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The dispersion law for plasma oscillations in a two-dimensional electron gas in the hydrodynamic
approximation interpolates between Ω ∝ ffiffiffi

q
p

and Ω ∝ q dependences as the wave vector q increases. As a
result, downstream of a charged impurity in the presence of a uniform supersonic electric current flow, a
wake pattern of induced charge density and potential is formed whose geometry is controlled by the Mach

number M. For 1 < M ≤
ffiffiffi
2

p
, the wake consists of transverse wave fronts confined within a sector, whose

angle is given by the classic Mach condition. An additional wake of a larger angle resembling the Kelvin
ship wake, and consisting of both transverse and diverging wave fronts, is found outside the Mach sector

forM >
ffiffiffi
2

p
. These wakes also trail an external charge, traveling supersonically, a fixed distance away from

the electron gas.

DOI: 10.1103/PhysRevLett.120.226801

An object uniformly moving, relative to a medium, gives
rise to a series of effects ranging from the formation of a
Mach shock wave cone behind a supersonic projectile [1]
and Cherenkov radiation emitted by a rapidly moving
charge [2], to the creation of wakes on a water surface by
ships [3]. One feature that these effects have in common is
that the interaction between the object and the medium
triggers the coherent emission of collective excitations of
the medium, which combine constructively to form the
wake [4]. Here, we describe the coherence effect wherein
plasma waves, emitted by a two-dimensional (2D) electron
gas, form a wake pattern resembling both Mach and ship
wakes [3]. Hereafter, we speak of the electron gas; the
theory for the gas of holes is the same.
The starting point of our analysis is an expression for the

dynamical dielectric function of the 2D electron gas in the
hydrodynamic approximation, which, neglecting the effects
of dissipation and retardation, is given by [5,6]:

ϵðω;qÞ ¼ ω2 −Ω2ðqÞ
ω2 − s2q2

; ð1Þ

where ω is the frequency, ΩðqÞ is the frequency of plasma
oscillations as a function of the wave vector q,

Ω2ðqÞ ¼ gqþ s2q2; ð2Þ
and q ¼ jqj. This description encompasses systems ranging
from those whose electrons obey parabolic [5,6] to linear
(graphene) dispersion laws [7]. The material parameters,
g ¼ 2πne2v2F=κζðnÞ (a characteristic acceleration) and s ¼
vFð∂p=∂εÞ1=2 (the speed of sound), are determined by the
equilibrium electron number density n, the equation of state
in the neutral limit [entering via the density dependence of
the chemical potential ζðnÞ and the energy density

dependence of the pressure pðεÞ], the background dielectric
constant κ, and the limiting (Fermi) velocity vF [8].
In the long-wavelength limit q → 0, the spectrum (2) is

formally the same as that of gravity waves on deep water,
Ω2ðqÞ ¼ gq [3] (where, in this context, g is the free-fall
acceleration), an observation due to Dyakonov and Shur
[9]. Since plasma oscillations are classical in nature [8], a
series of effects analogous to classical waves on water are
then expected in electron layers.
One of the most familiar manifestations of theΩðq→0Þ∝ffiffiffi
q

p
dispersion law in fluidmechanics is theKelvinwake that

trails a traveling pressure source: the 39° angle of thewake is
independent of the source velocity and has a characteristic
“feathered” pattern [3]. One thenmight infer that an external
charge traveling nonrelativistically, a fixed distance away
from the plane of the electron system, disturbs the latter in
the form of an “electron” Kelvin wake. Such a conclusion
was recently made in the literature in the context of doped
graphene [10]; it is misleading because it overlooks a crucial
deviation from the strict

ffiffiffi
q

p
dispersion law. The same

criticism applies to a conjecture that a stationary Kelvin
wake should be formed downstream from a defect in the 2D
electron gas in the presence of a current [11]. A wake is
formed behind a moving source whenever there is a mode
whose phase velocity matches the speed of the source [the
precise statement is given by Eq. (9) below]. For a strictlyffiffiffi
q

p
dispersion law, such a mode can always be found no

matter what the speed of the source. However, the spectrum
of plasma oscillations (2) deviates from the

ffiffiffi
q

p
law, and the

phase velocityΩ=q is always above the speed of the sound s,
which is thus the critical velocity for wake formation in 2D
electron systems. If the acceleration g in Eq. (2) were zero,
the wake pattern would resemble that formed behind a
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supersonic projectile, with a wake angle determined by the
Mach number M ¼ v=s [1], where v is the speed of the
source. For a finite Mach number, one would then expect a
pattern sharing features of both the Kelvin andMach wakes,
hereafter called the Kelvin-Mach wake.
In an earlier study, Fetter [6] has analyzed various

aspects of the electromagnetic response of an electron
layer to a moving charge. However, the problem was solved
in the Fourier representation, and the real space pattern of
the induced charge and potential were not addressed.
Our goal is to solve for the geometry of the wake induced

by the moving charge. This is done by focusing on the case
when the external charge is in the plane of the electron
system. Since only the relative motion of the charge and the
medium matters, in practice, this situation can be realized
by subjecting an electron layer with an embedded Coulomb
impurity to a supersonic current flow.
Supersonic flows are experimentally accessible, as we

will now show.
The speed of sound s is less than the Fermi velocity vF,

but it typically has the same order of magnitude.
For a parabolic dispersion law, it can be estimated as

s≃vF≃cðm0=137mÞaB
ffiffiffi
n

p
, where m0 is the electron mass

in a vacuum and aB is the Bohr radius. For m0=m¼10 and
n¼1012 cm−2, the speed of sound can be estimated as
s≃106 cm=s. This large value can be attained at a low
temperature, where the mobility can be as large as
104 cm2=ðV sÞ [5]. The required electric field would be
102 V=cm, which is five orders of magnitude smaller than
the dielectric breakdown field of the SiO2 insulating layer,
common to various practical realizations of electron layer
systems [5].
Similarly, in graphene (a linear dispersion material), the

Fermi velocity is two orders of magnitude smaller than the
speed of light, but the electron mobility is of the order
105 cm2=ðV sÞ [12], which translates into a 103 V=cm
electric field needed to propel graphene’s electrons past
the speed of sound. There exists direct experimental
evidence [13] that the saturation velocity in graphene on
SiO2 above room temperature exceeds 3 × 107 cm=s at a
low carrier density, while the intrinsic graphene saturation
velocity could be more than twice the quoted value.
The ratio d ¼ s2=g (the Debye screening length of the

electron gas [5]) sets the length scale of the effects to be
discussed. It is of the order 10−6 cm (and weakly doping
dependent) in materials with a parabolic dispersion law [5]
and of the order κ=

ffiffiffi
n

p
in graphene [12].

There is a further advantage of studying graphene rather
than the electron layers of the past [5]. Charged impurities
can be embedded into graphene in a controlled manner
[14], and high-resolution, noninvasive imaging of charge
currents in graphene structures [15] can be employed to
directly observe the electron Kelvin-Mach wake; in other
systems, the formation of the wake can only be inferred
indirectly from the onset of nonzero wave resistance.

We will be studying the electromagnetic response of an
electron layer to an external potential φextðr; tÞ, where r is
the position within the layer and t is the time; the
dependence on these quantities is in response to an external
charge (number) density nextðr; tÞ. Their Fourier trans-
formations are related by the Coulomb law φextðω;qÞ ¼
2πenextðω;qÞ=κq [5,6]. According to the linear response
theory, the Fourier components of the induced density
ninðω;qÞ and induced potential φinðω;qÞ are given by

ninðω;qÞ¼
�

1

ϵðω;qÞ−1

�
nextðω;qÞ¼

gqnextðω;qÞ
ω2−Ω2ðqÞ ; ð3Þ

φinðω;qÞ¼
�

1

ϵðω;qÞ−1

�
φextðω;qÞ¼

2πeg
κ

nextðω;qÞ
ω2−Ω2ðqÞ :

ð4Þ

Inverting the Fourier transformations, we find the
electromagnetic response in the direct space and time
representation

ninðr; tÞ ¼ g
Z

d2qdω
ð2πÞ3

qnextðω;qÞeiðq·r−ωtÞ
ðωþ i0Þ2 − Ω2ðqÞ ; ð5Þ

φinðr; tÞ ¼
2πeg
κ

Z
d2qdω
ð2πÞ3

nextðω;qÞeiðq·r−ωtÞ
ðωþ i0Þ2 −Ω2ðqÞ ; ð6Þ

where ω in the denominators of the integrands is endowed
with an infinitesimally small, positive imaginary part
(ω → ωþ i0) to guarantee the analyticity of the integrands
in the upper half plane of complex ω [2]. A unit external
charge, moving with a constant velocity v within the layer,
is described by nextðr; tÞ ¼ δðr − vtÞ, whose Fourier trans-
formation is nextðω;qÞ ¼ 2πδðω − q · vÞ. Substituting this
into Eqs. (5) and (6), and changing the frame of reference to
that of the charge, r − vt → r, we find

ninðrÞ ¼ g
Z

d2q
ð2πÞ2

qeiq·r

ðq · v þ i0Þ2 −Ω2ðqÞ ; ð7Þ

φinðrÞ ¼
2πeg
κ

Z
d2q
ð2πÞ2

eiq·r

ðq · v þ i0Þ2 −Ω2ðqÞ : ð8Þ

This is the electrodynamic response of the electron layer
having an initially uniform flow velocity −v to a point
Coulomb impurity of a unit charge fixed at the origin or,
equivalently, to a traveling charge in the comoving refer-
ence frame.
For v ¼ 0, Eqs. (7) and (8) describe the static screening

response of the electron layer to a point charge [5,6]. Slow
motion (v < s) brings anisotropy to the response, but no
other qualitative changes occur because the denominators of
the integrands in Eqs. (7) and (8) cannot vanish forq real; the
þi0 frequency shift in the integrands is unimportant. This
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regime, where no plasma waves are emitted, will be
discussed elsewhere. However, when v exceeds the speed
of sound, the denominators of the integrands in Eqs. (7) and
(8) canvanish; integrals (7) and (8) are dominated by the real
wave vectors q, given by the solutions to

ΩðqÞ ¼ �q · v: ð9Þ

The response pattern is now qualitatively different, and the
presence of the þi0 shift is required to supply a rule for
bypassing the poles of the integrands inEqs. (7) and (8). This
regime is our focus. For the special case of a charge moving
through a medium, with a velocity exceeding the phase
velocity of light, the condition (9) is encountered in the
theory of the Cherenkov effect [2]. In its general form,
Eq. (9) was given by Landau as a threshold for the emission
of elementary excitations by a superfluid flowing along a
capillary [16].
The theory is linear, the source has zero range, and the

wake is stationary in the reference frame of the source.
Then, dimensional analysis implies that the spatial scale of
the pattern can only depend on the parameters of the
spectrum g and s (2), and the velocity of the source v:
(i) For s ¼ 0 (the Kelvin wake), the only parameter having
dimensions of length that can be formed out of g and v is
the characteristic length scale of the wake, λ ¼ v2=g.
Measuring the length in units of λ, density in units of
1=λ2, and potential in units of e=κλ eliminates all of the
parameters from the problem. Thus, all Kelvin wakes are
geometrically similar. While this argument does not supply
the value of the wake angle, it does predict that it is
independent of v and g. (ii) For s ≠ 0 (the Kelvin-Mach
wake), two independent length scales can be formed out of
the parameters of the problem: λ ¼ v2=g and d ¼ s2=g (the
Debye screening length). Their ratio, λ=d ¼ v2=s2 ¼ M2,
is the square of the Mach number; once this is fixed, either λ
or d may be used to characterize the length scale of the
wake. Measuring the length in units of d, the density in
units of 1=d2, and the potential in units of e=κd eliminates
all of the parameters from the problem, except for the Mach
number. Thus, all the Kelvin-Mach wakes of the same
Mach number M ¼ v=s are geometrically similar.
Even though the Fourier integrals (7) and (8) cannot be

computed in a closed form, the geometry of the wake
pattern can be inferred with the help of Kelvin’s method of
stationary phase [3]. The idea is that when the phase factor
f ¼ q · r in the integrands in (7) and (8) varies rapidly with
q, the exponentials are highly oscillatory so that contribu-
tions from various elements d2q cancel each other; this is
the case of destructive interference with almost zero net
result. This cancelation, however, will not occur for the
wavelengths for which f is stationary with respect to q
[which is additionally restricted by the Cherenkov-Landau
condition (9)]; this is the case of constructive interference.
Since the integrands of the induced charge (7) and potential

(8) differ by a smooth factor of q, the two wake patterns
have the same geometry.
Let us choose the positive x direction along the velocity

vector v and measure length in units of the Debye screening
length d ¼ s2=g. The trace of the external charge divides the
plane into two regions related to one another by reflection;
without the loss of generality, we can focus on the y > 0
half-space. Here, the wake is formed by a superposition of
the waves, whose wave vectors have positive components,
qx;y > 0. Then the phase f ¼ q · r is given by

f ¼ f2ðM2 − 1Þq2y þ 1þ ½1þ 4ðM2 − 1ÞM2q2y�1=2g1=2
ðM2 − 1Þ ffiffiffi

2
p x

þ qyy; ð10Þ

where instead of qx, we substituted the positive solution of
the Cherenkov-Landau equation (9) corresponding to the
plasma spectrum (2). Direct inspection of Eq. (10) shows
that the condition of stationary phase df=dqy ¼ 0 can only
be satisfied for x < 0, which is where the wake is. In terms
of a new variable z ¼ ½1þ 4ðM2 − 1ÞM2q2y�1=2 ≥ 1, the
expression for the phase (10) can be transformed into

f ¼ ðz2 − 1Þ1=2
2MðM2 − 1Þ1=2

� ðz − 1þ 2M2Þ1=2
ðM2 − 1Þ1=2ðz − 1Þ1=2 xþ y

�
: ð11Þ

The condition of the stationary phase f0ðzÞ ¼ 0 now
becomes

−
y
x
¼ 1

ðM2 − 1Þ1=2
ðz − 1Þ1=2ðzþM2Þ
zðz − 1þ 2M2Þ1=2 : ð12Þ

Since the phase f is constant along the wave front, Eqs. (11)
and (12) can be solved relative to x and y to give the equation
for the wave front in a parametric form:

xðzÞ ¼ 2fðM2 − 1Þ
M

zðz − 1þ 2M2Þ1=2
ðzþ 1Þ3=2 ; ð13Þ

yðzÞ ¼ −
2fðM2 − 1Þ1=2

M
ðzþM2Þðz − 1Þ1=2

ðzþ 1Þ3=2 : ð14Þ

We now see that internal consistency of the argument
requires the phase to be negative, f < 0.
As in Kelvin’s case [3], the range of applicability of the

method of stationary phase limits our analysis to large
distances r from the source, which in the original units of
length means r ≫ d ¼ s2=g.
To put the consequences of Eqs. (12)–(14) into perspec-

tive, we begin with the Kelvin case s ¼ 0, which corre-
sponds to M ¼ ∞. In this limit, Eq. (12) simplifies to
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−
y
x
¼ ðz − 1Þ1=2ffiffiffi

2
p

z
; ð15Þ

whose right-hand side vanishes at z ¼ 1, z → ∞, and
reaches a maximum value of 1=2

ffiffiffi
2

p
in between.

Therefore, the equation of the stationary phase (15) has
one solution for −y=x ¼ 0, two solutions for 0 < −y=x <
1=2

ffiffiffi
2

p
coalescing at −y=x ¼ 1=2

ffiffiffi
2

p
, and none for

−y=x > 1=2
ffiffiffi
2

p
. The angle between the wake edges is

2 arctanð1=2 ffiffiffi
2

p Þ ≈ 39°, which is Kelvin’s classic result [3].
In order to take the Kelvin s ¼ 0 limit in Eqs. (13) and

(14), we temporarily restore the original units of length,
ðx; yÞ → ðx; yÞ=d ¼ ðg=s2Þðx; yÞ, followed by selecting
λ ¼ v2=g as a new unit of length with the result

xðzÞ ¼ 2
ffiffiffi
2

p
fz

ðzþ 1Þ3=2 ; yðzÞ ¼ −
2fðz − 1Þ1=2
ðzþ 1Þ3=2 : ð16Þ

A series of these wave fronts is shown in Fig. 1, where, for
the purpose of illustration, we chose f ¼ −2πðlþ 1=2Þ,
l ¼ 0, 1, 2; the y < 0 part of the wake is obtained by
reflection. The wake consists of the so-called transverse
wave fronts ABC, connecting the edges of the pattern
across the central line y ¼ 0, and the diverging wave fronts
AO and CO, connecting the source at the origin to the
edges of the pattern [3]. The two wave fronts meet at A and
C at the edges of the pattern.
For a finiteM, the right-hand side of Eq. (12) vanishes at

z ¼ 1 and approaches ðM2 − 1Þ−1=2 as z → ∞; the inter-
mediate behavior depends on the Mach number: (i) When
1 < M ≤

ffiffiffi
2

p
, the right-hand side of Eq. (12) is a mono-

tonically increasing function of z. Thus, the equation of
stationary phase (12) has one (transverse) solution for 0 ≤
−y=x < ðM2 − 1Þ−1=2 and none for −y=x ≥ ðM2 − 1Þ−1=2.
Therefore, the angle of the wake is 2 arctanðM2 − 1Þ−1=2,
which is Mach’s classic result [1]. A series of wave fronts,

(13) and (14), employing the same choice for the phase f as
in Fig. 1, is shown in Fig. 2. Thewake consists of transverse
wave fronts ABC connecting the edges of the pattern. We
stress that in view of the dispersion relation (2), the wake is
not the classic Mach wake; the wave fronts of the latter,
y=x ¼ �ðM2 − 1Þ−1=2, coincide with its geometrical boun-
dary [1]. (ii) WhenM >

ffiffiffi
2

p
, the right-hand side of Eq. (12)

has a maximum ðM2þ1Þ3=2=ð2M2−1Þ3=2 at z¼ð2M2−1Þ=
ðM2−2Þ. Now the equation of stationary phase (12) has one
(transverse) solution for 0 ≤ −y=x < ðM2 − 1Þ−1=2, two
(transverse and diverging) solutions for ðM2 − 1Þ−1=2 ≤
−y=x < ðM2 þ 1Þ3=2=ð2M2 − 1Þ3=2 coalescing at −y=x ¼
ðM2 þ 1Þ3=2=ð2M2 − 1Þ3=2, and none for −y=x >
ðM2 þ 1Þ3=2=ð2M2 − 1Þ3=2. The wake pattern shown in
Fig. 3 is confined within a sector of angle

ϕðMÞ ¼ 2 arctan
ðM2 þ 1Þ3=2
ð2M2 − 1Þ3=2 ð17Þ

FIG. 1. Wave fronts of the Kelvin wake, Eq. (16), with the
source at the origin traveling to the right. The wake is confined
within the shaded light blue 39° wedge; the unit of length is
λ ¼ v2=g.

FIG. 2. Wave fronts of the Kelvin-Mach wake for 1 < M ≤
ffiffiffi
2

p
,

Eqs. (13) and (14), with an external charge at the origin
traveling to the right. The wake consists of transverse wave
fronts confined within shaded light green Mach sector of angle
2 arctanðM2 − 1Þ−1=2, the unit of length is the Debye screening
length d ¼ s2=g, and M ¼ 1.4 was employed to produce the
drawing.

FIG. 3. Same as in Fig. 2 for M >
ffiffiffi
2

p
. Additionally, both

transverse and diverging wave fronts are present in the region
shaded light blue outside the Mach sector. The angle of the wake
is given by Eq. (17), and M ¼ 4 was employed to produce the
drawing.
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that is wider thanMach’s. In addition to the transverse wave
fronts ABC connecting the edges of the pattern, the
diverging wave fronts, AD and CE, are also found outside
the Mach (light green) sector; the region with two types of
wave fronts present is shaded light blue. In contrast to the
Kelvin wake (Fig. 1), divergent wave fronts connect the
edges of the Kelvin-Mach wake to the boundaries of the
Mach sector, a consequence of the z → ∞ limit of Eqs. (12)–
(14). As M increases, the Mach sector becomes narrow,
closing as M → ∞, while the wake angle (17) decreases,
approaching Kelvin’s limit of ϕð∞Þ ¼ 2 arctanð1=2 ffiffiffi

2
p Þ. It

is expected that the appearance of the diverging wave fronts
forM >

ffiffiffi
2

p
will be accompanied by a noticeable increase of

the wave resistance.
To summarize, our analysis has uncovered intricate wake

patterns that can be produced in 2D electron systems that
we hope will be observed in future experiments.

We thank G. Rousseaux and M. I. Dyakonov for inform-
ing us of Refs. [4,11], and M. I. Dyakonov and E. Y. Andrei
for valuable comments.
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