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ABSTRACT OF DISSERTATION 
 
 
 
 

 
THE PREBIOTIC INULIN BENEFICIALLY MODULATES THE GUT-BRAIN AXIS 

BY ENHANCING METABOLISM IN AN APOE4 MOUSE MODEL  
 
 
Alzheimer’s disease (AD) is the most common form of dementia and a growing 
disease burden that has seen pharmacological interventions primarily fail. 
Instead, it has been suggested that preventative measures such as a healthy 
diet may be the best way in preventing AD. Prebiotics are one such potential 
measure and are fermented into metabolites by the gut microbiota and acting as 
gut-brain axis components, beneficially impact the brain. However, the impact of 
prebiotics in AD prevention is unknown. Here we show that the prebiotic inulin 
increased multiple gut-brain axis components such as scyllo-inositol and short 
chain fatty acids in the gut, periphery, and in the case of scyllo-inositol, the brain. 
We found in E3FAD and E4FAD mice fed either a prebiotic or control diet for 4-
months, that the consumption of the prebiotic inulin can beneficially alter the gut 
microbiota, modulate metabolic function, and dramatically increase scyllo-inositol 
in the brain. This suggests that the consumption of prebiotics can beneficially 
impact the brain by enhancing metabolism, helping to decrease AD risk factors.  
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Chapter 1 Background  
 
1.1 Dissertation Overview 
 
 Alzheimer’s disease (AD) is the most common form of dementia with age 

being the greatest risk factor but with certain genetic differences also 

dramatically increasing one’s risk of developing this disease. These include 

having the Apolipoprotein 4 (APOE4) allele and Familial Alzheimer’s Disease 

(FAD) gene mutations. Recently, the gut-brain axis, or bi-directional 

communication between gut microbiota and brain, has become a topic of intense 

investigation. Indeed, the gut microbiome, or the trillions of bacteria in the gut, 

can be modulated to improve one’s health, including that of brain health. One 

way to modulate the gut microbiome is by the ingestion of prebiotics, the non-

digestible carbohydrates in certain foods that promote the growth of beneficial 

bacteria. One such prebiotic is inulin, a prominently studied prebiotic found in 

chicory root and other vegetables. We will test the hypothesis that modulating the 

gut microbiome with the prebiotic inulin will potentially prevent AD-like symptoms.  

 

1.2 Alzheimer’s Disease: Overview 
 

AD is a chronic neurological disorder originating in the hippocampus and 

frontal and temporal lobes and characterized by a progressive decline in one’s 

mental capabilities and cognition [1]. AD is the most common form of dementia 

with advanced age being the greatest risk factor [2]. As such, AD has become a 

growing health concern for society as the prevalence of this disease has 

concurred with the increasing age of the baby boomer population. Indeed, it is 
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anticipated that the population greater than 65 years of age will double between 

the years 2010 to 2050, according to the U.S. Census Bureau [3]. This is quite 

worrisome as the incidence of AD increases exponentially after the age of 65, 

and increases even more after the age of 90 [4]. With pharmacological 

interventions primarily failing, new preventive measures need to be utilized to 

prevent and delay the onset of this disease in those susceptible to AD [5]. 

Indeed, a recent study has indicated that preventative measures such as 

exercising, eating a healthful diet, and cognitive training may be an effective way 

to prevent AD [6].  

AD has two primary hallmarks. These are the formation of amyloid β (Aβ) 

plaques and neurofibrillary tangles (NFTs), or hyper phosphorylated tau. Usually, 

Aβ deposition precedes the formation of NFTs with accumulation beginning in 

the isocortical areas of the brain followed by the limbic and allocortical structures 

and lastly, progressing to the subcortical structures and cerebellar cortex [7]. 

Further, Aβ is a 36-43 amino acid peptide cleaved from amyloid precursor 

protein (APP) by the successive cleavage of β- and γ-secretases [7]. These form 

intermediate soluble oligomers and insoluble β-sheet pleated amyloid fibrils that 

are the primary components of extracellular Aβ plaques. These plaques may be 

diffuse, amorphous wisps of amyloid without a central core not associated with 

AD, or dense-core plaques, composed of a dense Thioflavin-S-(ThioS-) positive 

core and are associated with the progression of AD. Dystrophic neuritis and 

activated microglial cells and astrocytes also usually surround dense-core 
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plaques and are most pronounced in the cerebral cortex and hippocampus of the 

brain [7].  

The second hallmark, tau, is an intracellular microtubule protein that 

supports axonal transport via stabilization of microtubules. However, in AD, tau 

is hyper phosphorylated and aggregates, forming NFTs. NFTs originate in the 

medial temporal lobes and hippocampus with eventual spread to the neocortex 

[7]. They have a spatiotemporal progression that is associated with the severity 

of cognitive decline. Though generally thought of as the intracellular hallmark, 

these tangles can become extracellular when neurons die. Aside from these two 

primary AD hallmarks, other notable characteristics of AD include neuronal and 

synapse loss and cognitive decline, ultimately leading to dementia [7].  

The single greatest risk factor for AD is increased age [8]. However, other 

risk factors include high blood pressure, hypercholesterolemia, Type-2 diabetes 

(T2D), and the female gender. After the age of 75, females exhibit a 2-fold 

greater risk of AD compared to men, perhaps due to lack of estrogen [8]. 

However, the greatest genetic risk factor that increases one’s risk of developing 

AD is the apolipoprotein E4 (APOE4) allele, while other genetic risk factors 

include the Familial Alzheimer’s Disease (FAD) genetic mutations [8]. 

 

1.2.1 Genetic Risk Factors 
 

Genetic risk factors for AD include the FAD mutations. These are 

mutations in the APP, presenilin 1 (PSEN1), and/or presenilin 2 (PSEN2) genes 

that lead to early onset Familial Alzheimer’s Disease [9]. These mutations cause 
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increased cleavage by γ-secretase and formation of the 42 amino acid Aβ 

isoform, which aggregates more readily than the 40 amino acid form. As a 

clinical diagnostic marker, the 42/40 amino acid ratio of Aβ can predict the age of 

onset of AD [10].  

The greatest genetic risk factor towards AD is the APOE4 allele. APOE is 

a class of proteins essential for the transport and catabolism of triglyceride-rich 

lipoprotein among certain cells and tissues. In fact, APOE is primarily 

synthesized and secreted in the liver but is also produced in the brain, adrenal 

glands, testis, and skin. It has a strong affinity for lipids and phospholipids and 

may become lipidated through interactions with the cell surface or secretory 

vesicles [11]. APOE has three isoforms in humans: APOE2, protective against 

AD, APOE3, neutral towards AD, and APOE4, increases one’s risk of developing 

AD. Notably, the allele frequencies vary considerably in the human population. 

APOE3 is the most common at 77%, followed by APOE4 at 15%, and APOE2 at 

8% of the population. Intriguingly, APOE2 and APOE4 only vary from APOE3 by 

a single amino acid substitution in this 299-amino acid protein. Indeed, APOE2 

contains a cysteine at 112 and 158, APOE3 contains a cysteine at 112 and an 

arginine at 118, and APOE4 contains arginine at both 112 and 158 [12]. 

However, this substitution has a profound effect on the individual towards the 

development of AD, cerebral amyloid angiopathy, amyloid deposition in blood 

vessels, and recovery from cerebral trauma [11].  
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1.2.2 APOE4 Risk Factors 
  

Despite APOE4 and APOE3 only being different by a single amino acid, 

APOE4 can increase one’s risk of developing AD dependently and 

independently of Aβ. Dependently of Aβ, APOE4 may increase AD risk because 

of the differences in the affinity for Aβ due its lipid-binding domain [13]. This lipid-

binding domain is located on the C-terminus of APOE, whereas the N-terminus 

houses the amino acid differences between APOE3 and APOE4. This suggests 

the C- and N-terminus regions interact affecting what APOE3 and APOE4 

preferentially bind, including the isoform differences displayed when binding to 

the Aβ peptide. Indeed, APOE4 binds more rapidly to Aβ and even appears to 

enhance zinc- and copper-induced Aβ aggregation compared to APOE3 [14]. 

However, this binding of APOE4 to Aβ may depend upon its lipidation state 

including whether or not it is purified, lipid-poor, reconstituted with HDL lipids, or 

originated from astrocytes, cerebral spinal fluid (CSF), or serum. In general, it is 

also thought that APOE4 is less lipidated than APOE3 with an increased chance 

of being in an intermediate molten globule state, an unstable form [15]. This 

would provide less surface area for Aβ to interact with. Further confirming this in 

one study using mice, soluble APOE4/Aβ complex levels were decreased and 

had less stability compared to APOE3. It was also discovered that oligomerized 

Aβ was increased in APOE4 mice compared to APOE3 mice [16]. However, the 

APOE4 may not only complex with Aβ more effectively than APOE3, as 

previously mentioned, but also appears to decrease Aβ clearance from the brain, 

leading to increased plaque formation [11]. Overall, it appears the APOE4/Aβ 
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complex is less lipidated and stable than that of APOE3 in vitro, potentially 

increasing oligomerized Aβ levels but decreasing Aβ clearance and thus, 

increasing the risk of AD. 

Aβ-independent mechanisms by which APOE4 increases one’s risk of AD 

include inducing synaptic and cholinergic deficits, behavior dysfunction, and 

impairment of GABAergic interneurons. However, the primary cause of APOE4 

related AD deficits might be via fragmentation from proteolytic cleavage that may 

originally be prompted by brain stressors or injury [11]. Indeed, APOE4 is more 

susceptible to proteolytic cleavage than APOE3 [17]. These carboxyl-terminal-

truncated fragments enter the cell, wreaking havoc on organelles including that 

of tau and other cytoskeletal components. They have even been demonstrated 

in vitro to increase the formation of neurofibrillary tangles and appear to lead to 

mitochondrial dysfunction. Our lab has previously demonstrated in APOE4 

mouse models that cerebral glucose metabolism is decreased [18] and these 

truncated fragments may be one potential cause of this in APOE4 allele carrier. 

Another notable experiment in human studies found that APOE4 allele carriers 

had decreased cerebral blood flow (CBF) before AD-like symptoms occurred 

[19]. One reason this may potentially occur was explained in a study 

demonstrating that APOE4 leads to increased blood brain barrier (BBB) 

permeability via activation of the Cyclophilin A (CypA)-Nuclear Factor-κ-B 

(NFκB)-Metalloproteinase 9 (MMP-9) pathway in pericytes in the BBB [20]. The 

APOE4 allele promotes this inflammatory pathway by inhibiting low-density 

lipoprotein receptor-related protein 1 (LRP1) function, which maintains CypA 
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levels. In contrast, APOE3 normally stimulates LRP-1 activity. Thus, APOE4 

increases the pathway in which MMP-9 leads to tight junction barrier degradation 

via decreased protein expression of ZO-1, occludin, and claudin, basement 

membrane degradation, increased BBB permeability, and decreased CBF [20]. 

Collectively, the APOE4 allele can increase one’s AD risk through mechanisms 

dependent and independent of Aβ.  

 

1.2.3 APOE4 on Host Metabolism 
  

Carriers of the APOE4 allele also appear to have an altered metabolism. 

Indeed, APOE4 allele preferentially binds to large very low-density lipoprotein 

cholesterol (VLDL) particles and the APOE genotypes account for interindividual 

differences in lipid and lipoprotein levels [21]. The allele is even associated with 

a less desirable lipid profile that includes increased low-density lipoprotein 

cholesterol (LDL-C) levels and risk for coronary heart disease [22]. The APOE4 

allele also appears to play a role in glucose metabolism where APOE4 carriers 

have decreased cerebral metabolic rate of glucose, even in young adults [23]. In 

an AD mouse model utilizing the APOE4 allele, mitochondrial dysfunction began 

as early as 3-months in the mice [24]. Further in an AD mouse model utilizing the 

APOE4 allele and a mutation in APP, the APOE4 mice had greater impairment 

of insulin signaling compared to the APOE3 mice [25]. Another study even 

suggested that the APOE4 allele may interact with the insulin receptor less than 

that of the APOE3 allele [26]. Next, other alterations in the brain have also been 

found such as in one study by Johnson et al. that found APOE4 mice to have 
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alterations in hippocampal metabolites involved in purine, glutamate, 

glycerophospholipid (GPL), and pentose phosphate pathway metabolism [27]. 

Collectively, the APOE4 allele appears to lead to mitochondrial dysfunction and 

deleterious alterations in glucose and lipid metabolism. 

 

1.2.4 APOE Mouse Models 
 

One of the more effective ways of understanding the isoform effects 

caused by the APOE4 and APOE3 alleles on AD pathology is by using APOE 

transgenic mouse models [28]. In their history, APOE knock out models were 

initially utilized in an attempt to understand the effect of APOE in the brain. 

However, due to the differences in mouse and human APOE, this had severe 

shortcomings for translating these studies to humans. Indeed, the homology of 

mouse and human APOE is only 70%. Thus, to expand this research, mouse 

models that expressed APOE specifically in glia or neurons through 

heterologous promoters were utilized. These include glial fibrillar acidic protein 

(GFAP, GFAP-APOE) and neuron-specific enolase (NSE, NSE-APOE). 

Unfortunately, heterologous promoters are not as well-regulated as endogenous 

promoters for a few reasons: protein expression and copy number of the 

transgene is not as well controlled, and evidence suggests glia, not neurons, 

primarily express APOE. Thus, mouse models using knock-in, or target 

replacement (TR), of human APOE utilizing endogenous promoters for 

expression of APOE were generated. APOE-TR models have glial cells that 

express human APOE at physiological levels, replacing mouse APOE, a huge 
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advantage over previous models. Next, APOE-deficient and APOE-TR models 

were crossed with those that express human FAD mutations, including mutations 

in APP and/or PS1, with the goal of examining the effects of various human 

APOE isoforms on Aβ deposition [28]. The human FAD models are generally 

designated Aβ-Tg and include PDAPP (APPV717F), J9 (PS1M146V,L286V, APPV717F), 

and 5xFAD (APPK670N,M671L,I716V,V717I, PS1M146V,L286V), the latter having a more 

rapid onset of AD pathology than the two former. Typically, Aβ-Tg models 

develop plaque formation by 6-months of age; however, 5xFAD mice develop 

plaques by 2-months of age. When target replacement human APOE3 or 

APOE4 is added to 5xFAD mice (EFAD), plaque formation is delayed by 4 

months. Due to this delay in plaque deposition, the EFAD model offers an easier 

and more tractable ability to analyze plaque accumulation in the presence of 

human APOE alleles and the progression thereof. The EFAD model is also 

advantageous for studying markers related to AD, analyzing Aβ plaque formation 

via regional and temporal comparisons in the brain, and using interventions that 

may be more translatable to humans than previously mentioned AD mouse 

models [28].  

The mouse model that is the focus of this dissertation is the EFAD mouse 

model (E3FAD and E4FAD) that utilizes mice with the C57BL/6 background that 

are a cross of transgenic mice that overexpress human Aβ via 5 FAD (5xFAD) 

mutations and mice that express either the target replacement human APOE3 or 

APOE4 gene. This recent model was developed by Dr. Mary Jo LaDu in 2012 

[29]. The first study featuring this model described the synergistic effects of 
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APOE4 and Aβ. In mice with FAD mutations, amyloid deposits develop as early 

as 2-months of age [30]. However, the addition of APOE4 delayed amyloid 

deposition [31]. This holds true in this E4FAD model as the mice in this study 

demonstrated changes in Aβ buildup starting between 2- to 6-months of age, 

with E4FAD have greater total Aβ levels and Aβ42 compared to E3FAD mice. 

Specifically, total Aβ42 was greater in the hippocampus and cortex of APOE4 

mice compared to APOE3 but levels remained the same in the cerebellum. Next, 

E4FAD mice had significantly greater plaque deposition than E3FAD mice in the 

frontal cortex and subiculum at 4-months of age and in the frontal cortex at 6-

months of age. Interestingly, the E4FAD mice had significantly greater amounts 

of dense-core plaques while the E3FAD mice had more diffuse plaques. APOE4 

levels were significantly lower than APOE3 in the cerebellum at 4-months of age, 

the cortex at 2-, 4-, and 6-months of age, and the hippocampus at 2- and 4-

months of age. Overall, APOE levels were greatest in the cortex and 

hippocampus, regions susceptible to Aβ deposition, and lowest in the 

cerebellum, a brain region resistant to Aβ, with APOE4 levels lower than APOE3 

in each brain region at each time point. Quite importantly, soluble Aβ42 and 

soluble oligomeric Aβ levels, both associated with AD progression, were higher 

in the APOE4 mice compared to the APOE3 mice at 6-months of age. Based on 

these findings, the authors concluded that in the E4FAD mice, the decreased 

total APOE4 but increased Aβ42 levels is indicative that APOE4 promotes Aβ 

accumulation in the hippocampus and cortex. However, this is due to the 

function of APOE4, not the quantity thereof [29].  
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Other studies using the EFAD transgenic mice have found additional 

genotype effects. Rodriguez et al. found that E4FAD mice have more prominent 

plaques via Aβ staining than the E3FAD mice along with more dense plaques in 

the subiculum. Interestingly, the E4FAD mice had much greater cortical levels of 

IL-1β, a proinflammatory cytokine, in the cortex compared to E3FAD mice. 

E4FAD mice also exhibited increased measures of microglia reactivity and 

dystrophy in the cortex along with a genotype effect on the number of microglial 

cells surroundings plaques. Further, E4FAD mice had significantly greater 

average microglial cells surrounding plaques compared to APOE3. Collectively, 

this study showed that E4FAD mice have increased microglial and cytokine 

activation compared to E3FAD mice [32].   

EFAD mice have displayed genotype differences in cognition. Liu et al. 

demonstrated that female E4FAD mice at 2-, 4-, and 6-months of age displayed 

an intensified age-dependent decline in the Morris water maze test compared to 

E3FAD mice, indicative of diminishing long-term reference memory, spatial 

learning, and working memory. The E4FAD also demonstrated an age-

dependent decline in the Y-maze, unlike the E3FAD mice, indicative of decaying 

spatial recognition memory. Similar to other aforementioned studies, the total 

APOE levels were decreased in E4FAD mice compared to E3FAD. Next, the 

E4FAD mice in this study also have reduced post-synaptic protein levels, N-

methyl-D-aspartate receptor (NMDAR) levels, and brain-derived neurotropic 

factor (BDNF) levels at 6-months of age, which likely contribute to the cognitive 

deficits seen in E4FAD mice [33].  
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Other studies in E4FAD and E3FAD mice demonstrate that female 

E4FAD mice had greater cerebral cortex microbleeds and hemosiderin, an iron-

storage compound that is often formed after bleeding, than male E4FAD mice. 

The authors looked for similar effects in human APOE4 patients but found no 

sex differences [34]. Although interesting, there may be limitations to the EFAD 

mouse model in its translatability to humans. One limitation of this model is the 

lack of development of tau pathology typically seen in AD. However, Zhou et al. 

demonstrated that E4FAD mice had greater site-specific tau phosphorylation, 

potentially due to calpain-CDK5 signaling, compared to E3FAD mice [35]. 

Although the tau phosphorylation is more restrained in this study then typically 

seen in AD, it is notable that APOE4 and/or FAD mutations lead to increased tau 

phosphorylation.  

Next, Teter et al. demonstrated in a recent study that E4FAD mice, 

compared to E3FAD mice, had reduced miR146a, a microRNA in the brain and 

plasma that is increased in AD patients and helps regulate the inflammatory 

process by down regulating NFκB. Thus, it acts to decrease inflammation. The 

FAD mutations increase miR146a, however, the APOE4 allele appears to inhibit 

this process compared to the APOE3 allele, increasing the inflammatory 

process.  Here, we see genotype differences in the inflammatory process 

independent of Aβ in an EFAD mouse model [36]. Female E4FAD mice were 

treated with epidermal growth factor (EGF), which prevented cognitive decline, 

decreased microbleeds, and limited cerebrovascular dysfunction. Interestingly, 

the female E4FAD mice had greater cognitive impairment, lower EGF serum 
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levels, and greater microbleeds than their male counterparts. It is unclear why 

E4FAD female mice have such an exacerbated response, but the authors 

attribute this to increased extracellular Aβ exhibited in female mice and/or an 

enhanced inflammatory response in the brain [37]. Finally, a recent study by 

Abdullah et. al. investigating the effect of the APOE genotype on blood 

phospholipids found that E4FAD mice had a greater plasma arachidonic 

acid/docosahexaenoic acid (DHA) ratio, a ratio associated with increased 

inflammation, compared to the E3FAD mice. This was further confirmed in 

human subjects, where this ratio preceded the diagnosis of AD. This is yet 

another marker of interest that the APOE4 allele may deleteriously impact AD 

risk [38].  

Although the EFAD model is fairly new, a variety of studies have been 

published indicating that the combination of APOE4 and FAD mutations leads to 

AD through multiple mechanisms. However, mechanisms that originate from the 

gut impacting one’s risk of developing AD has recently become of intense 

interest. The APOE allele has actually been implicated to impact the gut 

microbiome. In fact, the APOE4 allele actually appears to be protective against 

diarrhea, enteric infections, and malnutrition in children in the developing world 

such as in Brazil [39]. While these effects may not be as much of an issue in first 

world countries such as the United States, the APOE4 allele may save the lives 

of children in developing countries such as Brazil. However, they will still be at 

an increased risk of dementia as they age. Further, studies in AD mouse models 

have found alterations in amyloid pathology. Indeed, APP/PS1 transgenic mice 
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demonstrated an increase in amyloid pathology and immune reactivity in the 

intestines compared to wild-type mice [40]. In another study using this same 

APP/PS1 transgenic mouse model, Harach et al. found that germ-free (GF) mice 

had decreased amyloid pathology in the brain compared to mice that did have a 

gut microbiome [41]. Based off of this, certainly the APOE allele and FAD 

mutations play a role in the gut microbiome, although much has yet to be 

learned.  

 
 
1.3 Gut Microbiome: Overview 
 

The gut microbiome, or the trillions of bacteria that inhabit our gut, play 

a profound and ever-growing role on the host’s health. The microbiome 

contains over 1,000 bacterial species, though it may actually be much higher 

than this, each exerting their own specific effects. However, there are just a 

few primary bacterial phyla: Firmicutes, Bacteroidetes, Actinobacteria, 

Verrucomicrobia, and Proteobacteria [42]. Interestingly, the ratio of Firmicutes 

to Bacteroidetes has become a well-known biomarker of certain diseases with 

an increased Firmicutes to Bacteroidetes ratio present in obesity. This may 

even lead to excessive low-grade inflammation [43]. Confusingly, in 

inflammatory bowel disease (IBD) patients, an increased and decreased 

Firmicutes to Bacteroidetes ratio has been observed [44, 45]. Importantly, this 

ratio is altered with age. Although not unanimous in the literature as diet and 

environment play a profound role, children typically have decreased amounts 

of Firmicutes, and thus a decreased Firmicutes to Bacteroidetes ratio, but this 
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increases dramatically as one enters into adulthood. However, after adulthood 

and into elderly status, a decreased Firmicutes to Bacteroidetes ratio is 

exhibited [46]. The mechanisms behind these changes are not currently well 

understood.     

Certain bacterial species have been demonstrated to have important 

effects on the host, beneficial and deleterious. For example, Akkermansia 

muciniphila has been demonstrated to increase insulin sensitivity but decrease 

fat mass and inflammation [47]. In contrast, other bacterial species such as 

Clostridium difficile, or C. diff, an opportunistic bacterium that when in excess, 

produces two exotoxins, A and B, can cause diarrhea. Elderly hospital patients 

are particularly susceptible and deaths are not uncommon [48]. Considering 

there are over 1,000 bacterial species, the aforementioned two bacterial 

species are just the tip of the iceberg and thus, more research needs to be 

conducted to elucidate the effects of each.   

The gut microbiota impacts host metabolism as demonstrated in germ-

free (GF) mice studies. In one GF mice study, the GF mice have decreased 

body fat compared to control mice despite eating more calories [49]. This is 

indicative of the gut microbiota impacting energy harvest from food and 

subsequent fat storage. GF mice are even protected from insulin resistance 

[50] but when the feces of control mice were inserted into germ-free mice, an 

increase in body fat and insulin resistance ensued [51]. This may partly be due 

to the differences in the development of the gut epithelium with control mice 

having more small intestinal villi, promoting increased energy harvest. Further, 
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alterations in gene expression in the liver and adipose tissue are present 

between GF and control mice, altering lipid and mitochondrial metabolism [52, 

53]. The alterations in fat storage may also be due to differential regulation of 

the intestinal expression of fasting-induced adipose factors (FIAF). FIAF 

inhibits lipoprotein lipase (LPL) in adipose tissue and activates the breakdown 

of triacylglycerol into fatty acids, used by muscle and adipose tissue. GF mice 

had elevated FIAF relative to control mice, leading to increased fat mass in 

control mice [51]. Similar studies have been performed in humans where fecal 

matter was transferred from lean donors to individuals with metabolic 

syndrome. One study found that the individuals with metabolic syndrome had 

increased microbial diversity and improved insulin sensitivity after the fecal 

donation [54]. Taken together, the gut microbiota regulates glucose and lipid 

metabolism while ultimately impacting fat mass and body weight.  

Next, the gut microbiota synthesizes metabolites that affect host 

metabolism. This includes short chain fatty acids (SCFAs) and bile acids, 

among others. SCFAs are used extensively as an energy source for colonic 

cells as well as a ligand for G-protein coupled receptors (GPR), including 

GPR41 and GPR43, in many different tissues. Activation of these GPRs may 

help reduce body weight and improve insulin sensitivity in liver and muscle [51, 

55]. One potential mechanism is increased secretion of anorexigenic 

hormones such as glucagon like peptide-1 (GLP-1) and peptide YY (PYY) via 

GPR signaling [56]. Indeed, these hormones are thought to beneficially impact 
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glucose metabolism [57, 58] and by working in the hypothalamus, decrease 

appetite and thus, food intake [59].  

The gut microbiota influences bile acid metabolism and thus impacts the 

absorption of dietary lipids and fat-soluble vitamins. The primary bile acids 

include cholate (CA) and chenodeoxycholate (CDCA), which are synthesized 

in the liver. However, bile undergoes modifications before release into the 

intestines via conjugation by glycine or taurine, boosting their function. 

Although 95% of bile acid is reabsorbed by the ileum and returned to the liver, 

the rest is converted into secondary bile acids by the gut microbiota [60]. The 

secondary bile acids include deoxycholic acid (DCA) and lithocholic acid (LCA) 

and have been demonstrated to decrease weight gain and serum cholesterol 

[61]. In another study, taurine-conjugated DCA and CDCA were associated 

with insulin resistance in nondiabetic individuals [62]. Although not particularly 

well understood, bile acids may impact glucose metabolism through the 

nuclear farnesoid X receptor (FXR) [63], explored next.  

The production of bile acids is regulated by negative feedback inhibition 

via the FXR [64], which the gut microbiota impacts. Indeed, the gut microbiota 

has been demonstrated to cause diet-induced obesity via FXR signaling. 

Further, Parseus et al. found the microbiota to increase adipose tissue 

inflammation and hepatic expression of genes involved in lipid uptake [65]. It 

has also been demonstrated that treatment with an FXR agonist increased 

insulin sensitivity [66]. Interestingly, the activation of FXR by bile acids may 
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even impact the immune system via increased expression of inducible Nitric 

Oxide Synthase (iNOS) and IL-18 [67].  

The gut microbiota has a profound effect on the immune system. One 

reason is due to SCFAs activation of GPRs, namely GPR43, impacting the 

immune system by regulation of colonic regulatory T-cells [68]. They have also 

been demonstrated to increase IL-10, an anti-inflammatory cytokine [69], 

suppress NF-κB and IL-2, regulate neutrophils [70], and suppress cytokine 

production by monocytes [71]. Quite interestingly, SCFAs even impact the 

brain by decreasing BBB permeability [72] and by regulating microglia maturity 

[73]. However, the SCFAs are not the only metabolites produced by the gut 

microbiota that impact the immune system. Indeed, aromatic amino acids such 

as tryptophan can be metabolized to, for example, indole 3-propionic acid 

(IPA). IPA is metabolized by the microbial species Clostridium sporogenes [74] 

and can act as a ligand for the pregnane X receptor (PXR). Through PXR, IPA 

can induce an increase in junctional protein mRNA expression while 

decreasing TNF-α [74], leading the host to better intestinal health and 

decreased inflammation.  

Another way the gut microbiome interacts with the immune system is 

through lipopolysaccharide (LPS), an endotoxin from the outer cell membrane 

of Gram-negative bacteria, which can enter the circulation when a leaky gut is 

present in the host. Leaky gut is the increased permeability of the intestinal 

wall leading to low-grade inflammation and in extreme cases, sepsis [75]. 

Upon LPS entering the circulation, it can reach the liver or adipose tissue and 
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initiate an innate immune response. This response includes the activation of 

CD14 in the macrophage, activating toll-like receptor 4 (TLR4), which then 

activates NF-κB and activator protein 1 (AP-1)[76]. Furthermore, circulating 

endotoxin levels have also been linked to increased TNF-α and IL-6 in 

adipocytes [77]. Interestingly, this deleterious alteration in immune function 

may also lead to metabolic dysfunction. Indeed, Cani et al. demonstrated that 

continuous subcutaneous infusion of LPS in mice leads to hyperglycemia and 

insulinemia, weight gain, increased markers of inflammation, and liver insulin 

resistance [78]. Importantly, LPS has also been demonstrated to increase 

inflammation in the brain via activated microglia and increased expression of 

TNF-α, Monocyte Chemoattractant Protein (MCP-1), IL-1β, and NF-κB [79]. 

Clearly, the production of metabolites by the gut microbiome has a deep 

impact on the host immune system, even in the brain. 

 

1.4 Gut-Brain Axis  
 

The gut-brain axis (GBA) is the bi-directional communication between the 

gut and the brain. Although a fairly new development in research, a few methods 

of communication between the gut and brain have been identified. One such is 

through the SCFAs butyrate, acetate, and propionate, which are produced by 

certain bacterial species such as Bacteroides and Roseburia inulinivorans [80]. 

Specifically, butyrate has been demonstrated to prevent inflammatory responses 

via NFκB inhibition in murine N9 microglia, hippocampal slice cultures [81], and 

HT-29 cells [82]. Butyrate also affects BBB permeability [72] and along with 
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propionate, improves glucose sensitivity and body weight control via gut-brain 

neural circuits [83]. Further, excess acetate levels caused by an altered gut 

microbiota were demonstrated to lead to obesity via the microbiome-brain-β cell 

axis [84]. Another form of communication in the GBA is through tryptophan 

metabolites. One example is indole propionic acid (IPA), which has been 

demonstrated to inhibit Aβ fibril formation in neurons and neuroblastoma cells 

[85]. Another tryptophan metabolite is serotonin, a neurotransmitter in the brain 

and enteric nervous system (ENS). Interestingly, 95% of serotonin is produced 

by ENS neurons and gut mucosal enterochromaffin cells [86]. In the gut and 

periphery, serotonin impacts GI secretion and motility [87]. Additionally, the gut 

microbiota can communicate through neural pathways such as through the ENS 

and importantly, vagus nerve [88]. In fact, the vagus nerve appears, at least in 

part, to be responsible for central GABA receptor expression, anxiety and 

depression-like behavior, and corticosterone response [88]. In another study, the 

reduction of anxiety by the probiotic Bifidobacterium longum was absent in mice 

without a vagus nerve [89]. Next, numerous neurotransmitters that are produced 

by enteroendocrine cells (EECs) in the GI tract that are stimulated by gut 

microbial taxa or by-products thereof are also able to potentially impact the brain 

[90]. This includes peptide YY, neuropeptide Y (NPY), and cholecystokinin. 

Finally, another GBA communication pathway involves immune signaling [91]. 

Indeed, the gut microbiota is a very important immune organ that can impact the 

brain. Notably in this communication pathway, consumption of the probiotic 

Bifidobacterium infantis 35624 was found to enhance IL-10 in the periphery of 
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humans [92]. Meanwhile, when GF mice are given commensal bacteria, 

increases in Treg and IL-10 occur [93]. Importantly, it is thought that certain 

immune cells can generate neurotransmitters that can signal to the brain and 

even influence behavior [91]. An example of this in one study in mice found that 

Mycobacterium vaccae activated the peripheral immune system, which went on 

to stimulate serotonergic neurons of the dorsal raphe nucleus of mice, increasing 

serotonin metabolism [94]. The study further proposed this was an important part 

of mood regulation. Collectively, the GBA and its various communication 

pathways play a pivotal yet sparsely explored role in the health of an organism. 

We believe this may be an exciting venue of research with the goal of preventing 

neurological diseases such as AD.  

 

1.5 Prebiotics: Overview 
 

To beneficially modulate the gut microbiota, an individual could consume 

prebiotics. Prebiotics are the non-digestible portion of food that stimulates the 

growth of beneficial bacteria. Although the exact definition of prebiotics varies, 

Bindels et al. proposed this definition: “a non-digestible compound that, through 

its metabolization by microorganisms in the gut, modulates composition and/or 

activity of the gut microbiota [95].” For clarity, these classifications must be met 

for a compound to be considered a prebiotic: digested by gastric enzymes in the 

upper gastrointestinal (GI) tract, stimulate the growth of certain beneficial 

bacteria, and fermented in the colon to produce metabolites such as SCFAs. 

Specific prebiotics include resistant starch, oligosaccharides, and inulin. 
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Prebiotics are, in general, non-digestible carbohydrates, or fiber, found in foods 

such as fruits, vegetables, whole grains, and legumes. Whole foods typically 

contain a mixture of insoluble and soluble fiber. Insoluble fiber does not dissolve 

in water, is minimally fermented, but promotes regular bowel movements and 

prevents constipation. On the other hand, soluble fiber forms a gel in water, can 

be fermented into beneficial metabolites such as SCFAs, decreases cholesterol, 

and regulates blood glucose. However, the benefits of soluble and insoluble often 

overlap [96]. Different kinds of prebiotics include oligosaccharides, resistant 

starch, inulin, etc. that are fermented by beneficial bacteria into SCFAs and other 

metabolites, producing many of their advantageous effects. Other benefits 

include improved gut barrier function, reduced colonies of pathogenic bacteria, 

decreased risk of CVD, promotion of weight loss, beneficial modulation of the 

immune system, enhanced mineral absorption, promotion of regular bowel 

movements and intestinal health, cancer prevention, and reduced cholesterol 

[97]. Although literature on prebiotics in regard to the GBA is scarce, prebiotics 

have been demonstrated to elevate central BDNF, levels of which decrease 

according to AD severity [98], and N-methyl-D-aspartate receptor (NMDA) [99], 

but reduce waking cortisol levels in human subjects [100]. Collectively, prebiotics 

have a vast array of benefits to the host and are easy to consume, making it an 

ideal nutritional intervention in the fight against neurological disorders such as 

AD.  
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1.5.1 Inulin 
 

For our project, we will use the prebiotic inulin, a soluble dietary fiber and 

member of the fructans group, due to its well-documented ability to increase 

SCFA production and increase Bifidobacterium bacterial populations [101]. 

United States citizens ingest 1-4g of inulin-type fructans (ITFs) per day, 

considerably less than the 3-11g eaten by Europeans [102]. To be an ITF, a β-(2-

1)-fructosyl-fructose glycosidic bond anywhere from 2 to 60 units long must be 

present, giving inulin its ability to resist gastric enzymes in the upper GI, only to 

be later fermented in the colon [101]. Notably, only gastrointestinal side effects 

have been reported with inulin consumption including diarrhea, abdominal 

rumbling, bloating, cramping, and excess flatulence. However, these effects are 

generally seen in intakes greater than 40g per day, although individual variation 

exists. A daily dose of 2.5-10g per day in humans is recommended to promote a 

healthy gut microbiota [103].  

Inulin is derived from the chicory root but is also found in garlic, onions, 

artichoke, and in processed foods as a functional fiber. For food application, 

when adding inulin, health claims can be made on the product, potentially 

persuading consumers to eat the food for added health benefits. Inulin can also 

be used to replace fat or sugar as inulin can be processed to have a similar taste 

and/or texture [101].  

ITFs include inulin, oligofructose, fructooligosacchardies (FOS), and 

bifidogenic oligo- or polysaccharide chains. The latter of which are more derived, 

smaller molecules. A way to classify these types is by their degree of 
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polymerization (DP) [101]. For example, inulin has not undergone extensive 

processing and is generally greater than 10 DP. However, oligofructose is less 

than 10 DP and has undergone partial hydrolysis with all long chain ITFs 

removed. Finally, FOS are very short chain inulin type fructans that are produced 

from sucrose. Unfortunately, the literature can vary on classifying the types of 

inulin by DP, so one should be careful when looking to specifically identify ITFs. 

Further, the DP of ITFs also determines the location they will exert their effects. If 

the product has a lower DP, it will exert effects towards the proximal colon, while 

less derived, higher DP ITFs will exert effects in the distal colon. In the colon, 

these ITFs are fully metabolized into carbon dioxide, hydrogen, SCFAs, lactate, 

and other metabolites. This fermentation also makes the colon more acidic, 

thought to be advantageous for the growth of beneficial bacteria, along with 

increasing fecal content size. Finally, ITFs do indeed affect the gut microbiota. 

Although not entirely conclusive due to differences in the type of inulin used in 

the literature and individual differences, ITFs stimulate Bifidobacteria, increasing 

its bacterial biomass. Indeed, Bifidobacteria can consume non-digestible 

carbohydrates as energy sources such as ITFs. This genus contains at least 51 

different species that have numerous beneficial effects including production of B 

vitamins, maturation of immune system, protection of the gut barrier and 

pathogens, and production of SCFAs [104]. When examining the literature, one 

human study found that 20g of inulin was given for 8 days, and then ramped up 

to 40g a day for another 10 days. This dietary regimen produced significant 

increases in Bifidobacteria, whereas Enterococci and Enterobacteriaceae were 
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decreased. However, effects of ITFs on bacterial species other than 

Bifidobacteria are inconclusive at this time. In a recent study by Vandeputte et al. 

in human subjects, inulin was found to alter bacterial abundance at the genus-

level via increased Bifidobacterium and Anareostipes but decreased Bilophila 

[105]. Notably, some evidence supports a dose-dependent response to 

increasing levels of inulin intake although this may depend on the state of the 

host and variation in their gut microbiota prior to treatment with inulin [101].  

 Inulin is well known in the literature in both human and animal models and, 

despite some inconsistencies, has time and time again produced beneficial 

effects, making it quite possibly the most studied and verified of all prebiotics. 

Indeed, inulin has been suggested to help with constipation in elderly females by 

increasing stool frequency and making them softer [106], while other studies 

have not demonstrated notable effects [103]. Similarly, inulin has been 

demonstrated, albeit inconsistently, to reduce total cholesterol, LDL-cholesterol, 

VLDL-cholesterol, and triglycerides in dyslipidemic and obese subjects [107]. In a 

recent meta-analysis examining the effect of ITFs on blood lipids and glucose 

levels in humans that were healthy, dyslipidemic, obese, and T2D patients, ITFs 

were demonstrated to decrease LDL across all groups. However, ITFs 

decreased fasting insulin and increased HDL only in certain T2D subgroups. The 

authors attribute the latter to the differences in the gut microbiota and 

pathological state of the subjects, e.g. T2D patients have increased blood 

glucose and lipids. Nevertheless, this meta-analysis does provide compelling 
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evidence that ITFs can indeed beneficially impact blood lipid profiles and 

glucose.   

 In animal models, ITFs have also been demonstrated to have anti-

carcinogenic effects. Indeed, supplemented inulin has demonstrated anti-

carcinogenic effects in one study using mice and rats that were induced with 

colon cancer using azoxymethane and dextran sulfate sodium (AOM/DSS). In 

mice, the group fed the inulin-like fructans had decreased intestinal polyps and 

decreased markers of inflammation such as TNF-α. Even more interesting, the 

inulin groups had increased bone densitometry in their femur and vertebra in a 

separate cohort of rats. However, serum calcium levels were not different [108].  

Nevertheless, inulin has demonstrated anti-carcinogenic and anti-inflammatory 

effects in the colon. The inconsistencies in the literature may be due to amount of 

inulin given in each study.  

 Specific doses of inulin in animal models have varied but for the most part, 

show benefits. In one of the more extreme cases, Parnell et al. fed 8-week-old 

male lean and obese rats 0, 10%, or 20% of a 1:1 inulin and oligofructose mix for 

10 weeks. The primary finding of this study was that the prebiotic fed groups had 

decreased serum cholesterol and a reduction in liver triacylglyceride (TAG) 

buildup compared to the obese control rats. A dose-response effect was not 

observed but the authors suggest the 10% dose may be more beneficial. 

Notably, these effects were not seen in the lean mice [109]. Another study also 

used the 10% dose with an inulin fiber product called Orafti Synergy to test the 

ability of rats to absorb iron and magnesium after being exposed to omeprazole, 
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which inhibits passive magnesium transport and absorption. The results revealed 

that inulin was able to restore calcium transport in the omeprazole treated rats, 

but not magnesium, compared to the control group. As a side note, levels of 

butyrate in the cecum and colon were also increased compared to the control 

group [110]. Similar findings have been found in humans, with one study in 

young healthy men demonstrating inulin to increase calcium absorption and 

balance. However, the absorption of magnesium, iron, and zinc were not altered 

[111]. 

 In one study similar to the present dissertation project, Weitkunat et. al. 

looked at the effects of a 10% inulin and 10% cellulose diet in gnotobiotic 

C3H/HeOuJ mice colonized with a human microbiota, comprised of 8 

represented bacteria, for 6 weeks. Firstly, the cellulose diet had significantly 

greater fecal bulk and energy than the inulin group and thus, the inulin group had 

10% higher digestibility. However, the calculated energy assimilation was not 

different. This was apparent as the body weight and composition in the two 

groups was also not different. Nor was liver weight or epididymal white adipose 

tissue (eWAT). In regard to the gut microbiota, the inulin group had an increased 

total bacterial cell number due to the increase in 6 of the 8 members of their 

human gut microbiota. These included Anaerostipes caccae, Bacteroides 

thetaiotaomicron, Bifidobacterium longum, Blautia producta, Clostridium 

butyricum, and Clostridium ramosum. Importantly, the inulin group also had 

significantly increased amounts of the SCFAs acetate, propionate, and butyrate 

in the cecum and significantly increased acetate and propionate in the plasma of 
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the portal vein. Inulin also altered liver genes associated with lipogenesis and 

fatty acid elongation. Finally, the inulin group exhibited a decreased ratio of 

omega-6 to omega-3 in the plasma, liver, and eWAT. Together, the authors 

believe these results signify that inulin may alter and decrease hepatic lipid 

metabolism while the decreased omega-6 to omega-3 ratio may help decrease 

disease risk [112].  

Collectively, inulin and ITFs have demonstrated a large array of benefits in 

the literature; however, more research needs be conducted in order to 

understand the aforementioned inconsistencies. Further, very little research 

exists regarding inulin and the brain, an exciting area of future discoveries. 

  

1.6 Scope of Dissertation 
 

The overall objective of our project is to use the prebiotic inulin to 

modulate the gut microbiota, reducing the risk of developing Alzheimer’s disease 

(AD)-like symptoms. For all aims, we will use a mouse model of C57BL/6 

background that overexpresses human Aβ via 5 familial-AD (5xFAD) mutations 

and expresses either the knocked-in human APOE3 (E3FAD) or APOE4 

(E4FAD) gene. Notably, a prevention strategy can be utilized in these mice as 

this mouse model gives us a known timeline of when to treat the mice with the 

prebiotic inulin. Our central hypothesis is that the prebiotic inulin will restore 

metabolic function and reduce AD pathology, including Aβ and 

neuroinflammation, in asymptomatic E4FAD mice. Our rationale is that once we 

learn if manipulation of the gut microbiota with the prebiotic inulin can alter the 
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gut-brain axis and decrease AD risk factors, we can administer innovative 

treatments for its prevention. As such, we will test our central hypothesis by 

these three specific aims:   

Specific Aim 1. To identify the effects of the prebiotic inulin on the 

gut microbiota and induced metabolism changes thereof between E3FAD 

and E4FAD mice. This chapter will discuss the differences in the gut microbiota 

between E3FAD and E4FAD mice along with the effect of the prebiotic inulin on 

thereof compared to the control diet. Further, it will test for potential metabolites, 

such as the short chain fatty acids (SCFAs), generated by the gut microbiota with 

and without prebiotic treatment in the cecum and in fecal culture.   

Specific Aim 2. To identify the effects of the prebiotic inulin on 

metabolism in the periphery and central nervous system (CNS) between 

E3FAD and E4FAD mice. This chapter will discuss the effect of the prebiotic 

inulin on metabolism in blood plasma, in vivo brain, and brain tissue between 

E3FAD and E4FAD mice. Specifically, metabolites produced from the prebiotic 

inulin in the gut microbiota that may have an impact on the brain will be 

assessed.    

Specific Aim 3. To identify the effects of the prebiotic inulin on AD 

risk factors and pathology between E3FAD and E4FAD mice. This chapter 

will discuss if the impact of the prebiotic inulin can reach the brain and decrease 

AD risk factors, including CBF, inflammation, anxiety, and cognition, and Aβ 

aggregation in E3FAD and E4FAD mice and any differences seen between 

E3FAD and E4FAD mice.  
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Chapter 2 Methods and Materials 
  

2.1 Animals, Caging, and Diet Information 
 
 For all aims, the EFAD transgenic mouse model (E3FAD and E4FAD) was 

used. This C57BL/6 background mouse model is a cross between transgenic 

mice that overexpress Aβ via 5 familial-AD (5xFAD) mutations with transgenic 

mice that have either the target replacement human APOE3 or APOE4 allele. We 

determined the sample size (N = 15/group, Male:Female = 50/50) via power 

analysis to ensure comparison at a 0.05 level of significance and a 90% chance 

of detecting a true difference of each measured variable between groups. Each 

mouse was given its own cage housed in a specific pathogen-free facility in order 

to avoid the potential for hostility when combining unfamiliar mice into one cage. 

Further, mice were house independently for gut microbiome analysis due to the 

potential for microbiome transfer, e.g. mice eating each other’s feces giving them 

a very similar gut microbiome. Thus, the mice would be N = 1 for that particular 

cage. Individual housing will also help us avoid cage effects [113]. E3FAD and 

E4FAD mice were weighed biweekly, given ad libitum access to food and water, 

and fed either a prebiotic or vehicle control diet (detailed in Table 3.1) starting at 

3 months of age. Both the prebiotic and vehicle control diet are modifications of 

TestDiet’s AIN-93G Semi-Purified Diet 57W5. Experimental procedures, 

including magnetic resonance imaging and animal behavior tests, started when 

mice reached 7 months of age and after completion of these experiments, the 

mice were sacrificed with cecum weight measured and brain, blood, cecal 

contents, and intestinal tissue collected. All experimental procedures were 
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performed according to NIH guidelines and approved by the Institutional Animal 

Care and Use Committee (IACUC) at the University of Kentucky (UK). 

 

2.2 Fecal Bacterial Culture 
 

Fecal samples were collected from 7-month old E3FAD and E4FAD mice 

fed a standard chow diet and pooled together into their respective groups with 

175 mg per sample weighed. The samples were placed in an anaerobic chamber 

and transferred to a clean tube containing 1.5 ml media. The samples were 

mashed into a semi-suspension, sealed, and taken out of the chamber. Samples 

are centrifuged at 500 rpm for 5 minutes. A 10-cc syringe is used to pull 8 mLs of 

the supernatant into an anaerobic tube. Samples are centrifuged again at 3000 

rpm for 10 minutes. Next, the samples are aspirated and maintained in anaerobic 

conditions. The pellets are suspended in 9 mL media and separated into tubes. 

Next, either inulin (5g/L) or the control, glucose (5g/L) were added. The samples 

sit for either 24 or 48 hours with subsequent collection of 1 mL from each 

sample. The samples are centrifuged at 21,000 g for 2 minutes and supernatant 

collected. The samples can then be frozen until further analysis. All groups were 

run in triplicate.  

 

2.3 Gut Microbiome Analysis 
 

For fecal DNA amplification, fecal samples were collected from all mice 

per group (N = 15/group, M:F = 50/50). A DNeasy PowerSoil Kit (Qiagen, Hilden, 

Germany, Cat. No. 12888-100) was used for fecal DNA extraction, according to 
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the manufacturer’s protocol. Genomic DNA was PCR amplified with primers 

CS1_515F and CS2_926R [114] targeting the V4-V5 regions of microbial 16S 

rRNA genes using a two-stage “targeted amplicon sequencing (TAS)” protocol 

[115, 116]. First stage amplifications were performed with the following 

thermocycling conditions: 95˚C for 3 minutes, 28 cycles of 95˚C for 45 seconds, 

55˚C for 45 seconds, 72˚C for 90 seconds and final elongation at 72˚C for 10 

minutes. Barcoding was performed using a second-stage PCR amplification with 

Access Array Barcode Library for Illumina Sequencers (Fluidigm, South San 

Francisco, CA; Item# 100-4876). The pooled libraries, with a 15% phiX spike-in, 

were loaded on a MiSeq v3 flow cell, and sequenced using an Illumina MiSeq 

sequencer, with paired-end 300 base reads. Fluidigm sequencing primers, 

targeting the CS1 and CS2 linker regions, were used to initiate sequencing. De-

multiplexing of reads was performed on instrument. Second stage PCR 

amplification and library pooling were performed at the DNA Services (DNAS) 

facility within the Research Resources Center (RRC) at the University of Illinois 

at Chicago (UIC). Sequencing was performed at the W.M. Keck Center for 

Comparative and Functional Genomics at the University of Illinois at Urbana-

Champaign (UIUC). 

For microbial analysis, forward and reverse reads were merged using 

PEAR [117]. Primer sequences were identified using Smith-Watermann 

alignment and trimmed from the sequence. Reads that lacked either primer 

sequence were discarded.  Sequences were then trimmed based on quality 

scores using a modified Mott algorithm with a PHRED quality threshold of p = 



 

 33 

0.01, and sequences shorter than 300 bases after trimming were discarded. 

QIIME v1.8 was used to generate operational taxonomic unit (OUT) tables and 

taxonomic summaries [118]. Briefly, the resulting sequence files were merged 

with sample information. OTU clusters were generated in a de novo manner 

using the UCLUST algorithm with a 97% similarity threshold [119]. Chimeric 

sequences were identified using the USEARCH61 algorithm with the 

GreenGenes 13_8 reference sequences [120]. Taxonomic annotations for each 

OTU were using the UCLUST algorithm and GreenGenes 13_8 reference with a 

minimum similarity threshold of 90% [119, 120]. Taxonomic and OTU abundance 

data were merged into a single OTU table and summaries of absolute 

abundances of taxa were generated for all phyla, classes, orders, families, 

genera, and species present in the dataset. The taxonomic summary tables were 

then rarefied to a depth of 10,000 counts per sample. 

Shannon and Bray-Curtis dissimilarity indices were calculated with default 

parameters in R using the vegan library [121, 122] and visualized as box plot and 

NMDS plot, respectively. Shannon index is used to calculate -diversity, or the 

species richness within a single habitat, via 𝐻 =  ∑ (𝑝𝑖 ∗ 𝑙𝑛 𝑝𝑖)
𝑠
𝑖=𝑙  where H = 

Shannon diversity index, pi = fraction of the entire population made up of species 

i, S = number of species, ln = natural logarithm, and  = sum of species. A higher 

H value indicates a more diverse community within a particular sample. Bray-

Curtis dissimilarity is used to calculate -diversity, the diversity of taxonomic 

abundance between difference samples, via 𝐵𝐶𝑖𝑗 = 1 −
2𝐶𝑖𝑗

𝑆𝑖+𝑆𝑗
  where i and j = the 

two sites, Si = total number of specimens on site i, Sj = total number of 
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specimens counted on site j, and Cij = sum of only lesser counts for each species 

in both sites. The rarefied genus data, taxonomic level 6, were used to calculate 

both indices.  Plots were generated in R using the ggplot2 library [123]. 

Significant differences among tested groups was determined using the Kruskal-

Wallis one-way analysis of variance and analysis of variance using distance 

matrices (ADONIS). The group significance tests were performed on the rarefied 

genus data, taxonomic level 6 (genus), using the group_significance.py script 

within the QIIME v1.8 package. 

 

2.4 Plasma Scyllo-Inositol 
 

A subset of 10 mice per group (N = 10, M:F = 50/50) was used for testing 

with a total of 50 ul mouse plasma mixed with 200 ul acetone, for a final 

concentration of 80%, to precipitate protein at -80C for 30 minutes. The 

precipitation was centrifuged out at 21000 g for 20 minutes at 4C. The 

supernatants were lyophilized overnight and reconstituted in D2O (> 99.9%, 

Cambridge Isotope Laboratories, MA) containing 0.1 mM EDTA 

(Ethylenediaminetetraacetic acid, Sigma Aldrich, St. Louis, MO) and 0.5 mM d6-

2,2-dimethyl-2-silapentane-5-sulfonate (DSS) (Cambridge Isotope Laboratories, 

Tewksbury, MA) as NMR internal standard. All NMR experiments including 1D 1H 

and 2D 1H HSQC were performed on an Agilent DD2 14.1 Tesla NMR 

spectrometer (Agilent Technologies, CA) equipped with a 3 mm inverse triple 

resonance HCN cryoprobe. All spectra were processed using MNova software 

(MestreLab, Spain). 1D 1H spectra were acquired with standard PRESAT pulse 
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sequence at 15 C with soft pulse pre-saturation on the HOD resonance 

frequency to suppress water signal. A total of 16,384 data points was acquired 

with 2 seconds acquisition time, 512 transients, 12 ppm spectral width, and 4 

seconds recycle delay time during which water peak was irradiated by soft pulse 

for suppression. The spectra were then linear predicted and zero filled to 128 k 

points and apodized with a 1 Hz exponential line broadening function. For 

quantification, the peak intensities were extracted using the peak-fitting 

deconvolution method provided by MNova software. The peak intensity of scyllo-

inositol resonant at 3.34 ppm were converted into nmoles by calibration against 

the peak intensity of internal standard DSS (with known quantify of 27.5 nmoles) 

at 0 ppm. 2D heteronuclear single quantum coherence (HSQC) were acquired to 

help confirm the peak assignments. The 2D HSQC spectra were recorded with 

13C adiabatic decoupling scheme for broad range decoupling during proton 

acquisition time of 0.25 seconds. 1,796 data points were collected each transient 

and a total of 16 transients were acquired with 12 ppm spectral width. A total of 

256 increments were collected in the carbon F1 dimension with a spectral width 

of 200 ppm. The HSQC spectra were linear predicted once and zero filled to 4 k 

data points in the F2 proton dimension and 1 k points in the F1 carbon 

dimension. The scyllo-inositol peak resonance was at 3.34 ppm in proton 

dimension and 70.3 ppm in carbon dimension. 
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2.5 Metabolomics Profiling 
  

For all aims, mouse blood, brain, and cecal contents were collected. The 

whole blood and brains were then sent to Metabolon (Durham, NC) for 

metabolomic profile (N = 8/group, M:F = 50/50). The cecal contents and whole 

blood were sent for SCFA analysis. For the metabolomic profiling, metabolon’s 

standard solvent extraction method was used to prepare the samples, which 

were then equally split for analysis via liquid chromatography/mass spectrometry 

(LC/MS) or gas chromatography/mass spectrometry (GC/MS) using their 

standard protocol [124]. 

For SCFA analysis in the whole blood (N = 8/group in ng/mL) and cecal 

contents (N = 8/group in g/g), 8 SCFAs were analyzed by LC-MS/MS. These 

were as follows: acetic acid (C2), propionic acid (C3), isobutyric acid (C4), 2-

methylbutyric acid (C5), isovaleric acid (C5), valeric acid (C5), and caproic acid 

(C6). Both sets of samples are stable labelled with internal standards and 

homogenized in an organic solvent. The samples are then centrifuged followed 

by an aliquot of the supernatant used to derivatize to form SCFA hydrazides. 

This reaction mixture is subsequently diluted, and an aliquot is injected into an 

Agilent 1290/AB Sciex QTrap 5500 LCMS/MS system. This system is equipped 

with a C18 reversed phase UHPLC column operated in negative mode using 

electrospray ionization (ESI). The raw data was analyzed by AB SCIEX software 

(Analyst 1.6.2) with reduction of the data done in Microsoft Excel 2013. Analysis 

was done in a 96-well plate with two calibration curves and 6-8 quality control 
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samples per bath. Samples were labeled BLOQ if they fell below the quantitation 

limit and ALOQ if they fell above the quantitation limit.  

For sample preparation of the rest of the samples, each sample was 

accessioned into a LIMS system, assigned a unique identifier, and stored at -70 

ºC. To remove protein, dissociate small molecules bound to protein or trapped in 

the precipitated protein matrix, and to recover chemically diverse metabolites, 

proteins were precipitated with methanol, with vigorous shaking for 2 minutes 

(Glen Mills Genogrinder 2000) as described previously [124, 125]. The resulting 

extract was divided into four fractions: one for analysis by ultra-high-performance 

liquid chromatography-tandem mass spectrometry run in positive mode (UPLC-

MS/MS+), one for analysis by UPLC-MS/MS run in negative mode (UPLC-

MS/MS-), one for analysis by gas chromatography–mass spectrometry (GC-MS), 

and one aliquot was retained for backup analysis, if needed.  

For mass spectrometry analysis, non-targeted UPLC-MS/MS and GC-MS 

analyses were performed at Metabolon, Inc. as described [124-126].  The 

UPLC/MS/MS portion of the platform incorporates a Waters Acquity UPLC 

system and a Thermo-Finnegan LTQ mass spectrometer, including an 

electrospray ionization (ESI) source and linear ion-trap (LIT) mass 

analyzer.  Aliquots of the vacuum-dried sample were reconstituted, one each in 

acidic or basic LC-compatible solvents containing 8 or more injection standards 

at fixed concentrations (to both ensure injection and chromatographic 

consistency).  Extracts were loaded onto columns (Waters UPLC BEH C18-2.1 x 

100 mm, 1.7 μm) and gradient-eluted with water and 95% methanol containing 
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0.1% formic acid (acidic extracts) or 6.5 mM ammonium bicarbonate (basic 

extracts).  The instrument was set to scan 99–1000 m/z and alternated between 

MS and MS/MS scans.    

Samples destined for analysis by GC-MS were dried under vacuum 

desiccation for a minimum of 18 h prior to being derivatized using 

bis(trimethylsilyl)trifluoroacetamide (BSTFA) as described [127]. Derivatized 

samples were separated on a 5% phenyldimethyl silicone column with helium as 

carrier gas and a temperature ramp from 60° to 340°C within a 17-minute period. 

All samples were analyzed on a Thermo-Finnigan Trace DSQ fast-scanning 

single-quadrupole MS operated at unit mass resolving power with electron 

impact ionization and a 50–750 atomic mass unit scan range.  The instrument is 

tuned and calibrated for mass resolution and mass accuracy daily. 

For quality control, all columns and reagents were purchased in bulk from 

a single lot to complete all related experiments. For monitoring of data quality 

and process variation, multiple replicates of extracts from a pool of human 

plasma were prepared in parallel and injected throughout the run, interspersed 

among the experimental samples. Instrument variability was determined by 

calculating the median relative standard deviation (RSD) for the standards that 

were added to each sample prior to injection into the mass spectrometers 

(median RSD = 4%; n = 21 standards). Overall process variability was 

determined by calculating the median RSD for all endogenous metabolites (i.e., 

non-instrument standards) present in 100% of technical replicate samples 

created from a homogeneous pool containing a small amount of all study 
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samples (median RSD = 6%; n = 170 metabolites). In addition, process blanks 

and other quality control samples are spaced evenly among the injections for 

each day, and all experimental samples are randomly distributed throughout 

each day’s run.  

For compound identification, quantification, and data curation, metabolites 

were identified by automated comparison of the ion features in the experimental 

samples to a reference library of chemical standard entries that included 

retention time, molecular weight (m/z), preferred adducts, and in-source 

fragments as well as associated MS spectra and curated by visual inspection for 

quality control using software developed at Metabolon [128]. Identification of 

known chemical entities was based on comparison to metabolomic library entries 

of more than 2,800 commercially-available purified standards. Subsequent 

quality control (QC) and curation processes were utilized to ensure accurate, 

consistent identification and to minimize system artifacts, mis-assignments, and 

background noise. Library matches for each compound were verified for each 

sample. Peaks were quantified using area under the curve. Raw area counts for 

each metabolite in each sample were normalized to correct for variation resulting 

from instrument inter-day tuning differences by the median value for each run-

day, therefore setting the medians to 1.0 for each run. This preserved variation 

between samples but allowed metabolites of widely different raw peak areas to 

be compared on a similar graphical scale.  Missing values were imputed with the 

observed minimum after normalization. For bioinformatics, the LIMS system 

encompasses sample accessioning, preparation, instrument analysis and 
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reporting, and advanced data analysis.  Additional informatics components 

include data extraction into a relational database and peak-identification 

software; proprietary data processing tools for QC and compound identification; 

and a collection of interpretation and visualization tools for use by data analysts. 

The hardware and software systems are built on a web-service platform utilizing 

Microsoft’s .NET technologies which run on high-performance application servers 

and fiber-channel storage arrays in clusters to provide active failover and load-

balancing.  

For metabolite quantification and data normalization, peaks were 

quantified using area-under-the-curve and a data normalization step for multiple 

day studies was utilized to correct any variance in instrument inter-day tuning 

differences. For one day studies, no normalization is necessary except for when 

accounting for an additional factor to account for any differences in metabolite 

levels due to differences in amount present in each sample. 

For statistical analysis, two types of statistical analyses were performed; 

significance tests and classification analysis. Statistical analysis is performed in 

ArrayStudio on log transformed data. For analyses not standard to ArrayStudio, 

either R or JMP are used. Multiple significance tests and classification methods 

are used. These include Welch’s two-sample t-test, Matched Pairs t-test, one-

way ANOVA, two-way ANOVA, and two-way repeated measures ANOVA. Also, 

correlation, and Hotelling’s T2 test were used. For statistical significance testing, 

p-values and q-values using False Discovery Rate (FDR) were utilized. Finally, 
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Random Forest, hierarchical clustering, and Principal Components Analysis 

(PCA) were used. 

  

2.6 Magnetic Resonance Imaging (MRI) 
  

All MRI experiments were performed on a 7T MR scanner (Clinscan, 

Bruker BioSpin, Germany) at the Magnetic Resonance Imaging & Spectroscopy 

Center at the UK. A subset of mice were randomly chosen from each group to 

undergo testing (N = 8-10/group). Mice were anesthetized with 4.0% isoflurane 

for induction and then maintained in a 1.2% isoflurane and air mixture using a 

nose cone. Respiration rate (50-80 breaths/minute) and rectal temperature (37 ± 

1 °C) were continuously monitored and maintained. T2-weighted structural 

images were acquired with field of view (FOV) =18 x18 mm2, matrix = 256 x 256; 

slice thickness = 1 mm, 10 slices, repetition time (TR) = 1500 ms, and echo time 

(TE) = 35 ms. Quantitative CBF (with units of mL/g per minute) was measured 

using MRI-based pseudo-continuous arterial spin labeling (pCASL) techniques 

[129]. A whole-body volume coil was used for transmission and a mouse brain 

surface coil was placed on top of the head for receiving. Paired control and label 

images were acquired in an interleaved fashion with a train of Hanning window-

shaped radiofrequency pulses of duration/spacing = 200/200 μs, flip angle = 25° 

and slice-selective gradient = 9 mT/m, and a labeling duration = 2100 ms [130]. 

The images were acquired by 2D multi-slice spin-echo echo planner imaging with 

FOV =18 x18 mm2, matrix =128 x 128, slice thickness = 1 mm, 10 slices, TR = 

4,000 ms, TE = 35 ms, and 120 repetitions. pCASL image analysis was 
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employed with in-house written codes in MATLAB (MathWorks, Natick, MA) to 

obtain quantitative CBF [131]. 

The next MRI technique used is magnetic resonance spectroscopy (MRS), 

or the measurement of metabolites in vivo [132]. MRS was being conducted in 

mouse brains, specifically in the hippocampus, with the following metabolites 

measured: alanine (Ala), total choline (TCho), glutamate-glutamine complex 

(Glx), myo-inositol (mI), lactate (Lac), NAA, phosphocreatine (PCr), total creatine 

(TCr), and taurine (Tau). These metabolites are plotted on a graph of signal 

intensity versus frequency. The following were used for a water-suppressed 

spectrum to test for these metabolites: TR = 1500 ms, TE = 135 ms, spectral 

width = 60 Hz, and average = 400. A voxel (2.0 mm x 5.0 mm x 1.3 mm) is 

placed over the bilateral hippocampus. Next, a non-water suppressed spectra is 

performed with 10 averages. Both of these spectra will be processed using the 

LCModel software to find the absolute concentration of the metabolites. To 

quantify the concentrations of the metabolites, the following equation was 

utilized: [m] = (Sm/Swater)[water]CnCav where [m] is the metabolite concentration, 

Sm is the metabolite intensity acquired from MRS, Swater is the water intensity 

acquired from MRS, [water] is the concentration of water (55.14mM at 310K), Cn 

is the correction for the number of equivalent nuclei for each resonance, and Cav 

is the correction for the number of averages [133]. 
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2.7 Amyloid-β Staining 
 

Mouse brains were collected (N = 5/group, M:F = 50/50) upon sacrifice and 

immediately put into 10% neutral buffered formalin for 24-48 hours. After this 

time period, the brains were transferred into 90% ethanol. Next, the brains were 

sent to the COCVD Pathology Research Core at the University of Kentucky to be 

embedded and sectioned onto microscope slides for immunohistochemistry. The 

sectioned tissue undergoes rehydration followed by tissue pretreatment in 90% 

formic acid for 3 minutes. The tissue was then treated with 3% H2O2 and 10% 

methanol for 30 minutes. Next, a M.O.M. Kit (Vector Laboratories, Inc. 

Burlingame, CA) was used following the standard protocol. A was identified 

using an anti-A1-17 mouse monoclonal 6E10 antibody (1:3000; Signet 

Laboratories, Dedham, MA). Following this portion of the protocol, a DAB 

substrate kit (also Vector Laboratories, Burlingame, CA) was used for 

visualization. Next, a background stain utilizing NISSL was completed followed 

by dehydration. The slides were next imaged on the Aperio ScanScope XT 

Digital Slide Scanner System in the University of Kentucky Alzheimer’s Disease 

Center Neuropathology Core Laboratory (20x magnificantion) and uploaded to 

the online database. Aperio ImageScope (version 12.3.2.8013) was used to 

analyze total anti-A counted at 20x magnification (0.495px/um). 10 boxes (ROIs 

that are 600x600x600 microns) were randomly placed in each sample image and 

counted for percent positive A (number of positive + number of strong 

positive/total number).  
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2.8 NanoString Array 
 

For RNA isolation and quantification, dissected hippocampus was 

processed for RNA isolation following manufacturer’s protocol (N = 5/group, all 

male) (Qiagen RNeasy Plus #74136). Quality and concentration of eluted RNA 

was measured by Nanodrop. 200ng of total RNA per sample was quantified 

using a NanoString array that consisted of 561 gene targets (Mouse Immunology 

v2 CodeSet). Following quality and housekeeping control normalization, there 

were a total of 318 genes that were above the background threshold.  

 

2.9  Animal Behavior Tests 
 

 All behavior tests were conducted over a two-week period with each test 

starting at the same time each morning (N = 7-9/group, M:F = 50/50). For each 

mouse, Elevated Plus Maze (EPM) was done first immediately followed by the 

Open Field Test and the Novel Object Recognition (NOR) test the next day. 

Radial Arm Water Maze (RAWM) testing was then carried out starting the day 

after NOR. All tests were carried out in the Rodent Behavior Center at the 

University of Kentucky.  

For elevated plus maze, all mice underwent three behavior tests. The first 

test is the EPM. We used the EPM to evaluate anxiety of the mice [129, 134]. 

The EPM consists of two open and two closed arms elevated 100 cm above the 

floor. Closed arms are perceived as safe zones, and thus mice with higher 

anxiety had tendency to stay in the closed arms. We determined the anxiety-

related behavior by measuring the time spent in the closed arms over the 1-
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minute test session by EthoVision XT 8.0 video tracking software (Noldus 

Information Technology). 

 For the open field test (OF), activity was recorded with EthoVision XT 8.0 

video tracking software (Noldus Information Technology). Each chamber was 

divided into a central and peripheral zone with the peripheral zone being next to 

the walls of the chamber. Data was collected for 15 minutes with edge duration 

being the amount of time the mice spent in the peripheral zone. This test is 

designed to assess anxiety-like behavior in the mice in response to a new, novel 

environment [135].  

For novel object recognition (NOR), the second behavioral test, used to 

test spatial recognition memory [136]. This task of recognition memory utilizes 

the fact that animals will spend more time exploring a novel object compared to 

an object that they are familiar with in order to satisfy their innate 

curiosity/exploratory instinct. Mice were given 10 minutes to explore two of the 

same objects in the “A/A” session. For the 10-minute “A/B” test session, one of 

the A objects was replaced by a novel object (B). There was a 2-hour delay 

between the A/A and A/B sessions. The total time mice spend investigating the 

objects was recorded and scored by the fully automated EthoVision XT 8.0 video 

tracking software (Noldus Information Technology). The D2 discrimination index 

was calculated by: D2 = (TB-TA) ÷ (TB +TA), where TB is the time spent with the 

novel object B, and TA is the time spent with the familiar object A. 

 The final test is radial arm water maze (RAWM), used to measure both 

spatial working memory and spatial reference memory [129, 137, 138]. The 
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RAWM task was conducted as described previously [133], following a 2-day 

testing paradigm. A staggered training schedule was used, running the mice in 

cohorts of ten mice, while alternating the different cohorts through the trials over 

day 1 and day 2 of the test. This alternating protocol was used to avoid the 

learning limitations imposed by massed sequential trials and to avoid fatigue that 

may result from consecutive trials. Day 1 is the “learning” phase where mice went 

through three blocks (Blocks 1-3; 5 trials in each block) to test learning and short-

term spatial memory. Day 2 is the “recall” phase where mice went through three 

additional blocks (Blocks 4-6) to test long-term memory after a 24-hour retention 

period to locate the platform. It is expected that after the two-day training, the 

mouse with intact memory can find the platform with minimal errors. Geometric 

extra-maze visual cues were fixed throughout the study on three sides of the 

curtains. Visual platform trials were included in the training and were used to 

determine if visual impairment could be a cofounding variable. Mouse 

performance was recorded by EthoVision XT 8.0 video tracking software (Noldus 

Information Technology) data analyzed by the EthoVision software for the 

number of incorrect arm entries, which are defined as errors. The video was 

reviewed for each mouse to ensure that the mice did not employ non-spatial 

strategies, such as chaining, to solve the task. 

 

2.10 Statistical Analysis 
 

All statistical analyses were completed using GraphPad Prism (GraphPad, 

San Diego, CA, USA). For all chapters, two-sample t-test and 2-way ANOVA was 
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performed for determination of differences between groups along with Tukey’s 

multiple comparisons test. For Metabolon, log transformations were conducted 

followed by ANOVA for identification of biochemicals that were significantly 

different between groups. Between group differences were assessed using p-

value and q-value, or false discovery rate. For the NanoString Array analysis, 

data are plotted as the mean ratio expression with their respective adjusted p-

value (Benjamini-Hochberg corrected). Further, 2-way ANOVA was used along 

with Sidak posthoc multiple comparisons correction for the individual genes.   
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Chapter 3 Specific Aim 1: To identify the effects of the prebiotic inulin on 

the gut microbiota and induced metabolism changes thereof between 

E3FAD and E4FAD mice. 

 
3.1 Summary 
 
 The gut microbiota plays a profound role on the host and recently, this has 

been found true in the brain and in neurological diseases such as AD. The 

differences between the gut microbiota and effects of consuming the prebiotic 

inulin on APOE3 and APOE4 carriers is unknown. PURPOSE: The purpose of 

this aim to identify the effects of the prebiotic inulin on the gut microbiota and 

induced metabolism changes thereof between E3FAD and E4FAD mice. 

RESULTS: Firstly, mice bodyweight and food intake were not changed due to the 

prebiotic diet, however, E3FAD and E4FAD mice fed the prebiotic inulin had a 

significantly larger cecum than control fed mice. In the cecal contents, both 

E3FAD and E4FAD fed the prebiotic inulin had significantly increased SCFAs but 

decreased isobutyrate. Next, our fecal culture experiment found an increase in 

scyllo-inositol in the inulin cultures compared to controls. In both the cecal 

contents and fecal culture, the E3FAD mice had a larger production of the 

aforementioned metabolites compared to the E4FAD mice. Further, the prebiotic 

inulin fed E3FAD mice altered the gut microbiota via decreased -diversity, 

significantly different -diversity, and increased beneficial and SCFA producing 

taxa, and decreased deleterious bacterial taxa. The E4FAD mice fed the 

prebiotic inulin saw more modest differences compared to the control fed mice 

with the gut microbiota showcasing a significantly different -diversity, but not -
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diversity, and also increased levels of beneficial taxa at the genus level. 

However, there were no differences due to the FAD mutations. CONCLUSIONS: 

To conclude, the prebiotic inulin beneficially impacted the host through increased 

production of beneficial metabolites such as the SCFAs and scyllo-inositol along 

with increasing beneficial taxa and decreasing deleterious taxa However, the 

E3FAD mice and E4FAD mice fed the prebiotic inulin showcased variation in the 

aforementioned outcomes as E3FAD mice appeared to gain more benefit due to 

the prebiotic inulin than did the E4FAD mice. Due to this, we believe prebiotics 

can be a beneficial and translatable nutritional intervention to improve gut health 

but taking genetics into account is highly warranted.  

 

3.2 Introduction 
 

The gut microbiota, or the trillions of bacteria in our gut, play a profound 

role on our health [42]. Indeed, the gut microbiota has been demonstrated to 

beneficially impact the host a variety of ways including through the immune 

system [139]. Recently, the bi-directional communication between the gut and 

the brain, or gut-brain axis (GBA), has become a topic of intense investigation 

[140]. Indeed, it appears the gut microbiota plays a role in anxiety and 

depression [141], and in other neurological disorders such as AD [142]. Recent 

work has found that AD patients have a distinct gut microbiota compared to 

controls [143] with alterations also seen in an AD mouse model [144]. Further, 

Harach et al. found that in an AD mouse model, the germ-free mice had less 

amyloid pathology than those that actually had a gut microbiota [41]. It is worth 
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noting that studies by Oria et al. have found human APOE4 carriers to have 

protection from diarrhea in early childhood, providing a survival advantage [39]. 

Further, in favela children in Northeast Brazil, this group found that APOE4 was 

protective against cognitive deficits due to enteric infections and diarrhea [145]. 

Due to this, we believe that our E3FAD and E4FAD mice will show a vastly 

different response to the prebiotic inulin and metabolites produced but in both, 

beneficial modulation of the gut microbiota by the prebiotic inulin could help 

prevent AD-like symptoms.  

Using prebiotics such as inulin may be used as a preventative measure in 

combating AD. Indeed, prebiotics are, as stated by one source, “a selectively 

fermented ingredient that allows specific changes, both in the composition and/or 

activity in the gastrointestinal microflora that confers benefits upon host well-

being and health [146].” Prebiotics must resist upper gastrointestinal (GI) 

enzymes, be fermented in the lower GI, and selectively stimulate the growth of 

beneficial bacteria [147]. Further, during the fermentation of prebiotics, beneficial 

metabolites are produced such as the short chain fatty acids (SCFAs) butyrate, 

acetate, and propionate, demonstrated to beneficially impact the brain [148, 149]. 

The prebiotic chosen for this project is inulin, derived from chicory root, but also 

found in other vegetables, fruits, and grains. Inulin is quite possibly the most well 

studied prebiotic and is well known for its numerous beneficial properties 

including increased mineral absorption, decreased inflammatory bowel syndrome 

(IBS) scores, and reduced cholesterol [101, 103]. Further, the prebiotic inulin has 

been demonstrated to increase the size of the cecum, which is thought to 
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indicate increased fermentation of beneficial metabolites and microbial content 

[150, 151]. We believe that using the prebiotic inulin to beneficially modulate the 

gut microbiota in E3FAD and E4FAD mice will lead to a change in metabolism 

via an increase in the fermentation of beneficial metabolites that could potentially 

help prevent AD pathology.  

The objective of this aim was to identify the effect of the prebiotic inulin 

and changes in the metabolism thereof between E3FAD and E4FAD mice. We 

hypothesized that the prebiotic inulin will beneficially modulate the gut microbiota 

and increase metabolite production in E3FAD and E4FAD mice. Specifically, we 

examined the body weight, food intake, and cecum weight of the mice along with 

an examination of the gut microbiota and its taxonomy in 16S rRNA sequencing 

and metabolites produced in the cecal contents and in fecal bacterial culture.  

 

3.3 Results 

 

3.3.1 Body Weight and Food Intake 

Table 3.1 demonstrates the diet composition of the prebiotic and vehicle 

control diets with the prebiotic diet containing 8% fiber from inulin and the vehicle 

control diet containing 8% fiber from cellulose. E3FAD and E4FAD were fed 

either the prebiotic or control diet for 4-months beginning at 3-months of age. To 

ensure the prebiotic diet did not alter bodyweight and food intake in the mice, 

bodyweight and food intake were measured biweekly and compared between 

groups. E3FAD and E4FAD mice that were fed the prebiotic diet saw no 
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significant differences in body weight (Fig. 3.1a) or food intake (Fig. 3.1b) 

compared to control fed mice.  

 

3.3.2 Cecum Weight and Cecal Metabolites 
 

The cecum, with cecal contents intact, was weighed upon sacrifice when 

the mice were around 7-months of age. The cecal contents of the mice were then 

collected and sent to Metabolon (Durham, NC) for metabolomics profiling via LC-

MS/MS. Due to the increased fermentation potential of the prebiotic inulin, we 

expected a change in cecum size between prebiotic and control fed mice. 

Indeed, mice that were fed the prebiotic inulin saw a drastically significant 

increase in cecum size compared to control fed mice in both E3FAD and E4FAD 

mice with an even greater increase seen in the E3FAD mice. Thus, we believed 

cecal metabolite production may vary between groups with mice fed the prebiotic 

inulin seeing more production. Indeed, both E3FAD and E4FAD mice fed the 

prebiotic inulin saw a significant increase in butyrate (Fig. 3.3b), acetate (Fig. 

3.3c), and propionate (Fig. 3.3d) but a decrease in isobutyrate (Fig. 3.3e). 

Further, the E3FAD mice saw a significantly greater increase in cecal propionate 

compared to the E4FAD mice fed the prebiotic inulin. The full results of short 

chain fatty acids is in Table 3.2. Overall, these results indicate that the prebiotic 

inulin causes an increase in fermentation in the cecum leading to a larger cecum 

and more beneficial metabolite production with an even greater increase seen in 

E3FAD mice, perhaps due to bacterial composition of E3FAD mice better able to 

produce SCFAs.   
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3.3.3 Scyllo-Inositol in Fecal Bacterial Culture 
 

To confirm that scyllo-inositol is indeed formed from gut microbiota 

bacteria, fecal samples from 7-month old E3FAD and E4FAD mice on a standard 

chow diet were collected and pooled into their respective groups and fecal cell 

suspensions were made under anaerobic conditions. The samples were given 

either inulin or a control, glucose, for 24 or 48 hours at which point the 

supernatant was collected and measured for scyllo-inositol via NMR. When inulin 

was added, scyllo-inositol formation was increased compared to the cultures that 

were only given glucose in both E3FAD and E4FAD mice, albeit only significantly 

in the E3FAD mice (Fig. 3.2a). However, the E3FAD fecal culture saw a much 

greater increase in scyllo-inositol compared to the E4FAD fecal culture (Fig. 

3.2a). These results indicate that the prebiotic inulin does indeed increase scyllo-

inositol formation in the gut microbiota in both E3FAD and E4FAD mice. Whether 

this change is due to inulin increasing proliferation of scyllo-inositol creating 

bacterial taxa or for other reasons remains to be determined. Further, E3FAD 

and E4FAD appear to have a different gut microbiota that impacts levels of 

scyllo-inositol production, a consideration that needs to be given to future studies 

and for carriers of these specific alleles.  

 

3.3.4 Gut Microbiota Diversity and Taxonomy 
 

To determine the differences in the gut microbiota between groups fed the 

prebiotic and control diet along with differences in E3FAD and E4FAD mice, fecal 
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samples were collected from each mouse upon reaching 7-months of age 

followed by DNA extraction and amplification. The DNA was then utilized for 16S 

rRNA sequencing and subsequent diversity and taxonomy analysis. For gut 

microbiota analysis in E3FAD mice, -diversity, a measure of the diversity within 

a sample by measuring the richness and evenness of that sample, was 

measured via the Shannon Diversity Index, H value, for fecal microbial 

communities at the genus taxonomic level. A higher H value indicates a more 

diverse community within that particular sample. A significant decrease was seen 

in E3FAD mice fed the prebiotic inulin compared to the control group (Gausian 

link function results, p < 0.0001) (Fig. 3.4a). Next, -diversity, a measure of the 

diversity of taxonomic abundance between different samples, was measured via 

the Bray-Curtis dissimilarity index at the genus taxonomic level. E3FAD mice fed 

the prebiotic inulin saw a significant difference in -diversity compared to the 

controls (Fig. 3.4b) (ANOSIM R statistic = 0.877, p-value = 0.001). For E4FAD 

mice, no difference was seen in -diversity (Gausian link function results, p = 

0.418) (Fig. 3.4c) but a significant difference was observed in -diversity 

(ANOSIM R statistic = 0.454, p-value = 0.001) (Fig. 3.4d). Significant changes in 

taxa were observed in numerous bacterial taxa due to the prebiotic inulin. In 

E3FAD mice fed the prebiotic inulin compared to the controls, a significant 

increase was seen in notable taxa at the genus level such as Bifidobacterium, 

Lactobacillus, Escheridia, Allobaculum, and Prevotella (Table 3.2). Moderate 

increases were seen in Akkermansia and Mucispirillum. In contrast, Bacteroides, 

Turicbacter, rc4-4, Oscillospira, and Dehalobacterium were decreased. At the 
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phylum level, Tenericutes were decreased in E3FAD mice fed the prebiotic inulin 

while Actinobacteria was increased. In E4FAD mice fed the prebiotic inulin at the 

genus level, notable taxa were increased such as Prevotella, Lactobacillus, and 

Mucispirillum. In contrast, Akkermansia, Escheridia, Parabacteroides, Turibacter, 

SMB53, AF12, and Dehalobacterium were decreased. No significant changes 

were present at the phylum level. There were also no notably significant 

differences due to the FAD mutations (Genotype). These results indicate that the 

prebiotic inulin alters the gut microbiota in E3FAD and E4FAD mice in, what we 

believe, a beneficial manner, despite a decrease in α-diversity in the E3FAD 

mice, but by increasing beneficial taxa. However, it appears the fermentation 

capabilities of E3FAD and E4FAD mice differ and this impacts the number of 

beneficial metabolites produced.  

 

3.4 Discussion  
 

Firstly, we see that the prebiotic inulin, 8% fiber from inulin, does not 

impact food intake and bodyweight in our mice compared to our control mice, 8% 

fiber from cellulose. Other studies have found similar results [152]. It is notable 

that inulin contains more kcal/g than cellulose, but the extra kcal/g may be 

consumed by the gut bacteria during fermentation. Nonetheless, this data helps 

us be rid of potential confounding factors that may be due to changes in body 

weight.   

Our work found that feeding the prebiotic inulin increased cecum size in 

our mice, especially so in E3FAD mice. Previous studies using the prebiotic inulin 
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have also found increases in cecum size [152, 153]. This is likely due to the 

cecum being the primary site of inulin fermentation [150, 151]. Kuo et al. also 

postulated that this may also indicate increased microbial content [152]. We 

believe this increase in fermentation may lead to increased production of 

beneficial metabolites, which is precisely what we saw with the SCFAs acetate, 

butyrate, and propionate. Interestingly, propionate was even more significantly 

increased in the E3FAD group fed the prebiotic inulin compared to the E4FAD 

group fed the prebiotic inulin. However, isobutyrate was decreased in the E3FAD 

and E4FAD mice fed the prebiotic inulin compared to their respective controls for 

unknown reasons likely related to bacterial SCFA metabolism. Nonetheless, the 

dramatic increase in SCFAs due to the prebiotic inulin does indeed confirm other 

studies that inulin increases SCFA levels [112, 154]. Whether the increased 

levels of SCFAs reached the periphery will be explored in the next chapter.  

Next, we demonstrate with our fecal culture experiment that the prebiotic 

inulin can increase scyllo-inositol production in the fecal microbiota. We can 

confirm that the production of scyllo-inositol does indeed come from the gut 

microbiota due to inulin feeding but we are unsure how exactly this occurs. To 

our knowledge, only one particular bacterial species has been identified to 

produce scyllo-inositol, Bacillus subtilis [155]. This taxon appears to produce 

scyllo-inositol from myo-inositol, the more common stereoisomer of scyllo-inositol 

found in foods such as fruits, beans, and nuts [156]. However, we do not 

understand why the taxon would generate the metabolite from myo-inositol or 

excrete the metabolite as opposed to using it as a carbon source. We also did 
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not see this bacterial species in our gut microbiota data. Nevertheless, we 

suspect that numerous other bacterial taxa increase scyllo-inositol production 

due to the prebiotic inulin as it is stimulating the growth of certain bacterial taxa 

that can produce this metabolite, increasing its production compared to the 

control. Interestingly, a study in inulin fed rats found that scyllo-inositol levels 

were dramatically increased in the myocardium and testes, although the reasons 

why were not understood [157]. It would appear that scyllo-inositol could be 

increased in numerous organs, not just the brain. Interestingly, our results 

demonstrate that the fecal microbiota of the E3FAD mice given inulin were able 

to produce much more scyllo-inositol at the 24- and 48-hour time points than the 

E4FAD mice given either inulin or the control. In fact, the E4FAD mice given 

inulin only saw an insignificant increase in scyllo-inositol at the 48-hour mark but 

at still considerably lower amounts than the E3FAD mice given the inulin at either 

timepoint. This indicates, similar to what we saw with the SCFAs of the cecal 

contents, that E3FAD mice are able to produce more beneficial metabolites than 

the E4FAD mice, probably due to better fermentation capacity. Thus, future work 

on identifying which bacterial taxa produce this and other metabolites and why 

the amounts may vary should be taken into consideration as these metabolites 

could potentially impact the brain and other organs in a therapeutic manner.  

Although research on scyllo-inositol is fairly scarce, some studies have 

demonstrated that scyllo-inositol in the brain is the highest source in the body 

[158] as it can pass through the blood brain barrier [159]. In fact, it increases in 

the brain as we age [160], may beneficially impact GLUT4 translocation in 
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muscle [161], and that it could be disturbed in certain disease states such as in 

chronic alcoholism [162] and even AD [163]. Indeed, scyllo-inositol has been 

demonstrated to inhibit Aβ aggregation in in vivo and in vitro trials [159, 164-167]. 

It is still not particularly understood how exactly the metabolite inhibits the 

aggregation of Aβ, but it is thought it may cap off a plaque and inhibit further 

aggregation and growth. However, it does not appear to break the plaques up 

[168]. This would indicate that scyllo-inositol would work best as a preventative 

measure before plaques have already or just recently formed. When comparing 

scyllo-inositol to its much more common and ubiquitous stereoisomer form myo-

inositol, scyllo-inositol proved to be more effective at inhibiting Aβ in an AD 

mouse model. In this study by McLaurin et al., they demonstrated that not only 

did their transgenic AD mice have a decrease in soluble and insoluble Aβ due to 

scyllo-inositol treatment, but they also had amelioration of memory deficits and a 

decrease in neuroinflammation, likely a consequence of Aβ inhibition [165]. 

Further in this study, they found that treatment in both younger, disease-free 

mice along with older mice with AD pathology, both saw significant benefits. In 

humans, clinical trials using scyllo-inositol as an orally administered fast track 

designation have been conducted. Unfortunately, in mild to moderate AD 

patients, the high dose scyllo-inositol (1000mg and 2000mg) groups saw 

increased kidney issues and thus, were discontinued. The lower dose group 

(250mg) did see a significant increase in brain ventricular volume and cerebral 

spinal fluid Aβ-42 but overall, the trial did not find significance in the primary 

clinical outcome [169].  
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In the gut microbiome, many significant differences were seen. Typically, 

an increased α-diversity is thought to be beneficial [170], however, in our study 

we found that the prebiotic fed mice had a decrease in α-diversity compared to 

controls. Previous work by our lab and others have also found a decrease in 

diversity with improvements in other outcomes [171-173]. This may indicate that 

the prebiotic inulin stimulates the growth of only certain beneficial taxa, 

decreasing diversity and deleterious taxa, but overall, still increasing the health of 

the gut microbiota. We believe this to be the case in the E3FAD mice as the 

prebiotic inulin did indeed decrease α-diversity compared to the control mice 

although the E4FAD mice did not see as significant a difference. Further, both 

E3FAD and E4FAD saw a significant difference in -diversity, indicative of the 

powerful impact the prebiotic inulin has on the gut microbiota.  

Next, we explored the differences in bacterial taxa that the prebiotic inulin 

made in both E3FAD and E4FAD mice. We found that E3FAD mice fed the 

prebiotic inulin demonstrated a significant increase in taxa at the genus level 

such as Bifidobacterium, Lactobacillus, Escheridia, Allobaculum, and Prevotella 

compared to controls. In contrast, Bacteroides, Turicibacter, rc4-4, Oscillospira, 

and Dehalobacterium were decreased. Interestingly, the prebiotic inulin 

increased both Bifidobacterium and Lactobacillus. Due to inulin being a prebiotic, 

it is expected that Bifidobacterium and perhaps even Lactobacillus would be 

increased, both of which are fairly well studied and benefit the host through 

immunomodulation and emotional behavior, among other things [88, 174]. 

Meanwhile, Prevotella seems to proliferate on complex carbohydrates such as 
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inulin and has even been associated with improved glucose metabolism in a 

study using barley kernels, a dietary fiber [175]. One notable bacterial genera 

that was decreased was Bacteroides, a taxa that appears to act as both 

commensal and virulent, perhaps depending on the amount present [176]. At the 

phylum level, Tenericutes were decreased in E3FAD mice fed the prebiotic inulin 

while Actinobacteria was increased. One study has also found a decrease in 

Tenericutes due to inulin although the impact of this phylum is not well 

understood [177]. Further, the Actinobacteria phylum was also found to be 

moderately increased in this same study but has been previously associated with 

obesity [178]. Notably, this phylum does house the genus Bifidobacterium. Oddly, 

the E4FAD mice found no such changes in phylum level. However, the E4FAD 

mice fed the prebiotic inulin did show many differences at the genus level. 

Notable taxa that were increased included Prevotella, Lactobacillus, and 

Mucispirillum, all also increased in the E3FAD mice as well. In contrast, 

Akkermansia, Escheridia, Parabacteroides, Turibacter, SMB53, AF12, and 

Dehalobacterium were decreased in the E4FAD mice. Akkermansia is a 

beneficial taxa with numerous known benefits [179], the decrease shown here 

would be seen as a negative consequence especially as the E3FAD mice 

actually saw a moderate increase in Akkermansia. Bifidobacterium was also not 

increased in the E4FAD mice, another negative consequence. Further, SMB53 

has been decreased by fermentation in one study using prebiotics [180] while 

little is known about the other decreased taxa. Collectively, although there were 

similarities in taxa that the prebiotic inulin was able to increase and decrease 
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between E3FAD and E4FAD mice, there were also many differences, particularly 

in Akkermansia and Bifidobacterium, leading us to believe that genetic factors 

may indeed impact the gut microbiota and how the host responds to the 

presence of a beneficial prebiotic such as inulin. However, it is also worth noting 

that many of the significantly different taxa in our project have little information 

associated to them, a limitation of all gut microbiota research as we have much 

to learn on this topic and their impact on the host. Surprisingly, we did not see 

any differences in the gut microbiota due to the FAD mutations despite literature 

suggesting there may be differences [41].  

Altogether, the prebiotic inulin was able to increase cecum size and the 

fermentation of beneficial metabolites such as SCFAs and scyllo-inositol with the 

latter produced by the fecal microbiota, demonstrating that the fecal microbiota is 

indeed able to produce this metabolite. The prebiotic inulin also leads to 

beneficial modulation of the gut microbiota as evidenced by the increased 

number of beneficial taxa present. Interestingly, the E3FAD mice had a larger 

cecum, produced more beneficial metabolites, and appeared to gain more benefit 

in the gut microbiota compared to E4FAD mice. As far as we know, this is the 

first time that genetic differences have been shown to impact cecum size, 

metabolite production, and the response to the prebiotic inulin. Whether these 

beneficial outcomes by the prebiotic inulin are able to reach and benefit the 

periphery and brain will be explored in subsequent chapters.   
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Table 3-1 Diet composition  

Diet Prebiotic Diet Vehicle Control Diet 
Protein % 18.2 18.2 

Carbohydrate % 67.8 60.2 
Fat % 7.1 7.1 

Fiber % 8.0 (Inulin) 8.0 (Cellulose) 
Energy (kcal/g) 4.08 3.78 
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Table 3-1 Diet composition 

 The diet composition of the prebiotic and vehicle control diet. The prebiotic 

diet contains 8% fiber from inulin while the vehicle control diet contains 8% fiber 

from cellulose.  
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Figure 3-1 Food intake and body weight  
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Figure 3-1 Food intake and body weight.   
 

Food intake and body weight of E3FAD and E4FAD mice fed either the 

prebiotic or control diet for 4-months beginning at 3-months of age. a Inulin fed 

mice had no differences in food intake. b Inulin fed mice had no differences in 

body weight. Statistics were completed using 2-way ANOVA (N = 15/group, M:F 

= 50/50). Error bars show mean ± SEM.   
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Figure 3-2 Cecum weight and cecal metabolites 
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Figure 3-2 Cecum weight and cecal metabolites 

Cecum weight and cecal metabolites. The cecum, with cecal contents 

intact, was weighed upon sacrifice when the mice were around 7-months of age. 

The cecal contents of the mice were then collected and sent to Metabolon 

(Durham, NC) for metabolomics profiling via LC-MS/MS. For more details, see 

Chapter 2, section 2.5. a Both E3FAD and E4FAD mice fed inulin saw a 

significant increase in cecum weight. Similarly, the cecal contents of both E3FAD 

and E4FAD inulin fed mice saw a significant increase in b acetate, c propionate, 

and d butyrate but a decrease in e cecal isobutyrate. Statistics were completed 

using 2-way ANOVA (N = 6-8/group, M:F = 50/50). Error bars show mean ± 

SEM, ns = not significant; *p < 0.05; **p < 0.01, ***p < 0.001; ****p < 0.0001. 
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Table 3-2 Cecal metabolites – short chain fatty acids 
Short Chain 
Fatty Acids E3FAD Control E3FAD Inulin E4FAD Control E4FAD Inulin 

Cecal Contents Concentration 
Mean (µg/g) 

Concentration 
Mean (µg/g) 

Concentration 
Mean (µg/g) 

Concentration 
Mean (µg/g) 

Acetic Acid 1848  106.1 2817.5  305.4* 1642  213 2614  251.9* 
Propionic Acid 394.1  31.6 864  76.2* 312.3  30.7 644.3  50.4*a 
Isobutyric Acid 77.2  4.5 37.95  6.8* 64.3  8.5 44.9  5.4 

Butyric Acid 590.9  33.3 1575.9  249.4* 521.4  91.1 1083  197.1* 
2-Methylbutyric 

Acid 47.9  3.8 37.96  7.8 36.7  4.8 39.3  5.5 
Isovaleric Acid 47.8  6.5 24.73  8.1* 43.5  7.4 26.3  2.7* 

Valeric Acid 78  11.8 70.58  14.4 73.5  12 65.7  3.3 
Hexanoic Acid 2.3  0.3 2.81  1.4 1.9  0.4 1.8  0.2 
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Table 3-2 Cecal metabolites – short chain fatty acids. 

 The prebiotic inulin altered short chain fatty acid production in the cecal 

contents. Acetic acid, propionic acid, and butyric acid were significantly increased 

in the E3FAD and E4FAD mice fed the prebiotic inulin compared to their 

respective controls. In contrast, isobutyric acid and isovaleric acid were 

significantly decreased. Further, propionic levels in the E4FAD mice fed the 

prebiotic inulin were significantly decreased compared to E3FAD mice fed the 

prebiotic control. Statistics were completed using 2-way ANOVA (N = 8/group) 

with data presented as mean  SEM. *p < 0.05 comparing E3FAD and E4FAD 

mice fed the prebiotic inulin to their control fed counterparts; ap < 0.05 comparing 

E4FAD mice fed the prebiotic inulin to E3FAD mice fed the prebiotic inulin. 
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Figure 3-3 Scyllo-inositol fecal culture experiment  
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Figure 3-3 Scyllo-inositol fecal culture experiment 

Scyllo-inositol levels in fecal culture. Fecal samples of 7-month old E3FAD 

and E4FAD mice (M:F = 50/50) on a standard chow diet were collected and 

pooled into their respective groups and fecal cell suspensions were made under 

anaerobic conditions. The samples were given either inulin or a control, glucose, 

for 24 or 48 hours at which point the supernatant was collected and measured for 

scyllo-inositol via NMR. For more details, see Chapter 2, section 2.2. a In fecal 

culture, bacteria from the E3FAD mice that were given inulin saw significant 

increases in scyllo-inositol compared to those that received the control while 

bacteria from E4FAD mice saw an insignificant increase. The E3FAD inulin 

culture samples saw a significantly greater increase in scyllo-inositol when 

compared to the E4FAD inulin culture samples. Statistics were completed using 

2-way ANOVA (groups were run in triplicate). Error bars show mean ± SEM, * p < 

0.001 between conditions, # p < 0.05 between groups.  
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Figure 3-4 Gut microbiota diversity  
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Figure 3-4 Gut microbiota diversity  

E3FAD and E4FAD - and -diversity. Fecal samples were collected from 

each mouse upon reaching 7-months of age followed by DNA extraction and 

amplification. The DNA was then shipped to UIC for 16S rRNA sequencing and 

subsequent diversity and taxonomy data analysis. For more details, see Chapter 

2, section 2.3. E3FAD mice fed the prebiotic inulin saw a significant difference in 

a α- (Gausian link function results, p = 0.00000943) and b β-diversity (ANOSIM R 

statistic = 0.877, p-value = 0.001). E4FAD saw no difference in c α- (Gausian link 

function results, p = 0.418) but a significant difference in d β-diversity (ANOSIM 

R statistic = 0.454, p-value = 0.001) (N = 15/group, M:F = 50/50).   
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Table 3-2 Gut microbiota taxonomy 
 

Taxonomic differences at the genus level between E3FAD and E4FAD 

prebiotic and control fed mice. Diet and genotype p- and q-values were 

calculated for each taxon along with each group. LogFC (log (fold change)) and 

LogCPM (base intensity of taxon (log (average counts per million))) were 

calculated for each taxon of each group. Diet refers to differences between mice 

fed either the prebiotic inulin or control diet. Genotype refers to differences in 

FAD mutations with (+) referring to the mice being positive for FAD mutations 

and (–) referring to the mice being negative for FAD mutations. The data is 

written as a heat map with the darker the respective color indicative of more 

significance (N = 15/group, M:F = 50/50).   
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Chapter 4 Specific Aim 2: To identify the effects of the prebiotic inulin on 

metabolism in the periphery and central nervous system (CNS) between 

E3FAD and E4FAD mice. 

4.1 Summary  

  The gut microbiota of APOE4 carriers appears to protect against 

foodborne illness and diarrhea in childhood, showcasing the differences that may 

be found in the gut microbiota due to genetics. This may also play a role in the 

absorption of beneficial metabolites from the gut microbiota into the periphery 

and brain between E3FAD and E4FAD mice. We found that the prebiotic inulin is 

fermented into beneficial metabolites such as SCFAs and scyllo-inositol in 

Chapter 3, which may be able to reach the periphery and potentially generate 

effects on the host and reverse metabolic deficits seen in APOE4 carriers. 

PURPOSE: The objective of this aim was to identify the effects of the prebiotic 

inulin on metabolism in the periphery and central nervous system (CNS) between 

E3FAD and E4FAD mice. RESULTS: In the blood, scyllo-inositol was 

significantly increased due to the feeding of the prebiotic inulin compared to 

control fed animals in E3FAD mice but not in E4FAD mice. Meanwhile, SCFA 

levels followed suit to a moderate degree. Metabolites in the blood were also 

dramatically different between E3FAD and E4FAD mice fed the prebiotic inulin 

compared to controls and between E3FAD and E4FAD mice. This included 

tryptophan, tyrosine, pentose pathway, and TCA Cycle metabolites. Next, scyllo-

inositol was dramatically increased in the hippocampus while numerous other 

metabolites were also altered in the brain due to the prebiotic inulin. Differences 
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were also seen between E3FAD and E4FAD mice in the recently aforementioned 

metabolites. CONCLUSIONS: This aim has demonstrated that the beneficial 

metabolites that the prebiotic inulin are fermented into in the gut microbiota are 

indeed able to reach the bloodstream and brain. However, the levels of these 

metabolites that are absorbed into the blood and brain between E3FAD and 

E4FAD mice are different, having implications for prevention and treatment of AD 

and other pathologies in human APOE3 and APOE4 carriers.   

 
4.2 Introduction 

 Guerrant et al. have demonstrated that the APOE4 allele may have a 

protective effect against foodborne illness and diarrhea in underdeveloped 

countries such as in Northeast Brazil, providing a survival advantage [39, 145]. 

Thus, the gut microbiota of our E3FAD and E4FAD mice may be vastly different 

not only in the metabolites they produce from the fermentation of prebiotics, such 

as SCFAs and scyllo-inositol as demonstrated in chapter 3, but also in how these 

metabolites are absorbed and utilized in the periphery. Based on the literature, 

SCFAs can indeed be increased in the circulation [181] and have an impact on 

peripheral tissue through direct and indirect modulation of the immune system 

[182, 183]. Indeed, the SCFAs have even been found to beneficially impact the 

brain through modulation of neuroinflammation [184] and to decrease blood brain 

barrier permeability by increasing tight junction proteins [72]. It has been 

postulated that butyrate may be able to reach the brain and improve glucose 

metabolism and mitochondrial function [148]. Not only this but children 

consuming a high fiber diet were found to have better memory and learning 
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[185]. However, other gut-brain axis metabolites have also been identified 

including tryptophan-derived indole compounds [186]. One such is indole-3-

propionic acid (IPA), which has been demonstrated to protect neurons via a 

reduction in DNA damage and lipid peroxidation [187].  

 From Chapter 3, we see that the metabolite scyllo-inositol is increased in 

the fecal gut microbiota due to the feeding of the prebiotic inulin. This metabolite 

has been given as an orally administered therapeutic in AD patients [169] as it is 

able to be absorbed into the blood stream, pass through the blood brain barrier 

[159], and reach the brain. Indeed, scyllo-inositol has been demonstrated to 

decrease Aβ aggregation [159, 164-167] and, for unclear reasons, become 

altered in AD patients as evidenced in one neuroimaging study [163]. Altogether, 

the gut-brain axis involves a variety of metabolites, many of which may be 

unknown, that can benefit the brain and metabolism thereof. However, the 

production, absorption, and usage of these beneficial metabolites may vary 

between APOE3 and APOE4 carriers. This may be of vast importance as carriers 

of the APOE4 allele display an altered brain metabolism and exhibit metabolic 

dysfunction via impaired glucose, ketone, and mitochondrial metabolism decades 

before the onset of the disease [188]. Further, hypometabolism of the brain has 

been exhibited in APOE4 carriers in studies that utilize FDG PET imaging to 

measure cerebral metabolic rates of glucose [189] while mitochondrial 

dysfunction has also been linked to the disease [190]. Collectively, these 

impairments due to the APOE4 allele, dependent and independent of Aβ, lead to 

an increased risk to develop AD [191] and we believe that the beneficial 
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metabolites from the fermentation of prebiotics may help alleviate these 

symptoms. 

 The objective of this aim was to identify the effects of the prebiotic inulin 

on metabolism in the periphery and central nervous system (CNS) between 

E3FAD and E4FAD mice. We hypothesized that the prebiotic inulin will 

beneficially alter metabolism in the periphery and CNS via increased beneficial 

metabolites in E3FAD and E4FAD mice. Specifically, we examined plasma and 

hippocampal scyllo-inositol, increased due to feeding of the prebiotic inulin in the 

gut microbiota, and metabolites associated with the gut microbiota in the plasma 

and brain.  

 

4.3 Results 

4.3.1 Plasma Scyllo-Inositol and SCFAs 

After demonstrating that scyllo-inositol was indeed formed by gut 

microbiota bacteria, we set out to see if scyllo-inositol was absorbed and reached 

the bloodstream in our mice. By using NMR, we found that in the plasma of 

E3FAD mice that were fed the prebiotic inulin, there was significantly higher 

scyllo-inositol levels compared to mice given the control diet, however, this was 

not the case in the E4FAD mice. Moreover, the control fed E4FAD mice had a 

significant decrease in scyllo-inositol compared to the E3FAD control fed mice 

(Fig. 4.1a). SCFA levels in the blood were measured by Metabolon via LC-

MS/MS, and were also found to be changed, albeit not as significantly as in the 

cecal contents, in the mice fed the prebiotic diet. This includes acetate (Fig. 
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4.1b), propionate (Fig. 4.1c), and butyrate (Fig. 4.1d). The full panel of SCFAs 

are in Table 4.1. Collectively, these results indicate that the prebiotic inulin’s 

effect of increasing scyllo-inositol and SCFAs in the gut microbiota can indeed 

reach the periphery.   

 

4.3.2 Blood Metabolites 

With Metabolon, we found a variety of metabolites in the blood that were 

increased due to the prebiotic inulin and differences in blood metabolites 

between E3FAD and E4FAD mice (Table 4.2 and Table 4.3). Tryptophan 

metabolites were significantly increased due to the prebiotic inulin compared to 

controls. These included indoleacrylate, indolepropionate (IPA), serotonin, 

indoleacetylglycine, and N-acetyltryptophan in the E3FAD mice fed the prebiotic 

inulin and indoleacrylate and IPA in the E4FAD mice fed the prebiotic inulin. In 

contrast, tyrosine metabolites were decreased including phenol sulfate and 

phenol glucuronide in E3FAD mice fed the prebiotic inulin compared to controls. 

In both E3FAD and E4FAD mice fed the prebiotic inulin compared to controls, p-

cresol glucuronide was decreased. Next, N-acetylglutamine was increased in 

mice fed the prebiotic inulin compared to their control diet counterparts. This 

metabolite was also increased in E4FAD mice compared to E3FAD mice. Next, 

N-acetylhistidine saw a similar result except for no difference in E3FAD fed the 

prebiotic inulin compared to their control diet counterpart. N6-methyllysine and N-

acetylarginine were also both decreased in E4FAD mice compared to E3FAD 

mice.  
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Numerous pentose metabolism markers were altered in E4FAD mice fed 

the prebiotic inulin compared to controls. This included ribose, increased in both 

E3FAD and E4FAD mice fed the prebiotic inulin compared to their respective 

controls, while ribitol, ribonate, ribulose, xylose, arabitol, arabonate, and 

sedoheptulose were all significantly increased in E4FAD mice fed the prebiotic 

inulin compared to controls. The advanced glycation end-product N6-

carboxymethyllysine was significantly increased due to the prebiotic inulin in 

E3FAD and E4FAD mice compared to their control diet counterparts.  

In TCA Cycle metabolites, aconitate was increased in E3FAD mice fed the 

prebiotic inulin compared to controls while isocitric lactone, alpha-ketoglutarate, 

succinate, fumarate, and malate were increased in the E4FAD mice fed the 

prebiotic inulin compared to the E4FAD mice fed the control. In contrast, 

succinylcarnitine was decreased in both groups due to the prebiotic inulin. Next, 

myo-inositol was increased due to the prebiotic inulin in both groups while 2’-

deoxyuridine was increased in E4FAD mice compared to E3FAD mice. P-cresol 

sulfate was also decreased in both groups due to the prebiotic inulin.   

 

4.3.3 Hippocampal Scyllo-Inositol 

After reaching the bloodstream, we wanted to confirm that scyllo-inositol is 

indeed able to cross the blood brain barrier, as has been reported [159], and 

become increased in the brain. Subsets of mice per group (N = 8/group, M:F = 

50/50) were randomly chosen for MRS upon reaching 7-months of age. All mice 

were anesthetized during the experiment. In both E3FAD and E4FAD mice fed 
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the prebiotic inulin compared to controls, scyllo-inositol was drastically increased 

in the hippocampus of the brain, a region susceptible to AD pathology (Fig. 4.2a). 

An increase in scyllo-inositol was also seen in the E4FAD prebiotic fed mice 

compared to the E3FAD prebiotic fed mice. A representative MRS spectra for 

each are showcased with the arrow pointing to scyllo-inositol (Fig. 4.2b, Fig. 4.2c, 

Fig. 4.2d, Fig. 4.2e). These results indicate that the prebiotic inulin’s effect of 

increasing scyllo-inositol in the gut microbiota and plasma can reach the 

hippocampus of the brain and provide dramatic increases in both E3FAD and 

E4FAD mice. However, the E4FAD mice fed the prebiotic diet saw an even 

greater increase in scyllo-inositol compared to E3FAD mice fed the prebiotic diet, 

indicative that the E4FAD mice may have less scyllo-inositol absorbed from the 

gut but greater absorption into the brain. Whether this effect is a protective 

mechanism in E4FAD mice, as scyllo-inositol has not only been determined to 

inhibit Aβ aggregation but also provide an anti-inflammatory effect, albeit likely 

from the inhibition of Aβ [165], remains to be seen. 

 

4.3.4 Brain Metabolites 

The prebiotic inulin altered numerous brain metabolites (Table 4.4), 

measured by Metabolon, in both E3FAD and E4FAD mice. There were also 

differences between E3FAD and E4FAD mice themselves. Firstly, N-

acetylglutamine, N-acetylhistidine, homocarnosine, N-acetylphenylalanine, N-

acetyltyrosine, N-acetylglucosaminylasparagine, palmitoleoyl ethanolamine, 

glycerophosphoinositol, 1-(1-enyl-palmitoyl)-2-palmitoleoyl-GPC, 2’deoxyuridine, 
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ascorbate, and pyridoxamine were significantly increased in E4FAD mice 

compared to E3FAD mice. In contrast, N6-methyllysine, 2-aminoadipate, N-

acetylarginine, mannonate were decreased in E4FAD mice compared to E3FAD 

mice. The prebiotic inulin caused an increase in imidazole propionate, N6-

carboxymethyllysine, acetylcarnitine, and scyllo-inositol in both groups. In 

contrast, the prebiotic inulin caused a decrease in myo-inositol and p-cresol 

sulfate.  

 
4.4 Discussion 

In Chapter 3, we saw that scyllo-inositol was drastically increased during 

our fecal culture experiment, especially so in E3FAD mice. The next step was 

seeing if these changes could reach the blood stream. We see that in the plasma 

of E3FAD mice fed the prebiotic inulin, scyllo-inositol is indeed significantly 

increased compared to controls. However, there was no difference seen in the 

E4FAD mice. In fact, even when comparing E3FAD and E4FAD mice fed the 

control diet, scyllo-inositol was significantly greater in the E3FAD mice. It is 

possible that the level of scyllo-inositol in the plasma may be somewhat 

dependent on when the mice eat and when that food is fermented and absorbed 

into the bloodstream and this may have impacted the results seen in the E4FAD 

mice. However, it is more likely that less scyllo-inositol is absorbed from the gut 

by E4FAD mice compared to E3FAD mice for reasons that are currently unclear 

but has important implications for APOE4 carriers. This could even be due to 

receptor or transporter differences in the gut or perhaps scyllo-inositol is binding 

to metabolites or other metabolic products that are produced more so in E4FAD 
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mice with subsequent clearance via the fecal matter. Our next step was to see if 

scyllo-inositol was able to be increased in the brain, specifically in the 

hippocampus, a region susceptible to AD pathology and important for learning 

and memory [192]. In fact, we saw a dramatic increase in hippocampal scyllo-

inositol in both E3FAD and E4FAD mice that were fed the prebiotic inulin with the 

E4FAD mice having an even greater increase. In Chapter 3, we saw that the 

E4FAD mice had an increase in scyllo-inositol in the fecal culture experiment but 

to a lesser extent than the E3FAD mice fed the prebiotic inulin. Further, previous 

results in this chapter indicated that less scyllo-inositol is being produced by the 

gut microbiota and absorbed into the blood in E4FAD mice fed the prebiotic inulin 

compared to E3FAD mice fed the prebiotic inulin. Despite this, it appears that 

scyllo-inositol is taken into the brain at a higher rate in E4FAD mice compared to 

E3FAD mice. When comparing E3FAD and E4FAD mice fed the control, there 

was no significant difference in scyllo-inositol although there was a slight 

increase in E4FAD mice compared to the E3FAD mice. Notably, scyllo-inositol 

has been demonstrated before to be increased in AD patients [163]. We suspect 

this may be due to a compensatory mechanism in an attempt to decrease 

inflammation and halt A aggregation in the brain in APOE4 carriers. Due to the 

fact that scyllo-inositol has been demonstrated to inhibit A aggregation and 

through this, decrease inflammation, these outcomes will be further explored in 

Chapter 5. Nevertheless, these results are quite intriguing and deserve further 

attention as to why APOE4 carriers may have differences in production and 

absorption of certain metabolites into the periphery and brain. 
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In Chapter 3, we also saw that the SCFAs were dramatically increased in 

the cecal contents and we wanted to see if these metabolites were absorbed into 

the bloodstream. Here, we do see that the prebiotic inulin increased SCFAs in 

the bloodstream but to a much lesser degree than that of the cecal contents. 

There are a number of reasons for this. Firstly, SCFAs can be taken up by 

colonocytes and especially in the case of butyrate, used as an important energy 

source [154]. Next, the liver takes up and clears SCFAs in the portal circulation 

as too high of levels may become toxic. Here in the liver, the SCFAs can act as 

precursors to other processes. The SCFAs can also activate G protein-coupled 

receptors, such as Ffar2 and Ffar3, that help regulate glucose and lipid 

metabolism and can be found on immune cells [154]. Receptors expressed by 

other organs are likely present, but little is known about them at this time. Finally, 

SCFAs can also simply be excreted through the fecal contents [154]. Whether 

this increase in the bloodstream leads to a decrease in AD pathology is a 

question that will be addressed in the next chapter.  

 We next looked a variety of other metabolites that were altered in the 

whole blood of our mice and saw vast differences. Firstly, dramatic changes were 

seen in tryptophan and tyrosine metabolism, especially in our E3FAD mice fed 

the prebiotic inulin. Indeed, indoleacrylate, IPA, serotonin, indoleacetylglycine, 

and N-acetyltryptophan were all increased in E3FAD mice while only 

indoleacrylate and IPA were increased in E4FAD mice. In fact, even more 

dramatic increases were seen in the E4FAD mice in these two metabolites. 

Tryptophan metabolism in the gut includes metabolization of tryptophan to either 
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kynurenine, serotonin, and/or indole pathways, the latter two shown here. The 

serotonin pathway is important as 90% of serotonin is produced in the gut, 

although peripheral serotonin does not often cross the BBB but may 

communicate with the CNS nonetheless [193] and activate receptors in the gut 

that increase satiety and absorption of nutrients [194]. Although much is not 

understood about this process, SCFAs have been implicated in initiating 

serotonin biogenesis. Due to the increase in SCFAs we saw in the cecal 

contents, this increase in serotonin would make sense here although there was 

only a significant increase in serotonin in E3FAD mice fed the prebiotic inulin.  

Further, IPA, a part of the indole pathway through tryptophan metabolism, has 

been shown to inhibit A aggregation [85] and here we see that the prebiotic 

inulin can indeed increase this metabolite in both groups. Next, metabolites that 

play a role in tyrosine metabolism were decreased due to the prebiotic inulin 

including phenol sulfate, phenol glucuronide, and p-cresol glucuronide in E3FAD 

mice. E4FAD mice fed the prebiotic inulin only saw a decrease in p-cresol 

glucuronide. One study using resistant maltodextrin in mice found a decrease in 

both phenol sulfate and p-cresol sulfate, linking them both to inflammation [195]. 

Bacteroides, which we saw decreased in E3FAD mice fed the prebiotic inulin, 

has been linked to their production, however, Bifidobacterium has been linked as 

well [196]. Overall, there is surprisingly little known on tyrosine metabolites and 

we hope our results shed some light on this matter. Collectively, it appears that 

the prebiotic inulin increases tryptophan metabolism in the gut microbiota while 

decreasing tyrosine metabolism.  
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 Next in the blood, we found that N-acetylglutamine and N-acetylhistidine 

were both increased in the E4FAD mice compared to the E3FAD mice with the 

prebiotic inulin increasing N-acetylglutamine in both E3FAD and E4FAD mice. 

N6-methyllysine and N-acetylarginine were decreased in the E3FAD mice 

compared to E4FAD mice. Next, N6-carboxymethyllysine was increased in both 

E3FAD and E4FAD mice fed the prebiotic inulin compared to controls. Due to the 

prebiotic inulin, myo-inositol was increased in both groups while in the E4FAD 

mice compared to E3FAD mice, it was also increased. 2’-deoxyuridine saw a 

decrease in E3FAD mice fed the prebiotic inulin but an increase in E4FAD mice 

compared to E3FAD mice. Finally, p-cresol sulfate saw significant decreases in 

both E3FAD and E4FAD mice fed the prebiotic inulin. Little is known on these 

metabolites aside from the aforementioned myo-inositol and p-cresol sulfate.  

 A variety of metabolites involved in Pentose Phosphate Pathway (PPP) 

metabolism, responsible for NADPH production, were dramatically increased in 

the E4FAD mice fed the prebiotic inulin compared to E4FAD control mice. This 

includes ribose, ribitol, ribonate, ribulose, xylose, arabitol, arabonate, and 

sedoheptulose. Ribonate, xylose, and sedoheptulose were increased in the 

E4FAD mice compared to E3FAD mice. It is not currently known why E4FAD 

mice fed the prebiotic inulin would have such increases in these metabolites 

while the E3FAD mice fed the prebiotic inulin do not. However, one study did find 

an increase in the PPP linking it as a way for neurons to get energy as an 

alternative to glucose [27] as APOE4 carriers do indeed have hypometabolism 

and alterations in glucose metabolism. This paper further postulated that 
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changes in the PPP may be a novel target that connects APOE4 to changes in 

glucose metabolism and oxidative stress. Further confirming this idea, we also 

found changes in the TCA cycle especially in E4FAD mice fed the prebiotic inulin 

with significant increases in isocitric lactone, alpha-ketoglutarate, succinate, 

fumarate, and malate compared to E4FAD mice fed the control. In contrast, a 

significant decrease was seen in succinylcarnitine. The E3FAD mice fed the 

prebiotic inulin only saw significant increases in aconitate and alpha-

ketoglutarate but also an insignificant decrease in succinylcarnitine. Similar to the 

changes found in E4FAD mice fed the prebiotic inulin in the PPP, we see large 

changes in the TCA cycle, indicative of altered glucose metabolism. Again, it is 

unusual that there were so few differences between the E3FAD and E4FAD mice 

themselves especially given that it is known that APOE4 carriers have alterations 

in glucose metabolism. It is quite unclear why the prebiotic inulin would be 

causing such dramatic effects in only E4FAD mice fed the prebiotic inulin, but we 

hope this is indicating that the prebiotic inulin is decreasing the hypometabolism 

and metabolic alterations that occur in APOE4 carriers as they age. 

 Our results indicate that numerous markers were altered in the brain due 

to the prebiotic inulin and differences between E3FAD and E4FAD mice were 

also present. Firstly, N-acetylglutamine, N-acetylhistidine, homocarnosine, N-

acetylphenylalanine, N-acetyltyrosine, N-acetylglucosaminylasparagine, 

palmitoleoyl ethanolamine, glycerophosphoinositol, 1-(1-enyl-palmitoyl)-2-

palmitoleoyl-GPC, 2’deoxyuridine, ascorbate, and pyridoxamine were 

significantly increased in E4FAD mice compared to E3FAD mice. N-acetyl amino 
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acids have been found to be altered in the gut microbiota when compared to 

germ-free mice [197]. In contrast, N6-methyllysine, 2-aminoadipate, N-

acetylarginine, mannonate were decreased in E4FAD mice compared to E3FAD 

mice. The prebiotic inulin caused an increase in imidazole propionate, N6-

carboxymethyllysine, acetylcarnitine, and scyllo-inositol in both groups. In 

contrast, the prebiotic inulin caused a decrease in myo-inositol and p-cresol 

sulfate. Many of these differences were also present in the blood of the mice. 

Myo-inositol was increased in the blood due to the prebiotic inulin in both groups 

but decreased in the brain while scyllo-inositol, confirming the MRS findings in 

this chapter, was increased in both groups as well. Myo-inositol is thought to be 

increased in the asymptomatic stages of AD [198] but scyllo-inositol treatment 

has been shown to decrease its levels and improve neuropsychiatric symptoms 

[199]. In one study, Yamashita et al. believed it was possible that myo-inositol 

could be converted to scyllo-inositol in blood and skeletal muscle [161] but the 

evidence was fairly weak. Further, due to the increases in scyllo-inositol seen in 

the gut and blood of our mice fed the prebiotic inulin, this seems unlikely to be a 

major cause of the scyllo-inositol increase seen here in the brain. P-cresol sulfate 

was decreased in both groups due to the prebiotic inulin in both the blood and 

brain and has been linked to inflammation [195]. In contrast, N6-

carboxymethyllysine, an advanced glycation-end product, was increased in both 

groups in the blood and brain due to the prebiotic inulin. While this could be 

considered a new gut-brain axis component, advanced glycation-end products 

have been implicated in diabetes [200]. This metabolites role in the brain is 



 

 90 

unknown. N-acetylglutamine was increased due to the prebiotic inulin in both 

groups in the blood but not in the brain. Meanwhile, E4FAD mice also saw an 

increase in this metabolite in both the blood and brain compared to E3FAD mice. 

Finally, N-acetylhistidine, N-acetylarginine, and N6-methyllysine were decreased 

in both the blood and brain in E4FAD mice compared to E3FAD mice. However, 

little is known about these metabolites. 

 Collectively, the prebiotic inulin caused a vast array of metabolic changes 

in the blood and brain of both E3FAD and E4FAD mice fed the prebiotic inulin 

compared to controls while changes between E3FAD and E4FAD mice were also 

evident. It is also notable that the prebiotic inulin was able to enhance the 

metabolism of multiple GBA components: SCFAs, IPA, and the newly discovered 

scyllo-inositol. Whether these changes will make an impact in the brain and 

decrease AD pathology will be the subject of Chapter 5.   
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Figure 4-1 Plasma scyllo-inositol and SCFAs 
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Figure 4-1 Plasma scyllo-inositol and SCFAs 

Plasma scyllo-inositol and SCFAs. E3FAD and E4FAD mice were 

sacrificed at around 7-months of age with plasma and whole blood collected. 

Plasma scyllo inositol was measured via NMR. More details can be found in 

Chapter 2, section 2.4. For blood SCFA measurement, Metabolon utilizes LC-

MS/MS. More details can be found in Chapter 2, section 2.5. a Scyllo-inositol in 

the plasma of E3FAD and E4FAD mice found a significant increase between 

E3FAD mice fed the prebiotic inulin and their respective control group. Plasma 

scyllo-inositol levels were also significantly increased in E3FAD mice compared 

to E4FAD mice. b Other metabolites increased due to the prebiotic diet include 

the SCFAs butyrate, propionate, and acetate but the only significant increase 

was acetate in the E3FAD mice fed the prebiotic inulin compared to their 

respective control group. Statistics were completed using 2-way ANOVA (For 

plasma scyllo-inositol measurement, N = 10/group (M:F = 50/50) and for SCFA 

measurement, N = 8/group (M:F = 50/50). Error bars show mean ± SEM, ns = 

not significant; *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.  
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Table 4-1 Blood metabolites – short chain fatty acids 
Short Chain Fatty 

Acids E3FAD Control E3FAD Inulin E4FAD 
Control E4FAD Inulin 

Blood Concentration 
Mean (ng/mL) 

Concentration 
Mean (ng/mL) 

Concentration 
Mean (ng/mL) 

Concentration 
Mean (ng/mL) 

Acetic Acid 2290  490.9 5012.5  1274.9 1918  261.1 6632  1410.3* 

Propionic Acid 112.6  20.6 242.9  73.3 82  10.3 145.9  31.9 
Isobutyric Acid 35.3  4.7 35.6  4.8 25.4  3 29.9  5.2 

Butyric Acid 157.9  20.5 257.1  96 144.4  33.9 222.6  22.7 
2-Methylbutyric Acid 24.6  3.5 27.7  3.6 20.8  2.9 31.8  7.3 

Isovaleric Acid 8.8  1.9 7.1  1 8.6  1.5 6.7  1.9 
Valeric Acid 10  3.3 10.8  3.5 5.4  1.9 12.6  5.7 

Hexanoic Acid 51.9  5.7 42.3  6.7 60.9  17 70.4  11.6 
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Table 4.1 Blood metabolites – short chain fatty acids 
 
 A table showcasing the levels of short chain fatty acids in the blood. 

E4FAD mice fed the prebiotic inulin saw a significant increase in propionic acid 

compared to E4FAD mice fed the control diet. Statistics were conducted using 2-

way ANOVA (N = 8/group, M:F = 50/50) with data presented as mean  SEM. *p 

< 0.05. 

 



  
95 

Table 4-2 B
lood m

etabolites – tryptophan and tyrosine m
etabolism

 

 
 

 



 

 96 

Table 4-2 Blood metabolites – tryptophan and tyrosine metabolism 
 
 A table showcasing the changes in tryptophan and tyrosine metabolites, 

and other select metabolites, due to the prebiotic inulin and differences between 

E3FAD and E4FAD mice in the blood. The whole blood of the mice was sent to 

Metabolon (Durham, NC) for metabolomic profiling. For more details, see 

Chapter 2, section 2.5. Heat map of statistically significant biochemicals profiled 

when comparing groups are labeled as follows: A dark red box indicates that p < 

0.05 and the group means fold of change > 1.00. A dark green box indicates that 

p < 0.05 and the group means fold of change < 1.00. A light red box indicates 

that 0.05 < p < 0.10 and group means fold of change > 1.00. A light green box 

indicates that 0.05 < p < and group means fold of change < 1.00 (N = 8/group, 

M:F = 50/50). 
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Table 4.3 Blood metabolites – pentose metabolism and TCA cycle 
 
 A table showcasing the changes in pentose and TCA cycle metabolites, 

and other select metabolites, due to the prebiotic inulin and differences between 

E3FAD and E4FAD mice in the blood. The whole blood of the mice was sent to 

Metabolon (Durham, NC) for metabolomic profiling. For more details, see 

Chapter 2, section 2.5. Heat map of statistically significant biochemicals profiled 

when comparing groups are labeled as follows: A dark red box indicates that p < 

0.05 and the group means fold of change > 1.00. A dark green box indicates that 

p < 0.05 and the group means fold of change < 1.00. A light red box indicates 

that 0.05 < p < 0.10 and group means fold of change > 1.00. A light green box 

indicates that 0.05 < p < and group means fold of change < 1.00 (N = 8/group, 

M:F = 50/50). 
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Figure 4-2 Hippocampal scyllo-inositol  
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Figure 4-2 Hippocampal scyllo-inositol 

Hippocampal scyllo-inositol. Scyllo-inositol in the hippocampus was 

measured via MRI when the mice reached 7-months of age. Specifically, MRS 

was utilized while the mice were anaesthetized. For more details, see Chapter 2, 

section 2.6. a Scyllo-inositol was dramatically increased in the hippocampus of 

inulin-fed E3FAD and E4FAD mice compared to controls. Both groups of E4FAD 

mice saw a significant increase in scyllo-inositol when compared to their diet 

counterparts. Representative spectra are shown for (b) E3FAD Control, (c) 

E3FAD inulin, (d) E4FAD Control, and (e) E4FAD inulin groups with the arrow 

pointing to scyllo-inositol. Statistics were completed using 2-way ANOVA (N = 

8/group, M:F = 50/50). Error bars show mean ± SEM, ns = not significant; *p < 

0.05; **p < 0.01.
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Table 4-4 Brain metabolites 
 
 Mice fed the prebiotic diet had altered metabolites in the brain. Differences 

between E3FAD and E4FAD mice were also present. Upon sacrifice around 7-

months of age, the brains of the E3FAD and E4FAD mice were collected 

followed by being shipped to Metabolon (Durham, NC) for metabolomics. Heat 

map of statistically significant biochemicals profiled when comparing groups are 

labeled as follows: A dark red box indicates that p < 0.05 and the group means 

fold of change > 1.00. A dark green box indicates that p < 0.05 and the group 

means fold of change < 1.00. A light red box indicates that 0.05 < p < 0.10 and 

group means fold of change > 1.00. A light green box indicates that 0.05 < p < 

and group means fold of change < 1.00 (N = 8/group, M:F = 50/50).  
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Chapter 5 Specific Aim 3: To identify the effects of the prebiotic inulin on 

AD risk factors and pathology between E3FAD and E4FAD mice. 

5.1 Summary  

AD is a progressive neurodegenerative disorder with Aβ aggregation and 

increased inflammation being two major hallmarks of the disease. APOE4 

carriers are particular susceptible to these hallmarks and have an increased risk 

of AD development compared to APOE3 carriers. However, the gut microbiota is 

able to ferment prebiotics such as inulin into metabolites, as seen in previous 

chapters, that can provide benefits to the brain, potentially decreasing AD risk 

factors and pathology in APOE4 carriers. PURPOSE: To identify the effects of 

the prebiotic inulin and the associated generated metabolites on AD risk factors 

and pathology between E3FAD and E4FAD mice compared to their respective 

control diet counterparts. Further, to compare E3FAD and E4FAD mice. 

RESULTS: The prebiotic inulin did not change CBF, amyloid- aggregation, or 

anxiety and spatial recognition, working, and reference memory. However, 

markers of inflammation revealed significant differences due to the prebiotic 

inulin. CONCLUSIONS: The prebiotic inulin was able to decrease AD risk factors 

in E4FAD mice by decreasing certain markers of inflammation. Thus, utilizing the 

prebiotic inulin, displaying effects likely via beneficial metabolites produced from 

its fermentation in the gut, as a preventative measure may be one way to 

diminish inflammation and help decrease AD risk factors. 
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5.2 Introduction 

AD is a progressive neurodegenerative disorder with a variety of 

symptoms that include memory loss and the inability to learn new things [201], 

decreased cerebral blood flow [202], and increased inflammation and Aβ 

aggregation [203]. This is especially true in APOE4 carriers who exhibit 

decreased CBF and increased BBB permeability via the activation of the 

inflammatory cyclophilin A-nuclear factor-κB-matrix-metalloproteinase-9 pathway 

[20]. Further, APOE4 carriers do indeed have increased amyloid deposition as 

evidenced in humans [204] and in APOE4 transgenic mice [205]. APOE4 carriers 

also appear to have increased inflammation. In one study displaying this in 

APOE4 transgenic mice, the APOE4 mice were demonstrated to have increased 

inflammation, via increased microglial and NF-κB gene expression, compared to 

APOE3 mice [206]. It is also thought that the increase in Aβ aggregation may 

also increase inflammation [207]. However, the gut microbiota and associated 

metabolites have literature that support the potential reversal of these symptoms, 

discussed next.  

The prebiotic inulin is fermented into a variety of metabolites that can 

benefit the brain by potentially decreasing AD pathology. Firstly, scyllo-inositol, 

increased due to feeding of the prebiotic inulin in Chapter 3, has been 

demonstrated to inhibit Aβ aggregation in in vivo and in vitro trials [159, 164-167]. 

It is thought that through this inhibition, scyllo-inositol also decreases 

inflammation [165]. Next, SCFAs produced from the fermentation of the prebiotic 

inulin, also seen in Chapter 3, decrease BBB permeability through the increase 
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of BBB tight junction proteins [72]. The SCFAs can also modulate the immune 

system through a variety of ways. One study found that SCFAs were able to 

suppress Th17 cell production, promote Treg cells from CD4+ naive T cells, and 

activate the lipin2-JIP2 pathway, all subduing inflammation [208]. They also help 

regulate T cell size and function in the colon [209]. Further, SCFAs can act as 

histone deacetylase (HDAC) inhibitors, further promoting an anti-inflammatory 

effect [210]. Specifically, sodium butyrate has been used in an AD mouse model 

to restore histone acetylation activity with effects reaching the brain as genes 

associated with learning and memory were upregulated [211].  

The objective of this aim was to identify the effects of the prebiotic inulin 

on AD risk factors, including CBF, inflammation, anxiety, and cognition, and Aβ 

aggregation between E3FAD and E4FAD mice. We hypothesized that the 

prebiotic inulin will decrease AD risk factors and Aβ aggregation in E3FAD and 

E4FAD mice. Specifically, we examined the differences between E3FAD and 

E4FAD mice and the effect of the prebiotic inulin on CBF, inflammation, 

metabolism, anxiety and cognition, and Aβ aggregation. This is the pay-off 

chapter from all our previous work!  

  

5.3 Results 

 
5.3.1 Cerebral Blood Flow 
 

Subsets of mice per group (N = 8-10/group, M:F = 50/50) were randomly 

chosen to undergo MRI. Specifically, PCASL was utilized to measure CBF while 

the mice were anesthetized. Due to CBF being decreased with age [212] and in 
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AD [213], we anticipated the prebiotic inulin may be able to impact CBF. 

However, this was not the case as the prebiotic inulin found no effect on cerebral 

blood flow in the hippocampus of the brain compared to controls. There were 

also no differences between E3FAD and E4FAD mice.  

 
5.3.2 Amyloid-β Aggregation 

In multiple in vivo and in vitro studies, scyllo-inositol has been 

demonstrated to inhibit Aβ aggregation [159, 164-167]. We took a subset of 

brains from each group of E4FAD mice when the mice were sacrificed at around 

7-months of age for Aβ staining (N = 5/group, M:F = 50/50). These were sent to 

the COCVD Pathology Research Core at the University of Kentucky to be 

embedded and sectioned onto microscope slides. Immunohistochemistry was 

then performed for identification of Aβ followed by a background stain utilizing 

NISSL. After the slides were imaged via the Aperio ScanScope XT Digital Slide 

Scanner System in the University of Kentucky Alzheimer’s Disease Center and 

uploaded to the online database, Aperio ImageScope was used to analyze total 

anti-Aβ counts. We found that the prebiotic inulin had no effect on amyloid 

deposits in E4FAD mice (Fig. 5.1a with 5.1b and 5.1c as representative images 

of each group). These results indicate that the increase in scyllo-inositol due to 

the prebiotic inulin was unable to inhibit Aβ aggregation. Perhaps if the prebiotic 

inulin was given for a longer period of time, effects may have been evident.  
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5.3.3 NanoString Array 
 

E4FAD mice were sacrificed around 7-months of age with the brains 

collected and hippocampus dissected. Next, RNA was isolated and then 

quantified via the NanoString array. Specifically, we first wanted to see if the FAD 

mutations and/or the prebiotic inulin are able to alter markers of inflammation in 

the brain. This was completed by looking at 561 gene targets, with 318 genes 

being above the background threshold. When comparing the differential 

expression between APOE4 mice with and without the FAD mutations, 52 genes 

were significantly enriched by greater than one Log2 fold change (Fig. 5.3a). 

Among these 52 genes in E4FAD mice, we next wanted to examine the effect of 

the prebiotic inulin on these 52 genes via the mean Log2 difference between 

E4FAD mice fed either the prebiotic inulin or control diet. Among the 52 genes, 4 

genes had around a 2-fold decrease in expression due the prebiotic inulin (Fig. 

5.3b). Two of these genes were significantly decreased while 2 of the genes 

were insignificantly decreased due to the prebiotic inulin. The two significantly 

decreased genes were chemokine (C-C motif) ligand 4 (CCL4) (Fig. 5.3c) and Fc 

receptor IgG low affinity 4 (Fcgr4) (Fig. 5.3f) while the insignificantly decreased 

genes were C-X-C motif chemokine 10 (CXCL10) (Fig. 5.3d) and integrin alpha X 

(Itgax) (Fig. 5.3e).    

 

5.3.4 Animal Behavior Tests 
 

We wanted to measure the impact of the prebiotic inulin on multiple animal 

behavior tests. At 7-months of age, E3FAD and E4FAD mice underwent behavior 
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testing over a two-week period starting at the same time each morning. The 

behavior tests included elevated plus maze, evaluating the anxiety of mice, open 

field test, evaluating the anxiety of the mice in a new environment, novel object 

recognition, testing spatial recognition memory, and radial arm water maze, 

testing both spatial working and reference memory. When looking at radial arm 

water maze (Fig. 5.4a), no difference was seen between mice fed the prebiotic 

inulin and control diet. This also held true for the open field test (Fig. 5.4b), 

elevated plus maze (Fig. 5.4c), and novel object recognition test (Fig. 5.4d). 

Differences were also not apparent between E3FAD and E4FAD mice.   

 
5.4 Discussion 

As one ages, a decline in CBF occurs [212] and in APOE4 carriers, a 

decline is even seen before other AD-like symptoms occur [19]. Bell et. al. 

demonstrated that the breakdown of the BBB due to the APOE4 allele may be 

responsible for this decline in CBF [20]. Interestingly, SCFAs have been 

demonstrated to impact the BBB [72] and with the increase of SCFAs in the 

periphery due to the prebiotic inulin, we anticipated an increase in CBF. Although 

it is difficult to draw definitive conclusions, we did not see a difference in CBF due 

to the prebiotic inulin. However, there were also no differences between E3FAD 

and E4FAD mice as we expected to see a decrease in E4FAD mice compared to 

E3FAD mice. This may indicate that the deficits in CBF that APOE4 is thought to 

invoke may not have occurred yet, perhaps due to the mice not being advanced 

enough in age.  

We next looked at the effect of the prebiotic inulin on amyloid aggregation. 
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In E4FAD mice that were fed either the prebiotic or control diet, there were no 

differences between groups. Due to the increases in GBA components because 

of the prebiotic inulin, we suspected that the prebiotic fed mice may see a 

significant decrease in A aggregation. However, this was not the case as no 

differences were seen between groups in E4FAD mice. If the mice had begun 

being fed before they reached 3-months of age or if we allowed the study to go 

for a longer period of time, perhaps the effects of the prebiotic inulin would have 

been more pronounced.  

 However, we do see that the prebiotic inulin was able to change markers 

of inflammation. Firstly, the effect of the FAD mutations in APOE4 mice was 

analyzed. Mice with FAD mutations have been demonstrated in the literature to 

have increases in inflammatory markers [214] and this was further confirmed 

here. Among the 52 genes that were shown to be altered due to the FAD 

mutations, there was a noticeable downward trend in the E4FAD mice fed the 

prebiotic inulin compared to the control group. Specifically, significant decreases 

were seen in CCL4 and Fcgr4 while insignificant decreases were seen in 

CXCL10 and Itgax. CCL4 is a chemokine that has been found to be increased in 

mice with the APP/PS1 mutations and has been associated with the progression 

of A in the brain [215] while also being altered in human APOE4 carriers [216]. 

Fcgr4, along with other Fcgr’s, have been found to potentially stimulate vascular 

damage and neurodegeneration while also being upregulated due to increased 

systemic inflammation, neuroinflammation, and aging [217, 218]. Next, CXCL10 

is a chemokine found in high concentrations in certain AD mouse models and 
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even in AD patients [219, 220]. In fact, cerebrospinal fluid CXCL10 

concentrations have been positively correlated with cognitive impairment [221]. 

Notably, the receptor of CXCL10 is CXCR3 and in one study using CXCR3-

deficient APP/PS1 mice, A and plaque burden were greatly reduced along with 

a decrease in behavioral impairment, showcasing the importance of this pathway 

in AD disease progression [219]. Finally, Itgax is an integrin protein that appears 

to be induced in microglia in AD [222] but is actually downregulated in APOE 

knock-out APP/PS1 mice [223]. Since inflammation is notably increased in AD 

and is an important aspect of AD pathology [224], the decrease in inflammatory 

genes seen here, especially those that appear to play a role in AD pathology and 

progression, due to the prebiotic inulin may be a convenient, translatable way for 

a nutritional intervention to decrease AD pathology over time.  

 Finally, we wanted to see if the prebiotic inulin was able to impact animal 

behavior tests. Increased anxiety is thought to be a symptom preceding AD [225] 

and diminished mental capabilities and cognition are AD symptoms [1]. Firstly, 

we did not see any differences in the elevated plus maze or open field test, two 

tests measuring the anxiety of the mice. Further, we saw no differences in radial 

arm water maze and novel object recognition test, tests that measure spatial 

working and reference memory, and spatial recognition memory, respectively. 

Oddly, we also saw no differences between E3FAD and E4FAD mice. In fact, Liu 

et. al. found behavior deficits via the Morris Water Maze, assesses spatial 

working and reference memory, and Y-maze, assesses spatial recognition 

memory, when comparing 6-month old E4FAD mice to E3FAD mice although the 
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effects were quite modest [33]. Nevertheless, perhaps if our mice were older we 

would have seen more deficits in cognition between E3FAD and E4FAD mice 

and more of an impact from the prebiotic inulin.  

 Collectively, the prebiotic inulin was able to decrease markers of 

inflammation but was unable to effect CBF, A aggregation, or any animal 

behavior tests. Notably, there were also no differences between E3FAD and 

E4FAD mice in CBF or any of the behavior tests. This may indicate the mice 

were not old enough to develop deficits in CBF, anxiety, and/or spatial working, 

reference, or recognition memory. Effects may also have been more apparent if 

the sample size was larger in certain experiments. Nevertheless, the prebiotic 

inulin was able to decrease markers of inflammation, which we believe over time 

may help decrease AD risk factors and pathology.   
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Figure 5-1 Hippocampal cerebral blood flow 
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Figure 5-1 Hippocampal cerebral blood flow  

The prebiotic inulin did not impact CBF in the hippocampus. Subsets of 

mice per group were randomly chosen upon reaching 7-months of age to 

undergo MRI. Specifically, PCASL was utilized to measure CBF while the mice 

were anesthetized. For more details, see Chapter 2, section 2.6. a E3FAD and 

E4FAD mice fed the prebiotic inulin did not see differences when compared to 

their control fed counterparts. Further, there were no differences between E3FAD 

and E4FAD mice. Statistics were conducted using 2-way ANOVA (N = 8-

10/group, M:F = 50/50). Error bars show mean ± SEM. ns = not significant. 
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Figure 5-2 Amyloid- staining 
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Figure 5-2 Amyloid- staining 

Aβ staining in the brains of E4FAD mice. The mouse brains were collected 

upon sacrifice around 7-months of age and sent to the COCVD Pathology 

Research Core at the University of Kentucky to be embedded and sectioned onto 

microscope slides. Immunohistochemistry was then performed for identification 

of Aβ followed by a background stain utilizing NISSL. After the slides were 

imaged via the Aperio ScanScope XT Digital Slide Scanner System in the 

University of Kentucky Alzheimer’s Disease Center and uploaded to the online 

database, Aperio ImageScope was used to analyze total anti-Aβ counts. For 

more details, see Chapter 2, section 2.7. a E4FAD mice fed the prebiotic diet did 

not see differences in Aβ aggregation (percent load) in the brain. b 

Representative image of E4FAD mice fed the control diet. c Representative 

image of E4FAD mice fed the prebiotic diet. Statistics were conducted using 2-

way ANOVA (N = 5/group, M:F = 50/50). Error bars show mean ± SEM. ns = not 

significant. 

  



 

 116 

Figure 5-3 NanoString array analysis 
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Figure 5-3 NanoString array analysis 
 
 The impact of the FAD mutations and prebiotic inulin on markers of 

inflammation. E4FAD mice were sacrificed around 7-months of age with the 

brains collected and hippocampus dissected. Next, RNA was isolated and then 

quantified via the NanoString array. For more details, see Chapter 2, section 2.8. 

a In APOE4 mice with and without the FAD mutations, data are plotted as the 

mean ratio expression with their respective adjusted p-value. This revealed 52 

genes that were significantly differentially enriched (magenta) with greater than 

one Log2 fold change due to the FAD mutations. b The 52 genes that were 

enriched due to the FAD mutations were further examined under the context of 

diet manipulation. Overall, there was a trend for most of the 52 genes to be 

downregulated due to the prebiotic inulin in E4FAD mice. Further, a 2-fold 

decrease in expression was seen in 4 genes (aquamarine). Among these, c 

CCL4, and f Fcg4 were significantly decreased and d CXCL10 and e Itgax were 

insignificantly decreased due to the prebiotic inulin. Statistics were completed 

using 2-way ANOVA (Sidak posthoc multiple comparisons correction) (N = 

5/group, all male). For more details, see section 2.8. Error bars show mean ± 

SEM, ns = not significant; *p < 0.05. 
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Figure 5-4 Behavior tests 
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Figure 5-4 Behavior tests 
 
 The impact of the prebiotic inulin on animal behavior tests. At 7-months of 

age, E3FAD and E4FAD mice underwent behavior testing over a two-week 

period starting at the same time each morning. The behavior tests included 

elevated plus maze, evaluating the anxiety of mice, open field test, evaluating the 

anxiety of the mice in a new environment, novel object recognition, testing spatial 

recognition memory, and radial arm water maze, testing both spatial working and 

reference memory. For more details, see section 2.9. In E3FAD and E4FAD mice 

fed the prebiotic inulin compared to their control fed counterparts and when 

comparing E3FAD and E4FAD mice, no differences were seen in a radial arm 

water maze, b open field test, c elevated plus maze, or d novel object 

recognition. All behavior tests were conducted in the Rodent Behavior Center at 

the University of Kentucky when the mice reached 7-months of age. Statistics 

were conducted using 2-way ANOVA (N = 7-9/group, M:F = 50/50). Error bars 

show mean ± SEM. ns = not significant.  
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Chapter 6 General Discussion 

6.1 Discussion 

This project uncovered many remarkable findings that will prove to be 

impactful in the field. Firstly, we see that the prebiotic inulin is able to significantly 

alter the gut microbiota in both E3FAD and E4FAD mice. Not only this but the 

response of the mice to the prebiotic inulin was different to where E3FAD mice 

appear to gain more benefit than do E4FAD mice. This includes greater 

increases in beneficial taxa such as Bifidobacteria, Lactobacillus, and 

Akkermansia in the E3FAD mice. Interestingly, we found that due to the prebiotic 

inulin, scyllo-inositol was increased by the fecal microbiota population and that 

the SCFAs levels were also considerably higher in the cecal contents. 

Amazingly, the E4FAD mice fed the prebiotic inulin had less of an increase in 

scyllo-inositol, propionate, and butyrate than did the E3FAD mice fed the 

prebiotic inulin, indicative that the gut microbiota of E4FAD mice are unable to 

produce as much beneficial metabolites. Due to work by Dr. Richard Guerrant 

where children who were APOE4 carriers were more resistant to enteric infection 

and thus had improved cognition [226], our lab thought E4FAD mice in our study 

may have a more beneficial gut microbiota. We did not come to such a 

conclusion based on our data but the benefits of the APOE4 allele during 

development have been well noted in the literature [227]. Nevertheless, it is 

possible that the gut microbiota of APOE4 carriers is resistant to enteric infection 

but for reasons we have yet to understand. Further, the gut of APOE4 carriers 

may need a higher dosage of prebiotics to receive similar benefits compared to 
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APOE3 carriers and this should be considered when looking improve the gut 

health of APOE4 carriers. Also in the gut microbiota, we found no notable 

differences due to the FAD mutations in either E3FAD or E4FAD despite other 

studies indicating that these mutations increased amyloid-like proteins in the gut 

[40] and impacted amyloid deposition in the brain [41]. Notably, a slightly different 

AD mouse model was used in these studies that involved just the APP and PS1 

mutations and at different ages than our study. While it is still certainly possible 

that the APOE4 allele provides protection against enteric infection and certain 

FAD mutations alter the gut microbiota, we cannot confirm such effects.   

One important aspect of the gut microbiota is how much of the benefits 

actually make it to the periphery and play a role on the host. In our project, we 

see that scyllo-inositol, SCFAs, and even IPA are increased due to the prebiotic 

inulin in the blood. However, E4FAD mice saw little scyllo-inositol in the blood in 

either the prebiotic or control group. Nevertheless, this is a landmark finding as 

inulin is seen here to increase multiple GBA components and we are able to 

declare scyllo-inositol a GBA component for the first time. Not only this but there 

were many other metabolic differences that were altered due to the prebiotic 

inulin in both E3FAD and E4FAD mice. There was an increase in tryptophan 

metabolism and a decrease in tyrosine metabolism. While we cannot assuredly 

say this will benefit the host, although the increase in the tryptophan metabolite 

IPA may be beneficial due to its inhibitory effects on A aggregation [85], this is a 

major finding in the prebiotic field. It would be of interest if these findings could be 

repeated with other prebiotics. Also, in the blood, we also found differences in the 
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PPP and TCA Cycle. While it is known that APOE4 carriers develop 

hypometabolism and have altered glucose metabolism [228], the PPP has been 

recently implicated [27] and may be a research avenue that needs more 

exploring.   

The next step in the project was to see if the effect of the prebiotic inulin in 

the gut microbiota could not only reach the periphery but also the brain. Here we 

do indeed see that scyllo-inositol was increased in the hippocampus of both 

E3FAD and E4FAD mice fed the prebiotic inulin. Contrary to what you may think 

due to the findings in Chapters 3 and 4 where greater increases in scyllo-inositol 

in the gut and absorption thereof into the periphery were found in E3FAD mice 

compared to E4FAD mice fed the prebiotic inulin, the E4FAD mice actually saw a 

greater increase in hippocampal scyllo-inositol compared to E3FAD mice. This 

indicates that E4FAD mice may have a compensatory effect, perhaps due to 

increased inflammation in the brain, that enables more scyllo-inositol, which can 

decrease inflammation via inhibition of A aggregation [165], to be brought into 

the brain compared to E3FAD mice. Reasons how this occurs are not available 

as scyllo-inositol is a little studied metabolite. It is also plausible that myo-inositol 

could be converted to scyllo-inositol, or vice-versa in the blood and/or brain but 

the only evidence of this is in the blood [161]. In this study, scyllo-inositol was 

administered in the blood of mice with a subsequent increase seen in myo-

inositol levels. This evidence is not particularly strong, but the possibility still 

remains.  
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The next and final step was to see if the changes due to the prebiotic inulin 

were able to not only reach the periphery and brain but to also decrease AD risk 

factors and pathology. We did indeed see alterations in inflammation in mice fed 

the prebiotic inulin, but many AD risk factors and pathology were not altered. This 

included no differences seen in CBF, anxiety and cognition, and A aggregation. 

Due to the increase in gut-brain axis components that have literature supporting 

their ability to inhibit A aggregation, we suspected the prebiotic inulin may 

indeed be able to decrease A. However, this was not the case. It is possible if 

we began the prebiotic diet on the mice at an earlier age or fed them for a longer 

period of time, then differences would become more evident. Nevertheless, we 

did see a notable downward trend in inflammatory genes due to the prebiotic 

inulin via a decrease in 52 genes that were increased by the FAD mutations. 

Among these, CCL4 and Fcgr4 were significantly decreased while CXCL10 and 

Itgax were insignificantly decreased. It is quite notable that these aforementioned 

inflammatory markers have been associated with AD pathology and disease 

progression. Due to this, we do indeed believe the consumption of the prebiotic 

inulin may be a convenient, translatable way to decrease AD risk factors and 

pathology over time.  

 Collectively, we see that the prebiotic inulin is able to increase numerous 

components of the gut-brain axis that were able to reach the brain. In fact, a new 

gut-brain axis component has been revealed in scyllo-inositol. A aggregation 

and numerous AD risk factors were unable to be impacted by the prebiotic inulin, 

however, markers of inflammation in the brain were decreased due to the 
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prebiotic inulin. Overall, this research enables a paradigm shift as taking 

preventative measures to decrease AD risk factors in APOE4 carriers may be 

effective in helping to prevent the disease.  

 
6.2 Limitations 

A limitation of our project was the use of our animal model. Although we 

believe that the EFAD mouse model is the most state-of-the-art and translatable 

AD mouse model available, as it allows us to see AD pathology within just a few 

months of age in the mice, AD mouse models have historically translated poorly 

to clinical outcomes [229]. It also cannot be discounted that mice and humans 

are different species that will vary in results.  

A major limitation of Aim 1 involves the gut microbiota; however, this is the 

same limitation present with gut microbiota research in general. Although the 

method to extract DNA from the fecal sample appears to have minimal impact, 

the varying techniques used to target the bacterial 16S rRNA gene of the mice 

can impact the results and reproducibility in a major way [230]. Further, the 

husbandry of the mice also varies and can impact results, among other 

challenges [231]. In our study, the groups were split into two batches and thus, a 

batch effect was present to where a direct comparison of E3FAD and E4FAD 

mice became impossible. However, this will be considered in all our future 

endeavors.  

 Another limitation related to the gut microbiota involves scyllo-inositol. 

Bacillus subtilis is the only known bacterial taxa to increase this metabolite [155] 

and we did not find this taxon in our 16S rRNA sequenced data. We do know that 
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scyllo-inositol was increased due to our fecal bacterial culture experiment. Thus, 

we believe that other bacterial species are also able to produce this metabolite 

and identifying these taxa could be a future direction of our lab’s research.  

 In Aim 3, we found that the prebiotic inulin was unable to impact CBF and 

animal behavior tests or decrease A aggregation. This may be due to stopping 

the study before they reached an advanced enough age to develop deficits in 

CBF and in animal behavior tests. Due to the E4FAD mice not having deficits in 

CBF and in the animal behavior tests compared to E3FAD mice, we do indeed 

suspect the mice at 7-months of age were not old enough to develop such 

deficits. This may also be true in regard to the lack of decrease in A aggregation 

in E4FAD mice fed the prebiotic inulin, however, we do not necessarily believe 

that the amyloid cascade hypothesis, the hypothesis that A plaques are the 

primary culprit for the disease, is solely responsible for AD [232]. Indeed, studies 

have shown that normal cognitive people have amyloid plaques and that 

decreasing these plaques in AD patients has no effect on their symptoms [232]. 

The amyloid cascade hypothesis has also consistently failed clinically to meet 

primary endpoints although this may also be due to beginning treatment too late 

in AD pathology [232, 233].  Nevertheless, we believe with the prebiotic inulin 

able to decrease inflammation and alter the metabolism of E4FAD mice, utilizing 

this nutritional intervention may be a paradigm shift in preventing AD.  

And finally, the last notable limitation is that we did not look for 

neurofibrillary tangles, one of the primary hallmarks of the disease and potential 

causative agent of AD [234].  
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6.3 Significance and Implications 

 This project has major significance and implications towards the future of 

GBA and AD research. The findings from Aim 1 demonstrate that E3FAD and 

E4FAD mice are both able to ferment the prebiotic inulin into beneficial 

metabolites but in dissimilar amounts. Indeed, the E3FAD mice appear to get 

more benefit from the prebiotic inulin than the E4FAD mice. This indicates that 

the genetic makeup of an organism can impact the gut microbiota, their response 

to prebiotics, and ability to ferment prebiotics into metabolites. This signifies that 

personalizing treatments based on one’s genetics may be more effective in 

preventing and treating AD compared to a standard approach.  

 Aim 2 is significant because we see that the metabolites produced from 

the fermentation of the prebiotic inulin are indeed able to reach the bloodstream 

and brain to potentially exert effects. Although prebiotics may be fermented by 

the gut microbiota, their impact is exerted beyond into other organs. This may 

pave the way for other interventions that benefit the gut microbiota to come into 

the limelight, be moved into clinical trials, and eventually, used as a part of a 

personalized AD prevention plan, especially for those that are genetically 

predisposed to the disease. In this aim, we also see scyllo-inositol as a new, 

novel component of the GBA. As more and more GBA components are revealed, 

more treatment and prevention plan that look to benefit the GBA could be 

utilized. We also saw the increase in SCFAs and IPA, known GBA components, 

that provides compelling evidence that the prebiotic inulin can impact numerous 
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GBA components. Interestingly, we also saw metabolic differences between 

E3FAD and E4FAD mice in the blood and brain, indicating that the absorption of 

metabolites from the gut and impact thereof in the periphery is also different 

depending on one’s genetics.  

 Aim 3 is significant because we see that a nutritional intervention is able to 

decrease AD risk factors via diminished inflammation. Due to pharmacological 

interventions primarily failing [5], it has been suggested that preventative 

measures may be more effective in preventing and treating AD [6]. Our results 

confirm that a nutritional intervention such as prebiotics can be effective in 

helping to decrease AD risk factors, signifying a paradigm shift in how we 

approach AD care in human patients. Indeed, benefiting the gut microbiota and 

GBA may be the first preventative measure that one should undertake to prevent 

AD.   

 

6.4 Future Directions 

 The future directions for this research are vast! Firstly, a better 

understanding of what bacterial taxa produce certain metabolites would greatly 

help us understand the gut microbiota and the benefits it can produce on the 

host, including that of the taxa that produce scyllo-inositol. Next, using different 

prebiotics, such as inulin, resistant starch and galacto-oligosaccharides, and 

comparing the effects of these prebiotics to each other on the gut microbiota and 

brain would greatly influence the literature and translatability to humans. It is 

plausible that all prebiotics are able to increase the production of beneficial 
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metabolites. However, it is also possible that only the prebiotic inulin is able to 

increase scyllo-inositol while other prebiotics cannot produce scyllo-inositol but 

can increase other, unique metabolites. Combining multiple prebiotics would be 

very beneficial as well as the human diet would more likely contain a mixture of 

different foods and prebiotics as opposed to specializing in the consumption of 

just one. Subsequently, using different dosages of prebiotics and seeing if there 

is a dose-dependent effect of benefits and metabolite production would also be 

highly valuable. This could greatly impact how this research can be translated to 

humans and what exactly humans should be consuming, and in what amounts, 

for optimal gut microbiota and GBA health. Next, further understanding the 

differences between APOE3 and APOE4 carriers would help in translating 

findings to humans as a personalized approach may be more effective 

depending on one’s genes in preventing and treating AD compared to a standard 

treatment that doesn’t take this into account. However, to fully understand the 

significance and implications of this project, studies in clinical trials looking at the 

impact of the prebiotic inulin on the GBA and AD, in APOE3 and APOE4 carriers 

alike, need to be completed.  

 The final notable future direction is to feed the mice for a longer period of 

time and until the mice reach an older age. Considering there were no deficits in 

CBF and animal behavior tests between E3FAD and E4FAD mice at 7-months of 

age, it may be worth measuring these outcomes again when the mice reach 10 

or 12-months of age and then seeing the impact of the prebiotic inulin on AD 

pathology.  
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7.1 Summary  

Advancing age is the top risk factor for the development of 

neurodegenerative disorders, including Alzheimer’s disease (AD). However, the 

contribution of aging processes to AD etiology remains unclear. Emerging 

evidence shows that reduced brain metabolic and vascular functions occur 

decades before the onset of cognitive impairments, and these reductions are 

highly associated with low-grade, chronic inflammation developed in the brain 

over time. Interestingly, recent findings suggest that the gut microbiota may also 

play a critical role in modulating immune responses in the brain via the brain-gut 

axis. In this study, our goal was to identify associations between deleterious 

changes in brain metabolism, cerebral blood flow, gut microbiome, and cognition 

in aging, and potential implications for AD development. We conducted our study 

with a group of young mice (5-6 months of age) and compared those to old mice 

(18-20 months of age) by utilizing metabolic profiling, neuroimaging, gut 

microbiome analysis, behavioral assessments, and biochemical assays. We 

found that compared to young mice, old mice had significantly increased levels of 

numerous amino acids and fatty acids that are highly associated with 
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inflammation and AD biomarkers. In the gut microbiome analyses, we found that 

old mice had increased Firmicutes/Bacteroidetes ratio and alpha diversity. We 

also found impaired blood-brain barrier function and reduced cerebral blood flow 

as well as compromised learning and memory and increased anxiety, clinical 

symptoms often seen in AD patients, in old mice. Our study suggests that the 

aging process involves deleterious changes in brain metabolic, vascular and 

cognitive functions, and gut microbiome structure and diversity, all which may 

lead to inflammation and thus increase the risk for AD. Future studies conducting 

comprehensive and integrative characterization of brain aging, including 

crosstalk with peripheral systems and factors, will be necessary to define the 

mechanisms underlying the shift from normal aging to pathological processes in 

the etiology of AD. 

  

7.2 Introduction 

Advancing age increases the risk factor for developing dementia, with 

imaging and biomarker data suggesting that the pathophysiological processes of 

Alzheimer’s disease (AD) begin more than a decade prior to the diagnosis of 

dementia [23, 235-237]. However, how aging processes contribute to AD etiology 

still remains unclear. Bioenergetic imbalance over time has been considered as 

one of the primary causes for these chronic disorders [238]. In the central 

nervous system, brain energy supply declines with age [239]. Failure to maintain 

brain metabolism causes dysfunctional cellular energy status and nucleotide 

biosynthesis [240], leading to cognitive impairment and brain volume atrophy 
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[241]. In addition, this energetic imbalance leads to neuroinflammation 

accompanied by reduced neuronal activity and increased glial activation [242-

245]. Glial over-activation can cause release of inducible nitric oxide synthase 

(iNOS), which can result in inflammation and sepsis [246]. Chronic 

neuroinflammation can further lead to retention of amyloid beta (Aβ) plaques and 

tau tangles as seen in AD, and ultimately, memory loss, and dementia [224]. 

Emerging evidence shows the metabolic imbalance and inflammatory 

responses may not only originate in the brain per se, but also from gut microbiota 

[247]. The gut microbiota is the community of microorganisms in the intestines 

that contains over 1,000 different bacterial species, categorized into four primary 

phyla: Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria [248]. A 

number of studies have demonstrated that the gut microbiota changes with age 

[249-251].  In particular, an increased Firmicutes/Bacteroidetes (F/B) ratio is 

associated with increased inflammation and excess energy harvest from food in 

obese patients [252]. Increased F/B ratio is associated with the weakening of the 

epithelial tight junctions, allowing proinflammatory cytokines produced by 

pathogenic bacteria transfer to the brain from the blood stream or vagus nerve 

[72, 253]. Inflammation due to leaky gut syndrome has also been shown to 

increase the risk for anxiety and depression [254], which can exacerbate learning 

and memory performance [255, 256]. 

Leaky gut syndrome also leads to neurovascular defects, evident by 

increased blood-brain barrier (BBB) permeability [72]. The reduction of BBB 

transporters may lead to impaired clearance of Aβ [20, 237], enhancing the risk 
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of dementia like symptoms [257]. Impaired BBB function is also linked with 

reduced cerebral blood flow (CBF) [20]. Indeed, reductions in CBF with age have 

been known for years [212]. These neurovascular risks are highly associated 

with accelerated decline in language ability, verbal memory, attention and 

visuospatial abilities, and increased anxiety and depression in aging [236, 237, 

258-260]. 

Collectively, the cognitive aging and risk for AD may be driven by 

deleterious changes of brain physiology originated from the central nervous 

system as well as the peripheral systems. Nonetheless, the associations 

between brain metabolism, perfusion, cognition, and gut microbiome remain 

largely unknown. In this study, our objective was to examine the effects of aging 

on the brain and the gut in young and old mice and how these effects collectively 

alter neurological function. To achieve this, we used metabolomics for brain 

metabolite assessment, 16s ribosomal RNA (rRNA) gene amplicon sequencing 

to analyze the gut microbiome, neuroimaging to examine brain vascular 

functions, and behavioral testing to determine memory and anxiety. We 

hypothesized that age-related deleterious changes would be exhibited in the 

brain and gut, effecting brain metabolic, vascular and cognitive functions, which 

may increase the risk for developing AD. 
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7.3  Methods  

7.3.1 Animals 

Young (5-6 mo) and old (18-20 mo) male C57BL/6N mice were acquired 

from the National Institute of Aging Colony. We determined the sample size via 

power analysis to ensure comparison at a 0.05 level of significance and 90% 

chance of detecting a true difference of each measured variable between the two 

groups. Each mouse was caged individually and housed in a specific pathogen-

free facility. In order to avoid the potential for aggression when combining 

multiple male mice into one cage, mice were housed individually. Further, mice 

should be housed individually for gut microbiome analysis due to cage effects 

from microbiome transfer, e.g. mice eating each other’s feces giving them a very 

similar gut microbiome and thus, the mice would be N = 1 for that particular cage 

[113]. The mice were weighed weekly and given ad libitum access to food and 

water. All experimental procedures were performed according to NIH guidelines 

and approved by the Institutional Animal Care and Use Committee (IACUC) at 

the University of Kentucky (UK). 

 

7.3.2 Gut Microbiome Analysis 

For fecal DNA amplification, fecal samples were collected from young (N 

=39) and old (N= 28) mice and frozen at -80˚C until further use. A PowerSoil 

DNA Isolation Kit (MO BIO Laboratories, Inc.) was used for fecal DNA extraction, 

according to the manufacturer’s protocol. Genomic DNA was PCR amplified with 

primers CS1_515F and CS2_926R [114] targeting the V4-V5 regions of microbial 
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16S rRNA genes using a two-stage “targeted amplicon sequencing (TAS)” 

protocol [115, 116]. First stage amplifications were performed with the following 

thermocycling conditions: 95˚C for 3mins, 28 cycles of 95˚C for 45sec, 55˚C for 

45sec, 72˚C for 90sec and final elongation at 72˚C for 10 minutes. Barcoding 

was performed using a second-stage PCR amplification with Access Array 

Barcode Library for Illumina Sequencers (Fluidigm, South San Francisco, CA; 

Item# 100-4876). The pooled libraries, with a 15% phiX spike-in, were loaded on 

a MiSeq v3 flow cell, and sequenced using an Illumina MiSeq sequencer, with 

paired-end 300 base reads. Fluidigm sequencing primers, targeting the CS1 and 

CS2 linker regions, were used to initiate sequencing. De-multiplexing of reads 

was performed on instrument. Second stage PCR amplification and library 

pooling was performed at the DNA Services (DNAS) facility, Research 

Resources Center (RRC), University of Illinois at Chicago (UIC). Sequencing was 

performed at the W.M. Keck Center for Comparative and Functional Genomics at 

the University of Illinois at Urbana-Champaign (UIUC). 

For microbial analysis, forward and reverse reads were merged using 

PEAR [117]. Primer sequences were identified using Smith-Watermann 

alignment and trimmed from the sequence. Reads that lacked either primer 

sequence were discarded.  Sequences were then trimmed based on quality 

scores using a modified Mott algorithm with PHRED quality threshold of p = 0.01, 

and sequences shorter than 300 bases after trimming were discarded. QIIME 

v1.8 was used to generate OTU tables and taxonomic summaries [118]. Briefly, 

the resulting sequence files were merged with sample information. Operational 



 

 135 

taxonomic unit (OTU) clusters were generated in a de novo manner using the 

UCLUST algorithm with a 97% similarity threshold [119]. Chimeric sequences 

were identified using the USEARCH61 algorithm with the GreenGenes 13_8 

reference sequences [120]. Taxonomic annotations for each OTU were using the 

UCLUST algorithm and GreenGenes 13_8 reference with a minimum similarity 

threshold of 90% [119, 120]. Taxonomic and OTU abundance data were merged 

into a single OTU table and summaries of absolute abundances of taxa were 

generated for all phyla, classes, orders, families, genera, and species present in 

the dataset. The taxonomic summary tables were then rarefied to a depth of 

10,000 counts per sample. 

Shannon and Bray-Curtis indices were calculated with default parameters 

in R using the vegan library [121, 122]. The rarefied species data, taxonomic 

level 7, were used to calculated both indices.  Plots were generated in R using 

the ggplot2 library [123]. Significant difference among tested groups was 

determined using the Kruskal-Wallis one-way analysis of variance.  The group 

significance tests were performed on the rarefied species data, taxonomic level 6 

(genus), using the group_significance.py script within the QIIME v1.8 package. 

The gene amplicon sequence data generated as part of this study have 

been submitted to the NCBI BioProject database under accession number 

(PRJNA400638). 
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7.3.3 Behavior Testing 

All behavior tests were conducted over a two-week period with each test 

starting at the same time each morning. For each mouse, Elevated Plus Maze 

(EPM) was done first followed by Novel Object Recognition (NOR) the next day. 

Radial Arm Water Maze (RAWM) testing was then carried out starting the day 

after NOR. A subset of young (N = 22) and old (N =18) mice underwent three 

behavior tests. For more details on the three behavior tests, please see Chapter 

2, section 2.9.  

 

7.3.4 Cerebral Blood Flow Measurement 

A subset of young and old mice (N = 12 per group) were used to measure 

in vivo CBF using magnetic resonance imaging (MRI). For more details on this, 

please see Chapter 2, section 2.6.  

 

7.3.5 Blood-Brain Barrier Function Determination and Western Blotting 

BBB function was determined by measuring P-glycoprotein (P-gp) 

transport activity in isolated brain capillaries. P-gp is an ATP-driven transporter 

highly expressed at the BBB that facilitates transport of Aβ from brain to blood. 

This technique was previously established via a confocal imaging-based assay to 

assess P-gp transport activity in freshly isolated brain capillaries from mice [261, 

262]. This assay measures within capillary lumens accumulation of [N-ε(4-nitro-

benzofurazan-7-yl)-D-Lys(8)]-cyclosporin A (NBD-CSA), a fluorescent P-

glycoprotein substrate. 
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For capillary isolation, after euthanasia, mouse brain capillaries (N= 7 per 

group) were isolated according to a previously described protocol [261, 263]. 

Briefly, mice were euthanized by CO2 inhalation and decapitated; brains were 

immediately harvested and collected in ice-cold DPBS buffer supplemented with 

5 mM D-glucose and 1 mM Na-pyruvate, pH 7.4. Brains were dissected by 

removing meninges, choroid plexus and white matter, and homogenized in 

DPBS. The brain homogenate was mixed with Ficoll® and centrifuged at 5,800g 

for 20 minutes at 4°C. The capillary pellet was resuspended in 1% BSA buffer 

and first passed through a 300 µm nylon mesh and then through a 27 µm nylon 

mesh. Capillaries retained by the 27 µm nylon mesh were collected and washed 

with DPBS buffer and used for experiments. 

For p-glycoprotein transport activity, isolated capillaries were incubated for 

1 h at room temperature with 2 μM NBD-CSA (custom-synthesized by R. Wenger 

(Basel, Switzerland)) in DPBS buffer. Ten capillary images were acquired by 

confocal microscopy (Leica TSP SP5 Confocal Microscope with Environmental 

Chamber, 63 × D-Water UV objective, numerical aperture 1.2, Zoom: 4, 488-nm 

line of an argon laser, Leica Microsystems). Confocal images were analyzed by 

quantitating luminal NBD-CSA fluorescence with Image J software (v.1.45s; 

Wayne Rasband, NIH). Specific, luminal NBD-CSA fluorescence was taken as 

the difference between total luminal fluorescence and fluorescence in the 

presence of the P-glycoprotein-specific inhibitor PSC833 (5 μM, Novartis, Basel, 

Switzerland) [264]. 
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For western blotting and quantification to determine protein expression, 

isolated brain capillaries were homogenized in tissue lysis buffer containing a 

cocktail of protease inhibitors. Homogenized brain capillary samples were 

centrifuged at 10,000 g for 15 minutes at 4°C, followed by a centrifugation of the 

denucleated supernatants at 100,000 g for 90 minutes at 4°C. Pellets (crude 

brain capillary plasma membranes) were resuspended and protein 

concentrations were determined using the Bradford protein assay. Normalized 

brain capillary membrane samples were separated on a NuPAGE™ 4-12% Bis-

Tris Protein Gels (1.0 mm, 15-wells; Thermo Fisher Scientific, Waltham, MA, 

USA) and transferred onto an Invitrolon™ PVDF membrane (0.45 µm pore size; 

Thermo Fisher Scientific, Waltham, MA, USA) membrane using the NuPAGE® 

electrophoresis and blotting system (Invitrogen, Carlsbad, CA, USA). After 

protein transfer, the blotting membranes were incubated overnight with antibody 

to P-gp (C219; MA1-26528, ThermoFisher, 1μg/ml) and β-actin (ab8226 from 

Abcam, 1:1000, 1 μg/ml). Proteins were detected using SuperSignal® West Pico 

Chemoluminescent substrate (Pierce, Rockford, IL, USA) and protein bands 

were visualized with a BioRad Gel Doc™ XRS imaging system. P-gp was 

visualized first, membranes were then stripped with Restore™ Western Blot 

Stripping Buffer (Thermo Fisher Scientific, Waltham, MA, USA) and incubated 

with the antibody against β-actin. Image Lab 5.0 software from Bio-Rad 

Laboratories was used for densitometric analyses of band intensities and digital 

molecular weight analyses; the molecular weight marker was RPN800E (GE 
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Healthcare, Chalfont St. Giles, Buckinghamshire, UK). Linear adjustments of 

contrast and brightness were applied to entire Western blot images. 

 

7.3.6 Inducible Nitric-Oxide Synthase Measurement 

Total RNA from frontal cortex and hypothalamus homogenate (N =7-8 per 

group) was isolated using TRI Reagent solution (Ambion), and cDNA was 

synthesized from 1ug total RNA from each individual sample using SuperScript 

III (Invitrogen). qRT-PCR was performed using TaqMan real time PCR (ViiA™ 7, 

Applied Biosystems). All reactions were performed with non-template negative 

control, and all data are mean ± SEM of two independent biological replicates. 

The gene probes and master mix were also purchased from Applied Biosystems. 

The probe sets were as follows: Mm00440502-m1 (inducible nitric-oxide 

synthase (Nos2)), Mm00446968-m1 (hypoxanthine guanine phosphoribosyl 

transferase (Hprt)). The relative expression levels were measured using the 

relative quantitation ΔCt (delta counts) method and normalized to Hprt. 

 

7.3.7 Metabolomic Profiling 

Please see Chapter 2, section 2.5 for more detail.  

 

7.3.8 Statistical Analysis 

All statistical analyses were completed using GraphPad Prism (GraphPad, 

San Diego, CA, USA). One-tailed Student’s t-test was performed for 

determination of differences between groups. Levels of statistical significance 
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were reached when p < 0.05. For Metabolon, missing values in the data are 

assumed to be below the level of detection of the used instruments. Log 

transformations and imputation of missing values with the minimum observed 

values for each metabolite was conducted. This was followed by ANOVA to 

identify biochemicals that were significantly different between groups. Given the 

multiple comparisons inherent in analysis of metabolites, between-group relative 

differences are assessed using both p-value and false discovery rate analysis (q-

value). 

 
7.4 Results  

7.4.1 Altered Gut Microbiome and Increased Body Weight with Age  

Alpha diversity (e.g., Shannon index, H value) was measured for fecal 

microbial communities of all samples, at the taxonomic level of genus (Figure 

1A). Older mice had a significantly higher alpha diversity than young mice 

(Kruskal-Wallis p-value = 0.022). Although no significant differences in beta 

diversity were observed (Analysis of similarity, ANOSIM R statistic=0.006, p-

value=0.307, 999 permutations), and no specific taxa were significantly different 

between the groups of young and old mice (Kruskal-Wallis, false discovery rate, 

FDR-corrected p-value <0.05), the ratio of Firmicutes/Bacteroidetes was 

significantly different between age groups. Old mice had significantly higher 

Firmicutes/Bacteroidetes (F/B) ratio (Fig. 1B, 46% increase, p < 0.05). Further, 

we found that the body weight of the old mice was significantly higher compared 

with that of the young mice (Fig. 1C, 24% increase, p < 0.05). 

 



 

 141 

7.4.2 Enhanced Proinflammatory Metabolism with Age 

The quantification of the brain metabolites is shown in Table 7.1. We 

observed several significant age-dependent changes in basal brain metabolites 

(after 6 hours of final feeding). Notably, the old group had a 31-83% change in 

markers of the methionine cycle with significantly greater methionine, cysteine, 

cysteine-glutathione disulfide, and cystathionine. Firstly, methionine is an amino 

acid that may be accountable for increased mitochondrial reactive oxygen 

species (ROS)[265]. Due to this, we believe the old mice exhibit increased 

oxidative stress in the brain. We also found lipids related to inflammatory 

responses significantly elevated in the old mice, including a 82% increase in 

prostaglandin D2, and a 80% increase in prostaglandin E2. Further, markers 

associated with Alzheimer’s disease (AD) were significantly greater in the old 

mice compared to the young, including a 21% increase in 24(S)-

hydroxycholesterol, 28% increase in mead acid (20:3n9), 37% increase in 

phenylalanine, 58% increase in spermidine, 22% increase in docosapentaenoate 

(n6 DPA; 22:5n6), 11% increase in creatine, and 12% increase in 

phosphocholine [266-272]. In contrast, CDP-choline, a metabolite that has shown 

to alleviate AD symptoms [273], saw a 6% decrease in the old group. In addition, 

old mice also demonstrated a 114% increase in citrate. Collectively, the 

metabolic profiling indicates that the old mice had enhanced proinflammatory 

metabolism. These data are consistent with our observation of significantly 

increased iNOS levels in the brain of old mice compared to that of young mice 

(Fig. 2A, 17% increase, p = 0.02). 
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We found that two of the brain metabolites related to gut microbiota were 

also significantly different between young and old cohorts. Compared to the 

young mice, old mice had significantly higher 3-indoxyl sulfate (Fig. 2B, 380% 

increase, p < 0.05) and phenol sulfate (Fig. 2C, 144% increase, p < 0.05) in their 

brain within 2 hours after their final feeding, however, the levels of the two 

metabolites returned to the baseline after 6 hours of feeding. 3-indoxyl sulfate is 

generated in the liver as a result of gut microbiome metabolism of tryptophan; 

phenol sulfate is a metabolite derived from bacterial metabolism of 

phenylalanine. The results suggest that the gut microbiome may play an 

important role in modulating brain metabolism. Because 3-indoxyl sulfate and 

phenol sulfate both are related to neurological toxicity and inflammation [274, 

275], it implies that old mice had higher neuroinflammation, which may of 

resulted from age-dependent changes in the gut microbiota. 

 

7.4.3 Impaired Neurovascular Functions with Age  
 

We found impaired BBB function in the old mice. Figure 3A shows 

representative confocal images of capillaries; the intensity of fluorescence in the 

capillary lumen reflects the amount of P-glycoprotein (P-gp), an efflux transporter 

of A. The corresponding quantitative results are shown in Figure 3B; the old 

mice had significantly reduced P-gp transport activity (p = 0.0031) compared to 

the young mice. We also measured P-gp protein expression levels (Fig. 3C). 

Similar to the results of P-gp activity, we found that the old mice had significant 

reduction in P-gp protein levels compared to the young mice (decrease to 63.7 ± 
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5.4 % over 100% young; p < 0.001; Fig. 3C). We also observed reduced CBF in 

the old mice. Figure 3D shows the representative CBF images of the young and 

old mice. The CBF level is colorized in a linear scale, indicating that the young 

mice have overall higher CBF compared to the old mice, which was confirmed by 

the quantitative global CBF values (Fig. 3E, 87% increase, p < 0.001). We did 

further CBF analyses in brain regions associated with cognitive functions (e.g., 

memory and learning) based on MRI structural imaging and mouse brain atlas. 

We found that young mice exhibited an 82% increase in CBF in the hippocampus 

(p < 0.001, Fig. 3F), compared to the old mice. 

 

7.4.4 Compromised Cognition and Increased Anxiety with Age   
 

The old mice spent significantly longer time in the closed arms compared 

to the young mice in the EPM test (Fig. 4A; 132% increase, p < 0.0001), 

indicating higher anxiety. In the NOR test, the old mice showed a significantly 

lower D2 value compared to the young group, suggesting reduced recognition 

memory (Fig. 4B, -74% decrease, p < 0.0001). In the RAWM test, the old group 

made significantly more errors in the learning phase (Block 3; 46% increase, p < 

0.01) and the initial recall phase (Block 4; 43% increase, p < 0.01), compared to 

the young group (Fig. 4C). 

 

7.5 Discussion 

 In this study, we demonstrated the age-dependent changes in brain 

metabolism, gut microbiome, vascular functions, memory and anxiety. 
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Specifically, aged mice had enhanced proinflammatory, increased ratio of 

Firmicutes to Bacteroidetes, increased bacterial alpha diversity, and body weight, 

impaired BBB and CBF, compromised learning and long-term memory, and 

increased anxiety. These deleterious changes in aging have the potential to 

increase the risk for neurological disorders and dementia, including AD. 

We found several amino acid increased in the old mice that are highly 

associated with AD, including spermidine, phenylalanine, creatine citrate, and 

methionine-related metabolites. First, spermidine levels have been found to be 

higher in the temporal cortex with a trending elevation in hippocampus and 

frontal cortex in AD patients, potentially as a response to brain injury [269]. 

Excess spermidine could exacerbate neurodegeneration as it positively 

modulates N-methyl-D-aspartate (NMDA) glutamate receptor function and disrupt 

calcium homeostasis. Second, high phenylalanine levels are also found in AD 

patients, associated with immune activation [268]. Phenylalanine disturbs 

neopterin and tryptophan metabolism, which is correlated with cognitive 

impairment [276, 277]. Third, old mice had higher creatine deposits in the brain, 

consistent with literature that creatine metabolism malfunction plays an important 

role in AD [237, 271]. Fourth, old mice had increased levels of citrate in the brain 

suggesting increased usage of fatty acid synthesis for membrane remodeling 

associated with aging due to the increased stress and inflammation that damage 

neuronal membranes [278]. Finally, the old mice had altered methionine-

associated metabolism, including increased methionine, cystathionine, cysteine, 

and cysteine-glutathione disulfide. Excessive methionine has been considered to 
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be accountable for increased mitochondrial ROS production, which in turn 

enhances oxidative stress and inflammation [277, 279, 280]. Interestingly, 

previous studies have shown that methionine restriction can lead to increased 

longevity by decreasing mitochondrial complex IV activity and accumulation of 

ROS [281, 282]. 

Accumulation of lipids in the brain is another hallmark of AD [283]. In the 

present study, we also found AD-associated fatty acids increased in the aged 

mice. First, 24(S)-hydroxycholesterol, an oxidized product of cholesterol 

produced in the brain, has been demonstrated to be elevated in AD patients and 

is hypothesized to be an early marker for distorted cholesterol status [266]. 

Second, phosphocholine has been revealed to be increased in rats during the 

early stages of AD during lesion-induced neuronal sprouting in the hippocampus 

[272]. This indicates that sprouting may occur early on in AD with 

phosphocholine as a marker. In addition, sprouting may also lead to a decline in 

energy metabolism due to energy being used for sprouting, consistent with the 

evidence of glucose metabolism decline in AD. Third, mead acid (20:3n9), an 

omega-9 fatty acid, has been demonstrated to be increased in the mid-frontal 

cortex, temporal cortex, and hippocampus of AD patients [267]. Fourth, 

docosapentaenoate (n6 DPA), an omega-6 fatty acid, has been inversely 

correlated with learning [270]. This is consistent with previous findings that oleic 

acid-enriched triglycerides were found in the brain of a triple transgenic mice 

model of AD (3xTg-AD); but when the triglycerides were inhibited, proper brain 

function was restored [284]. Further, prostaglandin D2 and E2, produced from 
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arachidonate, are generators of an inflammatory response and present in 

increased amounts in such an event, were also elevated in the old group [285]. 

Specifically, in one study, prostaglandin E2 was associated with neuronal 

oxidative damage after activation by lipopolysaccharide (LPS)[286]. LPS also can 

activate iNOS, which is consistent with our finding that old mice had significantly 

increased iNOS expression in the brain. In contrast, the aged mice showed 

reduced levels of CDP-choline, which has shown to alleviate AD symptoms by 

increasing CBF and brain electrical activity and reducing serum cytokine IL-1β 

levels [273]. Old mice also had dramatically decreased levels of 

glycerophopshorylcholine (GPC), which has been used to treat patients with 

cognitive impairment and AD [287]. Collectively, old mice exhibited a myriad of 

markers associated with inflammation and AD. 

The enhanced inflammation with age may have also occurred in the gut. 

We found that 3-indoxyl sulfate and phenol sulfate, which originate from the gut 

microbiota, were significantly elevated in the aged mice’s brains after meals. 

Significant increases of indoxyl sulfate have shown to enhance neurological 

toxicity, increase oxidative stress and ROS, and induce endothelial dysfunction 

by inhibiting endothelial proliferation and migration in vitro [288, 289]. In addition, 

phenol sulfate is derived from bacterial metabolism of phenylalanine, a marker 

for AD, as mentioned above. Next, we found a modest increase in older mice in 

the relative abundance of sequences from bacteria of the phylum Firmicutes, with 

a concomitant decrease in the relative abundance of sequences from bacteria of 

the phylum Bacteroidetes. Although neither change was statistically significant, 
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the overall change, leading to an increased Firmicutes/Bacteroidetes (F/B) ratio 

in older mice, was significant. As bacteria from the Firmicutes have been 

associated with weight-gain and those within the Bacteroidetes with weight-loss, 

this increased F/B ratio may promote body weight gain in old mice [49]. Further, 

this increased F/B ratio may lead to excessive low-grade inflammation and a 

substantial increase in energy harvesting and food intake [43, 290]. As a result, 

the F/B ratio has become a well-known marker for obesity and T2DM (Type 2 

Diabetes Mellitus) [291]. Interestingly, AD has been called Type 3 diabetes due 

to the overlapping symptoms observed in T2DM, e.g. insulin resistance and 

increased inflammation in the brain [292], along with an increased risk of 

dementia [293]. Thus, the increased F/B ratio may be indicative of an increased 

risk for AD.  

Short-chain fatty acids (SCFAs), including butyrate and propionate that 

are produced by certain bacterial species, have a dramatic impact on brain 

function. For example, butyrate has been demonstrated to prevent inflammatory 

responses via NFκB inhibition in microglia and hippocampal slice cultures [81]. 

Also, indole-3-proprionic acid (IPA), another metabolite produced by the gut 

microbiome, was demonstrated to inhibit A fibril formation in neurons and 

neuroblastoma cells [85]. On the contrary, increased Firmicutes may enhance 

trimethylamine (TMA) and its co-metabolites trimethylamine N-oxide (TMAO) 

[294]. TMAO level predicts risk for atherosclerosis and directly induces 

cardiovascular disease [80, 295-297]. 
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Reduced SCFAs has been shown to induce BBB permeability [72]. This is 

consistent with our findings that BBB function was compromised in the old mice. 

Specifically, we found the old mice had a significantly lower quantity of P-gp 

transporters in BBB, which are responsible for Aβ clearance from the brain to 

blood, indicative of an increased risk of developing AD [298]. BBB breakdown 

has been caused by elevated neuroinflammation [20] and is associated with CBF 

reduction. In line with this, we found decreased CBF in old mice. In particular, old 

mice had significantly decreased CBF in the hippocampus, the brain region that 

modulates cognitive function. Further, the old mice performed worse in the 

RAWM and NOR behavior tests than the young animals. Specifically, the old 

group performed worse in Block 3 and 4 of the RAWM compared to the young 

group, exhibiting inhibited spatial learning and long-term memory formation, 

consistent with our previous findings [129, 133]. In the NOR test, the old group 

had a worse D2 score compared to the young group, indicating a worse 

recognition memory. Taken together, our findings are consistent with the 

literature where impaired neurovascular integrity plays a critical role in 

determining cognitive functions [299]. 

Higher anxiety levels were shown in old mice compared to young mice, 

which may be also associated with brain vascular and metabolic dysfunctions 

[258-260]. Interestingly, the gut microbiome has been linked with anxiety [141]. 

Indeed, the gut and brain are connected via the enteric nervous system and have 

bi-directional communication, impacting behavior [300]. Certain bacterial species 

such as L. rhamnosus have been demonstrated to decrease anxiety like 
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symptoms and stress induced hormones [88]. Studies using oral administration 

of food-borne pathogens showed evidence that bacteria residing in the 

gastrointestinal tract can activate stress circuits through activation of vagal 

pathways [301, 302]. Exposure to a subpathogenic infection of C. jejuni 

increased anxiety-like behavioral measure in the EPM two days after infection 

[303]. These studies clearly demonstrated that inflammatory state could have 

strong influences on behavior and mental health. Conversely, treating mice with 

probiotics has been shown to reduce anxiety-like behavior; the probiotic-treated 

group showed increased entries into the open arms of the EPM compared to the 

control group [304]. Further confirming the importance of the gut microbiome in 

relation to stress, one study demonstrated germ-free mice to have an excessive 

release of stress hormones. However, when these mice were colonized with 

Bifidobacterium infantis, this response was alleviated [305]. Similar observations 

were also made in clinical trials in patients with chronic fatigue, showing that 

anxiety-like symptoms were alleviated by probiotics [306]. The study findings 

may be applicable to AD as increased anxiety levels and depression are 

commonly found preceding the onset of AD [225]. Modulating the gut microbiome 

may thus be important for reducing risk or preventing AD and other 

neurodegenerative disorders [307-310]. 

We summarize our findings with Figure 5. It shows that advancing age 

drives deleterious modifications in metabolism, gut microbiome, neurovascular 

integrity, cognition, and mental health, which may significantly enhance the risk 

for AD. Our study implies that inflammation may play a critical role in the 
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remodeling process. This is consistent with the concept of inflammaging, the 

phenomenon where innate immunity is activated, coupled with the rise of 

proinflammation with advancing age [311]. We suggest that, based on our 

results, the inflammatory responses with age are systematic; they may be 

originated from the CNS as well as the peripheral systems, e.g., from the gut. To 

promote healthy aging and prevent AD, it will thus be critical to manage low-

grade, chronic proinflammation over time. 

In future studies, it is important to determine mechanisms linking the brain 

and gut in the context of brain aging, including pathways involved in SCFAs, 

neurotransmitters, vagus nerve activity, and immune system function. As well as, 

to identify potential nutritional interventions that can promote brain-gut 

interactions, such as probiotics and prebiotics.  

We have recently shown that dietary interventions can delay brain aging 

(e.g., caloric restriction and rapamycin) and thus, it will be crucial in the future to 

determine if these dietary interventions also have a significant impact on the 

brain-gut axis [129, 133, 312]. In addition, it will be imperative to develop 

surrogate biomarkers using neuroimaging. In the present study, we used MRI to 

measure in vivo CBF, but we have also developed imaging methods to determine 

brain metabolic and anatomical integrity [313, 314]. Further, we will also use this 

state-of-the-art technology to study brain-gut axis and make our research 

strategy translatable to clinical applications. 

In conclusion, we found the inflammation-associated impact on brain 

metabolism, gut microbiome, neurovascular functions, memory, and anxiety in 
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aging mice. However, additional research needs to be conducted on the gut 

microbiome and mechanisms of the gut-brain axis. Understanding brain aging is 

imperative to identify risks, and intervention thereof, for AD. A comprehensive 

and integrative characterization of brain aging, including its crosstalk with 

peripheral systems and factors, will help to define the mechanisms underlying the 

shift from normal aging to pathological processes in the etiology of AD [309, 

310].  
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Table 7-1 Enhanced proinflammatory metabolism with age 

 

  

Classification Metabolite P Young  Old  

Amino Acids creatine 0.003 0.990 ± 0.022 1.101 ± 0.017 

 cystathionine 0.026 0.943 ± 0.072 1.316 ± 0.174 

 cysteine 0.007 1.023 ± 0.138 1.873 ± 0.262 

 cysteine-glutathione disulfide 0.013 1.008 ± 0.132 1.736 ± 0.267 

 methionine 0.001 0.915 ± 0.047 1.204 ± 0.015 

 phenylalanine 0.002 0.917 ± 0.042 1.255 ± 0.085 

 spermidine 0.016 0.910 ± 0.059 1.436 ± 0.238 

Cofactors & Vitamins citrate 0.008 0.867 ± 0.099 1.860 ± 0.381 

Lipids 24(S)-hydroxycholesterol 0.025 0.939 ± 0.027 1.135 ± 0.098 

 CDP-choline 0.037 1.002 ± 0.014 0.944 ± 0.028 

 docosapentaenoate (n6 DPA; 
22:5n6) 0.007 0.994 ± 0.019 1.215 ± 0.085 

 mead acid (20:3n9) 0.025 1.070 ± 0.068 1.367 ± 0.122 

 phosphocholine 0.024 1.076 ±0.029 1.206 ± 0.054 

 prostaglandin D2 0.009 0.682 ± 0.087 1.238 ± 0.193 

 prostaglandin E2 0.007 0.746 ± 0.076 1.341 ± 0.207 
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Table 7-1 Enhanced proinflammatory metabolism with age 

Metabolomic profiling of brain metabolites. Representative data, shown in 

scaled intensity, of the young and old groups. Data are mean ± SEM. 
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Figure 7-1 Altered gut microbiome and increased body weight with age 
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Figure 7-1 Altered gut microbiome and increased body weight with age 
 

(A) The old mice showed a higher alpha-diversity, as indicated by the 

Shannon index, than the young mice (p = 0.02). Compared with the young mice, 

the old mice had significantly increased (B) Firmicutes/Bacteroidetes ratio and 

(C) body weight. N= 39 and 28 for young and old mice, respectively. Data are 

presented as mean ± SEM. 
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Figure 7-2 Age increases inducible nitric oxide synthase (iNOS) 
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Figure 7-2 Age increases inducible nitric oxide synthase (iNOS) 

(A) The old mice had a significant increase in iNOS in the brain compared 

to the young mice (N = 7-8 per group). The old mice had acute elevations (2 

hours after feeding) in (B) 3-indoxyl sulfate and (C) phenol sulfate; those levels 

returned to baseline in 4 hours (N = 6 and 4 for young and old mice, 

respectively). 
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Figure 7-3 Impaired neurovascular functions with age 
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Figure 7-3 Impaired neurovascular functions with age 

(A) Representative confocal images showing decreased luminal 

accumulation of NBD-CSA fluorescence (green) in brain capillaries isolated from 

the old mice compared to young mice, indicating reduced P-gp activity. (B) 

Corresponding quantitative fluorescence data; images are shown in arbitrary 

fluorescence units (scale 0-255). Data are mean ± SEM for 10 capillaries from 

one preparation of 10 mice. (C) Western blotting (WB) for P-gp from the cortical 

vasculature, β-Actin was used as loading control (top); corresponding values are 

shown in the table (bottom). The WB data from the old mice were normalized to 

β-Actin and compared to the young mice (100%), **p < 0.01. (D) CBF maps 

superimposed on structural images; the color code indicates the level of CBF in a 

linear scale. Quantitative CBF (ml/g/min) obtained from (E) the whole brain and 

(F) hippocampus (N = 12 per group). Data are mean ± SEM. 
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Figure 7-4 Compromised cognition and increased anxiety with age 
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Figure 7-4 Compromised cognition and increased anxiety with age 
 

(A) The elevated plus maze found the old mice to have a significantly higher 

closed arm duration compared to the young group. (B) The novel object 

recognition test found the old group had a significantly lower recognition index, or 

D2, than the young group. (C) The average errors made by the young and old 

mice during the radial arm water maze split into 6 blocks. The significant 

difference between the two groups in average errors corrected showing in Block 

3 (p = 0.0307) and Block 4 (p = 0.0045). N = 22 and 18 for young and old mice, 

respectively. Data are presented as mean ± SEM. 
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Figure 7-5 Association of age-dependent changes 
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Figure 7-5 Association of age-dependent changes 
 

Proposed associations of age-dependent changes in brain metabolism, 

vascular integrity, gut microbiome, cognition and anxiety levels. Inflammation in 

aging, or inflammaging, might play a critical role in be a driving the deleterious 

changes in the brain and gut. 
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