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[This paper is part of the Focused Collection on Astronomy Education Research.] Multiple studies show
that spatial thinking skills contribute to students’ performance in science, technology, engineering, and
mathematics disciplines. The study of astronomy is no different with the understanding of many
astronomical phenomena requiring spatial thinking skills. This paper describes traditional and contem-
porary approaches to characterizing and measuring spatial thinking skills and suggests how they inform
research in astronomy education. It summarizes previous literature in astronomy education research and
categorizes the research approaches of astronomy education peer-reviewed journal articles and conference
proceedings that explicitly consider the role of spatial thinking. Additionally, it recommends directions and
curricular approaches for astronomy education research informed by current research in spatial thinking.

DOI: 10.1103/PhysRevPhysEducRes.14.010139

I. INTRODUCTION

Imagine a middle school student attempting to under-
stand why the Moon changes shape over the course of a
month. To form a coherent scientific explanation of lunar
phases, the student must be able to visualize the movement
of Earth around the Sun and the Moon around Earth. The
student must also understand the relative sizes of Earth, the
Sun, and the Moon and the distances between these bodies.
Even when the student holds accurate knowledge about the
causation of astronomical phenomena, spatial thinking
skills are needed for the student to create accurate mental
models of complex phenomena that are too vast to see

The process of moving from human wonder at the night
sky to a scientific understanding of the structure and
evolution of the universe is a remarkable study, made

possible to a significant degree by insights and infer-
ences generated by spatial thinkers.
National Research Council, Learning to Think
Spatially [1].

Understanding astronomical phenomena requires the
ability to imagine objects from different view perspectives
and to track the motion of objects in multidimensional
space. Astronomy also requires the ability to recognize
patterns, to understand cardinal directions, and to reason
about external representations of astronomical phenomena,
as represented in diagrams, maps, three-dimensional (3D)
animations, virtual reality displays, and classroom demon-
strations with physical objects. These abilities are examples
of spatial thinking skills, which we define as the perceptual
and cognitive processes that enable humans to create and
manipulate mental representations of the spatial properties
that exist within and between physical or imagined objects,
structures and systems. In addition to the capacity to form
internal representations of spatial entities, we propose that
spatial thinking comprises the capacity to comprehend
external representations (e.g., maps, diagrams, graphs,
etc.) of such entities, and to make inferences or solve
problems about the spatial properties or internal and
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external representations of spatial extent. We distinguish
the concept of spatial thinking from that of spatial ability,
which traditionally has been used to refer to the measure-
ment of spatial skill. We note that cognitive science
researchers also use the term spatial cognition to refer to
the research on spatial thinking skills.
More than half a century ago, a National Science

Foundation advisory panel published a report recom-
mending strategies for identifying and nurturing scientific
talent [2]. By the first decade of the 21st century, there was a
convincing body of longitudinal evidence [2,3] that spatial
thinking skills measured in adolescence predicted achieve-
ment in science, technology, engineering, and mathematics
(STEM) occupations in adulthood. In 2006, the National
Research Council (NRC) published Learning to Think
Spatially, a national research agenda for incorporating
explicit instruction in spatial thinking in K–12 curricula
[1]. Delineating the principal components of spatial think-
ing, the NRC urged educators to investigate “…concepts of
space, tools of representation, and processes of spatial
reasoning” (p. 5). The NRC defined concepts of space as
the properties, such as scale and size,which define the spatial
extent of any scientific discipline; a representation as an
internal or external embodiment of information about an
object or system; and processes of reasoning as the mental
steps required to solve problems in a particular domain [1].
Motivated by the intrinsically spatial nature of

astronomy and the call across STEM disciplines to consider
spatial thinking as an important cognitive skill, we review a
body of peer-reviewed studies that considered the role of
spatial thinking in astronomy education. Our goals in this
review are to (i) briefly summarize the research frameworks
that traditionally have been used to characterize and
measure spatial thinking skill in STEM fields and introduce
new approaches, (ii) categorize the research approaches of
peer-reviewed journal articles and conference proceedings
that explicitly consider the role of spatial thinking in
astronomy, and (iii) recommend future directions for

astronomy education research that investigates the role
of spatial thinking in astronomy and propose curricula that
reflect these insights.
Contributions to our understanding of spatial thinking

skills have emerged from distinct research traditions in
psychology and cognitive science, notably developmental
psychology, the psychometric approach, and cognitive psy-
chology. These research frameworks have never been con-
nected by unified theory or commonmethodologies, resulting
in a lack of clarity about the structure of spatial thinking skills.
Table I illustrates the similarities and differences in the
classification of spatial skills based on approaches from
developmental and psychometric research traditions.
Despite these differences, all historical approaches to

investigating the structure of spatial ability converge on the
idea that spatial ability is not a unitary construct, but rather is
composed of subcomponents reflecting different mental
processes. Proposals for new frameworks to understand the
development, structure,malleability, andassessmentof spatial
thinking have emerged from cognitive science and discipli-
nary STEM researchers. In the next section, we briefly
describe and compare historical approaches to understanding
spatial thinking skill and introduce new approaches.

A. Developmental approach to spatial cognition

Pioneered by Jean Piaget (1896–1980), the developmen-
tal approach to psychology investigates the origins and
maturation of social and cognitive abilities from infancy
through childhood. A central challenge of the develop-
mental approach is parsing the contributions of innateness
and environmental influence to the development of
competencies.
Piaget was the first scientist to study the development of

spatial cognition.He andhis colleagues built their theories by
observing the behavior of infants and children in natural and
experimental settings. Observations of crawling infants led
Piaget to emphasize the importance of the motor activity in
young child’s formation of spatial representations of his or

TABLE I. Historical classifications of spatial skill.

Spatial visualization Spatial perception Mental rotation Perceptual speed
Closure speed;
closure flexibility

Linn and
Petersen [4]

Complex, multistep
manipulations of
spatial information.

The ability to
determine spatial
relations with
respect to one’s
own body.

The ability to rotate
two- or and three-
dimensional objects
rapidly and
accurately.

Not defined Not defined

Carroll [5] The processes of
apprehending,
encoding, and
mentally
manipulating
three-dimensional
spatial forms.

Not defined The ability to
visualize the
rotation of a three-
dimensional object.

The ability to quickly
compare figures or
symbols, or to
perform other very
simple tasks
involving visual
perception.

The ability to
identify a
stimulus that is
obscured by
visual noise.
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her immediate environment [6]. Piaget and Inhelder
proposed a stagelike progression of spatial awareness in
children, beginning with the child’s ability to understand
topological representations, followed by competencies
in understanding projective, and finally Euclidean
representations.
The stagelike characterization of cognitive development

proposed by Piaget has been disputed by subsequent devel-
opmentalists. However, the magnitude of Piaget’s contribu-
tion to developmental psychology as a whole, and to spatial
development in particular, is irrefutable. Piaget identified a
number of spatial competencies that develop over childhood,
including the ability to use categorical (e.g., near and far) and
metric spatial representations to describe spatial extent;
facility at shifting between egocentric (viewer-dependent)
and allocentric (viewer-independent) frames of visual refer-
ence, and skill at using symbolic spatial representations,
including, maps, diagrams, and sketches.
Contemporary developmental psychologists have con-

tinued to investigate the emergence and development of
spatial skills. There is now a robust body of literature
investigating precursors to spatial skills, individual and sex
differences in spatial development, and the contributions of
motor activity, including gesture, to the development of
spatial representations [7]. Research on children’s develop-
ment of spatial representations identified a beneficial
reciprocal relationship between early spatial skills and
mathematics ability. Gunderson et al. [8] demonstrated
that 1st and 2nd graders’ ability to mentally rotate two-
dimensional (2D) figures predicted improvement in their
ability to create a meaningful representation of a linear
number line by the end of the school year. They also found
that the spatial skills of five-year olds, as measured on
another mental rotation task, predicted their performance
on a measure of symbolic calculation ability.
An approach sometimes taken by developmental psychol-

ogists is to investigate sex differences in the emergence and
durability of behavioral and cognitive competencies over
time. Using meta-analysis to synthesize the results of
previously studies, Linn and Petersen used computed effect
size differences in mean group (male vs female) performance
as reported in 172 spatial studies published from 1974 to
1982, and representing participants from preschool to college
age [4]. They categorized the spatial skills represented in
these studies along three dimensions: spatial perception,
which they defined as the ability to determine spatial
relations with respect to one’s own body; mental rotation,
the ability to visualize the rotation of three-dimensional
objects; and spatial visualization, complex, multistep manip-
ulations of spatial information. Linn and Petersen used both
psychometric (referring to previous psychometric studies)
and cognitive (identifying the mental processes hypothesized
to contribute to the skill) rationales to arrive at these
categories, “…focus (ing) on the similarities in the processes
individuals used for individual (test) items” (p. 1482). In

classifying these skills, they noted that while spatial visu-
alization tasks might comprise processes of spatial percep-
tion and mental rotation, spatial visualization tasks were
distinct from spatial perception and mental rotation because
of their inherent complexity and their amenability to analytic
and imagistic solution strategies. The meta-analysis of sex
differences in spatial skill found the largest sex differences in
performance on mental rotation tasks.
Comprehensive reviews of recent developmental liter-

ature are found in Newcombe and Huttenlocher [9],
Newcombe and Frick [10], and Vasilyeva and Lourenco
[11]. Summarizing recent research themes related to the
development of spatial abilities, Newcombe and Frick [10]
argued for the malleability of spatial skill and the impor-
tance of early education of spatial thinking skills in formal
and informal settings.
The developmentalists’ concern with the malleability of

spatial skill is echoed in a recent meta-analysis by Uttal et al.
[12],which found convincing evidence (an average effect size
of 0.47 for training effects vs control) for the malleability of
spatial thinking through training and instruction. Uttal et al.’s
findings support those of an earliermeta-analysis of60 studies
that examined the relationship between spatial ability and
participation in spatial activities [12,13]. In this study,
Baenninger and Newcombe [13] categorized the training
studies in the meta-analysis by content of instruction and
duration of training. They identified three types of training
content: specific training (training on a specific spatial
measure); general training (training on more than one type
ofmeasure); and indirect training (training thatwasnot related
to a specific spatial measure, but was related to a spatial task).
The duration of training studies varied from short (single
administrations of training, or training that lasted threeweeks
or less) to medium (more than one administration over more
than three weeks, but less than a semester) and long (training
that lasted a semester). Baenninger and Newcombe [13]
concluded that training was optimal when it was test specific
and administered in at least 3 or 4 sessions over 3 weeks or
longer. Uttal and Cohen [14] emphasize the importance of
foundational training in spatial thinkingat theuniversity level,
arguing that STEM novices rely to a far greater degree on the
processes of spatial reasoning than do expert scientists, who
have created heuristics and abstract mental representations to
help them solve problems.

B. Psychometric approach to spatial thinking

The psychometric approach to understanding spatial
thinking has focused primarily on discovering and describ-
ing the factors of spatial ability. The approach originated
among early 20th century scientists who challenged the
prevailing view that human intelligence was a unitary
construct. By the early 20th century, psychometricians,
including Thurstone, had successfully applied exploratory
factor analysis to distinguish seven separable intelligence
factors: word fluency, verbal comprehension, number
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facility, reasoning, associative memory, spatial visualiza-
tion, and perceptual speed [15]. The further application of
the factor analytic approach led to the development of
hundreds of standardized spatial ability tests [16], many of
which were developed to predict vocational abilities.
In the mid-20th century, a number of exploratory factor

analyses of spatial test data were conducted to determine
the underlying factor structure of the skills measured by
psychometric tests [17]. The results of these analyses
varied, in part because the factor analyses were influenced
by the types of tests that were used. However, each analysis
supported the multi-componential nature of spatial ability
[17]. Carroll’s [5] reanalysis of 90 sets of psychometric data
was the most extensive of this group of exploratory factor
analyses. Carroll [5] found consistent support for four
visuospatial factors: spatial visualization, the processes of
apprehending, encoding, and mentally manipulating three-
dimensional spatial forms; perceptual speed, the ability to
quickly compare figures or symbols, or to perform other
very simple tasks involving visual perception; and closure
speed and closure flexibility, both of which involve the
ability to identify a stimulus that is obscured by visual
noise. Carroll found the strongest support for the spatial
visualization factor, which he defined as “power in solving
increasingly difficult problems involving spatial forms.”
Carroll’s typology has been used as a starting point for

conducting studies investigating the role of spatial thinking
in some disciplines of science [18]. There is no definitive
psychometric test to measure spatial visualization. Typical
markers for the test include tests of mental rotation
[Vandenberg mental rotation test [19] and the Purdue
spatial visualization test: Rotations (PSVT:R) [20] ] and
form board and surface development tests which require the
viewer to imagine the folding and unfolding of a pieces of
paper [16]. Other tests that have been used to measure
spatial visualization ability include Guay’s visualization of
views test [16], which asks the participants to imagine a
view of an imaginary object from a perspective other than
the one given in the test problem, the cube comparison test
[21], which requires participants to predict visual patterns
on the hidden face of a cube, and the spatial relations
subtest of the differential aptitude test [22], which requires
participants to visualize a two-dimensional figure that has
been folded into a three-dimensional shape.
The psychometric approach has made important con-

tributions to our understanding of spatial thinking by
distinguishing spatial abilities from other cognitive proc-
esses and by determining the componential nature of spatial
skill. It has also provided assessment tools that permit
cognitive psychologists to examine spatial processes in
specific STEM disciplines.

C. Cognitive approach to spatial thinking

When students learn about scientific phenomena that are
too small or too vast to see with the naked eye, they use

their perceptual and cognitive abilities to form internal
mental models and to parse external representations,
including diagrams, charts, and graphs describing these
phenomena. What are the perceptual and cognitive proc-
esses that allow students to form mental representations of
astronomical phenomena? To what degree do individuals
vary in their abilities to use visuospatial skills? The
cognitive approach has focused on identifying and describ-
ing the mental processes underlying spatial skill.
Psychological theories of working memory and of imagery
formation contribute to our understanding of the mental
processes that contribute to spatial thinking.
Most research on the cognitive processes involved in

spatial thinking has focused on the role of visuospatial
information in forming spatial representations. There is also
growing interest among cognitive and developmental scien-
tists in the contribution of haptic and kinesthetic information,
such as through gesture and the manipulation of physical
models to the formation of spatial representations [23].
Baddeley’s model of working memory [24] is the

dominant cognitive theory that describes how humans
transform new perceptual information into enduring
memories. Baddeley’s three-part model comprises a central
executive component and two “slave” systems: a visuo-
spatial sketchpad that processes visually based information
and a phonological loop that processes auditory informa-
tion. According to this model, the central executive
monitors and schedules the operations of visuospatial
working memory and phonological loop. All three com-
ponents of working memory are conceived of as having
limited storage and processing capacity albeit with evi-
dence for individual differences in processing ability.
A complementary body of theory describes the processes

underlying the formation and transformation of imagery in
the visuospatial sketchpad [25,26]. In Kosslyn’s model,
visuospatial working memory has the potential to combine
perceptual input with previously encoded imagery, to
combine multiple images into a composite image, and to
transform imagery by a number of spatial processes.
Kosslyn identified a number of transformational processes
that act on imagery including translate (move up-down,
right-left, or diagonally in two-dimensional space), rotate,
scan, and parse (rearrange the internal parts of an image).
In a complex spatial visualization task, the central executive
component of working memory would order the series of
rotation and parsing processes in visuospatial working
memory order to arrive at a solution to a problem.
As applied to spatial visualization tasks, there is

evidence that low-spatial individuals lose spatial informa-
tion while transforming mental images [27–30]. Individual
differences in the ability to change view perspective have
been documented by Kozhevnikov and Hegarty [31] and
Hegarty and Waller [17]. Current models of individual
differences in spatial visualization ability specify
differences in working memory resources for the storage
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and processing of spatial information [17]. As noted by
Linn and Petersen [4] there is also evidence for a male
advantage on specific spatial thinking tasks, notably mental
rotation. Biological, environmental, and social psychologi-
cal theories have been proposed to explain these
differences. Biological theories include hypotheses propos-
ing that hormonal changes at adolescence [32] and genetic
contributions to brain laterality [33] disadvantage females
on some spatial skills. Countering this view is substantial
evidence that environmental influences, in the form of
experience in spatial activities from an early age and
explicit training can eliminate sex differences on spatial
tasks [4,33].
Social psychologists have proposed that stereotype

threat may contribute to a male advantage on some spatial
tasks. Stereotype threat is experience of anxiety and
accompanying degradation to cognitive processes that
occurs when a member of a group is reminded of stigmas
about their group [34]. In laboratory settings, the male
advantage on mental rotation tasks disappeared when
female participants were told that they could expect to
perform better than men on spatial tasks [35,36] and when
they were reminded of their academic status as students in
a private elite university [37].

D. Studies of spatial thinking
in other STEM disciplines

Science educators have investigated the role of spatial
thinking in their fields for decades, and the NRC’s call for
a systematic approach to spatial education has stimulated
more research. In 2006, the National Science Foundation
established the Spatial Intelligence and Learning Center
(SILC), a consortium of scientists and educators whose
collective aim is to investigate the processes of spatial
learning and to use this knowledge to develop programs
and technologies that will transform education practice in
STEM fields [38]. SILC’s website [38] is a resource for
information on research, publications, tests, instruments,
and general information related to the development of
spatial intelligence.
STEM researchers in disciplines outside of astronomy

have investigated the role of spatial thinking with a variety
of empirical approaches, including observational, correla-
tional, and training studies [39]. Correlational studies have
found statistically significant correlations between stu-
dents’ performance on psychometric spatial ability tests
and their performance on specific tasks in a number of
disciplines.
A spatially demanding task that is common in biology,

anatomy, and engineering is the ability to visualize the
correspondence between 3D structures and their 2D cross
sections [40–42]. Cohen and Hegarty [43] found moderate
positive correlations between the ability to draw cross
sections of novel anatomical-like forms and measures of
mental rotation and perspective-taking ability. Rochford

[40] found that students who had difficulty in spatial
processes such as sectioning, translating, rotating, and
visualizing shapes also had difficulty in practical anatomy
classes. University students’ spatial ability scores predicted
their skill in identifying anatomical structures [41]. Ha and
Brown [42] found that performance on a measure of cross-
sectioning ability among sophomore civil and aeronautical
engineering students accounted for 53% of the variance on
a mechanics of materials concept inventory. Mechanics of
materials is an engineering topic that requires the ability to
visualize and analyze the distribution of stress loads on
cross sections of inclined planes.
Geoscience education researchers demonstrated that

spatial visualization skills, particularly the ability to iden-
tify cross sections of 3D structures, is a required skill in
introductory geology courses, and that students’ spatial
thinking skills increase after a structural geology class
[44,45]. Liben, Kastens, and Christensen [46] demon-
strated that students’ performance on a spatial task was
related to their performance on geological field and
laboratory tasks. Supporting correlational evidence for
the importance of spatial thinking skills in geology,
Kastens and Ishikawa [47] enumerated specific spatial
thinking skills that are important in geosciences: recogniz-
ing, describing, and classifying the shape of an object;
describing the position and orientation of objects; making
and using maps; envisioning processes in three dimensions;
and using spatial-thinking strategies to think about geo-
science phenomena. In a similar fashion, Liben and Titus
[48] described the spatial thinking skills required in a
typical field day in geology, describing some of the
cognitive processes required for these tasks and suggesting
teaching strategies for particularly demanding tasks.
In chemistry, spatial thinking skills contribute to students’

ability to distinguish between isomers (molecules with the
same composition, but different structural properties) [14].
Significant positive correlations have been found between
psychometric spatial ability and chemistry topics, including
topics that are not obviously spatial. A number of researchers
found that the relationship between spatial ability and
understanding chemistry was stronger for questions that
required problem-solving skills, rather than those that could
be addressed through memorization [20,49,50].
There is also correlational evidence for the contribution

of spatial thinking skills to performance in physics.
Kozhevnikov and Thornton [51] found small positive
correlations between performance on the paper folding test
and problems that require the participant to relate force and
motion events, and to interpret graphs representing force and
acceleration. Additional correlational evidence for the con-
tribution of spatial skills to physics is found in Hegarty and
Sims [52] and Kozhevnikov, Hegarty, and Mayer [53].
A variety of researchers have investigated the benefits

of spatial training for STEM learning. Some have taken
a domain-specific approach to training, training specific
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skills that are important to their disciplines. Other studies
have used a domain-general approach, by training general
spatial processes, such as mental rotation and change in
view perspective. Examples of studies using the domain-
specific approach include Brinkmann [54], Lord [55], and
Small and Morton [56]. Brinkmann incorporated folding
cardboard patterns and wooden models of geometric forms
in a self-paced instructional program designed to improve
the geometry performance of eighth-grade students.
Models were used to demonstrate specific spatial concepts
in geometry, such as the characteristics of points, lines,
angles, planes, and solids. After instruction, the trained
group showed significant pre-post-test gains on a measure
of geometry performance and transfer to a spatial visuali-
zation test. Similarly, Lord [55] used wooden models of
geometric solids to train biology students to recognize the
cross sections of primitive figures. Students were encour-
aged to form visual images of three-dimensional solids, and
then to imagine the shape that would be formed when the
solids were cut at various angles. In an organic chemistry
class, Small and Morton [56] found that experience
manipulating 3D molecular models and interpreting dia-
grams significantly improved the performance of an exper-
imental group, compared to a control group that received
extra practice on conceptual knowledge in chemistry.
Support for domain-general training is found in exten-

sive work by Sorby [57], who developed semester-long
courses designed for engineering students with low spatial
visualization skills. Coursework included lectures, sketch-
ing, and manipulating multimedia software that modeled
rotations, projections, and cross sections of simple geo-
metric objects. Completion of the course was associated
with higher grades in engineering and science classes and
retention in the undergraduate program.
In a laboratory study, Feng, Spence, and Pratt [58]

demonstrated that 10 hours of experience playing an
action-based video game significantly reduced the pretrain-
ing male advantage on a mental rotation task and a measure
of spatial attention, with females realizing larger gains than
males. Additional support for a domain-general approach
was provided byWright et al. [59] who found that intensive
practice on a computerized version of the Vandenberg
mental rotation test (MRT) and the paper-folding test over a
three-week period transferred to nonpracticed spatial tasks.
Similarly, Sanchez [60] demonstrated that university stu-
dents who played an action-oriented video game for a short
duration (25 min) performed significantly better on spatial
ability post-tests than members of the control group, who
played a word-based video game during the same period.
The most noteworthy result from Sanchez [60], however,
was the transfer of first-person shooter game training to
performance on an essay demonstrating comprehension of
the geologic mechanisms causing volcanoes gained from
reading a nonillustrated account of the plate tectonics.
The control groups’ scores on the volcano essay were

significantly lower than those of the experimental group.
Notably, the video games used in Feng and Spence [58]
and Sanchez [60] were “first-person shooter” games, in
which the participant is challenged to rapidly shift his or
her view perspective of their target. Sanchez [60] argued
that a short period of experience manipulating visuospatial
information in a goal-directed manner improved the effi-
ciency of visuospatial processes recruited in learning
spatially-rich scientific content as well as performance
on spatial ability tests.
Historically, studies investigating the role of spatial

abilities in STEM fields outside of astronomy have relied
on various psychometric measures of spatial visualization,
as defined by Carroll, to investigate spatial thinking in
particular disciplines [5]. While these tests are predictive
of performance in STEM fields, they do not measure the
complex, domain-specific thinking required in disciplines.
Researchers who are interested in improving spatial think-
ing have argued for new typologies that capture the
nuanced skills required in specific STEM fields [5,61].

E. New typologies for spatial thinking

Addressing the inherent limitations of psychometric tests
and the lack of theoretical consensus for any prior typology
of spatial thinking skills, Newcombe and Shipley [62]
proposed a top-down schema that varies along two dimen-
sions: the intrinsic-extrinsic location of the spatial features
of an object (e.g., any entity that exists in the natural world,
regardless of its spatial scale) and movement (whether
objects are static or dynamic). Newcombe and Shipley [62]
found support for this typology from cognitive, neural and
linguistic evidence that humans make distinctions along
these two continua. Support for the intrinsic-extrinsic
distinction in spatial thinking was also found in a self-
report measures by scientists in diverse fields.
As shown in Table II, crossing these two dimensions

yields four broad categories of spatial skills: intrinsic-static
skills are needed to code (i.e., form a mental representation
of) the internal features of static objects, such as the
distance between two locations on Earth; intrinsic-dynamic
skills are used to transform the internal spatial features of
objects, as with imaging the mental rotation or cross
sectioning of an object; extrinsic-static skills are used to
code the spatial location of objects relative to other objects
or to a reference frame, as with the size and scale of objects
in space; and extrinsic-dynamic spatial thinking skills are
need to transforming the relations between objects as one or
more of them, including the viewer moves. An example
of an extrinsic-dynamic astronomical representation is a
mental model of the planets revolving around the sun as
seem from a view perspective other than Earth.
At this writing, support for this typology was found in

two studies that tested the hypothesis that specialized
spatial skills were required to perform rigid vs nonrigid
transformations of objects. In a rigid transformation, the
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distances between points (locations) in an object are
preserved. In a nonrigid transformation, the distances
between points are not preserved. In Resnick and
Shipley [63], expert geologists outperformed expert
organic chemists on a task that was required in geology,
but not in chemistry—identifying the spatial transforma-
tions of a brittle object. Testing nonexpert scientists
(undergraduates in a psychology department participant
pool), Attit, Shipley, and Tikoff [64] also found dissoci-
ations between the ability to make rigid vs nonrigid spatial
transformations. Evidence from these two studies not only
supported the dimensions of the typology, but also sug-
gested that scientists from different disciplines rely on
different spatial thinking skills in their work.
The measurement of spatial skills in the psychometric

literature focused on how individuals reason about the spatial
properties of objects. Cognitive scientists have also recog-
nized the distinction between spatial thinking abilities at
different scales, primarily the scale of objects, vistas (such as
rooms where the spatial extent can be seen in a single view)
and large-scale environments, whose spatial extent can only
be experienced through moving through them [65–67].
Cognitive psychologists have identified normal variation
in the spatial thinking skills required to interpret interactive
animations [43] and virtual reality displays [66]. This
evidence suggests that astronomy educators may find
variation among astronomy students in the ability to form
and transform visuospatial information.
Evidence for the validity of these new spatial typologies

argues for what Resnick and Shipley [63] refer to as an
ecological approach to spatial cognition, one that recog-
nizes that the spatial skills needed in a specific discipline
may differ substantially from those needed in other
disciplines.

II. LITERATURE REVIEW: ASTRONOMY
EDUCATION AND SPATIAL THINKING

A. Selection criteria

The second goal of our paper was to identify the
dominant approaches to research that investigated the
contribution of spatial thinking in astronomy education.
We limited our selection to peer-reviewed journal articles
and conference proceedings that explicitly investigated
the role of spatial thinking at any level of astronomy
education over the past 35 years. Using these key terms
“spatial ability,” “spatial reasoning,” “spatial thinking,”

“visuospatial,” “astronomy,” and “astronomy education,”
we used Google Scholar, PsychInfo, ProQuest, and indi-
vidual journal indices (e.g., Astronomy Education Review)
to search for relevant papers.

B. Categorization of studies

We modified Hegarty’s framework to reflect the current
literature that addressed research on spatial thinking in
astronomy. We identified three primary approaches to
investigating the role of spatial thinking in astronomy
education: (i) Noninterventional studies, including descrip-
tive studies of students’ misconceptions; (ii) interventional
studies designed to remediate students’ spatial misconcep-
tions in astronomy; (iii) learning progressions, which
propose sequences through which students may develop
accurate explanations of astronomical phenomena.
In the existing literature, researchers used a variety of

tools and methods to investigate the role of spatial thinking
in astronomy. Some measured the association between
domain-general psychometric tests (e.g., PSVT:R,
Vandenberg mental rotation test; the paper folding test)
and performance on specific tasks in astronomy (content
knowledge). Others devised novel, domain-specific tests of
spatial skills in astronomy. We have included two sets of
tables to help the reader understand the content of the
papers within each framework. First, a set of tables was
created that shows the ways in which the papers were
categorized according to the modified Hegarty framework.
This set of tables includes a summary for each study as well
as the participants and instruments reported in each paper.
In addition, we have also included a set of tables to note
how each article within the intervention, nonintervention,
and learning progression categories would be classified
according to the Newcombe and Shipley [62] extrinsic-
intrinsic dynamic-static framework. Categories were
assigned based on how the how the assessment and/or
instruction of the concepts were described within the paper.
This set of tables also includes columns that denote the
assessment instrument(s) used as well as their domain
specificity or generality. It is important to note that, at first
glance, many of the problems undertaken by astronomy
education researchers would fall into the extrinsic-dynamic
category as we are considering the spatial relations of
objects that are certainly moving and the observer is
external to the objects and moving as well. However, it
is also important to look at both the phenomena itself and

TABLE II. Newcombe-Shipley topology of spatial skills [62].

Intrinsic Extrinsic

Static Coding the internal features of static objects Coding the spatial location of objects relative to
other objects or to a reference frame

Dynamic Transforming the internal spatial features of objects, as through mental
rotation, cross sectioning, folding, and other plastic deformations

Transforming the relations between objects as one
or more of them moves, including the viewer
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the instructional methods or tools used to teach it, as this
may put the research into another Newcombe and Shipley
category. Much science content involves phenomena that
are too large or small to be seen by the naked eye, so
external visualizations such as models, diagrams, and
drawings are used to help students learn about the phe-
nomena. The spatial skills needed to understand external
visualizations and models are different from those needed
to think about the actual phenomena. For instance, when
learning about the motion of the Earth, Moon, and Sun
system to produce lunar phases, extrinsic-dynamic spatial
skills would be needed to consider the relative locations of
each moving body in space to produce the phase seen by
observers on Earth. If instead an orrery were used to model
the lunar phases, intrinsic-static spatial skills would be
needed to consider a stationary model or intrinsic-dynamic
spatial skills to considering an orrery in motion.

C. Previous reviews of astronomy education literature

In a review of empirical astronomy education literature
[68] and a subsequent resource letter [69] Bailey and Slater
summarized and classified more than 100 articles, books,
and web-based resources that reflected qualitative, quanti-
tative and mixed methods research studies.
They categorized the sources by topics, such as lunar

phases, shape of Earth, diurnal movement, cosmology, and
astrophysics. They also summarized astronomy assess-
ments and studies that focused on teachers’ understandings
of astronomical phenomena. Two of the studies reviewed
by Bailey and Slater [68] investigated the role of spatial
thinking in astronomy [70,71]. Published shortly after the
2001 inauguration of Astronomy Education Review, the
literature review stressed the need for astronomy education
research that described students’ difficulties and more
clearly linked theory to classroom practice.
Lelliot and Rollnick [72] reviewed 103 peer-reviewed

astronomy education research papers published from1974 to
2008. Most of the research identified misconceptions of
astronomical phenomena held by students. Eighty percent of
the studies investigated how students learned about five “big
ideas” in astronomy: conceptions of Earth, gravity, the day-
night cycle, the seasons, and the Earth-Sun-Moon System.
Other topicswere the stars, the Solar System, and concepts of
size and distance. The most challenging topics were phases
of theMoon, the seasons, and gravity,while content related to
Earth and the day-night cycle was well understood.
While noting that researchers’ theoretical frameworks

were often unstated and hard to classify, Lelliot and
Rollnick identified four principal theoretical approaches
used by researchers: individual or personal constructivism,
including Piagetian theories of conceptual development;
investigations of mental models or conceptual frameworks
held by participants; studies of conceptual change and
knowledge acquisition; and cultural, cross-cultural or
worldview perspectives on astronomy. Recognizing the

intrinsically spatial nature of astronomy, Lelliot and
Rollnick recommended that astronomy curricula at all
levels of education increase visuospatial learning activities,
such as manipulating physical models and interacting with
virtual displays. They also recommended that astronomy
curricula include instruction in interpreting external repre-
sentations, including drawings and models, and discussions
of distance and scale in the Solar System.
Brazell and Espinosa [73] found in a meta-analysis of

19 studies that planetaria were effective in improving
students’ understanding of astronomical phenomena, and
in some cases in improving students’ spatial thinking
skills. However, these results should be interpreted with
caution as none of the studies that measured spatial skills
had been peer reviewed. Sneider, Bar, and Kavanagh [74]
identified more than 40 studies, including studies of
planetaria, that explored students’ conceptual difficulties
in understanding explanations for the seasons. Their
review identified the spatial content of challenging content
related to the seasons, including the physics of light, the
rotation of Earth around the Sun, the Sun’s path, and the
tilt of Earth, but did not identify the spatial assessments
that were used in these studies. They proposed a learning
progression for the seasons that is discussed in Sec. II. C.
In summary, none of the previous reviews of astronomy

education research explicitly investigated the role of spatial
thinking in astronomy research. Bailey and Slater [68,69]
summarized the content of existing research in a historical
framework and noted the need to translate research findings
into classroom practice. Two studies investigating spatial
thinking were mentioned in this review, but spatial thinking
was not a theme.
Lelliot and Rollnick [72] categorize astronomy educa-

tion research in a conceptual framework of five “big ideas,”
each of which is brimming with spatially challenging
content. Although Lelliot and Rollnick noted the overall
importance of developing teachers’ and students’ visuo-
spatial abilities, they stopped short of defining the spatial
challenges inherent in the big ideas. This review will be the
first in the field to address the spatial content of astronomy
education research.

D. Review of astronomy education literature
investigating spatial thinking

1. Noninterventional studies

Noninterventional studies investigate the relationship
between students’ misconceptions of astronomical phe-
nomenon and spatial reasoning. See Tables III and IV for
summaries of each of the research studies and how they fit
within the Newcombe-Shipley framework [62]. Many
research studies have indicated that students need to
develop keen spatial understandings to grasp comprehen-
sion of apparent celestial motions, the cause of lunar
phases, and an explanation of the seasons [75–78]. A
number of studies have demonstrated that children younger
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TABLE IV. Newcombe-Shipley [64] categories for noninterventional studies. Note that while the domain specificity or generality and
assessment instrument columns are intended to align, any alignment with the Newcombe-Shipley framework column is incidental.

References Concept(s) investigated Assessment instrument(s)

Domain-specificity
or generality of
instrument(s)

Shipley-
Newcombe

framework [64]

Plummer, Bower,
and Liben [75]

Apparent celestial motion Interviews Domain specific Extrinsic dynamic
Perspective taking test Domain general

Seasons
Sherrod and
Wilhelm [76]

Lunar phases Analysis of verbal discourse Domain specific Extrinsic dynamic
Intrinsic static

2D drawings of Earth-Moon-Sun
system

Domain specific

Wilhelm [77] Lunar phases Lunar Phases Concept Inventory Domain specific Extrinsic dynamic
Geometric spatial assessment Domain general

Wilhelm [78] Location, size, and appearance
of the Moon

Interviews Domain specific Extrinsic dynamic

Venville, Louisell,
and Wilhelm [79]

Childrens’ notions about the
Moon

Interviews Domain specific Intrinsic static

Intrinsic dynamic
Extrinsic dynamic

Subramaniam and
Padalkar [80]

Lunar phases Interviews Domain specific Extrinsic dynamic
Intrinsic dynamic

Kikas [81] Earth properties or motions;
solar system; seasons

Contour extraction test Domain general Intrinsic static

Test of visual memory for objects Domain general Intrinsic dynamic
Two mental rotation tests Domain general
Interviews Domain specific

Wilhelm, Jackson,
Sullivan, and
Wilhelm [83]

Lunar phases Purdue spatial visualization test: Domain general Extrinsic dynamic
Rotations Intrinsic static
GSA Domain general Intrinsic dynamic
LPCI Domain specific

Black [86] Wide range of Earth science
concepts

Earth science concepts test Domain specific Extrinsic dynamic

PSVT:R Domain general Extrinsic static
Group embedded figures Domain general Intrinsic dynamic
Differential aptitudes Domain general Intrinsic static

Heyer, Slater,
and Slater [87]

Range of Astronomy topics
typically encountered in
ASTRO 101 courses

Test of Astronomy Standards
(TOAST)

Domain specific Extrinsic dynamic

What do you know (WDYK) Domain specific Extrinsic static
Vandenberg mental rotation test Domain general Intrinsic static
Paper folding test-Vz-2 Domain general

Türk [88] Range of basic astronomy
concepts encountered by
pre-service teachers

Astronomy achievement test Domain specific Extrinsic dynamic

PSVT:R Domain general Intrinsic static
Astronomy attitude scale Not relevant to

spatial issues
Rudman [94] Basic motion in solar system;

Day-night cycle; seasons;
phases of the Moon; eclipses

Astronomy-based geometry test Domain specific Extrinsic dynamic

Cube comparison Domain general Intrinsic dynamic
Astronomy questionnaire Domain specific
Interviews Domain specific

Taylor and
Grundstrom [96]

Earth-Moon-Sun system scale
and distance

Student-drawn diagrams Domain specific Intrinsic static

Extrinsic static
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than nine have limited ability to change their view
perspective and little to no understanding of the causes
of astronomical phenomena [75,78,79].
There is also evidence that young children’s understanding

of astronomical understanding (e.g., knowledge of theMoon
and stars) can be influenced by their social and culturalmilieu
(stories, family experiences, etc.). In addition, many children
had little to no experiences with focused celestial observa-
tions. Wilhelm [78] determined that not only were young
children influenced by stories and movies to understand
astronomical phenomena, but also had a natural inclination to
animate celestial objects such as the Sun and Moon. For
example, a child in this study explained that the Moon was
sometimes half (first quarter Moon phase) because it (the
Moon) “wants to be half” and sometimes when it was happy
it looked fuller (waxing gibbous) [78], (p. 263).
Research conducted with older children (aged 12–14)

regarding spatial visualization and the cause of lunar phases
understanding illustrates that children’s spatial thinking
skills improve as they gain more experience understanding
perspective, directional space, and the necessary geometries
for particular lunar phases [77]. Children in this age group
also begin to advance their scientific reasoning through work
with 2D and 3D modeling [76,80]. Sherrod and Wilhelm
[76] conducted a study with 92 middle school students
where classroom dialogue was examined regarding a Moon
finale lesson using 2D and 3D models to investigate the
cause of lunar phases. Students reconstructed their under-
standing of lunar concepts related to geometric Earth-Moon-
Sun configurations after productive classroom discourse that
allowed them to consider and challenge their misconcep-
tions. Subramaniaum and Padalkar [80] explored how eight
students reasoned with models to explain Moon phases. In
this study, students had correct mental models of the Earth-
Moon-Sun system, but were unable to explain each phase
scientifically. Subramaniaum and Padalkar claimed, “In
order to successfully explain lunar phases one needs to
shift perspectives as one reasons, from a space based to an
Earth based viewpoint” and that conceptual elements such as
illumination boundary (terminator line) “belong to the
domain of geometry of the sphere” [80], (p. 19).

Plummer, Bower, and Liben [75] developed a novel
instrument for investigating elementary school children’s
ability to shift their imagined view perspective from one
reference frame to another. Children who were skilled at
changing their view perspective provided more coherent
explanations of the relationships between Earth-bound and
space-bound frames of reference when explaining the
apparent motion of the Sun and the stars, and for seasonal
changes in the constellations. The findings suggest that
children with lower perspective taking skills may need
support in learning to explicitly connect reference frames.
Kikas [81] examined the role of spatial ability and verbal

ability in young children’s (176 first and second grade
students) understanding of knowledge of Earth. Kikas
measured students’ spatial thinking skills with four tests:
the Contour Extraction test [82] in which participants are
asked to identify a specified shape in a complex image, a
test of visual memory for objects, and two mental rotation
tests. Verbal reasoning and students’memory for words and
sentences were also assessed. Students’ visuospatial ability
affected their factual knowledge positively in the first
grade, but negatively affected synthetic knowledge in the
second grade. Kikas suggested children with higher visuo-
spatial abilities may pay more attention to drawings in
popular science books and ask questions to better under-
stand them. Kikas also found that verbal abilities had a
significant effect on second graders’ scientific knowledge.
In a study with children (aged 12–13 years), Wilhelm

et al. [83] examined the associations between students’
spatial thinking ability and lunar-related content knowl-
edge. Student’s spatial thinking abilities were measured
with the PSVT:R [20] and the geometric spatial assessment
(GSA) [84], a 16-item multiple-choice test that assesses
four spatial domains (periodic patterns, geometric spatial
visualization, cardinal directions, and spatial projections).
In addition, students completed the Lunar Phases Concept
Inventory (LPCI) [85], a 20-item multiple-choice survey
that assesses students’ understanding of lunar-phase con-
cepts such as Moon motion, orbital periodicity, and cause
of phases. Questions on the LPCI can be mapped to the four
spatial domains of the GSA (See Table V). Significant

TABLE V. Concept domains: Lunar Phases Concept Inventory (LPCI) science domains and corresponding Geometric Spatial
Assessment (GSA) domains [83].

LPCI scientific domains
Corresponding GSA spatial

domains

A—Period of the Moon’s orbit around
Earth

B—Period of the Moon’s cycle of phases Periodic Patterns (PP)

C—Direction of the Moon’s orbit
around Earth

E—Phase due to Sun-Earth-Moon
positions

G—Cause of lunar
phases

Geometric Spatial Visualization
(GSV)

D—Moon motion from earthly
perspective

F—Phase location in sky-time of observation Cardinal Directions (CD)

H—Effect of lunar phase with change in earthly location Spatial Projection (SP)
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positive correlations were found between the PSVT:R and
the GSA, and between the LPCI and the GSA.
A number of studies have found significant correlations

between mental rotation ability and comprehension of
astronomy concepts among college students [86–88].
Black [86] investigated the contribution of nonscience
majors’ spatial skills to their understanding of earth science
concepts, including astronomy. Students’ understanding of
earth science concepts were assessed with a multiple-choice
assessment developed by Black. Students’ spatial skills
were assessed with the PSVT:R [20], the group embedded
figures test, which assesses the ability to disembed a shape
from background noise [89], and the Differential Aptitudes
Test: Spatial Relations [22]. Spatial ability, as measured on
the three tests, accounted for up to one-third of the variation
on the earth science concepts test.
Heyer, Slater, and Slater [87] examined the relationship

between nonscience majors’ spatial thinking and under-
standing of astronomy. They used the Test of Astronomy
Standards (TOAST) [90] and What Do You Know
(WDYK) [91–93] to measure astronomy understanding.
Spatial thinking skills were measured in a two-part spatial
reasoning assessment using questions drawn from the
Vandenberg mental rotation test [19] and the paper folding
test-Vz-2 [21]. Moderate to strong correlations were found
between pre-to-post gain scores on TOAST and the spatial
assessment, suggesting the relationship between spatial
thinking and understanding astronomy could explain about
25% of the variation in student achievement. They also
found that students left the course still unable to correctly
answer one-third or more of the TOAST questions.
Rudman [94] investigated if college students’ spatial

thinking skills could interfere with their correct causal
knowledge of astronomy when they attempted to solve
astronomy problems. In this exploratory study, he analyzed
students’ performance on two spatial measurements, a
short-answer questionnaire of astronomy knowledge and
astronomical problem solving, and structured one-on-one
interviews. Spatial thinking skills were measured with
the cube comparison test [21] and a 21-item astronomy
geometry (AG) test that was designed for this study and
tested students’ ability to solve problems related to rotation,
revolution, occlusion, tilt, light, and a combination of those
phenomena. During the interview, participants gave causal
explanations for the basic movements in the Solar System,
the day-night cycle, seasons, phases of the Moon, and
eclipses and were then asked to rate their levels of certainty
about the accuracy of their scientific explanations.
Following this self-assessment, they were asked to solve
problems related to the phenomena they had just explained.
Rudman found that spatial ability shared a positive

(though not statistically significant) correlation with
astronomy problem solving ability, regardless of the causal
models that individuals adopted. From coded interview
content, Rudman identified four explanatory models of

the seasons: fixed tilt (Earth has a fixed tilt as it rotates
around the Sun), wobbly tilt (the tilt of Earth changes as it
rotates around the Sun), elliptical orbit (Earth moves in an
elliptical orbit around the Sun, causing changes in temper-
ature throughout the year) and quantum orbit (Earth’s orbit is
closer to the Sun in the summer than in the winter; this model
was held by only one of 18 participants). Performance on
the cube comparison test predicted the explanatory model
held by the students. Students who held the fixed tilt model
scored higher on the cube comparison test than students who
used the wobbly tilt model, followed by students who used
the elliptical model (the level of statistical significance of this
prediction is not clearly stated in the article).
The spatial skills, astronomy knowledge, attitudes

toward science, and mental models of pre-service science
teachers are of interest to astronomy education researchers.
Türk [88] investigated spatial thinking skills, understanding
of and attitudes toward astronomy of 280 (male ¼ 121;
female ¼ 159) preservice science teachers who had from
1–4 years of university education. There was an equal
distribution of participants, and a near-equal distribution of
sex across years of instruction. Astronomy knowledge was
measured using the astronomy achievement test (AAT),
attitudes toward astronomy were measured using the
astronomy attitude scale (AAS), and the PSVT:R [20]
was used to assess spatial thinking. Significant differences
in spatial thinking ability were also found between seniors
and freshmen and sophomores, in favor of seniors. Students
in their first three years of university education had a
similar understanding of astronomy; however, senior stu-
dents’ knowledge of astronomy was significantly higher
than those with 1–3 years of university education com-
bined. Similarly, senior students’ attitudes toward
astronomy were significantly higher than the attitudes of
students at all other levels of education. Türk found a
significant, positive correlation between scores on the AAT
and PSVT:R as well as a low positive correlation between
the AAS and AAT.
Heywood, Parker, and Rowlands [95] observed how

preservice science teachers developed mental models of
the Earth-Sun-Moon system. Participants were 26 female
students who participated in five 3-h sessions of instruction
during their third year of a four-year science education
degree program. At specified times during the course,
students were asked to draw and annotate diagrams illus-
trating the day-night cycle and the shape and direction of the
Sun’s path in relation to the horizon. A smaller number of
participants were interviewed for 40 min after the instruction
ended. From these two sources of data, the researchers
identified four types of models held by participants: the real
perception model (RPM), which used participants’ personal
perceptions as the only source of explanation; and imagined
position model (IPM) model, which reflected participants’
ability to switch between Earth and Sun perspectives of the
Earth-Sun system; the Sun-Earth model (SEM), which

COLE, COHEN, WILHELM, and LINDELL PHYS. REV. PHYS. EDUC. RES. 14, 010139 (2018)

010139-14



integrates chronological motion into a three-dimensional
view of Earth and the Sun from a remote position in space;
and the light traveling model (LTM) that incorporates
reasoning about the direction with which light travels from
the Sun to reach Earth. The authors noted that the models
were not mutually exclusive but represented the most
frequently employed and identifiable models expressed by
the participants. The researchers gave a detailed account
of the evolution of the mental models of three students,
noting the points at which students were stymied by or
successful at reconciling the RPM model with the SEM
model. The researchers also mentioned that individual
students’ use of gesture during individual interviews sup-
ported their efforts to integrate multiple view perspectives
and to integrate models of chronological motion.
Diagrams of astronomical phenomena are an essential

element of astronomy curricula. Taylor and Grundstrom
[96] investigated the accuracy of two spatial parameters
(scale and distance) in diagrams of the Earth-Moon system
collected from three sources: 6th grade students (n ¼ 35);
educational and governmental websites (n ¼ 44); and eight
middle school textbooks produced by four publishers
(n ¼ 30). In all three sources of imagery, the median ratio
of Earth-Moon size was significantly lower than it actually
is. Sixth graders visualized the Moon as twice as large as it
actually is, and textbook images depicted the Moon as
1.5 times its actual size. Web depictions of the Earth-Moon
scale were closer to the true ratio, but still significantly
lower. The depiction of the Earth-Moon distance was also
inaccurate. Students depicted the Moon as 16 times closer
to Earth than it is. The median distance depicted in textbook
images was 23 times closer than it is. The median distance
between Earth and the Moon depicted in web pages was
14 times closer than actuality. The authors recommended
that textbook publishers attempt to more accurately portray
scale and distance in diagrams, and to add warnings when
an image was not drawn to scale. The authors also
recommended that astronomy instructors use physical
models to illustrate the correct scale and size of the
Earth-Moon system and suggested further investigations
on the use of textbook and web diagrams that allow for
multiple levels of magnification.
The noninterventional studies used a mix of domain-

general and domain-specific assessments and well as
domain-specific interviews to assess the content under-
standing and spatial thinking skills of students from early
childhood through college. In most cases, the spatial
thinking skills were measured using domain-general, psy-
chometric tests while the content knowledge was measured
using domain-specific content assessments (interviews or
written tests). The exceptions were studies by Wilhelm
et al. [77,83], where spatial domains were mapped onto a
domain-specific content test.

2. Interventional studies

Interventional studies investigate the effectiveness of class-
room instruction on understanding of astronomical phenome-
non and spatial reasoning. See Tables VI and VII for
summaries of each of the research studies and how they fit
within the Newcombe-Shipley framework [62]. In many of
these studies, the researcher assessed the effectiveness of
instruction on spatial thinking skills, or the mastery of
astronomical concepts. Multiple astronomy educators’
research focuses on how the comparison of 2D and 3D
visualizations affects students’ spatial thinking skills. These
studies focused on different population groups: middle
school, high school, and college Astronomy 101 students
within a course, as well as those who attended museums.
In other science and mathematical domains, researchers

have taken a domain-general approach to training spatial
skills prior to content instruction and then assessing
whether this domain-general training approach facilitated
learning of the subject matter. Within the astronomy
education literature, where the reliance is often instead
on either domain-specific training of spatial skills or
correlational studies.
Plummer, Kocareli, and Slagle [97] interviewed 8–

9 year-old students before and after they participated in
classroom-based and/or planetarium-based instruction on
daily celestial motion. During the interviews, students were
asked to use a flashlight and a small planetarium dome to
explain apparent celestial motion. The students then
explained their demonstrations using models of Earth,
the Moon, and the Sun. Plummer et al. [97] found students
improved their perspective-taking ability as a result of
instruction, “going beyond just taking someone else’s
perspective, by moving their own perspective out into
the solar system” (p. 1100). Students in this study improved
their understanding of daily celestial motion when they
experienced instruction “that supported their ability to
visualize Earth-based observations and develop explana-
tions by engaging in multiple modalities: observe visual
simulations, engage in guided gesturing, and participate in
kinesthetic and psychomotor modelling” (p. 1101). They
found instruction needs to address both Earth-based and
space-based perspectives, as focusing on only one per-
spective resulted in students providing less developed
explanations of daily celestial motion.
Plummer, Wasko, and Slagle [98] interviewed third

grade students (n ¼ 24) about the daily apparent motions
of the Sun, Moon, and stars. They found that half of the
students held naive mental models and the other half of
the students could explain the apparent motion of the Sun
but struggled with the apparent motion of the Moon and
stars. Plummer, Wasko, and Slagle [98] also described an
instructional approach using computer simulations and
hands-on modeling to support students moving between
Earth-centered and Sun-centered frames of reference. Pre-
and postinterviews were used with the group of students
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who experienced the instruction (n ¼ 17). The interview
data supported the use of the instructional approach.
However, the researchers noted that testing the instructional
approach with gifted students limits the generalizability.
Studies concerning the development of spatial-scientific

understanding of lunar-related content have demonstrated
middle level students making significant gains after par-
ticipating in focused curricular interventions [83,99–101].
Each of these interventions used two astronomy-specific
assessments to measure students’ understanding of spatial,
the GSA [84], and the LPCI [85]. During the interventions
teachers implemented a project-based Earth-Space curricu-
lum with their students after receiving intense professional
development and training. Students were also required to
keep Moon observation journals for at least five weeks,
noting lunar patterns and motions, and the geometric
orientation of the Earth-Moon-Sun system in specific
phases.
Cole, Wilhelm, and Yang [101] found that keeping

Moon observation journals contributed to middle school
students’ understanding of lunar phases. For every one
point increase in the overall Moon journal scores, students
improved their post-test score overall and also on the
periodic patterns (PP) and geometric spatial visualization
(GSV) spatial domains of the LPCI by 1%. Additional
Moon observation journal entries also led to an increase in
the overall score and the score on the GSV and PP spatial
domains on the post-test.
Wilhelm [77] examined gender differences in middle

school students’ spatial-scientific understandings before
and after a focused curricular intervention. Girls tended
to not do as well as boys on the preassessments (LPCI and
GSA); however, they performed just as well or better on
postassessment LPCI spatial domain items, namely, GSV
(visualizing from above, below, or within a system’s plane)
and CD (documenting an object’s vector direction relative
to a set location). Other intervention studies not only
looked at gender differences in spatial-scientific under-
standings pre- and postcurricular interventions, but also at
racial or ethnic differences [99,100]. Wilhelm et al. [99]
compared students’ spatial understandings by gender and
race within and between control (business as usual) and
treatment (project-based Earth-space unit). Findings
showed all students (boys, girls, white, students of color)
in the treatment group tended to have similar clustered
significant spatial-scientific understandings postinterven-
tion while students in the business as usual group showed
only boys with significant gains. Jackson et al. [100] found
similar results in a study examining differences in learning
between an experimental group of middle level students
that received a curricular intervention and a control group.
Findings showed experimental groups of boys, girls,
students of color, and white students showed significant
gains in their GSV understanding while control students’
significant gains were limited to boys and white students.TA
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Diagrams are an essential form of external representation
in astronomy. However, in order to understand diagrams,
students must be able to understand the correspondence
between 2D representations and 3D, often dynamic, phe-
nomena. Padalkar and Ramadas [102] investigated how to
integrate diagrams with other spatial tools in a year-long
grade 8 intervention on the Earth-Moon-Sun system. Based
on earlier assessments of the astronomy knowledge of
grade 4 and 7 students, Padalkar and Ramadas identified
three categories of diagrams often used by astronomy
learners: diagrams that represent a model or part of a
system, frequently drawn from an allocentric perspective;
those representing a phenomenon, or patterns in a phe-
nomenon over time, most often drawn from an egocentric

perspective; and diagrams that attempt to explain or predict
an astronomical event. Explanatory and predictive dia-
grams often combine egocentric and allocentric view
perspectives. The intervention encouraged students to
use physical gestures to map the correspondence between
diagrams and concrete models of the Earth-Moon-Sun
system and to convey spatial properties such as length,
orientation, direction, or the dynamic trajectories of rays of
light or celestial bodies. After 45 days of contact over a
year, students’ diagrams changed from picturelike repre-
sentations of phenomena to more schematicized diagrams
that utilized consistent, appropriate view perspectives.
Price and Lee [103] investigated the role of 2D versus 3D

utilizing a Geowall located within an urban astronomy

TABLE VII. Newcombe-Shipley [64] categories for interventional studies.

References Concept investigated
Assessment
instrument(s)

Domain-specificity or
generality of instrument(s)

Shipley-Newcombe
framework [64]

Plummer, Kocareli,
and Slagle [97]

Daily celestial motion Interviews Domain specific Extrinsic static
Extrinsic dynamic
Intrinsic static

Plummer, Wasko,
and Slagle [98]

Daily celestial motion Interviews Domain specific Intrinsic dynamic
Extrinsic dynamic
Extrinsic static

Wilhelm, Toland, and
Cole [99]

Lunar phases LPCI Domain specific Extrinsic dynamic
PSVT:R Domain general

Extrinsic static
Intrinsic dynamic

Jackson, Wilhelm,
Lamar,
and Cole [100]

Lunar phases LPCI Domain specific Extrinsic dynamic
GSA Domain specific Extrinsic static
PSVT:R Domain general Intrinsic dynamic

Cole, Wilhelm, and
Yang [101]

Lunar phases Moon observation journals Domain specific Extrinsic dynamic
LPCI Domain specific Intrinsic dynamic

Padalkar and
Ramadas [102]

Earth-Moon-Sun
system

Drawings Domain specific Intrinsic static

Intrinsic dynamic
Extrinsic dynamic

Price and Lee [103] 2D and 3D
representations

Letter rotation Domain general Intrinsic static

Block rotation Domain general
Paper folding Domain general
Interviews Domain specific

Cid and Lopez [104] Lunar concepts learned
in 2D or 3D stereo
visualization

LPCI Domain specific Extrinsic dynamic

Extrinsic static

Schneps, Ruel, Sonnert,
Dussault, Griffin,
and Sandler [105]

Solar system; general
astronomy concept

Astronomy and Space
Science Concept Inventory

Domain specific Intrinsic static

Extrinsic static
Extrinsic dynamic

Meyer, Mon, and
Hibbard [106]

Lunar phases LPCI Domain specific Extrinsic dynamic
Student moon
observations

Domain specific Intrinsic static

Intrinsic dynamic
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museum, to assess 18 middle school students’ spatial
thinking skills. Each student completed three different
spatial thinking tasks first in two dimensions using paper
and then three dimensions using the Geowall. The spatial
cognition tasks were based on published spatial thinking
assessments. Price and Lee utilized questions for each of
the following skills: letter rotation task, block rotation task,
and the paper-folding task. These three tasks required an
increasing degree of 3D manipulations. After completion
of each task in two and three dimensions, the students
participated in a short interview of how they perceived their
experience. Though the accuracy of the responses did not
differ, the time it took to complete the 3D manipulations
was much greater. The researchers concluded that addi-
tional time is needed with the use of 3D representations to
allow individuals to become familiar with stereoscopic
visualizations.
Cid and Lopez [104] utilized a pre-post-test design to

investigate the effectiveness 3D Geowall visualizations of
the highly spatial concept of lunar phases as compared to
2D representations of the same phenomenon. The research-
ers implemented the study within a typical introductory
college astronomy course for nontechnical majors (ASTRO
101), which consisted of 270 students. The sample was split
into two groups: in one group students were taught lunar
phases utilizing 2D representations, while the other group
used the Geowall to experience 3D visuals of the Earth-
Moon-Sun system. Rather than measure spatial thinking
skills, the researchers constructed a pre-post design utiliz-
ing the LPCI [85] to assess student understanding of lunar
phases. There was no significant difference between the
two groups on the assessment.
Schnepps et al. [105] also investigated the relative

contributions of 2D vs 3D visualizations of the solar
system at overcoming common incorrect alternate under-
standings of astronomical phenomena among 152 high
school students. The researchers hypothesized that a photo-
realistic, simulated 3D solar environment could convey the
scale of the Earth-Sun-Moon system more effectively than
2D representations, such as textbook diagrams. Unlike the
3D platforms in previous studies that used stereoscopic
visualization [103,104], the 3D representations in this study
were implemented with an interactive pinch-to-zoom tablet
interface. Students who experienced the 3D visualization
demonstrated higher learning gains than those experiencing
the 2D visualizations, as measured on a subset of 16
questions from the Astronomy and Space Science Concept
Inventory. The authors hypothesized that the 3D environ-
ment permitted students to develop more accurate repre-
sentations of scale and views of planetary bodies from
different perspectives.
Meyer, Mon, and Hibbard [106] utilized the LPCI [85] in

a pre-post test design to measure ASTRO 101 students’
conceptual understanding of lunar phases. Results included
a significant difference in pre- and postinstruction on the

LPCI, but that is to be expected even with traditional
presentation. Unfortunately, without comparison to other
classes and/or published research, these results may not be
generalizable. The researchers did not assess students’
spatial thinking skills, but only focused on their conceptual
understanding.
Similar to the noninterventional studies, many of the

interventional studies could be placed into multiple cat-
egories within the Newcombe-Shipley [62] framework.
These studies tended to focus on domain-general measures
of spatial skill, reserving the domain-specific measures for
assessing content knowledge. The exceptions to this were
the Wilhelm et al. studies [99–101] where spatial abilities
were mapped onto the questions of the domain-specific
LPCI. While studies varied in the ways the content was
taught or assessed, placing them in multiple categories
besides the extrinsic-dynamic category of the phenomenon,
there was not a consistent way in which the studies address
the phenomena.

3. Learning progressions

Learning progressions (LPs) are empirically grounded,
testable hypotheses that propose how students develop
complex and complete understanding of a core scientific
idea [107]. See Tables VIII and IX for summaries of each of
the learning progression studies and how they fit within the
Newcombe-Shipley framework [62]. LPs generally specify
learning goals, measures of progress, and achievement
markers that represent the integration of progressively more
sophisticated levels of thinking about a specific scientific
idea. The development of LPs was motivated by a call from
U.S. education policy makers to create clear instructional
standards, curricula, and assessments for science educa-
tion [108].
Plummer [109] argued that sound spatial thinking is

essential for developing a scientific explanation for
celestial motion. According to Plummer [109] one of
the challenges in creating a scientific explanation of
celestial motion is reconciling the Sun’s apparent motion
through the sky with perspectives of Earth from space.
Over a series of studies, Plummer and colleagues
[109–111] proposed a series of LPs for how elementary
school students develop a scientific understanding of
celestial motion. Implicit in creating a scientific explan-
ation of celestial motion is reconciling the Sun’s apparent
motion through the sky with perspectives of Earth from
space. Plummer and Maynard [111] developed the LP by
integrating a series of construct maps, representations of
models of cognition that specify the lower and upper level
anchors of spatial thinking skill required for understand-
ing a given concept. Their learning progression has six
levels of understanding, beginning with a naïve view of
astronomy and a culminating in a scientific explanation of
celestial motion.
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Testa, Galano, Leccia, and Puddu [112] proposed a
Learning Progression that integrates three stages of visuo-
spatial and conceptual mastery required to develop an
accurate understanding of celestial motion. Their learning
progression argues that mastery of visuospatial concepts
of the Earth-Moon-Sun system is required before students
can understand celestial motion. The second stage of their
learning progression involves understanding the physical

consequences of Earth’s movement around the Sun, includ-
ing changing solar radiation. The third stage of their LP
involves moving through different frames of reference.
Their learning progression has six levels of understanding,
beginning with a naïve view of astronomy and a culminat-
ing in a scientific explanation of celestial motion.
Sneider, Bar, and Kavanagh [74] proposed a learning

progression of the seasons that spans three age ranges. At

TABLE VIII. Summary table for learning progressions.

References Participants Measures Findings

Sneider, Bar, and
Kavanagh [74]

Review N=A The authors reviewed 41 studies on learning about seasons. A
learning progression for the cause of seasons was suggested,
starting with the day/night cycle, moving to an Earth-based
perspective, and ending with a space-based perspective. One of
the four main reasons why learning the cause of seasons is so
difficult is that combining Earth-based and space-based
perspectives requires spatial reasoning skills.

Plummer [109] Third grade students
(N ¼ 99) in a
suburban school
district in the
northeastern United
States.

Interviews The role of spatial knowledge and reasoning in learning
progressions on daily celestial motion and lunar phases are
explored. The learning progression was applied to a study of
children learning about such ideas. Plummer found that students’
progression through the learning progression was shaped by their
spatial ability. Students’ spatial visualization ability affects their
learning of daily celestial motion and lunar phases.

Plummer and
Krajcik [110]

Students in first
(N ¼ 20), third
(N ¼ 20), and 8th
(N ¼ 20) grades in
the Midwest. Sixty-
three first and
second grade
students in the
Midwest.

Interviews The authors used prior research to develop a set of learning
progressions for topics related to celestial motion. The authors
also used the learning progressions to analyze learning due to an
instructional intervention in a planetarium. Four learning
progressions related to daily celestial motion are presented and
compared to students’ learning prior to and after a short
planetarium program. Targeted instruction improved students’
understanding compared to business as usual instruction;
learning progression levels were used to categorize learning.

Plummer and
Maynard [111]

8th Grade students
(N ¼ 38)

13 question
assessment based
on teacher-
generated questions
and questions from
Reason for Seasons

Rasch analysis was used to revisit construct maps addressing the
reason for the seasons. For students to move through the levels to
progressively more sophisticated explanations, students need to
be able to move between space-based and Earth-based
perspectives. Authors suggest that instruction on celestial motion
needs to intentionally address the spatially complex connection
between Earth-based observations and space-based perspectives.
Construct map shows progression of ideas about celestial motion
consistent with the NGSS. Findings also show that making the
connection between Earth-based and space-based perspectives is
a major challenge for students’ learning to explain celestial
motion.

Testa, Galano,
Leccia, and
Puddu [112]

Italian students
(N ¼ 300) at the
beginning (age 14)
and end (age 18) of
secondary school.

Two-tier instrument
designed by the
authors

Item response analysis and curve integral method were used to
develop a learning progression about celestial motion. Findings
support spatial reasoning as a key factor in learning about
celestial motion. The learning progression supports the idea that
spatial reasoning is key to understanding celestial motion. The
authors also found that causal reasoning is also essential. The
authors suggest first teaching the geometry of the Earth-Moon-
Sun system, followed by the motion of the system, and finally the
spatial relationship between Earth-based and space-based
perspectives.
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grades 4–5, instruction focuses on the day-night cycle. At
this level students must reconcile their perceptual obser-
vations of day and night with spatial concepts such as the
shapes and relative sizes of Earth and the Sun, the tilt of
Earth, and the rotation of Earth around the Sun. For grades
6–8, the curriculum includes instruction in the physics of
light (light travels in straight lines; sunlight that strikes
Earth at a steep angle conveys more warmth than sunlight
that strikes Earth at an oblique angle) and the daily and
seasonal fluctuations in climate due to the Sun’s changing
path in the sky and the latitude of the location). At grades
9–12 the curriculum integrates their understanding of
seasons from the perspective of Earth with a vision of
Earth from space. At this level students are challenged to
synthesize their knowledge of Earth’s climate zones, their
understanding of Earth’s orbit around the Sun and the tilt of
Earth’s axis to understand the reason for changes in the
length of daylight across the seasons.
The literature on learning progressions in astronomy

has focused primarily on extrinsic-dynamic content. This
is possibly because the focus of the paper was on the
astronomical phenomenon rather than specific instruction,
making it difficult to categorize the studies into other
relevant Newcombe-Shipley [62] categories.

III. CONCLUSIONS AND RECOMMENDATIONS

A. Discussion

In this review of literature, we have categorized and
described studies that investigated the intimate relationship
between spatial thinking skill and understanding of astro-
nomical phenomena (i.e., celestial motions, cause of
phases, cause of seasons). We summarized the develop-
mental, psychometric and cognitive approaches for describ-
ing and measuring spatial thinking skills, surveyed research
on the role of spatial skills in other STEM disciplines, and

introduced new typologies for studying spatial skill. We
classified and reviewed three types of studies: noninterven-
tional, interventional, and learning progressions. The non-
interventional studies are consistent with a history in
astronomy education research of understanding the nature
of students’ misconceptions and content understanding.
However, the studies reviewed here build on the literature
by also investigating the contribution of spatial thinking. In
some noninterventional studies, researchers found signifi-
cant correlations between astronomy content assessments
and tests of spatial skills.
Our paper showed that young children struggle to

explain the cause of Moon phases, sometimes relying on
perceptual experiences and cultural and social influences
(stories, media, etc.) for explanations. As students move
through middle school, their role of spatial thinking in the
discipline becomes more apparent, as those who struggle to
change view perspectives while visualizing the Earth-
Moon-Sun system seem to have more difficulty in explain-
ing astronomical phenomena as well [75–78,81].
Interventional studies used planetaria [97], focused

curricula [83], and compared 2D and 3D [103–105] models
to enhance students’ understanding of astronomical
concepts. Each of these studies showed pre-to-post inter-
vention improvements in students’ understanding of astro-
nomical concepts as well as commented on an aspect of
spatial thinking. For instance, the Wilhelm et al. studies
[83,84] showed that students improved in spatial thinking
as well as in understanding the cause of phases of the
Moon. However, there is a relative lack of experimental
studies found in the literature that focus on spatial thinking
in astronomy education. While there are a few studies
[83,99,100] where an explicit control or business as usual
group is used as a comparison for the treatment group,
this setup is rarely found within the spatial literature in
astronomy education. Several other studies compared

TABLE IX. Newcombe-Shipley [64] categories for learning progressions.

References
Concept

investigated Assessment instrument(s)

Domain-specificity or
generality of assessment

instrument(s)

Shipley-
Newcombe

framework [64]

Sneider, Bar, and
Kavanagh [74]

Seasons N/A (Review Article) N=A Extrinsic
dynamic

Plummer [109] Daily celestial
motion; Lunar
phases

Interviews Domain specific Extrinsic
dynamic

Extrinsic static
Plummer and
Krajcik [110]

Celestial motion Interviews Domain specific Extrinsic
dynamic

Plummer and
Maynard [111]

Seasons 13 question assessment based on teacher-
generated questions and questions from
Reason for Seasons

Domain specific Extrinsic
dynamic

Testa, Galano,
Leccia, and
Puddu [112]

Celestial motion Two-tier instrument designed by the authors Domain specific Extrinsic
dynamic
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multiple conditions, such as Cid and Lopez [104] where 2D
and 3D versions of the same lab were compared, but none
of these were explicitly identified as a control group.
Another limitation is that effect sizes are not included in
all papers, and when they are included they are often
reported in different ways, making comparisons across
papers more difficult. Without experimental (or quasiex-
perimental) designs, it is more difficult to rule out other
cognitive processes besides spatial thinking skills (e.g.,
executive function, visual working memory, general intel-
ligence) that may be contributing to students’ learn-
ing gains.
Learning progressions are a methodology that is gaining

momentum in astronomy education. Given the importance
of spatial competency in astronomy, learning progressions
are an excellent method for guiding curriculum that takes
into account the inherent spatial concepts in the content.
Learning progressions can also be used to guide the
instructor in the need to evaluate the spatial skills of
individual students and provide remediation if necessary
to individuals as they progress from naïve understandings
of astronomy to scientifically accurate understandings.
The literature demonstrated that students’ spatial-scientific

understandings could be developed through purposeful
curricular interventions, technologies, and experiences.
Such interventions resonate with the National Research
Council’s [1] charge to enhance learners’ abilities to visu-
alize relationships between static and moving objects while
taking into account distance, direction, and perspective.

B. Recommendations

Regardless of the type of study (e.g., noninterventional,
interventional, or learning progression), we recommend
that researchers specify and describe which tests they use to
assess content knowledge and spatial skills. Differences in
definitions exist not only between cognitive psychologists
and education researchers, but also between science edu-
cation and discipline-based education researchers and even
within each of these groups. Given the variability of
terminology in categorizing spatial skills, we recommend
that researchers identify the astronomical context of the
spatial skill they attempted to measure and the tools they
used to assess this construct. For example, a researcher
might state that they used test X to measure the ability to
change view perspective required when explaining the
geometric orientation of the Earth-Moon-Sun system at
specific lunar phases. Researchers should cite any content
or spatial test by name, whether they are using the test as
originally designed or in a modified version. If the study
used a modified version of a test, we recommend that the
researcher indicate how it was modified and why the
modified version was used.
We recommend further research investigating the relative

utility of domain-independent and domain-specific spatial
tests in astronomy education research. There is evidence

that some domain-general spatial tests, such as the PSVT:R
[20], show significant positive correlations with assess-
ments of astronomy content, such as the LPCI [85].
However, such a correlation alone does not explain where
and how the mental rotation skills assessed in the PSVT:R
are utilized in solving astronomy problems. Other data are
needed to explain the correlation. There is also evidence
that the domain-general spatial thinking problems on the
GSA [84] show significant positive correlations with
astronomy knowledge as represented in the LPCI [85],
when the spatial items are mapped to content knowledge
hypothesized to use similar skills.
If we find that it is important to develop additional

domain-specific assessments of spatial ability in astronomy,
we need to develop these tests. If we find that domain-
general measures of spatial thinking are adequate, we then
need to determine which tests have the greatest predictive
validity for different content areas of astronomy. Other
STEM disciplines take note of the different spatial require-
ments of learning from models, drawings, and gestures;
astronomy educators should do so as well. While we have
used the Newcombe-Shipley framework [62] to further
categorize the studies we reviewed, we were only able to
categorize studies based on our interpretation of the instruc-
tion and/or assessments described within each paper. Many
of the papers were assigned multiple category labels. We
recommend that researchers adopt a similar common frame-
work and include information on (i) the object or system
considered, (ii) whether intrinsic or extrinsic properties were
addressed or emphasized, and (iii) the ways in which 1 and 2
apply to instruction and/or assessment in their study.
Another question is whether the spatial thinking skills

acquired in astronomy can be transferred to another
scientific domain. We also recommend that researchers
investigating differences in spatial skills also test for other
measures of cognitive resources, such as attentional con-
trol. It is important to both identify which spatial skills are
important for understanding astronomy and identifying
whether it is the spatial skill alone or in conjunction with
other cognitive resources. Additional robust experimental
(or quasiexperimental) studies are needed where interven-
tions can be compared with control or business as usual
groups where assessments and effect sizes for each con-
dition are clearly reported.
We have included studies in this review that address

spatial thinking in astronomy across a wide range of grade
levels, from early childhood through college. Given this
range, we also suggest researchers attend to the appropri-
ateness of the specific test to the age of students, checking
and reporting on reliability and validity of the test for their
study’s population.
These studies also highlight the need for instructors to be

aware of students who may have less developed spatial skills
[79] and to plan instruction that addresses both content
and the development and/or use of spatial thinking in the
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discipline [56] so that all students have the opportunity to be
successful in learning astronomy. Whether this awareness of
students of differing spatial ability is screened for prior to
instruction or becomes apparent throughout instruction,
instructors need to be aware of the role spatial thinking
plays in understanding astronomy and other STEM content
as well as best practices for addressing the challenges of
teaching inherently spatial content. Teachers also need to
learn how to create spatially rich lessons that allow students
to develop spatial thinking skills in addition to the content.
The intervention literature we reviewed showed that simply
covering content is not enough, but it is important to also

cover content in a way that builds spatial skills as well.
Teachers also need to consider the role of both domain-
general and domain-specific spatial skills that are relevant to
understanding astronomy content, and helping students
learn those spatial skills that are most relevant.
Astronomy education researchers should also investigate
the role of teachers’ spatial thinking ability may play in
students’ understanding of astronomy content. In order
for teachers to create spatially rich learning environments,
they need to be aware of their own spatial thinking skills as
well as how to foster the needed spatial skills in their
students.
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[36] A. Moè, Are males always better than females in mental
rotation? Exploring a gender belief explanation, Learning
and individual differences 19, 21 (2009).

[37] M. S. McGlone and J. Aronson, Stereotype threat, iden-
tity salience, and spatial reasoning, J. Appl. Dev. Psychol.
27, 486 (2006).

[38] Spatial Intelligence and Learning Center, http://
spatiallearning.org.

[39] M. Hegarty, Spatial thinking in undergraduate science
education, Spatial Cognit. Comput. 14, 142 (2014).

[40] K. Rochford, Spatial learning disabilities and under-
achievement among university anatomy students, Med.
Educ. 19, 13 (1985).

[41] A. X. Garg, G. Norman, and L. Sperotable, How medical
students learn spatial anatomy, Lancet 357, 363 (2001).

[42] O. Ha and S. Brown, Spatial reasoning difference be-
tween civil and mechanical engineering students in
learning Mechanics of Materials course: A case of
cross-sectional inference, Proceedings of the 2017 ASEE
Annual Conference & Exposition, Columbus, OH (2017).

[43] C. A Cohen and M. Hegarty, Individual differences in use
of external visualisations to perform an internal visual-
isation task, Appl. Cogn. Psychol. 21, 701 (2007).

[44] Y. Kali and N. Orion, Spatial abilities of high-school
students in the perception of geologic structures, J. Res.
Sci. Teach. 33, 369 (1996).

[45] N. Orion, D. Ben-Chaim, and Y. Kali, Relationship
between Earth-science education and spatial visualiza-
tion, J. Geosci. Educ. 45, 129 (1997).

[46] L. Liben, K. A. Kastens, and A. E. Christensen, Spatial
foundations of science education: The illustrative case of

instruction on introductory geological concepts, Cognit.
Instr. 29, 45 (2011).

[47] K. A Kastens and T. Ishikawa, Spatial thinking in
the geosciences and cognitive sciences: A cross-
disciplinary look at the intersection of the two fields,
Geological Society of America, Special Papers Vol. 413
(Geological Society of America, Boulder, Colorado,
2006), p. 53.

[48] L. S. Liben and S. J. Titus, The importance of spatial
thinking for geoscience education: Insights from the
crossroads of geoscience and cognitive science, in Geo-
logical Society of America, Special Papers Vol. 486
(Geological Society of America, Boulder, Colorado,
2012), pp. 51–70.

[49] R. Grabow, Ph.D. thesis, California State University,
Fullerton, CA, 2003.

[50] C. S. Carter, M. A. Larussa, and G. M. Bodner, A study of
two measures of spatial ability as predictors of success in
different levels of general chemistry, J. Res. Sci. Teach.
24, 645 (1987).

[51] M. Kozhevnikov and R. Thornton, Real-time data display,
spatial visualization ability, and learning force and motion
concepts, J. Sci. Educ. Technol. 15, 111 (2006).

[52] M. Hegarty and V. K. Sims, Individual differences in
mental animation during mechanical reasoning, Memory
Cogn. 22, 411 (1994).

[53] M. Kozhevnikov, M. Hegarty, and R. E. Mayer, Revising
the visualizer-verbalizer dimension: Evidence for two
types of visualizers, Cognit. Instr. 20, 47 (2002).

[54] E. H. Brinkmann, Programmed instruction as a technique
for improving spatial visualization, J. Appl. Psych. 50,
179 (1966).

[55] T. Lord, Enhancing the visuo-spatial aptitude of students,
J. Res. Sci. Teach. 22, 395 (1985).

[56] M. Y. Small and M. E. Morton, Research in college
science teaching: Spatial visualization training improves
performance in organic chemistry, J. Coll. Sci. Teach. 13,
41 (1983).

[57] H. Gerson, S. Sorby, A. Wysocki, and B. Baartmans, The
development and assessment of multimedia software for
improving 3-D spatial visualization skills, Comput. Appl.
Eng. Educ. 9, 105 (2001).

[58] J. Feng, I. Spence, and J. Pratt, Playing an action video
game reduces gender differences in spatial cognition,
Psychol. Sci. 18, 850 (2007).

[59] R. Wright, W. L. Thompson, G. Ganis, N. S. Newcombe,
and S. M. Kosslyn, Training generalized spatial skills,
Psychon. Bull. Rev. 15, 763 (2008).

[60] C. A. Sanchez, Enhancing visuospatial performance
through video game training to increase learning in
visuospatial science domains, Psychon. Bull. Rev. 19,
58 (2012).

[61] M. Hegarty, Components of spatial intelligence, Psychol.
Learning Motivation 52, 265 (2010).

[62] N. S. Newcombe and T. F. Shipley, Thinking about
spatial thinking: New typology, new assessments, Study-
ing Visual and Spatial Reasoning for Design Creativity
(Springer, Dordrecht, 2015), pp. 179–192.

[63] I. Resnick and T. F. Shipley, Breaking new ground in the
mind: an initial study of mental brittle transformation and

SPATIAL THINKING IN ASTRONOMY … PHYS. REV. PHYS. EDUC. RES. 14, 010139 (2018)

010139-25

https://doi.org/10.1162/089892999563210
https://doi.org/10.1162/089892999563210
https://doi.org/10.1037/0033-295X.92.2.137
https://doi.org/10.1037/0022-0663.76.5.920
https://doi.org/10.1037/0022-0663.76.5.920
https://doi.org/10.3758/BF03200477
https://doi.org/10.1016/0010-0277(83)90021-5
https://doi.org/10.1037/0012-1649.35.5.1237
https://doi.org/10.1037/0022-3514.69.5.797
https://doi.org/10.1037/0022-3514.69.5.797
https://doi.org/10.1016/j.lindif.2007.01.002
https://doi.org/10.1016/j.lindif.2007.01.002
https://doi.org/10.1016/j.lindif.2008.02.002
https://doi.org/10.1016/j.lindif.2008.02.002
https://doi.org/10.1016/j.appdev.2006.06.003
https://doi.org/10.1016/j.appdev.2006.06.003
http://spatiallearning.org
http://spatiallearning.org
http://spatiallearning.org
https://doi.org/10.1080/13875868.2014.889696
https://doi.org/10.1111/j.1365-2923.1985.tb01134.x
https://doi.org/10.1111/j.1365-2923.1985.tb01134.x
https://doi.org/10.1016/S0140-6736(00)03649-7
https://doi.org/10.1002/acp.1344
https://doi.org/10.1002/(SICI)1098-2736(199604)33:4%3C369::AID-TEA2%3E3.0.CO;2-Q
https://doi.org/10.1002/(SICI)1098-2736(199604)33:4%3C369::AID-TEA2%3E3.0.CO;2-Q
https://doi.org/10.5408/1089-9995-45.2.129
https://doi.org/10.1080/07370008.2010.533596
https://doi.org/10.1080/07370008.2010.533596
https://doi.org/10.1002/tea.3660240705
https://doi.org/10.1002/tea.3660240705
https://doi.org/10.1007/s10956-006-0361-0
https://doi.org/10.3758/BF03200867
https://doi.org/10.3758/BF03200867
https://doi.org/10.1207/S1532690XCI2001_3
https://doi.org/10.1037/h0023068
https://doi.org/10.1037/h0023068
https://doi.org/10.1002/tea.3660220503
https://doi.org/10.1002/cae.1012
https://doi.org/10.1002/cae.1012
https://doi.org/10.1111/j.1467-9280.2007.01990.x
https://doi.org/10.3758/PBR.15.4.763
https://doi.org/10.3758/s13423-011-0177-7
https://doi.org/10.3758/s13423-011-0177-7
https://doi.org/10.1016/S0079-7421(10)52007-3
https://doi.org/10.1016/S0079-7421(10)52007-3


mental rigid rotation in science experts, Cognit. Process-
ing 14, 143 (2013).

[64] K. Atit, T. F. Shipley, and B. Tikoff, Twisting space: Are
rigid and non-rigid mental transformations separate spa-
tial skills?, Cognit. Processing 14, 163 (2013).

[65] D. R. Montello, Scale and multiple psychologies of space,
European Conference on Spatial Information Theory
(Springer, Berlin, Heidelberg, 1993), pp. 312–321.

[66] M. Hegarty, D. R. Montello, A. E Richardson, T. Ishikawa,
and K. Lovelace, Spatial abilities at different scales:
Individual differences in aptitude-test performance and
spatial-layout learning, Intelligence 34, 151 (2006).

[67] M. Hegarty, A. E. Richardson, D. R. Montello, K.
Lovelace, and I. Subbiah, Development of a self-report
measure of environmental spatial ability, Intelligence 30,
425 (2002).

[68] J. M Bailey and T. F. Slater, A review of astronomy
education research, Astron. Educ. Rev. 2, 20 (2003).

[69] J. M Bailey and T. F. Slater, Resource letter AER-1:
Astronomy education review, AJP 73, 677 (2005).

[70] P. L. Callison and E. L. Wright, The effect of teaching
strategies using models on preservice elementary teach-
ers’ conceptions about Earth-Sun-Moon relationships,
Proceedings of the Annual Meeting of the National
Association for Research in Science Teaching, April,
Atlanta, GA (1993), as cited in Ref. [46].

[71] C. I. Sneider, S. Pulos, and S. 1983, Children’s cosmog-
raphies: Understanding the Earth’s shape and gravity, Sci.
Educ. 67, 205 (1983) as cited in Ref. [46].

[72] A. Lelliott and M. Rollnick, M. Big ideas: A review of
astronomy education research 1974–2008, Int. J. Sci.
Educ. 32, 1771 (2010).

[73] B. D. Brazell and E. Spinoza, Meta-analysis of planetar-
ium efficacy research, Astron. Educ. Rev. 8, 1 (2009).

[74] C. Sneider, V. Bar, and C. Kavanagh, Learning about
seasons: A guide for teachers and curriculum developers,
Astron. Educ. Rev. 10, 010103-1 (2011).

[75] J. D. Plummer, C. A. Bower, and L. Liben, The role of
perspective taking in how children connect reference
frames when explaining astronomical phenomena, Int.
J. Sci. Educ. 38, 345 (2016).

[76] S. E. Sherrod and J. A. Wilhelm, A study of how class-
room dialogue facilitates the development of geometric
spatial concepts related to understanding the cause of
Moon phases, Int. J. Sci. Educ. 31, 873 (2009).

[77] J. Wilhelm, Gender differences in lunar-related scientific
and mathematical understandings, Int. J. Sci. Educ. 31,
2105 (2009).

[78] J. Wilhelm, A case study of three childrens’ original
interpretations of the Moon’s changing appearance,
School Sci. Math. 109, 258 (2009).

[79] G. J. Venville, R. D. Louisell, and J. A. Wilhelm, Young
children’s knowledge about the Moon: A complex dy-
namic system, Res. Sci. Educ. 42, 729 (2012).

[80] K. Subramaniam and S. Padalkar, Visualization and
reasoning in explaining the phases of the Moon, Int. J.
Sci. Educ. 31, 395 (2009).

[81] E. Kikas, The effect of verbal and visuospatial abilities on
the development of knowledge of the Earth, Res. Sci.
Educ. 36, 269 (2006).

[82] A. Toomela, Drawing as a verbally mediated activity: A
study of relationships between verbal, motor, and visuo-
spatial skills and drawing in children, Int. J. Behav. Dev.
26, 234 (2002), as cited in Ref. [63].

[83] J. Wilhelm, C. Jackson, A. Sullivan, and R. Wilhelm,
Examining differences between preteen groups’ spatial-
scientific understandings: A quasi-experimental study,
J. Educ. Res. 106, 337 (2013).

[84] J. Wilhelm, B. Ganesh, S. Sherrod, and J. Ji, Spatial
assessment, assessment developed at Texas Tech Univer-
sity, Lubbock, TX (2007).

[85] R. S. Lindell and J. P. Olsen, Developing the lunar phases
concept inventory, in Proceedings of the Physics Educa-
tion Research Conference 2002 (AIP, New York, 2002).

[86] A. A. Black, Spatial ability and Earth science conceptual
understanding, J. Geosci. Educ. 53, 402 (2005).

[87] I. Heyer, J. S. Slater, and F. T. Slater, Establishing the
empirical relationship between non- science majoring
undergraduate learners’ spatial thinking skills and their
conceptual astronomy knowledge, Revista Latino-
Americana de Educacao em Astronomia 16, 45 (2013).

[88] C. Türk, The correlation between pre-service science
teachers’ astronomy achievement, attitudes towards
astronomy, and spatial thinking skills, J. Educ. Learning
5, 187 (2016).

[89] H. A. Witkin, P. K Oltman, E. Raskin, and S.A Karp,
Group Embedded Figures Test Manual (Mind Garden,
Inc., Redwood City, CA, 2002).

[90] T. F. Slater and S. J. Slater, Development of the Test of
Astronomy Standards (TOAST) assessment instrument,
Bull. Am. Astron. Soc. 40, 273 (2008).

[91] C. A. Morrow, Kinesthetic astronomy: The sky time
lesson, Phys. Teach. 38, 252 (2000).

[92] C. Morrow and M. Zawaski, Kinesthetic Astronomy,
Space Science Institute: Education: Instructional Materi-
als, Available at: http://www.spacescience.org/education/
index.html (2004).

[93] S. J. Parker (Slater), Master’s Thesis, Montana State
University, Bozeman, MT, 2007.

[94] D. S. Rudman, Solving astronomy problems can be
limited by intuited knowledge, spatial ability, or both,
Annual Meeting of the American Educational Research
Association, New Orleans, LA (2002).

[95] D. Heywood, D. J. Parker, and M. Rowlands, Exploring
the visuospatial challenge of learning about day and night
and the Sun’s path, Sci. Educ. 97, 772 (2013).

[96] R. S. Taylor and E. D. Grundstrom, Diagrammatic rep-
resentational constraints of spatial scale in Earth–Moon
system astronomy instruction, Astron. Educ. Rev. 10,
010104-1 (2011).

[97] J. D. Plummer, A. Kocareli, and C. Slagle, Learning to
explain astronomy across moving frames of reference:
Exploring the role of classroom and planetarium-based
instructional contexts, Int. J. Sci. Educ. 36, 1083 (2014).

[98] J. D. Plummer, K. D. Wasko, and C. Slagle, C. Children
learning to explain daily celestial motion: Understanding
astronomy across moving frames of reference, Int. J. Sci.
Educ. 33, 1963 (2011).

[99] J. Wilhelm, M. Toland, and M. Cole, Evaluating middle
school students’ spatial-scientific performance within

COLE, COHEN, WILHELM, and LINDELL PHYS. REV. PHYS. EDUC. RES. 14, 010139 (2018)

010139-26

https://doi.org/10.1007/s10339-013-0548-2
https://doi.org/10.1007/s10339-013-0548-2
https://doi.org/10.1007/s10339-013-0550-8
https://doi.org/10.1016/j.intell.2005.09.005
https://doi.org/10.1016/S0160-2896(02)00116-2
https://doi.org/10.1016/S0160-2896(02)00116-2
https://doi.org/10.3847/AER2003015
https://doi.org/10.1119/1.1949630
https://doi.org/10.1002/sce.3730670209
https://doi.org/10.1002/sce.3730670209
https://doi.org/10.1080/09500690903214546
https://doi.org/10.1080/09500690903214546
https://doi.org/10.3847/AER2009033
https://doi.org/10.3847/AER2010035
https://doi.org/10.1080/09500693.2016.1140921
https://doi.org/10.1080/09500693.2016.1140921
https://doi.org/10.1080/09500690801975768
https://doi.org/10.1080/09500690802483093
https://doi.org/10.1080/09500690802483093
https://doi.org/10.1111/j.1949-8594.2009.tb18091.x
https://doi.org/10.1007/s11165-011-9220-y
https://doi.org/10.1080/09500690802595805
https://doi.org/10.1080/09500690802595805
https://doi.org/10.1007/s11165-005-9010-5
https://doi.org/10.1007/s11165-005-9010-5
https://doi.org/10.1080/01650250143000021
https://doi.org/10.1080/01650250143000021
https://doi.org/10.1080/00220671.2012.753858
https://doi.org/10.5408/1089-9995-53.4.402
https://doi.org/10.5539/jel.v5n2p187
https://doi.org/10.5539/jel.v5n2p187
https://doi.org/10.1119/1.880520
http://www.spacescience.org/education/index.html
http://www.spacescience.org/education/index.html
http://www.spacescience.org/education/index.html
http://www.spacescience.org/education/index.html
http://www.spacescience.org/education/index.html
https://doi.org/10.1002/sce.21071
https://doi.org/10.3847/AER2009075
https://doi.org/10.3847/AER2009075
https://doi.org/10.1080/09500693.2013.843211
https://doi.org/10.1080/09500693.2010.537707
https://doi.org/10.1080/09500693.2010.537707


Earth/space astronomy in terms of gender and race/
ethnicity, J. Educ. Sci. Environ. Health 3, 40 (2017).

[100] C. Jackson, J. A. Wilhelm, M. Lamar, and M.
Cole, Gender and racial differences: Development of
sixth grade students’ geometric spatial visualization
within an Earth/Space Unit, School Sci. Math. 115,
330 (2015).

[101] M Cole, J. Wilhelm, and H. Yang, Student Moon
observations and spatial-scientific reasoning, Int. J. Sci.
Educ. 37, 1815 (2015).

[102] S. Padalkar and J. Ramadas, Modeling the round Earth
through diagrams, Astron. Educ. Rev. 6, 54 (2008).

[103] A. Price and H. S. Lee, The effect of two-dimensional and
stereoscopic presentation on middle school students’
performance of spatial cognition tasks, J. Sci. Educ.
Technol. 19, 90 (2010).

[104] X. Cid and R. Lopez, The impact of stereo display on
student understanding of phases of the Moon, Astron.
Educ. Rev. 9, 010105 (2010).

[105] M. H. Schneps, J. Ruel, G. Sonnert, M. Dussault, M.
Griffin, and P. M. Sadler, Conceptualizing astronomical
scale: Virtual simulations on handheld tablet computers
reverse misconceptions, Comput. Educ. 70, 269 (2014).

[106] A. O. Meyer, M. Mon, and S. Hibbard, The lunar phases
project: A mental model-based observational project for

undergraduate nonscience majors, Astron. Educ. Rev. 10,
010203 (2011).

[107] National Research Council. Taking Science to School:
Learning, and Teaching Science in Grades K-8, edited by
R. A. Duschl, H. A. Schweingruber, and A.W. Shouse
(National Academies Press, Washington, DC, 2007).

[108] T. Corcoran, F. A. Mosher, and A. Rogat, Learning
progressions in science: An evidence-based approach
to reform, Consortium for Policy Research in Education
Report #RR-63 (Consortium for Policy Research in
Education, Philadelphia, PA, 2009).

[109] J. D. Plummer, Spatial thinking as the dimension of
progress in an astronomy learning progression, Studies
Sci. Educ. 50, 1 (2014).

[110] J. D. Plummer and J. Krajcik, Building a learning pro-
gression for celestial motion: Elementary levels from an
Earth-based perspective, J. Res. Sci. Teach. 47, 768 (2010).

[111] J. D. Plummer and L. Maynard, Building a learning
progression for celestial motion: An exploration of
students’ reasoning about the seasons, J. Res. Sci. Teach.
51, 902 (2014).

[112] I. Testa, S. Galano, S. Leccia, and E. Puddu, Development
and validation of a learning progression for change of
seasons, solar and lunar eclipses, and moon phases, Phys.
Rev. ST Phys. Educ. Res. 11, 020102 (2015).

SPATIAL THINKING IN ASTRONOMY … PHYS. REV. PHYS. EDUC. RES. 14, 010139 (2018)

010139-27

https://doi.org/10.21891/jeseh.275681
https://doi.org/10.1111/ssm.12136
https://doi.org/10.1111/ssm.12136
https://doi.org/10.1080/09500693.2015.1052861
https://doi.org/10.1080/09500693.2015.1052861
https://doi.org/10.3847/AER2007018
https://doi.org/10.1007/s10956-009-9182-2
https://doi.org/10.1007/s10956-009-9182-2
https://doi.org/10.3847/AER2009044
https://doi.org/10.3847/AER2009044
https://doi.org/10.1016/j.compedu.2013.09.001
https://doi.org/10.3847/AER2011015
https://doi.org/10.3847/AER2011015
https://doi.org/10.1080/03057267.2013.869039
https://doi.org/10.1080/03057267.2013.869039
https://doi.org/10.1002/tea.20355
https://doi.org/10.1002/tea.21151
https://doi.org/10.1002/tea.21151
https://doi.org/10.1103/PhysRevSTPER.11.020102
https://doi.org/10.1103/PhysRevSTPER.11.020102

	University of Kentucky
	UKnowledge
	6-15-2018

	Spatial Thinking in Astronomy Education Research
	Merryn Cole
	Cheryl Cole
	Jennifer Wilhelm
	Rebecca Lindell
	Repository Citation


	Spatial thinking in astronomy education research

