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ABSTRACT
Direct collapse within dark matter haloes is a promising path to form supermassive black hole
seeds at high redshifts. The outer part of this collapse remains optically thin. However, the
innermost region of the collapse is expected to become optically thick and requires to follow
the radiation field in order to understand its evolution. So far, the adiabatic approximation
has been used exclusively for this purpose. We apply radiative transfer in the flux-limited
diffusion (FLD) approximation to solve the evolution of coupled gas and radiation for isolated
haloes. We find that (1) the photosphere forms at 10−6 pc and rapidly expands outwards. (2)
A central core forms, with a mass of 1 M�, supported by gas pressure gradients and rotation.
(3) Growing gas and radiation pressure gradients dissolve it. (4) This process is associated
with a strong anisotropic outflow; another core forms nearby and grows rapidly. (5) Typical
radiation luminosity emerging from the photosphere is 5 × 1037–5 × 1038 erg s−1, of the order
the Eddington luminosity. (6) Two variability time-scales are associated with this process: a
long one, which is related to the accretion flow within the central 10−4–10−3 pc, and 0.1 yr,
related to radiation diffusion. (7) Adiabatic models evolution differs profoundly from that of
the FLD models, by forming a geometrically thick disc. Overall, an adiabatic equation of state
is not a good approximation to the advanced stage of direct collapse, because the radiation is
capable of escaping due to anisotropy in the optical depth and associated gradients.

Key words: methods: numerical – galaxies: formation – galaxies: high-redshift – quasars: su-
permassive black holes – cosmology: theory – cosmology: dark ages, reionization, first stars.

1 I N T RO D U C T I O N

A growing number of quasars found at redshifts z � 6, including
one at z ∼ 7.54 (Venemans et al. 2017; Banados et al. 2018), when
the universe was younger than a gigayear, requires a very efficient
way of forming early supermassive black holes (SMBHs; e.g. Fan
et al. 2003; Willott et al. 2010; Mortlock et al. 2011; Wu et al.
2015). While small black holes can form just after the Big Bang
(e.g. Carr et al. 2010), SMBHs must wait until the gas can col-
lapse within dark matter (DM) haloes. SMBH seeds can form as
the end products of stellar evolution, namely of metal-free Popula-
tion III stars (e.g. Haiman & Loeb 2001; Abel, Bryan & Norman
2002; Bromm & Larson 2004; Volonteri & Rees 2006; Li et al.
2007; Pelupessy, Di Matteo & Ciardi 2007), supermassive stars

� E-mail: yluo@uky.edu (YL); shlosman@pa.uky.edu (IS)

(SMS; e.g. Haehnelt & Rees 1993; Bromm & Loeb 2003; Begel-
man, Volonteri & Rees 2006; Wise, Turk & Abel 2008; Begelman &
Shlosman 2009; Milosavljević et al. 2009; Regan & Haehnelt 2009;
Schleicher, Spaans & Glover 2010; Hosokawa et al. 2011; Choi,
Shlosman & Begelman 2013, 2015; Latif et al. 2013a,b; Shlosman
et al. 2016), and stellar clusters, either relativistic (e.g. Ipser 1969)
or gas rich (e.g. Devecci & Volonteri 2009; Lupi et al. 2014). In
principle, it is also possible that the stellar evolution stage can be
by-passed completely, for example if the gas never gets hot enough
to ignite thermonuclear reactions (e.g. Begelman & Shlosman 2009;
Choi et al. 2013; Shlosman et al. 2016).

In this work, we focus on direct collapse scenarios, in which gas
accumulates and collapses to form an SMBH seed either with or
without the intermediate stage of an SMS. Such models are often
glossed over an important stage in the collapse, when it becomes op-
tically thick, substituting an adiabatic approximation for a detailed
study of the radiation hydrodynamics.

C© 2018 The Author(s)
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Direct collapse can happen only when the virial temperature of
DM haloes exceeds the gas temperature. If the gas with a primordial
composition is capable of forming molecular hydrogen, haloes with
virial temperatures of ∼100–1000 K can suffice. In this case, grav-
itational collapse leads to one or a few Population III stars per halo
for z � 50, with an initial mass function (IMF) initially thought
to be top-heavy, ∼100–1000 M� (e.g. Abel et al. 2002; Bromm
et al. 2002; O’Shea & Norman 2007; Bromm 2013). Inclusion of
radiative feedback indicates a rather normal IMF (e.g. Hosokawa
et al. 2011; Hirano et al. 2015; Hosokawa et al. 2016). Supersonic
streaming velocities remaining from recombination can suppress
formation of Population III stars, allowing the gas to form a more
massive central object (Hirano et al. 2017).

If, however, the Population III stars dissociate H2 or prevent its
formation altogether, collapse will be triggered only for virial tem-
peratures T � few × 103 K. Suitable haloes have masses of 107–
108 M� and become abundant at z � 20. Under these latter con-
ditions, it has been conjectured that direct collapse will lead to an
SMS with a mass in the range of ∼104–106 M�, if fragmentation
can be suppressed and the angular momentum can be efficiently
transferred out.

Begelman & Shlosman (2009) argued that gravitational torques
transfer the angular momentum in the collapsing gas to the DM and
the outer gas, which has been verified explicitly, both for isolated
collapse and collapse in a cosmological framework (Choi et al.
2013, 2015). Furthermore, they found that global instabilities in
the rotating collapsing gas lead to supersonic turbulent motions
that damp fragmentation in the atomic gas. Contrary to self-similar
analysis, which was necessarily limited to a linear stage (Hanawa &
Matsumoto 2000), the growing bar-like m = 2 mode in its nonlinear
stage did not lead to fragmentation, but induced gas inflow. In all
cases, the collapse is dominated by filamentary structure (e.g. Luo
et al. 2016; Shlosman et al. 2016).

The final stages of the collapse are expected to be characterized by
radiation trapping, initially partial and thereafter complete. Simple
logic points to the formation of a central object, but its nature is
elusive. Is the collapse stopped early, leading to the formation of
a hydrostatic object, an SMS, whose subsequent evolution leads
to the formation of the SMBH seed? Or can the collapse proceed
directly to an SMBH seed?

If the SMS forms, it has been conjectured that the follow-
up nuclear burning and core collapse leave an SMBH seed of
∼10–105 M�, which grows rapidly via hypercritical accretion.
Such a pre-collapse object has the structure of a hylotrope, and the
post-collapse configuration has been termed a quasi-star (e.g. Begel-
man, Volonteri & Rees 2006; Begelman, Rossi & Armitage 2008;
Begelman 2010).

The formation details of the SMS, however, appear to be murky.
When does the photosphere form and where, what is its shape, and
what is the effective temperature? How does an SMS get rid of the
angular momentum in the collapsing gas? Does it rotate as a star,
i.e. with surfaces of constant angular momentum, J, that resemble
ellipsoids of rotation? Or does it rotate as a disc, i.e. with iso-J
surfaces of a cylindrical shape? Are the central conditions sufficient
to trigger thermonuclear reactions? How efficient is convection? Is
the formation of the SMS associated with radiation- or gas pressure-
driven outflows?

Models of the optically thin part of the collapse within DM haloes,
on scales of ∼1 kpc down to ∼1 au, have emphasized various aspects
of this stage: from formation and effects of molecular hydrogen, to
Ly α diffusion, to background UV flux produced by Population III
stars, as we have referenced above. However, inside ∼1 au, the

radiation pressure is expected to build up, and have both dynamical
and thermodynamical effects. Current modelling assumes that the
radiation pressure build-up within the optically thick flow will lead
it to follow an adiabatic equation of state (e.g. Becerra et al. 2015,
2017).

In this work, we test this assumption by treating the optically thick
part of the accretion flow using radiative transfer in the flux-limited
diffusion (FLD) approximation. We follow the flow as the radiation
pressure builds up and becomes as important as the gas thermal
pressure. Moreover, we evolve the adiabatic models to compare and
contrast with the model involving radiative transfer. In the current
paper, we deal with an isolated DM halo, while in the accompanying
paper (Ardaneh et al. 2018), we invoke DM haloes within a fully
cosmological framework.

This paper is structured as follows. The next section describes
the numerical aspects of our modelling, the details of radiation
transfer solver implemented here, and the initial conditions used.
Sections 3 and 4 present our results for adiabatic and non-adiabatic
flows, respectively, and Section 5 compares them. The last section
summarizes our main conclusions from this work. We provide test
models for radiative transfer in the Appendix. In the following, we
abbreviate spherical radii with R and cylindrical ones with r.

2 N U M E R I C A L T E C H N I QU E S

We use the modified version of the Eulerian adaptive mesh refine-
ment (AMR) code Enzo-2.4 (Bryan & Norman 1997; Norman &
Bryan 1999). Our modifications are explained in this section.

Enzo uses a multigrid particle mesh N-body method to calculate
gravitational dynamics including collisionless DM particles, and
a second-order piecewise parabolic method (Colella & Woodward
1984; Bryan et al. 1995) to solve hydrodynamics. The structured
AMR used in Enzo allows additional inner meshes as the simula-
tion advances to enhance the resolution in the user-desired region.
It places no fundamental restrictions on the number of rectangular
grids used to cover some region of space at a given level of refine-
ment, or on the number of levels of refinement (Berger & Colella
1989). A region of the simulation grid is refined by a factor of 2 in
length scale, if the gas or DM densities become greater than ρ0Nl,
where ρ0 is the minimum density above which refinement occurs,
N = 2 is the refinement factor and l is the maximal AMR refinement
level.

We use a maximal refinement level of 33, which corresponds to
10−8 pc, although the code only reaches refinement level of 30, i.e.
8 × 10−8 pc.

To avoid spurious fragmentation, we satisfy the Truelove et al.
(1997) requirement for resolution of the Jeans length, i.e. at least
four cells per Jeans length. In fact, following recent numerical ex-
periments, higher resolution is required to properly resolve the tur-
bulent motions (e.g. Sur et al. 2010; Federrath et al. 2011; Turk
et al. 2012; Latif et al. 2013a). Consequently, we have resolved the
Jeans length with at least 16 cells.

2.1 Radiation hydro and radiative transfer

Radiation transport is modelled via the flux-limited diffusion (FLD)
approximation. In regions that are optically thick, in the sense of a
‘true’ absorption modified by electron scattering, we assume local
thermodynamic equilibrium (LTE), in which emissivity is given by
the Planck intensity, and gas ionization is determined by the Saha
equation (e.g. Rybicki & Lightman 1979). The radiative transfer is
fully anisotropic, i.e. each grid cell is a source and sink of radiation,

MNRAS 476, 3523–3539 (2018)
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communicates with six neighbouring cells, and the optical depth is
calculated accordingly (Section 2.3).

The resulting radiation transport equation is solved using a fully
implicit inexact Newton method. This solver, which couples to
the AMR cosmological hydro solver by an explicit, operator-split
algorithm only at the end of the top level time-step (Reynolds et al.
2009), has been modified by us to update each refinement level
at the end of its corresponding time-step, making the FLD fully
consistent with the hydro part.

We have modified the equations of Reynolds et al. (2009) by
introducing the radiation force and v/c order terms, where c is the
speed of light and v is the gas velocity. The new Euler equation is

∂ρv

∂t
+ ∇ · (ρvv + Ip) = −ρ∇φ + κR

c
F, (1)

where ρ and p are the baryon density and thermal pressure, re-
spectively. The matrix I is the identity matrix. The gravitational
potential φ is calculated from the baryon density ρ and DM density
ρDM. Here, F is the radiation energy flux, and κR is the Rosseland
mean opacity (Section 2.2). Thus, the self-gravity of the gas is fully
accounted for.

Under the FLD approximation, the radiative flux vector can be
written in the form of Fick’s diffusion law, i.e. is proportional to
the gradient of radiation energy density (Levermore & Pomraning
1981; Levermore 1984),

F = −cλ

κR
∇E, (2)

where λ = λ(E, ∇E, κR) = (9 + R2)−1/2 is the flux limiter,
R = |∇E|/(κRE). Note that velocities encountered in our simu-
lations are substantially sub-relativistic, which allows us to use this
simple closure. The evolution of the radiation energy density, E, is
given by (Reynolds et al. 2009; Bryan et al. 2014)

∂tE + ∇ · (Ev) = −∇ · F − P : ∇v − cκPE + η − κR

c
F · v, (3)

where we have added the last term. Here, P is the radiation pressure
tensor written with auxiliary functions,

P = DE

D = 1 − χ

2
I + 3χ − 1

2
n ⊗ n

χ = λ + λ2R2

n = ∇E

|∇E| . (4)

The coefficients κP and κR are Planck and Rosseland mean opac-
ities, respectively (Section 2.2). The parameter η is the blackbody
emissivity given by η = 4κP σ SB T4, where σ SB is the Stefan–
Boltzmann constant and T is the gas temperature. The frequency-
dependence of the radiation energy is omitted by integration over
the radiation energy spectrum.

The equation for the evolution of the gas energy density e has
been modified as well by introducing the v/c order term,

∂e

∂t
+ ∇ · [(e + p)v] = −ρv · ∇φ + cκPE − η + κR

c
F · v. (5)

2.2 Opacities

The tabulated opacity is adopted from Mayer & Duschl (2005),
where Planck and Rosseland mean opacities for primordial matter
including all three elements (H, He, and Li) are calculated. These

opacities include the contribution from H species, namely H, H−,
H+, H2, H+

2 , H+
3 , and D, He, and Li species.

The opacity tables cover the density range −16 < log ρ

(g cm−3) < −2 and the temperature range of 1.8 < log T(K) < 4.5.
In our simulations, the gas collapse causes the density to increase
to 10−6 g cm−3, and the temperature to increase above 2 × 104 K.
We have extrapolated the temperature-dependence of the opacity
by using the free–free, bound free and electron scattering opacities.

2.3 Cooling and heating rates

For the optically thin part of the collapse, we follow Luo et al.
(2016). The gas is assumed to be dust free. In the optically thick
part of the flow, we have assumed LTE.

To separate the optically thin from thick regions, we have used
the following complementary approaches. For adiabatic runs, the
optical depth τ is obtained using the Jeans length, λJ for each cell,
i.e. τ = κλJ, where κ is the absorption opacity coefficient, calculated
here as the Planck mean, κP.

For the FLD runs, the position of the photosphere is calculated
by tracing rays away from the densest cell to a distance of 1 pc,
then integrating inwards to the point τ = 1, again using the Planck
mean opacity coefficient, κP. We use 4900 rays equally spaced in
azimuthal and polar directions. The resulting photosphere has no
particular symmetry and its shape evolves each time-step.

Furthermore, as a separate check to position the photosphere, we
have used the values of the limiter, λ = 1/3 (Section 2.1) as a trace
of the optically thick region. Both methods have been tested and
produced quite similar photospheric shapes and slightly different
radii, with τ = 1 contour lying outside.

In order to compare our FLD models with other models in the
literature, we run models with an adiabatic equation of state. We
have calculated the optical depth, τ , over the Jeans length for each
cell, and impose an exponential cut-off in the optically thin cooling
rate,

� = �thine−τ , (6)

where �thin is the optically thin cooling rate.

2.4 Initial conditions

We have used initial conditions for isolated DM haloes in this paper
as described below. Fully cosmological initial conditions for our
runs are presented in the companion paper. For the set-up of isolated
models, we follow the prescription developed by Choi et al. (2013)
(see also Luo et al. 2016).

We adopt the WMAP5 cosmological parameters (Komatsu et al.
2009), namely m = 0.279, b = 0.0445, h = 0.701, where h is the
Hubble constant in units of 100 km s−1 Mpc−1. We set up the details
of an isolated DM halo that is consistent with the cosmological
context that we work with. Therefore, some of the halo parameters
are specified with units that include the Hubble parameter, although
we use physical quantities (not comoving) in this case. A DM halo
is defined having density equal to the critical density of the universe
times the overdensity �c, which depends on z and the cosmological
model. The top-hat model is used to calculate �c(z), and the density
is calculated within a virial radius, Rvir. The halo virial mass is
Mvir(z) = (4π/3)�c(z)ρcR

3
vir. Because we treat the haloes as being

isolated, all the values are calculated assuming z = 0.
We work in physical coordinates and assume that the gas fraction

in the model is equal to the universal ratio. The gas evolution is fol-
lowed within DM haloes of a virial mass of Mvir = 2 × 108h−1 M�
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and Rvir = 945h−1 pc. The initial temperature of the gas is taken to
be the virial temperature T = 3.2 × 104 K. The simulation domain
is a box with a size Lbox = 6 kpc centred on the halo.

The initial DM and gas density profiles are given by equations
(1) and (2) of Luo et al. (2016). The DM halo rotation is defined
in terms of the cosmological spin parameter λ = J/

√
2MvirRvirvc,

where J is the angular momentum of the DM halo, and vc is the
circular velocity at Rvir (e.g. Bullock et al. 2001). We use λ = 0.03.

To produce DM haloes with a pre-specified λ for isolated halo
models, we follow the prescription of Long, Shlosman & Heller
(2014) and Collier, Shlosman & Heller (2017). In short, we assume
a DM velocity distribution with an isotropic velocity dispersion,
then reverse the tangential velocities of a fraction of DM particles
(in cylindrical shells) to obtain λ equal to the required value. This
action preserves the solution of the Boltzmann equation and is
a direct corollary of the Jeans (1919) theorem (e.g. Lynden-Bell
1960; Binney & Tremaine 2008).

For the gas in AMR grid cells, we calculate the average tangential
velocities of the background DM in cylindrical shells, accounting
for the dependence along the (rotation) z-axis. The radial profile of
the DM tangential velocity is given by equation (4) of Luo et al.
(2016).

The DM spatial resolution is adaptive and set by the gravita-
tional softening length, corresponding to the cell size. For the
initial root grid of 643 in a 6 kpc region with a maximal re-
finement level of 8 allowed for gravity from the DM particles,
εDM, min = 6000/64/28 = 0.37 pc. This value is kept constant.

For the gas, the gravitational softening is adaptive with the max-
imal refinement level of 33. However, in all simulations, only a
refinement level of 30 has been reached. We use the initial reso-
lution of 1003 particles in mesh for the DM. The force resolution
in adaptive PM codes is twice the minimal cell size (e.g. Kravtsov,
Klypin & Khokhlov 1997).

3 RESULTS: ADIABATIC FLOW

We start by presenting results of adiabatic runs of direct collapse
within isolated haloes. The FLD models are presented in the next
section. The early stages of the gravitational collapse have been
simulated here but discussed elsewhere (Choi et al. 2013, 2015;
Shlosman et al. 2016). Here, we redefine the t = 0 time at a much
later stage and focus on the innermost regions, � 0.1 pc, of the
collapse. This happens at ∼1.993 Myr after the start of simulation.
Times prior to this point are specified as negative. We find it con-
venient to choose this time when the flow forms a ‘photosphere’
(Section 2.3), which corresponds to the time when the optical depth
in the flow becomes larger than unity. This definition differs from
the density cut-off, which is used in some publications.

The optically thin part of the collapse exhibits a self-similar,
Penston-Larson profile of ρ ∼ R−2 (Luo et al. 2016). The small
degree of a rotational support in the halo does not modify this be-
haviour for the first 1–1.5 decades in radius. For the isolated models
presented here, the angular momentum is nearly conserved in the
outer region due to the idealized initial conditions. This leads to
a slowdown in the collapse inside ∼10 pc due to the angular mo-
mentum barrier, which can be observed in the density, temperature
and velocity distributions, in agreement with Choi et al. (2013). A
standing shock forms and leads to a substantial decrease in the mass
accretion rate there and to a mass accumulation. With the exception
of this shock, the gas stays nearly isothermal, with T ∼ 3000–
5000 K.

On spatial scales ∼0.3–3 pc, the density ratio of ρgas/ρDM in-
creases and reaches unity. The gas effectively decouples from the
DM interior to these radii. Still, the DM can exert gravitational
torques on the interior gas and absorb its angular momentum.

On scales of � 10 pc, within the disc-like configuration, the col-
lapse is dominated by the Fourier mode m = 2, and the accretion
flow exhibits a density enhancement in the form of a filament that
can be traced as deep as ∼10−5 pc. This shows that even the inner-
most flow remembers the physical conditions at larger scales. The
evolution of the basic parameters of the accretion flow inside 0.1 pc
is shown in Fig. 1.

We have introduced a cut-off in the cooling rate of the flow
based on its optical depth (equation 6). Above τ = 1, the cool-
ing rate decreases exponentially. This cut-off mimics the formation
of the photosphere, below which the radiation is expected to dif-
fuse rather than free-stream, and the cooling rate is expected to
decrease sharply. Very roughly, this condition is fulfilled initially
at Rph ∼ 10−6 pc, and this radius expands rapidly to Rph ∼ 10−4–
10−3 pc (Fig. 2). The FLD model, described in the next section,
behaves similarly.

The flow quickly becomes adiabatic interior to this radius, which
can be observed by monitoring the cooling rate. Outside Rph, we
observe the radiative cooling, �, being compensated by compres-
sional heating. Inside Rph, on the other hand, the compressional
heating dominates, resulting in a steep rise in temperature.

Fig. 1(a) shows the density profile at four representative times
during the collapse. The region where the flow becomes optically
thick, Rph, displays a sharp increase in the gas density, which
levels off at smaller radii. Note the formation of a central core with
R ∼ 10−5 pc at t ∼ 8.6 yr, and a number of density peaks outside
the core at later times, which represent the forming fragments, as
we discuss below. The temperature profile is closely related to the
formation of the core and surrounding fragments (Fig. 1b). The
central density and temperature have reached ∼10−7 g cm−3 and
5 × 104 K, respectively. The fragments stand out clearly at the end
of the simulation as temperature peaks. By the end, both core radius
and the new fragments are situated at larger radii, as Rph has moved
out.

The mass accretion rate profile reflects the existence of a disc on
scales of 1–10 pc, shown in Fig. 4, which is largely rotationally sup-
ported. The inner parts of this disc become unstable and collapse,
with accretion rate Ṁ(R), reaching a maximum and declining fur-
ther inwards (Fig. 1c). The shape of Ṁ(R) stays largely unchanged
with time, except for some variation of the peak position, which
shifts back and forth.

As expected and despite formation of a disc at larger radii, the
mass accumulates within the central region (Fig. 1d). By t ∼ 100 yr,
the amount of gas within the central ∼10−4 pc is ∼40 M�, and
within 0.1 pc about 2 × 103 M�. The mass within the photospheric
radius is ∼100 M� (Fig. 7).

The rotational support on small scales, within Rph, is partial but
prominent in the adiabatic flow (Fig. 3b). The flow is rotationally
supported, within a factor of 2, at nearly all radii, but gains even more
support around ∼10 pc, where it forms a warped disc as discussed
above, and around Rph, where it forms a growing geometrically thick
disc surrounded by fragments at the later stage (e.g. Fig. 4). The
fragments can also be traced in the ρ and T distributions averaged
on spherical shells in Figs 1(a) and (b). By t ∼ 100 yr, tangential
velocity rises to its maximal value at ∼Rph, then decreases by about
a factor of 10, and the radial velocity behaves in the opposite way
(Fig. 3a). What is the reason for this decrease in vt and increase in
vr at smaller R? We analyse this issue below.
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Figure 1. Adiabatic accretion flow. Evolution of (a) gas density, (b) tem-
perature, (c) accretion rate, and (d) mass within spherical radius R, at a
few representative times. Negative values correspond to times prior to the
establishment of the photosphere.

Evolution of the accretion flow on scales of ∼10−3 pc reveals a
dominant bar-like mode at early times (e.g. Fig. 5). At a later stage,
t � 26 yr, two open spiral arms are driven by this bar-like feature and
completely dominate the flow. Fragmentation is seen in projection.
Most of the fragments spiral in and merge in the central region.

Figure 2. Adiabatic collapse: optical depth profile in the flow at a few
representative times. Negative values correspond to times prior to the es-
tablishment of the photosphere. The dashed horizontal line delineates the
photosphere at τ = 1.

Fig. 4 provides more details about the central region of ∼10−4 pc,
where one observes a disc, edge-on and face-on, at the end of the
run. Fourier analysis of this disc reveals a strong bar-like mode dom-
inating its kinematics, with an amplitude of A2 ∼ 0.46. The m = 1
mode is less important. We have also measured the strength of the
gaseous bar using its ellipticity, defined as ε = 1 − b/a, where
a and b are the semimajor and semiminor axes (e.g. Martinez-
Valpuesta, Shlosman & Heller 2006). The typical value for the
late stage is ε ∼ 0.65, which means that a strong bar dominates
the potential in this region. This m = 2 mode leads to strong ra-
dial flows that explains the radial profiles of tangential and radial
velocities.

The distribution of fragment masses is given in Fig. 6. These
clumps have been identified by having detached photospheres from
the central object, then verified being self-gravitating. The most
massive clump corresponds to the central disc, ∼10 M�, and the
majority of clumps have masses of ∼0.1 M�. Their formation
is limited to the region dominated by the spiral arms, i.e. within
∼10−4–10−3 pc. In fact, these clumps form along the spiral arms
only. The clumps that formed earlier spiral in and are absorbed by
the central disc. The number of clumps levels off in time, reaching
a steady state.

To understand the reason for fragmentation, we have checked for
Toomre instability, characterized by the Q = χ cs/πG� parameter.
Here, χ is the epicyclic frequency, cs is the sound speed, and � is
the surface density of the discy entity. Based on the properties of
the flow, we have calculated Q(r) for t = 27 yr. We find that it dips
below unity between 10−4 and 10−3 pc from the centre, i.e. exactly
where the clumps are observed to form (e.g. Fig. 5).

However, caution should be exercised here, as the clumps form
in the spiral arms, while the underlying disc is ill-defined. An
alternative explanation may be related to the Kelvin–Helmholtz
(K-H) shear instability (e.g. Chandrasekhar 1961). The open spi-
rals represent shock fronts, and the gas moves through them with
a Mach number of M ∼ few, as can be inferred from Figs 1
and 3. The gas experiences an oblique shock, and the measured
pitch angle between the shock front and the gas streamlines is
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Figure 3. Isolated adiabatic accretion final profiles at t = 100.3 yr: (a)
tangential velocity, vt (solid line), radial inflow velocity, vr (dashed line),
and circular velocity, vk (dot–dashed line) at cylindrical radius r; (b) specific
angular momentum of accreting gas, jz (solid line) and circular specific
angular momentum, jk (dashed line) at r.

about i ∼ 60◦, confirming that the spirals are open and not tightly
wound.

Such a configuration will induce shear in the flow, close to the
shock front, and may be subject to K-H shear instability, when the
associated Richardson number, Ri < 0.25 (Chandrasekhar 1961).
This instability will affect the shock front that will ‘wiggle’, and
clumps will form and grow at the vertices of the distorted shock
front (e.g. Balbus 1988; Kim & Ostriker 2002). The Richardson
number is given by Chandrasekhar (1961),

Ri = −g

ρ

dρ/dz

(dv/dz)2 , (7)

where the z-axis is directed perpendicular to the shock front, g is
the (self-)gravitational acceleration due to the shocked material, and
v is the shear velocity. The gas self-gravity will act as a stabilizer,
and its effect on the flow must be estimated.

We assume that the shock front and the post-shock layer are asso-
ciated with the spiral arm that perturbs an otherwise axisymmetric
background gravitational potential. It is convenient to estimate the
value of the gravitational acceleration induced by the spiral arm as a
fraction β of the radial potential measured by the centrifugal accel-
eration, v2

t /R, where vt is the gas tangential velocity. β ∼ 0.05 is a
typical perturbation by a spiral arm in disc galaxies (e.g. Englmaier
& Shlosman 2000). To project this acceleration on the direction of
the streamlines entering the shock front, we account for the pitch
angle i, to obtain g ∼ βv2

t /rsin i. Here, r corresponds to the radius
vector extending from the flow centre, i.e. in our case, corresponding
to the core centre.

The shear velocity can be estimated from the velocity differ-
ence across the thickness of the shocked layer, b, projected on
to the normal to the shock front, v ∼ vtcos i. Assuming that
the pre-shock gas has a large Mach number, the Richardson
number is

Ri ∼ β

(
b

r

) (
sin i cos2 i

)−1
. (8)

Adopting values from the run, i.e. i ∼ 60◦, and b/r ∼ 0.3, we
obtain Ri ∼ 0.1. Hence, the flow must be unstable and form clumps
along the spiral arms.

Next, we invert the problem, and ask what wavelengths, l/r, are
unstable, taking Ri = 0.25 and keeping other values fixed. For K-H
shear instability, we obtain l/r < 0.8.

Hence, the K-H shear instability appears as an viable alternative
to the Toomre’s instability, especially because the fragmentation
happens in the spiral arms and the underlying disc is ill-defined.
The latter comment refers to the formation of spirals in a sheared
flow dominated by a bar-like feature.

The central object, which is supported mainly by rotation and
partly by gas pressure gradients, does not show any tendency to
fragmentation. This is understandable, because it is geometrically
thick and Toomre instability is suppressed with increasing thickness,
in contrast to the claim by Becerra et al. (2015).

To demonstrate the mass growth in the central region, we measure
the mass evolution contained within three specific radii, i.e. 10−5,
10−4, and 10−3 pc (Fig. 7). For the largest radius, 10−3 pc, the growth
is monotonic, and the accumulated mass is about 100 M�. The
noise increases gradually to smaller radii. The amount of gas within
10−4 pc radius appears to saturate in time, which is explained by the
fragmentation. The fragments spiral in more slowly than the smooth
accretion flow, and are responsible for the mass accumulation on
this scale.

To summarize, we clearly observe formation of a central ob-
ject in the adiabatic accretion flow. This object appears to be
supported by both the gas thermal pressure and rotation. The ra-
diation pressure gradients are not important, as the temperature
remains relatively low, T < 105 K. Core formation results in a
substantially flattened configuration, resembling a geometrically
thick disc. It is surrounded by fragments and we lean towards
the K-H shear instability explanation for their origin, as opposed
to Toomre instability. We return to this issue in the Discussion
section.

4 RESULTS: NON-ADI ABATI C FLOW

One of the main questions about direct collapse is whether the
adiabatic flow approximation used in the literature so far adequately
represents evolution. In this sense, the adiabatic run with identical
initial conditions serves as a test model of what to expect in the

MNRAS 476, 3523–3539 (2018)



Direct collapse to supermassive black hole seeds 3529

Figure 4. Final projection snapshots of adiabatic collapse on various spatial scales, from 10 pc down to 2 × 10−4 pc. Shown are two independent directions,
roughly corresponding to face-on and edge-on views. Fragmentation is occurring on scales of ∼10−3 pc, somewhat larger than the photospheric scale.

Figure 5. Evolution of adiabatic collapse. Projection snapshots on scale of 2 × 10−3 pc. Colour palette is based on logarithmic scale. The white contours
represent the photospheric surfaces defined in the text.

FLD run. The non-adiabatic flow in the isolated model is in many
respects similar to that of the adiabatic model but also exhibits some
important differences that cannot be ignored. As noted earlier, we
consider the FLD flow to be in LTE.

4.1 Deep interior flow: formation and dissolution of the
central core

The basic parameters of the FLD flow are shown in Fig. 8. They dis-
play the gradual formation of the central object, its photosphere, and
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Figure 6. Adiabatic collapse: fragmentation of the flow on scales of
∼10−3 pc (see Fig. 5). The distribution of clump masses is shown.

Figure 7. Adiabatic collapse: evolution of the enclosed mass within fixed
spherical radii.

its subsequent expansion. The photospheric jump is not as dramatic
as in the adiabatic case. The central density is higher at some spe-
cific time in the run, then becomes lower. The photosphere forms at
2.037 Myr after the start of the simulation, and t = 0 occurs slightly
later in the evolution compared to the adiabatic run, by about 104 yr.
The central temperature is lower than in the adiabatic case and re-
mains stable after the formation of the photosphere, ∼1.6 × 104 K.
Fragmentation is virtually non-existent, and formation of a few pho-
tospheric ‘islands’ is observed, that merge quickly. The FLD flow
is filamentary, as in the adiabatic case, with a single dominating
filament, as seen in Fig. 9 at early times.

The temperature starts to rise at ∼few × 10−4 pc (Fig. 8b). The
rise from T � 3 × 103 K correlates with a sharp increase in the
bound-free opacity in atomic hydrogen. Photoionization quickly
becomes the dominant heating mechanism in the gas, surpassing
the compressional heating by orders of magnitude. This leads to
a sharp increase in the optical depth and to the appearance of the
photosphere at τ ∼ 1 that we denote as Rph as in the adiabatic case.
This time is taken as t = 0.

The density profile within Rph becomes flatter than R−2 and is
rather closer to R−1 (Fig. 8a). Initially, the collapse proceeds deeper
than in the adiabatic case, down to ∼10−7 pc, before it is stopped

Figure 8. Non-adiabatic accretion flow. Evolution of (from top to bottom)
gas density, temperature, accretion rate, and mass within spherical radius R.

by the gas pressure gradient. The radiation force is about 1 per cent
of the gas pressure force at this time (Fig. 12a), then increases to
about 10 per cent by t ∼ 9.5 yr, and continues to increase thereafter
(Fig. 12b). Rotation is partially important at Rph, but declines sharply
at smaller radii (Figs 10 a and b).

The evolution starts to diverge from the adiabatic flow at small
radii. Within Rph, a core forms and grows to ∼1 M� and size ∼7–
8 × 10−6 pc. Its temperature is lower than the outside gas by a factor
of 2, and its density increases. One can observe the associated break
in the density profile of Fig. 8(a).
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Figure 9. Evolution of non-adiabatic collapse. Projection snapshots on scale of 2 × 10−4 pc. Colour palette is based on logarithmic scale. The contour line
corresponds to the position of the photospheric surface and was calculated using the delimiter λ = 1/3 (Section 2.1). Note that after t ∼ 9.5 yr, the photosphere
is expanding because of the extensive outflow from the central core region, then receding. The core dissolves completely by t ∼ 15 yr, and the region becomes
marginally optically thin. A new core starts to form at around this time in a slightly different position and reaches ∼1 M� by t ∼ 32 yr. Frames before t = 15 yr
have been centred on the existing core, while later frames are centred on the forming new core (see also Figs 11 and 13).

The filamentary inflow develops as the collapse proceeds and ex-
tends to the smallest scales achieved in the run. One observes that
the inflow is channelled along these filaments, and outside mate-
rial joins the filaments after experiencing an oblique shock on their
surfaces. Additional shocks form in the central region where the
two main filaments collide and the flows merge. Velocities abruptly
decrease within the innermost shock, pointing to the overall slow-
down of the accretion flow, and the start of virialization. Both the
thermal pressure gradients in the gas and the rotational support
contribute to this dramatic slowdown and essentially terminate the
accretion flow.

To understand the prevailing structure on these scales, re-
fer to Fig. 11, which provides views of the region on scales
R ∼ 2 × 10−4 pc (top frames) and R ∼ 2 × 10−5 pc (bottom frames)
at t ∼ 9.5 yr. Density, temperature, and flow pattern are shown. On
smaller scales, one observes a small dense core that is nearly round,
confirming the unimportance of rotation. This core is surrounded
by a hotter and much less dense, expanding envelope. This is more
visible on the larger scale, where a system of nested shocks is cre-
ated by this expansion against the collapsing gas within the main
filament. The overall configuration is that of a small dense core sur-
rounded by expanding hot bubbles driven mostly by gas pressure
and a non-negligible contribution from radiation pressure gradients.

An interesting feature is that the core is colder than the expanding
bubbles above the photosphere, as the temperature map conveys.
This, in tandem with lower density above Rph, allows the radiation
force to be more important at and above the photosphere. It also
explains the driving forces behind the outflows.

By t ∼ 12.5 yr, the radiation force becomes comparable to the gas
thermal pressure gradients (Fig. 12c), dramatically increasing the
mass outflow rate. Fig. 9 shows the evolution of the photosphere,
which by this time becomes very extended, well outside the colder
core. The core mass decreases sharply, as it is ‘eaten away’ by the
outflow.

This process starts at around t ∼ 8 yr, when a strong outflow
develops and extends up to and above ∼10−4 pc, as shown in Fig. 11
at t = 9.5 yr. By t ∼ 15 yr, the core dissolves completely and the
photosphere disappears.

We have checked the existence of the photosphere using two
independent methods outlined in Section 2.1, by calculating the
3D shape of the photosphere using (1) the values of the limiter,
λ = 1/3, as a trace of the optically thick region, and (2) the optical
depth by integrating along about 4900 independent rays to τ = 1.
Both methods produces similarly shaped contours, with the latter
contour lying at slightly larger radii. The result of the first method is
displayed in Fig. 9. We have also introduced a spherically averaged
photospheric radius Rph, which we use in the associated discus-
sion. Fig. 13 displays the photospheric radius calculated using this
method.

A second core forms nearby, separated by ∼3 × 10−4 pc from
the first core, and has an initial mass of ∼0.01 M�, but does not
show any growth for a few years. It starts to grow rapidly after
t ∼ 25 yr. The new photosphere appears at t ∼ 30 yr and the core
mass reaches ∼1 M� in about 5 yr, exhibiting a growth rate of
∼0.2 M� yr−1 (Fig. 9). By the end of the run, the central density
of the second core, ∼3 × 10−8 g cm−3, had not yet reached the
peak density of the first core, but it is still increasing with time
(Fig. 8a).

Because of the perturbing action of the mass inflow, variations
in ρ and T, and the dependence of opacity on these parameters,
the position of the photosphere, Rph, is erratic and it is far from
having spherical symmetry. This is similar to the adiabatic run.
Fig. 13 (top frame) provides the evolution of the spherically aver-
aged Rph with time. The photosphere for the FLD run is close to
that of the adiabatic model initially, before the outflow develops.
Within the photosphere, however, the evolution differs significantly,
e.g. in the importance of radiation pressure and rotation, and in the
overall outcome.
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Figure 10. Non-adiabatic accretion flow final profiles of (a) tangential
velocity, vt (solid line), radial inflow velocity, vr (dashed line), and circular
velocity, vk (dot–dashed line) at cylindrical radius r; (b) specific angular
momentum of accreting gas, jz (solid line), and circular specific angular
momentum, jk (dashed line) at r. The vertical arrow shows the approximate
position of the photosphere.

The central objects appear well resolved during the simula-
tions. Their masses, ∼1 M�, are well above the local cell mass
of ∼10−6 M�. The resolution limit is ∼3 × 10−7 pc.

For an isolated virialized system, the virial ratio is
X = 2Ekin/|W| = 1, where Ekin is the total kinetic energy within
the object, including the bulk and random motions, the radiation
pressure is still not important, and W is its gravitational energy.
Since cores obtained in our simulations are accreting at a high rate
kinetic and thermal energies as well, and experience mass loss, and
we must also include the relevant surface term in calculating X (e.g.
Landau & Lifshitz 1980).

For each of the cores formed, we calculate their virial ratios,
X(t) ≡ (2Ekin − 3PphV)/|W|, assuming their spherical symmetry,
as a function of time. X is calculated assuming the boundary of
the object’s ‘surface’ lies at Rph ∼ 10−5 pc. Here, Pph is the total

pressure, i.e. the thermal and kinetic energies of the gas at Rph, and
V is the volume of the object. We account for the gas thermal energy
in the accretion term because the radial velocity of the flow is of the
order of its sound speed. 3PphV corresponds to the surface term in
the Virial Theorem.

The contribution of the surface term, which consists of the flow
of the bulk kinetic and thermal energy of the gas should reduce the
X value below unity. The sign of Pph term depends on the relative
importance of outflow and accretion averaged over the surface. It
could be positive or negative, so the surface term could increase
or decrease X. Indeed, this is what is observed – X varies below
unity initially, which delineates the unsteady contribution of the
mass accretion flux. For the first core, X becomes larger than unity
thereafter and steadily increases, reflecting the dissolution of the
core.

4.2 The photosphere: radiation luminosity

Accreting mass flux carries a substantial kinetic energy because of
the large Ṁacc. What is the efficiency of converting this mechanical
energy into radiation?

The kinetic energy of the accretion flux, measured at Rph, varies
by about one decade within Lacc ∼ 5 × 1037–5 × 1038 erg s−1, and is
of the order of the Eddington luminosity, ∼1038 erg s−1, for electron
scattering opacity (Fig. 13b). Note that the Rosseland mean opacity
we use is of the order of the electron scattering opacity for these
temperature and density values. The range in Lacc is determined
by motion of the photospheric radius and temporal variation of
the mass accretion rate and radial inflow velocity (Figs 8 and 10).
The largest dip in Lacc is strongly correlated with the dissolution
of the first core, and the associated mass outflow in the region close
to Rph (Fig. 13b). This process slows down the mass influx within the
central ∼10−4 pc. The influx is restored 10 yr later, but it becomes
much more noisy.

The evolution of radiation luminosity, Lrad, at some periods cor-
relates with Lacc, and in other periods it anticorrelates (Fig. 13b).
During the monotonic growth periods of both cores, it clearly cor-
relates. This behaviour is disrupted by the powerful outflow that is
associated with the dissolution of the core.

We have performed a Fourier analysis of the L and Lacc curves in
Fig. 13(b). The power spectrum of Lacc variability peaks around the
characteristic time-scale of ∼10 yr. It corresponds to the accretion
time-scale for a typical distance of few × 10−5 pc and the observed
inflow velocities of ∼3 km s−1. However, this time-scale should be
taken with caution, as the simulation has been run only for about
40 yr, and so this time-scale can be subject to temporal aliasing.

Additional and more rapid variability in Lrad is present at all
times, but its amplitude increases following dissolution of the first
core. The power spectrum also has a low peak at the characteristic
time-scale of ∼0.12 yr. Typically, Lrad correlates with the accretion
rate, but in some cases the response in Lrad is either delayed or
non-existent. During peaks of this variability, the radiation lumi-
nosity can exceed the accretion power by a factor of a few, and Lrad

can exceed ∼1039 erg s−1. Clearly, energy can be stored within the
photosphere, in either mechanical or radiative form, and released
suddenly.

5 DI SCUSSI ON

We have followed direct baryonic collapse within isolated DM
haloes. Inclusion of radiative transfer and the associated physics
have allowed us to reach spatial scales of ∼0.01 au, or ∼10−7 pc,
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Figure 11. Non-adiabatic accretion final projection snapshots from three independent directions on scales of 2 × 10−4 pc (top) and 10−5 pc (bottom) at
t ∼ 9.5 yr (see corresponding Fig. 13 a frame at this time). On each scale, we show the density and velocity fields projections (top) and the temperature (bottom).
Note the developing anisotropic outflow from the central core along the filament and the associated expanding bubble driven by this outflow. The shape of the
core is clearly outlined by the large density contrast with the environment. Its interior temperature is slightly lower than that of the surrounding gas.
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Figure 12. Dominant accelerations in the non-adiabatic accretion flow:
thermal pressure gradient (dashed red line) and radiation pressure gradient
(solid blue line) normalized by gravitational acceleration of the enclosed
mass at t ∼ 1, 6.5, 12.5, and 32.7 yr. The dotted line is drawn to delineate
the ratio of unity. The vertical arrows show the approximate position of the
photosphere.

for the first time in a meaningful way. The radiative transfer has been
performed in the FLD approximation and LTE has been assumed
for the optically thick collapsing region.

For comparison, we have run an adiabatic model, where the
cooling rate has been exponentially damped below the τ = 1 surface.
We have tested the code by running a number of models describing
the evolution of a shock induced by a photoionization source at
the centre of a hydrogen cloud. These models have been executed
with FLD, and with and without LTE, as detailed in the Appendix.
Moreover, they have been compared to published models in the
literature, where analytical fits have been provided.

We find that the collapse proceeds in a filamentary way and re-
mains nearly isothermal in the outer part, down to ∼10−5 pc from
the centre. The gas is channelled along the filaments, with oblique
shocks formed by the material when joining the filaments. Inside
the optically thick region, a central object forms in response to the
converging flow and reaches a mass of ∼1 M�. Growing radiation
and thermal pressure gradients within the object exceed the gravita-
tional acceleration, triggering a strong outflow, originating close to
the photospheric radius. The outflow has a bursting behaviour and
drives expanding nested hot bubbles. The central core that forms
deeper inside the photosphere is close to dynamical equilibrium,
but as the outflow ‘eats up’ the core from outside in, the core dis-
solves completely and the optical depth of the central ∼10−4 pc
hovers around unity. Another core forms in its vicinity and grows
rapidly, reaching ∼1 M�. The region inside the photosphere and
its structure are well resolved in our simulations.

The FLD model leads to the formation of an object that is sup-
ported mostly by gas thermal pressure, and with some degree of ro-
tation in the outer sub-photospheric layers. While the photosphere
has a complex elongated shape, the core of the object is quasi-
spherical. This is in a stark contrast with the adiabatic model, where
the central object is discy and of a convex shape, and is dominated
by rotation.

Figure 13. (a) Evolution of the spherically averaged photospheric radius,
Rph, of the first core (t �15 yr) and the second core thereafter. (b) Evolution
of radiation luminosity, Lrad, and accretion (mechanical) luminosity, Lacc,
in the non-adiabatic model based on the photospheric radius shown. (c)
Evolution of the enclosed mass within a fixed radius. The discontinuity in
the dotted line reflects the dissolution of the first core at t ∼ 15 yr and the
subsequent growth of a nearby core.

The photosphere forms somewhat later, by ∼104 yr, in the FLD
run – a consequence of additional radiation force operating in the
region. (Note that initial conditions are identical for both runs.) If
one compares both runs at t ∼ 33 yr, when the FLD model has been
terminated, substantial differences point to diverging evolution.

Specifically, the adiabatic model has a higher temperature in the
central region, by a factor of 3, due to inability of the optically thick
flow to cool down. And the central mass accumulation is higher than
in the FLD case, where a combination of radiation force and thermal
gas pressure gradients has driven a massive outflow. These factors
leads to a different radial profile of the specific angular momentum
in the gas. In particular, the ratio of the angular momentum to the
maximally allowed value is about unity in the adiabatic case – a
clear sign of a rotational support – whereas this ratio is smaller by
a factor of a few in the FLD run. Consequently, the kinematics of
the adiabatic flow differs from that of the FLD runs. Lastly, the
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adiabatic model shows fragmentation on scales of ∼10−4–10−3 pc,
while no fragmentation has been observed in the FLD runs.

We argue that the initial mass of the central objects, M0, can be
understood in the context of a high accretion rate flow. For the object
to be at least partially virialized, its sound crossing time should be
faster than the characteristic time-scale of its growth. The initial
size of the object is, using the FLD run, R0 ∼ 10−5 pc, and its gas
temperature is T0 ∼ 104 K. Taking a typical mass accretion rate in
the central region (Figs 1 and 8), Ṁ ∼ 0.1 M� yr−1, we have

R0

cs
<

M0

Ṁ
, (9)

where cs = 1.3 × 106(T/104 K)1/2 cm s−1 is the sound speed in the
gas. The smallest object in virial equilibrium under these conditions
can be estimated as M0 ∼ Ṁ(R0/cs) ∼ 0.1 M� (T /104 K)−1/2.
This result follows from the ability of an object to establish a partial
equilibrium and to keep its identity under strong mass accretion
flow. It is not related to numerical issues.

This means that the central object will be identified in the sim-
ulation at around this mass and is expected to be in very rough
equilibrium only, with a mixture of thermal and radiation pressure
gradient, gravity, rotation, and internal turbulence. The reason why
much smaller objects cannot be identified lies in the fact that smaller
objects will be buffered substantially by the inflow, the position of
their centre of mass will be destabilized, and their shape will be
completely arbitrary. This is not a semantic difficulty, but rather a
condition for the object to separate itself from the dynamic inflow.

The next question to be answered is related to the difference
between the adiabatic and FLD models. In a simplistic argument,
one can make a case that the adiabatic equation of state adequately
describes the behaviour of the gas when an optical depth exceeds
unity and the cooling declines exponentially. Initial conditions for
the adiabatic and FLD runs are identical and cannot explain the
different outcome. Besides, for gas evolution, initial conditions play
secondary role, as the system quickly forgets them. What is the
source of the diverging evolution of these models?

The adiabatic equation of state presumes that the cooling is com-
pletely unimportant, and individual parcels of the gas do not ex-
change energy even in the presence of temperature gradients. This
requirement may be too restrictive. In a system that is not virial-
ized, and basically consists of streamers originating from strongly
anisotropic inflow and is loosely bound, large temperature gradi-
ents build up. This can be seen from Fig. 14(b), which shows the
dispersion in the gas temperature around the mean, given by Fig. 8.
The meaning of this is that the photons leak along large temperature
gradients. The non-spherical shape of the photosphere assists in this
process. This effect is absent in the adiabatic flow.

Next, we discuss the central mass accumulation over the sim-
ulation time. Even over the 35 yr run time since the formation of
the photosphere in the FLD flow, about 10 M� are expected to be
added at the photospheric radius. Figs 8(d) and 13 do not show such
evolution on the scale of Rph. On the other hand, Fig. 8(c) confirms
that the high accretion rate peak moves to larger radii, outside Rph.
The explanation lies with the evolution in the presence of a strong
outflow that acts against the mass accumulation inside the photo-
sphere. Instead the gas accumulates inside R ∼ 10−3 pc, as shown in
Fig. 13(a), which displays the amount of material inside this radius.

Models that quantify the amount of gas in the central region, and
that ignore the feedback, show the fast assembly of a massive object
there (Shlosman et al. 2016). The current FLD run argues against
this conception. What does appear as important is that radiation
feedback has an effective distance beyond which it can be ignored.

Figure 14. Evolution of the non-adiabatic accretion flow with FLD: tem-
perature versus gas density, at t ∼ 1, 6.5, 12.5, and 32.7 yr. The colour palette
shows the total mass of all grid cells with the same density and temperature.
The vertical arrows show the approximate position of the photosphere.

The FLD run puts this radius at ∼10−3 pc, where by the end of
the simulation about 100 M� has been accumulated. This is about
200 au – the size of the Solar system. Within the typical star for-
mation framework, this is probably nothing outstanding, when, e.g.
an O star forms. What is different here is the rate of accretion that
exceeds that of the star formation by an order of magnitude. Thus,
one cannot argue that radiation feedback will terminate accretion
on the ‘protostar’ and its growth.

The present state of the central region in the FLD run can be
characterized as in a ‘splash’ stage. The gas accretion flow converges
in the centre and gravity is not capable of confining the resulting
random motions to within the photosphere. The radiation force at
the photospheric radius is close to the Eddington limit given the
amount of mass in the region and the radiative luminosity (Figs 8
d and 13b). Overall, such conditions are not encountered in the
star formation process, where both mass accretion rates and inflow
velocities are dramatically lower, implying that the virialization
process is much less violent.

Some hints for the further evolution of the system can be inferred.
The radiation-driven outflow is confined to within ∼10−3 pc, where
the kinetic energy of the accretion can contain the kinetic energy
of the outflow. Once the outflow is stopped, the gas will have no
pressure or rotational support and must resume the collapse. We an-
ticipate that additional outflow stages will follow but with progres-
sively smaller amplitudes. But this does not mean that the system
will virialize easily.

A separate question is whether the above evolution leads to the
formation of a single massive object, e.g. an SMS, which will viri-
alize and whose central temperature will exceed few × 106 K, en-
abling the proton–proton chain of thermonuclear reactions, and
further stabilizing the SMS. Our FLD runs, which appear to be
more realistic than the adiabatic ones, have less rotational support
in the centre, yet it is not negligible. Continuing accretion will bring
fresh material with increasing angular momentum. The reason for
this is that low-J gas is naturally accreted first, and the subsequent
accretion will increase its J. Because of a large accretion rate, this
can lead to a spin-up of the object, non-axisymmetric instabilities,
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and a resumption of the central runaway, similarly to the scenario
that happened at ∼1 pc in the earlier stage.

The difference in the evolution between the adiabatic and FLD
models emphasizes the importance of the proper treatment of radia-
tive transfer in the optically thick phase of gravitational collapse.
This requires a seven-dimensional phase space to obtain the ra-
diative intensity, which is impossible to achieve at present even
numerically. Both Monte Carlo and direct discretization methods
require too many computational resources. Limiting calculations
to radiative flux and energy allows one to take the angular mo-
ments of the equations of radiation hydrodynamics. Examples of
such low-order closures are FLD, discussed in Section 2.1, and
the M1 closure (e.g. Levermore 1984; Janka et al. 1992). Their
deficiency lies in an inadequate treatment of the Eddington ten-
sor, which is symmetrized about the direction of the flux. In cer-
tain cases, this crude approximation can fail (e.g. Jiang, Stone &
Davis 2012).

Both FLD and M1 can be applied in the optically thin and thick
regions. Potentially, the FLD method can lead to errors, as it has
difficulty to capturing the shadow formed even by one beam (e.g.
Gonzalez, Audit & Huynh 2007), while the M1 method cannot prop-
agate two beams correctly, having difficulty following the radiation
field in complex geometries (e.g. McKinney et al. 2014).

The weak point of both FLD and M1 algorithms – their difficulty
in handling the transition between optically thick and thin regions
– can be supplemented by the ray-tracing method. This approach
was implemented in the PLUTO grid code for a spherical polar grid
(e.g. Kuiper et al. 2010). As ray-tracing is a solution to the radiative
transfer equations, FLD is an approximation, there is a clear ad-
vantage in combining both methods (e.g. Klassen et al. 2014). This
means, using direct ray-tracing in optically thin regions, where scat-
tering can be ignored, while implementing FLD in optically thick
regions, where diffusion dominates.

An algorithm that is based on the direct solution of the radiative
transfer equations and that does not invoke a diffusion approxi-
mation has been proposed for the MHD code Athena (Jiang et al.
2012). The hierarchy of moment equations has been closed using
a variable Eddington tensor, whose components have been calcu-
lated using the method of short characteristics, still computationally
expensive. Further improvements must follow along these lines.

6 C O N C L U S I O N S

We have simulated the radiative transfer in gravitationally collaps-
ing primordial gas within isolated DM haloes, so-called direct col-
lapse. Models in the cosmological framework are dealt with in an
associated publication (Ardaneh et al. 2018). We focus on the op-
tically thick part of the collapse, initially at radii below ∼10−6 pc,
0.1 au, where the photosphere of the central object has formed.
The radiative transfer was performed in the flux-limited diffusion
(FLD) approximation, using a modified version of the Enzo-2.4
AMR code, and LTE conditions were assumed. For comparison,
we have run adiabatic models, and additional testing of the FLD
module is shown in the Appendix.

We find that the collapse is dominated by filamentary structure
modified by rotation, down to the photospheric scale. The central
object that forms within the photospheric radius grows to ∼1 M�,
and is supported mainly by thermal gas pressure gradients with the
addition of rotation. The evolution of this object is heavily perturbed
by the penetrating accretion flow that peaked at ∼0.5 M� yr−1,
growing temperature and increasing radiation pressure. The photo-
spheric luminosity is close to the Eddington limit. This leads to the

development of an anisotropic outflow driven by radiation force,
which disrupts the central object and dissolves it, driving a series
of expanding hot bubbles interacting with the accretion flow.

The dissolution of the core leads to the formation of another core
nearby, which grows efficiently and shortly reaches ∼1 M�. With
the formation of this object the central temperature starts to grow,
sharply decreasing the time-step. At this point, the enclosed mass
within the central 10−3 pc is about 100 M�, with about 3 × 103 M�
within the central 0.1 pc.

This mass accumulation agrees with that of the adiabatic run,
but its kinematics is substantially different. The adiabatic run forms
a geometrically thick disc, supported mainly by rotation with an
admixture of thermal gas pressure. Outside this disc, a number of
fragments form that show a tendency to merge with the central
convex-shaped disc. This fragmentation is observed on scales be-
tween ∼10−4 and 10−3 pc, and temporarily disrupts the growth of
the central object. This object is in contrast with quasi-spherical
shapes of the forming cores in the FLD case.

In both cases, the photospheric shapes are very irregular, which
allows the radiation to diffuse out of the central region. This explains
the major difference between the adiabatic and the FLD runs, and
reveals the inapplicability of the adiabatic approximation to the
growth of the central core in direct collapse.

We find that the typical radiation luminosity from the pho-
tosphere of each of the cores formed lies in the range of
∼few × 1037 − few × 1038 erg s−1 over much of the run time. This
is of order the Eddington luminosity for such an object. Fourier
analysis shows that this luminosity varies on two characteristic
time-scales: a long one, which is associated with the variable ac-
cretion time-scale, and ∼0.1 yr, which originates in the radiative
diffusion time-scale within the photosphere. The latter variability is
characterized by a large amplitude that exceeds 1039 erg s−1.

This study reveals that models accounting for radiative transfer
in the collapsing gas display a different evolution than models with
an adiabatic equation of state, at least during early stages of core
formation. The main reason for these differences is that the radi-
ation is capable of diffusing out due to the anisotropy in density
and temperature, and the resulting decrease in opacity in various
directions. This effect vanishes in the 1D case and requires a multi-
dimensional treatment. The underlying gas dynamics changes as a
result, leading to massive outflows from forming cores. It modifies
the angular momentum transfer, and the flow avoids fragmenta-
tion in the optically thick regime, which prevails in the adiabatic
case.
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A P P E N D I X A : E X PA N S I O N O F A N H I I R E G I O N
A RO U N D A P O I N T S O U R C E O F R A D I AT I O N :
T H E RO L E O F T H E R A D I AT I O N F O R C E

In order to test our version of Enzo, we compare the analytical and
numerical solutions for an envelope expanding away from a point
source of radiation and accelerated by thermal pressure gradients
from photoionization and by radiation force (e.g. Wise et al. 2012;
Rosdahl & Teyssier 2015). The analytical solution is based on mo-
mentum conservation in the swept gas around the central ionizing
source with luminosity L, neglecting the terms associated with grav-
ity, heating and cooling, so that ṗ = L/c, where p is momentum
and c is the speed of the light. The resulting radial position r(t) of
the expanding H II front for an initially uniform gas ρ0 is given by

r(t) = (R4
s + 2At2)1/4, (A1)

where Rs = (3Ṅγ /4πn2
0αB)1/3 is the Strömgren sphere radius,

A = 3L/4πρ0c, αB = 2.5 × 10−13 cm3 s−1 is the case B recom-
bination rate at T = 104 K, n0 is the hydrogen number density, and
Ṅγ is the rate of emitted photons per second from the source. An
additional effect is due to the gas thermal pressure that results from
photoionization heating. In the absence of radiation force, the H II

front expands due to the photoionization heating as (Spitzer 1978)

r(t) = Rs

(
1 + 7cst

4Rs

)4/7

, (A2)

where cs is the sound speed in the ionized gas.
To study the role of the radiation force, we set up a cubic box

and place a point source L = 106L� at the centre of the box.
The simulation box is resolved with 1283 cells. The point source
emits ionizing photons in the energy band 13.6–24.6 eV into an
initially uniform neutral pure hydrogen gas at a temperature of
T0 = 103 K. The tests are performed for three different initial gas
number densities, namely 105, 107, and 109 cm−3. For each number
density, the simulation is performed with and without the radiation
force, while the photoionization heating is present in both cases. The
box size and run time for each test are summarized in the Table A1.
For these tests, we assume non-LTE conditions, which means that
we solve for the H-chemistry, do not assume Planckian emissivity,
and calculate emission versus absorption in this energy bin.

Fig. A1 shows the H II front expansion driven by a direct mo-
mentum absorption from the ionizing source (equation A1), or as a
result of the photoionization heating only (equation A2). It clearly
shows that radiation force has a trivial contribution at the lowest
density 105 cm−3, and the expansion is controlled by photoioniza-
tion heating (equation A2). As the density increases, at first, the
contribution of radiation force in the expansion exceeds the pho-
toionization heating (see the green line in Fig. A1 for time ≤104 yr),
and the photoionization heating dominates the process afterwards
(see Fig. A1 for time ≥105 yr).

For the performed tests, the H II front radius is compared with
equation (A1), for the cases when the radiation force has the dom-
inant effect, and compared with equation (A2), when the effect

Table A1. Simulations setup for expanding H II region.

Parameter Test I Test II Test III

L 106L� 106L� 106L�
nH (cm−3) 105 107 109

Lbox (pc) 2 0.2 0.02
trun (Myr) 1.2 × 10−2 2.1 × 10−3 2.7 × 10−4

Figure A1. Radius of the expanding shell calculated based on radiation
force (equation A1, solid lines), and on the effect of the photoionization
heating (equation A2, dashed lines), for different hydrogen number density
of nH = 105, 107, and 109 cm−3. For all cases, the point source luminosity
is L = 106 L�.

Figure A2. Radius of the expanding H II region versus time for the numeri-
cal simulation including the radiation force (red circle) and without radiation
force (blue circle). The analytical evolution of the radius due to the radia-
tion force (black dashed line, equation A1) and due to the photoionization
heating (green dashed line, equation A2) are also provided.

of photoionization heating is dominant. Shown in Fig. A2 is the
radial evolution of the expanding H II region for different densities.
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Figure A3. Radial profiles of (a) the gas density, (b) the neutral fraction,
(c) the temperature, and (d) the ratio of the radiation pressure to gas pres-
sure given at different times for the initial hydrogen number density is
nH = 109 cm−3. Runs with only photoionization heating are represented by
dashed curves, while runs that include a radiation force from the ionizing
photons are given by solid curves.

The radius is estimated to be located where the neutral fraction
xH I = 0.5. As discussed before, the radiation force has a negli-
gible effect for the case of nH = 105 cm−3. Therefore, the H II

front radius is mainly determined by the photoionization, and the

simulations with and without the radiation force yield quite similar
results (e.g. see panel a). As the density increases, the radiation
force becomes more important. For density nH = 107 cm−3, panel
b shows that the radiation force has small additional contribution to
the H II front expansion, which agrees with the analytical solution.
A more significant effect of the radiation force was found for a
density of nH = 109 cm−3 (panel c), where the expanding H II re-
gion is governed by the radiation force (see the red circles), and its
front radius is well approximated by equation (A1), black line. The
correspondence between the analytical and numerical solutions is
very good.

Shown in Fig. A3 are radial profiles of (a) the gas density, (b) the
neutral fraction, (c) the temperature, and (d) the ratio of radiation-
to-thermal pressure for an initial number density of 109 cm−3. The
profiles of density and neutral fraction in each figure (panels a
and b) clearly demonstrate the expansion of the H II region. For this
case, the radiation force is dominant. The gas density and hence
the neutral fraction substantially decrease in the H II region (by
about two orders of magnitude), and the ratio of radiation-to-thermal
pressure increases by almost two orders of magnitude. Therefore,
the resulting expansion of the bubble is mainly driven by a direct
radiation force.

There are two important issues to point out. First, for the case of
a dominant radiation pressure, the bubble expansion will be stalled
at a radius R1, where the outwards radiation pressure from the point
source is equal to the thermal pressure from outside the bubble,
L/4πR2

1c = nHkBT0. Secondly, in regards to dominant photoion-
ization heating, the expansion stops when nbTb = nHT0, where nb

and Tb are gas density and temperature in the bubble. The radius of
the bubble in this case can be estimated from Ṅγ = 4/3πR3

2αBn2
b.

Within this radius, the ionizing luminosity of the point source pro-
vides an equal rate of photoionizations to the recombination rate
within the bubble.

As one can see, the terminal radius of the bubble cannot be
determined using equation (A1) and equation (A2) and happens to
lie well outside our calculation domain. Rosdahl & Teyssier (2015)
presented the expanding H II region runs with the RAMSES–RT
code. In these runs, the maximal bubble radii have been reached
and agreed well with R1 and R2 for the dominant radiation pressure
and photoionization heating, respectively.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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