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Abstract

The topology of the matching complex for the 2×n grid graph is mysterious. We
describe a discrete Morse matching for a family of independence complexes Ind(∆m

n )
that include these matching complexes. Using this matching, we determine the
dimensions of the chain spaces for the resulting Morse complexes and derive bounds
on the location of non-trivial homology groups for certain Ind(∆m

n ). Furthermore,
we determine the Euler characteristic of Ind(∆m

n ) and prove that several homology
groups of Ind(∆m

n ) are non-zero.

Keywords: Grid Graphs; Independence Complexes; Recursions; Homology

1 Introduction

Consider a simple graph G = (V (G), E(G)). A matching on G is a subgraph H =
(V (G), S) with S ⊆ E(G) and maximum vertex degree 1. We make no distinction between
a matching and its edge set S. The matching complex of G, denotedM(G), is the simplicial
complex with vertex set E(G) and faces given by the matchings on G.

We find it useful to reframe matchings in the language of independent sets as follows.
An independent set in a graph G is a set T ⊆ V (G) such that no two elements of T are
adjacent in G. The independence complex of G, denoted Ind(G), is the abstract simplicial
complex with vertex set V (G) and faces given by the independent sets in G. Recall that
the line graph of G, denoted L(G), has vertex set E(G) with two vertices of L(G) adjacent
if they are adjacent edges in G. A key observation is that M(G) = Ind(L(G)) for a finite
simple graph G.

∗Partially supported by grant H98230-16-1-0045 from the U.S. National Security Agency.

the electronic journal of combinatorics 24(4) (2017), #P4.18 1



Recall that the simplicial join of two abstract simplicial complexes ∆ and Γ is the
abstract simplicial complex ∆∗Γ = {σ∪τ | σ ∈ ∆, τ ∈ Γ}. It is straightforward from this
definition to verify that Ind(A

⊎
B) ∼= Ind(A) ∗ Ind(B) and M(A

⊎
B) ∼= M(A) ∗M(B)

for graphs A and B, where
⊎

denotes the disjoint union.
For the path on n vertices (denoted Pan) and the cycle on n vertices (denoted Cn),

the homotopy type of the matching and independence complexes are known [19]; see also
[16, Section 11.4]. However, matching and independence complexes quickly become quite
complicated, e.g. [3, 4, 5, 7, 10, 11, 17, 21, 22, 23]. Jonsson [16] provides a thorough survey
regarding these and other simplicial complexes arising from graphs, including special
emphasis on the matching complex for complete graphs and complete bipartite graphs.

We focus our attention in this paper on G(2, n), the 2 × n grid graph with V =
{1, 2}× [n] and where two vertices (x0, y0) and (x1, y1) are adjacent when their Euclidean
distance is exactly 1.

Definition 1. We define Γn := G(2, n+2) and Dn := L(Γn). The indexing shift is chosen
so that n is the number of interior rungs on the ladder of Γn as well as the number of
interior vertices of degree 4 in Dn. For example, Γ3 and D3 are isomorphic to the graphs
below, respectively.

Figure 1: Γ3 and D3

In an unpublished manuscript [15], Jonsson establishes basic results regarding the
matching complexes for Γn and more general grid graphs. For example, Jonsson shows
that the homotopical depth of M(Γn) is d2n/3e, which implies that this skeleton of the
complex is a wedge of spheres. However, Jonsson states [15, page 3] that “it is probably
very hard to determine the homotopy type of” matching complexes of grid graphs.

In [6], Bousquet-Mélou, Linusson, and Nevo introduced matching trees as a way to
apply discrete Morse theory to study independence complexes of simple graphs. In this
paper, we will use matching trees to produce a Morse matching on the face poset of
M(Γn) = Ind(Dn). Our matching algorithm has a recursive structure that allows us to
enumerate the number and dimension of cells in a cellular complex homotopy equivalent
to Ind(Dn). We then use this recursion to determine topological properties of Ind(Dn).

Our techniques actually apply to independence complexes of a larger class of graphs
that include the Dn graphs. Before introducing these more general graphs, we need to
define a family of useful related graphs.

Definition 2. For m > 1 and n > 1, let Ŷ m
n be two vertices connected by m disjoint paths

each having n+ 1 edges. We ignore the degenerate cases m = 0 and n = 0. For example,
Ŷ 3
4 is isomorphic to the graph below. Also, observe that Ŷ 1

n
∼= Pan+2 and Ŷ 2

n
∼= C2n+2.
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Figure 2: Ŷ 3
4

We will impose a specific labeling on these Ŷ m
n graphs for use throughout this paper:

the leftmost vertex is a, the rightmost vertex is b, and the k-th vertex away from a on the
j-th path is (j, k).

Definition 3. Let ∆m
n denote the (labeled) graph Ŷ m

n+1 with n additional vertices labeled
{1, . . . , n} and edges {k, (j, k)} and {k, (j, k + 1)} for each j ∈ [m] and each k ∈ [n]. As
an example, ∆4

3 is depicted in the figure below. The indexing convention is chosen so that

n is the number of interior vertices of degree 2m. Therefore, we further define ∆m
0 := Ŷ m

1

and ∆m
−1 := K1 where K1 denotes an isolated vertex with no loops.

It is straightforward to verify that ∆2
n = Dn, and hence ∆m

n is a family generalizing
Dn.

a
1 2 3

b

(4, 1) (4, 2) (4, 3) (4, 4)

(3, 1) (3, 2) (3, 3) (3, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

(1, 1) (1, 2) (1, 3) (1, 4)

Figure 3: Labeled ∆4
3

The article is structured as follows. In Section 2, we review discrete Morse theory and
matching trees for independence complexes. In Section 3, we describe a matching tree
procedure for Ind(∆m

n ) which we call the Comb Algorithm. This matching tree produces
a cellular complex Xm

n that is homotopy equivalent to Ind(∆m
n ). In Section 4, we use the

Comb Algorithm to establish enumerative properties regarding dimensions of the chain
spaces of Xm

n . Finally, in Section 5, we apply these enumerative results to derive some
homological properties of Ind(∆m

n ). We conclude with two questions for further research.

2 Discrete Morse Theory

In this section, we introduce tools from discrete Morse theory. Discrete Morse theory was
introduced by R. Forman in [14] and has since become a standard tool in topological com-
binatorics. Similar ideas were developed around the same time by Brown [8] and Chari [9].
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The main idea of simplicial discrete Morse theory is to pair cells in a simplicial complex
in a manner that allows them to be cancelled via elementary collapses, which reduces the
complex under consideration to a homotopy-equivalent cellular complex, typically having
fewer cells. Further details regarding the following definitions and theorems can be found
in [16] and [18].

Definition 4. A partial matching on a poset P is a subset µ ⊆ P × P such that

• (a, b) ∈ µ implies b covers a, and

• each a ∈ P belongs to at most one element in µ.

When (a, b) ∈ µ, we write a = d(b) and b = u(a). A partial matching on P is acyclic if
there does not exist a cycle of the form

b1 > d(b1) < b2 > d(b2) < · · · < bn > d(bn) < b1

with n > 2 and all bi ∈ P being distinct. Given an acyclic partial matching µ on P , we
say that the unmatched elements of P are critical.

The following theorem asserts that an acyclic partial matching on the face poset of a
polyhedral cell complex is exactly the pairing needed to produce the homotopy equivalence
promised by discrete Morse theory.

Theorem 5. (Main Theorem of Discrete Morse Theory, [8, Proposition 1], [9, Proposition
3.3] ). Let ∆ be a polyhedral cell complex, and let µ be an acyclic partial matching on the
face poset of ∆. If ci denotes the number of critical i-dimensional cells of ∆, then the
space ∆ is homotopy equivalent to a cell complex ∆c with ci cells of dimension i for each
i > 0, plus a single 0-dimensional cell in the case where the empty set is paired in the
matching.

We now define how to create a matching tree on a simple graph G = (V,E). For
A,B ⊆ V such that A ∩B = ∅, let

Σ(A,B) := {I ∈ Ind(G) : A ⊆ I and B ∩ I = ∅} .

For a vertex p ∈ V (G), let N(p) denote the neighbors of p in G.
A matching tree τ(G) for G is a directed tree constructed according to the following

algorithm.

Algorithm 6 (Matching Tree Algorithm, MTA). Begin by letting τ(G) be a single node
labeled Σ(∅, ∅).

WHILE τ(G) has a leaf node Σ(A,B) with out-degree 0 and |Σ(A,B)| > 2,
DO ONE OF THE FOLLOWING:

1. If there exists a vertex p ∈ V \ (A∪B) such that N(p) ⊆ (A∪B), create a directed
edge from Σ(A,B) to a new node labeled ∅p. Refer to p as a free vertex of τ(G).
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2. If there exist vertices p ∈ V \ (A∪B) and v ∈ N(p) such that N(p)\ (A∪B) = {v},
create a directed edge from Σ(A,B) to a new node labeled Σ(A ∪ {v}, B ∪ N(v)).
Refer to v as a matching vertex of τ(G) with respect to p.

3. Choose a vertex v ∈ V \ (A ∪ B) and created two directed edges from Σ(A,B) to
new nodes labeled Σ(A,B∪{v}) and Σ(A∪{v}, B∪N(v)). Refer to v as a splitting
vertex of τ(G).

The node Σ(∅, ∅) is called the root of the matching tree, while any non-root node of
out-degree 1 in τ(G) is called a matching site of τ(G) and any non-root node of out-degree
2 is called a splitting site of τ(G).

Steps 2 and 3 of the above algorithm ensure that for any Σ(A,B) in τ(G), a ∈ A
implies N(a) ∈ B. Hence, if p /∈ A ∪ B, neither p nor any of its neighbors are in A. For
a vertex p satisfying the hypotheses of Step 1, we know that all neighbors of p are in B
since N(p) ⊆ (A∪B). Consequently, given σ ∈ Σ(A,B), we also have σ∪{p} ∈ Σ(A,B),
which means we may pair σ and σ ∪ {p} in the face poset of Ind(G).

Similarly, for vertices p and v satisfying the hypotheses of Step 2, all of p’s neighbors
(except for v) are in B. Note that performing Step 3 with this choice of v implies that the
branch with Σ(A,B ∪ {v}) has p as a free vertex, so we can then perform Step 1 on that
branch. This two-step sequence is an equivalent operation to performing Step 2 itself.
Also, note that the empty set is always matched at the last node of the form Σ(∅, B).

A key observation from [6] is that a matching tree on G yields an acyclic partial
matching on the face poset of Ind(G) as follows.

Theorem 7 ([6], Section 2). A matching tree τ(G) for G yields an acyclic partial matching
on the face poset of Ind(G) whose critical cells are given by the non-empty sets Σ(A,B)
labeling non-root leaves of τ(G). In particular, for such a set Σ(A,B), the set A is a
critical cell in Ind(G).

3 The Comb Matching Algorithm

In this section, we define a specific matching tree for the Ind(∆m
n ) complexes. First, it is

appropriate to determine the homotopy type of Ind(Y m
n ) and Ind(Ŷ m

n ), where Y m
n (defined

below) is a graph related to Ŷ m
n .

Definition 8. For m > 1 and n > 1, let Y m
n denote the extended star graph with a

central vertex of degree m and paths of n edges emanating outward. We refer to each of
these paths as a tendril. We ignore the degenerate cases m = 0 and n = 0 as we did with
Ŷ m
n .

As an example, Y 3
4 is isomorphic to the graph below. Observe that removing one of

the vertices of degree m and all of its edges from Ŷ m
n produces Y m

n . Also, observe that
Y 1
n
∼= Pan+1 and Y 2

n
∼= Pa2n+1.

Since Y m
n is a tree for m > 1 and n > 0, we know by work of Ehrenborg and Hetyei

[12] that Ind(Y m
n ) is either contractible or homotopy equivalent to a single sphere.
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Figure 4: Y 3
4

Lemma 9. For m > 1 and n > 0,

Ind(Y m
n ) '


∗ if n = 3k
Smk if n = 3k + 1
Sm(k+1)−1 if n = 3k + 2

.

Proof. Case 1: n = 3k. We use induction on m. If m = 1, then Y 1
n
∼= Pa3k+1; hence,

Ind(Y 1
n ) is contractible by [18, Prop 11.16]. Suppose the induction hypothesis holds for

` < m. Select a tendril of Y m
n and label the vertices 1 through n starting at the leaf. We

consider a matching tree on Ind(Y m
n ). Perform Step 2 of the MTA with p = 1 and v = 2.

Repeat with p = 4 and v = 5 and so on, modulo 3. Since n = 3k, we will eventually
perform Step 2 with p = n − 2 and v = n − 1. The remaining subgraph of Y m

n from
which we may select vertices is isomorphic to Y m−1

n . Since Ind(Y m−1
n ) is contractible by

assumption, Ind(Y m
n ) is contractible as well.

Case 2: n = 3k + 1 or n = 3k + 2. Let a be the vertex of degree m in Y m
n . We

again consider a matching tree on Ind(Y m
n ). We apply Step 3 of the MTA with v = a.

At the Σ({a}, N(a)) and Σ(∅, {a}) nodes, the remaining subgraphs of Y m
n from which we

may select vertices are isomorphic to an m-fold disjoint union of Pan−1’s and an m-fold
disjoint union of Pan’s respectively. When n = 3k + 1, the union of Pan’s is contractible
by [18, Prop 11.16], and each subcomplex Ind(Pan−1) contributes

⌊
n−2
3

⌋
+ 1 = k vertices

toward a single critical cell. In total, the vertex a and the vertices from each Ind(Pan−1)
factor combine to form a single critical cell of dimension mk. When n = 3k + 2, the
union of the Pan−1’s is contractible by [18, Prop 11.16], and each subcomplex Ind(Pan)
contributes

⌊
n−1
3

⌋
+ 1 = k + 1 vertices toward a single critical cell. In total, the vertices

from each Ind(Pan) factor combine to form a single critical cell of dimension m(k+1)−1.
This gives the result.

Remark 10. An alternative method of proof relies on the fact that, when N(v) ⊆ N(w),
Ind(G) collapses onto Ind(G\w) per [13, Lemma 3.2] and [2, Prop 3.1]. On each tendril
of an arbitrary Y m

n , set v equal to the leaf, set w equal to the vertex two vertices in
from the leaf, and then use this result to obtain that Ind(Y m

n ) is homotopy-equivalent
to the independence complex of the disjoint union of Y m

n−3 and m copies of K2. Hence,
Ind(Y m

n ) ' suspm(Ind(Y m
n−3)). It is straightforward to determine Ind(Y m

0 ), Ind(Y m
1 ),

and Ind(Y m
2 ) by hand, and then we obtain the result by induction.
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Lemma 11. For m > 2 and n > 1,

Ind(Ŷ m
n ) '


Smk if n = 3k
Smk if n = 3k + 1
Smk+1 ∨ Sm(k+1)−1 if n = 3k + 2

.

Proof. In Ŷ m
n , label the two vertices of degree m as a and b respectively. We consider

a matching tree on Ind(Ŷ m
n ). First, we apply Step 3 of the MTA with v = b. At the

Σ({b}, N(b)) and Σ(∅, {b}) nodes, the remaining subgraphs of Ŷ m
n from which we may

select vertices are isomorphic to Y m
n−1 and Y m

n respectively. For n = 3k and n = 3k + 1,
the result is immediate from applying Lemma 9 as one of the branches will produce
contractible information.

For the n = 3k + 2 case with m > 3, Lemma 9 only shows that two cells of the
appropriate dimension exist, but they may not necessarily form a wedge. This is sufficient
for the remainder of the article, but we prove that the two cells do, in fact, form a wedge
for sake of completeness. Given the matching tree defined above for Ind(Ŷ m

n ), let τ denote
the cell of dimension mk + 1, and let σ denote the cell of dimension m(k + 1)− 1. In the
style of [20, Theorem 2.2], we argue that the feasibility domain of σ (see [20, Def 2.1]) is
such that τ and σ must form a wedge. Suppose there exists a generalized alternating path
from σ to τ as per [20, Def 2.1]. Our choice of matching tree implies b ∈ τ while b /∈ σ.
Let xi be the last element in the alternating path with b /∈ xi, so b ∈ xi+1. If xi is covered
by xi+1, then xi and xi+1 are matched in the matching tree and so b was designated as
a free vertex during some application of Step 1 of the MTA. This is not possible as b is
included in A∪B in all tree nodes except for the root. If xi > xi+1, then xi+1 ⊆ xi as sets.
This contradicts that b /∈ xi and b ∈ xi+1. Consequently, no such generalized alternating
path can exist between σ and τ . The feasibility region of σ does not contain τ , and so σ
and τ form a wedge per [20, Theorem 2.2].

We now develop a matching tree for Ind(∆m
n ).

Algorithm 12 (Comb Algorithm, CA). Fix m > 2, n > 1 and use the labeling of the
vertices of ∆m

n from Section 1.

Step 1: Perform Step 3 of the MTA for v = 1, which produces two leaves Σ({1}, N(1))
and Σ(∅, {1}) respectively.

Step 2: For each k ∈ {2, . . . , n}, inductively perform Step 3 of the MTA for v = k on the
leaf Σ(∅, {1, 2, . . . , k−1}), successively producing leaves Σ({k}, N(k)∪{1, 2, . . . , k−
1}) and Σ(∅, {1, 2, . . . , k}).

Step 3: At the Σ({1}, N(1)) leaf, we may perform Step 1 of the MTA with p = a.

Step 4: For each k ∈ {2, . . . , n− 1}, consider the leaf

Σ({k}, N(k) ∪ {1, 2, . . . , k − 1}) .
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Now, the remaining subgraph of ∆m
n from which we may select vertices is isomorphic

to the graph Y m
k−1

⊎
∆m
n−(k+1). Since Ind(Y m

k−1) is known, we can determine the
number and dimension of critical cells below this node by inductively applying this
algorithm to ∆m

n−(k+1).

Step 5: At the Σ({n}, N(n)∪{1, 2, . . . , n− 1}) leaf, we may perform Step 1 of the MTA
with p = b.

Step 6: At the Σ(∅, {1, 2, . . . , n}) leaf, the remaining subgraph of ∆m
n from which we may

query vertices is isomorphic to Ŷ m
n+1. Since Ind(Ŷ m

n+1) is known, we can determine
the number and dimension of critical cells arising below this node.

We call this process for generating a matching tree for Ind(∆m
n ) the “Comb Algorithm”

because of the visual shape of the resulting matching tree. Steps 1 and 2 produce the
backbone of the “comb,” while Steps 3 through 6 produce the teeth. For example, applying
Steps 1 and 2 of the comb algorithm to Ind(∆m

4 ) leads to the (partial) matching tree in
Figure 3.

Σ(∅, ∅)

Σ(∅, {1})

Σ(∅, {1, 2})

Σ(∅, {1, 2, 3})

Σ(∅, {1, 2, 3, 4})

Σ({1}, N(1))

Σ({2}, N(2) ∪ {1})

Σ({3}, N(3) ∪ {1, 2})

Σ({4}, N(4) ∪ {1, 2, 3})

Figure 5: Example of the Comb Algorithm

4 Chain Spaces of Xm
n

Definition 13. Denote by Xm
n the cellular complex arising from the Comb Algorithm

applied to Ind(∆m
n ) for m > 2 and n > 1. Since we cannot apply the Comb Algorithm to

Ind(∆m
0 ), we define Xm

0 := S0 in agreement with the fact that ∆m
0
∼= Ŷ m

1 . Now, for fixed
m > 2 and arbitrary d > 1, let Cd

n be the number of d-dimensional cells in Xm
n .
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Since the Comb Algorithm will always pair the empty set with a 0-cell, we insist that
C−1
n = 0. Also, we set C0

n to be one less than the number of 0-dimensional cells in Xm
n to

avoiding including the extra 0-cell generated by the empty set pairing. Furthermore, the
overall context implies that Cd

n = 0 if d < 0 or n < 0.

Proposition 14. Suppose 0 6 n 6 3. Then, Cd
n = 0 for all d > 0 except the following:

When m = 2
n = 0 1 2 3

d = 0 1 - - -
1 - 2 - -
2 - - 1 2

When m > 3
n = 0 1 2 3

d = 0 1 - - -
1 - 1 - -
2 - - - 1

m− 1 - 1 - -
m - - 1 1

Table 1: Initial conditions of the Comb Algorithm recursion

Proof. Fix m > 2. We separately consider Ind(∆m
n ) for n ∈ {0, 1, 2, 3}.

Case 1: Suppose n = 0. Then ∆m
0
∼= Ŷ m

1 , which implies Ind(∆m
0 ) ' S0 by Lemma 11.

Consequently, C0
0 = 1 while Cd

0 = 0 for all other d.
Case 2: Suppose n = 1. We apply Step 1 followed by Step 3 of the CA to Ind(∆m

1 ). At
the Σ(∅, {1}) node, the remaining graph from which we may select vertices is isomorphic to

Ŷ m
2 . Thus, Ind(∆m

1 ) ' Ind(Ŷ m
2 ), from which we can apply Lemma 11. So, C1

1 = Cm−1
1 = 1

if m > 3, and C1
1 = 2 if m = 2. In either case, Cd

1 = 0 for all other d.
Case 3: Suppose n = 2. First, apply the Comb Algorithm to Ind(∆m

2 ). We note
that Step 5 subsumes Step 4 in this particular instance. Now, Steps 3 and 5 imply that
no critical cells are picked out below the nodes Σ({1}, N(1)) and Σ({2}, N(2) ∪ {1}).
Consequently, Step 6 implies that Ind(∆m

2 ) ' Ind(Ŷ m
3 ) ' Sm via Lemma 11. Thus,

Cm
2 = 1 while Cd

2 = 0 for all other d.
Case 4: Suppose n = 3. First, apply the Comb Algorithm to Ind(∆m

3 ). Now, Steps 3
and 5 imply that no critical cells are generated below Σ({1}, N(1)) and Σ({3}, N(3) ∪
{1, 2}). Per Step 4 at the Σ({2}, N(2) ∪ {1}) leaf, the remaining subgraph of ∆m

3 from
which we may select vertices is isomorphic to Y m

1

⊎
∆m

0 . We already know that Ind(Y m
1 )

and Ind(∆m
0 ) are both homotopy equivalent to S0, thus each has one critical 0-cell with a

single vertex. Consequently, Ind(Y m
1

⊎
∆m

0 ) must have a single critical cell consisting of
two vertices, so it is homotopy equivalent to S1. Accounting for the vertex 2 as well, we see
that the Comb Algorithm generates a 2-cell below this node. At the node Σ(∅, {1, 2, 3})
generated in Step 6, the remaining subgraph of ∆m

3 from which we may select vertices is

isomorphic to Ŷ m
4 . Since Ind(Ŷ m

4 ) ' Sm, the Comb Algorithm generates an m-cell below
this node. In total, we have C2

3 = Cm
3 = 1 if m > 3, otherwise C2

3 = 2. In either case,
Cd

3 = 0 for all other d.
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Theorem 15. Using Proposition 14 as initial conditions, we have

Cd
n = Cd−2

n−3 + C
d−(m+1)
n−4 + Cd−m

n−3 , (1)

when n > 4 for fixed m > 2. In this formula, a summand is zero if the subscript or
superscript is negative.

Proof. Assume n > 4 and d > 0. Applying the Comb Algorithm to Ind(∆m
n ) generates

factors of the form Ind(Y m
k−1

⊎
∆m
n−(k+1)) for 1 6 k 6 n, each of which are identically

Ind(Y m
k−1) ∗ Ind(∆m

n−(k+1)). We let Cd
n(k) be the number of d-dimensional cells in Xm

n

produced by the Comb Algorithm below the node Σ({k}, N(k) ∪ {1, 2, . . . , k − 1}), that
is, the cells referenced in Step 4 of the Comb Algorithm. We use Cd

n(∅) to denote the
number of d-dimensional cells arising from Step 6 of the Comb Algorithm. It is clear that
Cd
n =

∑n
k=1C

d
n(k) + Cd

n(∅).
First, whenever k − 1 ≡ 0 mod 3, Ind(Y m

k−1) is contractible and, consequently, so is
Ind(Y m

k−1)∗Ind(∆m
n−(k+1)). Thus, Cd

n(k) = 0 when k−1 ≡ 0 mod 3, and so we may assume

that k = 3` or k = 3` + 2 for some non-negative integer `. Also, note that Ind(Y m
k−1) ∗

Ind(∆m
n−(k+1)) is contractible for k = n since Ind(∆m

−1) is contractible, i.e. Cd
n(n) = 0.

These observations agree respectively with Steps 3 and 5 of the Comb Algorithm.
Next, we consider Cd

n(2). Such a d-cell must correspond to the set of d + 1 vertices
consisting of the vertex 2, a single vertex contributed from Ind(Y m

1 ), and d − 1 vertices
contributed from Ind(∆m

n−3). Therefore, the d-cells coming from Ind(Y m
1 ) ∗ Ind(∆m

n−3) are
in bijective correspondence with the (d−2)-cells of Ind(∆m

n−3). Hence, Cd
n(2) equals Cd−2

n−3.
Note that if d < 2, then Cd

n(2) = 0.
Similarly, we consider Cd

n(3). The d+ 1 vertices corresponding to such a d-cell consist
of the vertex 3, m vertices contributed from Ind(Y m

2 ), and d−m vertices contributed from
Ind(∆m

n−4), provided d−m > 0. Therefore, the d-cells coming from Ind(Y m
2 ) ∗ Ind(∆m

n−4)
are in bijective correspondence with the (d− (m+ 1))-cells of Ind(∆m

n−4). Hence, Cd
n(3) =

C
d−(m+1)
n−4 . Note that if d < m+ 1, then Cd

n(3) = 0.
Lastly, we simultaneously consider Cd

n(k) for k ∈ {4, 5, . . . , n, ∅}. As before, we can
disregard k ≡ 1 mod 3 and k = n. We first consider the case when k = 3` for some
positive integer `, which implies that Ind(Y m

k−1) ' Sm`−1. A d-cell contributed from
the factor Ind(Y m

k−1) ∗ Ind(∆m
n−(k+1)) consists of (i) the vertex k, (ii) m` vertices from

Ind(Y m
k−1), and (iii) d −m` vertices from Ind(∆m

n−(k+1)), provided that d −m` > 0. We

observe that a similar factor of Ind(Y m
(k−1)−3

⊎
∆m
n−(k+1)) is generated when the Comb

Algorithm is applied to Ind(∆m
n−3). It is straightforward to show that the difference in

dimension of the critical cell in Ind(Y m
k−1) from that of the critical cell in Ind(Y m

k−4) is
m. This implies that the d − m` vertices from Ind(∆m

n−(k+1)) that generate a given d-

cell in the factor Ind(Y m
k−1) ∗ Ind(∆m

n−(k+1)) for Ind(∆m
n ) also generate a cell of dimension

d − m in the factor Ind(Y m
k−4

⊎
∆m
n−(k+1)) for Ind(∆m

n−3) and vice versa. Consequently,

Cd
n(k) = Cd−m

n−3 (k − 3), provided d > m. A similar argument holds for the case when
k ≡ 2 mod 3.

Next, we see that Cd
n(∅) = Cd−m

n−3 (∅) if d > m. This observation follows because the
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difference in dimensions of the critical cells in Ind(Ŷ m
n+1) from those of the critical cells in

Ind(Ŷ m
n−2) is m while the number of critical cells is constant modulo 3.

Hence, we must have

n∑
k=4

Cd
n(k) + Cd

n(∅) =
n−3∑
k=1

Cd−m
n−3 (k) + Cd−m

n−3 (∅) = Cd−m
n−3 ,

which gives

Cd
n =

n∑
k=1

Cd
n(k) + Cd

n(∅) = Cd−2
n−3 + C

d−(m+1)
n−4 + Cd−m

n−3 .

Now that we have a recursive formula that gives the number of critical cells generated
by the Comb Algorithm, we can manipulate this formula to get a recursive formula for
the reduced Euler characteristic of both Ind(∆m

n ) and Xm
n . We denote the reduced Euler

characteristic by χmn . Note that since C0
n is one less than the number of 0-dimensional

cells in Xm
n , we have χmn =

∑
d>0(−1)dCd

n.

Corollary 16. Given the initial conditions from Proposition 14, when m > 2 and n > 4,
we have

χmn = (1 + (−1)m)χmn−3 + (−1)m+1χmn−4.

Proof. Fix m and n as above. Using formula (1) for Cd
n, we obtain

χmn =
∑
d>0

(−1)d
(
Cd−2
n−3 + C

d−(m+1)
n−4 + Cd−m

n−3

)
=

(∑
d>0

(−1)dCd−2
n−3

)
+

(∑
d>0

(−1)dC
d−(m+1)
n−4

)
+

(∑
d>0

(−1)dCd−m
n−3

)

=

(∑
d>0

(−1)d−2Cd−2
n−3

)
+

(
(−1)m+1

∑
d>0

(−1)d−(m+1)C
d−(m+1)
n−4

)

+

(
(−1)m

∑
d>0

(−1)d−mCd−m
n−3

)

=

(∑
d>0

(−1)dCd
n−3

)
+

(
(−1)m+1

∑
d>0

(−1)dCd
n−4

)
+

(
(−1)m

∑
d>0

(−1)dCd
n−3

)
= χmn−3 + (−1)m+1χmn−4 + (−1)mχmn−3

= (1 + (−1)m)χmn−3 + (−1)m+1χmn−4

The fourth equality above is obtained by reindexing and noting that C
d−(m+1)
n−4 = 0 for

d < m and Cd−m
n−3 = 0 for d < m− 1.
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Corollary 17. When m is even, χmn satisfies the recursion an = an−3 − an−2 − an−1

with initial conditions a0 = 1, a1 = −2, and a2 = 1, and hence has generating function
1−x

1+x+x2−x3 . (This sequence is the A078046 entry in the OEIS [1].)

Proof. Assume that m > 2 is even. First, observe that χm0 = 1, χm1 = −2, and χm2 = 1
by Proposition 14, so both relations have the same initial conditions. We can easily
verify that χm3 = 2 = 1 − (−2) − 1 = a0 − a1 − a2 = a3. Now, for fixed n, assume
that χm` satisfies both relations for ` < n. Since m is even, we have that χmn = 2 ·
χmn−3 − χmn−4 = χmn−3 + (χmn−3 − χmn−4). By assumption, χmn−1 = χmn−4 − χmn−3 − χmn−2, which
implies that χmn−3 − χmn−4 = −χmn−2 − χmn−1. Therefore, we obtain by substitution that
χmn = χmn−3 + (χmn−3 − χmn−4) = χmn−3 − χmn−2 − χmn−1. Consequently, χmn satisfies both
relations by induction.

Remark 18. When m is odd, χmn = χmn−4. It is easy to verify that χm0 = 1, χm1 = 0,
χm2 = −1, and χm3 = 1 from Proposition 14. Therefore, χmn ∈ {−1, 0, 1} depending on the
value of n modulo 4.

For the special case m = 2, the dimensions of Cd
n have an interesting enumerative

interpretation. In particular, the sequence A201780 in OEIS [1] is the Riordan array of(
(1− x)2

1− 2x
,

x

1− 2x

)
which can be alternatively defined by

T (j, k) = 2 · T (j − 1, k) + T (j − 1, k − 1) (2)

with initial conditions T (0, 0) = 1, T (1, 0) = 0, T (2, 0) = 1, and T (j, k) = 0 if k < 0 or
j < k.

Proposition 19. When m = 2, formula (1) reduces to Cd
n = 2Cd−2

n−3 + Cd−3
n−4. We can

convert between our Cd
n array and the above Riordan array by the relations

Cd
n = T (n− d+ 2, 3d− 2n) and T (j, k) = C

3(j−2)+k
2(j−2)+k .

Proof. The initial conditions of Cn
d are realized as entries in this Riordan array as follows.

First, it is clear that we have C0
0 = 1 = T (2, 0). It is straightforward to obtain the

following:

C1
1 = 2

= 2(2 · 0 + 1) + 0

= 2(2 · T (0, 1) + T (0, 0)) + T (1, 0)

= 2 · T (1, 1) + T (1, 0)

= T (2, 1)
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C2
2 = 1

= 2 · 0 + 1

= 2 · T (1, 2) + T (1, 1)

= T (2, 2)

C3
2 = 2

= 2 · 1 + 0

= 2 · T (2, 0) + T (2,−1)

= T (3, 0)

Now, define expressions Jdn := n − d + 2 and Kd
n := 3d − 2n, which means that

T (Jdn, K
d
n) = T (n − d + 2, 3d − 2n). It is straightforward to verify that applying the

relation (2) to this entry gives

T (Jdn, K
d
n) = T (n− d+ 2, 3d− 2n)

= 2 · T (n− d+ 1, 3d− 2n) + T (n− d+ 1, 3d− 2n− 1)

= 2 · T (Jd−2
n−3, K

d−2
n−3) + T (Jd−3

n−4, K
d−3
n−4)

Thus, the recursion applied to T (n − d + 2, 3d − 2n) matches that of Cn
d . The proof of

the second half of the claim is similar and omitted.

5 Dimension Range of Critical Cells and Homology

In this section, we calculate the dimension range of the critical cells generated by the
Comb Algorithm as well as consider a specific homological implication for m > 4.

Theorem 20. Fix m > 2 and n > 0. Define

dminn :=


⌊

2n+ 2

3

⌋
if n = 3k or n = 3k + 1

2

⌊
n− 1

3

⌋
+m if n = 3k + 2

.

Then, Cd
n = 0 if 0 6 d < dminn (excluding the base 0-cell) while C

dmin
n
n is nonzero. When

m = 2, these two formulas coincide.

Proof. By Proposition 14, the claim holds for the base cases of n ∈ {0, 1, 2, 3}. We
proceed by strong induction. For n > 4, suppose that the claim is true for all 0 6 i < n.
For fixed j, consider the leaf Σ({j}, N(j) ∪ {1, 2, . . . , j − 1}) from the Comb Algorithm
applied to Ind(∆m

n ). Steps 3 and 4 of the Comb Algorithm allow us to assume that
j ∈ {2, . . . , n}. If j < n, then the remaining subgraph of ∆m

n from which we may query
vertices is isomorphic to Y m

j−1

⊎
∆m
n−(j+1), which corresponds to a subcomplex of Ind(∆m

n )

of the form Ind(Y m
j−1) ∗ Ind(∆m

n−(j+1)). Moreover, by Lemma 9, Ind(Y m
j−1) is contractible

when j ≡ 1 mod 3. Since joins respect homotopy equivalences, Ind(Y m
j−1) ∗ Ind(∆m

n−(j+1))
is contractible when j ≡ 1 mod 3, thus we may further assume that j is of the form 3` or
3`+ 2 for some non-negative integer `. Observe that when j = 3` or j = 3`+ 2, Ind(Y m

j−1)
is homotopy equivalent to Sm`−1 or Sm` respectively. We let δj denote the dimension of
this sphere.
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Still considering j ∈ {2, . . . , n − 1}, we have n − (j + 1) < n, and so the induction
hypothesis holds for Ind(∆m

n−(j+1)). We now count the minimum number of vertices in a

critical cell in the matching tree below the node Σ({j}, N(j)∪{1, 2, . . . , j− 1}). We have
the vertex j itself, δj + 1 vertices from Ind(Y m

j−1), and dminn−(j+1) + 1 vertices from Xm
n−(j+1).

This total number of vertices corresponds to a cell of dimension δj +dminn−(j+1)+2 below the

node Σ({j}, N(j) ∪ {1, 2, . . . , j − 1}). In the special case j = n, the remaining subgraph

of ∆m
n from which we may query vertices is isomorphic to Ŷ m

n+1, so we can also expect

the subcomplex Ind(Ŷ m
n+1) to contribute one or two cells of the appropriate dimension per

Lemma 11.
Next, we explicitly calculate dminn for each value of n mod 3.

Case 1: Suppose that n = 3k. The proposed dminn is
⌊
2n+2

3

⌋
=
⌊
6k+2
3

⌋
= 2k.

Subcase 1a: If j = 3`, then we have n − (j + 1) = 3(k − ` − 1) + 2, which implies
dminn−(j+1) = 2(k − `− 1) +m. Thus,

δj + dminn−(j+1) + 2 = (m`− 1) + 2(k − `− 1) +m+ 2

= 2k + (m− 2)`+ (m− 1).

Subcase 1b: If j = 3` + 2, then we have n − (j + 1) = 3(k − ` − 1), which implies
dminn−(j+1) = 2(k − `− 1). Thus,

δj + dminn−(j+1) + 2 = (m`) + 2(k − `− 1) + 2

= 2k + (m− 2)`.

By Lemma 11, the cell contributed by the subcomplex Ind(Ŷ m
n+1) is of dimension mk.

Observe that each of these cellular dimensions is no less than 2k since m > 2. Hence, none
of the cells in Xm

n are of dimension smaller than
⌊
2n+2

3

⌋
. Furthermore, when j = 2, we

have that the factor Ind(Y m
1 ) ∗ Ind(∆m

n−3) produces at least one cell of dimension exactly

2k, which implies that C
dmin
n
n is non-zero.

Case 2: Suppose that n = 3k + 1. The proposed dminn is
⌊
2n+2

3

⌋
=
⌊
6k+4
3

⌋
= 2k + 1.

Subcase 2a: If j = 3`, then we have n − (j + 1) = 3(k − `), which implies that
dminn−(j+1) = 2(k − `). Thus,

δj + dminn−(j+1) + 2 = (m`− 1) + 2(k − `) + 2

= 2k + (m− 2)`+ 1.

Subcase 2b: If j = 3`+ 2, then we have n− (j+ 1) = 3(k− `− 1) + 1, which implies
that dminn−(j+1) = 2(k − `)− 1. Thus,

δj + dminn−(j+1) + 2 = (m`) + 2(k − `)− 1 + 2

= 2k + (m− 2)`+ 1.
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By Lemma 11, the cells contributed by the subcomplex Ind(Ŷ m
n+1) are of dimensions

mk + 1 and m(k + 1)− 1. Observe that each of these cellular dimensions is no less than
2k + 1 since m > 2. Therefore, none of the cells in Xm

n are of dimension smaller than⌊
2n+2

3

⌋
. Furthermore, when j = 2, we have that the factor Ind(Y m

1 ) ∗ Ind(∆m
n−3) produces

at least one cell of dimension exactly 2k + 1, which implies that C
dmin
n
n is non-zero.

Case 3: Suppose that n = 3k + 2. The proposed dminn is 2
⌊
n−1
3

⌋
+m = 2k +m.

Subcase 3a: If j = 3`, then we have n − (j + 1) = 3(k − `) + 1, which implies
dminn−(j+1) = 2(k − `) + 1. Thus,

δj + dminn−(j+1) + 2 = (m`− 1) + 2(k − `) + 1 + 2

= 2k + (m− 2)`+ 2.

Because j = 3` and j > 2, we have ` > 1, which implies that

2k + (m− 2)`+ 2 > 2k + (m− 2) + 2 = 2k +m.

Subcase 3b: If j = 3`+ 2, then we have n− (j+ 1) = 3(k− `− 1) + 2, which implies
dminn−(j+1) = 2(k − `− 1) +m. Thus,

δj + dminn−(j+1) + 2 = (m`) + 2(k − `− 1) +m+ 2

= 2k + (m− 2)`+m.

By Lemma 11, the subcomplex Ind(Ŷ m
n+1) produces a cell of dimension m(k + 1).

Observe that each of these cellular dimensions is at least 2k+m since m > 2. Therefore,
none of the cells in Xm

n are of dimension smaller than 2
⌊
n−1
3

⌋
+ m. Furthermore, when

j = 2, we have that the factor Ind(Y m
1 )∗Ind(∆m

n−3) produces at least one cell of dimension

exactly 2k +m, which implies that C
dmin
n
n is non-zero.

For all three cases, dminn is a sharp lower bound on the dimension of cells generated
by the Comb Algorithm applied to Ind(Dm

n ). As a final observation, when m = 2 and
n = 3k + 2, we have b2n+2

3
c = 2k + 2 = 2bn−1

3
c+m.

Remark 21. Theorem 20 shows that Xm
n is at least dminn -connected. After a suitable

adjustment of notation, this agrees with results of Jonsson [15, Proposition 2.7] regarding
the connectivity of Ind(∆2

n).

Theorem 22. Fix m > 2 and n > 0. Define

dmaxn :=


⌊

3n+ 2

4

⌋
if m = 2

n+ 1 + (m− 3)

⌊
n+ 2

3

⌋
otherwise

.

Then, Cd
n = 0 if d > dmaxn , and C

dmax
n
n is nonzero.
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Proof. By Proposition 14, the claim holds for the bases cases of n ∈ {0, 1, 2, 3}. We
proceed by strong induction. For n > 4, suppose the claim is true for all 0 6 i < n.
For fixed j, we will be considering the maximum dimension of a cell produced below
the node Σ({j}, N(j) ∪ {1, 2, . . . , j − 1}) from the Comb Algorithm applied to Ind(∆m

n ).
As before, we may assume j ∈ {2, . . . , n}. If j = n, the remaining subgraph of ∆m

n

from which we may query vertices is isomorphic to Ŷ m
n+1. If j < n, then the remaining

subgraph is Y m
j−1

⊎
∆m
n−(j+1), which corresponds to a subcomplex of Ind(∆m

n ) of the form

Ind(Y m
j−1)∗Ind(∆m

n−(j+1)). We will again use the notation δj from the proof of Theorem 20.

Again considering j ∈ {2, . . . , n − 1}, we have n − (j + 1) < n, and so the induction
hypothesis holds for Ind(∆m

n−(j+1)). We now count the maximum number of vertices in a

critical cell in the matching tree below the node Σ({j}, N(j)∪{1, 2, . . . , j− 1}). We have
the vertex j itself, δj + 1 vertices from Ind(Y m

j−1), and dmaxn−(j+1) + 1 vertices from Xm
n−(j+1).

This total number of vertices corresponds to a cell of dimension δj + dmaxn−(j+1) + 2

below the node Σ({j}, N(j) ∪ {1, 2, . . . , j − 1}). As before, in the special case j = n, we

expect the subcomplex corresponding to Ind(Ŷ m
n+1) to contribute one or two cells of the

appropriate dimension per Lemma 11.
Next, we explicitly calculate dmaxn for the two cases of m.

Case 1: Suppose that m = 2. The proposed dmaxn is
⌊
3n+2

4

⌋
.

Subcase 1a: If j = 3`, then we have

δj + dmaxn−(j+1) + 2 = (2`− 1) +

⌊
3(n− (3`+ 1)) + 2

4

⌋
+ 2

=

⌊
3n− `+ 3

4

⌋
6 dmaxn

since ` > 1 as a consequence of j > 2.
Subcase 1b: If j = 3`+ 2, then we have

δj + dmaxn−(j+1) + 2 = 2`+

⌊
3(n− (3`+ 3) + 2

4

⌋
+ 2

=

⌊
3n− `+ 1

4

⌋
6 dmaxn .

We now consider the contribution of the subcomplex corresponding to Ind(Ŷ m
n+1).

When n = 3k, dmaxn =
⌊
9k+2
4

⌋
> 2k while the Ŷ m

n+1 contribution has dimension 2k. When

n = 3k + 1, dmaxn =
⌊
9k+5
4

⌋
> 2k + 1 while the Ŷ m

n+1 contributions have dimension 2k + 1.

When n = 3k + 2, dmaxn =
⌊
9k+8
4

⌋
> 2k + 2 while the Ŷ m

n+1 contribution has dimension
2k+2. So, all things considered, no cells of Xm

n exceed the proposed maximum dimension.
Furthermore, when j = 3, the Ind(Y m

2 ) ∗ Ind(∆m
n−4) factor produces at least one cell of

dimension exactly dmaxn , which implies that C
dmax
n
n is non-zero.

Case 2: Suppose that m > 3. The proposed dmaxn is n+ 1 + (m− 3)
⌊
n+2
3

⌋
.

Subcase 2a: If j = 3`, then we have δj + dmaxn−(j+1) + 2 is equal to the following
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(m`− 1) +

(
n− (3`+ 1) + 1 + (m− 3)

⌊
n− (3`+ 1) + 2

3

⌋)
+ 2

= n+ 1 + (m− 3)

(⌊
n− 3`+ 1

3

⌋
+ `

)
= n+ 1 + (m− 3)

⌊
n+ 1

3

⌋
6 dmaxn .

.Subcase 2b: If j = 3`+ 2, then we have δj + dmaxn−(j+1) + 2 is equal to the following

(m`) +

(
n− (3`+ 3) + 1 + (m− 3)

⌊
n− (3`+ 3) + 2

3

⌋)
+ 2

= n+ (m− 3)

(⌊
n− 3`− 1

3

⌋
+ `

)
= n+ (m− 3)

⌊
n− 1

3

⌋
6 dmaxn .

We now consider the contribution of the subcomplex corresponding to Ind(Ŷ m
n+1).

When n = 3k, dmaxn = 3k + 1 + (m− 3)
⌊
3k+2
3

⌋
= mk + 1 while the Ŷ m

n+1 contribution has

dimension mk. When n = 3k+ 1, dmaxn = (3k+ 1) + 1 + (m−3)
⌊
(3k+1)+2

3

⌋
= m(k+ 1)−1

while the Ŷ m
n+1 contributions have dimension mk+ 1 and m(k+ 1)−1 respectively. When

n = 3k+2, dmaxn = (3k+2)+1+(m−3)
⌊
(3k+2)+2

3

⌋
= mk+m while the Ŷ m

n+1 contribution

has dimension mk + m. So, all things considered, no cells of Xm
n exceed the proposed

maximum dimension. Moreover, when n = 3k + 1 or n = 3k + 2, the contributions from
the Ŷ m

n+1 factor imply that C
dmax
n
n is non-zero. When n = 3k and j = 3, we have that the

factor Ind(Y m
2 ) ∗ Ind(∆m

n−4) produces at least one cell of dimension exactly dmaxn , which

again implies that C
dmax
n
n is non-zero.

Using Theorems 14 and 15, we can create data tables containing dimensions of the
integral cellular chain spaces of Xm

n for reasonable values of n and m. For m > 4, it
is interesting that gaps appear in the dimensions of the chain spaces for low values of d
relative to n. For example, the Comb Algorithm eliminates all cells of dimension

⌊
2n+2

3

⌋
+1

through
⌊
2n+2

3

⌋
+ (m − 3) when n = 3k or n = 3k + 1. Furthermore, we can explicitly

determine the lowest non-vanishing homology for n = 3k and n = 3k + 1 when m > 4;
see Jonsson [15, Lemma 2.3 and Proposition 2.7] for analogous results when m = 2.

Theorem 23. Suppose that m > 4, and let νn =
⌊
2n+2

3

⌋
. If n = 3k or n = 3k + 1,

then νn = dminn from Theorem 20, and Cνn
n = 1 while Cνn+1

n = 0. This implies that
Hνn(Xm

n ;Z) ∼= Z. If n = 3k + 2, then Cνn
n = 0, which implies that Hνn(Xm

n ;Z) is trivial.

Proof. We consider three cases, one for each value of n mod 3.
Case 1: Suppose n = 3k. We know that C`

n = 0 for ` < νn from our cellular dimension
range. We argue by induction on k that Cνn

n = 1 while Cνn+1
n = 0, which proves the claim

for n = 3k. Begin by recalling that C0
0 = 1 and C1

0 = 0, which provides a base case.
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Now, assume that Cν3`
3` = 1 while Cν3`+1

3` = 0 for 0 6 ` < k. We know that

Cνn
n = Cν3k−2

3k−3 + Cν3k−m−1
3k−4 + Cν3k−m

3k−3

by our cellular recursion. Observe that ν3k − 2 = 2k − 2 = ν3k−3, so Cν3k−2
3k−3 = 1 by the

induction hypothesis. Since ν3k −m− 1 < ν3k − 2 = ν3k−4, it follows that Cν3k−m−1
3k−4 = 0.

Similarly, ν3k −m < ν3k − 2 = ν3k−3, so Cν3k−m
3k−3 = 0. Hence, Cνn

n = 1.
Our cellular recursion also gives

Cνn+1
n = Cν3k−1

3k−3 + Cν3k−m
3k−4 + Cν3k−m+1

3k−3 .

Observe that ν3k − 1 = 2k − 1 = ν3k−3 + 1, so Cν3k−1
3k−3 = 0 by the induction hypothesis.

Now, we note that ν3k −m < ν3k − 2 = ν3k−4 still, which implies Cν3k−m
3k−4 = 0. Similarly,

ν3k −m + 1 < ν3k − 2 = ν3k−3, so Cν3k−m+1
3k−3 = 0. Hence, Cνn+1

n = 0. By induction, we

conclude that Cν3k
3k = 1 while Cν3k+1

3k = 0 for all k, from which the result follows.
Case 2: Suppose n = 3k + 1; this argument is similar to that of the previous case.

We argue by induction on k that Cνn
n = 1 while Cνn+1

n = 0. We obtain our base case by
recalling that C1

1 = 1 and C2
1 = 0 for m > 4. Next, we know that

Cνn
n = C

ν3k+1−2
3k−2 + C

ν3k+1−m−1
3k−3 + Cν3k−m

3k−3

by our cellular recursion. Observe that ν3k+1 − 2 = 2k − 1 = ν3k−2 = ν3(k−1)+1, so

C
ν3k+1−2
3k−2 = 1 by the induction hypothesis. Now, ν3k+1−m− 1 = 2k−m < 2k− 2, which

is precisely ν3k−3, implying that C
ν3k+1−m−1
3k−3 = 0. Similarly, we see that ν3k+1 −m equal

2k −m+ 1 < 2k − 1 = ν3k−2, so C
ν3k+1−m
3k−2 = 0. Hence, Cνn

n = 1.
We also know that

Cνn+1
n = C

ν3k+1−1
3k−2 + C

ν3k+1−m
3k−3 + C

ν3k+1−m+1
3k−2

by our cellular recursion. Observe that ν3k+1−1 = ν3k+1−2+1 = ν3k−2+1, so C
ν3k+1−1
3k−2 = 0

by the induction hypothesis. Now, ν3k+1−m = 2k−m+1 < 2k−2, which is again ν3k−3.
Therefore, C

ν3k+1−m
3k−3 = 0. Similarly, ν3k+1 −m + 1 < 2k − 1 = ν3k−2, so C

ν3k+1−m+1
3k−2 = 0.

Hence, Cνn+1
n = 0. By induction, we conclude that C

ν3k+1

3k+1 = 1 while C
ν3k+1+1
3k+1 = 0 for all

k, from which the result follows.
Case 3: Suppose n = 3k+2. Recall from Theorem 20 that for n = 3k+2 and m > 3,

the minimum dimension of critical cells produced by the Comb Algorithm is 2
⌊
n−1
3

⌋
+m.

It is easy to check that
⌊
2n+2

3

⌋
= 2k + 2 < 2k + m = 2

⌊
n−1
3

⌋
+ m. Therefore, Cνn

n = 0
when n = 3k + 2, i.e. Hνn(Xm

n ;Z) is trivial.

For other homology groups, the Comb Algorithm provides less comprehensive results.
For example, when m = 2, that is, when Xm

n is homotopy equivalent to the matching
complex on the 2× (n+ 2) grid graph, a direct analysis of the chain space dimensions on
a data table yields the following.
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Observation 24. X2
n has non-trivial free integral homology in dimension

⌊
9n+9
13

⌋
for 0 6

n 6 99, except possibly for n ∈ {48, 61, 74, 84, 87, 90, 94, 97}. This arises because the rank
of the chain space of X2

n in dimension
⌊
9n+9
13

⌋
exceeds the sum of the ranks of the chain

spaces in dimensions
⌊
9n+9
13

⌋
− 1 and

⌊
9n+9
13

⌋
+ 1 for these values of n. Consequently, even

if we were to try to further match away the critical cells in dimension
⌊
9n+9
13

⌋
, there are

not enough cells in the adjacent dimensions to completely pair them all away.
As an interesting side note, when m = 2, the values of dminn and dmaxn imply that X2

n

is a wedge of spheres for n ∈ {0, 1, 2, 3, 4, 5, 7, 8, 11}.

As n grows larger, the data suggest that the rank of the
⌊
9n+9
13

⌋
-dimensional chain

space ceases to “typically” exceed the sum of the ranks of the neighboring chain spaces.
This suggests that the behavior of Ind(∆m

n ) for “small” values of n, including many values
of n for which by-hand computations appear prohibitive, is not indicative of the general
behavior of these complexes.

In conclusion, the topology of Ind(∆m
n ) remains generally mysterious. It would be of

interest to investigate the following two questions.

1. Does torsion occur in the homology of Ind(∆m
n )? If so, for which p does Z/pZ appear

as a summand?

2. There is a natural action of the symmetric group Sm on Ind(∆m
n ). What is the

Sm-module structure of H∗(Ind(∆m
n );C)?
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