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Abstract

We give combinatorial proofs of q-Stirling identities using restricted growth
words. This includes a poset theoretic proof of Carlitz’s identity, a new proof of the
q-Frobenius identity of Garsia and Remmel and of Ehrenborg’s Hankel q-Stirling
determinantal identity. We also develop a two parameter generalization to unify
identities of Mercier and include a symmetric function version.

Keywords: q-analogues, q-Stirling numbers, restricted growth words, poset de-
composition

1 Introduction

The classical Stirling number of the second kind S(n, k) is the number of set partitions
of n elements into k blocks. The Stirling numbers of the second kind first appeared in
work of Stirling in 1730, where he gave the Newton expansion of the functions f(z) = zn

in terms of the falling factorial basis [31, Page 8]. Kaplansky and Riordan [19] found the
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combinatorial interpretation that the Stirling number S(n, k) enumerates the number of
ways to place n− k non-attacking rooks on a triangular board of side length n− 1. From
later work of Garsia and Remmel, this is equivalent to the number of set partitions of n
elements into k blocks [14].

The q-Stirling numbers of the second kind arose from Carlitz’s development of a q-
analogue of the Bernoulli numbers and is predated by a problem of his involving abelian
groups [3, 4]. There is a long history of studying set partitions [6, 14, 21, 28], Stirling
numbers of the second kind and their q-analogues [3, 12, 15, 25, 34, 35].

In the literature there are many identities involving Stirling and q-Stirling numbers of
the second kind. Stirling identities which appear in Jordan’s text [18] have been trans-
formed to q-identities by Ernst [13] using the theory of Hahn–Cigler–Carlitz–Johnson,
Carlitz–Gould and the Jackson q-derivative. Verde-Star uses the divided difference op-
erator [32] and the complete homogeneous symmetric polynomials in the indeterminates
xk = 1 + q + · · ·+ qk in his work [33].

The goal of this paper is to give bijective proofs of many of these q-Stirling identities
as well as a number of new identities. Underlying these proofs is the theory of restricted
growth words which we review in the next section. In Section 3 we discuss recurrence
structured q-Stirling identities, while in Section 4 we focus on Gould’s ordinary gener-
ating function for the q-Stirling number. A poset theoretic proof of Carlitz’s identity
is given in Section 5. Section 6 contains combinatorial proofs of the de Médicis–Leroux
q-Vandermonde convolutions. We provide new proofs of Garsia and Remmel’s q-analogue
of the Frobenius identity and of Ehrenborg’s Hankel q-Stirling determinantal identity in
Sections 7 and 8. In Section 9 we prove two identities of Carlitz each using a sign-reversing
involution on RG-words. In Section 10 we prove two parameter q-Stirling identities, gen-
eralizing identities of Mercier and include a symmetric function reformulation. We end
with concluding remarks.

2 Preliminaries

A word w = w1w2 · · ·wn of length n where the entries are positive integers is called a
restricted growth word, or RG-word for short, if wi is bounded above by max(0, w1, w2, . . . ,
wi−1)+1 for all indices i. This class of words was introduced by Milne in the papers [24, 25].
The set of RG-words of length n where the largest entry is k is in bijective correspondence
with set partitions of the set {1, 2, . . . , n} into k blocks. Namely, if wi = wj, place
the elements i and j in the same block of the partition. To describe the inverse of
this bijection, write the partition π = B1/B2/ · · · /Bk in standard form, that is, with
min(B1) < min(B2) < · · · < min(Bk). The associated RG-word is given by w = w1 · · ·wn
where wi = j if the entry i appears in the jth block Bj of π.

One way to obtain a q-analogue of Stirling numbers of the second kind is to introduce
a weight on RG-words. Let RG(n, k) denote the set of all RG-words of length n with
maximal entry k. Observe that RG(n, k) is the empty set if n < k. The set RG(n, 0)
is also empty for n > 0 but the set RG(0, 0) is the singleton set consisting of the empty
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word ε. Define the weight of w = w1w2 · · ·wn ∈ RG(n, k) by

wt(w) = q
∑n

i=1(wi−1)−(k
2). (2.1)

The q-Stirling numbers of the second kind are given by

Sq[n, k] =
∑

w∈RG(n,k)

wt(w). (2.2)

See Cai and Readdy [2, Sections 2 and 3].
This definition satisfies the recurrence definition for q-Stirling numbers of the second

kind originally due to Carlitz; see [3, pages 128–129] and [4, Section 3]:

Sq[n, k] = Sq[n− 1, k − 1] + [k]q · Sq[n− 1, k] for 1 6 k 6 n,

where [k]q = 1 + q + · · · + qk−1. To see this, consider a word w ∈ RG(n, k). If the
last letter is a left-to-right maxima then the word w is of the form w = v · k where
v ∈ RG(n−1, k−1), yielding the first term of the recurrence. Otherwise w is of the form
w = v · i where v ∈ RG(n − 1, k) and 1 6 i 6 k, which yields the second term of the
recurrence. The boundary conditions Sq[n, 0] = δn,0 and Sq[0, k] = δ0,k also follow from
the interpretation (2.2). For other weightings of RG-words which generate the q-Stirling
numbers of the second kind, see [26] and [34].

For a word w = w1w2 · · ·wn define the length of w to be `(w) = n. Similarly, define
the ls-weight of w to be ls(w) = q

∑n
i=1(wi−1). This is a generalization of the ls-statistic of

RG-words [34, Section 2]. The concatenation of two words u and v is denoted by u · v.
The word v is a factor of the word w if one can write w = u1 ·v ·v2. A word v = v1v2 · · · vk
is a subword of w if there is a sequence 1 6 i1 < i2 < · · · < ik 6 n such that wij = vj
for all 1 6 j 6 k. In other words, a factor of w is a subword consisting of consecutive
entries. For S a set of positive integers, let Sk denote the set of all words of length k with
entries in S. Furthermore, let S∗ denote the union S∗ =

⋃
· k>0 S

k, that is, the set of all
words with entries in S. Observe that when S is the empty set then S∗ consists only of
the empty word ε. Let [j, k] denote the interval [j, k] = {i ∈ P : j 6 i 6 k}.

Recall the q-Stirling numbers of the second kind are specializations of the homogeneous
symmetric function hn−k:

Sq[n, k] = hn−k([1]q, [2]q, . . . , [k]q). (2.3)

See for instance [22, Chapter I, Section 2, Example 11]. This follows directly by observing
that a word w ∈ RG(n, k) has a unique expansion of the form

w = 1 · u1 · 2 · u2 · · · k · uk, (2.4)

where ui is a word in [1, i]∗. By summing over all words ui for i = 1, . . . , k such that the
sum of their lengths is `(u1) + `(u2) + · · ·+ `(uk) = n− k, equation (2.3) follows.
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3 Recurrence related identities

In this section we focus on recurrence structured identities for the q-Stirling numbers of
the second kind. The proofs we provide here use the combinatorics of RG-words.

We begin with Mercier’s identity [23, Theorem 3]. This is a q-analogue of Jordan [18,
equation 9, page 187]. Mercier’s original proof of Theorem 3.1 was by induction. Later
a combinatorial proof using 0-1 tableaux was given by de Médicis and Leroux [7]. In the
same paper, de Médicis and Leroux proved Theorems 3.3 and 3.4 using 0-1 tableaux.

Theorem 3.1 (Mercier, 1990). For nonnegative integers n and k, the following identity
holds:

Sq[n+ 1, k + 1] =
n∑

m=k

(
n

m

)
· qm−k · Sq[m, k]. (3.1)

Proof. When n < k there is nothing to prove. For any word w ∈ RG(n + 1, k + 1),
suppose there are m entries in w that are not equal to one. Remove the n+ 1−m entries
equal to one in w and then subtract one from each of the remaining m entries to obtain a
new word u. Observe u ∈ RG(m, k) and wt(w) = qm−k ·wt(u). Conversely, given a word
u ∈ RG(m, k), one can first increase each of the m entries by one and then insert n+1−m
ones into the word to obtain an RG-word w ∈ RG(n+ 1, k + 1). There are

(
n

n−m

)
=
(
n
m

)
ways to insert the n + 1 −m ones since the first entry in an RG-word must be one. In
other words, for any u ∈ RG(m, k) we can obtain

(
n
m

)
new RG-words in RG(n+ 1, k+ 1)

under the map described above, which gives the desired identity.

Using similar ideas we also prove the following q-identity. It is a q-analogue of a result
due to Jordan [18, equation 7, page 187].

Theorem 3.2. For two non-negative integers n and m, the following identity holds:

qn−m · Sq[n,m] =
n∑

k=m

(−1)n−k ·
(
n

k

)
· Sq[k + 1,m+ 1]. (3.2)

Proof. For a subset A ⊆ {2, 3, . . . , n + 1} observe that the sum over the weights of RG-
words in the set RG(n + 1,m + 1) with ones in the set of positions containing the set A
is given by Sq[n + 1 − |A|,m + 1]. Hence by inclusion-exclusion the right-hand side of
equation (3.2) is the sum of the weights of all words in RG(n + 1,m + 1) where the
element 1 only occurs in first position. This set of RG-words is also obtained by taking
a word in RG(n,m), adding one to each entry, which multiplies the weight by qn−m, and
concatenating it with a one on the left.

Theorems 3.3 and 3.4 appear in [7, Propositions 2.3 and 2.5]. We now give straight-
forward proofs of each result using RG-words.

Theorem 3.3 (de Médicis–Leroux, 1993). For nonnegative integers n and k, the following
identity holds:

Sq[n+ 1, k + 1] =
n∑
j=k

[k + 1]n−jq · Sq[j, k]. (3.3)
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Proof. Factor a word w ∈ RG(n + 1, k + 1) as w = x · (k + 1) · y where x ∈ RG(j, k)
for some j > k and y belongs to [1, k + 1]∗. The factor y has length n − j. The sum of
the weights of these words is [k + 1]n−jq · Sq[j, k]. The result follows by summing over all
possible integers j.

Theorem 3.4 (de Médicis–Leroux, 1993). For nonnegative integers n and k, the following
identity holds:

(n− k) · Sq[n, k] =
n−k∑
j=1

Sq[n− j, k] · ([1]jq + [2]jq + · · ·+ [k]jq). (3.4)

Proof. For a word w ∈ RG(n, k) consider factorizations w = x · y · z with the following
two properties: (1) the rightmost letter of the factor x, call this letter i, is a left-to-right
maxima of x, and (2) the word y is non-empty and all letters of y are at most i.

We claim that the number of such factorizations of w is n− k. Let si be the number
of letters between the first occurrence of i and the first occurrence of i+ 1, and let sk be
the number of letters after the first occurrence of k. For a particular i, we have si choices
for the word y. But

∑k
i=1 si = n − k since there are n − k repeated letters in w. This

completes the claim.
Fix integers 1 6 j 6 n − k and 1 6 i 6 k. Given a word u ∈ RG(n − j, k), we can

factor it uniquely as x · z, where the last letter of x is the first occurrence of i in the
word u. Pick y to be any word of length j with letters at most i. Finally, let w = x · y · z.
Observe that this is a factorization satisfying the conditions from the previous paragraph.
Furthermore, we have wt(w) = wt(u) · ls(y). Summing over all words u ∈ RG(n, k) and
words y ∈ [1, i]j yields Sq[n− j, k] · [i]jq. Lastly, summing over all i and j gives the desired
equality.

4 Gould’s generating function

Gould [15, equation (3.4)] gave an analytic proof for the ordinary generating function of
the q-Stirling numbers of the second kind. Later Ernst [13, Theorem 3.22] gave a proof
using the orthogonality of the q-Stirling numbers of the first and second kinds. Wachs
and White [34] stated a p, q-version of this generating function without proof. Here we
prove Gould’s q-generating function using RG-words.

Theorem 4.1 (Gould, 1961). The q-Stirling numbers of the second kind Sq[n, k] have the
generating function ∑

n>k

Sq[n, k] · tn =
tk∏k

i=1(1− [i]q · t)
. (4.1)

Proof. The left-hand side of (4.1) is the sum of over all RG-words w of length at least k
with largest letter k where each term is wt(w)·t`(w). Using the expansion in equation (2.4),
that is, w = 1 ·u1 ·2 ·u2 · · · k ·uk where ui is a word in [1, i]∗, observe the weight of w factors
as wt(w) = ls(u1) · ls(u2) · · · ls(uk) whereas the term t`(w) factors as tk · t`(u1) · t`(u2) · · · t`(uk).
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Since there are no restrictions on the length of ith word ui, all the words ui for i = 1, . . . , k
together contribute the factor 1 + [i]q · t + [i]2q · t2 + · · · = 1/(1− [i]q · t). By multiplying
together all the contributions from all of the words ui, the identity follows.

5 A poset proof of Carlitz’s identity

In this section we state a poset decomposition theorem for the Cartesian product of
chains. This decomposition implies Carlitz’s identity. For basic poset terminology and
background, we refer the reader to Stanley’s treatise [29, Chapter 3].

Let Cm denote the chain on m elements. Recall that Pn is the set of all words of
length n having positive integer entries. We make this set into a poset, in fact, a lattice, by
entrywise comparison, where the partial order relation is given by v1v2 · · · vn 6 w1w2 · · ·wn
if and only if vi 6 wi for all indices 1 6 i 6 n. Note that [1,m]n is the subposet consisting
of all words of length n where the entries are at most m.

For a word v in RG(n, k), factor v according to equation (2.4), that is, write v as the
product v = 1 · u1 · 2 · u2 · · ·uk−1 · k · uk, where each factor ui belongs to [1, i]∗. For m > n
define the word ωm(v) = m · u1 · m · u2 · · ·uk−1 · m · uk. Effectively, each left-to-right
maxima is replaced by the integer m. Directly it is clear that the interval [v, ωm(v)] in Pn
is isomorphic to a product of chains, that is,

[v, ωm(v)] ∼= Cm × Cm−1 × · · · × Cm−k+1.

Theorem 5.1. The n-fold Cartesian product of the m-chain has the decomposition

[1,m]n =
⋃
·

06k6min(m,n)

⋃
·

v∈RG(n,k)

[v, ωm(v)].

Proof. Define a map f : Pn −→ Pn as follows. Let w = w1w2 · · ·wn be a word in Pn. If w
is an RG-word, let f(w) = w. Otherwise let i be the smallest index in w reading from left
to right that makes w fail to be an RG-word. In other words, i is the smallest index such
that max(0, w1, w2, . . . , wi−1) + 1 < wi. Let f(w) be the new word formed by replacing
the ith entry of w with max(0, w1, w2, . . . , wi−1) + 1. Observe that for all words w we
obtain the poset inequality f(w) 6 w.

Since the word w only has n entries, we know that the (n + 1)st iteration of f is
equal to the nth iteration of f , that is, fn+1(w) = fn(w). Furthermore, fn(w) is an
RG-word. Finally, define ϕ : Pn −→

⋃
· 06k6nRG(n, k) to be the map fn. Observe that

ϕ is a surjection since every RG-word is a fixed point. Furthermore, for all words w the
inequality ϕ(w) 6 w holds in the poset Pn.

Let v be a word in RG(n, k). Use the expansion (2.4) to write v in the form v =
1 · u1 · 2 · u2 · · ·uk−1 · k · uk, where ui ∈ [1, i]∗. It is straightforward to check that the fiber
ϕ−1(v) is given by

ϕ−1(v) = {j1 · u1 · j2 · u2 · · ·uk−1 · jk · uk : i 6 ji for i = 1, 2, . . . , k}. (5.1)
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Observe that as a poset this fiber is isomorphic to Pk. When we restrict to [1,m]n we
obtain that the intersection ϕ−1(v)∩ [1,m]n is the interval [v, ωm(v)]. Taking the disjoint
union over all RG-words v, the decomposition follows.

By considering the rank generating function of Theorem 5.1, we can obtain a poset
theoretic proof of Carlitz’s identity [4, Section 3]. Other proofs are due to Milne using
finite operator techniques on restricted growth functions [25], de Médicis and Leroux
via interpreting the identity as counting products of matrices over the finite field GF(q)
having non-zero columns [7], and Ehrenborg and Readdy using the theory of juggling
sequences [12].

Corollary 5.2 (Carlitz, 1948). The following q-identity holds:

[m]nq =
n∑
k=0

q(
k
2) · Sq[n, k] · [k]q! ·

[
m

k

]
q

. (5.2)

Proof. The cases when n = 0 or m = 0 are straightforward. The rank generating function
of the left-hand side of Theorem 5.1 is [m]nq . The rank generating function of the interval

[v, ωm(v)] is q(
k
2) · wt(v) · [m]q · [m− 1]q · · · [m− k + 1]q. By summing over all RG-words,

the result follows.

Remark 5.3. Similar poset techniques used to prove Theorem 5.1 and Corollary 5.2 can
be applied to obtain the identities in Section 3. The proofs are omitted.

The map ϕ that appears in the proof of Theorem 5.1 has interesting properties.

Proposition 5.4. The map ϕ : Pn −→
⋃
· 06k6nRG(n, k) is the dual of a closure operator,

that is, it satisfies the following three properties:

(i) ϕ(w) 6 w,

(ii) ϕ2(w) = ϕ(w) and

(iii) v 6 w implies that ϕ(v) 6 ϕ(w).

Proof. Properties (i) and (ii) are direct from the construction of the map ϕ. To prove
property (iii) assume that we have v 6 w but ϕ(v) 66 ϕ(w). Let i be the smallest index
such that ϕ(w)i < ϕ(v)i. Especially for j < i we have ϕ(w)j > ϕ(v)j. Since ϕ(w)i <
ϕ(v)i 6 vi 6 wi, we know that the ith coordinate is changed when computing ϕ(w).
Hence ϕ(w)i = max(0, ϕ(w)1, . . . , ϕ(w)i−1) + 1 > max(0, ϕ(v)1, . . . , ϕ(v)i−1) + 1 > ϕ(v)i,
a contradiction.

As a consequence of the closure property, if v and w are RG-words then so is their
join v ∨ w = u where the ith entry is given by ui = max(vi, wi). This can also be proven
directly. Note however that the set of RG-words is not closed under the meet operation;
see for instance the two RG-words 1123 and 1213.
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6 q-Vandermonde convolutions

Verde-Star gave Vandermonde convolution identities for Stirling numbers of the second
kind [32, equations (6.24), (6.25)]. Chen gave a grammatical proof for the first of these
identities [5, Proposition 4.1]. For q-analogues of both identities, de Médicis and Leroux
used 0, 1-tableaux for their argument [8, equations (1.12), (1.14)]. In this section we
present combinatorial proofs of the de Médicis–Leroux results using RG-words.

As a remark, Theorem 3.1 is the special case of n = 1 in Theorem 6.1.

Theorem 6.1 (de Médicis–Leroux, 1995). The following q-Vandermonde convolution
holds for q-Stirling numbers of the second kind:

Sq[m+ n, k] =
∑
i+j>k

(
m

j

)
· qi·(i+j−k) · [i]m−jq · Sq[n, i] · Sq[j, k − i]. (6.1)

Proof. Given a word w ∈ RG(m+ n, k), factor it as w = u · z where u has length n and i
is the largest entry in u. By assumption, u ∈ RG(n, i).

The second factor z = wn+1 · wn+2 · · ·wn+m has length m and its maximal entry is at
most k. In particular, if i < k then the maximal entry for z is exactly k. Suppose there
are j entries in z that are strictly larger than i. These j entries from z form a subword v.
Denote by v(−i) the shift of v by subtracting i from each entry in v. It is straightforward
to check that v(−i) ∈ RG(j, k − i).

For any word w ∈ RG(m + n, k), we can decompose it as described above. In such a
decomposition, the first segment u contributes to a factor of Sq[n, i]. The subsequence v
of the second segment z contributes to a factor of Sq[j, k − i] · qi·(j−(k−i)) since the shift
v(−i) causes a weight loss of qi from each of the j − (k − i) repeated entries in v. Finally,
the remaining entries in z that are less than or equal to i range from 1 to i. Each will
contribute to a factor of [i]q. These m − j entries can be assigned at any position in z,
which gives

(
m
j

)
choices. Multiplying all these weights, we obtain the desired identity.

Note that Theorem 3.3 is a special case of Theorem 6.2 when one takes r = 0.

Theorem 6.2 (de Médicis–Leroux, 1995). The following q-Vandermonde convolution
holds for q-Stirling numbers of the second kind:

Sq[n+ 1, k + r + 1] =
n∑
i=0

i∑
j=r

(
i

j

)
· q(k+1)·(j−r) · [k + 1]i−jq · Sq[j, r] · Sq[n− i, k]. (6.2)

Proof. This result is proved in a similar fashion as Theorem 6.1. For any w ∈ RG(n +
1, k + r + 1), suppose w is of the form x · (k + 1) · y where x ∈ RG(n − i, k) for some i.
Consider the remaining word y = wn−i+2 · · ·wn+1 of length i. The maximal entry of y is
k + r + 1. Suppose there are j entries in y that are at least k + 2. These j entries form a
subword v, and v(−k−1), obtained by subtracting k+1 from each entry in v, is an RG-word
in RG(j, r), giving a total weight of Sq[j, r]. The weight loss from the shift is q(k+1)·(j−r)

since there are j − r repeated entries. The remaining i− j entries in y can be any value
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from the interval [1, k + 1]. Each such entry contributes to a factor of [k + 1]q. Finally,
there are

(
i
j

)
ways to place the j entries back into u. This proves identity (6.2).

Remark 6.3. Theorem 3.2 can be viewed as an inversion of Theorem 3.1. Furthermore,
Theorem 3.1 is a special case of Theorem 6.1. Is there any sort of natural inversion
analogue to Theorem 6.1?

7 A q-analogue of the Frobenius identity

We now prove a q-analogue of the Frobenius identity by Garsia and Remmel [14, equa-
tion I.1].

Theorem 7.1 (Garsia–Remmel, 1986). The following q-Frobenius identity holds:

∑
m>0

[m]nq · xm =
n∑
k=0

q(
k
2) · Sq[n, k] · [k]q! · xk

(1− x) · (1− qx) · · · (1− qkx)
. (7.1)

Proof. When n = 0 the result is direct. We concentrate on the case n > 0. For a word w
in Pn let max(w) denote its maximal entry. Hence the left-hand side of equation (7.1) is
given by ∑

m>0

[m]nq · xm =
∑
m>0

∑
w∈Pn

max(w)6m

ls(w) · xm.

Recall the poset map ϕ : Pn −→
⋃
· 06k6nRG(n, k) appearing in the proof of Theorem 5.1.

Let v ∈ RG(n, k). The fiber ϕ−1(v) is given in equation (5.1). The sum over this fiber
appears in the proof of Corollary 5.2, that is,∑

w∈ϕ−1(v)
max(w)6m

ls(w) = wt(v) · q(
k
2) · [m]q · [m− 1]q · · · [m− k + 1]q.

Multiplying the above by xm and summing over all m > 0 yields∑
m>0

∑
w∈ϕ−1(v)
max(w)6m

ls(w) · xm = wt(v) · q(
k
2) · [k]q! ·

∑
m>0

[
m

k

]
q

· xm

=
wt(v) · q(

k
2) · [k]q! · xk

(1− x) · (1− qx) · · · (1− qkx)
.

The result now follows by summing over all RG-words of length n.

8 A determinantal identity

The following identity was first stated by Ehrenborg [10, Theorem 3.1] who proved it
using juggling patterns. We now present a proof using RG-words.

the electronic journal of combinatorics 25(1) (2018), #P1.37 9



Theorem 8.1 (Ehrenborg, 2003). Let n and s be non-negative integers. Then the follow-
ing identity holds:

det(Sq[s+ i+ j, s+ j])06i,j6n = [s]0q · [s+ 1]1q · · · [s+ n]nq .

Proof. Let T be the set of all (n+ 2)-tuples (σ,w(0), w(1), . . . , w(n)) where σ is a permu-
tation of the n+ 1 elements {0, 1, . . . , n}, and w(i) is a word in RG(s+ i+ σ(i), s+ σ(i))
for all 0 6 i 6 n. The determinant expands as the sum

det(Sq[s+ i+ j, s+ j])06i,j6n =
∑

(σ,w(0),...,w(n))∈T

(−1)σ · wt(w(0)) · wt(w(1)) · · ·wt(w(n)).

Factor the word w(i) ∈ RG(s + i + σ(i), s + σ(i)) as w(i) = u(i) · v(i) where the lengths
are given by `(u(i)) = s+ i and `(v(i)) = σ(i). Furthermore, let ai denote the number of
repeated entries in the RG-word w(i) that appear in the factor v(i), that is,

ai = |{j : j > s+ i, w(i)j = w(i)r for some r < j}|.

There are σ(i)−ai left-to-right maxima of w(i) that appear in v(i). Since w(i) has s+σ(i)
left-to-right maxima, we obtain that the first factor u(i) has (s+σ(i))−(σ(i)−ai) = s+ai
left-to-right maxima, that is, the factor u(i) belongs to the set RG(s + i, s + ai). To be
explicit, the left-to-right maxima of u(i) are given by 1, 2, . . . , s+ ai. Lastly, observe that
there are i repeated entries in any word w(i) ∈ RG(s+ i+ σ(i), s+ σ(i)) and σ(i) is the
length of v(i), yielding the bound ai 6 min(i, σ(i)) for all i.

Let T1 ⊆ T consist of all tuples (σ,w(0), . . . , w(n)) where the sequence of ai’s for
i = 0, . . . , n are distinct. This implies ai = i = σ(i), that is, σ is the identity permutation.
Furthermore, the first factor u(i) is equal to 12 · · · (s+ i) and the second factor v(i) can be
any word of length i with the entries from the interval [1, s+ i]. Thus wt(w(i)) = ls(v(i))
and the sum over all such words v(i) gives a total weight of [s+ i]iq. Thus we have

∑
(σ,w(0),...,w(n))∈T1

(−1)σ · wt(w(0)) · wt(w(1)) · · ·wt(w(n)) =
n∏
i=0

[s+ i]iq. (8.1)

Let T2 = T − T1 be the complement of T1. Define a sign-reversing involution ϕ on
T2 as follows. For t = (σ,w(0), . . . , w(n)) ∈ T2 there exists indices i1 and i2 such that
ai1 = ai2 . Let (j, k) be the least such pair of indices in the lexicographic order. First let
σ′ = σ ◦ (j, k) where (j, k) denotes the transposition. Second, let w(i)′ = w(i) for i 6= j, k.
Finally, define w(j)′ and w(k)′ by switching the second factors in the factorizations, that
is, w(j)′ = u(j)v(k) and w(k)′ = u(k)v(j). Overall, the function is given by ϕ(t) =
(σ′, w(0)′, . . . , w(n)′)

Since u(j) and u(k) have the same number of left-to-right maxima, it is straightforward
to check that w(j)′ = u(j)v(k) belongs to RG(s+j+σ(k), s+σ(k)) = RG(s+j+σ′(j), s+
σ′(j)). Hence it follows that ϕ(t) ∈ T2. Let a′i be the number repeated entries in w(i)′

that occur beyond position s + i. Directly, we have a′i = ai and we obtain that ϕ is an
involution. Finally, we have (−1)σ

′
= −(−1)σ implying ϕ is a sign-reversing involution.
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Finally, it is direct to see that wt(w(j)) ·wt(w(k)) = wt(w(j)′) ·wt(w(k)′) using the ob-
servation that u(j) and u(k) have the same number of left-to-right maxima. Hence the map
ϕ is a sign-reversing involution on T2 which preserves the weight wt(w(0)) · · ·wt(w(n)).
Thus the determinant is given by equation (8.1).

9 A pair of identities of Carlitz

In this section we turn our attention to two identities of Carlitz. Observe that setting
q = 1 in Theorems 9.2 and 9.3 in this section does not yield any information about the
Stirling number S(n, k) of the second kind.

We first prove a theorem from which Carlitz’s Theorem 9.2 will follow.

Theorem 9.1. For two non-negative integers n and k not both equal to 0, the following
identity holds:

(1− q)n−k · Sq[n, k] =
n−k∑
j=0

(−q)j ·
(

n− 1

n− k − j

)
·
[
j + k − 1

j

]
q

. (9.1)

Proof. For a word u = u1u2 · · ·un in RG(n, k) let NLRM(u) be the set of all posi-
tions r such that the letter ur is not a left-to-right-maxima of the word u, that is,
ur 6 max(u1, u2, . . . , ur−1). Furthermore, for a position r ∈ NLRM(u) define the bound
b(r) to be max(u1, u2, . . . , ur−1). Note that b(r) is the largest possible value we could
change ur to be so that the resulting word remains an RG-word in RG(n, k).

To describe the left-hand side of (9.1), consider the set of pairs (u, P ) where u ∈
RG(n, k) and P ⊆ NLRM(u). Define the weight of such a pair (u, P ) to be (−q)|P | ·wt(u).
It is clear that the sum of the weight over all such pairs (u, P ) is given by the left-hand
side of (9.1).

Define a sign-reversing involution as follows. For the pair (u, P ) pick the smallest
position r in NLRM(u) such that either r ∈ P and ur 6 b(r) − 1 or r 6∈ P and 2 6 ur.
In the first case, send P to P − {r} and replace the rth letter ur with ur + 1. In the
second case, send P to P ∪ {r} and replace the rth letter ur with ur − 1. This is a
sign-reversing involution which pairs terms having the same weight, but opposite signs.
Furthermore, the remaining pairs (u, P ) satisfy for all positions r ∈ NLRM(u) either
r ∈ P and ur = b(r) or r 6∈ P and ur = 1.

We now sum the weight of these remaining pairs (u, P ). First select the cardinality j
of the set P . Note that 0 6 j 6 n − k and that it yields a factor of (−q)j. Second,
select the positions r of the non-left-right-maxima such that r will not be in the set P
and ur = 1. There will be n − k − j such positions and they can be anywhere in the
interval [2, n], yielding

(
n−1
n−k−j

)
possibilities. Third, select a weakly increasing word z

of length j with letters from the set [k]. This will be the letters corresponding to the
non-left-to-right-maxima such that their positions belong to set P . The ls-weight of these
letters will be the q-binomial coefficient

[
j+k−1
j

]
q
. Fourth, insert into the word z the letters

of the left-to-right-maxima. There is a unique way to do this insertion. Finally, insert
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the 1’s corresponding to positions not in the set P , which were already been chosen by
the binomial coefficient.

Note that the above proof fails when n = k = 0 since we are using that a non-empty
RG-word must begin with the letter 1, whereas the empty RG-word does not.

The next identity is due to Carlitz [3, equation (9)]. It was stated by Gould [15,
equation (3.10)]. As a warning to the reader, Gould’s notation S2(n, k) for the q-Stirling
number of the second kind is related to ours by S2(n, k) = Sq[n+ k, n]. This identity also
appears in the paper of de Médicis, Stanton and White [9, equation (3.3)] using modern
notation.

Theorem 9.2 (Carlitz, 1933). For two non-negative integers n and k the following iden-
tity holds:

(1− q)n−k · Sq[n, k] =
n−k∑
j=0

(−1)j ·
(

n

k + j

)
·
[
j + k

j

]
q

. (9.2)

Proof. When n = k = 0 the statement is direct. It is enough to show that the right-hand
sides of equations (9.1) and (9.2) agree. We have

n−k∑
j=0

(−1)j ·
(

n− 1

n− k − j

)
· qj ·

[
j + k − 1

j

]
q

=
n−k∑
j=0

(−1)j ·
(

n− 1

n− k − j

)
·

([
j + k

j

]
q

−
[
j + k − 1

j − 1

]
q

)

=
n−k∑
j=0

(−1)j ·
(

n− 1

n− k − j

)
·
[
j + k

j

]
q

−
n−k∑
j=1

(−1)j ·
(

n− 1

n− k − j

)
·
[
j + k − 1

j − 1

]
q

=
n−k∑
j=0

(−1)j ·
(

n− 1

n− k − j

)
·
[
j + k

j

]
q

−
n−k−1∑
j=0

(−1)j+1 ·
(

n− 1

n− k − j − 1

)
·
[
j + k

j

]
q

=
n−k∑
j=0

(−1)j ·
(

n

n− k − j

)
·
[
j + k

j

]
q

.

Here we used the Pascal recursion for the q-binomial coefficients in the first step, shifted
j to j + 1 in the second sum in the third step, and applied the Pascal recursion for the
binomial coefficients in the last step.

The next identity is also due to Carlitz; see [3, equation (8)]. It is equivalent to the
previous identity, but we provide a proof using RG-words.

Theorem 9.3 (Carlitz, 1933). For n and k two non-negative integers the following iden-
tity holds: [

n

k

]
q

=
n∑
j=k

(q − 1)j−k ·
(
n

j

)
· Sq[j, k].
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Proof. The right-hand side describes the following collection of triplets (A, u, P ) where A
is a subset of the set [n], u is a word in RG(|A|, k) and P is a subset of NLRM(u). Define
the weight of the triple (A, u, P ) to be the product (−1)j−k−|P | · q|P | · wt(u). To better
visualize the pair (A, u), define the word w = w1w2 · · ·wn of length n with the letters in
the set {0} ∪ [k] as follows. Write A as the increasing set {a1 < a2 < · · · < aj} and let
war = ur. The remaining letters of w are set to be 0, that is, if i 6∈ A let wi = 0. Note
that the word w uniquely encodes the pair (A, u). Let Q be the set Q = {ar : r ∈ P},
that is, the set Q encodes the subset P , where these non-left-to-right-maxima occur in
the longer word w.

Similar to the proof of Theorem 9.1 we define a sign-reversing involution by selecting
the smallest r ∈ NLRM(w) such that r 6∈ Q and wr > 2, or r ∈ Q and 1 6 wr 6 b(r)− 1.
In the first case decrease wr by 1 and join r to the subset Q. In the second case, increase wr
by 1 and remove r from Q. The remaining words w satisfy the following: for a non-left-
to-right-maxima r such that wr > 1 either r 6∈ Q and wr = 1 both hold, or r ∈ Q and
wr = b(r) hold.

On the remaining pairs (w,Q) define yet again a sign-reversing involution. Let i > a1
be the smallest index i such that wi = 0, or wi = 1 and i 6∈ Q. This involution replaces wi
with 1− wi. Note that this involution changes the sign.

The pairs (w,Q) which remain unmatched under this second involution are those where
the word w is weakly increasing and the subset Q consists of all non-left-to-right-maxima
r with wr > 1. Note that the weight of the pair (w,Q) is the weight q|Q| · q

∑
r∈Q wr−1 =

q
∑

r∈Q wr . Finally, the sum of the weights of these pairs is
[
n
k

]
q
.

10 An extension of Mercier’s identities

We simultaneously generalize two identities of Mercier by introducing a two parameter
identity involving q-Stirling numbers. The proof of this identity depends on a different
decomposition of RG-words.

Let ([n]q)k denote the q-analogue of the lower factorial, that is, ([n]q)k = [n]q!/[n−k]q!.
Alternatively, one can expand it as the product

([n]q)k = [n]q · [n− 1]q · · · [n− k + 1]q.

Theorem 10.1. For three non-negative integers n, r and s such that s < r 6 n the
following holds:

n∑
k=r

(−qs)k−r · ([k − s− 1]q)k−r · Sq[n, k] =
n−1∑
i=r−1

Sq[i, r − 1] · [s]n−i−1q . (10.1)

Proof. On the set of RG-words S =
⋃
· r6k6nRG(n, k) define a weight function by

f(w) = (−qs)k−r · ([k − s− 1]q)k−r · wt(w).

Our objective is to evaluate the sum
∑

w∈S f(w), which is the left-hand side of (10.1). We
do this in two steps. First we will partition the set S into blocks and extend the weight f
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to a block B by f(B) =
∑

w∈B f(w). Secondly, on the set of blocks we will define a
sign-reversing involution such that if two blocks B and C are matched, their f -weights
cancel, that is, f(B) + f(C) = 0. Hence the right-hand side of (10.1) will be equal to the
sum over all the blocks that have not been matched.

We now define an equivalence relation on the set S. The blocks of our partition
will be the equivalence classes. For any integer k where r 6 k 6 n, we say two words
u, v ∈ RG(n, k) are equivalent if there exists an index i such that s + 1 6 ui, vi 6 k and
u = x ·ui ·y, v = x ·vi ·y for some word x ∈ RG(i−1, k) and y a word in [1, s]∗. Note that
when s = 0 that y is the empty word ε. If a word v ∈ RG(n, k) is of the form v = x · k · y
for some x ∈ RG(i−1, k−1) and y ∈ [1, s]∗, then this word is not equivalent to any other
words and hence it belongs to a singleton block. Since for any RG-word we can find a
decomposition described as above, this is a partition of the set RG(n, k) and hence the
set S.

Match the singleton block B = {x · k · y} where x ∈ RG(i− 1, k − 1), y ∈ [1, s]∗ and
r < k with the block

C = {x · j · y : s+ 1 6 j 6 k − 1}.
It is straightforward to check that C ⊆ RG(n, k−1) ⊆ S. Note that the weight wt(x ·j ·y)
factors as wt(x) · qj−1 · ls(y). Moreover, the f -weight of the block C satisfies

f(C) =
k−1∑
j=s+1

(−qs)k−r−1 · ([k − s− 2]q)k−r−1 · wt(x) · qj−1 · ls(y)

= (−qs)k−r−1 · ([k − s− 2]q)k−r−1 · wt(x) · qs · [k − s− 1]q · ls(y)

= −(−qs)k−r · ([k − s− 1]q)k−r · wt(x) · ls(y)

= −f(x · k · y). (10.2)

Hence the weight of the two blocks B and C cancel each other.
It remains to determine the weight of the unmatched blocks. Observe that every block

of the form {x · j · y : s+ 1 6 j 6 k} where x ∈ RG(i, k) and y ∈ [1, s]∗ has been matched
by the above construction. Hence the unmatched blocks are singleton blocks. Given a
word u ∈ RG(n, k) ⊆ S, it has a unique factorization as u = x · j · y where y ∈ [1, s]∗

and s < j. If x is a word in RG(i, k) then the word u belongs to a block that has been
matched. If x ∈ RG(i, k − 1) then m = k and the word u belongs to a singleton block
which has been matched if k > r. Hence the unmatched blocks are of the form {x · r · y}
where x ∈ RG(i, r − 1) and y ∈ [1, s]n−i−1. The sum of their f -weights are

n−1∑
i=r−1

∑
x∈RG(i,r−1)
y∈[1,s]n−i−1

f(x · r · y) =
n−1∑
i=r−1

∑
x∈RG(i,r−1)
y∈[1,s]n−i−1

wt(x) · ls(y)

=
n−1∑
i=r−1

Sq[i, r − 1] · [s]n−i−1q ,

which is the right-hand side of the desired identity.
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Setting (r, s) = (1, 0) and (r, s) = (2, 1) in Theorem 10.1 we obtain two special cases,
both of which are due to Mercier [23, Theorem 2]. The second identity is a q-analogue of
a result due to Jordan [18, equation 5, page 186].

Corollary 10.2 (Mercier, 1990). For n > 2, the following two identities hold:

n∑
k=1

(−1)k · [k − 1]q! · Sq[n, k] = 0, (10.3)

n∑
k=2

(−1)k · qk−2 · [k − 2]q! · Sq[n, k] = n− 1. (10.4)

Mercier’s identity (10.4) reappears in work of Ernst [13, Corollary 3.30].
The next result is the case r = s + 1 in Theorem 10.1. Here we provide a different

expression.

Proposition 10.3. The following identity holds:

n∑
k=r

(−qr−1)k−r · ([k − r]q)k−r · Sq[n, k] =∑
c1+c2+···+cr−1=n−r+1

cr−1 · [1]c1q · [2]c2q · · · [r − 2]cr−2
q · [r − 1]cr−1−1

q . (10.5)

Proof. The f -weights of the unmatched words u = x · r · y in the proof of Theorem 10.1
can be determined in a different manner. Since x ∈ RG(i, r−1) we can factor x according
to equation (2.4). Hence the unmatched word u has the form

u = 1 · x1 · 2 · x2 · 3 · · · (r − 1) · xr−1 · r · y,

where xi belongs to [1, i]∗ and y belongs to [1, r − 1]∗. All possible words xi of length ci
give total weight of [i]ciq for i 6 r− 2. For the word xr−1 · r · y, suppose its length is cr−1.
Then we have cr−1 choices to place the letter r and the total weight of such words of the
form xr−1 · y will be [r − 1]cr−1−1

q . Hence the f -weight for unmatched words is given by
equation (10.5).

Recall the Stirling numbers of the second kind are specializations of the homogeneous
symmetric function; see equation (2.3). Thus one can view Theorem 10.1 from a sym-
metric function perspective.

Theorem 10.4. The following polynomial identity holds:

n−r∑
i=0

hi(x1, x2, . . . , xr−1) · xn−r−is =
n∑
k=r

(xs − xr) · (xs − xr+1) · · · (xs − xk−1)

· hn−k(x1, x2, . . . , xk).
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Proof. Let [tn]f(t) denote the coefficient of tn in f(t). We consider the function

Gr(t) =
1

1− xs · t
·
r−1∏
j=1

1

1− xj · t
=

r∏
j=1

1

1− xj · t
+

(xs − xr) · t
1− xs · t

·
r∏
j=1

1

1− xj · t
,

and compute the coefficient of tn−r in two ways. Using the first expression of Gr(t) and
that

1

1− xs · t
=
∑
i>0

xis · ti and
r−1∏
j=1

1

1− xj · t
=
∑
i>0

hi(x1, x2, . . . , xr−1) · ti,

we obtain

[tn−r]Gr(t) =
n−r∑
i=0

hj(x1, x2, . . . , xr−1) · xn−r−is . (10.6)

Using the second expression of Gr(t) we have

[tn−r]Gr(t) = [tn−r]
r∏
j=1

1

1− xj · t
+ [tn−r]

(xs − xr) · t
1− xs · t

·
r∏
j=1

1

1− xj · t

= hn−r(x1, x2, . . . , xr) + (xs − xr) · [tn−r−1]Gr+1(t). (10.7)

Iterate equation (10.7) n− r times yields

[tn−r]Gr(t) =
n∑
k=r

(xs − xr) · (xs − xr+1) · · · (xs − xk−1) · hn−k(x1, x2, . . . , xk). (10.8)

Now combine equations (10.6) and (10.8) we obtain the desired identity.

Second proof of Theorem 10.1. Substituting xi = [i]q in Theorem 10.4 yields the result
using that [s]q − [i]q = −qs · [i− s]q when i > s > 0.

11 Concluding remarks

There are many extensions of q-Stirling numbers of the second kind. Remmel and
Wachs [27] develop (p, q)-analogues of q-Stirling numbers of the first and second kinds, and
give a colored restricted growth word interpretation of Hsu and Shiue’s generalized Stir-
ling numbers [16]. An earlier two-parameter (p, q)-Stirling number of the second kind by
Wachs and White [34] include interpretations via rook placements and restricted growth
functions. What identities arise in these settings? As an example, Briggs and Remmel [1]
have a (p, q)-analogue of Garsia and Remmel’s q-Frobenius formula (Theorem 7.1) via
three statistics: number of descents, major index and comajor index.

One can also be interested in other applications of restricted growth words. See the
recent paper of Ehrenborg, Hedmark and Hettle for an application to partitions with
block sizes of the same parity [11], as well as Steingŕımsson’s new statistics on ordered
set partitions [30] and the related papers by Ishikawa, Kasraoui and Zeng [17, 20].
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