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4Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
5Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

(Received 6 November 2017; published 1 May 2018)

Renormalization constants (RCs) of overlap quark bilinear operators on 2þ 1-flavor domain wall fermion
configurations are calculated by using the RI/MOM and RI/SMOM schemes. The scale independent RC for
the axial vector current is computed by using aWard identity. Then the RCs for the quark field and the vector,
tensor, scalar, and pseudoscalar operators are calculated in both the RI/MOM and RI/SMOM schemes. The
RCs are converted to the MS scheme and we compare the numerical results from using the two intermediate
schemes. The lattice size is 483 × 96 and the inverse spacing 1=a ¼ 1.730ð4Þ GeV.
DOI: 10.1103/PhysRevD.97.094501

I. INTRODUCTION

With the setup of overlap valence on domain wall
fermion (DWF) configurations, the χQCD Collaboration
has been determining the strangeness and charmness in
the nucleon [1], the charm and strange quark masses [2],
and other physical quantities of interests. These works are
based on RBC-UKQCD DWF configurations with lattice
sizes 243 × 64 (24I) and 323 × 64 (32I) [3,4]. To shrink
uncertainties from chiral extrapolations in calculations
at unphysical light quark masses, the RBC-UKQCD
Collaborations have generated configurations at the physi-
cal pion mass on 483 × 96 lattices [5]. On this gauge
ensemble labeled as 48I, the χQCD Collaboration is
studying the ρ resonance [6], nucleon magnetic moment
[7,8], and decay constants of pseudoscalar and vector
mesons [9]. To link hadronic matrix elements computed
on the lattice to the continuum world, we need the RCs for
the corresponding operators. In this paper we present our

calculation of the RCs for the flavor nonsinglet scalar (S),
pseudoscalar (P), vector (V), axial vector (A) and tensor (T)
currents of overlap valence quark on the 48I ensemble. The
quark field RC is also obtained.
The RI/MOM scheme [10] is a popular nonperturbative

method to calculate RCs in lattice calculations. The results
are then converted to the MS scheme by using conversion
ratios from perturbation theory. With the shrink of stat-
istical uncertainties in RCs of flavor nonsinglet quark
bilinears, the truncation error in the conversion ratio from
the RI/MOM scheme to the MS scheme starts to dominate
the total uncertainty of the RC ZSð¼ 1=ZmÞ. To reduce this
truncation error, the RI/SMOM scheme [11,12] was pro-
posed in which unexceptional or symmetric momentum
modes are used when calculating vertex functions of
operators. The conversion ratio from the RI/SMOM scheme
to the MS scheme for the scalar density was shown to
converge much faster than in the case of RI/MOM scheme
[13,14]. Also, the nonperturbative effects from chiral
symmetry breaking and other infrared effects are expected
to be more suppressed in the RI/SMOM scheme [11].
In this work we compute the aforementioned RCs by

using both the RI/MOM and RI/SMOM schemes. In the
end the RCs are converted to the MS scheme. The
numerical results are compared to try to see the advantages
and shortcomings of the two intermediate schemes. After
converting to the MS scheme, we perform perturbative

*biyujiang@ihep.ac.cn
†hcai@whu.edu.cn
‡liuzf@ihep.ac.cn

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 97, 094501 (2018)

2470-0010=2018=97(9)=094501(18) 094501-1 Published by the American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.97.094501&domain=pdf&date_stamp=2018-05-01
https://doi.org/10.1103/PhysRevD.97.094501
https://doi.org/10.1103/PhysRevD.97.094501
https://doi.org/10.1103/PhysRevD.97.094501
https://doi.org/10.1103/PhysRevD.97.094501
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


runnings and give the results at 2 GeV for the scale
dependent RCs Zq, ZS, ZP and ZT . Throughout this paper
we use the conventions below for the RCs of the quark
field, quark mass and bilinear operators:

ψR ¼ Z1=2
q ψR; mR ¼ ZmmB; OR ¼ ZOOB; ð1Þ

where the subscripts R and B denote the renormalized and
bare quantities respectively.
This paper is organized as follows. In Sec. II we give our

framework of the calculation, including the definitions of
the renormalization schemes, our overlap fermion Dirac
operator and the information of the gauge configurations.
Section III shows the computation details, the numerical
results and discussions. Finally we summarize in Sec. IV.

II. FRAMEWORK OF OUR CALCULATION

In both the RI/MOM and RI/SMOM schemes, the
renormalization condition for an operator is imposed on
its amputated Green function in the vanishing quark mass
limit. The Green function GO is computed between two
external off-shell quark states in Landau gauge. If using a
point source quark propagator, one has

GOðp1; p2Þ ¼
X
x;y

e−iðp1·x−p2·yÞhψðxÞOð0Þψ̄ðyÞi; ð2Þ

where O ¼ ψ̄Γψ with Γ ¼ I, γ5, γμ, γμγ5, σμνð¼ 1
2
½γμ; γν�Þ.

The amputated Green function is then

ΛOðp1; p2Þ ¼ S−1ðp1ÞGOðp1; p2ÞS−1ðp2Þ; ð3Þ

where the quark propagator SðpÞ in momentum space is

SðpÞ ¼
X
x

e−ip·xhψðxÞψ̄ð0Þi: ð4Þ

In the RI/MOM scheme, one uses the forward Green
function. That is to say, the momenta satisfy p1 ¼ p2 ¼ p.
The renormalization condition is imposed at the scale
p2
1 ¼ p2

2 ¼ p2 ¼ μ2 by

lim
mR→0

Z−1
q ZO

1

12
Tr½ΛO;BðpÞΛtree

O ðpÞ−1�p2¼μ2 ¼ 1; ð5Þ

where the subscript B stands for bare and the projector
Λtree
O ðpÞ ¼ Γ for the quark bilinears considered in this

work. The quark field RC in the RI/MOM scheme is
determined by

ZRI=MOM
q ðμÞ ¼ lim

mR→0

−i
48

Tr

�
γν
∂S−1ðpÞ
∂pν

�
p2¼μ2

; ð6Þ

which is compatible with the vector Ward-Takahashi
identity. To avoid the inconvenience caused by the

derivative with respect to the discretized momenta on the
lattice, we use the RC for the local axial vector current
ZRI=MOM
A as the input to calculate other RCs. For example,

from Eq. (5) the quark field RC can be obtained by

ZRI=MOM
q ¼ ZRI=MOM

A lim
mR→0

1

12
Tr½ΛA;BðpÞΛtree

A ðpÞ−1�p2¼μ2 :

ð7Þ

At large μ the renormalization condition for ZRI=MOM
A is

compatible with the axial vector Ward-Takahashi identity
[10]. Thus ZRI=MOM

A equals to a value ZWI
A obtained from

some Ward identity on hadron states. In our work below,
we shall use the partially conserved axial current (PCAC)
relation to determine ZWI

A . We will also use the relation

ZWI
A ¼ ZMS

A in this work since the MS scheme is consistent
with the chiral Ward identities too.
In the RI/SMOM scheme [12], one uses the symmetric

momentum configuration

q2 ≡ ðp1 − p2Þ2 ¼ p2
1 ¼ p2

2 ¼ μ2 ð8Þ

when fixing the RCs at the scale μ. The projectors for the
amputated Green functions of the scalar, pseudoscalar and
tensor currents are the same as those in the RI/MOM
scheme. But for the vector and axial vector currents the
conditions are [12]

lim
mR→0

Z−1
q ZV

1

12q2
Tr½qμΛμ

V;Bðp1; p2Þq�sym ¼ 1; ð9Þ

lim
mR→0

Z−1
q ZA

1

12q2
Tr½qμΛμ

A;Bðp1; p2Þγ5q�sym ¼ 1: ð10Þ

Here the subscript “sym” denotes the symmetric momen-
tum configuration in Eq. (8). The quark field RC in the
RI/SMOM scheme is given by

ZRI=SMOM
q ¼ lim

mR→0

1

12p2
Tr½S−1B ðpÞp�p2¼μ2 ; ð11Þ

which is the same as that in the RI’/MOM scheme [10].
The conditions in Eqs. (9), (10), and (11) are compatible
with the vector and axial vector Ward-Takahashi identities
[12]. Therefore one has ZRI=SMOM

A ¼ ZWI
A . Then by using

Eq. (10), we can, alternatively, obtain

ZRI=SMOM
q ¼ lim

mR→0
ZWI
A

1

12q2
Tr½qμΛμ

A;Bðp1;p2Þγ5q�sym: ð12Þ

In using the RI/MOM and RI/SMOM schemes in
practical lattice calculations at a lattice spacing a, one
needs a renormalization window
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ΛQCD ≪ μ ≪ π=a; ð13Þ

in which both the infrared effects from chiral symmetry
breaking and the ultraviolet effects from the lattice cutoff
are small. Also perturbation theory can only apply at large
enough momentum scale for calculating the conversion
ratios of RCs to the MS scheme.
We use overlap fermions [15] as the valence quark. Our

massless overlap operator is given by

DovðρÞ ¼ 1þ γ5εðγ5DwðρÞÞ; ð14Þ

where ε is the matrix sign function and DwðρÞ is the usual
Wilson fermion operator, except with a negative mass
parameter −ρ ¼ 1=2κ − 4 in which κc < κ < 0.25. κ is set
to 0.2 in our calculation, which corresponds to ρ ¼ 1.5. The
massive overlap Dirac operator is defined as

Dm ¼ ρDovðρÞ þm

�
1 −

DovðρÞ
2

�

¼ ρþm
2
þ
�
ρ −

m
2

�
γ5εðγ5DwðρÞÞ: ð15Þ

To accommodate the SU(3) chiral transformation, we use
the chirally regulated field ψ̂ ¼ ð1 − 1

2
DovÞψ in place of ψ

in the interpolation field and the currents. This amounts to
leave the unmodified currents and instead adopt the
effective propagator

G≡D−1
eff ≡

�
1 −

Dov

2

�
D−1

m ¼ 1

Dc þm
; ð16Þ

where Dc ¼ ρDov
1−Dov=2

is chiral, i.e., fγ5; Dcg ¼ 0 [16]. With
the good chiral properties of overlap fermions, we should
expect ZS ¼ ZP and ZV ¼ ZA. These relations are indeed
satisfied within uncertainties by our numerical results as
will be shown later. We also expect that the RI/SMOM
results satisfy these relations better than the RI/MOM
results since the RI/SMOM scheme suppresses more non-
perturbative effects from chiral symmetry breaking.
The gauge configurations that we use in this work are

from the RBC-UKQCD Collaborations [5]. 2þ 1-flavor
domain wall fermions were used as the sea quarks in
generating these configurations. The light sea quark mass is
essentially at the physical point. The lattice size is 483 × 96
and the inverse lattice spacing is 1=a ¼ 1.730ð4Þ GeV.
This ensemble is called 48I by the RBC-UKQCD
Collaborations. The parameters of these configurations
are collected in Table I.
We may expect that our results of the RCs in the

RI/MOM and in the MS schemes will be in consistency
with our previous calculation of the RCs on the 24I
ensemble [17]. The reasons are as follows. The 24I
ensemble uses a domain wall fermion with the Shamir

kernel and the Iwasaki gauge action. It has a similar lattice
spacing as the 48I ensemble, which also uses the Iwasaki
gauge action. Although the 48I ensemble uses a domain
wall fermion with the Möbius kernel, the Möbius domain
wall action is tuned such that the Möbius and Shamir
kernels are identical up to a numerical factor [5]. For the
valence part, our overlap quark actions are the same on
these two ensembles. Although different boundary con-
ditions in the time direction are used on the two ensembles
when calculating the quark propagators and this can
introduce difference in the RCs as finite-volume effects,
we find consistency within uncertainties in the RCs on the
two ensembles as we will show later.
In this work we only have one light sea quark mass, and

thus cannot extrapolate to the light sea quark massless
limit. Our previous final results [17] were given in the
chiral limit of the light sea quark mass since the 24I
ensemble has three different values for amsea

l , enabling a
chiral extrapolation. However we can still compare the
results in this work directly with those in [17] since now
the light sea quark mass is almost at the physical point,
very close to the chiral limit. To estimate the error from
not being at msea

l;s ¼ 0, we combine our current results at
the almost physical msea

l with our previous results at three
larger msea

l ’s to estimate the light sea quark mass depend-
ence. Then from this dependence we estimate the error due
to msea

s ≠ 0.
In Table II we give the overlap valence quark masses in

lattice units used in this work. The corresponding pion
masses in the table were measured in Ref. [6] and are close
to the chiral limit. The precise values of the pion masses
do not matter here since we will use the valence quark
mass to do the extrapolations to the chiral limit. At the
three lightest valence quark masses finite-volume effects
may become big since mπL < 4. We will check these
effects at below as we study the systematic uncertainties
of our RCs.

III. CALCULATION AND
NUMERICAL RESULTS

We use periodic boundary conditions in all four direc-
tions. Therefore the discretized momenta in lattice units are

ap ¼ 2π

�
k1
L
;
k2
L
;
k3
L
;
k4
T

�
; ð17Þ

TABLE I. Parameters of configurations with 2þ 1-flavor
dynamical domain wall fermions (RBC-UKQCD Collaborations
[5]). The number of configurations used in this work is 81. The
residual mass is from Fig. 6 in [5].

1=aðGeVÞ Label amsea
l =amsea

s Volume Nconf amres

1.730(4) 48I 0.00078=0.0362 483 × 96 81 0.0006102(40)
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where L ¼ 48, T ¼ 96 and kμ are integers. In doing the
Fourier transformation for the point source quark propa-
gators, we set kμ ¼ −12;−11;…; 12. To reduce the effects
of Lorentz noninvariant discretization errors, we only use
the momenta which satisfy the “democratic” condition

p½4�

ðp2Þ2<0.29; wherep½4� ¼
X
μ

p4
μ; p2¼

X
μ

p2
μ ð18Þ

in performing the RI/MOM scheme calculation. In other
words, only those momenta aligning along or close to the
4-dimensional diagonal line are used for the RI/MOM
analyses. For the RI/SMOM calculation, the conditions in
Eq. (8) cannot be easily satisfied. Thus we do not apply any
“democratic” cuts like the one in Eq. (18) for this case. We
use point source quark propagators in Landau gauge to
compute all the necessary gauge dependent Green func-
tions and vertex functions. The statistical errors of our
numerical results are from Jackknife processes with one
configuration removed each time.
After obtaining the RCs in the RI/MOM and RI/SMOM

schemes at each scale μ, we convert them to their MS
values by using the corresponding conversion ratios calcu-
lated in perturbation theory at that scale. Then a perturba-
tive running to 2 GeV in the MS scheme is performed for
each RC by using the appropriate anomalous dimensions.

A. Renormalization of the axial vector
current from PCAC

Similar to what was done in Ref. [17], we use the PCAC
relation

ZA∂μAμ ¼ 2ZmmqZPP; ð19Þ

and Zm ¼ Z−1
P for overlap fermions to obtain ZWI

A . By
sandwiching both sides of Eq. (19) into the vacuum and a
pion state at rest, one finds

ZWI
A ¼ 2mqhΩjPjπi

mπhΩjA4jπi
: ð20Þ

To get the ratio of matrix elements and the pion
mass, we calculate zero momentum 2-point corre-
lators CPPðtÞ≡P

x⃗hΩjPðxÞP†ð0ÞjΩi and CA4PðtÞ≡P
x⃗hΩjA4ðxÞP†ð0ÞjΩi in practice by using wall-source

quark propagators. For a given mq, we simultaneously
fit the two wall-source point-sink correlators at large

source-sink time separation by a single exponential with
mπ as a common parameter. The ratio of the matrix
elements is then given by the ratio of the spectral weights
(the other two fitting parameters) in front of the exponen-
tials. We make sure the simultaneous fittings have
χ2=d:o:f: < 1.1.
The resulted ZWI

A is plotted as a function of amq in Fig. 1,
in which we also plot the linear extrapolation of ZWI

A to the
chiral limit. The numerical values of ZWI

A are given in
Table III. By using all the 9 data points at nonzero amq in
Table III we obtain ZWI

A ¼ 1.1025ð8Þ in the chiral limit,
where the error is only statistical. One systematic error of
ZWI
A in the chiral limit is determined by varying the range of

amq in doing the chiral extrapolation. Using the data points
at amq > 0.004 (finite volume effects may be large at the
four smallest quark masses), we get ZWI

A ¼ 1.1027ð11Þ.
If we drop the data at the largest two quark masses amq ¼
0.00160 and 0.02030, then we find ZWI

A ¼ 1.1023ð13Þ. In
the end we assign the largest difference 0.0004 in these
center values as one systematic error. At 1.4σ the result
ZWI
A ¼ 1.1025ð8Þð4Þ agrees with ZWI

A ¼ 1.111ð6Þ on the
24I ensemble from our previous work [17]. If we combine
ZWI
A ¼ 1.1025ð8Þ with our three ZWI

A ’s at difference
light sea quark masses on the 24I ensemble and do a
linear chiral extrapolation in (amsea

l þ amres), then we get
ZWI
A ¼ 1.1025ð9Þ at amsea

l þ amres ¼ 0. Thus we think the
error from the light sea quark mass dependence is negli-
gible. The slope from this linear extrapolation is 0.07(17).
We use half of this slope (since there is only one flavor of
strange quark) to estimate the effect from the nonzero

TABLE II. Overlap valence quark masses in lattice units used in this work. The corresponding pion masses are
from Ref. [6].

amq 0.00120 0.00170 0.00240 0.00300 0.00455 0.00600 0.0102 0.0203

mπ=MeV 95(3) 114(2) 135(2) 149(2) 182(2) 208(2) 267(1) 371(1)

FIG. 1. ZWI
A as a function of the valence quark mass and its

linear chiral extrapolations using three different fitting ranges.
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strange sea quarkmass.Multiplying itwith ðamsea
s þamresÞ¼

0.0368102, we obtain an error of 0.0013 as the third
error given in Table III. In the analyses below, we use this
method to estimate the error from the strange sea quark
mass dependence for all RCs except ZT , for which we do not
have results on the 24I ensemble.
The contamination from excited states should be negli-

gible in the fittings of the correlators since the pions are
pseudo-Goldstone bosons from chiral symmetry breaking
and thus have a tiny mass, which is much lighter than those
of the other pseudoscalar mesons.
The PCAC relation equation (19) can be imposed at the

level of correlation functions as well as the hadronic matrix
elements. This gives us another way to calculate ZA and
check its systematic errors from finite-volume and excited-
state effects. From Eq. (19) we have

X
x⃗

hΩjZA∂μAμðxÞP†ð0ÞjΩi ¼ 2mq

X
x⃗

hΩjPðxÞP†ð0ÞjΩi:

ð21Þ

Thus

ZA ¼ 4mqCPPðtÞ
CA4Pðtþ 1Þ − CA4Pðt − 1Þ ; ð22Þ

where we have replaced the partial derivative by a differ-
ence. The results of ZA obtained in this way are shown
in Fig. 2.
In the left panel of Fig. 2, we show ZA from Eq. (22) at

the valence quark mass amq ¼ 0.01020 as an example. The
results at other quark masses are similar. Since we have
averaged the correlator CPPðtÞ (also CA4PðtÞ) along the
forward and backward time directions, the plateau from
the ratio is symmetric about t ¼ T=2. A constant fit in the
range t ∈ ½16; 32� gives ZA ¼ 1.0995ð12Þ.
In the right panel of Fig. 2, we show ZA as a function of

the valence quark mass. The squares are repeats of Fig. 1,
that is to say, the results from Eq. (20). The diamonds are
from the ratio of correlators Eq. (22). The two straight lines
are linear extrapolations using all data points from the two
methods, respectively. In the chiral limit of the valence
quark, the two methods give consistent results as shown by
the two crosses at amq ¼ 0. At the four smallest quark
masses, the squares and the diamonds are in good agree-
ment. This confirms that the possible finite-volume effect
in ZA from Eq. (20) at small quark masses is small (we
estimated the associated error to be 0.0004 in Table III). At
large quark masses amq > 0.006, the results from Eq. (20)
and Eq. (22) are different. This difference we think is from
the discretization effects in Eq. (22) as the derivative is
replaced by a finite difference on the lattice. To see it, we

TABLE III. ZWI
A for 9 valence quark masses. ZWI

A at amq ¼ 0 is from a linear extrapolation in amq. The first error
is statistical, the second is a systematic error from varying the range of amq in doing the linear chiral extrapolation,
the third is from the nonzero strange sea quark mass.

amq 0.0 0.00120 0.00170 0.00240 0.00300

ZWI
A 1.1025(8)(4)(13) 1.1031(38) 1.1026(28) 1.1023(21) 1.1025(19)

amq 0.00455 0.00600 0.01020 0.01600 0.02030

ZWI
A 1.1029(14) 1.1033(12) 1.1036(10) 1.1041(6) 1.1045(6)

FIG. 2. Left panel: ZA from Eq. (22) at amq ¼ 0.01020 as an example. Right panel: Linear chiral extrapolations of ZA from using the
hadronic matrix elements (squares) or correlation functions (diamonds).
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consider the large time behavior of CPPðtÞ and CA4PðtÞ.
At large t, CPPðtÞ ¼ A expð−mπtÞ þ A expð−mπðT − tÞÞ
and CA4PðtÞ ¼ −B expð−mπtÞ þ B expð−mπðT − tÞÞ. Here
A ∝ hΩjPjπi and B ∝ hΩjA4jπi. Substituting them into
Eq. (22), we get

ZA ¼ −4Amq

B½e−mπ − emπ � ¼
2Amq

Bmπ
ð1 − a2m2

π=6þOða4m4
πÞÞ:

ð23Þ

From Table II our amπ is around 0.154 at amq ¼ 0.01020.
Thus 1 − a2m2

π=6 ¼ 0.996 and it explains the difference
between ZA ¼ 1.1036ð10Þ and 1.0995(12) from the two
methods at this quark mass. The difference in ZA at other
large quark masses can also be explained by this fac-
tor (1 − a2m2

π=6).
Since the extrapolation of the squares in the right panel

of Fig. 2 has a smaller slope and the two methods give
consistent results, we take the numbers in Table III as our
final results for ZWI

A . Combining all the errors quadratically,
we get ZWI

A ¼ 1.1025ð16Þ.

B. The vector current

For overlap fermions, ZV ¼ ZA is expected from its
good chiral property. We calculate the ratio ZV=ZA in both
RI/MOM and RI/SMOM schemes:

ZRI=MOM
V

ZRI=MOM
A

¼ ΓAðpÞ
ΓVðpÞ

����
p2¼μ2

;

ZRI=SMOM
V

ZRI=SMOM
A

¼ ΓAðp1; p2Þ
ΓVðp1; p2Þ

����
sym

; ð24Þ

where

ΓVðpÞ ¼
1

48
Tr½Λμ

V;BðpÞγμ�;

ΓAðpÞ ¼
1

48
Tr½Λμ

A;BðpÞγ5γμ�; ð25Þ

ΓVðp1; p2Þ ¼
1

12q2
Tr½qμΛμ

V;Bðp1; p2Þ=q�;

ΓAðp1; p2Þ ¼
1

12q2
Tr½qμΛμ

A;Bðp1; p2Þγ5=q�: ð26Þ

The numerical results of this ratio are shown in Fig. 3 for
some of the valence quark masses amq. Clearly little quark
mass dependence is seen in these results. We do linear
extrapolations in amq for ZV=ZA in both schemes to reach
the chiral limit. The comparison of this ratio in the two
schemes in the chiral limit is shown in Fig. 4. ZV=ZA ¼ 1 is
well satisfied in both schemes at large momentum scale.

FIG. 3. ZV=ZA in the RI/MOM (left graph) and RI/SMOM (right graph) scheme. The results show little valence quark mass
dependence.

FIG. 4. ZV=ZA in the chiral limit in the two schemes. ZV=ZA¼1
is well satisfied in both schemes at large momentum scale. This
relation is verified at lower momentum scale in the RI/SMOM
scheme than in the RI/MOM scheme. The horizontal line is
ZV=ZA ¼ 1 for guiding the eyes.
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The RI/SMOM scheme is supposed to have less infrared
effects. Indeed, ZV=ZA ¼ 1 is verified at lower momentum
scale in the RI/SMOM scheme than in the RI/MOM
scheme as shown in Fig. 4.

C. Quark field renormalization

The quark field RC can be used, for example, in
analyzing the scalar dressing function of the quark propa-
gator in Landau gauge to determine the quark chiral
condensate [18]. After finding ZWI

A , we use Eqs. (7) and
(12) to calculate Zq in the RI/MOM and RI/SMOM scheme
respectively. What we get are shown in Fig. 5, in which
Zq=ZA is plotted as a function of the renormalization scale
for various valence quark masses. Apparently the quark
mass dependence of Zq=ZA in both schemes is very small.
The chiral extrapolation can be done with a linear function

Zq

ZA
ðamqÞ ¼

Zq

ZA
þ A · amq: ð27Þ

Examples of this linear extrapolation of Zq=ZA in the
RI/MOM and RI/SMOM schemes are shown in the two
graphs in Fig. 6.

The chiral limit value of ZRI=MOM
q =ZA can be converted

to the MS value ZMS
q =ZA by using the following three loop

conversion ratio given in Ref. [19] (we use the relation

ZWI
A ¼ ZRI=MOM

A ¼ ZRI=SMOM
A ¼ ZMS

A here and in the rest of
the paper)

ZMS
q

ZRI=MOM
q

¼ 1þ
�
−
517

18
þ 12ζ3 þ

5

3
nf

��
αs
4π

�
2

þ
�
−
1287283

648
þ 14197

12
ζ3 þ

79

4
ζ4

−
1165

3
ζ5 þ

18014

81
nf −

368

9
ζ3nf −

1102

243
n2f

�

×

�
αs
4π

�
3

þOðα4sÞ: ð28Þ

Here nf is the number of flavors and ζn is the Riemann
zeta function evaluated at n. The strong coupling constant
αsðμÞ is evaluated in the MS scheme by using its
perturbative running to four loops [20]. The beta functions
in the MS scheme to four loops can be found in Ref. [21].

FIG. 5. Zq=ZA in the RI/MOM and RI/SMOM schemes at various valence quark masses.

FIG. 6. Linear chiral extrapolations of Zq=ZA in the RI/MOM and RI/SMOM schemes at three typical momentum values.
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And we use ΛMS
QCD ¼ 332ð17Þ MeV for three flavors in the

MS scheme [22].
Since ZRI=SMOM

q ¼ ZRI0=MOM
q , the conversion of

ZRI=SMOM
q =ZA to its MS value is done with the ratio [19]

ZMS
q

ZRI0=MOM
q

¼ 1þ
�
−
359

9
þ 12ζ3 þ

7

3
nf

��
αs
4π

�
2

þ
�
−
439543

162
þ 8009

6
ζ3 þ

79

4
ζ4

−
1165

3
ζ5 þ

24722

81
nf −

440

9
ζ3nf −

1570

243
n2f

�

×

�
αs
4π

�
3

þOðα4sÞ: ð29Þ

The conversions of ZRI=MOM
q =ZA and ZRI=SMOM

q =ZA are
plotted in the two graphs respectively in Fig. 7. The Green
squares are the results in the momentum subtraction
schemes. After converting them to the MS scheme, we
obtain the blue triangles.
Note the perturbative truncation error in the conversion

ratio equation (29) for the RI/SMOM scheme is large than
that in Eq. (28) for the RI/MOM scheme. For example,
at p2 ¼ μ2 ¼ 16 GeV2 (or a2p2 ¼ 5.346 with our lattice
spacing) the numerical value of Eq. (28) can be broken into

ZMS
q

ZRI=MOM
q

ðμ ¼ 4 GeV; nf ¼ 3Þ

¼ 1 − 0.0αs − 0.0589α2s − 0.2352α3s þ � � �
¼ 1 − 0.0 − 0.0028 − 0.0025þ � � � ; ð30Þ

where we have used αMS
s ð4 GeVÞ ¼ 0.2189. Assuming

the coefficient of the Oðα4sÞ term is 4ð≈0.2352=0.0589Þ

times larger than that of the Oðα3sÞ term, we can estimate
the Oðα4sÞ term to be of size ∼0.0022. This means the
truncation error is of size 0.2%. At the same scale, the
numerical value of Eq. (29) is

ZMS
q

ZRI0=MOM
q

ðμ ¼ 4 GeV; nf ¼ 3Þ

¼ 1 − 0.0αs − 0.1169α2s − 0.4076α3s þ � � �
¼ 1 − 0.0 − 0.0056 − 0.0043þ � � � : ð31Þ

Assuming the coefficient of the Oðα4sÞ term is
3.5ð≈0.4076=0.1169Þ times larger than that of the Oðα3sÞ
term, we find that the size of the Oðα4sÞ term is about
0.0033. Thus the truncation error is 0.3%.
Our RI/SMOM scheme data do not reach beyond the

scale a2p2 ¼ ∼5 as shown in the right panel of Fig. 7. We
use the data starting from a2p2 ¼ 2 (or p ¼ 2.447 GeV) in
our analyses below. The truncation error in Eq. (29) at
a2p2 ¼ 2 can be estimated similarly and its size is 0.7%.

The MS value ZMS
q =ZA at a given scale a2p2 can be run

to 2 GeV by using the quark field anomalous dimension

γMS
q . In perturbation theory γMS

q has been calculated to
four loops in Landau gauge [23]. The red diamonds in both

graphs of Fig. 7 show ZMS
q =ZAð2 GeV; a2p2Þ after the

running as a function of the initial scale a2p2. From the
linear dependence on a2p2 at large scale we extrapolate

ZMS
q =ZAð2 GeV; a2p2Þ to a2p2 ¼ 0 to remove the

Oða2p2Þ lattice artifacts.
In the left graph of Fig. 7 using the RI/MOM scheme,

we do the linear extrapolation in the range a2p2 ∈ ½5; 8�
and find ZMS

q =ZAð2 GeVÞ ¼ 1.1027ð20Þ. If using the range
a2p2 ∈ ½4; 8�, then we get ZMS

q =ZAð2 GeVÞ ¼ 1.1052ð11Þ.
The change in the center value (0.2%) is taken as a

FIG. 7. Conversion of Zq=ZA in the RI/MOM or RI/SMOM scheme to the MS scheme. The running to 2 GeV in the MS scheme
is also shown by the red diamonds in both graphs. The black line in each graph is a linear extrapolation in a2p2 using data in the
indicated range.
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systematic error. From our previous work at three light sea
quark masses on the 24I ensemble [17,18], we can obtain

ZMS
q =ZAð2 GeVÞ ¼ 1.079ð18Þ in the light sea quark mass-

less limit, which agrees with our current result 1.1027(20)
on the 48I ensemble within 1.3σ.
For the right graph of Fig. 7 using the RI/SMOM

scheme, we use the range a2p2 ∈ ½2; 5� for the extrapola-

tion and find ZMS
q =ZAð2 GeVÞ ¼ 1.0842ð13Þ. The

χ2=d:o:f: of this extrapolation is 2.2. In the RI/SMOM
scheme there is no “democratic” cut on the momenta p1, p2

and q. Lattice artifacts proportional to a2p½4�=p2 make the
data points scatter around the smooth curve in a2p2 and
render the χ2=d:o:f: big. Thus we enlarge the statistical
error from the linear fitting by the factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2=d:o:f:

p
to

include this uncertainty. In the following analyses for
all RCs we similarly inflate the statistical error if the
χ2=d:o:f: of the a2p2 extrapolation is larger than 1. If using
the range a2p2 ∈ ½1.5; 5� or [2.5, 5], then we obtain

ZMS
q =ZAð2 GeVÞ ¼ 1.0839ð9Þ or 1.0818(20) respectively.

The center value changes by 0.0024, which is around 0.2%.
Besides the truncation uncertainty in the conversion ratio

and the uncertainty from the fitting range of a2p2 in the
linear extrapolation, we also consider the uncertainties from
the lattice spacing, which is needed to determine the value

of a2p2 corresponding to p ¼ 2 GeV, from ΛMS
QCD, from the

perturbative running in the MS scheme, and from the
nonzero strange sea quark mass. For the calculation using
RI/MOM as the intermediate scheme, varying 1=a ¼
1.730ð4Þ GeV in one sigma leads to 0.2% change in

ZMS
q =ZAð2 GeVÞ. Changing ΛMS

QCD ¼ 332ð17Þ GeV in

one sigma leads to 0.1% change in ZMS
q =ZAð2 GeVÞ.

The perturbative running to 2 GeV of ZMS
q =ZAða2p2Þ uses

four-loop results of the anomalous dimension. The Oðα4sÞ
term is found to be around 0.2% of the total size of
the running from a2p2 > 5 to 2 GeV. Combining

ZMS
q =ZAð2 GeVÞ ¼ 1.1027ð20Þ on the 48I ensemble with

our previous results on the 24I ensemble at three light sea
quark masses [17,18] for a linear chiral extrapolation, we

get ZMS
q =ZAð2 GeVÞ ¼ 1.1030ð21Þ in the light sea quark

massless limit. It agrees well with 1.1027(20), indicating
a small light sea quark mass effect in our current result.
The slope from this extrapolation is −1.13ð26Þ, from which
we find an error of 0.021 due to the strange sea quark mass

dependence. The uncertainties of ZMS
q =ZAð2 GeVÞ are

listed in Table IV.
Similarly we do the analyses for the calculation using

RI/SMOM as the intermediate scheme. Since we did not do
RI/SMOM calculation on the 24I ensemble, we use the
valence quark mass dependence as shown in Fig. 6 to
estimate the error from the nonzero strange sea quark mass.
The chiral extrapolation in the right panel of Fig. 6 is quite

flat, from which we obtain a small uncertainty 0.2% as
listed in Table IV. In the analyses below for ZT, ZS and ZP
obtained through the RI/SMOM scheme, we follow this
method for estimating this uncertainty.
Adding the statistical and systematic uncertainties

quadratically, we obtain ZMS
q =ZAð2 GeVÞ ¼ 1.103ð21Þ

and 1.084(9) respectively for using the RI/MOM and
RI/SMOM as the intermediate schemes. These two num-
bers agree with each other within 1σ. Taking 1.103(21) as
our final result and using the value ZWI

A ¼ 1.1025ð16Þ from
Sec. III A, we find ZMS

q ð2 GeVÞ ¼ 1.216ð23Þ where the
error includes the uncertainty propagated from ZWI

A .

D. The tensor operator

From Eq. (5) the ratio ZRI=MOM
T =ZWI

A ¼ZRI=MOM
T =ZRI=MOM

A
at a given valence quark mass is computed by

ZRI=MOM
T

ZRI=MOM
A

¼ ΓAðpÞ
ΓTðpÞ

����
p2¼μ2

; ð32Þ

where

ΓTðpÞ ¼
1

144
Tr½Λμν

T;BðpÞσμν�: ð33Þ

In the RI/SMOM scheme ZRI=SMOM
T =ZWI

A ð¼ ZRI=SMOM
T =

ZRI=SMOM
A Þ at a givenvalence quarkmass is obtained by using

ZRI=SMOM
T

ZRI=SMOM
A

¼ ΓAðp1; p2Þ
ΓTðp1; p2Þ

����
sym

; ð34Þ

where

ΓTðp1; p2Þ ¼
1

144
Tr½Λμν

T;Bðp1; p2Þσμν�: ð35Þ

TABLE IV. Uncertainties of ZMS
q =ZAð2 GeV) in the chiral limit.

The second and third columns are for using the RI/MOM and
RI/SMOM as the intermediate schemes respectively.

Source
Error

(%, RI/MOM)
Error

(%, RI/SMOM)

Statistical 0.2 0.1
Conversion ratio 0.2 0.7
ΛMS
QCD 0.1 0.1

Perturbative running 0.2 0.2
Lattice spacing 0.2 0.1
Fit range of a2p2 0.2 0.2
msea

s ≠ 0 1.9 0.2

Total systematic uncertainty 1.9 0.8
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The numerical results of both ZRI=MOM
T =ZRI=MOM

A and

ZRI=SMOM
T =ZRI=SMOM

A show little valence quark mass depend-
ence. We perform linear extrapolations in amq to get their
chiral limit values, which are shown by the green squares in
Fig. 8 as functions of the renormalization scale a2p2.
After the “democratic” cut in Eq. (18) on the momenta,

the RI/MOM scheme results show a reasonable smooth
behavior in a2p2. While some zigzag behavior can be seen
in the RI/SMOM scheme results, which is from lattice
discretization effects proportional to a2p½4�=p2. For the
RI/SMOM scheme, no “democratic” cut on the momenta
p1, p2 and q is applied since the symmetric conditions in
Eq. (8) are not very easy to satisfy. This leads to the zigzag
behavior (especially at large a2p2) reflecting lattice arti-
facts which are not Oð4Þ invariant.
If we start with the ZRI=SMOM

q defined in Eq. (11), then
ZRI=SMOM
T is given by

ZRI=SMOM
T ¼ ZRI=SMOM

q

ΓTðp1; p2Þjsym
¼ Tr½S−1B ðpÞ=p�p2¼μ2

12p2ΓTðp1; p2Þjsym
: ð36Þ

In practice we find that the ZRI=SMOM
T calculated in this way

are even more scattered around a curve in a2p2, indicating
larger discretization effects than in ZRI=SMOM

T =ZRI=SMOM
A .

In the calculation of the ratio equation (34), these Oð4Þ
noninvariant effects in the vertex functions in the denom-
inator and numerator partially cancel. The zigzag behavior
in the ratio is then less severe. Thus we always analyze the
ratios of other RCs to ZA and in the end input the value of
ZWI
A to obtain their final results.

The perturbative conversion ratio for ZRI=MOM
T to the MS

scheme can be obtained from the conversion ratio for

ZRI0=MOM
T to MS, which was given in Ref. [24] to three

loops, and ZRI0=MOM
q =ZRI=MOM

q , whose three loop result can

be computed by using the ratios ZRI0=MOM
q =ZMS

q and

ZRI=MOM
q =ZMS

q given in Ref. [19]. Thus we have

ZMS
T

ZRI=MOM
T

¼ ZMS
T

ZRI0=MOM
T

ZRI0=MOM
T

ZRI=MOM
T

¼ ZMS
T

ZRI0=MOM
T

ZRI0=MOM
q

ZRI=MOM
q

¼ 1 −
1

81
ð4866 − 1656ξ3 − 259nfÞ

�
αs
4π

�
2

þ 2

2187
ð311424 − 105984ξ3 − 16576nfÞ

×

�
αs
4π

�
3

þOðα4sÞ: ð37Þ

At p2 ¼ μ2 ¼ 16 GeV2 and with three flavors of dynami-
cal fermions, the numerical value of this ratio is

ZMS
T

ZRI=MOM
T

ðμ ¼ 4 GeV; nf ¼ 3Þ

¼ 1þ 0.0αs − 0.1641α2s þ 0.0619α3s þ � � �
¼ 1 − 0.0 − 0.0079þ 0.0006þ � � � : ð38Þ

The Oðα4sÞ term is around 0.0004 if assuming the coef-
ficient of this term is the same as the one of theOðα2sÞ term.
Thus the truncation error in the conversion ratio is less
than 0.1%.
The two loop matching factor for converting ZRI=SMOM

T

to the MS scheme is given in Refs. [14,25]. In Landau
gauge it reads

ZMS
T

ZRI=SMOM
T

¼ 1 − 0.21517295

�
αs
4π

�

− ð43.38395007 − 4.10327859nfÞ
�
αs
4π

�
2

þOðα3sÞ: ð39Þ

For nf ¼ 3 and at μ ¼ 4 GeV, the above is

FIG. 8. Conversion of ZT=ZA in the RI/MOM or RI/SMOM scheme to the MS scheme. The running to 2 GeV in the MS scheme is
shown by the red diamonds.
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ZMS
T

ZRI=SMOM
T

ðμ ¼ 4 GeV; nf ¼ 3Þ

¼ 1 − 0.017123αs − 0.196779α2s þOðα3sÞ
¼ 1 − 0.0037 − 0.0094þOðα3sÞ: ð40Þ

The two loop contribution is larger than the one loop
contribution and is of size ∼1%. At a2p2 ¼ 2 (or
p ¼ 2.447 GeV) the suppression from αs is even smaller

(αMS
s ð2.447 GeVÞ ¼ 0.2678). To be conservative, we

assign a 2% truncation error to ZMS
T =ZRI=SMOM

T at the scale

p ¼ 2.447 GeV. Therefore for ZMS
T the conversion uncer-

tainty in using RI/SMOM as the intermediate scheme
seems to be much larger than that in using the RI/MOM
scheme. It will be interesting to really calculate the three
loop contribution for this conversion ratio.
The blue triangles in both graphs of Fig. 8 show the ratio

ZMS
T =ZA as a function of the renormalization scale a2p2.

Their running to 2 GeV is shown by the red diamonds,

which are obtained by using the anomalous dimension γMS
T

in Landau gauge calculated up to and including four loops.
We see a good linear dependence on a2p2 in

ZMS
T =ZAð2 GeV; a2p2Þ at large a2p2. Linear extrapo-

lations in a2p2 in the range a2p2 > 5 and a2p2 > 2
are done respectively for the results from the two inter-
mediate schemes RI/MOM and RI/SMOM. We find

ZMS
T =ZAð2 GeVÞ ¼ 1.0552ð5Þ and 1.0704(12) respec-

tively. The ranges are varied to estimate the associated
systematic uncertainties, which are collected in Table V.
Similarly to the analyses of the other systematic uncer-

tainties for ZMS
q =ZAð2 GeVÞ in Sec. III C, we obtain the

error budget for ZMS
T =ZAð2 GeVÞ in Table V. The exception

is the estimate of the sea quark mass dependence when
using RI/MOM as the intermediate scheme. For the tensor
current, we did not calculate its RC on the 24I ensemble.
Thus we cannot combine the results on the 48I and 24I
ensembles to estimate the error due to not being at the sea
quark massless limit. We average the errors due tomsea

s ≠ 0

for the RCs of the quark field, the scalar and pseudoscalar
densities in Table IV and Table VI and treat the average as

the corresponding error estimate for ZMS
T =ZAð2 GeVÞ. The

light sea quark mass dependence is neglected since the
light sea quark mass is very close to the chiral limit on
the 48I ensemble.
Adding the statistical and systematic uncertainties

quadratically, we get ZMS
T =ZAð2 GeVÞ ¼ 1.055ð31Þ and

1.070(21) respectively for using the RI/MOM and RI/
SMOM as the intermediate schemes. These two numbers
are in agreement within 1σ. The result from the RI/SMOM
scheme has a large systematic error from the conversion
ratio. While the result from the RI/MOM scheme has a
dominant error from the strange sea quark mass depend-
ence. Taking 1.055(31) as our final result and using the
value ZWI

A ¼ 1.1025ð16Þ from Sec. III A, we get

ZMS
T ð2 GeVÞ ¼ 1.163ð34Þ where the error includes the

uncertainty propagated from ZWI
A .

E. The scalar density

The calculation of ZRI=MOM
S and its conversion to the

MS scheme closely follow our previous work [17] on the
243 × 64 RBC/UKQCD lattices (24I) with similar lattice
spacings. One difference is that now we can impose a
stronger “democratic” cut [Eq. (18)] on the momentum
modes since the lattice size is now bigger. This leads to a
smoother dependence on the renormalization scale a2p2 in
ZRI=MOM
S since the Lorentz noninvariant lattice artifacts are

further reduced. Another difference is that here we analyze
the ratio ZRI=MOM

S =ZRI=MOM
A ¼ ΓAðpÞ=ΓSðpÞjp2¼μ2 instead

of the absolute ZRI=MOM
S .

The chiral extrapolation of ZRI=MOM
S =ZRI=MOM

A is
done with an Ansatz with three parameters As, Bs and
Cs [11,17,26]

ZS=ZA ¼ As

ðamqÞ2
þ Bs þ Cs · amq; ð41Þ

TABLE V. Uncertainties of ZMS
T =ZAð2 GeVÞ in the chiral limit.

Source
Error

(%, RI/MOM)
Error

(%, RI/SMOM)

Statistical 0.05 0.1
Conversion ratio 0.1 2
ΛMS
QCD 0.1 0.1

Perturbative running < 0.01 < 0.01
Lattice spacing 0.02 0.03
Fit range of a2p2 0.1 0.1
msea

s ≠ 0 2.9 0.2

Total systematic uncertainty 2.9 2

TABLE VI. Uncertainties of ZMS
S =ZAð2 GeVÞ and ZMS

P =
ZAð2 GeVÞ in the chiral limit through the RI/MOM scheme.

Source
ZMS
S =ZA

ð2 GeVÞ (%)
ZMS
P =ZA

ð2 GeVÞ (%)

Statistical 0.1 0.6
Conversion ratio 1.5 1.5
ΛMS
QCD 0.3 0.4

Perturbative running 0.1 0.1
Lattice spacing 0.1 < 0.1
Fit range of a2p2 0.1 0.3
Finite-volume effects � � � 0.3
msea

s ≠ 0 2.1 4.7

Total systematic uncertainty 2.6 5.0

RI/MOM AND RI/SMOM RENORMALIZATION OF OVERLAP … PHYS. REV. D 97, 094501 (2018)

094501-11



where the double pole term comes from the topological
zero modes of the overlap fermions. Bs is taken as the chiral
limit value of ZRI=MOM

S =ZRI=MOM
A . Examples of this extrapo-

lation are shown in the left panel of Fig. 9.
The valence quark mass dependence of ZRI=SMOM

S =

ZRI=SMOM
A seems to be milder, which is computed from

the ratio ΓAðp1; p2Þ=ΓSðp1; p2Þjsym. We tried both Eq. (41)
and a linear function in quark mass for going to the chiral
limit (only the linear extrapolation is shown in the right
panel of Fig. 9). We find consistent chiral limit values from
the two extrapolations for ZRI=SMOM

S =ZRI=SMOM
A .

The scale dependence of ZS=ZA is shown in Fig. 10 by
the green squares. The conversion to MS and the running to
2 GeV in MS are shown in the same figure by the blue
triangles and the red diamonds respectively. In the right
panel the green squares and the blue triangles are much
closer together than in the left panel. This is because the
conversion ratio from the RI/SMOM scheme to the MS
scheme is much closer to 1 than the ratio from the RI/MOM

scheme to MS. This leads to a much smaller systematic
uncertainty from the conversion in using RI/SMOM as the
intermediate scheme. As we have estimated in our previous
work [17], the truncation error in the conversion ratio

ZMS
S =ZRI=MOM

S (three loop result) above 4 GeV is around

1.5%. The inverse of the conversion ratio ZMS
S =ZRI=SMOM

S
has been calculated up to two loops [13,14]

ZRI=SMOM
S

ZMS
S

¼ ZMS
m

ZRI=SMOM
m

¼ 1 − 0.6455188560

�
αs
4π

�

− ð22.60768757 − 4.013539470nfÞ
�
αs
4π

�
2

:

ð42Þ

From the above we find for nf ¼ 3 and at a2p2 ¼ 2

(p ¼ 2.447 GeV)

FIG. 9. Chiral extrapolations of ZS=ZA in the RI/MOM scheme using Eq. (41) (left panel) and in the RI/SMOM scheme using a
linear function (right panel).

FIG. 10. Conversion and running of ZS=ZA for the intermediate schemes RI/MOM (left) and RI/SMOM (right). The black curve in the
right panel is a fitting using Ansatz (e) in Eq. (48).
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ZMS
S

ZRI=SMOM
S

¼ 1.0þ 0.051369αs þ 0.069556α2s þOðα3sÞ

¼p¼2.447 GeV
1.0þ 0.0138þ 0.0050þOðα3sÞ: ð43Þ

Assuming the coefficient for the Oðα3sÞ term is
0.069556 × ð0.069556=0.051369Þ ¼ 0.094182, we expect
the Oðα3sÞ term to be of size ∼0.0018. This means the
truncation error can be estimated to be 0.2%, which is much
smaller than the 1.5% for the conversion of the RI/MOM
scheme result.
After the running to 2 GeV in the MS scheme,

ZMS
S ð2 GeV; a2p2Þ=ZA shows a good linear behavior in

the initial scale a2p2 at large scales in using RI/MOM as the
intermediate scheme. This is shown by the red diamonds
in the left panel of Fig. 10. The nonzero slope of the red
diamonds is attributed to lattice discretization effects
proportional to a2p2. Above a2p2 ¼ 5 we can do a linear
extrapolation to a2p2 ¼ 0 with good χ2=d:o:f: and obtain

ZMS
S ð2 GeVÞ=ZA ¼ 1.0137ð13Þ. Varying the extrapolation

range to a2p2 > 4, we get ZMS
S ð2 GeVÞ=ZA ¼ 1.0152ð8Þ.

The variation in the center value (0.1%) is taken as one of
the systematic uncertainties.

The statistical and systematic uncertainties of ZMS
S =

ZAð2 GeVÞ obtained by using RI/MOM as the intermediate
scheme are listed in Table VI. The uncertainties from
the strange sea quark mass dependence and from the
conversion ratio dominate. Adding all the uncertainties

quadratically, we get ZMS
S =ZAð2 GeVÞ ¼ 1.014ð26Þ. Using

the value ZWI
A ¼ 1.1025ð16Þ from Sec. III A, we find

ZMS
S ð2 GeVÞ ¼ 1.118ð29Þ where the error includes the

uncertainty propagated from ZWI
A . This number agrees

with our previous result ZMS
S ð2 GeVÞ ¼ 1.127ð21Þ on

the 243 × 64 lattice [17].

In the right graph of Fig. 10, ZMS
S ð2 GeV; a2p2Þ=ZA

obtained by using RI/SMOM as the intermediate scheme is

shown as a function of the initial scale a2p2. We do not see

a clear window, in which ZMS
S ð2 GeV; a2p2Þ=ZA linearly

depends on a2p2. This is quite different from what we saw

in ZMS
q ð2 GeV; a2p2Þ=ZA and ZMS

T ð2 GeV; a2p2Þ=ZA (the
right panels in Figs. 7 and 8 respectively), which are also
obtained through the RI/SMOM scheme. To model the

behavior of ZMS
S ð2 GeV; a2p2Þ=ZA, we tried several

Ansätze (with x≡ a2p2 and fitting parameters A, B, C,
D and E):

ðaÞ∶ fðxÞ ¼ Aþ Bxþ Cx2; ð44Þ

ðbÞ∶ fðxÞ ¼ Aþ BxþD=x; ð45Þ

ðcÞ∶ fðxÞ ¼ Aþ Bxþ E=x2; ð46Þ

ðdÞ∶ fðxÞ ¼ Aþ Bxþ Cx2 þD=x; ð47Þ

ðeÞ∶ fðxÞ ¼ Aþ Bxþ Cx2 þ E=x2; ð48Þ

where the Cða2p2Þ2 term is for higher order discretization
effects and the 1=xn (n ¼ 1, 2) terms are for possible
nonperturbative effects. In using the above Ansätze to fit
our data, we fix the upper limit of a2p2 to 5 and vary the
lower limit. We collect the χ2=d:o:f: and the results of A for
various fitting ranges in Table VII. We find the Cða2p2Þ2
term is necessary to decrease the χ2=d:o:f: Models (a), (d)
and (e) give smaller χ2=d:o:f: than models (b) and (c) in
almost all fitting ranges [the only exception case is with
ða2p2Þmin ¼ 0.5, in which model (a) gives a larger
χ2=d:o:f: than model (b)]. For the behavior of the possible
nonperturbative effects, the data can hardly distinguish
between 1=x and 1=x2 [the χ2=d:o:f: of models (d) and (e)
are almost all the same for all fitting ranges]. Above
ða2p2Þmin ¼ ∼1.5, the possible nonperturbative effects
(1=xn terms) can be ignored: Model (a) gives comparable
χ2=d:o:f: as or smaller χ2=d:o:f: than models (d) and (e).

TABLE VII. Fittings of ZMS
S =ZAð2 GeV; a2p2Þ obtained from the RI/SMOM scheme to the models in Eqs. (44)–(48). Here we vary

the lower limit of xð≡a2p2Þ. The uncertainties have been inflated by the factor
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2=d:o:f

p
.

(a) (b) (c) (d) (e)

xmin A χ2=d:o:f: A χ2=d:o:f: A χ2=d:o:f. A χ2=d:o:f: A χ2=d:o:f:

0.5 1.096(2) 8.56 0.941(3) 7.83 1.000(2) 20.2 1.015(6) 2.95 1.064(3) 3.01
1.0 1.091(2) 5.37 0.930(4) 6.79 0.986(2) 12.2 1.020(10) 3.41 1.057(5) 3.41
1.5 1.084(2) 4.52 0.915(5) 6.10 0.973(3) 8.57 1.027(19) 4.03 1.056(9) 4.02
1.8 1.080(3) 4.16 0.904(6) 6.07 0.964(3) 7.58 1.040(30) 4.54 1.060(15) 4.54
2.0 1.078(3) 4.92 0.895(7) 6.13 0.957(4) 7.19 1.050(42) 4.97 1.064(21) 4.97
2.2 1.077(4) 5.39 0.883(9) 6.18 0.948(4) 5.47 1.046(61) 5.47 1.061(30) 5.47
2.5 1.074(6) 5.99 0.869(14) 6.63 0.938(7) 7.04 1.08(10) 6.14 1.078(53) 6.14
2.8 1.074(10) 6.69 0.843(22) 6.98 0.921(12) 7.18 1.08(20) 6.89 1.08(10) 6.89
3.0 1.067(15) 7.41 0.834(33) 7.68 0.913(17) 7.81 1.17(33) 7.66 1.12(17) 7.66
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Also the fitted parameter DðEÞ in model ðdÞ½ðeÞ� is
consistent with zero within its uncertainty. This is of course
expected since the nonperturbative effects are suppressed at
large momentum scale.
The resulted A’s from all fittings are plotted in Fig. 11

as functions of the lower limit ða2p2Þmin. Above
ða2p2Þmin ¼ ∼2, the results from models (a), (d) and (e)
converge to a more or less stable value. In the range
ða2p2Þmin ∈ ½2; 3� the three models give consistent results.
Taking ða2p2Þmin ¼ 2 and averaging the A’s from the three

models, we find ZMS
S =ZAð2 GeVÞ ¼ 1.064ð42Þ. Here the

statistical error is the biggest of the three ones from the
three fittings. The span (0.028 or 2.6%) in the three center
values will be taken as one source of the systematic
uncertainties.
In Table VIII we collect our error analyses for

ZMS
S =ZAð2 GeVÞ obtained through the RI/SMOM scheme.

In total, we find a 5.1% error in ZMS
S =ZAð2 GeV). That is to

say, ZMS
S =ZAð2 GeVÞ ¼ 1.064ð55Þ. This result, with a

relatively large error, agrees with ZMS
S =ZAð2 GeVÞ ¼

1.014ð26Þ obtained by using the RI/MOM scheme. The
fact that we cannot get a broad window of a2p2 in

ZMS
S =ZAð2 GeV; a2p2Þ, in which both the nonperturbative

effects and the lattice discretization effects are small, leads

to the large uncertainty in ZMS
S =ZAð2 GeVÞ when using the

RI/SMOM scheme. This may come from the HYP smear-
ing that we do on the gauge fields. In Ref. [27] the upper
edge of the renormalization window was found to be
reduced by link smearing. We may do a calculation on
thin link configurations to check this in the future.

F. The pseudoscalar density

For the calculation of ZRI=MOM
P =ZA and its conversion to

MS, we again closely follow our previous work [17]. The
Goldstone boson contamination in ZRI=MOM

P =ZA is apparent
as we can see from the left panel in Fig. 12. This
contamination in the forward vertex function ΓPðpÞ is
proportional to 1=ðm2

πp2Þ or 1=ðmqp2Þ due to the pion

propagator. Thus the chiral extrapolation of ZRI=MOM
P =ZA at

a fixed a2p2 is done by using the Ansatz

ðZRI=MOM
P =ZAÞ−1 ¼

Ap

amq
þ Bp þ Cp · amq; ð49Þ

where Ap, Bp and Cp are three fitting parameters. B−1
p is

taken as the chiral limit value for ZRI=MOM
P =ZA. Examples of

this chiral extrapolation are shown in the left panel of
Fig. 13. The data points at the three lightest masses sit well
on the fitting curves at almost all a2p2 values (exceptions
are the very small a2p2’s). To estimate the possible finite-
volume effects at small quark masses, in the following we
will repeat our analyses without the data at the four lightest

quark masses and take the change in ZMS
P ð2 GeVÞ=ZA as

one of its systematic uncertainties.
In the SMOM scheme, the Goldstone boson contami-

nation in ΓPðp1; p2Þjsym is proportional to 1=q2ð¼ 1=p2Þ
since m2

π ≪ q2. Thus the quark mass dependence of
ZRI=SMOM
P =ZA should be small provided m2

q ≪ q2. This
can be clearly seen in the right graph of Fig. 12 and also
in the right panel of Fig. 13, in which we do linear
chiral extrapolations for ZRI=SMOM

P =ZA at three typical
momentum values.
Figure 14 shows the ratio ZP=ZS in the extrapolated

chiral limit in both the RI/MOM and RI/SMOM
schemes. These results verify the relation ZS ¼ ZP for
overlap fermions. The RI/SMOM scheme suppresses the
Goldstone boson contamination in the pseudoscalar vertex

FIG. 11. ZMS
S =ZAð2 GeVÞ from the RI/SMOM scheme

by fitting ZMS
S =ZAð2 GeV; a2p2Þ to the five Ansätze

equations (44)–(48) as we vary the lower limit ða2p2Þmin of
the fitting range ½ða2p2Þmin; 5�.

TABLE VIII. Uncertainties of ZMS
S =ZAð2 GeVÞ and ZMS

P =
ZAð2 GeVÞ in the chiral limit through the RI/SMOM scheme.

Source
ZMS
S =ZA

ð2 GeVÞ (%)
ZMS
P =ZA

ð2 GeVÞ (%)

Statistical 3.9 4.4
Conversion ratio 0.2 0.2
ΛMS
QCD 0.2 0.1

Perturbative running 0.1 0.1
Lattice spacing 0.1 < 0.1
Fit range of a2p2 2.1 1.2
Span in the results from models
(a), (d) & (e)

2.6 3.0

msea
s ≠ 0 0.2 0.2

Total systematic uncertainty 3.4 3.2

BI, CAI, CHEN, GONG, LIU, LIU, and YANG PHYS. REV. D 97, 094501 (2018)

094501-14



function since q2 ≠ 0. Thus ZP=ZS ¼ 1 is more precisely
satisfied in this scheme than in the RI/MOM scheme.
The conversion to and running in the MS scheme for

both ZRI=MOM
P =ZA and ZRI=SMOM

P =ZA are shown in Fig. 15.

The two conversion ratios used here are the same as those

for ZRI=MOM
S =ZA and ZRI=SMOM

S =ZA respectively. From the
RI/MOM result, a linear extrapolation in a2p2 for

ZMS
P ð2GeV;a2p2Þ=ZA gives ZMS

P ð2GeVÞ=ZA¼1.019ð6Þ.
It agrees with ZMS

S ð2 GeVÞ=ZA ¼ 1.0137ð13Þ obtained in
Sec. III E also by using RI/MOM as the intermediate
scheme. We repeat our analyses dropping the data points
at the four lightest quark masses and obtain

ZMS
P ð2 GeVÞ=ZA ¼ 1.022ð9Þ. It agrees with 1.019(6)

within the uncertainty. The shift in the center value is
taken as a systematic uncertainty from possible finite-
volume effects. In the last column of Table VI we

summarize our error analyses for ZMS
P ð2 GeVÞ=ZA. Our

final result is ZMS
P ð2 GeVÞ=ZA ¼ 1.019ð6Þð51Þ, where the

second error is the total systematic uncertainty. Using
the value ZWI

A ¼ 1.1025ð16Þ from Sec. III A, we get

ZMS
P ð2 GeVÞ ¼ 1.123ð56Þ where the error includes the

uncertainty propagated from ZWI
A .

When we convert the RI/SMOM result

ZRI=SMOM
P ða2p2Þ=ZA into the MS scheme and run it to

2 GeV, we find that the behavior of ZMS
P ð2 GeV; a2p2Þ=ZA

FIG. 12. ZP=ZA in the schemes RI/MOM (left graph) and RI/SMOM (right graph).

FIG. 13. Examples of chiral extrapolations of ZP=ZA in the RI/MOM (left graph) and RI/SMOM (right graph) schemes.

FIG. 14. ZP=ZS in the extrapolated chiral limit in the RI/MOM
and RI/SMOM schemes. ZP=ZS ¼ 1 is well satisfied in both
schemes at large momentum scale. In the RI/MOM result the
Goldstone boson contamination has been removed by using
Eq. (49). The horizontal line is ZP=ZS ¼ 1 for guiding the eyes.
The vertical line indicates p ¼ 2 GeV.
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(see the right panel in Fig. 15) looks similar to that of

ZMS
S ð2 GeV; a2p2Þ=ZA in the right panel of Fig. 10 except

at the very small a2p2 region. We therefore also tried the
Ansätze in Eqs. (44)–(48) to remove the lattice discretiza-
tion artifacts and possible nonperturbative effects in

ZMS
P ð2 GeV; a2p2Þ=ZA to get ZMS

P ð2 GeVÞ=ZA. The fitting

results are similar to those for ZMS
S ð2 GeV; a2p2Þ=ZA from

the RI/SMOM scheme: The Cða2p2Þ2 term is necessary to
reduce the χ2=d:o:f: Above ða2p2Þmin ¼ ∼1.5, the non-
perturbative effects (1=xn terms) can be ignored.
A graph similar to Fig. 11 is obtained as shown in Fig. 16

for the fitted parameter A ¼ ZMS
P ð2 GeVÞ=ZA. Averaging

the results from models (a), (d) and (e) with ða2p2Þmin ¼ 2,

we get ZMS
P ð2 GeVÞ=ZA ¼ 1.056ð47Þ. Here again we take

the biggest uncertainty from the three fits as our statistical

error. The analyses of uncertainties for ZMS
P ð2 GeVÞ=ZA

are given in Table VIII. Adding all the uncertainties

quadratically, we finally obtain ZMS
P ð2 GeVÞ=ZA ¼

1.056ð58Þ. This number agrees with ZMS
S ð2 GeVÞ=ZA ¼

1.064ð55Þ from using also the RI/SMOM scheme.

IV. SUMMARY

In this paper we present our calculation of the RCs for
the quark field (Zq) and bilinear quark operators (ZS, ZP,
ZV , ZA and ZT) by using the RI/MOM and RI/SMOM
schemes. Our lattice setup is overlap valence quark on
2þ 1-flavor domain wall fermion configurations generated
by the RBC-UKQCD Collaborations at the physical pion
mass [msea

π ¼ 139.2ð4Þ MeV] [5]. The lattices are of size
483 × 96, on which the χQCD Collaboration is studying
many physical quantities such as vector meson decay
constants. We compute ZA from the PCAC relation and
obtain the ratios of other RCs to ZA from the appropriate
vertex functions. The results are converted to the MS
scheme and the scale is set to 2 GeV when there is a scale
dependence. These matching factors are necessary to
connect the lattice results to the continuum world. For
the convenience of later usage we collect our final results in
Table IX, where the uncertainties include both the statistical
and systematic errors.
The relations ZV ¼ ZA and ZS ¼ ZP for lattice chiral

fermions are verified. These relations are better satisfied
in the RI/SMOM scheme than in the RI/MOM scheme as
shown in Fig. 4 and Fig. 14. This is expected since the

FIG. 15. The conversion and running of ZP=ZA using RI/MOM (left) or RI/SMOM (right) as the intermediate scheme. The black
curve in the right panel is a fitting using Ansatz (e) in Eq. (48).

FIG. 16. Results of A ¼ ZMS
P ð2 GeVÞ=ZA from fitting

ZMS
P ð2 GeV; a2p2Þ=ZA to the Ansätze in Eqs. (44)–(48) when

using RI/SMOM as the intermediate scheme. The lower limit
ða2p2Þmin of the fitting range ½ða2p2Þmin; 5� is varied.

TABLE IX. Matching factors to the MS scheme for the quark
field and bilinear quark operators.

ZA Zqð2 GeVÞ ZTð2 GeVÞ ZSð2 GeVÞ ZPð2 GeVÞ
1.1025(16) 1.216(23) 1.163(34) 1.118(29) 1.123(56)
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RI/SMOM scheme suppresses more nonperturbative
effects by using symmetric momentum configurations.
For Zq and ZT , the systematic uncertainties from their

conversion ratios to the MS scheme are larger if the
RI/SMOM scheme is used instead of the RI/MOM scheme.
In using both schemes for these two RCs, a renormalization
window can be found after the perturbative running to
2 GeV, in which a straightforward linear extrapolation in
the initial scale a2p2 can be done.
For ZS and ZP, the conversion ratio from the RI/SMOM

scheme to the MS scheme converges much faster than that
from the RI/MOM scheme to MS. However in using the RI/
SMOM schemewe do not find a broad window in the initial
momentum scale for ZS and ZP after the perturbative
running, in which both the nonperturbative effects and
lattice discretization effects are small. That is to say, unlike
for Zq and ZT we do not see a clear linear dependence on

a2p2 in ZMS
S=Pð2 GeV; a2p2Þ after running it from a2p2 to

2 GeV. We tried several Ansätze equations (44)–(48) to

model the behavior of ZMS
S=Pð2 GeV; a2p2Þ. This leads to the

large uncertainties in our calculated ZS and ZP by using
the RI/SMOM scheme. This reduced upper edge of the
renormalization window may be from the usage of link
smearing as discussed in Ref. [27]. We are interested in
checking this on thin link configurations in the future.
In Refs. [13,28], two loop calculations of certain Green

functions with bilinear quark operator insertions were per-
formed for a general momentum configuration parametrized
by ω ¼ q2=p2. For example, ω ¼ 0 and 1 correspond to the

exceptional and symmetric momentum configuration respec-
tively. The convergence in the perturbative series for the
conversion to theMS scheme for different operators behavior
differently as a function of ω. Thus, one may want to use a
different ω for a different operator to mostly shrink the
truncation error in the conversion ratio.
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