A Note on the γ-Coefficients of the Tree Eulerian Polynomial

Rafael S. González D'León
University of Kentucky, rafaeldleon@uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/math_facpub
Part of the Mathematics Commons

Repository Citation

González D'León, Rafael S., "A Note on the γ-Coefficients of the Tree Eulerian Polynomial" (2016). Mathematics Faculty Publications. 20.
https://uknowledge.uky.edu/math_facpub/20

A Note on the $\boldsymbol{\gamma}$-Coefficients of the Tree Eulerian Polynomial

Notes/Citation Information

Published in The Electronic Journal of Combinatorics, v. 23, issue 1, paper \#P1.20, p. 1-13.
The publisher has granted the permission for posting the article here.

A note on the γ-coefficients of the tree Eulerian polynomial

Rafael S. González D'León*
Department of Mathematics
University of Kentucky
Lexington, KY, U.S.A. 40506-0027
rafaeldleon@uky.edu

Submitted: Jun 26, 2015; Accepted: Jan 20, 2016; Published: Feb 5, 2016
Mathematics Subject Classifications: 05A15, 05E05

Abstract

We consider the generating polynomial of the number of rooted trees on the set $\{1,2, \ldots, n\}$ counted by the number of descending edges (a parent with a greater label than a child). This polynomial is an extension of the descent generating polynomial of the set of permutations of a totally ordered n-set, known as the Eulerian polynomial. We show how this extension shares some of the properties of the classical one. A classical product formula shows that this polynomial factors completely over the integers. From this product formula it can be concluded that this polynomial has positive coefficients in the γ-basis and we show that a formula for these coefficients can also be derived. We discuss various combinatorial interpretations of these coefficients in terms of leaf-labeled binary trees and in terms of the Stirling permutations introduced by Gessel and Stanley. These interpretations are derived from previous results of Liu, Dotsenko-Khoroshkin, Bershtein-Dotsenko-Khoroshkin, González D'León-Wachs and González D'León related to the free multibracketed Lie algebra and the poset of weighted partitions.

Keywords: Gamma positivity; Eulerian polynomial; Rooted trees

1 introduction

A labeled rooted tree T on the set $[n]:=\{1,2, \cdots, n\}$ is a tree whose nodes or vertices are the elements of $[n]$ and such that one of its nodes has been distinguished and called the root. For nodes x and y in T we say that x is the child of y or y is the parent of x if y is the first node following x in the unique path from x to the root of T and we

[^0]say that $y=\mathrm{p}(x)$. Nodes that have children are said to be internal otherwise we call a node without children a leaf. If y is the parent of x, we say that the edge $\{x, y\}$ of T is descending (and we call x a descent of T) if the label of y is greater than the label of x. We denote $\operatorname{des}(T)$ the number of descents in T. Figure 1 shows all the rooted trees on [3] grouped by the number of descents. We draw the trees with the convention that parents come higher than their children and the root is the highest node. We denote \mathcal{T}_{n} the set of rooted trees on $[n]$ and $\mathcal{T}_{n, i}$ the set of trees in \mathcal{T}_{n} with exactly i descents.

For a given $n \geqslant 1$ define

$$
\begin{equation*}
T_{n}(t):=\sum_{T \in \mathcal{T}_{n}} t^{\operatorname{des}(T)}=\sum_{i=0}^{n-1}\left|\mathcal{T}_{n, i}\right| t^{i}, \tag{1.1}
\end{equation*}
$$

the descent generating polynomial of \mathcal{T}_{n}. We call $T_{n}(t)$ the tree Eulerian polynomial in analogy with the classical polynomial $A_{n}(t)=\sum_{\sigma \in \mathfrak{S}_{n}} t^{\operatorname{des}(\sigma)}$, that is the descent generating polynomial of the set \mathfrak{S}_{n} of permutations of $[n]$. We can identify the permutations in \mathfrak{S}_{n} with the set of rooted trees on $[n]$ that have $n-1$ internal nodes, each of them having a unique child (and so containing a unique leaf). It is not hard to see that our definition of a descent on this set of trees coincides with the classical definition of descent in a permutation so the polynomial $T_{n}(t)$ is an extension of the polynomial $A_{n}(t)$. The polynomials $A_{n}(t)$ have been extensively studied in the literature and are known with the name of Eulerian polynomials since Euler was one of the first in studying them (see [20]). The Eulerian polynomial $A_{n}(t)=\sum_{k=0}^{n-1} A_{n, i} t^{i}$ have degree $n-1$ and its coefficients satisfy the relation

$$
\begin{equation*}
A_{n, i}=A_{n, n-1-i} \tag{1.2}
\end{equation*}
$$

For example, the Eulerian polynomial for $n=3$ is $A_{3}(t)=1+4 t+t^{2}$. A polynomial that satisfies Equation 1.2 is called symmetric or palindromic.

It is a simple observation that a symmetric polynomial $f(t)=\sum_{k=0}^{d} f_{i} t^{i}$ of degree d with $f_{i} \in \mathbb{Z}$ can be written in the form

$$
\begin{equation*}
\sum_{i=0}^{d} f_{i} t^{i}=\sum_{i=0}^{\left\lfloor\frac{d}{2}\right\rfloor} \gamma_{i} t^{i}(1+t)^{d-2 i} \tag{1.3}
\end{equation*}
$$

where the coefficients $\gamma_{i} \in \mathbb{Z}$, i.e., the set $\left\{t^{i}(1+t)^{d-2 i}\right\}_{i=0}^{\left\lfloor\frac{d}{2}\right\rfloor}$, where $\lfloor\cdot\rfloor$ is the integer floor function, is a basis (known as the γ-basis) for the space of symmetric polynomials of degree d with integer coefficients. If $\gamma_{i} \geqslant 0$ for all i then we say that the polynomial $f(t)$ is γ-nonnegative and if $\gamma_{i}>0$ for all $i \leqslant\left\lfloor\frac{d}{2}\right\rfloor$ then we say that the polynomial $f(t)$ is γ-positive. It is a result of Foata and Schützenberger ([8]) that $A_{n}(t)$ is γ-positive. And it follows from the work of Foata and Strehl in [9] that its coefficients γ_{i} have a nice combinatorial interpretation (see also [18]). Indeed, let $\widehat{\mathfrak{S}}_{n}$ be the set of permutations in \mathfrak{S}_{n} that have no two adjacent descents and no descent in the last position. Then

$$
\gamma_{j}=\left\{\sigma \in \widehat{\mathfrak{S}}_{n} \mid \operatorname{des}(\sigma)=j\right\}
$$

For example, $A_{3}(t)=(1+t)^{2}+2 t$ with $\gamma_{0}=1$ and $\gamma_{1}=2$. The permutations in $\widehat{\mathfrak{S}}_{3}$ are, 123 with no descents and; 213 and 312 with one descent. Gal [10] and Brändén $[2,3]$ have introduced the use of the γ-basis in different contexts. Gal conjectured that the γ-coefficients of the h-polynomial of a flag simple polytope are all nonnegative. In particular, $A_{n}(t)$ is the h-vector of the permutahedron that is a flag simple polytope so Gal's conjecture is confirmed in this case. Postnikov, Reiner and Williams [17] have confirmed Gal's conjecture for the family of chordal nestohedra that is a large family of flag simple polytopes. For more information about γ-nonnegativity see [4].

We will show that the properties discussed above for the Eulerian polynomial $A_{n}(t)$ are also shared by the polynomial $T_{n}(t)$ in a similar fashion. The degree of $T_{n}(t)$ is also $n-1$ and it is easy to see from the definition of a descent that

$$
\begin{equation*}
\left|\mathcal{T}_{n, i}\right|=\left|\mathcal{T}_{n, n-1-i}\right|, \tag{1.4}
\end{equation*}
$$

so $T_{n}(t)$ is also symmetric. Indeed there is a natural bijection $\mathcal{T}_{n, i} \simeq \mathcal{T}_{n, n-1-i}$ where the image of a labeled rooted tree $T \in \mathcal{T}_{n, i}$, is the tree in $\mathcal{T}_{n, n-1-i}$ with the same shape of T but where each label i has been replaced by $n+1-i$. For the example in Figure 1, $T_{3}(t)=2+5 t+2 t^{2}$.

$\operatorname{des}(T)=0$

$\operatorname{des}(T)=1$

$\operatorname{des}(T)=2$

Figure 1: All labeled rooted trees on [3]
The following nice product formula for $T_{n}(t)$ can be obtained from the results in [7] (see also [12] and [6]).

Theorem 1. For $n \geqslant 1$,

$$
\begin{equation*}
\sum_{i=0}^{n-1}\left|\mathcal{T}_{n, i}\right| t^{i}=\prod_{i=1}^{n-1}((n-i)+i t) \tag{1.5}
\end{equation*}
$$

In particular, setting $t=1$ in (1.5) reduces to the classical formula $\left|\mathcal{T}_{n}\right|=n^{n-1}$. Equation (1.5) implies that all the roots of this polynomial are real and negative. It is known and not difficult to show that a real-rooted symmetric polynomial with nonnegative real coefficients is γ-nonnegative (see $[4,10]$). For example $T_{3}(t)=2(1+t)^{2}+t$, so $\gamma_{0}=2$ and $\gamma_{1}=1$. Although $T_{n}(t)$ is not in general an h-vector of a convex polytope (for example
$h_{0} \neq 1$ for $n \geqslant 3$), it is of interest to find combinatorial formulas and interpretations of nonnegative γ-coefficients of general symmetric polynomials.

Let $\gamma_{j}\left(T_{n}(t)\right)$ denote the j-th γ-coefficient of the symmetric polynomial $T_{n}(t)$. Equation (1.5) can be used to find a formula for the coefficients γ_{j} of $T_{n}(t)$. The values of $\gamma_{j}\left(T_{n}(t)\right)$ for $n=1, \ldots, 7$ appear in Table 1.

Theorem 2. For $n \geqslant 1$,

$$
\gamma_{j}\left(T_{n}(t)\right)= \begin{cases}\sum_{\substack{J \subset\left[\frac{n-1}{2}\right]}} \prod_{i \in J}(n-2 i)^{2} \prod_{s \in\left[\frac{n-1}{2}\right] \backslash J} s(n-s) & \text { if } n \text { is odd } \tag{1.6}\\ \frac{n}{2} \sum_{\substack{\left.J \subset j \left\lvert\, \frac{n-2}{2}\right.\right] \\|J|=j}} \prod_{i \in J}(n-2 i)^{2} \prod_{s \in\left[\frac{n-2}{2}\right] \backslash J} s(n-s) & \text { if } n \text { is even }\end{cases}
$$

Proof. If we multiply

$$
\begin{aligned}
(n-i+i t)(i+(n-i) t) & =(n-i) i+\left[(n-i)^{2}+i^{2}\right] t+(n-i) i t^{2} \\
& =(n-i) i\left(1+t^{2}\right)+\left[(n-i)^{2}+i^{2}\right] t \\
& =(n-i) i\left(1+2 t+t^{2}\right)+\left[(n-i)^{2}-2 i(n-i)+i^{2}\right] t \\
& =(n-i) i(1+t)^{2}+(n-2 i)^{2} t .
\end{aligned}
$$

Equation 1.5 can be written as

$$
T_{n}(t)= \begin{cases}\prod_{i=1}^{\frac{n-1}{2}}\left[(n-i) i(1+t)^{2}+(n-2 i)^{2} t\right] & \text { if } n \text { is odd } \\ \frac{n}{2}(1+t) \prod_{i=1}^{\frac{n-2}{2}}\left[(n-i) i(1+t)^{2}+(n-2 i)^{2} t\right] & \text { if } n \text { is even }\end{cases}
$$

implying Formula 1.6.

$\boldsymbol{n} / \boldsymbol{j}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{1}$	1			
$\mathbf{2}$	1			
$\mathbf{3}$	2	1		
$\mathbf{4}$	6	8		
$\mathbf{5}$	24	58	9	
$\mathbf{6}$	120	444	192	
$\mathbf{7}$	720	3708	3004	225

Table 1: Values of $\gamma_{j}\left(T_{n}(t)\right)$ for $n=1, \ldots, 7$.

The purpose of this note is to present four different combinatorial interpretations for the coefficients γ_{j} that are consequences of results in the work of Liu [15], DotsenkoKhoroshkin [5], Bershtein-Dotsenko-Khoroshkin [1], González D'León-Wachs [14] and González D'León [13]. We present now one of these combinatorial interpretations, whose proof will be given in Section 2.

A planar leaf-labeled binary tree with label set $[n]$ is a rooted tree (a priori without labels) in which the set of children of every internal node is a totally ordered set with exactly two elements (the left and right children) and where each leaf has been assigned a unique element from the set $[n]$. By a subtree in a rooted tree T we mean the rooted tree induced by the descendents of any node x of T, including and rooted at x. We say that a planar leaf-labeled binary tree with label set $[n]$ is normalized if in each subtree, the leftmost leaf is the one with the smallest label. We denote the set of normalized binary trees with label set $[n]$ by Nor_{n}. All normalized trees with leaf labels in [3] are illustrated in Figure 2.

A right descent in a normalized tree is an internal node that is the right child of its parent. For $T \in \operatorname{Nor}_{n}$ we define $\operatorname{rdes}(T):=\mid\{$ right descents of T$\} \mid$. A double right descent is a right descent whose parent is also a right descent. We denote by NDRD ${ }_{n}$ the set of trees in Nor_{n} with no double right descents.

Theorem 3. For $n \geqslant 1$ and $j \in\left\{0,1, \cdots,\left\lfloor\frac{n-1}{2}\right\rfloor\right\}$,

$$
\gamma_{j}\left(T_{n}(t)\right)=\left|\left\{T \in N D R D_{n} \mid \operatorname{rdes}(T)=j\right\}\right| .
$$

As it is illustrated in Figure 2, there are two trees in NDRD_{3} (for $n=3$ it happens to be equal to Nor_{3}) with $\operatorname{rdes}(T)=0$ and one with $\operatorname{rdes}(T)=1$, corresponding to $\gamma_{0}=2$ and $\gamma_{1}=1$ respectively.

Figure 2: Set of trees in $\mathrm{NDRD}_{3}=\mathrm{Nor}_{3}$
In Section 2 we provide the proof of Theorem 3 and an additional version of Theorem 3 also in terms of normalized trees but with a statistic different than rdes. In Section 3 we provide two additional versions of Theorem 3 in terms of the Stirling permutations introduced by Gessel and Stanley in [11]. In Section 4 we discuss a generalization of the γ-positivity of $T_{n}(t)$ to the positivity of certain symmetric function in the basis of elementary symmetric functions.

2 Combinatorial interpretations in terms of binary trees

Now we consider normalized trees T where every internal node x of T has been assigned an element $\operatorname{color}(x) \in\{0,1\}$. We call an element of this set of trees a bicolored normalized tree on $[n]$. A bicolored comb is a bicolored normalized tree T satisfying the following coloring restriction:
(C) If x is a right descent of T then $\operatorname{color}(x)=0$ and $\boldsymbol{\operatorname { c o l o r }}(\mathrm{p}(x))=1$.

We denote by Comb_{n} the set of bicolored combs and by Comb ${ }_{n, i}$ the set of bicolored combs where i internal nodes have been colored 1 (and $n-1-i$ colored 0). Figure 3 illustrates the bicolored combs on [3] grouped by the number of internal nodes that have been colored 1 .

Figure 3: Set of bicolored combs on [3]
Denote by $\widetilde{T} \in$ Nor $_{n}$ the underlying uncolored normalized tree associated to a tree $T \in \mathrm{Comb}_{n}$. Note that the coloring condition (C) implies that $\widetilde{T} \in \mathrm{NDRD}_{n}$. Indeed, in a double right descent the coloring condition (C) cannot be satisfied since the parent of a double right descent is also a right descent. Also note that the monochromatic combs in Comb ${ }_{n, 0}$ and Comb ${ }_{n, n-1}$ are just the traditional left combs that are described in [21] and that index a basis for the space $\mathcal{L i e}(n)$, the multilinear component of the free Lie algebra over \mathbb{C} on n generators (see [21] for details). Liu [15] and Dotsenko-Khoroshkin [5] independently proved a conjecture of Feigin regarding the dimension of the multilinear component $\mathcal{L i e}_{2}(n)$ of the free Lie algebra with two compatible brackets, a generalization of $\mathcal{L} i e(n)$.

Theorem $4([5,15])$. For $n \geqslant 1, \operatorname{dim} \mathcal{L i e} e_{2}(n)=\left|\mathcal{T}_{n}\right|$.
In particular, the space $\mathcal{L} i e_{2}(n)$ has the decomposition

$$
\mathcal{L} i e_{2}(n)=\bigoplus_{i=0}^{n-1} \mathcal{L} i e_{2}(n, i)
$$

where the subspace $\mathcal{L} i e_{2}(n, i)$ is the component generated by certain "bracketed permutations" with exactly i brackets of one of the types. Liu finds the following formula for the dimension of $\mathcal{L} i e_{2}(n, i)$.
Theorem 5 ([15, Proposition 11.3]). For $n \geqslant 1$ and $i \in\{0,1, \cdots, n-1\}$,

$$
\operatorname{dim} \mathcal{L} i e_{2}(n, i)=\left|\mathcal{T}_{n, i}\right|
$$

In [1] Bershtein, Dotsenko and Khoroshkin found a basis for $\mathcal{L} i e_{2}(n, i)$ indexed by the elements of $\mathrm{Comb}_{n, i}$ giving the following alternative description for the dimension of $\mathcal{L} i e_{2}(n, i)$.

Theorem 6 ([1, Lemma 5.2]). For $n \geqslant 1$ and $i \in\{0,1, \cdots, n-1\}$,

$$
\operatorname{dim} \mathcal{L} i e_{2}(n, i)=\left|\operatorname{Comb}_{n, i}\right| .
$$

Corollary 7. For every $n \geqslant 1$ and $i \in\{0, \cdots, n-1\}$,

$$
\left|\operatorname{Comb}_{n, i}\right|=\left|\mathcal{T}_{n, i}\right| .
$$

Problem 8. Find an explicit bijection Comb $_{n, i} \rightarrow \mathcal{T}_{n, i}$, for every $n \geqslant 1$ and $i \in\{0, \cdots, n-$ $1\}$.

Theorem 9 (Theorem 3). For $n \geqslant 1$ and $j \in\left\{0,1, \cdots,\left\lfloor\frac{n-1}{2}\right\rfloor\right\}$,

$$
\gamma_{j}\left(T_{n}(t)\right)=\left|\left\{T \in N D R D_{n} \mid \operatorname{rdes}(T)=j\right\}\right| .
$$

Proof. First note that by the comments above if $T \in \operatorname{Comb}_{n}$ then its underlying uncolored tree $\widetilde{T} \in \mathrm{NDRD}_{n}$.

For a tree $T \in \mathrm{Comb}_{n}$ call free (T) the number of internal nodes that are not right descents and whose right child is a leaf. Then in NDRD_{n} we have that

$$
\operatorname{free}(T)+2 \operatorname{rdes}(T)=n-1
$$

Over the set of bicolored combs with m free nodes there is a free action of $\left(\mathbb{Z}_{2}\right)^{m}$ by toggling the colors of the free nodes. Then there are 2^{m} bicolored combs with the same underlying tree $\widetilde{T} \in \mathrm{NDRD}_{n}$. By Corollary 7 we can write $T_{n}(t)$ as

$$
\begin{aligned}
& T_{n}(t)=\sum_{i=0}^{n-1}\left|\mathcal{T}_{n, i}\right| t^{i} \\
& =\sum_{i=0}^{n-1}\left|\mathrm{Comb}_{n, i}\right| t^{i} \\
& =\sum_{T \in \text { Comb }_{n}} t^{\mid\{x \text { internal in } T \mid \operatorname{color}(x)=1\} \mid} \\
& =\sum_{\mathfrak{T} \in \operatorname{NDRD}_{n}} \sum_{\substack{T \in C_{0 \rightarrow m b} \\
\widetilde{T}=\mathfrak{T}}} t^{\{\{x \text { internal in } T \mid \text { color }(x)=1\} \mid} \\
& =\sum_{\mathfrak{T} \in \mathrm{NDRD}_{n}} t^{\mathrm{rdes}(\mathfrak{T})}(1+t)^{\mathrm{free}(\mathfrak{T})} \\
& =\sum_{\mathfrak{T} \in \mathrm{NDRD}_{n}} t^{\text {rdes }(\mathfrak{T})}(1+t)^{n-1-2 \operatorname{rdes}(\mathfrak{T})} .
\end{aligned}
$$

2.1 A second description in terms of normalized trees

In [14] the author and Wachs studied the relation between $\mathcal{L i e} e_{2}(n, i)$ and the cohomology of the maximal intervals of a poset of weighted partitions. Using poset topology techniques they found an alternative description for the dimension of $\mathcal{L} i e_{2}(n, i)$.

Define the valency $v(x)$ of a node (internal or leaf) x of $T \in \operatorname{Nor}_{n}$ to be the minimal label in the subtree of T rooted at x. For an internal node x of T let $L(x)$ and $R(x)$ denote the left and right children of x respectively. A Lyndon node is an internal node x of T such that

$$
\begin{equation*}
v(R(L(x)))>v(R(x)) . \tag{2.1}
\end{equation*}
$$

A Lyndon tree is a normalized tree in which all its internal nodes are Lyndon. We denote $\operatorname{nlyn}(T)$ the number of non-Lyndon nodes in T. A double non-Lyndon node is a nonLyndon node that is the left child of its parent and its parent is also a non-Lyndon node. We denote the set of trees in Nor_{n} with no double non-Lyndon nodes by NDNL_{n}. A bicolored Lyndon tree is a bicolored normalized tree satisfying the coloring condition:
(L) For every non-Lyndon node x of T then $\operatorname{color}(x)=0$ and $\operatorname{color}(L(x))=1$.

The set of bicolored Lyndon trees is denoted Lyn_{n} and the set of the ones with exactly i nodes with color 1 is denoted $\operatorname{Lyn}_{n, i}$.

Figure 4: Set of bicolored Lyndon trees on [3]

Theorem 10 ([14, Section 5]). For every $n \geqslant 1$ and $i \in\{0, \cdots, n-1\}$,

$$
\operatorname{dim} \mathcal{L} i e_{2}(n, i)=\left|L y n_{n, i}\right| .
$$

Hence,

$$
\left|L y n_{n, i}\right|=\left|\mathcal{T}_{n, i}\right| .
$$

The proof of the following theorem follows the same arguments of the proof of Theorem 3.

Theorem 11. For $n \geqslant 1$ and $j \in\left\{0,1, \cdots,\left\lfloor\frac{n-1}{2}\right\rfloor\right\}$,

$$
\gamma_{j}\left(T_{n}(t)\right)=\left|\left\{T \in N D N L_{n} \mid \operatorname{nlyn}(T)=j\right\}\right| .
$$

Figure 5: Set of trees in $\mathrm{NDNL}_{3}=\mathrm{Nor}_{3}$

3 Combinatorial interpretation in terms of Stirling permutations

Consider now the set of multipermutations of the multiset $\{1,1,2,2, \cdots, n, n\}$ such that all numbers between the two occurrences of any number m are larger than m. To this family belongs for example the permutation 12234431 but not 11322344 since 2 is less than 3 and 2 is between the two occurrences of 3 . This family (denoted \mathcal{Q}_{n}) of permutations was introduced by Gessel and Stanley in [11] and the permutations in \mathcal{Q}_{n} are known as Stirling Permutations.

For a permutation $\theta=\theta_{1} \theta_{2} \ldots \theta_{2 n}$ in \mathcal{Q}_{n} we say that the position i contains a first occurrence of a letter if $\theta_{j} \neq \theta_{i}$ for all $j<i$, otherwise we say that it contains a second occurrence. An ascending adjacent pair in θ is a pair (a, b) such that $a<b$ and in θ the second occurrence of a is the immediate predecessor of the first occurrence of b. An ascending adjacent sequence (of length 2) is a sequence $a<b<c$ such that (a, b) and (b, c) are both ascending adjacent pairs. For example, in $\theta=13344155688776$ the ascending adjacent pairs are $(1,5),(5,6)$ and $(3,4)$ but the only ascending adjacent sequence is $1<5<6$. We denote NAAS $_{n}$ the set of all Stirling permutations in \mathcal{Q}_{n} that do not contain ascending adjacent sequences. Similarly, a terminally nested pair in θ is a pair (a, b) such that $a<b$ and in θ the second occurrence of a is the immediate successor of the second occurrence of b. A terminally nested sequence (of length 2) is a sequence $a<b<c$ such that (a, b) and (b, c) are both terminally nested pairs. For example, in $\theta=13443566518877$ the terminally nested pairs are $(1,5),(5,6)$ and $(3,4)$ but the only terminally nested sequence is $1<5<6$. We denote NTNS $_{n}$ the set of all Stirling permutations in \mathcal{Q}_{n} that do not contain terminally nested sequences. For $\sigma \in \mathcal{Q}_{n}$, we denote aapair (σ) the number of ascending adjacent pairs in σ and $\operatorname{tnpair}(\sigma)$ the number of terminally nested pairs in σ.

The following result in [13] relates the statistics above in \mathcal{Q}_{n-1} with the ones previously discussed for Nor_{n}.

Proposition 12 ([13, Proposition 4.8]). There is a bijection $\phi:$ Nor $_{n} \rightarrow \mathcal{Q}_{n-1}$ such that for every $T \in$ Nor $_{n}$,

1. $\operatorname{rdes}(T)=\operatorname{tnpair}(\phi(T))$
2. $\operatorname{nlyn}(T)=\operatorname{aapair}(\phi(T))$
3. $\phi\left(N D R D_{n}\right)=N A A S_{n-1}$
4. $\phi\left(N D N L_{n}\right)=N T N S_{n-1}$.

Corollary 13. For $n \geqslant 1$ and $j \in\left\{0,1, \cdots,\left\lfloor\frac{n-1}{2}\right\rfloor\right\}$,

$$
\begin{aligned}
\gamma_{j}\left(T_{n}(t)\right) & =\left|\left\{T \in N T N S_{n-1} \mid \operatorname{tnpair}(T)=j\right\}\right| \\
& =\left|\left\{T \in N A A S_{n-1} \mid \operatorname{aapair}(T)=j\right\}\right|
\end{aligned}
$$

Example 14. The Stirling permutations in \mathcal{Q}_{2} are 1122, 1221 and 2211. In this particular case $\mathcal{Q}_{2}=$ NAAS $_{2}=$ NTNS $_{2}$ and the statistics in Table 2 imply that $\gamma_{0}=2$ and $\gamma_{1}=1$ are the γ-coefficients of the polynomial $T_{3}(t)$.

$\boldsymbol{\sigma}$	tnpair	aapair
1122	0	1
1221	1	0
2211	0	0

Table 2: tnpair and aapair statistics in \mathcal{Q}_{2}.

4 A comment about γ-positivity and e-positivity

Let $\mathbf{x}=x_{1}, x_{2}, \ldots$ be an infinite set of variables and $\Lambda=\Lambda_{\mathbb{Q}}$ the ring of symmetric functions with rational coefficients on the variables \mathbf{x}, that is, the ring of power series on \mathbf{x} of bounded degree that are invariant under permutation of the variables.

Define $e_{0}:=1$, for $n \geqslant 1$

$$
e_{n}:=\sum_{1 \leqslant i_{1}<i_{2}<\cdots<i_{n}} x_{i_{1}} x_{i_{2}} \cdots x_{i_{n}},
$$

and for an integer partition $\lambda=\left(\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots\right)$ (i.e., a weakly decreasing finite sequence of positive integers) $e_{\lambda}:=\prod_{i} e_{\lambda_{i}}$. We call e_{λ} the elementary symmetric function corresponding to the partition λ.

It is known that for $n \geqslant 0$, the set $\left\{e_{\lambda} \mid \lambda \vdash n\right\}$ is a basis for the n-th homogeneous graded component of Λ, where the grading is with respect to degree. See [16] and [19] for more information about symmetric functions.

Note that if we make the specialization $x_{i} \mapsto 0$ in Λ for all $i \geqslant 3$ then $e_{1} \mapsto x_{1}+x_{2}$, $e_{2} \mapsto x_{1} x_{2}$ and $e_{i} \mapsto 0$ for all $i \geqslant 3$. Thus for a partition λ of n (i.e., $\sum_{i} \lambda_{i}=n$) the symmetric function $e_{\lambda} \mapsto 0$ unless $\lambda=\left(2^{j}, 1^{n-2 j}\right)$ for some $j \in \mathbb{N}$. In that case,

$$
e_{\left(2^{j}, 1^{n-2 j}\right)} \mapsto\left(x_{1} x_{2}\right)^{j}\left(x_{1}+x_{2}\right)^{n-2 j} .
$$

If we further replace $x_{1} \mapsto 1$ and $x_{2} \mapsto t$ we obtain

$$
e_{\left(2^{j}, 1^{n-2 j}\right)} \mapsto t^{j}(1+t)^{n-2 j} .
$$

In other words, the elementary basis in two variables is equivalent to the γ basis. A consequence of this observation is that another possible approach to conclude the γ nonnegativity of a palindromic polynomial $f(t)$ is to find an e-nonnegative symmetric function $F\left(x_{1}, x_{2}, \ldots\right)$ such that $f(t)=F(1, t, 0,0, \ldots)$.

4.1 Colored combs and comb type of a normalized tree

A colored comb is a normalized binary tree T together with a function color that assigns positive integers in \mathbb{P} to the internal nodes of T and that satisfies the following coloring restriction: for each internal node x whose right child $R(x)$ is not a leaf,

$$
\begin{equation*}
\operatorname{color}(x)>\operatorname{color}(R(x)) . \tag{4.1}
\end{equation*}
$$

Note that the set of colored combs that only use the colors 1 and 2 are the same as the bicolored combs defined in Section 2. We denote MComb ${ }_{n}$ the set of colored combs with n leaves. Figure 6 shows an example of a colored comb.

Figure 6: Example of a colored comb of comb type (2, 2, 1, 1, 1, 1)
We can associate a type to each $\Upsilon \in$ Nor $_{n}$ in the following way: Let $\pi(\Upsilon)$ be the finest (set) partition of the set of internal nodes of Υ satisfying

- for every pair of internal nodes x and y such that y is a right child of x, x and y belong to the same block of $\pi(\Upsilon)$.

We define the comb type $\lambda(\Upsilon)$ of Υ to be the integer partition whose parts are the sizes of the blocks of $\pi(\Upsilon)$.

Note that the coloring condition (4.1) is closely related to the comb type of a normalized tree. The coloring condition implies that in a colored comb Υ there are no repeated colors in each block B of the partition $\pi(\Upsilon)$ associated to Υ. So after choosing $|B|$ different colors for the internal nodes of Υ in B, there is a unique way to assign the colors such that Υ is a colored comb (the colors must decrease towards the right in each block of $\pi(\Upsilon)$). In Figure 6 this relation is illustrated.

For a colored comb C denote $\mu(C)$ the sequence of nonnegative integers such that

$$
\mu(C)(j):=\mid\{x \text { a internal node in } C \mid \operatorname{color}(x)=j\} \mid .
$$

Let $\mathbf{x}^{\mu}:=x_{1}^{\mu(1)} x_{2}^{\mu(2)} \cdots$ and

$$
F_{\mathrm{MComb}_{n}}(\mathbf{x}):=\sum_{C \in \mathrm{MComb}_{n}} \mathrm{x}^{\mu(C)} .
$$

The following theorem is a consequence of the definition of a colored comb, the definition of the symmetric functions $e_{i}(\mathbf{x})$ and the observations above (see [13]).

Theorem 15 ([13]). For $n \geqslant 1$

$$
F_{M \operatorname{Comb}_{n}}(\mathbf{x})=\sum_{T \in \text { Nor }_{n}} e_{\lambda(T)}(\mathbf{x})
$$

Note that $F_{\text {MComb }_{n}}(1, t, 0,0, \ldots)=\sum_{C \in \operatorname{Comb}_{n}} t^{\text {red } C}=T_{n}(t)$ and so Theorem 15 is a generalization of Theorem 3.

Remark 16. Versions of Theorem 15 can also be given in terms of a completely different type on the set Nor_{n} corresponding to a family of multicolored Lyndon trees and also in terms of colored Stirling permutations, see [13].

Acknowledgments

The author would like to thank Ira Gessel and an anonymous referee for pointing out the correct references for some of the classical results mentioned in this note.

References

[1] M. Bershtein, V. Dotsenko, and A. Khoroshkin. Quadratic algebras related to the bi-Hamiltonian operad. Int. Math. Res. Not. IMRN, (24):Art. ID rnm122, 30, 2007.
[2] P. Brändén. Sign-graded posets, unimodality of W-polynomials and the CharneyDavis conjecture. Electron. J. Combin., 11(2):Research Paper 9, 15 pp. (electronic), 2004/06.
[3] P. Brändén. Actions on permutations and unimodality of descent polynomials. European J. Combin., 29(2):514-531, 2008.
[4] P. Brändén. Unimodality, log-concavity, real-rootedness and beyond. ArXiv preprint arXiv:1410.6601, 2014.
[5] V. V. Dotsenko and A. S. Khoroshkin. Character formulas for the operad of a pair of compatible brackets and for the bi-Hamiltonian operad. Funktsional. Anal. i Prilozhen., 41(1):1-22, 96, 2007.
[6] B. Drake. An inversion theorem for labeled trees and some limits of areas under lattice paths. ProQuest LLC, Ann Arbor, MI, 2008. Thesis (Ph.D.)-Brandeis University.
[7] Ö. Eğecioğlu and J. B. Remmel. Bijections for Cayley trees, spanning trees, and their q-analogues. J. Combin. Theory Ser. A, 42(1):15-30, 1986.
[8] D. Foata and M.-P. Schützenberger. Théorie géométrique des polynômes eulériens. Lecture Notes in Mathematics, Vol. 138. Springer-Verlag, Berlin-New York, 1970.
[9] D. Foata and V. Strehl. Rearrangements of the symmetric group and enumerative properties of the tangent and secant numbers. Math. Z., 137:257-264, 1974.
[10] Ś. R. Gal. Real root conjecture fails for five- and higher-dimensional spheres. Discrete Comput. Geom., 34(2):269-284, 2005.
[11] I. Gessel and R. P. Stanley. Stirling polynomials. J. Combinatorial Theory Ser. A, 24(1):24-33, 1978.
[12] I. M. Gessel and S. Seo. A refinement of Cayley's formula for trees. Electron. J. Combin., 11(2):Research Paper 27, 23, 2004/06.
[13] R. S. González D'León. On the free Lie algebra with multiple brackets. arXiv preprint arXiv:1408.5415, 2014.
[14] R. S. González D'León and M. L. Wachs. On the (co) homology of the poset of weighted partitions. arXiv preprint arXiv:1309.5527, 2013.
[15] F. Liu. Combinatorial bases for multilinear parts of free algebras with two compatible brackets. J. Algebra, 323(1):132-166, 2010.
[16] I. G. Macdonald. Symmetric functions and Hall polynomials. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, second edition, 1995.
[17] A. Postnikov, V. Reiner, and L. Williams. Faces of generalized permutohedra. Doc. Math., 13:207-273, 2008.
[18] L. W. Shapiro, W. J. Woan, and S. Getu. Runs, slides and moments. SIAM J. Algebraic Discrete Methods, 4(4):459-466, 1983.
[19] R. P. Stanley. Enumerative combinatorics. Vol. 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1999.
[20] R. P. Stanley. Enumerative combinatorics. Volume 1, volume 49 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 2012.
[21] M. L. Wachs. On the (co)homology of the partition lattice and the free Lie algebra. Discrete Math., 193(1-3):287-319, 1998. Selected papers in honor of Adriano Garsia (Taormina, 1994).

[^0]: *Supported by NSF Grant DMS 1202755.

