Rook Placements and Jordan Forms of UpperTriangular Nilpotent Matrices

Martha Yip
University of Kentucky, mpyi222@uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/math_facpub
Part of the Mathematics Commons

Repository Citation

Yip, Martha, "Rook Placements and Jordan Forms of Upper-Triangular Nilpotent Matrices" (2018). Mathematics Faculty Publications. 30.
https://uknowledge.uky.edu/math_facpub/30

Rook Placements and Jordan Forms of Upper-Triangular Nilpotent Matrices

Notes/Citation Information

Published in The Electronic Journal of Combinatorics, v. 25, issue 1, paper \#P1.68, p. 1-25.
The publisher has granted the permission for posting the article here.

Rook placements and Jordan forms of upper-triangular nilpotent matrices

Martha Yip*
Department of Mathematics
University of Kentucky
Lexington, U.S.A.
martha.yip@uky.edu

Submitted: Mar 14, 2017; Accepted: Jan 17, 2018; Published: Mar 29, 2018
Mathematics Subject Classifications: 05E15, 05A19

Abstract

The set of n by n upper-triangular nilpotent matrices with entries in a finite field \mathbb{F}_{q} has Jordan canonical forms indexed by partitions $\lambda \vdash n$. We present a combinatorial formula for computing the number $F_{\lambda}(q)$ of matrices of Jordan type λ as a weighted sum over standard Young tableaux. We construct a bijection between paths in a modified version of Young's lattice and non-attacking rook placements, which leads to a refinement of the formula for $F_{\lambda}(q)$.

Keywords: nilpotent matrices, finite fields, Jordan form, rook placements, Young tableaux, set partitions.

1 Introduction

In the beautiful paper Variations on the Triangular Theme [7], Kirillov studied various structures on the set of triangular matrices. Let $G=G_{n}\left(\mathbb{F}_{q}\right)$ denote the group of n by n invertible upper-triangular matrices over the field \mathbb{F}_{q} having q elements, and let $\mathfrak{g}=\mathfrak{g}_{n}\left(\mathbb{F}_{q}\right)=\operatorname{Lie}\left(G_{n}\left(\mathbb{F}_{q}\right)\right)$ denote the corresponding Lie algebra of n by n upper-triangular nilpotent matrices over \mathbb{F}_{q}. The problem of determining the set $\mathcal{O}_{n}\left(\mathbb{F}_{q}\right)$ of adjoint G-orbits in \mathfrak{g} remains challenging, and a more tractable task is to study a decomposition of $\mathcal{O}_{n}\left(\mathbb{F}_{q}\right)$ via the Jordan canonical form. Let $\lambda \vdash n$ be a partition of n with r positive parts

[^0]$\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{r}>0$, and let
\[

J_{\lambda}=J_{\lambda_{1}} \oplus J_{\lambda_{2}} \oplus \cdots \oplus J_{\lambda_{r}}, \quad where \quad J_{i}=\left[$$
\begin{array}{cccccc}
0 & 1 & 0 & \cdots & 0 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \cdots & 0 & 1 \\
0 & 0 & 0 & \cdots & 0 & 0
\end{array}
$$\right]_{i \times i}
\]

is the i by i elementary Jordan matrix with all eigenvalues equal to zero. If $X \in \mathfrak{g}_{n}\left(\mathbb{F}_{q}\right)$ is similar to J_{λ} under $G L_{n}\left(\mathbb{F}_{q}\right)$, then X is said to have Jordan type λ. Each conjugacy class contains a unique Jordan matrix J_{λ}, so these classes are indexed by the partitions of n. Evidently, the Jordan type of X depends only on its adjoint G-orbit.

Let $\mathfrak{g}_{n, \lambda}\left(\mathbb{F}_{q}\right) \subseteq \mathfrak{g}_{n}\left(\mathbb{F}_{q}\right)$ be the set of upper-triangular nilpotent matrices of fixed Jordan type λ, and let

$$
\begin{equation*}
F_{\lambda}(q)=\left|\mathfrak{g}_{n, \lambda}\left(\mathbb{F}_{q}\right)\right| . \tag{1}
\end{equation*}
$$

Springer showed that $\mathfrak{g}_{n, \lambda}\left(\mathbb{F}_{q}\right)$ is an algebraic manifold with f^{λ} irreducible components, where f^{λ} is the number of standard Young tableaux of shape λ, and each of which has dimension $\binom{n}{2}-n_{\lambda}$, where n_{λ} is an integer defined in Equation 10. These quantities appear in the study of $F_{\lambda}(q)$.

In Section 2, we show that the numbers $F_{\lambda}(q)$ satisfy a simple recurrence equation, and that they are polynomials in q with integer coefficients. As a consequence of the recurrence equation in Theorem 8, it follows that the coefficient of the highest degree term in $F_{\lambda}(q)$ is f^{λ}, and $\operatorname{deg} F_{\lambda}(q)=\binom{n}{2}-n_{\lambda}$. Equation (9) is a combinatorial formula for $F_{\lambda}(q)$ as a sum over standard Young tableaux of shape λ that can be derived from the recurrence equation.

The cases $F_{\left(1^{n}\right)}(q)=1$ and $F_{(n)}(q)=(q-1)^{n-1} q^{\binom{n-1}{2}}$ are readily computed, since the matrix in $\mathfrak{g}_{n}\left(\mathbb{F}_{q}\right)$ of Jordan type $\left(1^{n}\right)$ is the matrix of zero rank, and the matrices in $\mathfrak{g}_{n}\left(\mathbb{F}_{q}\right)$ of Jordan type (n) are the matrices of rank equal to $n-1$. Section 2 concludes with explicit formulas for $F_{\lambda}(q)$ in several other special cases of λ, including hook shapes, two-rowed partitions and two-columned partitions.

In Section 3, we explore a connection of $F_{\lambda}(q)$ with rook placements. In their study of a formula of Frobenius, Garsia and Remmel [4] introduced the q-rook polynomial

$$
R_{B, k}(q)=\sum_{c \in \mathcal{C}(B, k)} q^{\operatorname{inv}(c)}
$$

which is a sum over the set $\mathcal{C}(B, k)$ of non-attacking placements of k rooks on a Ferrers board B, and $\operatorname{inv}(c)$, defined in Equation (13), is the number of inversions of c. In the case when $B=B_{n}$ is the staircase-shaped board, Garsia and Remmel showed that $R_{B_{n}, k}(q)=S_{n, n-k}(q)$ is a q-Stirling number of the second kind. These numbers are defined by the recurrence equation

$$
S_{n, k}(q)=q^{k-1} S_{n-1, k-1}(q)+[k]_{q} S_{n-1, k}(q) \text { for } \quad 0 \leqslant k \leqslant n
$$

with initial conditions $S_{0,0}(q)=1$, and $S_{n, k}(q)=0$ for $k<0$ or $k>n$.
It was shown by Solomon [12] that non-attacking placements of k rooks on rectangular $m \times n$ boards are naturally associated to m by n matrices with rank k over \mathbb{F}_{q}. By identifying a Ferrers board B inside an n by n grid with the entries of an n by n matrix, Haglund [5] generalized Solomon's result to the case of non-attacking placements of k rooks on Ferrers boards, and obtained a formula for the number of n by n matrices with rank k whose support is contained in the Ferrers board region. A special case of Haglund's formula shows that the number of n by n nilpotent upper-triangular matrices of rank k is

$$
\begin{equation*}
P_{B_{n}, k}(q)=(q-1)^{k} q^{\binom{n}{2}-k} R_{B_{n}, k}\left(q^{-1}\right) . \tag{2}
\end{equation*}
$$

Now, a matrix in $\mathfrak{g}_{n, \lambda}\left(\mathbb{F}_{q}\right)$ has rank $n-\ell(\lambda)$, where $\ell(\lambda)$ is the number of parts of λ, so the number of matrices in $\mathfrak{g}_{n}\left(\mathbb{F}_{q}\right)$ with rank k is

$$
\begin{equation*}
P_{B_{n}, k}(q)=\sum_{\lambda \vdash n: \ell(\lambda)=n-k} F_{\lambda}(q) . \tag{3}
\end{equation*}
$$

Given Equations 2 and 3, it would be natural to ask whether it is possible to partition the placements $\mathcal{C}\left(B_{n}, k\right)$ into disjoint subsets so that the sum over each subset of placements gives $F_{\lambda}(q)$. A central goal of this paper is to study the connection between uppertriangular nilpotent matrices over \mathbb{F}_{q} and non-attacking rook placements on the staircaseshaped board B_{n}. Theorem 28 shows that there is a weight-preserving bijection Φ between rook placements on B_{n} and paths in a graph \mathcal{Z} (see Figure 5), which is a multi-edged version of Young's lattice. As a result, we obtain Corollary 30, which gives a formula for $F_{\lambda}(q)$ as a sum over certain rook placements that can be viewed as a generalization of Haglund's formula in Equation (2).

There is a classically known bijection between rook placements in $\mathcal{C}\left(B_{n}, k\right)$ and set partitions of $[n]$ with $n-k$ parts, so it is logical to next study the connection between $F_{\lambda}(q)$ and set partitions. We do this in Section 4. Theorem 34 describes the construction of a new (weight-preserving) bijection Ψ between rook placements and set partitions. These bijections allow us to refine Equation (9) to a sum over set partitions (or rook placements). We also discuss the significance of the polynomials $F_{C}(q)$ indexed by rook placements in a special case.

This paper is the full version of the extended abstract [15].

2 Formulas for $F_{\lambda}(q)$

The recurrence equation for $F_{\lambda}(q)$ in Theorem 8 can be found in [1, Division Theorem], where Borodin considers the matrices as particles of a certain mass and studies the asymptotic behaviour of the formula. A preliminary version of the idea first appeared in [7]. In this section, we give an elementary proof of the formula, and investigate some of the combinatorial properties of $F_{\lambda}(q)$.

2.1 The recurrence equation for $\boldsymbol{F}_{\lambda}(\boldsymbol{q})$

A partition λ of a nonnegative integer n, denoted by $\lambda \vdash n$, is a non-increasing sequence of nonnegative integers $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n} \geqslant 0$ with $|\lambda|=\sum_{i=1}^{n} \lambda_{i}=n$. If λ has r positive parts, write $\ell(\lambda)=r$. A partition λ can be represented by its Ferrers diagram in the English notation, which is an array of λ_{i} boxes in the i th row, with the boxes justified upwards and to the left. Let λ_{j}^{\prime} denote the size of the j th column of λ.

Young's lattice \mathcal{Y} is the lattice of partitions ordered by the inclusion of their Ferrers diagrams; that is, $\mu \leqslant \lambda$ if and only if $\mu_{i} \leqslant \lambda_{i}$ for every i. In particular, μ is covered by λ in the Hasse diagram of \mathcal{Y} and we write $\mu \lessdot \lambda$ if the Ferrers diagram of λ can be obtained by adding a box to the Ferrers diagram of μ. See Figure 1.

Example 1. The partition

$$
\lambda=(4,2,2,1) \vdash 9 \quad \text { has diagram }
$$

and columns $\lambda_{1}^{\prime}=4, \lambda_{2}^{\prime}=3, \lambda_{3}^{\prime}=1, \lambda_{4}^{\prime}=1$.
Lemma 2. Let $\lambda \vdash n$ be a partition whose Ferrers diagram has r rows and c columns. The Jordan matrix J_{λ} satisfies

$$
\operatorname{rank}\left(J_{\lambda}^{k}\right)= \begin{cases}\lambda_{k+1}^{\prime}+\cdots+\lambda_{c}^{\prime}, & \text { if } 0 \leqslant k<c \\ 0, & \text { if } k \geqslant c .\end{cases}
$$

Proof. The i by i elementary Jordan matrix J_{i} has rank $\left(J_{i}^{k}\right)=i-k$ if $0 \leqslant k \leqslant i$, and its rank is zero otherwise, so the Jordan matrix $J_{\lambda}=J_{\lambda_{1}} \oplus \cdots \oplus J_{\lambda_{r}}$ has

$$
\operatorname{rank}\left(J_{\lambda}^{k}\right)=\sum_{i=1}^{r} \operatorname{rank}\left(J_{\lambda_{i}}^{k}\right)=\sum_{i: \lambda_{i} \geqslant k} \operatorname{rank}\left(J_{\lambda_{i}}^{k}\right)=\sum_{j=k+1}^{c} \lambda_{j}^{\prime},
$$

for $0 \leqslant k<c$, which is the number of boxes in the last $c-k$ columns of λ.
Remark 3. Matrices which are similar have the same rank, so if $X \in \mathfrak{g}_{n, \lambda}\left(\mathbb{F}_{q}\right)$, then $\operatorname{rank}\left(X^{k}\right)=\operatorname{rank}\left(J_{\lambda}^{k}\right)$ for all $k \geqslant 0$. Conversely, let $\lambda, \nu \vdash n$. It follows from Lemma 2 that $\operatorname{rank}\left(J_{\lambda}^{k}\right)=\operatorname{rank}\left(J_{\nu}^{k}\right)$ for all $k \geqslant 0$ if and only if $\lambda=\nu$. Thus if $X \in \mathfrak{g}_{n}\left(\mathbb{F}_{q}\right)$ is a matrix such that $\operatorname{rank}\left(X^{k}\right)=\operatorname{rank}\left(J_{\lambda}^{k}\right)$ for all $k \geqslant 0$, then X is similar to J_{λ}.

Example 4. If a matrix $X \in \mathfrak{g}_{n}\left(\mathbb{F}_{q}\right)$ has Jordan type $\lambda=(4,2,2,1)$, then $\operatorname{rank}(X)=5$, $\operatorname{rank}\left(X^{2}\right)=2, \operatorname{rank}\left(X^{3}\right)=1$, and $\operatorname{rank}\left(X^{4}\right)=0$.

If $X \in \mathfrak{g}_{n}\left(\mathbb{F}_{q}\right)$ is a matrix of the form

$$
X=\left[\begin{array}{cc}
J_{\mu} & \mathbf{v} \\
\mathbf{0} & 0
\end{array}\right],
$$

where $\mu \vdash n-1$, and $\mathbf{v}=\left[v_{1}, \ldots, v_{n-1}\right]^{T} \in \mathbb{F}_{q}^{n-1}$, then the first order leading principal submatrix of X^{k} is J_{μ}^{k}, and for $1 \leqslant k \leqslant n$, we define column vectors $\mathbf{v}^{k}=\left[v_{1}^{k}, \ldots, v_{n-1}^{k}\right]^{T} \in$ \mathbb{F}_{q}^{n-1} by

$$
X^{k}=\left[\begin{array}{cc}
J_{\mu}^{k} & \mathbf{v}^{k} \\
\mathbf{0} & 0
\end{array}\right] .
$$

For $i \geqslant 1$, let $\alpha_{i}=\mu_{1}+\cdots+\mu_{i}$ be the sum of the first i parts of μ. The (i, j) th entry of J_{μ}^{k} is nonzero if and only if $j=i+k$, and $i, i+k \leqslant \alpha_{b}$ for all $b \geqslant 1$. It follows from this that

$$
v_{i}^{k}= \begin{cases}v_{i+k-1}, & \text { if } i, i+k-1 \leqslant \alpha_{b} \text { for all } b \geqslant 1 \tag{4}\\ 0, & \text { otherwise }\end{cases}
$$

There is a simple way to visualize the vectors \mathbf{v}^{k}, which we illustrate with an example.
Example 5. Let $\mu=(4,2,1,1)$, so that $\alpha_{1}=4, \alpha_{2}=6, \alpha_{3}=7$, and $\alpha_{4}=8$. Let

We may visualize the vectors \mathbf{v} and \mathbf{v}^{2} as fillings of the Ferrers diagram for μ :

This way, a basis of ker X^{k} is the set of vectors filling the first k columns of the diagram.
Lemma 6. If $X \in \mathfrak{g}_{n, \lambda}\left(\mathbb{F}_{q}\right)$ and its first order leading principal submatrix $Y \in \mathfrak{g}_{n-1, \mu}\left(\mathbb{F}_{q}\right)$, then $\lambda \gtrdot \mu$.
Proof. We first consider the case $Y=J_{\mu}$. If μ has s parts, let $\alpha_{i}=\mu_{1}+\cdots+\mu_{i}$ for $1 \leqslant i \leqslant s$. Then

$$
\operatorname{rank}\left(X^{k}\right)-\operatorname{rank}\left(J_{\mu}^{k}\right)= \begin{cases}0, & \text { if } v_{\alpha_{i}}=0 \text { for all } i \text { such that } \mu_{i} \geqslant k, \tag{5}\\ 1, & \text { otherwise } .\end{cases}
$$

Let $c \leqslant n$ be the smallest positive integer for which $\operatorname{rank}\left(X^{c}\right)-\operatorname{rank}\left(J_{\mu}^{c}\right)=0$. Then Equation (5) implies that

$$
\operatorname{rank}\left(X^{k}\right)-\operatorname{rank}\left(J_{\mu}^{k}\right)= \begin{cases}0, & \text { if } k \geqslant c \\ 1, & \text { if } k<c\end{cases}
$$

Together with Lemma 2, we deduce that

$$
\lambda_{k}^{\prime}-\mu_{k}^{\prime}=\left(\operatorname{rank}\left(X^{k-1}\right)-\operatorname{rank}\left(X^{k}\right)\right)-\left(\operatorname{rank}\left(J_{\mu}^{k-1}\right)-\operatorname{rank}\left(J_{\mu}^{k}\right)\right)= \begin{cases}1, & \text { if } k=c, \\ 0, & \text { if } k \neq c .\end{cases}
$$

Therefore, $\lambda \gtrdot \mu$ in the case $Y=J_{\mu}$.
In the general case where Y is any matrix of Jordan type μ, then $\operatorname{rank}\left(Y^{k}\right)=\operatorname{rank}\left(J_{\mu}^{k}\right)$ for all $k \geqslant 0$, so the argument is the same.

Let λ be the partition whose diagram is obtained by adding a box to the i th row and j th column of the diagram of the partition μ. Define the coefficient

$$
c_{\mu, \lambda}(q)= \begin{cases}q^{|\mu|-\mu_{j}^{\prime}}, & \text { if } j=1, \tag{6}\\ q^{|\mu|-\mu_{j-1}^{\prime}}\left(q^{\mu_{j-1}^{\prime}-\mu_{j}^{\prime}}-1\right), & \text { if } j \geqslant 2 .\end{cases}
$$

Note that in the case $j \geqslant 2$, we have $\mu_{j-1}^{\prime}-\mu_{j}^{\prime} \geqslant 1$.
Lemma 7. Let Y be an upper-triangular nilpotent matrix of Jordan type $\mu \vdash n-1$. If $\mu \lessdot \lambda$, then there are $c_{\mu, \lambda}(q)$ upper-triangular nilpotent matrices X of Jordan type λ whose first order leading principal submatrix is Y.

Proof. By similarity, it suffices to consider the case $Y=J_{\mu}=J_{\mu_{1}} \oplus \cdots \oplus J_{\mu_{m}}$, where $\ell(\mu)=m$. Suppose X is a matrix of the form

$$
X=\left[\begin{array}{cc}
J_{\mu} & \mathbf{v} \\
\mathbf{0} & 0
\end{array}\right]
$$

of Jordan type λ such that λ is obtained by adding a box to μ in the i th row and j th column.

First consider the case $j \geqslant 2$. Following the proof of Lemma 6, we know that j is the unique integer where $\operatorname{rank}\left(X^{j-1}\right)=\operatorname{rank}\left(J_{\mu}^{j-1}\right)+1$, and $\operatorname{rank}\left(X^{j}\right)=\operatorname{rank}\left(J_{\mu}^{j}\right)$. In order to satisfy the first condition, the entries in the vector \mathbf{v}^{j-1} corresponding to the boxes in the $(j-1)$ th column and rows $\geqslant i$ must not simultaneously be zero (refer to Equation (4) and Example 5), while in order to satisfy the second condition, the entries in the vector \mathbf{v}^{j} corresponding to the boxes in the j th column of μ must all be zero. The remaining $n-1-\mu_{j-1}^{\prime}$ entries of the vector \mathbf{v} are free to be any element in \mathbb{F}_{q}, so there are

$$
q^{n-1-\mu_{j-1}^{\prime}}\left(q^{\mu_{j-1}^{\prime}-\mu_{j}^{\prime}}-1\right)
$$

possible matrices X whose leading principal submatrix is J_{μ}.
The case $j=1$ is simpler. The necessary and sufficient condition that X and J_{μ} must satisfy is that $\operatorname{rank}\left(X^{k}\right)=\operatorname{rank}\left(J_{\mu}^{k}\right)$ for all $k \geqslant 1$, so the entries in the vector \mathbf{v} corresponding to the boxes in the first column of the diagram for \mathbf{v}^{1} must all be zero, while the remaining $n-1-\mu_{1}^{\prime}$ entries are free to be any element in \mathbb{F}_{q}, so there are $q^{n-1-\mu_{1}^{\prime}}$ matrices X whose leading principal submatrix is J_{μ} in this case.

Figure 1: Young's lattice with edge weights $c_{\mu, \lambda}(q)$, up to $n=4$.
The following recurrence equation for $F_{\lambda}(q)$ was first obtained by Borodin [1, Division Theorem]. Here, we provide an elementary proof before investigating some of the combinatorial properties of $F_{\lambda}(q)$.

Theorem 8. The number of n by n upper-triangular nilpotent matrices over \mathbb{F}_{q} of Jordan type $\lambda \vdash n$ is

$$
F_{\lambda}(q)=\sum_{\mu: \mu \lessdot \lambda} c_{\mu, \lambda}(q) F_{\mu}(q),
$$

with $F_{\emptyset}(q)=1$.
Proof. Proceed by induction on n. For $n=1$, the zero matrix is the only upper-triangular nilpotent matrix, and it has Jordan type (1), agreeing with the formula $c_{\emptyset,(1)}(q)=1$.

Suppose $\lambda \vdash n$. By Lemma 6, any matrix of Jordan type λ has a leading principal submatrix of type $\mu \vdash n-1$ for some $\mu \lessdot \lambda$. Furthermore, by Lemma 7 , for each matrix $Y \in \mathfrak{g}_{n-1, \mu}\left(\mathbb{F}_{q}\right)$, there are $c_{\mu \lambda}(q)$ matrices $X \in \mathfrak{g}_{n, \lambda}\left(\mathbb{F}_{q}\right)$ having Y as its leading principal submatrix. Summing over all $\mu \lessdot \lambda$ gives the desired formula.

Remark 9 (Formulation in terms of standard Young tableaux). The formula for $F_{\lambda}(q)$ in Theorem 8 can be re-phrased as a sum over the set $\mathcal{P}_{y}(\lambda)$ of paths in Young's lattice \mathcal{Y} from the empty partition \emptyset to λ. If $\mu \lessdot \lambda$ in \mathcal{Y}, we assign the weight $c_{\mu, \lambda}(q)$ to the corresponding edge in \mathcal{Y}. Figure 1 shows Young's lattice with weighted edges for partitions with up to four boxes. Let $P=\left(\emptyset=\pi^{(0)}, \pi^{(1)}, \ldots, \pi^{(n)}=\lambda\right)$ denote a path in \mathcal{Y} from \emptyset to
λ, where $\pi^{(i)}$ is a partition of i. To simplify notation, let $\epsilon_{i}(q)=c_{\pi^{(i-1)}, \pi^{(i)}}(q)$. Theorem 8 is equivalently re-phrased as

$$
\begin{equation*}
F_{\lambda}(q)=\sum_{P \in P_{\mathcal{Y}}(\lambda)} F_{P}(q), \tag{7}
\end{equation*}
$$

where the weight of the path P is $F_{P}(q)=\prod_{i=1}^{n} \epsilon_{i}(q)$.
The set of paths $\mathcal{P}_{\mathcal{Y}}(\lambda)$ is in bijection with the set $\operatorname{SYT}(\lambda)$ of standard Young tableaux of shape λ, so we can also give an equation for $F_{\lambda}(q)$ as a sum over standard Young tableaux.

A standard Young tableau T of shape λ is a filling of the Ferrers diagram of $\lambda \vdash n$ with the integers $1, \ldots, n$ such that the integers increase weakly along each row and strictly along each column. For $1 \leqslant i \leqslant n$, Let $T^{(i)}$ denote the Young tableau of shape $\lambda^{(i)}$ consisting of the boxes containing $1, \ldots, i$, and define weights

$$
T^{(i)}(q)= \begin{cases}q^{i-\ell\left(\lambda^{(i)}\right)}, & \text { if the } i \text { th box is in the first column } \tag{8}\\ q^{i-\lambda_{j}^{(i)^{\prime}}}-q^{i-1-\lambda_{j-1}^{(i)}}, & \text { if the } i \text { th box is in the } j \text { th column, } j \geqslant 2\end{cases}
$$

Then

$$
\begin{equation*}
F_{\lambda}(q)=\sum_{T \in \operatorname{SYT}(\lambda)} F_{T}(q), \tag{9}
\end{equation*}
$$

where the weight of the standard Young tableau T is $F_{T}(q)=\prod_{i=1}^{n} T^{(i)}(q)$.

2.2 Properties of $\boldsymbol{F}_{\lambda}(\boldsymbol{q})$

Several properties of $F_{\lambda}(q)$ follow readily from Theorem 8. For $\lambda \vdash n$, let

$$
\begin{equation*}
n_{\lambda}=\sum_{i \geqslant 1}(i-1) \lambda_{i}=\sum_{b \in \lambda} \operatorname{coleg}(b), \tag{10}
\end{equation*}
$$

where if a box $b \in \lambda$ lies in the i th row of λ, then $\operatorname{coleg}(b)=i-1$.
Corollary 10. Let $\lambda \vdash n$. As a polynomial in q,

$$
\operatorname{deg} F_{\lambda}(q)=\binom{n}{2}-n_{\lambda}
$$

Moreover, the coefficient of the highest degree term in $F_{\lambda}(q)$ is f^{λ}, the number of standard Young tableaux of shape λ.
Proof. Suppose $P=\left(\emptyset=\pi^{(0)}, \pi^{(1)}, \ldots, \pi^{(n)}=\lambda\right)$ is a path in \mathcal{Y} such that $\pi^{(k)}$ is obtained by adding a box to the i th row and j th column of $\pi^{(k-1)}$. Then $\operatorname{deg} c_{\pi^{(k-1)}, \pi^{(k)}}(q)=k-i$, and therefore

$$
\operatorname{deg} F_{P}(q)=\sum_{k=1}^{n} \operatorname{deg} c_{\pi^{(k-1)}, \pi^{(k)}}(q)=\sum_{k=1}^{n} k-\sum_{k \geqslant 1} k \lambda_{k}=\binom{n}{2}-n_{\lambda} .
$$

In particular, every polynomial $F_{P}(q)$ arising from a path $P \in \mathcal{P}_{\mathcal{Y}}(\lambda)$ has the same degree, so $\operatorname{deg} F_{\lambda}(q)=\binom{n}{2}-n_{\lambda}$. Moreover, each $F_{P}(q)$ is monic, so the coefficient of the highest degree term in $F_{\lambda}(q)$ is the number of paths in \mathcal{Y} from \emptyset to λ, which is f^{λ}.

Corollary 11. Let $\lambda \vdash n$. The multiplicity of the factor $q-1$ in $F_{\lambda}(q)$ is $n-\ell(\lambda)$.
Proof. The weight $c_{\pi^{(k-1)}, \pi^{(k)}}(q)$ corresponding to the k th step in the path P contributes a single factor of $q-1$ to $F_{P}(q)$ if and only if the k th box added is not in the first column of λ. Therefore, the multiplicity of $q-1$ in $F_{P}(q)$ is $n-\ell(\lambda)$, and it follows that the multiplicity of $q-1$ in $F_{\lambda}(q)$ is $n-\ell(\lambda)$.

Example 12. There are two partitions of 4 with two parts, namely $(3,1)$ and $(2,2)$.
There are three paths from \emptyset to $(3,1)$ in \mathcal{Y}, giving

$$
\begin{aligned}
F_{(3,1)}(q) & =(q-1) \cdot(q-1) q \cdot q^{2}+(q-1) \cdot q \cdot(q-1) q^{2}+\cdot\left(q^{2}-1\right) \cdot(q-1) q^{2} \\
& =(q-1)^{2}\left(3 q^{3}+q^{2}\right),
\end{aligned}
$$

and there are two paths from \emptyset to $(2,2)$ in \mathcal{Y}, giving

$$
\begin{aligned}
F_{(2,2)}(q) & =(q-1) \cdot q \cdot(q-1) q+\left(q^{2}-1\right) \cdot(q-1) q \\
& =(q-1)^{2}\left(2 q^{2}+q\right) .
\end{aligned}
$$

Summing these gives a shift of the q-Stirling polynomial $(q-1)^{2} q^{4} S_{4,2}\left(q^{-1}\right)=(q-1)^{2}\left(3 q^{3}+\right.$ $3 q^{2}+q$).

2.3 Explicit formulas

In this section, we derive non-recursive formulas for some special cases of λ. Previously, we have noted the simple cases $F_{\left(1^{n}\right)}=1$ and $F_{(n)}=q^{\binom{n-1}{2}}(q-1)^{n-1}$.
Proposition 13 (Hook shapes). Let $n>k \geqslant 2$, and let $\lambda=\left(n-k+1,1^{k-1}\right)$ be a hook-shaped partition of n with $\ell(\lambda)=k$ parts. Then

$$
F_{\lambda}(q)=(q-1)^{n-k} \sum_{i=0}^{k-1}\binom{n-i-1}{k-i-1} q^{\alpha-i}, \quad \text { where } \alpha=\binom{n-1}{2}-\binom{k-1}{2} .
$$

Proof. We make use of Equation (7). We enumerate paths from \emptyset to λ according to the first time a box is added to the second column, so for $0 \leqslant r \leqslant k-1$, let S_{r} be the set of paths in the sublattice $[\emptyset, \lambda]$ which contains the edge $\left(\left(1,1^{r}\right),\left(2,1^{r}\right)\right)$. Such paths are formed by the concatenation of the unique path between \emptyset and $\nu=\left(2,1^{r}\right)$, which has weight $q^{r+1}-1$, with any path in the sublattice $[\nu, \lambda]$. The sublattice $[\nu, \lambda]$ is the Cartesian product of a $(n-k)$-chain and a $(k-r-1)$-chain, so it forms a rectangular grid, and therefore $\left|\mathrm{S}_{r}\right|=\binom{n-r-1}{k-r-1}$. Notice that in any sublattice of the form

the product of the edge weights is $(q-1) q^{2 a+b-1}$ no matter which path is taken from $\left(a, 1^{b}\right)$ to $\left(a+1,1^{b+1}\right)$, so it follows that every path from ν to λ has the same weight. By considering the path $\left(\nu, 21^{r+1}, \ldots, 21^{k-1}, 31^{k-1}, \ldots, \lambda\right)$, this weight is easily seen to be $(q-1)^{n-k-1} q^{\alpha-r}$, for $\alpha=\binom{n-1}{2}-\binom{k-1}{2}$. Altogether,

$$
F_{\lambda}(q)=(q-1)^{n-k} \sum_{r=0}^{k-1}\binom{n-r-1}{k-r-1}\left(q^{\alpha}+q^{\alpha-1}+\cdots+q^{\alpha-r}\right) .
$$

For $0 \leqslant i \leqslant k-1$, the coefficient of $q^{\alpha-i}$ in $F_{\lambda}(q) /(q-1)^{n-k}$ is

$$
\sum_{r=i}^{k-1}\binom{n-r-1}{k-r-1}=\sum_{u=0}^{k-i-1}\binom{n-k+u}{u}=\binom{n-i-1}{k-i-1}
$$

since $\sum_{u=0}^{M}\binom{N+u}{u}=\binom{N+M+1}{M}$. Therefore,

$$
F_{\lambda}(q)=(q-1)^{n-k} \sum_{i=0}^{k-1}\binom{n-i-1}{k-i-1} q^{\alpha-i}
$$

as claimed.
We next consider the case when λ is a partition with two parts. For $n \geqslant k \geqslant 1$, let

$$
\begin{equation*}
C_{n, k}=\binom{n+k}{k}-\binom{n+k}{k-1} \tag{11}
\end{equation*}
$$

and let $C_{n, 0}=1$ for all $n \geqslant 0$. These generalized Catalan numbers $C_{n, k}$ (see OEIS [10, A009766]) enumerate lattice paths from $(0,0)$ to (n, k), using the steps $(1,0)$ and $(0,1)$, which do not rise above the line $y=x$. In the remainder of this section, we shall refer to these as Dyck paths.

The generalized Catalan numbers satisfy the simple recursive formula $C_{n, k}=C_{n, k-1}+$ $C_{n-1, k}$. Also, these are the usual Catalan numbers $C_{n}=\frac{1}{n+1}\binom{2 n}{n}=C_{n, n}=C_{n, n-1}$ when $k=n$ or $n-1$. These facts will be used in the computations which follow.

Proposition 14 (Partitions with two parts). If $\lambda=(r, s) \vdash n$ such that $r>s \geqslant 1$, then

$$
\left.\left.F_{(r, s)}(q)=(q-1)^{r+s-2} q^{(r+s-1}{ }_{2}\right)-2 s+1\right) \sum_{i=0}^{s} C_{r+s-i, i} q^{i} .
$$

If $r=s$, then

$$
F_{(r, r)}(q)=(q-1)^{2 r-2} q^{\left(2_{2}^{2 r-2}\right)} \sum_{i=0}^{r-1} C_{2 r-1-i, i} q^{i} .
$$

Proof. Proceed by induction on $r+s$. The base cases are $F_{(r)}(q)=(q-1)^{r-1} q^{\left({ }^{r-1}\right)}$ for $r \geqslant 1$ and $F_{(1,1)}(q)=1$.

$n \backslash k$	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	2				
3	1	3	5	5			
4	1	4	9	14	14		
5	1	5	14	28	42	42	
6	1	6	20	48	90	132	132

Figure 2: The Catalan triangle $C_{n, k}$.

We first handle the case $s=1$ separately. For $r \geqslant 2$,

$$
\begin{aligned}
F_{(r, 1)}(q) & =q^{r-1} F_{(r)}(q)+(q-1) q^{r-1} F_{(r-1,1)}(q) \\
& =q^{r-1} \cdot(q-1)^{r-1} q^{\binom{r-1}{2}}+(q-1) q^{r-1} \cdot(q-1)^{r-2} q^{\binom{(-1}{2}-1}((r-1) q+1) \\
& =(q-1)^{r-1} q^{\binom{r}{2}-1}(r q+1) .
\end{aligned}
$$

Next, consider the case $s=r$. For $r \geqslant 2$,

$$
\begin{aligned}
& F_{(r, r)}(q)=(q-1) q^{2 r-3} F_{(r, r-1)}(q) \\
&\left.=(q-1) q^{2 r-3} \cdot(q-1)^{2 r-3} q^{(2 r-2}\right)-2(r-1)+1 \\
& \sum_{i=0}^{r-1} C_{2 r-1-i, i} q^{i} \\
&=(q-1)^{2 r-2} q^{\left(2_{2}^{2 r-2}\right)} \sum_{i=0}^{r-1} C_{2 r-1-i, i} q^{i} .
\end{aligned}
$$

The case $s=r-1$ is obtained as follows. For $r \geqslant 3$,

$$
\begin{aligned}
F_{(r, r-1)}(q)= & (q-1) q^{2 r-4} F_{(r, r-2)}(q)+\left(q^{2}-1\right) q^{2 r-4} F_{(r-1, r-1)}(q) \\
= & \left.(q-1)^{2 r-3} q^{2 r-4} q^{2 r-4}\right)\left(q \sum_{i=0}^{r-2} C_{2 r-2-i, i} q^{i}+(q+1) \sum_{i=0}^{r-2} C_{2 r-3-i, i} q^{i}\right) \\
= & (q-1)^{2 r-3} q^{\left(2_{2}^{2 r-3}\right)}\left(\left(C_{r, r-2}+C_{r-1, r-2}\right) q^{r-1}\right. \\
& \left.+\sum_{i=1}^{r-2}\left(C_{2 r-1-i, i-1}+C_{2 r-2-i, i-1}+C_{2 r-3-i, i}\right) q^{i}+C_{2 r-3,0} q^{0}\right)
\end{aligned}
$$

Since $C_{n, n-1}=C_{n, n}$, then $C_{r, r-2}+C_{r-1, r-2}=C_{r, r-1}$. Similarly, we obtain $C_{2 r-1-i, i-1}+$ $C_{2 r-2-i, i-1}+C_{2 r-3-i, i}=C_{2 r-1-i, i}$ by applying the recurrence equation for the generalized Catalan numbers. Lastly, $C_{n, 0}=1$ for all $n \geqslant 0$, thus

$$
\left.F_{(r, r-1)}(q)=(q-1)^{2 r-3} q^{(2 r-3}\right) \sum_{i=0}^{r-1} C_{2 r-1-i, i} q^{i}
$$

Figure 3: Factors of $q-1$ are omitted from the edge weights in this sublattice of partitions with at most two rows.
which agrees with the formula for the case $s=r-1$.
The last case to consider is the general case $r-s \geqslant 2$ where $s \geqslant 2$.

$$
\begin{aligned}
& F_{(r, s)}=(q-1) q^{r+s-3} F_{(r, s-1)}+(q-1) q^{r+s-2} F_{(r-1, s)} \\
&\left.=(q-1)^{r+s-2} q^{r+s-3} q^{(r+s-2}\right)-2 s+1 \\
&=\left(q^{2} \sum_{i=0}^{s-1} C_{r+s-1-i, i} q^{i}+q \sum_{i=0}^{s} C_{r-1+s-i, i} q^{i}\right) \\
&\left.=(q-1)^{r+s-2} q^{(r+s-1}\right)-2 s+1 \\
& r_{2}^{r+s-2} q^{\binom{r+s-1}{2}-2 s+1} \sum_{i=0}^{s} C_{r+s, 0} q^{0}+\sum_{i=1}^{s}\left(C_{r+s-i, i, 1} q^{i} .\right.
\end{aligned}
$$

The next equation is a formula for $F_{(r, r)}(q)$ with a different factorization.
Proposition 15 (Two equal parts). Let $\lambda=(r, r) \vdash n$, and $r \geqslant 1$. Then

$$
F_{(r, r)}(q)=(q-1)^{2 r-2} \sum_{i=0}^{r-1} C_{r-1, r-1-i} q^{2(r-1)^{2}-i}(q+1)^{i} .
$$

Proof. The set of paths in the sublattice $[\emptyset, \lambda]$ are in bijection with the set of lattice paths
from $(0,0)$ to (r, r). In any sublattice of the form

$$
\begin{aligned}
&(a, b+1) \xrightarrow{(q-1) q^{a+b}}(a+1, b+1) \\
&\left.(a-1) q^{a+b-2}\right|_{i} \\
&(a, b) \xrightarrow{(q-1) q^{a+b-1}}(a+1, b)
\end{aligned}
$$

where $b \leqslant a-2$, the product of the edge weights is $(q-1)^{2} q^{2 a+2 b-2}$ no matter which path is taken from (a, b) to $(a+1, b+1)$. As for sublattices of the form

$$
\begin{gathered}
\underset{\substack{\text { (} \\
(q-1) q^{2 a-3}}}{\substack{\left.q^{2}-1\right) q^{2 a-2}}}(a+1, a) \\
(a, a-1) \xrightarrow{(q-1) q^{2 a-2}}(a+1, a-1)
\end{gathered}
$$

the product of the edge weights is $(q-1)^{2} q^{4 a-4}$ via the lower horizontal edge, versus $(q-1)^{2} q^{4 a-5}(q+1)$ via the upper horizontal edge. It follows that if a path P from \emptyset to λ contains i partitions of the form (a, a), then it has the weight

$$
F_{p}(q)=(q-1)^{2 r-2} q^{2(r-1)^{2}-i}(q+1)^{i} .
$$

Dyck paths may be enumerated according to the points at which they touch the diagonal line $y=x$, and the set of touch points are indexed by compositions $\alpha=$ $\left(\alpha_{1}, \ldots, \alpha_{i+1}\right) \vDash r$ where $\alpha_{j} \geqslant 1$. The number of Dyck paths from $(0,0)$ to (r, r) which touch the diagonal exactly i times, not including the initial and the end points, is

$$
\sum_{\substack{\alpha \vDash r \\ \ell(\alpha)=i+1}} \prod_{j=1}^{i+1} C_{\alpha_{j}-1}
$$

On the other hand, the number $C_{r-1, r-1-i}$ of Dyck paths from $(0,0)$ to $(r-1, r-1-i)$ satisfies the same recurrence equation

$$
C_{r-1, r-1-i}=\sum_{\substack{\beta \in r-1-i \\ \ell(\beta)=i+1}} \prod_{j=1}^{i+1} C_{\beta_{j}},
$$

but the sum is over the set of weak compositions so that $\beta_{j} \geqslant 0$. Under the appropriate shift in indices, it follows that the number of Dyck paths from $(0,0)$ to (r, r) which touch the diagonal exactly i times is $C_{r-1, r-1-i}$. The result follows from this.

Corollary 16. For $k \geqslant m \geqslant 0$,

$$
\sum_{j=m}^{k}\binom{j}{m} C_{k, j}=C_{2 k+1-m, m}
$$

Proof. The two formulas for $F_{(k+1, k+1)}(q)$ yields the identity

$$
\left.\sum_{i=0}^{k} C_{k, k-i} q^{2 k^{2}-i}(q+1)^{i}=q^{(2 k}{ }_{2}^{2 k}\right) \sum_{i=0}^{k} C_{2 k-i, i} q^{i}
$$

Extracting the coefficient of $q^{2 k^{2}-m}$ in the above expressions yields the result.
Remark 17. The formula for $F_{(r, r)}(q)$ provided in Proposition 15 can be viewed as a sum over Dyck paths, where each Dyck path π contributes a term of the form $q^{s_{1}(\pi)}(q+1)^{s_{2}(\pi)}$ for some statistics s_{1} and s_{2} on the Dyck paths. This particular factorization for $F_{(r, r)}(q)$ is related to the work of Cai and Readdy on the q-Stirling numbers of the second kind, since the polynomials $F_{\lambda}(q)$ can be viewed as a refinement of $S_{n, k}(q)$, as explained in Section 3.

Cai and Readdy obtained a formula [2, Theorem 3.2] for $\widetilde{S}_{n, k}(q)$ (they use a different recursive formula to define the q-Stirling numbers, and the two are related by $S_{n, k}(q)=$ $\left.q^{\binom{k}{2}} \widetilde{S}_{n, k}(q)\right)$ as a sum over allowable restricted-growth words, where each allowable word w gives rise to a term of the form $q^{a(w)}(q+1)^{b(w)}$ for some statistics $a(w)$ and $b(w)$. They also showed that this enumerative result has an interesting extension to the study of the Stirling poset of the second kind, providing a decomposition of that poset into Boolean sublattices.

For example, if we define polynomials $G_{\lambda}(q)$ by letting $G_{\lambda}(q)=F_{\lambda}(q) /(q-1)^{n-\ell(\lambda)}$ (see Equation (12)), then $G_{(3,1)}(q)+G_{(2,2)}(q)=q^{3} \widetilde{S}_{4,2}\left(q^{-1}\right)$. The formula of Cai and Readdy yields $q^{3} S_{4,2}\left(q^{-1}\right)=q(q+1)^{2}+q^{2}(q+1)+q^{3}$, while our factorization yields $G_{(3,1)}(q)+$ $G_{(2,2)}(q)=\left(q^{3}+q^{3}+q^{2}(q+1)\right)+\left(q^{2}+q(q+1)\right)$. So, the result of Proposition 15 gives a different expression for $S_{n, n-2}(q)$ as a sum with terms of the form $q^{s_{1}(\pi)}(q+1)^{s_{2}(\pi)}$, and it may be interesting to further investigate such factorizations of $F_{\lambda}(q)$.
Example 18. The first few $F_{(k, k)}$ are

$$
\begin{aligned}
F_{(1,1)} & =1 \\
F_{(2,2)} & =(q-1)^{2}\left(q^{2}+q(q+1)\right) \\
& =(q-1)^{2}\left(2 q^{2}+q\right) \\
F_{(3,3)} & =(q-1)^{4}\left(2 q^{8}+2 q^{7}(q+1)+q^{6}(q+1)^{2}\right) \\
& =(q-1)^{4}\left(5 q^{8}+4 q^{7}+q^{6}\right) \\
F_{(4,4)} & =(q-1)^{6}\left(5 q^{18}+5 q^{17}(q+1)+3 q^{16}(q+1)^{2}+q^{15}(q+1)^{3}\right) \\
& =(q-1)^{6}\left(14 q^{18}+14 q^{17}+6 q^{16}+q^{15}\right) \\
F_{(5,5)} & =(q-1)^{8}\left(14 q^{32}+14 q^{31}(q+1)+9 q^{30}(q+1)^{2}+4 q^{29}(q+1)^{3}+q^{28}(q+1)^{4}\right) \\
& =(q-1)^{8}\left(42 q^{32}+48 q^{31}+27 q^{30}+8 q^{29}+q^{28}\right) .
\end{aligned}
$$

We end this section with one more closed formula for $F_{\lambda}(q)$ where λ is a rectangular shape with two columns. Let $\mathcal{D}(n, k)$ denote the set of Dyck paths from $(0,0)$ to (n, k). The coarea of a Dyck path π is the number of whole unit squares lying between the path

Figure 4: Factors of $q-1$ are omitted from the edge weights in this sublattice of partitions with at most two columns.
and the x-axis. For $i=1, \ldots, n$, let $\rho_{i}(\pi)$ be one plus the number of unit squares lying between the path and the line $y=x+1$ in the i th row. For example, the following Dyck path π has coarea $(\pi)=12$, and $\left(\rho_{1}(\pi), \rho_{2}(\pi), \rho_{3}(\pi), \rho_{4}(\pi)\right)=(2,2,1,1)$.

For $n \geqslant 1$, let $[n]_{q}=1+q+\cdots+q^{n-1}$.
Proposition 19. (Partitions with two columns) Let $\lambda=\left(2^{r}, 1^{s}\right) \vdash n$ such that $r, s \geqslant 0$. Then

$$
F_{\left(2^{r}, 1^{s}\right)}(q)=(q-1)^{r} q^{\binom{r}{2}} \sum_{\pi \in \mathcal{D}(r+s, r)} q^{\mathrm{coarea}(\pi)} \prod_{i=1}^{r}\left[\rho_{i}(\pi)\right]_{q} .
$$

Proof. By Corollary 11, we know the multiplicity of the factor $q-1$ in $F_{\left(2^{r}, 1^{s}\right)}(q)$ is $n-\ell(\lambda)=\lambda_{2}^{\prime}=r$, so we focus on computing $F_{\left(2^{r}, 1^{s}\right)}(q) /(q-1)^{r}$. The paths in Young's lattice from \emptyset to $\left(2^{r}, 1^{s}\right)$ are in bijection with the Dyck paths $\mathcal{D}(r+s, r)$, so we identify these paths; adding a box in the first column of a partition corresponds to a $(1,0)$ step in the Dyck path, and adding a box in the second column of a partition corresponds to a $(0,1)$ step in the Dyck path. As seen in Figure 4, a vertical step (i, j) to $(i, j+1)$ has
weight $q^{j}[i]_{q}$, while a horizontal step (i, j) to $(i+1, j)$ has weight q^{j}. Thus the product of the edge weights of the r vertical steps of a given Dyck path π is $q^{\binom{r}{2}} \prod_{i=1}^{r}\left[\rho_{i}(\pi)\right]_{q}$, while the product of the edge weights of the $r+s$ horizontal steps of a given Dyck path is $q^{\text {coarea }(\pi)}$. The result follows.

Example 20. The first few $F_{\left(2^{n}\right)}$ are

$$
\begin{aligned}
F_{(2)} & =(q-1)(q+1) \\
F_{\left(2^{2}\right)} & =(q-1)^{2} q(q+(q+1)) \\
F_{\left(2^{3}\right)} & =(q-1)^{3} q^{3}\left(q^{3}+2 q^{2}(q+1)+q(q+1)^{2}+\left(q^{2}+q+1\right)(q+1)\right) \\
F_{\left(2^{4}\right)} & =(q-1)^{4} q^{6}\left(q^{6}+3 q^{5}[2]+3 q^{4}[2]^{2}+q^{3}[2]^{3}+2 q^{3}[3]!+2 q^{2}[2][3]!+q[3][3]!+[4]!\right) .
\end{aligned}
$$

Remark 21. Kirillov and Melnkov [8] considered the number $A_{n}(q)$ of n by n uppertriangular matrices over \mathbb{F}_{q} satisfying $X^{2}=0$. In their first characterization of these polynomials, they considered the number $A_{n}^{r}(q)$ of matrices of a given rank r, so that $A_{n}(q)=\sum_{r \geqslant 0} A_{n}^{r}(q)$, and observed that $A_{n}^{r}(q)$ satisfies the recurrence equation

$$
A_{n}^{r}(q)=q^{r} A_{n-1}^{r}(q)+\left(q^{n-r}-q^{r}\right) A_{n}^{r}(q), \quad A_{n}^{0}(q)=1 .
$$

We may think of $A_{n}(q)$ as the sum of $F_{\lambda}(q)$ over $\lambda \vdash n$ with at most two columns, so Theorem 8 is a generalization of this recurrence equation.

It was also conjectured in [8] that the same sequence of polynomials arise in a number of different ways. Ekhad and Zeilberger [3] proved that one of the conjectured alternate definitions of $A_{n}(q)$, namely

$$
C_{n}(q)=\sum_{s} c_{n+1, s} q^{\frac{n^{2}}{4}+\frac{1-s^{2}}{12}}
$$

is a sum over all $s \in[-n-1, n+1]$ which satisfy $s \equiv n+1 \bmod 2$ and $s \equiv(-1)^{n} \bmod 3$, and $c_{n+1, s}$ are entries in the signed Catalan triangle, is indeed the same as $A_{n}(q)$. It would be interesting to see what other combinatorics may arise from considering the sum of $F_{\lambda}(q)$ over $\lambda \vdash n$ with at most k columns for a fixed k.

3 Jordan canonical forms and \boldsymbol{q}-rook placements

In light of Corollary 11, we define polynomials $G_{\lambda}(q) \in \mathbb{Z}[q]$ by

$$
\begin{equation*}
F_{\lambda}(q)=(q-1)^{n-\ell(\lambda)} G_{\lambda}(q) \tag{12}
\end{equation*}
$$

In fact, we can deduce from Corollary 11 that $G_{\lambda}(q) \in \mathbb{N}[q]$. In this section, we explore the connection between the nonnegative coefficients of $G_{\lambda}(q)$ and rook placements.

3.1 Background on rook polynomials

A board B is a subset of an n by n grid of squares. In this paper, we follow Haglund [5] and Solomon [12], and index the squares using the convention for the entries of a matrix. A Ferrers board is a board B where if a square $s \in B$, then every square lying north and/or east of s is also in B. Our Ferrers boards have squares justified upwards and to the right. Let B_{n} denote the staircase-shaped board with n columns of sizes $0,1, \ldots, n-1$. Let area (B) be the number of squares in B, so that in particular, area $\left(B_{n}\right)=\binom{n}{2}$.

A placement of k rooks on a board B is non-attacking if there is at most one rook in each row and each column of B. Let $\mathcal{C}(B, k)$ denote the set of non-attacking placements of k rooks on B. All rook placements considered in this article are non-attacking, so from this point forward, we drop the qualifier. For a placement $C \in \mathcal{C}(B, k)$, let ne (C) be the number of squares in B lying directly north or directly east of a rook. The inversion of the placement is the number

$$
\begin{equation*}
\operatorname{inv}(C)=\operatorname{area}(B)-k-\operatorname{ne}(C) \tag{13}
\end{equation*}
$$

As noted in [4], the statistic $\operatorname{inv}(C)$ is a generalization of the number of inversions of a permutation, since permutations can be identified with rook placements on a squareshaped board.

For $i=1, \ldots, n$, the weight of the i th column C_{i} of C is

$$
\begin{equation*}
C_{i}(q)=(q-1)^{\# \text { rooks in } C_{i}} q^{\mathrm{ne}\left(C_{i}\right)}, \tag{14}
\end{equation*}
$$

and the weight of C is defined by $F_{C}(q)=\prod_{i=1}^{n} C_{i}(q)$. Alternatively, if $C \in \mathcal{C}(B, k)$, then $F_{C}(q)=(q-1)^{k} q^{\mathrm{ne}(C)}$.
Example 22. We use \times to mark a rook and use • to mark squares lying directly north or directly east of a rook (these squares shall be referred to as the north-east squares of the placement). The following illustration is a placement of four rooks on the staircase-shaped board B_{7}.

This rook placement has ne $(C)=11, \operatorname{inv}(C)=6$, and weight $F_{C}(q)=(q-1)^{4} q^{11}$.
For $k \geqslant 0$, the q-rook polynomial of a Ferrers board B is defined by Garsia and Remmel [4, I.4] as

$$
\begin{equation*}
R_{B, k}(q)=\sum_{C \in \mathcal{C}(B, k)} q^{\operatorname{inv}(C)} . \tag{15}
\end{equation*}
$$

The following result explains the role of rook polynomials in the enumeration of matrices of given rank. The support of a matrix X is $\left\{(i, j) \mid x_{i j} \neq 0\right\}$. Given a Ferrers board B with n columns, we may identify the squares in B with the entries in an n by n matrix.

Theorem 23 (Haglund). If B is a Ferrers board, then the number $P_{B, k}(q)$ of n by n matrices of rank k with support contained in B is

$$
P_{B, k}(q)=(q-1)^{k} q^{\text {area }(B)-k} R_{B, k}\left(q^{-1}\right) .
$$

Looking ahead, it will be convenient to consider Theorem 23 in the following equivalent form:

$$
\begin{equation*}
P_{B, k}(q)=\sum_{C \in \mathcal{C}(B, k)}(q-1)^{k} q^{\mathrm{ne}(C)}=\sum_{C \in \mathcal{C}(B, k)} F_{C}(q) . \tag{16}
\end{equation*}
$$

Example 24. We list the seven rook placements on B_{4} with two rooks, along with their weights.

Thus $P_{B_{4}, 2}(q)=(q-1)^{2}\left(3 q^{3}+3 q^{2}+q\right)$.

3.2 Rook placements and Jordan forms

The purpose of this section is to generalize Haglund's formula (16) to a formula for $F_{\lambda}(q)$ (Corollary 30) as a sum over a set of rook placements. We achieve this by defining a multigraph \mathcal{Z} that is related to \mathcal{Y}, and show that paths in \mathcal{Z} are equivalent to rook placements.

The multigraph \mathcal{Z} is constructed from \mathcal{Y} by replacing each edge of \mathcal{Y} by one or more edges as follows. If there is an edge from μ to λ in \mathcal{Y} of weight $q^{|\mu|-\mu_{j-1}^{\prime}}\left(q^{\mu_{j-1}^{\prime}-\mu_{j}^{\prime}}-1\right)$, then this edge is replaced by $\mu_{j-1}^{\prime}-\mu_{j}^{\prime}$ edges from μ to λ with weights

$$
\begin{equation*}
(q-1) q^{|\mu|-\mu_{j}^{\prime}-1}, \ldots,(q-1) q^{|\mu|-\mu_{j-1}^{\prime}} \tag{19}
\end{equation*}
$$

in \mathcal{Z}. All other edges remain as before. See Figure 5.
Let $\mathcal{P}_{\mathcal{Z}}(\lambda)$ denote the set of paths in the graph \mathcal{Z} from the empty partition \emptyset to λ. For a path $P=\left(\emptyset=\pi^{(0)}, \pi^{(1)}, \ldots, \pi^{(n)}=\lambda\right)$ in $\mathcal{P}_{\mathcal{Z}}(\lambda)$, let $\epsilon_{i}(q)$ denote the weight of the i th edge, for $i=1, \ldots, n$. Naturally, we define the weight of the path by $F_{P}(q)=\prod_{i=1}^{n} \epsilon_{i}(q)$, so that

$$
\begin{equation*}
F_{\lambda}(q)=\sum_{P \in \mathcal{P}_{\mathcal{Z}}(\lambda)} F_{P}(q) . \tag{20}
\end{equation*}
$$

Lemma 25. Let $\mu \vdash n-1$ be a partition with $\ell(\mu)=\ell$ parts. Then there are $\ell+1$ edges leaving μ in the graph \mathcal{Z}, with weights

$$
(q-1) q^{|\mu|-1},(q-1) q^{|\mu|-2}, \ldots,(q-1) q^{|\mu|-\ell}, \text { and } q^{|\mu|-\ell} .
$$

Figure 5: The multigraph \mathcal{Z}, up to $n=4$.

Proof. If a partition $\lambda \vdash n$ is obtained by adding a box to the first column of μ, then there is a unique edge from μ to λ in \mathcal{Z} with weight $q^{|\mu|-\ell}$. Otherwise, if we consider the set of all partitions which can be obtained from μ by adding a box anywhere except in the first column, then there are a total of

$$
\sum_{j \geqslant 2}\left(\mu_{j-1}^{\prime}-\mu_{j}^{\prime}\right)=\ell
$$

edges from μ to some partition of n. Moreover, by Equation (19), these ℓ weights are $(q-1) q^{|\mu|-i}$ for $i=1, \ldots, \ell$.

A sequence of nonnegative integers is $\mathcal{P}_{\mathcal{Z}}$-admissible if it is the degree sequence of a path $P=\left(\emptyset, \pi^{(1)}, \ldots, \pi^{(n)}\right)$ in \mathcal{Z}. That is, $\left(d_{1}, \ldots, d_{n}\right)=\left(\operatorname{deg} \epsilon_{1}(q), \ldots, \operatorname{deg} \epsilon_{n}(q)\right)$.

Corollary 26. $A \mathcal{P}_{\mathcal{Z}}$-admissible sequence determines a unique path in \mathcal{Z}.
Proof. Induct on n. When $n=1$, the only path is the from \emptyset to (1), and it has degree sequence (0).

Given a $\mathcal{P}_{\mathcal{Z}}$-admissible sequence $\left(d_{1}, \ldots, d_{n}\right)$, the subsequence $\left(d_{1}, \ldots, d_{n-1}\right)$ determines a unique path $P^{\prime}=\left(\emptyset, \pi^{(1)}, \ldots, \pi^{(n-1)}\right)$. Suppose $\mu=\pi^{(n-1)}$ has ℓ parts. Then $|\mu|-\ell+1 \leqslant d_{n} \leqslant|\mu|$, and by Lemma 25 , there is a unique edge leaving μ with degree d_{n}.

3.3 The construction of Φ

Let $\mathcal{P}_{\mathcal{Z}}(n, n-k)$ denote the set of paths in \mathcal{Z} from \emptyset to a partition of n with $n-k$ parts. In this section, we define a weight-preserving bijection $\Phi: \mathcal{C}\left(B_{n}, k\right) \rightarrow \mathcal{P}_{\mathcal{Z}}(n, n-k)$.

Proposition 27. Let $n \geqslant 1$ and $k=0, \ldots, n-1$. Let $C \in \mathcal{C}\left(B_{n}, k\right)$ be a rook placement with columns C_{1}, \ldots, C_{n}. There exists a unique path $P \in \mathcal{P}_{\mathcal{Z}}(n, n-k)$ with edge weights $\left(\epsilon_{1}(q), \ldots, \epsilon_{n}(q)\right)=\left(C_{1}(q), \ldots, C_{n}(q)\right)$.

Proof. Proceed by induction on $n+k$. When $n=1$ and $k=0$, there is a unique rook placement on the empty board B_{1} with no rooks having weight one, corresponding to the unique path $P=(\emptyset,(1))$ in \mathcal{Z} with the same weight.

Assume the result holds for all rook placements in $\mathcal{C}\left(B_{n-1}, k\right)$ and $\mathcal{C}\left(B_{n-1}, k-1\right)$. Given a rook placement $C \in \mathcal{C}\left(B_{n}, k\right)$, let C^{\prime} be the sub-placement consisting of the first $n-1$ columns of C. By induction, the sequence $\left(C_{1}(q), \ldots, C_{n-1}(q)\right)$ determines a unique path $\left(\emptyset, \pi^{(1)}, \ldots, \pi^{(n-1)}\right)$ in \mathcal{Z} such that $\epsilon_{i}(q)=C_{i}(q)$ for $i=1, \ldots, n-1$.

There are now two cases two consider. The first case is if $C^{\prime} \in \mathcal{C}\left(B_{n-1}, k\right)$, so that $\ell\left(\pi^{(n-1)}\right)=n-k-1$. There are k rooks in C^{\prime}, so the nth column of C does not contain any rooks, and $C_{n}(q)=q^{k}$. By Lemma 25 , there exists a unique edge in the graph \mathcal{Z} originating at $\pi^{(n-1)}$ with weight q^{k}. Thus C corresponds to the path $P=$ $\left(\emptyset, \pi^{(1)}, \ldots, \pi^{(n-1)}, \pi^{(n)}\right)$ where $\pi^{(n)}$ is obtained from $\pi^{(n-1)}$ by adding a box to the first column, and $\epsilon_{n}(q)=q^{k}$. Moreover, $\ell\left(\pi^{(n)}\right)=n-k$.

The second case is if $C^{\prime} \in \mathcal{C}\left(B_{n-1}, k-1\right)$, so that $\ell\left(\pi^{(n-1)}\right)=n-k$. There must be $k-1$ 'northeast' squares in the nth column of C, and there are $n-k$ remaining squares in that column where a rook may be placed. Label these available squares $a_{0}, a_{1}, \ldots, a_{n-k-1}$ from the top to the bottom. Observe that $C_{n}(q)=(q-1) q^{k-1+i}$ if a rook is placed in the square a_{i}, for $0 \leqslant i \leqslant n-k-1$. Again by Lemma 25 , there exists $n-k$ edges in the graph \mathcal{Z} originating at $\pi^{(n-1)}$ with the weights $(q-1) q^{h}$ for $k-1 \leqslant h \leqslant n-2$. Thus if the k th rook of C is placed in the square a_{i}, then C corresponds to the path $P=\left(\emptyset, \pi^{(1)}, \ldots, \pi^{(n-1)}, \pi^{(n)}\right)$ with $\epsilon_{n}(q)=(q-1) q^{k-1+i}$, and $\ell\left(\pi^{(n)}\right)=n-k$.

Given a rook placement $C \in \mathcal{C}\left(B_{n}, k\right)$, let $\Phi(C)$ be the path in $\mathcal{P}_{\mathcal{Z}}(n, n-k)$ with edge weights $\left(\epsilon_{1}(q), \ldots, \epsilon_{n}(q)\right)=\left(C_{1}(q), \ldots, C_{n}(q)\right)$.
Theorem 28. The map $\Phi: \mathcal{C}\left(B_{n}, k\right) \rightarrow \mathcal{P}_{\mathcal{Z}}(n, n-k)$ is a weight-preserving bijection.
Proof. Proposition 27 shows that the map Φ is an injective weight-preserving map, since each column of the rook placement determines each edge of the path $\Phi(C)$:

$$
F_{C}(q)=\prod_{i=1}^{n} C_{i}(q)=\prod_{i=1}^{n} \epsilon_{i}(q)=F_{\Phi(C)}(q) .
$$

In fact, the proof of the Proposition also shows that Φ is surjective because the number of possible ways to add a column to an existing rook placement is equal to the number of possible ways to extend a path in \mathcal{Z} by one edge. Therefore, Φ is a weight-preserving bijection.

A sequence of nonnegative integers is \mathcal{C}-admissible if it is the degree sequence of a rook placement. That is, $\left.\left(d_{1}, \ldots, d_{n}\right)=\left(\operatorname{deg} C_{1}(q)\right), \ldots, \operatorname{deg} C_{n}(q)\right)$ for a $C \in \mathcal{C}\left(B_{n}, k\right)$. The next Corollary follows easily from Theorem 28.

Corollary 29. A \mathcal{C}-admissible sequence determines a unique rook placement.
It follows from Theorem 28 that we may associate a partition type to each rook placement on B_{n}. The partition type of a rook placement C is the partition at the endpoint of the path $\Phi(C)$ in \mathcal{Z}. Let $\mathcal{C}(\lambda)=\Phi^{-1}\left(P_{\mathcal{Z}}(\lambda)\right)$ denote the set of rook placements of partition type λ.
Corollary 30. Let $\lambda \vdash n$ be a partition with $\ell(\lambda)=n-k$ parts. Then

$$
F_{\lambda}(q)=\sum_{C \in \mathcal{C}(\lambda)} F_{C}(q)=(q-1)^{n-\ell(\lambda)} \sum_{C \in \mathcal{C}(\lambda)} q^{\mathrm{ne}(C)} .
$$

Proof. The result follows from Equation 20 and the bijection Φ.
Remark 31. The polynomial $G_{\lambda}(q) \in \mathbb{N}[q]$ defined in Equation (12) is simply a sum over the rook placements of type λ involving the north-east statistic.

4 A connection with set partitions

The results of the previous section naturally leads to a decomposition of $F_{T}(q)$, indexed by some tableau T, into a sum of polynomials indexed by set partitions, which we explain below.

A set partition is a set $S=\left\{s_{1}, \ldots, s_{k}\right\}$ of nonempty disjoint subsets of $[n]$ such that $\bigcup_{i=1}^{k} s_{i}=[n]$. The s_{i} 's are the blocks of σ. Let $\ell(S)$ denote the number of blocks of S, and let $\mathcal{S}(n, n-k)$ denote the set of set partitions of $[n]$ with $n-k$ blocks. We adopt the convention of listing the blocks in order so that

$$
\begin{equation*}
\left|s_{1}\right| \geqslant\left|s_{2}\right| \geqslant \cdots \geqslant\left|s_{k}\right|, \text { and } \min s_{i}<\min s_{i+1} \text { if }\left|s_{i}\right|=\left|s_{i+1}\right| . \tag{21}
\end{equation*}
$$

This allows us to represent a set partition with a diagram similar to that of a standard Young tableau; the i th row of the diagram consists of the elements in the block s_{i} listed in increasing order, but there are no restrictions on the entries in each column of the diagram. A set partition $S=\left(s_{1}, \ldots, s_{m}\right)$ has partition type λ if $\lambda=\left(\left|s_{1}\right|, \ldots,\left|s_{m}\right|\right)$.

For $i=1, \ldots, n$, let $S^{(i)}$ denote the sub-diagram of S consisting of the boxes containing $1, \ldots, i$, with rows ordered according to the convention set forth in Equation (21). If the box containing i is not in the first column of the diagram, let u be the least element in the same row as i in $S^{(i)}$, and suppose u is in the r th row of $S^{(i-1)}$ for some $1 \leqslant r \leqslant \ell\left(S^{(i-1)}\right)$. The weight arising from the i th box is

$$
S^{(i)}(q)= \begin{cases}q^{i-1-\ell\left(S^{(i-1)}\right)}, & \text { if the } i \text { th box is in the first column, } \tag{22}\\ (q-1) q^{i-1-r}, & \text { if the } i \text { th box is in the } j \text { th column, } j \geqslant 2\end{cases}
$$

We define the weight of S as $F_{S}(q)=\prod_{i=1}^{n} S^{(i)}(q)$.
A sequence of nonnegative integers is \mathcal{S}-admissible if it is the degree sequence of a set partition. That is, $\left.\left(d_{1}, \ldots, d_{n}\right)=\left(\operatorname{deg} S^{(1)}(q)\right), \ldots, \operatorname{deg} S^{(n)}(q)\right)$ for a $S \in \mathcal{S}(n)$.
Lemma 32. An \mathcal{S}-admissible sequence determines a unique set partition.
Proof. Induct on n. When $n=1$, the only set partition is $\{\{1\}\}$, and its degree sequence is (0).

Given an \mathcal{S}-admissible sequence $\left(d_{1}, \ldots, d_{n}\right)$, the subsequence $\left(d_{1}, \ldots, d_{n-1}\right)$ determines a unique set partition $S^{(n-1)}=\left(S_{1}^{(n-1)}, \ldots, S_{m}^{(n-1)}\right)$. By Equation (22), $n-1-m \leqslant$ $d_{n} \leqslant n-1$, and each of the $m+1$ choices for d_{n} determines the block of $S^{(n-1)}$ into which n should be inserted.

We have already constructed a weight-preserving bijection Φ between rook placements and paths in \mathcal{Z}. We now construct a weight-preserving bijection Ψ between rook placements and set partitions, effectively showing that paths in \mathcal{Z} are equivalent to set partitions, so that $F_{Z}(q)=F_{C}(q)=F_{S}(q)$ if $Z \longleftrightarrow C \longleftrightarrow S$ for $Z \in \mathcal{P}_{\mathcal{Z}}(n, n-k)$, $C \in \mathcal{C}\left(B_{n}, k\right)$, and $S \in \mathcal{S}(n, n-k)$.
Remark 33. There is a classically known bijection (see [14]) between the set of rook placements on the staircase board B_{n} with k rooks and the set of set partitions of $[n]=$ $\{1, \ldots, n\}$ with $n-k$ blocks: the placement C corresponds to the set partition where the integers i and j are in the same block if and only if there is a rook in the square $(i, j) \in C$. This bijection is different from the one described in Theorem 34. For example, the classical bijection associates the rook placement

to the set partition $(\{1,2\},\{3,4\})$ and so has partition type $(2,2)$, but as we shall see below, this placement is associated to the set partition $(\{1,2,4\},\{3\})$ under the bijection in Theorem 34 and has partition type $(3,1)$.

4.1 The construction of Ψ

Let $C \in \mathcal{C}\left(B_{n}, k\right)$ be a rook placement. The main idea is that the degree of $C_{i}(q)$ arising from the i th column of C determines the block of the set partition in which we place i. In the construction of the set partition $\Psi(C)$, we will create a sequence of intermediate set partitions $S^{(i)}$ of $[i]$ for $i=1, \ldots, n$.

The initial case is always $\operatorname{deg}\left(C_{1}(q)\right)=\operatorname{deg}(1)=0$, so $S^{(1)}=\{\{1\}\}$. Assume that $S^{(i-1)}=\left\{S_{1}^{(i-1)}, \ldots, S_{m}^{(i-1)}\right\}$ is the set partition which corresponds to the first $i-1$ columns of C, so that $m=\ell\left(S^{(i-1)}\right)$. Observe that there are $m+1$ possible blocks in which to insert i to obtain $S^{(i)}$. By Corollary 26, we know that

$$
i-1-\ell\left(S^{(i-1)}\right) \leqslant \operatorname{deg}\left(C_{i}(q)\right) \leqslant i-1
$$

so we construct $S^{(i)}$ by placing i in the j th block of $S^{(i-1)}$, where $j=i-\operatorname{deg}\left(C_{i}(q)\right)$, and then rearranging the blocks to fit the convention in Equation (21) if necessary.

Theorem 34. The map $\Psi: \mathcal{C}(n, k) \rightarrow \mathcal{S}(n, n-k)$ is a weight-preserving bijection.
Proof. Let $S=\Psi(C)$. The map Ψ is weight-preserving, as $C_{i}(q)=S^{(i)}(q)$ by construction, for each $i=1, \ldots, n$. Now, since the degrees $\operatorname{deg} C_{i}(q)=\operatorname{deg} S^{(i)}(q)$, and by Corollary 29 and Lemma 32 the sequences of degrees completely determine C and S respectively, then Ψ is injective. Finally, we note that $|\mathcal{C}(n, k)|=|\mathcal{S}(n, n-k)|$, so Ψ is a bijection.

Corollary 35. Let $\mathcal{S}(\lambda)$ denote the set of all set partitions of partition type λ. Then

$$
F_{\lambda}(q)=\sum_{S \in \mathcal{S}(\lambda)} F_{S}(q) .
$$

Example 36. Let C be the rook placement

The associated sequence of set partition diagrams associated to C is
so the set partition associated to the rook placement C is

$$
S=\Psi(C)=(\{3,8,9\},\{1,5\},\{6,7\},\{2\},\{4\})
$$

Remark 37. An intriguing question is to ask for a geometric interpretation of the polynomials $F_{C}(q)$, indexed by rook placements (or set partitions or paths in \mathcal{Z}).

The problem of determining the number of adjoint $G_{n}\left(\mathbb{F}_{q}\right)$ orbits on $\mathfrak{g}_{n}\left(\mathbb{F}_{q}\right)$ remains open. In the case $q=2$, this number has been computed for $n \leqslant 16$ by Pak and Soffer [11, Appendix B]. Let $\mathcal{O}_{n}(k)$ denote the orbits of rank k matrices. When $k=1$, it turns out that the polynomials $F_{C}(q)$ indexed by rook placements with exactly one rook gives the sizes of the $\binom{n}{2}$ orbits in $\mathcal{O}_{n}(1)$. For $2 \leqslant i<j \leqslant n$, each orbit contains a unique matrix $E_{i j}$ whose $i j$ th entry is 1 , and is zero everywhere else. The orbit containing $E_{i j}$ is associated to the rook placement $C(i, j)$ with a single rook in the $i j$ th square, and the size of the associated orbit is $F_{C(i, j)}(q)=(q-1) q^{n-1-(j-i)}$.

Figure 6: Paths, rook placements, and set partitions related to the computation of $F_{(3,1)}(q)=(q-1)^{2}\left(3 q^{3}+q^{2}\right)$.

In particular, the formula in Proposition 13 applied to the partition $\lambda=\left(2,1^{n-2}\right)$ gives the generating function

$$
F_{\left(2,1^{n-2}\right)}(q)=(q-1)\left((n-1) q^{n-2}+(n-2) q^{n-3}+\cdots+3 q^{2}+2 q+1\right)
$$

for rank one orbits of $G_{n}\left(\mathbb{F}_{q}\right)$ on $\mathfrak{g}_{n}\left(\mathbb{F}_{q}\right)$.
Remark 38. To close, we mention a related problem which may provide a geometric interpretation of $F_{C}(q)$ for every rook placement C. Let N be an $n \times n$ nilpotent matrix with entries in an algebraically closed field k containing \mathbb{F}_{q}, and suppose N has Jordan type $\lambda \vdash n$. A complete flag $f=\left(f_{1}, \ldots, f_{n}\right)$ is a sequence of subspaces in k^{n} such that $f_{1} \subset \cdots \subset f_{n}$ and $\operatorname{dim} f_{i}=i$ for all i. A flag is N-stable if $N\left(f_{i}\right) \subseteq f_{i}$ for all i. Spaltenstein [13] showed that the variety X_{λ} of N-stable flags is a disjoint union of f^{λ} smooth irreducible subvarieties X_{T} indexed by the standard Young tableaux of shape λ. Moreover, the closures \bar{X}_{T} are the irreducible components of X_{λ}, each of which has dimension n_{λ}. The number of \mathbb{F}_{q}-rational points in X_{λ} is given by Green's polynomials $Q_{\left(1^{n}\right)}^{\lambda}(q)[9$, III.7]. Evidently,

$$
\left(\prod_{i \geqslant 1}\left[m_{i}(\lambda)\right]_{q}!\right)^{-1} Q_{\left(1^{n}\right)}^{\lambda}(q)=\left((q-1)^{n-\ell(\lambda)} q^{m}\right)^{-1} F_{\lambda}(q)
$$

with $m=\min _{C \in \mathcal{C}(\lambda)}$ ne (C). Based on some computations for small values of n, we expect that $F_{C}(q)$ plays a role in counting points in certain intersections of the irreducible components \bar{X}_{T}.

Acknowledgements

I would like to thank Jim Haglund and Alexandre Kirillov for their invaluable guidance, and Yue Cai and Alejandro Morales for enlightening conversations.

References

[1] A. M. Borodin, Limit Jordan normal form of large triangular matrices over a finite field. Funct. Anal. Appl., 29(4):279-281, 1995.
[2] Y. Cai and M. Readdy, q-Stirling numbers: A new view. Adv. in Appl. Math., 86:50-80, 2017.
[3] S. B. Ekhad and D. Zeilberger, The number of solutions of $X^{2}=0$ in triangular matrices over GF (q). Electron. J. Combin., 3(1):\#R2, 1996.
[4] A. Garsia and J. B. Remmel, q-Counting rook configurations and a formula of frobenius. J. Combin. Theory Ser. A, 41(2):246-275, 1986.
[5] J. Haglund, q-Rook polynomials and matrices over finite fields. Adv. in Appl. Math., 20(4):450-487, 1998.
[6] A. Henderson, Enhancing the Jordan canonical form. Austral. Math. Soc. Gaz., 38(4):206-211, 2011.
[7] A. A. Kirillov, Variations on the triangular theme. Amer. Math. Soc. Transl., 169(2):43-73, 1995.
[8] A. A. Kirillov and A. Melnikov, On a remarkable sequence of polynomials. Sémin. Congr. 2, Soc. Math. France, 35-42, 1995.
[9] I. G. Macdonald, Symmetric functions and Hall polynomials. Oxford University Press, 1995.
[10] N. J. A. Sloane, The online encyclopedia of integer sequences.
[11] I. Pak and A. Soffer, On Higman's $k\left(U_{n}\left(\mathbb{F}_{q}\right)\right)$ conjecture. arXiv:1507.00411.
[12] L. Solomon, The Bruhat decomposition, Tits system and Iwahori ring for the monoid of matrices over a finite field. Geom. Dedicata., 36(1):15-49, 1990.
[13] N. Spaltenstein, The fixed point set of a unipotent transformation on the flag manifold. Proceedings of the Koninklijke Nederlandse Academie van Wetenschappen, Amsterdam, Series A 79, 38(5):452-458, 1976.
[14] R. P. Stanley. Enumerative combinatorics. Cambridge University Press, 1999.
[15] M. Yip q-Rook placements and Jordan forms of upper-triangular matrices. DMTCS Proceedings FPSAC, 25:1017-1028, 2013.

[^0]: *Simons Collaboration Grant 429920.

