exact time of death to be determined and record if a seizure event 

directly preceded SUDEP. The video component would have been useful in 

determining if there was any altered respiratory function, such as gasping behavior 

after a seizure and/or prior to death.  

 In the future, the addition of video-EEG to the cardiac monitoring would be 

a valuable way to decipher pre-, inter-, and post-ictal periods during a spontaneous 

seizure occurrence. It would allow for more specific examination of cardiac 

rhythms. For example, the use of EEG would allow for the comparison of heart rate 

and HRV between seizure periods instead of during random time points, making 

this study more similar to those examining individuals with epilepsy. This could 

allow for more clear interpretation of autonomic alterations during epileptogenesis 
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as well, because inter-ictal autonomic changes may be more predictive of SUDEP 

risk than changes that occur surrounding a specific seizure event. The addition of 

continuous ECG monitoring instead of only recording at 4 time points would also 

be more informative of cardiac changes. There were 2 animals that were initially 

part of this study that died suddenly just prior to the 8 weeks-post SE, but because 

there was not continuous ECG recording, it was impossible to determine if cardiac 

abnormalities occurred prior to death. Ultimately, these additions could allow for a 

better interpretation of autonomic function over time in association with seizure 

development.  

6.3 Alterations in GABAergic NTS neuron excitability 

6.3.1 Synaptic and intrinsic changes in GABAergic NTS neurons 

 GABAergic NTS neurons receive glutamatergic, or excitatory, input 

primarily from the postsynaptic terminals in the afferent fibers of the vagus nerve 

that terminate at the ST. Previous research shows that GABAergic NTS neurons 

alter their function as a consequence of various pathological states such as 

hypoxia and diabetes (Zsombok and Smith, 2009; Kline, 2010; King et al., 2012; 

Boychuk et al., 2015a). This dissertation examined GABAergic NTS neuron 

function in a mouse model of TLE and SUDEP. While there were no changes in 

the resting membrane potential or input resistance of GABAergic NTS neurons 

following pilocarpine-induced SE, there were significant alterations in the synaptic 

properties of these neurons. One week post-SE these neurons displayed 

significant increases in spontaneous action potential and sEPSC frequency. Even 

more interesting, there appeared to be sustained long-term changes in excitability. 
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This was evidenced by increases in spontaneous action potential, sEPSC, and 

mEPSC frequency 6 and 12 weeks post-SE. Spontaneous and mEPSC frequency 

increases were not accompanied by increases in amplitude, indicative of an 

increase in excitatory neurotransmitter release from presynaptic terminals, such 

as the vagal afferent terminals in the ST. Additionally, when the ionotropic 

glutamate blocker kynurenic acid was applied to slices, there was a significant 

decrease in excitability as indicated by a decrease in sEPSC frequency in 

GABAergic neurons from pilo-SE mice.  

 A significant increase in mEPSC frequency but not amplitude is suggestive 

of an increase in presynaptic release probability of glutamate (i.e. readily 

releasable vesicle pool) or an increase in the number of functional synapses (Kline, 

2008; Pinheiro and Mulle, 2008; Queenan et al., 2012). To test the hypothesis that 

there was a change in either of these properties, paired pulse and frequency-

dependent depression was examined. It has been theorized that this type of 

synaptic plasticity in the NTS serves to prevent excessive alterations to blood 

pressure (Liu et al., 2000; Kline, 2008). While this dissertation is the first to examine 

paired pulse and frequency-dependent depression in GABAergic NTS neurons in 

a mouse model of TLE, there were no significant differences in either of these 

parameters. Therefore, the increase in excitability seen in GABAergic NTS 

neurons from pilo-SE mice is likely not due to an increase in the vesicle pool or an 

increase in synapses stemming from vagal afferent terminals. Local glutamatergic 

neurons within NTS circuitry can also influence GABAergic firing properties 

(Champagnat et al., 1986; Kawai and Senba, 1996). For example, increases in the 
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amount of excitatory neurotransmitter or slow turnover within the synaptic cleft can 

also alter excitability (Chen and Bonham, 2005; Kline, 2008). Additionally, there 

exists multiple subgroups within the NTS neuron population that are dependent on 

the location of vagal afferent fiber terminals. Cardiovascular afferents terminate in 

the lateral and medial NTS, while afferents from the stomach terminate in the 

commissural NTS (Barraco et al., 1992; Babic et al., 2015). Electrophysiology 

recordings of evoked EPSCs in paired pulse and frequency-dependent depression 

studies did not differentiate between these subpopulations. Thus, recordings from 

various NTS subpopulations may have confounded effects of presynaptic 

glutamate release from vagal afferents.  

6.3.2 Future directions 

 To examine vagal afferent firing properties further, future studies should 

focus on GABAergic neurons within the lateral and medial NTS, in order to better 

isolate alterations in synaptic plasticity from cardiovascular afferents. Additional 

work could also be done examining local glutamatergic NTS neurons. 

Immunohistochemical studies labeling vesicular glutamate transporter 2 

(VGLUT2), which is present in the NTS (Hermes et al., 2014; Bach et al., 2015), 

would provide insight into the sites of origin for increased glutamate 

neurotransmitter release. As labeling for VGLUT2 would also presumably label 

vagal afferent terminals, this could allow for differentiation between glutamate 

release in the ST versus local glutamatergic NTS neurons. To more closely 

examine the structural relationship between presynaptic terminals from local 

glutamatergic NTS neurons, VGLUT, and postsynaptic 2nd order GABAergic NTS 
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neurons, electron microscopy could be used. This could provide insight into the 

differences in the number of glutamate vesicles in the presynaptic terminal 

between control and pilo-SE solely in local glutamatergic NTS neurons. The 

relationship between the potential modulation of excitatory neurotransmission onto 

2nd order GABAergic neurons by local glutamatergic NTS neurons has not been 

well-examined, and these future studies would provide insight from both basic 

science and pathological perspectives.  

6.4 Effects of TLE on voltage-gated K+ current in GABAergic NTS neurons 

6.4.1 Reduced IA contributes to hyperexcitability in GABAergic NTS 

neurons from pilo-SE mice 

 IA plays a prominent role in maintaining neuronal excitability by modulating 

action potential repolarization (Mitterdorfer and Bean, 2002; Birnbaum et al., 

2004). IA is present in NTS neurons and has been altered in response to various 

pathological in states (Moak and Kunze, 1993; Bailey et al., 2002; Belugin and 

Mifflin, 2005; Bailey et al., 2007; Accorsi-Mendonca et al., 2015; Strube et al., 

2015). This dissertation examined the effects of 4-AP, an IA blocker, on action 

potential frequency and half-width and also isolated IA in GABAergic NTS neurons. 

GABAergic NTS neurons from pilo-SE mice displayed a decrease in sensitivity to 

4-AP, while in contrast, GABAergic NTS neurons from control animals showed 

significant increases in both action potential frequency and half-width. There was 

also a significant increase in sEPSC frequency upon application of 4-AP. This 

occurs because 4-AP depolarizes pre-synaptic terminals, increasing 

neurotransmitter release, which is similar to what others have seen in the 
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hippocampus and NTS (Buckle and Haas, 1982; Gu et al., 2004; Haji and Ohi, 

2010). Peak transient outward A-type current in GABAergic NTS neurons was 

significantly reduced, with no changes in the kinetics of activation or inactivation in 

pilo-SE mice compared to control mice. The lack of change in activation or 

inactivation kinetics suggests that there is not a change in the voltage-sensing pore 

region of the voltage-gated K+ channels (Birnbaum et al., 2004; Jerng et al., 2004). 

This dissertation was first to examine IA in GABAergic NTS neurons in the 

pilocarpine-induced SE model of TLE. It also shows that TLE can induce long-term 

alterations in a crucial modulator of neuronal excitability.  

6.4.2 Kv4 and KChIP expression in GABAergic NTS Neurons 

 It was hypothesized that the reduction in IA was due to a downregulation in 

the expression of genes that encode the Kv4 family of voltage-gated K+ channels. 

Kv4.1, Kv4.2, and Kv4.3 modulate the A-type current and can therefore affect IA 

amplitude (Birnbaum et al., 2004; Strube et al., 2015). In one study a viral construct 

was transfected into hippocampal cell cultures leading to a downregulation in 

Kv4.2, as evidenced by action potential broadening and frequency increases (Kim 

et al., 2005), similar to the electrophysiological data described in Chapter 4 of this 

dissertation. When qRT-PCR was utilized to test for differences in expression in 

Kv4.1, Kv4.2, and Kv4.3 there were no significant alterations in mRNA expression 

in tissue samples from pilo-SE mice relative to control mice. This in contrast to 

other studies examining the Kv4 subfamily in the hippocampus in TLE rodents, 

which found decreases in Kv4.2 and Kv4.3 protein (Tsaur et al., 1992; Monaghan 

et al., 2008; Su et al., 2008). However, a separate study found there were no 
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changes in IA or Kv4.2 and Kv4.3 in pilocarpine-treated rats that developed 

spontaneous seizure activity (Ruschenschmidt et al., 2006). KChIPs can also 

modify the conductance of Kv4 channels (Beck et al., 2002; Birnbaum et al., 2004; 

Covarrubias et al., 2008), so qRT-PCR was utilized to test for differences in 

expression in KChIP1, KChIP3, and KChIP4. No significant differences were found 

in any of the KChIPs in pilo-SE mice relative to controls. Again, this differs from 

the literature where studies have shown a downregulation in KChIP1 months after 

pilocarpine-induced SE (Monaghan et al., 2008; Su et al., 2008).   

6.4.3 Future directions 

 There are several reasons why there may be a reduction in IA, suggestive 

of increased excitability, without a concomitant decrease in Kv4 or KChIP 

expression. Studies that examined Kv4 and KChIP expression in the hippocampus 

of pilocarpine treated mice did not also examine the electrophysiology of the A-

type current (Tsaur et al., 1992; Monaghan et al., 2008; Su et al., 2008) and 

electrophysiological studies did not also examine gene expression (Bernard et al., 

2004). The 1mm tissue samples that the RNA was isolated from contained the 

majority of the vagal complex, including neurons from NTS, DMV, and area 

postrema (Bach et al., 2015; Boychuk et al., 2015a; Boychuk et al., 2017). 

Although the majority of neurons within the NTS are GABAergic (Chan and 

Sawchenko, 1998), the tissue sampling process used in this dissertation inevitably 

samples from a heterogeneous cell population. An alternative approach to more 

accurately measure Kv4 and KChIP expression includes single cell qRT-PCR 

which would allow for differences in expression to be measured from single 
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GABAergic NTS neurons, identified by GFP. In the hippocampus, it has been 

shown that increased channel phosphorylation via protein kinase C (PKC) in 

neurons from TLE mice is associated with altered A-type current excitability 

(Bernard et al., 2004). Additionally, biochemical studies have shown that site-

directed mutagenesis of phosphorylation sites on Kv4 channels alters the A-type 

current (Nakamura et al., 1997; Schrader et al., 2002). Antibodies have been 

developed for several phosphorylation sites on Kv4.2 (Birnbaum et al., 2004), and 

could be used to examine differences in the amount of phosphorylated channel in 

GABA NTS neurons. Western blotting could also be utilized to determine 

differences in phosphorylated Kv4 channel protein compared to total Kv4 channel 

protein in control and pilo-SE mice. Overall, more work is necessary to determine 

why there is a reduction an IA but no change in RNA expression.  

6.5 Chemogenetic modulation of vagal complex neurons in TLE 

6.5.1 Activation of GABAergic NTS neurons in whole animals 

 The use of DREADDs to modify whole animal behavior has become 

increasingly popular in studies examining feeding, addiction and anxiety (Whissell 

et al., 2016; Roman et al., 2017; Grafe et al., 2018; Ray et al., 2018; Runegaard 

et al., 2018; Zhang et al., 2018). This dissertation used an excitatory DREADD that 

allowed for the activation of GABAergic NTS neurons via CNO to test the 

hypothesis that these neurons were directly involved in seizure activity and 

SUDEP. A study using genetic epilepsy models showed that in anesthetized mice, 

a pharmacologically induced cortical seizure can spread to the caudal brainstem 

resulting in spreading depression and SUDEP (Aiba and Noebels, 2015). This is 
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significant because the caudal brainstem contains the NTS, which is directly 

implicated in SUDEP because of this study. However, until this dissertation, this 

has not been similarly tested in TLE. GABAergic NTS neurons were activated via 

i.p. CNO injection 20 minutes prior to the induction of an acute seizure. None of 

the animals died from SUDEP. Additionally, CNO did not have an effect on seizure 

latency in pilo-SE animals. Interestingly, CNO significantly reduced seizure latency 

in control animals. DREADDs-mediated activation of GABAergic NTS neurons 

from control mice may have had a greater effect on seizure latency compared to 

pilo-SE mice because the control animals never exhibited spontaneous seizures 

prior to flurothyl, so they may be more susceptible to the effect of CNO on seizure 

latency. Whereas GABAergic NTS neurons from pilo-SE mice are already 

hyperexcitable, and therefore CNO may have less of an effect on seizure latency. 

This study also shows that DREADDs are capable of modulating seizure activity 

in control animals.  

This dissertation differed significantly from that of Aiba and Noebels in many 

ways. Aiba and Noebels used mouse genetic epilepsy models to determine if 

brainstem structures were involved in SUDEP. Using both in vivo and in vitro 

techniques, they showed that NTS is particularly susceptible to spreading 

depression, ultimately leading to cardiorespiratory collapse and sudden death 

(Aiba and Noebels, 2015). In their study a chemoconvulsant was applied directly 

to cortical tissue, cortical EEG was measured during this application, and direct 

current was recorded in the caudal brainstem. This dissertation used a different 

seizure induction method and did not record EEG or brainstem current. However, 
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the study by Aiba and Noebels is confounded by their use of genetic epilepsy 

models because their results may be due to genetic mutations instead of the 

seizures (Aiba and Noebels, 2015). Additionally, while these genetic epilepsy 

models have a reduction in Na+ current in regions of the cortex (Yu et al., 2006; 

Cheah et al., 2012; Kalume et al., 2013; Ogiwara et al., 2013), this has not been 

investigated in NTS neurons.  

Interestingly, in the Aiba and Noebels study, when KCl was injected directly 

into the NTS, seizure-like waveforms occurred in the cortex (Aiba and Noebels, 

2015). The NTS does project to and receive projections from higher brainstem 

centers such as the amygdala and hypothalamus (Ricardo and Koh, 1978; van der 

Kooy et al., 1984; Takenaka et al., 1995; Fontes et al., 2001; Affleck et al., 2012). 

Additionally, changes in NTS neuron activation in response to cortical seizure 

activity can occur independently of blood pressure changes, showing that input 

from vagal afferents is not necessary for NTS neuron plasticity to occur (Kanter et 

al., 1995) . One treatment for refractory epilepsy whose mechanism is poorly 

understood but appears to involve these pathways is vagal nerve stimulation 

(VNS). VNS consists of a device that is implanted under the chest skin with a wire 

attached to the vagus nerve delivering electrical pulses to the nerve preventing 

seizures. While successful, it has not been well-established exactly how VNS is 

capable of preventing seizures (Uthman, 2000; Howland, 2014; Giordano et al., 

2017). One study has suggested that electrical activation of the NTS attenuates 

amygdala-kindled seizures (Magdaleno-Madrigal et al., 2002), however specific 

neuronal subtypes were not investigated. This dissertation has shown that NTS 
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neurons experience functional changes in association with epileptogenesis, but 

this area could also be targeted for potential epilepsy treatments in individuals with 

refractory TLE. 

In other epilepsy models, inhibitory DREADDs have been utilized to 

attenuate seizure activity (Avaliani et al., 2016; Wicker and Forcelli, 2016). In one 

study using kindled mice, the dose of CNO that was most effective in reducing 

seizure severity was much greater (2.5, 5, and 10 mg/kg) compared to this study 

(1 mg/kg) (Wicker and Forcelli, 2016). Additionally, Wicker and Forcelli used a 

1mg/kg dose, but it did not significantly suppress seizure severity (Wicker and 

Forcelli, 2016).  

 There are additional concerns regarding the conversion of CNO to 

clozapine (MacLaren et al., 2016; Gomez et al., 2017; Raper et al., 2017; Manvich 

et al., 2018). CNO is the compounds that binds to and activates DREADDs. 

Studies optimizing DREADDs have shown that it is a pharmacologically inert 

metabolite of the antipsychotic compound of the drug clozapine (Armbruster et al., 

2007; Roth, 2016). Additionally, while clozapine does have high affinity for 

DREADDs, CNO is supposed to have a more potent and therefore efficacious 

effect (Armbruster et al., 2007). One caveat to these drug binding studies is that 

they were done in yeast cultures and not whole animal systems. The studies 

asserting that CNO is reverse metabolized to clozapine, binds to DREADDs 

receptors with high affinity, and produces clozapine effects were done using 

rodents, which are typically utilized in chemogenetics (Gomez et al., 2017; 

Manvich et al., 2018). Additionally, one of the studies showed that clozapine 
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crosses the blood brain barrier more effectively then CNO, but the sample sizes 

were extremely small, with 2 rats per group (Gomez et al., 2017). However, a 

separate study concluded that while CNO metabolizes to clozapine, it does so in 

insignificant amounts, and therefore does not have an effect (Guettier et al., 2009). 

In a small cohort of animals that did not contain mCherry-expressing GABAergic 

NTS neurons, there were no off-target effects of CNO in vitro. However, this was 

not tested in the in vivo studies with flurothyl-induced seizures in this dissertation.  

Behavioral and motor testing can be done on mice to ensure that CNO does 

not produce clozapine-like effects. Antipsychotic agents, such as clozapine, can 

cause catalepsy, which is characterized by behavioral immobility and muscle 

rigidity. To determine if CNO administration causes a clozapine-like effect on 

behavior, the open field test can be used to test for behavioral immobility. If 

clozapine-like effects are evident, there should be a decrease in overall movement 

in the open field test and periods of immobility where the animal is stationary. This 

can also be compared to systemic injection of clozapine and vehicle in mice with 

and without DREADDs.   

6.5.2 Activation of GABAergic NTS neurons using in vitro slice 

electrophysiology 

 The hypothesis that CNO was able to activate mCherry-expressing 

GABAergic neurons and also inhibit downstream vagal motor neurons was tested 

in control and pilo-SE mice. CNO application elicited a depolarization in mCherry 

expressing neurons from both control and pilo-SE mice. Interestingly, this effect 

was slightly stronger in pilo-SE mice, where mCherry-expressing neurons were 
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depolarized 2.5% more than neurons from control mice. There was also a 

significant increase in action potential frequency in GABAergic NTS neurons from 

control and pilo-SE mice. CNO-mediated activation of GABAergic NTS neurons 

led to the inhibition of downstream DMV neurons, a portion of which are 

preganglionic parasympathetic neurons. DMV neurons from pilo-SE mice were 

5.62% more inhibited after mCherry-expressing neuron activation than control 

mice. This suggests that GABAergic NTS neurons from pilo-SE mice are 1) more 

susceptible to CNO-induced depolarization and 2) their activation leads to 

increased downstream inhibition of DMV neurons. These data suggest that pilo-

SE mice have an increased propensity for parasympathetic inhibition upon 

activation of GABAergic NTS neurons, which could lead to autonomic balance, one 

of the main risk factors for SUDEP.  

6.5.3 Future directions 

 In the future the in vivo studies should be repeated with higher dose of CNO. 

In a study using kindling to induce epilepsy combined with an inhibitory DREADD 

to silence seizures, a much higher doses of CNO was needed to reduce seizure 

severity compared this dissertation (Wicker and Forcelli, 2016). Additionally, CNO 

was dissolved at a much higher concentration in the aforementioned study 

compared to the in vivo seizure induction in this dissertation (Wicker and Forcelli, 

2016). The dose and concentration of CNO in this dissertation were chosen were 

based on efficacy in previously published studies and to minimize potential 

conversion of CNO to clozapine (Guettier et al., 2009). Perhaps modifying the 

concentration and dosing of CNO would elicit alterations in seizure behavior.  
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 To avoid an effect of the flurothyl treatment, alternative methods similar to 

that of Aiba and Noebels could be used to elicit a seizure (Aiba and Noebels, 

2015). One option would be to apply a chemoconvulsant, such as 4-AP directly to 

cortical tissue and measure brainstem currents. Another option includes 

microinjection of KCl into the brainstem to elicit spreading depression in an 

anesthetized animal after i.p. injection of CNO. In this case it could be determined 

if CNO causes a pilo-SE animal to develop spreading depression more quickly 

than without CNO and compared to control animals in the same conditions. This 

has technique has been used successfully by others to elicit spreading depression 

in both the cortex and brainstem (Aiba and Noebels, 2015; Nasretdinov et al., 

2017).  

6.6 Summary 

 While potential mechanisms of SUDEP have been heavily studied in genetic 

epilepsy models (Glasscock et al., 2010; Cheah et al., 2012; Auerbach et al., 2013; 

Kalume et al., 2013; Aiba and Noebels, 2015), this dissertation is the first to do so 

in a mouse model of TLE, which is a model of acquired epilepsy. This is impactful 

on the field since over 50% of individuals with epilepsy have TLE and over half of 

those are at high risk for SUDEP, compared to the 1-2% of individuals that have 

genetic epilepsies. Genetic epilepsies also tend to be more severe and have more 

comorbidities than those with TLE. This dissertation was the first to show that TLE 

mice die from SUDEP and that functional changes in GABAergic NTS neurons 

occur in response to pilocarpine-induced TLE. These neurons are crucial 

integrators of cardiorespiratory information and modulators of peripheral output of 
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parasympathetic tone, impacting autonomic balance.  This dissertation has shown 

that these neurons develop an increase in excitability, which in part is due to a 

reduction in the A-type K+ current. However, this study did not find that 

chemogenetic activation of GABAergic NTS neurons could directly lead to a 

seizure or SUDEP in this mode. The exact role that these changes play in SUDEP 

in TLE remains to be elucidated and SUDEP in this model is most likely due to a 

combination of factors including alterations in autonomic, cardiac, and respiratory 

systems.  
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Appendix 1.1 Electrophysiology Recording Setup 
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