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ABSTRACT OF DISSERTATION 

 

 

VITAMIN D WORKS THROUGH THE LIPID DROPLET PROTEIN PLIN2 TO AUGMENT 
MITOCHONDRIAL FUNCTION IN SKELETAL MUSCLE 

 
Vitamin D has been connected with increased intramyocellular lipid (IMCL) mitochondrial 
function in skeletal muscle. It is also shown to prevent lipotoxicity in several tissues, but this has 
not yet been examined in skeletal muscle. Perilipin 2 (PLIN2), a lipid droplet protein upregulated 
with vitamin D treatment, is integral to managing IMCL capacity and lipid oxidation in skeletal 
muscle. Increased lipid storage and oxidation is associated with increased tolerance to a 
hyperlipidic environment and resistance to lipotoxicity. Therefore, I hypothesized that vitamin D 
increases β-oxidation and lipid turnover though a PLIN2 mediated mechanism, thereby 
preventing lipotoxicity. 
 
This hypothesis was divided into two specific aims: 1) Characterize the effect of vitamin D and 
PLIN2 on lipid turnover and β-oxidation in mature myotubes, and 2) Determine the role of 
vitamin D and PLIN2 in regulating key markers of lipotoxicity. To address these aims, cells were 
treated with or without vitamin D, palmitate, and PLIN2 siRNA in an eight group, 2x2x2 design. 
Key experiments included quantitative real time polymerase chain reaction for markers of lipid 
accumulation, lipolysis, and lipotoxicity; Seahorse oxygen consumption assay; 14C-palmitate 
oxidation assay; and analyses of lipid accumulation and profile.  
Failure of the palmitate treatment to produce a reliable model for lipotoxicity resulted in 
negative data for Aim 2 of this dissertation and a focus on vitamin D and PLIN2 knockdown 
treatments as a four group, 2x2 model. Aim 1 showed that vitamin D reliably increases markers 
of lipolysis and lipid accumulation. Most of these markers were in turn decreased after PLIN2 
knockdown, and DGAT2 exhibited an interaction effect between the two treatments. Contrary 
to our hypothesis and some published research, PLIN2 knockdown did not prevent lipid 
accumulation. Vitamin D increased oxygen consumption, especially consumption driven by 
mitochondrial complex II. PLIN2 knockdown decreased oxygen consumption and demonstrated 
an interaction effect specific to mitochondrial complex II.  
Data in this dissertation show that vitamin D increases mitochondrial function, and these effects 
are at least in part accomplished through a PLIN2 mediated mechanism. However, this work 
lacks the data required to make specific claims regarding β-oxidation and lipid turnover. This 
research is some of the first to show that PLIN2 knockdown carries negative impacts for skeletal 
muscle mitochondria and makes valuable contributions to general knowledge of how vitamin D 
and lipid storage impact muscle health and function. This ultimately provides additional 



 
 

evidence to advocate for vitamin D supplementation as a means of improving musculoskeletal 
health and function. Future research should investigate how vitamin D and PLIN2 impact 
markers of lipotoxicity in skeletal muscle. 
 

Keywords: Vitamin D, PLIN2, Skeletal Muscle, Mitochondrial Metabolism, Lipid Droplets 
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1 CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW 

1.1 Vitamin D 

1.1.1 History 

Vitamin D is a secosteroid long recognized as a key regulator of blood calcium and phosphorus 

and a key player in supporting healthy bones [1]. This connection was first established in the early 

20th century against the backdrop of a rickets epidemic in post-industrial London. In 1919, Sir 

Edward Mellanby of Emmanuel College, Cambridge, found that dogs fed a micronutrient deficient 

diet could be cured of rickets when their diet was supplemented with cod liver oil [2]. This rapid 

recovery of health and vigor was originally attributed to vitamin A, a recently discovered amine 

vital for health only available through the diet. However, this was proven false by American 

biochemist Elmer McCollum, who was a part of the group that originally proposed that rickets 

was a dietary deficiency. McCollum differentiated the unknown anti-rachitic from vitamin A by 

heating and aerating cod liver oil to degrade vitamin A and found that, although it could not treat 

night blindness, it did protect against rickets [3]. Simultaneously, researchers in England and 

Austria recognized that rickets was also prevented with exposure to summer sunlight or artificially 

generated ultraviolet (UV) rays [1]. These discoveries lead to a generation of children raised on 

cod liver oil and treated with UV lamps and a precipitous drop in the incidence of rickets. However, 

with the rise in rates of childhood obesity and lifestyle changes (e.g. less time playing outside), 

the incidence of rickets has increased dramatically since 2000 [4]. This is accompanied by 

increased rates of vitamin D deficiency in both children and adults at rates that some consider to 

be pandemic [5-10]. This is particularly concerning as vitamin D deficiencies have been connected 

with increased incidence of cancer, cardiovascular disease, and deficiencies in gross motor 

function among the elderly [11-14]. 

1.1.2 Vitamin D Synthesis and Metabolites 

There are several molecules which fall into the vitamin D family and can be converted into 

functional vitamin D. Animals produce vitamin D3 (cholecalciferol, D3) from 7-dehydrocholesterol, 

while fungi produce vitamin D2 from ergosterol. These molecules are very similar and undergo the 

same reactions during their activation, however, ergosterol and its downstream products contain 

a double bond on carbon 22 and an additional methyl group. In mammalian systems, 7-
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dehydrocholesterol is photolyzed to D3 in the skin by UV light between 270-300 nm. D3 is carried 

by the blood to the liver where it is hydroxylated by vitamin D 25-hydroxylase (CYP2B1) into 

calcifediol, or 25-hydroxyvitamin D3 (25(OH)D3). A smaller amount of vitamin D metabolites bind 

to albumin, which offers similar protection. The final hydroxylation to activate vitamin D3 occurs 

primarily in the kidney as vitamin D 1α-hydroxylase (CYP27B1) hydroxylates calcifediol to produce 

calcitriol, or 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), the active form of vitamin D3. Calcifediol 

(measured in ng/mL or nM) is 1,000 times more abundant in the serum than calcitriol (measured 

in ng/L or pM) [15], and as such, calcifediol is used as the clinically relevant marker of vitamin D3 

abundance. Both calcitriol and calcifediol are targeted for excretion by hydroxylation at carbon 

24 into 24,25-dihydroxyvitmain D3 by 25-hydroxyvitamin D3 24-hydroxylase (CYP24A1) [16]. This 

pathway is summarized in Figure 1.1.  

Vitamin D metabolites are chaperoned throughout the circulation by vitamin D binding protein 

(DBP), a globulin protein in the albumin family [17, 18]. Approximately 88% of calcifediol and 85% 

of calcitriol are bound to DBP, with the vast majority of the remaining fraction bound to albumin; 

only 0.04% of calcifediol and 0.4% of calcitriol are free in serum [19]. The association of vitamin D 

metabolites to DBP serves several functions ranging from aiding solubility of hydrophobic vitamin 

metabolites to preventing renal excretion or vitamin D and mediating megalin-mediated 

endocytosis, the major pathway of preserving calcifediol and converting it into calcitriol [20]. 

Throughout this paper “vitamin D” references vitamin D and its metabolites in a nutritional or 

physiological sense (e.g. vitamin D deficiency, vitamin D synthesis). While vitamin D exists in 

multiple forms, the biological actions of vitamin D are produced exclusively through the actions 

of dihydroxylated vitamin D, whether 1,25(OH)2D2 or 1,25(OH)2D3. Because both D2 and D3 are 

present in humans and capable of eliciting biological responses, specific vitamin D metabolites 

will be named without reference to D2 or D3 when either molecule is applicable (e.g. 1,25(OH)D 

represents both 1,25(OH)2D2 and 1,25(OH)2D3). Specific names of metabolites (e.g. calcitriol) will 

be used in reference to treatment with that metabolite. 

1.1.3 Functions of Vitamin D 

1.1.3.1 Vitamin D Signaling 

Vitamin D works primarily through its interaction with vitamin D receptor (VDR) to regulate gene 

expression. This mechanism is reviewed in detail by Haussler et al. [21] and Pike & Christakos [22]. 
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VDR is a member of the nuclear receptor superfamily and is expressed in nearly every tissue in 

mammalian bodies. This transcription factor has three distinct domains: the c-terminal ligand 

binding domain, two zinc finger DNA-binding domains, and a hinge region which spans the two 

functional regions [23]. Upon activation by 1,25(OH)D, the α-helix rich ligand binding domain acts 

as a gating mechanism to retain the ligand and serve as a docking site for retinoid X receptor 

(RXR), the most common cofactor of VDR [24]. The VDR:RXR heterodimer then translocates to the 

nucleus where it binds to vitamin D response elements (VDREs) and associates with both gene 

and cell specific cofactors to activate gene transcription [21, 22]. In addition to VDREs, the 

VDR/RXR heterodimer has myriad additional cis-acting targets and DNA binding sequences, 

known as the cistrome (from cis-acting target and genome), which number from 1,000 to 8,000 

per genome and vary as a function of cell type and epigenetic modification.  

Vitamin D is also recognized to have non-genomic effects independent of nuclear activation and 

transcriptional regulation in multiple cell types [25]. Researchers have proposed that there is a 

secondary membrane VDR (mVDR), opposed to nuclear VDR (nVDR), which exerts non-genomic 

effects in cells. This mVDR is associated with the activation of multiple intracellular signaling 

cascades. Through mVDR, 1,25(OH)D can activate signaling molecules including phospholipase C 

and phospholipase A2, phosphatidylinositol-3 kinase (PI3K) and p21ras and their second 

messengers. This in turn activates protein kinases including PKA, Src kinase, mitogen-activated 

protein (MAP) kinases, and PKC [25]. One study in C2C12 myoblasts found that VDR knockdown 

with short hairpin RNA (shRNA) abolished vitamin D-induced phosphorylation of p38 MAPK and 

Src, indicating rapid responses to vitamin D in survival/proliferation pathways [26]. mVDR is also 

connected to increased phosphoinositide turnover and production of second messengers inositol 

1,3,4-triphosphate (IP3) and diacylglycerol (DAG). Calcitriol is also shown to increase intracellular 

calcium through both activation of voltage-dependent calcium channels and release of 

intracellular calcium stores from sarcoplasmic reticulum and t-tubules [27, 28]. 

 While the separate functions of mVDR and nVDR have substantial implications to the mechanisms 

of effects mediated by vitamin D, few researchers differentiate between these two pathways or 

consider the possibilities of each in experimental models. As such, most research investigating 

VDR does not differentiate between mVDR and nVDR and simply report the actions of “VDR.” 

Descriptions of others’ research in this paper do not imply mVDR or nVDR; however, original 

content reported in chapters 3, 4, and 5 specify nuclear and membrane VDR where appropriate. 
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1.1.3.2 Calcium Regulation 

Vitamin D is traditionally recognized as a modulator of serum calcium and regulates circulating 

calcium in three ways. First, it facilitates absorption of calcium in the intestines. About 70-80% of 

dietary calcium is absorbed in the intestines, primarily through the ileum and colon. Vitamin D 

modulates both transcellular calcium transport through intestinal epithelial cells and paracellular 

transport between tight junctions. Vitamin D-mediated transcellular calcium absorption is 

modulated by three key proteins: calcium transporter transient receptor potential vanilloid type 

6 (TRPV6), intracellular transporter calbindin-D9k (CaBP), and transmembrane calcium pumps 

NCX1 and PMCA1b [29]. All of these proteins are induced by vitamin D genomic signaling and 

decreased, although not absent, in VDR-null animal models [30]. During transmembrane calcium 

transport, calcium is transported across the apical brush-border membrane into intestinal 

enterocytes through TRVP6. After transport through TRPV6, free intestinal intracellular calcium is 

captured by CaBP and ultimately pumped across the plasma membrane into circulation by 

calcium-ATPase pumps, primarily PMCA1b. It is worth noting that knockout mice of TRVP6 and 

CaBP have no dramatic phenotype, suggesting alternative pathways of calcium absorption. 

However, TRVP6 null mice do have decreased calcium absorption under conditions of low dietary 

calcium compared to wild type animals. 

Vitamin D also regulates paracellular transport of calcium [29]. Paracellular transport occurs along 

the length of the intestines through tight junctions in a regulated fashion, likely coordinated with 

transcellular transport [31]. Vitamin D receptor knockout has been shown to decrease the 

expression of tight junction proteins claudin-2 and claudin-12, which facilitate calcium 

conductance [31]. Gene array studies have also shown that vitamin D suppresses cell adhesion 

protein cadherin-17 and tight junction channel protein aquaporin-18, expanding its function in 

paracellular calcium transport [32]. 

The second mechanism through which vitamin D regulates circulating calcium is through the 

mobilization of skeletal calcium by PTH. PTH is considered to be the most significant peptide 

hormone for regulating calcium homeostasis [33], and its function is closely tied to vitamin D. One 

of the most immediate effects of PTH secretion is increased expression and activity of CYP27B1 in 

the kidneys. This increases the 1α hydroxylation of 25(OH)D to 1,25(OH)D and thereby the 

bioavailability of vitamin D and intestinal calcium absorption[34]. However, when this is 

insufficient, PTH is released from the parathyroid glands and increases serum calcium in multiple 
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ways, one of which is the activation of osteoclasts and mobilization of skeletal calcium. PTH acts 

on osteoblasts and osteocytes to increase the surface expression of the receptor activator of 

nuclear factor-κB ligand (RANKL). Hematopoetic stem cells of the monocyte/macrophage line 

express RANK, the receptor for RANKL, and, upon binding to RANKL, differentiate into osteoclasts 

[35]. Osteoclasts in turn decrease the pH of the microenvironment immediately surrounding the 

bone, releasing calcium into the circulation. Because of this, chronically high levels of PTH can 

trigger dramatic demineralization of bone and are associated with osteopenia and osteoporosis. 

Thirdly, vitamin D works through PTH to increase renal retention of calcium. As vitamin D 

decreases and PTH increases, tubular reabsorption of calcium increases and filtered load 

decreases. While the impact of vitamin D on renal regulation of calcium are well known, the 

molecular mechanisms through with vitamin D works to increase renal retention of calcium are 

not well understood [36]. 

1.1.3.3 Lipid Management 

Vitamin D has long been recognized as an important regulator of both lipid storage and lipid 

metabolism in a variety of tissues including liver [37-40], adipose [41-43], bone [44], kidney [45, 

46], and skeletal muscle [47-49]. In fact, vitamin D is recognized as a necessary component for the 

normal accumulation and oxidation of lipids [50]. This is perhaps most evident in the liver. One 

study found that, of patients referred to a Diabetes and Metabolic Diseases clinic, individuals with 

non-alcoholic fatty liver disease (NAFLD) had decreased serum 25(OH)D [51]. This association was 

independent of age, sex, triglycerides, HDL, and blood glucose. A later meta-analysis concluded 

that low serum 25(OH)D likely contributes to the development of NAFLD in humans [40]. 

However, results in mice have suggested adverse effects of vitamin D and VDR on lipid 

management in the liver. One publication reported decreased accumulation of liver triglycerides 

and improved glucose tolerance in vitamin D deficient mice compared with vitamin D sufficient 

controls when fed a high fat diet [52], and another found that deletion of VDR prevented 

hepatosteatosis in ApoE-/- mice [38]. While responses may vary in different models, it is evident 

that vitamin D and VDR play a clear role in lipid management in the liver. 

Adipose tissue and whole body adipose biology are also affected by vitamin D. Kang et al. [41] 

found that vitamin D treatment prevented weight gain in pregnant rats and reduced the amount 

of lipid in adipocytes. Vitamin D also negatively regulated lipolytic genes in both adipose and liver 

tissue including FAS, SCD1, ACC1, PPARγ, and INSIG2. The impact of vitamin D on PPARγ is 
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particularly important in regulating the differentiation of adipocytes. Treatment of preadipocytes 

with vitamin D prevents differentiation through PPARγ-mediated pathways [43, 47, 53]. 

Conversely, low levels of vitamin D upregulate PPARγ and have been connected to the 

transdifferentiation of C2C12 myoblasts into adipocytes [54]. This is a likely mechanism by which 

vitamin D deficiency contributes to the accumulation of EMCL. Vitamin D is also proposed to 

impact multiple organ systems through its effects on adipose tissue by regulating the expression 

of adipokines [55]. Mice without VDR or CYP27B1 genes have reduced serum leptin [56]. This 

result is mirrored in human studies; individuals with vitamin D deficiency and a normal BMI exhibit 

a negative correlation between vitamin D and leptin [57]. However, the mechanisms to support 

this correlation have not been established and there is limited support for the involvement of 

vitamin D-regulated adipokines [55]. 

Vitamin D has also been strongly associated with IMCL and muscle lipid oxidation. The relationship 

between vitamin D and muscle fat was first discovered by Gilsanz et al. in a cross-sectional study 

of young women that showed a strong inverse correlation between 25(OH)D and EMCL [58]. 

Another cross-sectional study of overweight women with polycystic ovarian syndrome (PCOS) 

demonstrated an inverse relationship between 25(OH)D and EMCL in the thigh [59]. Interestingly, 

this association was independent of visceral fat. This same study found that only women with 

25(OH)D > 20 ng/mL had a significant decrease in thigh EMCL after a 12-week treadmill exercise 

program, suggesting that sufficient 25(OH)D may be required for efficient mobilization of EMCL 

and during exercise. Furthermore, high EMCL volume attenuates gains in muscle quality [60, 61] 

and is associated with increased morbidity in older men [62].  

While these reports suggest that vitamin D decreases EMCL accumulation, there is evidence that 

vitamin D increases the accumulation of IMCL. A clinical study by Redzic et al. [49] showed a direct 

linear relationship between serum 25(OH)D and IMCL accumulation in older adults. In this study, 

vitamin D status was compared to IMCL, EMCL, physical activity, and markers of physical function 

in adults 65-80 years of age. Statistical analysis showed that the observed relationship between 

25(OH)D and IMCL was independent of lifestyle factors or physical activity. The positive 

relationship between vitamin D and IMCL was reproduced in a C2C12 cell culture model by 

Jefferson et al. [48] using a C2C12 myotube model treated with 100 nM calcitriol for 96 hours and 

found an increase in neutral lipid accumulation as indicated by oil red O staining. In addition to 

decreased EMCL accumulation and increased IMCL accumulation, vitamin D has been shown to 
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prevent obesity in a high fat diet mouse model by increasing β-oxidation [63]. Together, these 

data suggest a model in which vitamin D supports lipolysis of EMCL and accumulation of IMCL in 

combination with increased mitochondrial activity and β-oxidation. This increase of lipid into and 

out of skeletal muscle improves muscular bioenergetics and may prevent lipotoxicity [64]. Both 

of these endpoints have beneficial implication for clinical populations at risk for sarcopenia, 

cachexia, or metabolic syndrome. 

1.1.4 Clinical Implications 

1.1.4.1 Prevalence of Deficiency 

Vitamin D deficiency, or hypovitaminosis D, is extremely prevalent and thought to affect over 1 

billion individuals worldwide [7]. However, the clinical cutoff for vitamin D deficiency is a subject 

of debate, and exact rates of deficiency reported by different researchers or agencies vary widely. 

The Institute of Medicine defines vitamin D insufficiency as serum 25(OH)D less than 20 ng/mL 

(50 nmol/L) and deficiency as 25(OH)D levels below 12 ng/mL, while the Endocrine Society deems 

values less than 30 ng/mL (75 nmol/L) insufficient. Still, some researchers suggest that sufficiency 

is not reached until 40-60 ng/mL (150 nmol/L) [6]. Each of these cutoffs is set based on different 

biological outcomes. Defining deficiency as < 20 ng/mL is centered on improving bone health by 

minimizing serum PTH to prevent leaching of calcium from bone. Higher cutoffs recognize that 

intestinal calcium transport is not optimized until 30-32 ng/mL. Setting the lower limit of 

sufficiency at 40 considers recent evidence that higher vitamin D levels are associated with 

decreased rates of some cancers [6]. According to the most recent NHANES survey (2001-2006), 

8% of Americans had 25(OH)D < 12 ng/mL, and 32% had 25(OH)D below 20 ng/mL. These rates 

increase with age and BMI. 

Regardless of exact prevalence of vitamin D deficiency, there is little debate that rates of vitamin 

D deficiency are increasing around the world [7, 11-13, 65, 66]. There are likely multiple factors 

contributing to rising rates of deficiency. Foremost is a global trend towards decreased cutaneous 

exposure to UVB radiation and in turn decreased vitamin D synthesis [67]. This is associated with 

racial and geographic factors [68], as well as changing lifestyles among both adults and children 

[69, 70]. The association between skin cancer and UVB exposure has led to increased use of 

sunscreen, which also prevents cutaneous vitamin D synthesis, and may also be a contributing 

factor to increased vitamin D deficiency [71]. Increased rates of obesity contribute to vitamin D 
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deficiency; as BMI rises, more and more vitamin D is sequestered in adipose tissue, increasing the 

amount needed to maintain healthy levels in the blood. A recent study identified an independent 

association between serum 25(OH)D and obesity after controlling for racial, sociological, dietary, 

and environmental factors [72]. Because of the relatively low contribution of dietary vitamin D to 

serum 25(OH)D, dietary intervention is considered the least beneficial strategy for population-

wide improvements in vitamin D levels [73]. 

1.1.4.2 Symptoms of Deficiency Effecting Skeletal Muscle 

Vitamin D deficiency is highly associated with musculoskeletal problems. One of the most 

commonly studied products of vitamin D deficiency is the risk of falls in persons over the age of 

65. Multiple studies have found that vitamin D supplementation is associated with a decreased 

incidence of falls [74, 75]. Conversely, reduced vitamin D status is connected with decreased 

muscle mass and physical performance in the elderly [76]. While a 2012 meta-analysis published 

in the Cochrane Database of Systematic Reviews concluded that vitamin D did not reduce the rate 

of falls or risk of falling [77], the authors did note that there may be a benefit of vitamin D in 

people who are vitamin D deficient. Related to falls, vitamin D has been connected with 

sarcopenia in several studies [78-83]. While broad conclusions are difficult to draw, both 

molecular and clinical research have connected low levels of vitamin D to decreased muscle 

volume and function in the elderly [78, 79] and vitamin D supplementation with increased 

myofiber diameter [84-86]. However, vitamin D related deficiency and musculoskeletal deficit are 

not limited to aged populations. A study in sub-Himalayan India found a greatly increased rate of 

vitamin D deficiency in patients presenting with proximal muscle weakness as young as 22 years 

of age [65]. A meta-analysis investigating the overall effect of vitamin D on muscular strength did 

not find evidence that vitamin D supplementation has an effect on strength in adults with a 

baseline 25(OH)D > 25 ng/mL, but did suggest that multiple studies demonstrate a benefit in 

proximal muscle strength in adults with vitamin D deficiency [87]. Data seem to suggest that the 

majority of benefits of vitamin D treatment are observed when increasing 25(OH)D from deficient 

to sufficient levels, but it is thought that there are limited benefits to additional vitamin D 

supplementation once sufficiency is reached. 
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1.1.5 Vitamin D in Skeletal Muscle  

Early in the new millennium, vitamin D was recognized to have a substantial impact on skeletal 

muscle. Visser et al. showed that low vitamin D and high parathyroid hormone (PTH) were 

predictive of sarcopenia [78], and Bischoff-Ferrari et al. associated high 25(OH)D with improved 

leg strength in inactive older adults [88]. In spite of multiple studies showing positive effects of 

vitamin D on skeletal muscle, many researchers remained skeptical of its direct effect on skeletal 

muscle. Many attributed musculoskeletal benefits associated with vitamin D to improved calcium 

and phosphate homeostasis, and a years’ long debate surrounding the presence of VDR in skeletal 

muscle ensued. Research out of the University of Kentucky helped to solidify a direct role for 

vitamin D and VDR in skeletal muscle in 2012. Publication by Srikuea et al. [89] demonstrated that 

both VDR and CYP27B1 are expressed in C2C12 myoblasts and myotubes as well as adult muscle 

cells in rodents. Furthermore, both proteins localized to the nucleus of myoblasts upon 

stimulation with both 1,25(OH)D and 25(OH)D. These results were verified by cloning and DNA 

sequencing of transcribed VDR and CYP27B1 genes. However, it is of note that neither VDR nor 

CYP27B1 translocated to the nucleus upon treatment with calcitriol in differentiated myotubes. 

Further work has shown that VDR is expressed in human muscle biopsies [90, 91]. 

Functional effects of vitamin D in skeletal muscle have been well researched and generally show 

appreciable gains in measures of functional capacity among older adults [49, 80, 92-94]. These 

findings have been supported by multiple meta-analyses, each showing that vitamin D contributes 

to small but measurable gains in markers of muscle function [92, 93, 95, 96]. In addition to 

functional outcomes, vitamin D has been shown to increase type II muscle fiber cross sectional 

area in older women [97]. Similarly, meta-analysis has confirmed that vitamin D supplementation 

increases upper and lower limb power generation in healthy, untrained adults [95]. One 

randomized controlled trial has shown that vitamin D replenishment improves muscle recovery 

and hypertrophy after damaging eccentric exercise [98]. In contrast, quantifiable benefits of 

vitamin D supplementation in athletes remain elusive in randomized controlled trials [99, 100]. 

Correlative studies have shown an association between 25(OH)D status and several markers of 

athletic performance including VO2max, sprinting and vertical jump [101]. One review notes that 

although there are multiple theoretical benefits of vitamin D for muscle growth and regeneration, 

recovery, and oxygen consumption, and vitamin D deficiency is associated with decreased 

performance and muscle function, the majority of studies on vitamin D in athletes have been 
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correlative; therefore, clear conclusions regarding the impact of vitamin D on the muscles of 

athletes cannot be drawn, and much more research is necessary to determine causation [102]. 

Mouse models of vitamin D deficiency and VDR knockout add a greater degree of understanding 

to how vitamin D affects skeletal muscle. A recent study showed that mice fed a vitamin D 

deficient diet and protected from UV exposure had impaired performance including uphill sprint 

speed, stride length, and grip endurance [103]. VDR-null mice develop normally until weaning but 

later develop classical signs of rickets and spontaneous alopecia [104]. Additionally these mice 

show neuromuscular deficit evidenced most clearly by an abnormal, vertical swimming position 

and increased frequency of sinking episodes [105, 106]. A closer look at muscle morphology and 

physiology finds that VDR knockout mice show myofiber diameter decreased by approximately 

20%, independent of hypocalcemia and hypophosphatemia [107]. Additionally, VDR-/- mice 

expressed chronically high levels of Myf5, myogenin, and E2A, although myocyte differentiation 

occurred normally. The authors hypothesize that the aberrant expression of these myogenic 

genes disrupts the strictly regulated progression of muscle differentiation and maturation, 

ultimately contributing to aberrant myosin heavy chain expression and atrophy [107]. Although 

skeletal muscle specific VDR-/- models are lacking, cardiomyocyte specific VDR-/- mice exhibit 

increased susceptibility to cardiac hypertrophy, myocyte enlargement, myocyte steatosis, and 

lipotoxicity [108, 109]. 

Positive correlations between vitamin D and markers of skeletal muscle health are generally 

accepted; however, direct mechanisms by which vitamin D enacts functional changes in muscle 

are still unknown. Multiple studies have attempted to delineate the mechanisms of vitamin D on 

skeletal muscle using the C2C12 mouse myoblast cell line with mixed results. Several studies have 

shown that vitamin D stimulates the Akt/mTOR signaling pathway [48, 84], suggesting increased 

anabolic signaling and increased fiber size, although fiber size was not directly measured. One 

study found that although supplementation decreased C2C12 differentiation, calcitriol increased 

average myotube diameter by 1.8x [86]. However, other researchers have failed to observe either 

anabolic signaling or myotube hypertrophy with 1,25(OH)D treatment [85]. Complicating the 

investigation of a vitamin D effect in skeletal muscle, VDR does not translocate to the nucleus 

upon stimulation with 1,25(OH)D, eliminating classical VDR/RXR nuclear signaling from potential 

mechanisms. This has led some researchers to suggest that vitamin D works in skeletal muscle 

through non-genomic signaling pathways [26, 110]. Vitamin D treatment causes rapid Ca2+ influx 
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both in vitro and in vivo that are not prevented by inhibitors of RNA or protein synthesis [110]. 

Increases in intracellular Ca2+ are also associated with vitamin D-induced activation of signaling 

cascades including calmodulin/calmodulin-dependent protein kinase II, PKA, and PKC. These 

pathways are associated with increased bioenergetic function [111], increased contractile force 

generation [112], and increased mitochondrial biogenesis [113]. In parallel, a study in the 1980s 

connected vitamin D deficiency with decreased oxygen consumption and lower calcium content 

in cardiomyocyte mitochondria [114]. 

More recent work has suggested connections between vitamin D and skeletal muscle 

bioenergetics. A clinical study by Sinha et al. [115] supplemented severely vitamin D deficient 

individuals (25(OH)D < 6 ng/mL) with 20,000 IU of vitamin D on alternate days for 10-12 weeks in 

a longitudinal design. This group used phosphorus-31 magnetic resonance spectroscopy (31P-

MRS) to measure phosphocreatine recovery half-time (τ1/2PCr), a surrogate for mitochondrial 

function, in the gastrocnemius during three minutes of a plantar flexion exercise. Results from 

this study showed that vitamin D supplementation increased 25(OH)D from 3.5 ng/mL to 45 

ng/mL and decreased τ1/2PCr by 19%. However, some of these claims have encountered resistance 

[116], notably the failure to show functional improvement in proximal muscle, technical limitation 

of equipment used and practical limitations of examining short term impacts of exercise using 

NMR. Nevertheless, the results of Sinha et al. have been corroborated by additional research. A 

group operating out of Delhi, India reproduced the Sinha study with very similar results [117]. 

Additional work has continued to investigate the role of vitamin D in skeletal muscle bioenergetics 

through oxygen consumption. 

1.1.5.1 Oxygen Consumption 

One of the leading hypotheses explaining how vitamin D improves muscle function is improved 

oxygen consumption and improved bioenergenic capacity of muscle fibers. Supporting this idea 

are multiple reports suggesting that vitamin D is a major contributor to mitochondrial function 

and oxygen consumption in a variety of tissues [63, 115, 118-120]. However, causal relationships 

between vitamin D and improved muscle function are yet to be established [121], and there is 

still a large body of research needed to determine how vitamin D improves skeletal muscle health 

and function [50]. 

Most of the research examining the effect of vitamin D on skeletal muscle oxygen consumption 

has focused at the whole body level during exercise. These studies consistently show that vitamin 



12 
 

D is directly correlated with VO2max [93, 122] and inversely correlated with respiratory quotient 

(RQ) [123]. One interventional study in patients with type 2 diabetes mellitus (T2DM) found that 

60,000 IU of vitamin D once weekly in conjunction with moderate exercise improved 

mitochondrial content in skeletal muscle and VO2max and prevented simvastatin-associated 

decline in these markers [124].  

Another group out of the Mayo Clinic has published work looking specifically at the role of vitamin 

D on skeletal muscle in vitro. Ryan et al. [118] demonstrated that calcitriol treatment increases 

the oxygen consumption rate (OCR) and mitochondrial metabolism of cultured human skeletal 

muscle cells in a dose-dependent manner from 10 pM to 1 nM. The authors primarily attributed 

this increase in OCR to changes in mitochondrial fission and fusion. Total mitochondrial DNA and 

volume were unaffected, but calcitriol increased the expression of pro-fusion protein OPA1, and 

decreased expression of pro-fission proteins Fis1 and Drp1. A secondary mechanism the authors 

propose is driven by an increase in pyruvate dehydrogenase activity; calcitriol treatment 

decreased protein expression of both pyruvate dehydrogenase kinase 4 (PDK4) and inactive, 

phosphorylated pyruvate dehydrogenase. PDK4 inactivates pyruvate dehydrogenase through 

phosphorylation, preventing the oxidation of pyruvate into acetyl-CoA and carbon dioxide. 

Therefore, by decreasing pyruvate dehydrogenase phosphorylation and PDK4 expression, 

calcitriol increased the production of acetyl-CoA for further oxidation in mitochondria and limited 

lactate production. Reinforcing the finding that vitamin D increases OCR, another study by the 

same group found that calcitriol prevents mitochondrial dysfunction associated with cancer 

conditioned media and corrects the associated decrease in OCR in primary human skeletal muscle 

cell culture [119]. 

1.1.5.2 IMCL & EMCL 

In recent years, vitamin D has been associated with increased IMCL content in both clinical and 

basic research [48, 49]. Increased muscle lipid, especially in association with increased body fat, 

is often associated with increased inflammation, oxidative and endoplasmic reticulum stress, and 

insulin resistance. This syndrome is seen in many tissues and collective referred to as lipotoxicity 

[125-128]. However, increased vitamin D is correlated with improved health outcomes and 

decreased symptoms of lipotoxicity in multiple tissues including liver [39], kidney [46], and bone 

[44] and has never been shown to produce lipotoxic effects. Furthermore, vitamin D has been 

shown in both basic science and clinical settings to improve insulin sensitivity, skeletal muscle 
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function, and skeletal muscle mitochondrial capacity [88, 115, 118, 129]. Many of the impacts of 

vitamin D on skeletal muscle mimic patterns seen in the athlete’s paradox, a condition of high 

IMCL with simultaneously high levels of insulin sensitivity and mitochondrial function observed in 

endurance athletes [130-132].  

Calcitriol modulates PLIN2 expression in mouse muscle [47, 48] and kidney [46]. Li et al. [47] 

created a mouse model of vitamin D deficiency using low dietary vitamin D (25 IU/kg/day) and 

UVB-free lighting compared with vitamin D sufficient (1,000 IU/kg/day) counterparts. The vitamin 

D deficient mice exhibited increased IMCL and EMCL accumulation and distorted longitudinal 

myotubes arrangement. The increase in IMCL was accompanied by increased expression of PLIN2 

and PPAR-γ protein. MALDI-TOF/TOF mass spectroscopy revealed that vitamin D deficiency 

increased the abundance of select species of phospholipids and altered phospholipid profile. The 

authors noted that this was representative of changes to phospholipid membranes. A change in 

the ratio of saturated to unsaturated phospholipids in plasma membranes readily affects ER 

function and can trigger pro-apoptotic pathways [133]. In summary, Li et al. [47] showed that 

vitamin D deficiency resulted in pathological accumulation of both IMCL and EMCL in mouse 

skeletal muscle and is most likely driven by increased expression of PPAR-γ. 

Alternatively, previous work from this group published by Jefferson et al. [48] showed that 

calcitriol supplementation in a C2C12 cell culture model increased PLIN2 mRNA and IMCL. This 

group used a 96-hour treatment with and 100 nM vitamin D and 250 µM of both palmitate and 

oleate to induce lipid accumulation. Supplementation yielded greater IMCL accumulation, 

particularly in myoblasts opposed to myotubes. This was accompanied by a two-fold increase in 

PLIN2 mRNA expression as well as significant increases in the expressions of CGI-58 and ATGL 

mRNA. Liquid chromatography mass spectroscopy revealed that calcitriol supplementation 

dramatically increased the expression of several species of DAG, most notably di-18:0, again 

showing that vitamin D affects lipid profile. Notably, this publication notes that calcitriol treated 

myotubes showed greater Akt phosphorylation in response to 15 minutes of insulin stimulation, 

suggesting that increased IMCL in response to calcitriol is associated with increased insulin 

sensitivity. This pattern is very similar to the findings of Bosma et al. who showed that PLIN2 

overexpression increased both IMCL and insulin sensitivity [134]. While Li showed that vitamin D 

decreases PLIN2 and IMCL while Jefferson showed that vitamin D increases PLIN2 and IMCL, these 

results are not contradictory; one study examines vitamin D deficiency while the other models 
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vitamin D supplementation. These two studies may imply a complex mechanism of vitamin D-

regulated lipid storage in skeletal muscle that involves a U-shaped curve of IMCL in relation to 

vitamin D with apparently similar but unique phenotypes at extremes: low vitamin D may trigger 

lipotoxic lipid accumulation, while high vitamin D triggers lipoexpedient lipid accumulation. 

1.2 Lipid Storage in Skeletal Muscle 

Skeletal muscle is one of the most metabolically active tissues in mammalian physiology. In 

endurance trained humans under high energetic demand, skeletal muscle can account for more 

than 90% of total oxygen consumption. However, at rest, skeletal muscle is relatively inactive. 

This incredible range of energy requirements mandates that skeletal muscle react quickly to 

bioenergetic demands. A rapid response is accomplished through a combination of increased 

macronutrient delivery, primarily glucose and fatty acids (FAs), via increased blood flow and 

mobilization of stored energy in the forms of muscle glycogen and triacylglycerides (TAG). Skeletal 

muscle has a remarkable capacity for macronutrient storage and can accumulate approximately 

500 g of glycogen [135] and 750 g of lipid in an active, 70 kg male [136]. This equates to 

approximately 2,000 kCal of carbohydrate and 6,750 kCal of lipid. Although total intramyocellular 

lipid (IMCL) content pales in comparison to lipid stored in adipose tissue, skeletal muscle remains 

the second largest repository of TAG in humans. Because of skeletal muscle’s capacity to store 

and oxidize lipid, IMCL content is directly associated with a variety of biological and lifestyle 

factors including fiber type [137], diet [138], exercise [130-132, 139, 140], and total body adiposity 

[139, 141, 142]. IMCL encompasses all lipid stored within muscle cells including TAG, DAG, 

cholesterol, phospholipids, and sphingolipids. Some researchers specifically discuss 

intramyocellular triglyceride (IMTG) because of its more direct impact on muscle bioenergetics. 

However, thinking specifically in terms of IMTG creates a tendency to overlook the contributions 

of other lipids in cellular systems. DAGs undergo lipolysis and, in addition to sphingolipids, are 

potent signaling molecules.  

Although IMCL is the direct source of lipids oxidized in skeletal muscle, extramyocellular lipid 

(EMCL) is a much larger store of TAG and less susceptible to large swings in content. These two 

lipid storage sites are fundamentally different; they store and release lipid through different 

mechanisms under different stimuli from different tissues. IMCL exists within myocytes in the 

form of cytosolic lipid droplets (LDs), while EMCL is adipose tissue dispersed among muscle fibers. 
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While it is normal for some EMCL to accumulate in skeletal muscle, high levels of accumulation 

are considered pathological. Large depots of EMCL are sometimes called ectopic lipid. However, 

the term “ectopic lipid” is not specific to muscle and can describe adipose deposits in any tissue. 

Muscles of both predominantly type I and type II muscle fibers increase lipid content in response 

to a hypercaloric, high fat diet, but do so in different ways. Type I muscle fibers have a greater 

capacity for oxidative metabolism and, likewise, a greater capacity to store TAG for immediate 

oxidation than do type II fibers [137, 143]. A magnetic resonance spectroscopy study completed 

by Nagarajan et al. [144] suggested human muscles comprising primarily type I fibers (e.g. soleus) 

are more apt to accumulate IMCL as a result of obesity, while predominantly type II muscles (e.g. 

gastrocnemius) more readily accumulate EMCL. They also proposed that muscles containing 

primarily of type I fibers may be resistant to accumulating EMCL. Conversely, Covington et al. 

[145] showed that 8 weeks of overfeeding had no impact on total IMCL content in the soleus, 

tibialis anterior, or vastus lateralis, but rather increased the size of LDs. Increased LD size is 

associated with decreased glucose clearance rate and weight gain [145]. They went on to show 

that larger LDs were associated with increased reactive oxygen species production, decreased 

perilipin protein expression, and increased ceramide content. 

The effect of training on IMCL is still the subject of some debate, with different interventions in 

different populations producing consistently different results. Well-trained endurance athletes 

have increased IMCL content compared with sedentary counterparts [131], and sedentary 

individuals have been shown to increase type I fiber IMCL with endurance training [146]. 

However, an endurance training regimen can decrease steady state IMCL in individuals with T2DM 

[147]. The ultimate effect of endurance training on IMCL likely depends on the metabolic and 

physiological status of the individual at the initiation of training [148]. Overall, the effect of 

training on IMCL appears to be dependent on the metabolic health and total fat mass of the 

individual. Training decreases IMCL content in those with high BMI or T2DM to mitigate effects of 

lipid overabundance, but produces a slow, adaptive accumulation of IMCL in lean individuals to 

foster greater energy availability. 
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1.2.1 Lipid Droplets 

1.2.1.1 LD Introduction 

The vast majority of intramyocellular lipids are stored in LDs, which are sometimes called 

adiposomes [149]. Although once thought to be simple lipid-filled vacuoles, LDs are now 

recognized to be highly complex and metabolically active organelles that regulate lipid storage, 

trafficking, and oxidation. LDs are unique structures surrounded by a monolayer of phospholipids, 

primarily phosphatidylcholine and phosphatidylethanolamine, with a smaller amount of 

phosphatidylinositol [150]. This monolayer makes for interesting protein-membrane interactions; 

there is no set thickness of hydrophobicity as there is in a lipid bilayer. Therefore, many proteins 

embedded in the LD have an amphipathic α-helix domain or hydrophobic hairpins. These 

specialized domains are purported to assist the localization of proteins made in the cytosol to the 

LD [151].  

The low density and hydrophobicity of LDs makes their isolation relatively easy, but simplistic 

techniques have led to facile analysis resulting in hundreds of proposed LD-binding proteins. 

Further research has suggested that many of these proteins are the product of contaminants from 

co-precipitated organelles (particularly the endoplasmic reticulum (ER) lumen) and plasma 

membrane fragments [152, 153]. These discoveries demonstrated the need for greater discretion 

when investigating LD proteomics. However, dozens of proteins have been positively identified 

as localized to the LD membrane and function to regulate membrane dynamics, metabolism, 

autophagy, and vesicular trafficking [152]. These proteins that coat the LD vary along with the 

morphology of LDs both between and within cells and contribute to specialized function of each 

droplet [154]. 

The LD membrane encapsulates a neutral lipid core comprised predominantly of TAG, DAG, and 

cholesterol esters (CE) [155, 156]. Although the details of their generation are still a subject of 

debate, LDs are known to be synthesized from the endoplasmic reticulum [151, 157]. Some 

propose that, similar to mitochondria, existing LDs can fuse to create new LDs. LDs are filled by a 

combination of TAG from the ER lumen and DAG converted to TAG by diglyceride O-acyltranferase 

(DGAT) on the LD surface in the presence of exogenous lipid [158].  
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1.2.1.2 LDs are highly conserved 

Lipid droplets are one of the oldest and most highly conserved organelles, maintained across all 

domains of life from archaea to bacteria to eukaryotes [159-161]. Spanning the monolayer is a 

network of highly specialized proteins that maintain droplets’ structure, dock metabolic enzymes, 

and relay signals to and from LDs to other organelles. While individual proteins are not necessarily 

maintained between mammals, yeast, and prokaryotes, recombinant LD proteins commonly 

localize to LDs in other models [162-164]. For example, LD coating proteins from the yeast 

genome localize to lipid droplets in mammals and vice-versa. Moreover, recent studies reporting 

the presence of LD in bacterial nucleoli and hepatic nuclei, as well as histones H2A, H2B, and H2Av 

localized to lipid droplets, suggest a potential role for LDs in nucleic acid handling in both 

prokaryotes and eukaryotes [165]. 

1.2.1.3 LD Organization and Morphology 

LDs in skeletal muscle are highly organized at a subcellular level. The majority of skeletal muscle 

LDs are located in-between myofibrils, commonly found in pairs packed between two 

mitochondria along the I-band of sarcomeres [137]. A smaller subset of LD is found in the 

subsarcolemmal region. Similar to mitochondria, subsarcolemmal and intermyofibrillar LDs are 

thought to be both functionally and morphologically distinct with subsarcolemmal LDs more 

predictive of insulin resistance and lipotoxicity [166]. 

The size of LDs is extremely important in regulating skeletal muscle health and may play a larger 

role than total IMCL content [145]. In general, LDs in skeletal muscle are relatively small, ranging 

from 0.3 to 1.5 µm in diameter [167]. This is contrasted to LDs in adipocytes, which commonly 

reach 100 µm or more in diameter. Specialization of skeletal muscle LDs is further demonstrated 

as the size and abundance of LDs differs between fiber types. Type I fibers contain LDs that are 

both larger and more numerous than those found in type II fibers. 

1.2.1.4 LD Are Metabolically Active 

Originally thought to serve only as a storage site for triglyceride, LDs are now known to be highly 

dynamic and metabolically complex organelles crucial to lipid trafficking and utilization in a variety 

of tissues [149]. This is especially true in highly oxidative tissues including the liver [168], heart 

[169], and skeletal muscle [167]. Lipid droplets are regulatory organelles that manage both lipid 

accumulation and lipolysis. In fact, very little lipid is oxidized without first passing through the lipid 

droplet. While muscle cells can directly import and oxidize fatty acids from circulation, the 
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majority of IMCL are first incorporated into TAG and stored in LDs before being hydrolyzed by 

lipases for oxidation in mitochondria [170, 171]. While strenuous exercise (45 minutes of cycling 

at 75% max power) acutely depletes the IMCL pool by more than 60% [172, 173], moderate 

exercise has been shown to have a different effect on IMCL pool. Using radioactive pulse-chase 

analysis, Guo et al. [171] found that exogenous fatty acids are incorporated into IMCL at a rate 

similar to IMCL oxidation during 90 minutes of cycling at ~45% VO2max, thereby maintaining a 

relatively constant IMCL pool. These two studies demonstrate the importance of both acylation 

(the addition of an acyl chain to glycerol to) and lipolysis for the use of exogenous fatty acids.  

1.2.1.5 Lipid Accumulation 

Lipid accumulation in LD can be categorized into two general strategies: accumulation of TAG in 

nascent LDs that have not separated from the endoplasmic reticulum (ER), and addition of TAG 

to cytosolic LDs [174, 175]. These two strategies are accomplished by two proteins of the DGAT 

family. DGAT1 and DGAT2 are transmembrane proteins that catalyze the esterification of acyl-

coA to a DAG to form TAG. Although they are functionally similar, DGAT1 and DGAT2 are 

evolutionally distinct and share little homology [176]. Differences in structure are reflected in 

localization; DGAT1 localizes to the ER while DGAT2 also localizes to mitochondrial membranes 

and LDs [158, 177]. As a result, DGATs are thought to have independent roles in managing lipid 

accumulation and TAG acylation in LDs. DGAT1 mediates TAG acylation in the ER and nascent lipid 

droplets, while DGAT2 embeds into the phospholipid monolayer and produces TAG in pre-existing 

LDs [151, 177-179]. Both DGAT enzymes are important regulators of lipid metabolism, but DGAT2 

plays a larger role in TAG homeostasis and likely contributes more directly to mitochondrial 

metabolism [180]. The importance of DGAT2 over DGAT1 is further evidenced in mouse knockout 

models. DGAT1-/- mice have reduced body fat and lactation defects [181]; however, DGAT2-/- mice 

suffer postnatally fatal derangements of bioenergetic and skin barrier function [182]. The 

mechanism by which TAG are incorporated into lipid droplets, especially nascent droplets on the 

ER, is still a topic of debate among biochemists and biophysicists.  

When considering TAG accumulation in LD and lipid dynamics in skeletal muscle, it is important 

to recognize that de novo lipogenesis, the conversion of acetyl-CoA from non-lipid sources into 

acyl-CoA, only occurs in the liver and white adipose tissue. Lipid anabolism in skeletal muscle is 

limited to acyltransferase reactions and modification such as isomerizations, phosphorylations, 

and desaturations. There is no acyl-chain elongation in skeletal muscle. 
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1.2.1.6 Lipolysis  

Lipolysis is the hydrolysis of an acyl chain from a glycerolipid. Although most lipolysis in 

mammalian systems occurs in adipose tissue, lipolysis is a major component of lipid metabolism 

in skeletal muscle. The first and rate limiting step of lipolysis in most tissues, including skeletal 

muscle, is the hydrolysis of TAG to fatty acid and DAG by adipose triglyceride lipase (ATGL). Meex 

et al. [183] found that the overexpression of ATGL is sufficient to increase lipolysis and 

mitochondrial capacity in vitro, but these results were not observed in vivo. ATGL is found both 

free in the cytosol and bound to LDs, and its activity is regulated by a combination of inhibitory 

and activating binding driven by PKA/AMPK pathway phosphorylation. Lipid droplet proteins 

perilipin 1, 2 and 5 (PLIN1, PLIN2, and PLIN5), which are discussed in detail in the following section, 

and comparative gene identification-58 (CGI-58) all regulate ATGL activity [184]. PLIN1 is a major 

regulator of lipolysis in adipocytes, controlling as much as 95% of protein kinase A (PKA) mediated 

lipolysis [154] but plays little to no role in regulating lipolysis in skeletal muscle. Activation of PKA 

results in the phosphorylation of PLIN1 and association of hormone sensitive lipase (HSL) and 

ATGL, increasing lipolysis. However, the function of lipolysis in adipose tissue and skeletal muscle 

is considerably different; lipolysis in adipose tissue supplies fatty acids for other tissues, while 

lipolysis in skeletal muscle provides fatty acids for energy production in mitochondria, often in 

response to an immediate increase in energy requirements. In skeletal muscle, PLIN2 is reported 

to bind to ATGL in the cytosol and prevent association with the LD and CGI-58 [185]. Contractile 

stimulation or phosphorylation of PLIN2 and CGI-58 by PKA releases ATGL from PLIN2 and 

increases its affinity for CGI-58, increasing lipolysis [184, 186, 187]. PLIN3 and PLIN5 may also 

regulate lipolysis [188], although mechanisms behind these interactions are not well understood 

[154, 184].  

Free fatty acids produced by lipolysis are activated through the action of acyl CoA synthetase and 

converted to acyl-CoA before import to the mitochondria. Transport into the mitochondria is 

mediated by carnitine palmitoyltransferase 1 (CPT1), the rate limiting enzyme of β-oxidation. 

CPT1 replaces the CoA group with a carnitine residue which makes the new acylcarnitine molecule 

available for translocation into the mitochondrial matrix. Upon entry into the matrix, acylcarnitine 

is reactivated into acyl CoA by CPT2. 
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1.2.2 Perilipins 

Perilipins (PLINs) are a family of LD membrane proteins that function in fatty acid uptake, protein 

binding, lipolysis, and lipid oxidation. Perilipin proteins are essential for LD formation, and LDs 

lacking perilipins have not been identified [189]. PLINs are highly conserved and expressed in 

organisms from slime molds to insects to mammals [154]. There are five members of the PLIN 

family expressed in mammals known as PLIN1-5. For many years these highly related proteins had 

unrelated names: perilipin (PLIN1), adipophilin (PLIN2), TIP47 (PLIN3), S3-12 (PLIN4), and OXPAT 

(PLIN5). In 2010, leading perilipin researchers joined together to publish a new, unifying naming 

convention that highlights the common nature of PLINs {Kimmel, 2010 #1036}. These proteins 

share a high level of homology, and all but PLIN4 contain a conserved 100 amino acid domain in 

the amino terminus known as the “PAT domain” originally named to reflect the first three PLIN 

proteins identified: perilipin, adipophilin, and TIP47 [190]. However, this domain is not 

responsible for anchorage to the LD. Indeed, no single shared region has been identified to localize 

the PLIN family to the phospholipid monolayer [154]. Of the 5 members of the perilipin family, 

PLIN2, PLIN3, and PLIN5 are found in skeletal muscle, while PLIN1 is only expressed at high levels 

in adipose tissue. Although some have reported high levels of PLIN4 expression in skeletal muscle 

[191], its expression in skeletal muscle is not widely recognized [192].  

1.2.2.1 PLIN1 

PLIN1 is the most abundant LD protein in adipose tissue where it is exclusively expressed and used 

as a marker for adipocyte differentiation [154]. It has at least 4 splice variants, known as PLIN1a-

PLIN1d [156]. Of these variants, PLIN1a and PLIN1b have a preference for TAG accumulation, while 

PLIN1c has affinity for cholesterol esters. Currently, there is no known protein transcribed from 

the PLIN1d splice variant [156]. PLIN1 is associated with singular large lipid droplets. Like other 

perilipins, PLIN1 is primarily regulated by peroxisome proliferator-activated receptor gamma 

(PPARγ). Although primarily thought of as associated with lipid storage, PLIN1 is activated by 

polyphosphorylation by PKA and highly active in lipolysis. Upon activation, PLIN1 releases CGI-58 

and binds with ATGL, increasing lipolysis by 50-fold [193, 194]. While PLIN1 is not expressed in 

skeletal muscle, PLIN1 knockdown has negative impacts on skeletal muscle health and 

metabolism. PLIN1-/- mice have dramatically reduced adipose stores, increased EMCL, and 

develop insulin resistance [189].  
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1.2.2.2  PLIN2 

PLIN2, also called adipose differentiation-related protein (ADRP) or adipophilin (ADPH), is the 

most highly expressed PLIN in skeletal muscle [192]. PLIN2 is thought to serve primarily as a 

scaffolding protein and, unlike PLIN1 or PLIN5, does not recruit lipases or stimulate lipolysis after 

activation by PKA [189]. While PLIN2 does bind with CGI-58 [195], it is not considered a powerful 

regulator of CGI-58 activity [154]. It is instead active in regulating LD stability, lipolysis, and 

esterification [192]. PLIN2 binds to several metabolically active proteins, including DGAT2 [179]. 

Most notably, PLIN2 attenuates lipolysis by reducing access of ATGL to LDs [185, 196], and loss of 

PLIN2 has been associated with increased rates of lipolysis and β-oxidation in skeletal muscle 

culture [134, 197].  

Several studies have shown that PLIN2 may have a net negative effect on tissue health and 

disease, and that knockout may be beneficial. PLIN2 knockout mice are resistant to 

hepatosteatosis and insulin resistance in obesogenic models [198, 199], and some have reported 

that PLIN2 knockout is protective against diet induced obesity and fatty liver disease [200, 201]. 

A recent publication showed that PLIN2 knockdown in type 1 diabetic Akita mice alleviates 

hyperglycemia, unfolded protein response and ER stress and increased autophagic flux [202]. 

Conte et al. [201] wrote an excellent review outlining roles of PLIN2 in disease, and note its 

contribution to cancer, heart disease, obesity, insulin resistance, atherosclerosis, and lipotoxicity. 

Although knockout appears to be protective against lipid accumulation and lipotoxicity in several 

tissues, PLIN2 expression may be beneficial in skeletal muscle. PLIN2 mRNA expression was found 

to be lower in the skeletal muscle of obese pigs compared to lean counterparts [203]. Others have 

suggested that overexpression of PLIN2 increases oxidative capacity and improve insulin 

sensitivity in skeletal muscle [134, 204]. Furthermore, PLIN2 expression has been connected with 

the increased insulin sensitivity and oxidative capacity in endurance athletes in a phenomenon 

known as “the athlete’s paradox”, and lipids from PLIN2-associated LDs are preferentially oxidized 

during endurance exercise [204]. These apparently contradictory findings suggest a complex 

relationship among PLIN2, lipid management, and health, with different implications from 

different stimuli in different tissues, further demonstrating the dynamic nature of lipid droplets. 

This recognition has lead researchers to question whether PLIN2 expression triggers lipid 

accumulation or if lipid abundance increases PLIN2 expression [192]. 
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1.2.2.3  PLIN5 

PLIN5, also called as OXPAT, is recognized as the LD coating protein (LDCP) most closely associated 

with high fat-oxidative capacity and is hypothesized to be a key regulator in fatty acid oxidation. 

It is primarily expressed in highly oxidative tissues, including the heart, type I muscle, and brown 

fat [167]. A study of skeletal muscle specific overexpression of PLIN5 found decreased 

inflammation in the liver and increased browning of adipose tissue [205], suggesting systemic 

benefits of improved muscle lipid storage and utilization. The major factor that distinguishes 

PLIN5 from other PLIN proteins is its association with mitochondria [206], where it closely 

associates with mitochondrial complex I, II, IV and V. PLIN5 modulates the interaction of ATGL 

with the LD and its co-factor CGI-58 [207]. The Hesselink group has shown that overexpression of 

PLIN5 increases the expression of key lipolytic genes, especially ATGL [208], and suggests that 

PLIN5 increases the efficiency with which mitochondria oxidize lipid [206]. This has led the 

Hesselink group to hypothesize that PLIN5 increase is more beneficial to mitochondrial function 

than is PLIN2, as PLIN2 itself is not associated with increased lipid oxidation and may only be a 

storage mechanism, which will ultimately be overwhelmed if high lipid environment persists. 

1.2.3 Lipotoxicity & Lipoexpediency 

IMCL and myocellular LDs are closely associated with glucose homeostasis and metabolic function 

[209], but imbalances between lipid accumulation, lipolysis, and lipid oxidation can have 

detrimental effects on cells, tissues, and organisms as a whole. Lipotoxicity is a pathological 

accumulation of lipid in non-adipose tissue characterized by oxidative stress, mitochondrial 

dysfunction, ER stress, protein misfolding, inflammation, and ultimately contributes to cell 

dysfunction and apoptosis [210]. At a more macroscopic level, lipotoxicity in skeletal muscle is 

reported to contribute to insulin resistance and sarcopenia [211, 212]. In fact, IMCL content is 

inversely correlated with insulin sensitivity independent of visceral fat in obese adolescents [141]. 

However, not all lipids impact lipotoxicity equally. Beyond total IMCL content, lipid species within 

IMCL are an important contributor to skeletal muscle health. Increased ratio of saturated to 

unsaturated fatty acid content in IMCL is associated with insulin resistance and increased whole 

body adiposity [213]. TAGs are relatively stable, have no cellular signaling function, and their 

accumulation can paradoxically prevent lipotoxicity [214]. However, DAG and ceramides are 

highly active signaling molecules implicated in lipotoxic systems [215, 216]. In fact, the presence 

of these pro-inflammatory lipid species may be more important to the development of lipotoxicity 
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than total IMCL content. Covington et al. show increased ceramide, despite constant IMCL, after 

8 weeks of overfeeding [145]. Moreover, even among DAG and ceramide, lipotoxic functions may 

be limited to specific species or subcellular localization. Clinical research has shown decreased 

DAG saturation in endurance athletes [217] and increased saturation of DAG is associated with 

insulin resistance and metabolic syndrome [218]. 1,2-DAGs can activate protein kinase C (PKC) to 

induce insulin resistance [219, 220], while 1,3-DAGs do not [219]. Perreault et al. [221] described 

strong, repeated correlations between ceramide 18:0 and insulin resistance, but noted that the 

subcellular localization – sarcolemmal, mitochondrial, endoplasmic, or nuclear – impacts the 

degree to which it impacts insulin resistance. These authors conclude that analyzing whole tissue 

lipid content may mask meaningful differences as a result of compartmentalization.  

The importance of lipid specie and localization is echoed in healthy lipid accumulation. LDs are 

important not only for storing energy, but also for buffering free fatty acids in cells, because even 

low concentrations of FFA are toxic [214]. This sequestering of fatty acids prevents the 

accumulation of acylcarnitines, the accumulation of which supports production of DAG and 

ceramide and the development of lipotoxicity [222]. Another method of preventing lipotoxicity in 

a high IMCL environment is by a high rate of β-oxidation [64]. Exercise counteracts lipotoxicity by 

improving lipid turnover and lipid profile [223]. Vitamin D has also been shown to prevent or 

ameliorate symptoms of lipotoxicity in kidney, liver [39], bone [44], and kidney [46], however, 

strong connections between vitamin D and lipotoxicity in skeletal muscle has yet to be shown. 

1.3 Conclusion 

Skeletal muscle lipid accumulation can be either a sign of metabolic stress and functional 

impairment or a beneficial adaptation enabling greater use of lipid oxidation for ATP generation. 

The difference between these two conditions is largely dependent on the method by which the 

lipids are stored and the rate of lipid turnover. Lipids that are packaged in LDs and readily oxidized 

pose little threat to a cell while non-esterified lipids that accumulate in the ER can lead to ER 

stress, oxidative stress, and accumulation of bioactive lipid products including ceramides and 

DAG. PLIN2 appears to be a key component in lipid management in skeletal muscle and enables 

both efficient lipid storage and oxidation. There is substantial evidence that vitamin D acts 

beneficially in the lipid balance and metabolic profile of skeletal muscle, but the mechanisms 

behind this effect are not understood. Therefore, this dissertation sought to investigate the role 
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of vitamin D in lipid clearance in skeletal muscle as a possible mediating factor in the treatment 

and prevention of lipotoxicity. Our hypothesis was that vitamin D increases IMCL accumulation, 

β-oxidation, and lipid turnover through a PLIN2-mediated mechanism, thereby preventing 

lipotoxicity in skeletal muscle. 

1.4 C2C12 in vitro model 

The present project will address this hypothesis through the use of a C2C12 in vitro model. C2C12 

cells are an immortalized line of myoblasts originally isolated from the leg of C3h mice 70 hours 

after crushing injury to induce myogenesis [224]. C2C12 cells have since become one of the most 

commonly used models for skeletal muscle in vitro and are regularly used in projects investigating 

vitamin D biology. These cells are passaged as undifferentiated myoblasts in a medium containing 

10-20% fetal bovine serum to > 80% confluence and then differentiated into multinucleated 

myotubes by replacement of high-serum medium with low serum (2-5% horse or fetal bovine 

serum).  

There are many advantages that come with using C2C12 cells. First, they differentiate relatively 

quickly when compared to human primary cells, usually completing differentiation in 4-6 days 

opposed to >7 days among human primary myoblast lines. C2C12 myoblasts also have the 

advantages that come with immortalized cell lines. Notably, they are more consistent than 

primary cell lines. They are also highly stable in culture and can be passaged for a month or more 

before failure opposed to days to weeks usually observed in primary cells. However, these 

advantages are not without tradeoffs. Differentiated cultures of cells invariably include a 

significant component of mononuclear cells, and C2C12 cells have a lower efficiency of 

differentiation than do primary cells. The proportion of differentiated to undifferentiated cells is 

affected by multiple factors including substrate composition, cell passage number, and medium 

contents. Another shortcoming of C2C12 cells is the limitation that comes with a lack of biological 

replicates in immortalized cell lines. As C2C12 cells are genetically homogenous, replicates are 

considered technical opposed to biological, and in a strict sense of data analysis, n = 1 no matter 

how many times an experiment is repeated. This reduces the strength of conclusions and the 

confidence of applicability to human physiology. As a result, findings in this project should be 

confirmed using a more physiologically relevant model; first in human primary cell culture to 

demonstrate relevance of mechanisms and patterns to human physiology, then in vivo.  
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1.5 Thesis Significance 

The significance of this dissertation is twofold. First, although vitamin D is closely associated with 

skeletal muscle health, the mechanisms through which it works are largely unknown. Several 

studies point to improved mitochondrial bioenergetics as the driving factor. Better understanding 

how vitamin D works in skeletal muscle may increase the appreciation for its application in clinical 

settings. The second way in which this project contributes to the scientific community is through 

building upon our understanding of how PLIN2 impacts skeletal muscle health. Several studies 

have suggested that PLIN2 overexpression may be beneficial to skeletal muscle, while others show 

overexpression is harmful and knockdown prevents metabolic dysfunction. Additional research is 

needed in this field of study to better understand how PLIN2 impacts lipid regulation and 

metabolic health in skeletal muscle.  
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Figure 1.1. Vitamin D synthesis in mammalian systems. 7-dehydrocholesterol is in converted to 

cholecalciferol (vitamin D3) in the epidermis through a photorearrangement reaction after 

exposure to UVB radiation (270-300 nm). Cholecalciferol is also obtained through dietary 

consumption. Cholecalciferol and subsequent forms of vitamin D are bound by vitamin D binding 

protein (VDBP) to improve their chemical and biological stability. Cholecalciferol is hydroxylated 

into calcifediol (25-hydroxyvitamin D3) by CYP2R1 (vitamin D 25-hydroxylase) in the liver. 

Calcifediol is hydroxylated at C1 into calcitriol (1,25-dihydroxyvitamin D3) by CYP27B1 (25(OH)D-

1α-hydroxylase) primarily in the kidney, although this reaction occurs in in various other tissues. 

Calcitriol can then bind to either nuclear vitamin D receptor (nVDR), which activates canonical 

gene regulation through interaction with retinoid X receptor (RXR), or membrane vitamin D 

receptor (mVDR), which activates a range of second messenger systems including protein kinase 

A, protein kinase C, and Akt. Calcifediol, in addition to calcitriol, can by hydroxylated at C24 into 

dihydroxycalcidiol (24,25-dihydroxyvitamin D) by CYP24A1 (25-hydroxyvitamin D 24-hydroxylase) 

for excretion in the urine.  
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CHAPTER 2: METHODS 

2.1 Cell Culture 

C2C12 myoblasts were obtained from American Type Culture Consortium (ATCC; Manassas, 

Virginia, USA) and grown to a maximum of 60% confluence. At appropriate confluence, cells were 

trypsinized and seeded overnight in growth medium (GM) consisting of DMEM containing 1000 

mg/L glucose with L-glutamine and sodium bicarbonate (MilliporeSigma, Burlington, MA, USA; 

#D6046) supplemented with 10% FBS (Gemini Bio-Products, West Sacramento, CA, USA; #100-

106) and 1% penicillin/streptomycin (Thermo Fisher Scientific, Waltham, MA, USA;Scientific, 

Waltham, MA, USA; #15140-122) in a humidified incubator kept at 37°C and 10% CO2 (Day 0). 

Following overnight seeding, GM was replaced with differentiation medium (DM) consisting of 

DMEM (same as above) supplemented with 2% horse serum (Day 1). DM was changed every other 

day. 

2.2 Treatment with PLIN2 siRNA 

On Day 5 in DM, differentiated myotubes were treated with 10 nM Thermo Fisher Stealth siRNA 

against PLIN2 (Thermo Fisher Scientific Waltham, MA, USA; #132001) or medium GC content 

scramble Stealth siRNA (Thermo Fisher Scientific Waltham, MA, USA; #12935300) as previously 

published [134]. All siRNA was prepared in DM with 0.2% Lipofectamine RNAiMAX transfection 

reagent (Thermo Fisher Scientific Waltham, MA, USA; #13778) and 20% Opti-MEM (Thermo Fisher 

Scientific Waltham, MA, USA; #31985). Cells were treated with siRNA for a total of 48 hours. On 

Day 7, cells were treated with calcitriol and palmitate as described above. Cells with PLIN2 

knockdown are represented in text as siCTL, siVitD, siPA, and siPA+VitD. Cell growth and 

treatment are summarized in Appendix 1. 

2.3 Vitamin D and Palmitate Treatment 

On Day 7, cells were treated with vector control (0.1% ethanol/0.2% BSA) (CTL), 100 µM palmitate 

(Cayman Chemical, #1006627) (PA), 100 nM calcitriol (Sigma, D1530) (VD), or both (PA+VD) for 24 

hours. Treatments receiving PLIN2 knockdown are represented in text as siCTL, siPA, siVitD, and 

siPA+VitD.  
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2.4 Quantitative Real-Time Polymerase Chain Reaction 

Cells were seeded 50,000/well in a 24 well culture plate and treated as described above. After 

treatment, media was removed and cells were washed in phosphate buffered saline (PBS) then 

scraped off the plate in 150 µL QIAzol Reagent (Qiagen, Hilden, Germany; #79306). Three wells 

receiving the same treatment were combined and lysed in a bead homogenizer. RNA was isolated 

using an ethanol precipitation on a RNA elution column (Enzymax, Lexington, KY, USA; #EZCR101). 

RNA was then reverse transcribed with a qScript cDNA synthesis kit (Quanta Biosciences, Beverly, 

MA; 101414-106) according to the manufacturer's recommendations. Relative gene expression 

was measured using PowerUp SYBR (Thermo Fisher Scientific, Waltham, MA; #A25778) in a 

QuantStudio 3 real time PCR machine (Thermo Fisher Scientific, Waltham, MA). The geometric 

mean of three housekeeping genes (RER1, VCP, and EMC7) was used as an endogenous control. 

Expression was quantified using the 2ΔΔ-Ct method. Values were normalized to the CTL for each 

respective treatment and reported as fold change. Primers were purchased through Integrated 

DNA Technologies and primer sequences used in this study are listed in Appendix 2. 

2.5 VDR/Myosin Heavy Chain (MyHC) Immunostaining 

Cells were plated 25,000 per chamber in 4 well plastic chamber slides then differentiated and 

treated as described above. Following treatment, cells were fixed in 4% paraformaldehyde (PFA) 

and blocked with 10% normal goat serum. Cells were then incubated with Vitamin D3 Receptor 

(D2K6W) Rabbit mAb primary antibody (Cell Signaling, Danvers, MA USA; 12550) 1:200 in TBST 

with 5% normal goat serum overnight at 4°C with gentle rocking. Myotubes were then washed 

with PBS and incubated with anti-rabbit alkaline phosphatase polymer for 60 minutes, washed 

with PBS, then incubated with ImmPACT Vector Red substrate working solution for 10-30 minutes 

or until the desired intensity of color was reached. Cells were then washed with PBS and incubated 

with a primary antibody against pan myosin heavy chain (MyHC) (Developmental Studies 

Hybridoma Bank, University of Iowa, Iowa City, Iowa; A4.1025) in 5% normal goat serum for one 

hour at room temperature with gentle rocking. Myotubes were then incubated for 1 hour with an 

anti-mouse IgG2a Alexafluor488 secondary antibody at room temperature (Life Technologies, 

Carlsbad, CA, USA; A21121) and washed with PBS. Myotubes were finally incubated for 10 

minutes in DAPI (Invitrogen, Cat# D3571) (1:10,000 dilution) at room temperature. Myotubes 

were imaged using a Zeiss AxioObserver D1 inverted fluorescent microscope (Jena, Germany). 
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Micrographs were taken using an AxioCam MR (Zeiss) camera then analyzed and annotated using 

AxioVision SE64 Rel. 4.9.1 software (Zeiss, Jena, Germany). 

2.6 Oil Red O Staining 

Cells were grown, plated, and treated as described above. Following treatment, cells were fixed 

in 4% PFA for 3 minutes then washed 2 times with PBS. Cells were then stained with 500 µL of Oil 

Red O (MilliporeSigma, Burlington, MA, USA; #O-0625) prepared in triethylphosphate according 

to the manufacturer’s specifications for 30 minutes at 37°C with occasional rocking. Cells were 

then washed 3 x 5 minutes with PBS water at 37°C with occasional rocking. Following washing, 

500 µL of PBS water was added to each well and cells were imaged using a Zeiss AxioObserver D1 

inverted fluorescent microscope (Jena, Germany). Micrographs were taken using an AxioCam MR 

(Zeiss) camera then analyzed and annotated using AxioVision SE64 Rel. 4.9.1 software (Zeiss, Jena, 

Germany). 

2.7 Succinate Dehydrogenase (SDH) Activity Staining 

Cells were grown, plated, and treated as described above. Following treatment, myotubes were 

washed with PBS, fixed with 4% PFA and then incubated in 1.2 mM nitro blue tetrazolium chloride 

(NBT) (MilliporeSigma, Burlington, MA, USA; #N6876) with 275 mM succinic acid (MilliporeSigma, 

Burlington, MA, USA; #224731) in PBS at 37°C for 120 minutes. Cells were then washed 3 times 

with PBS and imaged using a Zeiss AxioObserver D1 inverted fluorescent microscope (Zeiss). 

Micrographs were taken using an AxioCam MR (Zeiss) camera then analyzed and annotated using 

AxioVision SE64 Rel. 4.9.1 software (Zeiss). 

2.8 Seahorse OCR Assay 

Myoblasts were plated 10,000 per well in a Seahorse XFe24 assay plate (Agilent, Santa Clara, CA, 

USA) overnight in GM, then differentiated, and treated as described above. On the day of the 

assay, fresh Seahorse XF Assay Medium (Agilent, Santa Clara, CA, USA; #102365) was 

supplemented with 5 mM glucose and 1 mM pyruvate and pH adjusted to 7.4. Myotubes were 

washed twice with XF Assay Medium then incubated for one hour in 100 µL of XF Assay Medium 

in a humidified chamber at 37°C with atmospheric CO2. Vehicle and calcitriol treatments were 

maintained throughout incubation and the assay. Following incubation, XF Assay Medium was 

added to a final volume of 525 µL. OCR and Extracellular Acidification Rate (ECAR) were measured 
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at 37°C using Seahorse XFe24 Analyzer (Agilent, Santa Clara, CA, USA). During the assay, each 

treatment was injected sequentially to achieve the following final concentrations: 2.5 µM 

oligomycin (Biomol, Hamburg, Germany; #CM-111), 4 µM carbonyl cyanide-p-

trifluoromethoxyphenylhydrazone (FCCP) (Biomol, Hamburg, Germany; #CM120), 10 mM 

succinate (MilliporeSigma, Burlington, MA, USA; #S-7501) with 0.8 µM rotenone (Biomol, 

Hamburg, Germany; #CM-117), and 1 µM Antimycin A (MilliporeSigma, Burlington, MA, USA; 

#A8674). OCR was normalized to the average basal rate among all treatments for each given 

experiment. Specific rates based on equations suggested by Agilent Biosciences (listed in Table 2) 

were used to calculate the following OCRs: basal, oligomycin, FCCP, rotenone/succinate, 

Antimycin A, ATP-linked, maximum, reserve, complex I, complex II, leak, non-mitochondrial, and 

mitochondrial area under the curve (AUC).  

2.9 Statistics 

The Student’s t-test was used to determine the effects of VitD alone vs vehicle control. A 2 x 2 

factorial ANOVA was used to determine the effects of calcitriol (VitD effect) and palmitate (PA 

effect) or calcitriol and PLIN2 knock down (siPLIN2 effect) and respective interaction effects. 

When appropriate, a 3 x 3 factorial ANOVA was used to determine the effects of calcitriol, 

palmitate, PLIN2 knockdown and interactions between treatments. When there was a significant 

interaction between two treatments, the Fisher’s LSD post-hoc test was applied. All tests were 

two-tailed with statistical significance defined as p < 0.05. All data were normally distributed. All 

quantitative results are shown as mean ± SEM of no fewer than 3 independent experiments. 

Statistical calculations were performed using JMP 12 (SAS Institute, Cary, NC, USA). 
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CHAPTER 3: VITAMIN D PRODUCES A PERILIPIN 2-DEPENDENT INCREASE IN MITOCHONDRIAL 

FUNCTION IN C2C12 MYOTUBES 

3.1 Abstract 

Vitamin D has been connected with increased intramyocellular lipid (IMCL) and has also been 

shown to increase mitochondrial function and insulin sensitivity. Evidence suggests that perilipin 

2 (PLIN2), a perilipin protein upregulated with calcitriol treatment, may be integral to managing 

increased IMCL capacity and lipid oxidation in skeletal muscle. Therefore, we hypothesized that 

PLIN2 is required for vitamin D induced IMCL accumulation and increased mitochondrial oxidative 

function. To address this hypothesis, we treated C2C12 myotubes with 100 nM calcitriol (the 

active form of vitamin D) and/or PLIN2 siRNA in a four group design and analyzed markers of IMCL 

accumulation and metabolism using qRT-PCR, cytochemistry, and oxygen consumption assay. 

Expression of PLIN2, but not PLIN3 or PLIN5 mRNA was increased with calcitriol, and PLIN2 

induction was prevented with siRNA knockdown without compensation by other perilipins. PLIN2 

knockdown did not appear to prevent lipid accumulation. Calcitriol treatment increased mRNA 

expression of triglyceride synthesizing genes DGAT1 and DGAT2 and also lipolytic genes ATGL and 

CGI-58. PLIN2 knockdown decreased the expression of CGI-58 and CPT1, and was required for 

calcitriol-induced upregulation of DGAT2. Calcitriol increased oxygen consumption rate while 

PLIN2 knockdown decreased oxygen consumption rate. PLIN2 was required for a calcitriol-

induced increase in oxygen consumption driven by mitochondrial complex II. We conclude that 

calcitriol increases mitochondrial function in myotubes and that this increase is at least in part 

mediated by PLIN2. 

3.2 Introduction 

The ability to store lipid as potential energy is one of the oldest and most highly conserved 

adaptations of life on Earth [1-3]. In mammals, adipocytes are evolved to store large quantities of 

lipid, but appreciable lipid stores are also found in the skeletal muscle where they are made 

available for β-oxidation in mitochondria. Intramyocellular lipid (IMCL) is stored in lipid droplets 

(LD), highly specialized and tightly regulated organelles that play important roles in lipid 

accumulation, storage, and lipolysis. Lipid droplets are comprised of a phospholipid monolayer 

studded with several dozen different proteins, including perilipins (PLINs), that surrounds a 

neutral lipid core of triacylglycerides (TAG), diacylglycerides (DAG), and cholesteryl esters (CE) [4-
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6]. PLINs are essential for LD formation and function [7]. Of the 5 members of the perilipin family, 

PLIN2, PLIN3, and PLIN5 (also referred to as ADRP, TIP47, and OXPAT, respectively) are found in 

skeletal muscle. Although some have reported high levels of PLIN4 expression in skeletal muscle 

[8], its expression is not widely recognized [9]. While each PLIN seems to play an important and 

independent role in IMCL regulation, PLIN2 is the most highly expressed PLIN in skeletal muscle  

and is thought to serve primarily as a scaffolding protein that modulates access of adipose 

triglyceride lipase (ATGL) to its enzymatic substrate, TAG [10, 11]. While some have reported that 

PLIN2 knockout is protective against pathological lipid accumulation in some tissues [12, 13], 

others have suggested that overexpression of PLIN2 increases oxidative capacity and improves 

metabolic function in skeletal muscle [14, 15]. Recent work from our group indicates that 

treatment with calcitriol (1,25-dihydroxyvitamin D3, the active form of vitamin D) increases PLIN2 

expression in muscle cells in vitro [16].  

Dietary vitamin D supplementation and calcitriol treatment have both been shown to 

support healthy skeletal muscle function [17-19]. Vitamin D is associated with increased IMCL 

content in both clinical and basic research [16, 20]. Increased IMCL, especially in association with 

increased body fat mass, is often associated with increased inflammation, metabolic dysfunction, 

and insulin resistance. Pathological lipid processing is seen in many tissues and is broadly referred 

to as lipotoxicity [21-24]. Although vitamin D increases IMCL, it has also been associated with 

decreased inflammation and improved insulin sensitivity, mitochondrial activity, and functional 

capacity in skeletal muscle [18, 19, 25-27].  

This paradoxical increase in IMCL and mitochondrial function following vitamin D 

supplementation may be a product of an increase in the efficiency with which muscle 

accumulates, stores, and oxidizes lipid, a process often referred to as “lipid flux”. Increased rates 

of lipid flux and well-regulated storage of lipids as TAG in lipid droplets may help to prevent 

lipotoxicity [28-30] as modeled in the athlete’s paradox, a condition observed in endurance 

athletes characterized by both increased IMCL, high mitochondrial efficiency, and insulin 

sensitivity [31-33]. Increased expression of PLIN2 has been connected to increased TAG storage 

and oxidation [14, 15], and may be a mechanism through which vitamin D increases lipid flux in 

skeletal muscle. This study sought to determine the role of PLIN2 in vitamin D mediated increases 

in IMCL accumulation and mitochondrial function. We hypothesized that PLIN2 is required for 

vitamin D-induced IMCL accumulation and increased mitochondrial oxidative function. To 
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investigate this, we used a C2C12 murine muscle cell line treated with calcitriol. The role of PLIN2 

in changes in lipid content and metabolism was determined by knocking down PLIN2 expression 

using siRNA. 

3.3 Methods 

3.3.1 Cell culture  

C2C12 myoblasts were obtained from American Type Culture Consortium (ATCC; Manassas, 

Virginia, USA) and grown to a maximum of 60% confluence. At appropriate confluence, cells were 

trypsinized and seeded overnight in growth medium (GM) consisting of DMEM containing 1000 

mg/L glucose with L-glutamine and sodium bicarbonate (MilliporeSigma, Burlington, MA, USA; 

#D6046) supplemented with 10% FBS (Gemini Bio-Products, West Sacramento, CA, USA; #100-

106) and 1% penicillin/streptomycin (Thermo Fisher Scientific, Waltham, MA, USA;Scientific, 

Waltham, MA, USA; #15140-122) in a humidified incubator kept at 37°C and 10% CO2 (Day 0). 

Following overnight seeding, GM was replaced with differentiation medium (DM) consisting of 

DMEM (same as above) supplemented with 2% horse serum (Day 1). DM was changed every other 

day. 

3.3.2 Treatment with PLIN2 siRNA and Calcitriol  

On Day 5 in DM, differentiated myotubes were treated with 10 nM Thermo Fisher Stealth siRNA 

against PLIN2 (Thermo Fisher Scientific Waltham, MA, USA; #132001) or medium GC content 

scramble Stealth siRNA (Thermo Fisher Scientific Waltham, MA, USA; #12935300) as previously 

published [134]. All siRNA was prepared in DM with 0.2% Lipofectamine RNAiMAX transfection 

reagent (Thermo Fisher Scientific Waltham, MA, USA; #13778) and 20% Opti-MEM (Thermo Fisher 

Scientific Waltham, MA, USA; #31985). Cells were treated with siRNA for a total of 48 hours. On 

Day 7, cells were treated with vehicle control (0.1% ethanol) (CTL) or 100 nM calcitriol 

(MilliporeSigma, Burlington, MA, USA; #D1530) (VitD) for 24 hours. Cells with PLIN2 knockdown 

are represented in text as siCTL and siVitD. Cell growth and treatment is summarized in Appendix 

1.  
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3.3.3 Quantitative Reverse Transcriptase Polymerase Chain Reaction (qRT-PCR) 

Cells were seeded 50,000/well in a 24 well culture plate and treated as described above. After 

treatment, media was removed and cells were washed in phosphate buffered saline (PBS) then 

scraped off the plate in 150 µL QIAzol Reagent (Qiagen, Hilden, Germany; #79306). Three wells 

receiving the same treatment were combined and lysed in a bead homogenizer. RNA was isolated 

using an ethanol precipitation on a RNA elution column (Enzymax, Lexington, KY, USA; #EZCR101). 

RNA was then reverse transcribed with a qScript cDNA synthesis kit (Quanta Biosciences, Beverly, 

MA; 101414-106) according to the manufacturer's recommendations. Relative gene expression 

was measured using PowerUp SYBR (Thermo Fisher Scientific, Waltham, MA; #A25778) in a 

QuantStudio 3 real time PCR machine (Thermo Fisher Scientific, Waltham, MA). The geometric 

mean of three housekeeping genes (RER1, VCP, and EMC7) was used as an endogenous control. 

Expression was quantified using the 2ΔΔ-Ct method. Values were normalized to the CTL for each 

respective treatment and reported as fold change. Primers were purchased through Integrated 

DNA Technologies, and primer sequences used in this study are listed in Appendix 2. 

3.3.4 Oil Red O Staining  

To assess neutral lipid accumulation, myotubes were fixed in 4% paraformaldehyde (PFA) and 

washed with PBS, then stained with oil red O (ORO) (MilliporeSigma, Burlington, MA USA; #O-

0625) prepared in triethylphosphate according to the manufacturer’s specifications for 30 

minutes at 37°C with occasional rocking. Cells were then washed and imaged. PLIN2 knockdown 

myotubes were treated with 100 µM palmitate for 3 hours prior to ORO staining. For all 

cytochemistry experiments, cells were imaged using a Zeiss AxioObserver D1 inverted fluorescent 

microscope (Jena, Germany). Micrographs were taken using a Zeiss AxioCam MR camera and 

analyzed and annotated using AxioVision SE64 Rel. 4.9.1 software (Zeiss, Jena, Germany). 

3.3.5 Succinate Dehydrogenase Activity Staining 

Myotubes were washed with PBS, fixed with 4% PFA and then incubated in 1.2 mM nitro blue 

tetrazolium chloride (NBT) (MilliporeSigma, Burlington, MA, USA; #N6876) with 275 mM succinic 

acid (MilliporeSigma, Burlington, MA, USA; #224731) in PBS at 37°C for 120 minutes. Cells were 

then washed 3 times with PBS and imaged as described above.  
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3.3.6 Seahorse Oxygen Consumption Rate (OCR) Assay 

Myoblasts were plated 10,000 per well in a Seahorse XFe24 assay plate (Agilent, Santa Clara, CA, 

USA) overnight in GM, then differentiated, and treated as described above. On the day of the 

assay, fresh Seahorse XF Assay Medium (Agilent, Santa Clara, CA, USA; #102365) was 

supplemented with 5 mM glucose and 1 mM pyruvate and pH adjusted to 7.4. Myotubes were 

washed twice with XF Assay Medium then incubated for one hour in 100 µL of XF Assay Medium 

in a humidified chamber at 37°C with atmospheric CO2. Vehicle and calcitriol treatments were 

maintained throughout incubation and the assay. Following incubation, XF Assay Medium was 

added to a final volume of 525 µL. OCR and Extracellular Acidification Rate (ECAR) were measured 

at 37°C using Seahorse XFe24 Analyzer (Agilent, Santa Clara, CA, USA). During the assay, each 

treatment was injected sequentially to achieve the following final concentrations: 2.5 µM 

oligomycin (Biomol, Hamburg, Germany; #CM-111), 4 µM carbonyl cyanide-p-

trifluoromethoxyphenylhydrazone (FCCP) (Biomol, Hamburg, Germany; #CM120), 10 mM 

succinate (MilliporeSigma, Burlington, MA, USA; #S-7501) with 0.8 µM rotenone (Biomol, 

Hamburg, Germany; #CM-117), and 1 µM Antimycin A (MilliporeSigma, Burlington, MA, USA; 

#A8674). OCR was normalized to the average basal rate among all treatments for each given 

experiment. Specific rates based on equations suggested by Agilent Biosciences (listed in 

Appendix 3) were used to calculate the following OCRs: basal, oligomycin, FCCP, 

rotenone/succinate, Antimycin A, ATP-linked, maximum, reserve, complex I, complex II, leak, non-

mitochondrial, and mitochondrial area under the curve (AUC).  

3.3.7 Statistical Analysis 

The Student’s t-test was used to determine the effects of calcitriol alone. A 2 x 2 factorial ANOVA 

was used to determine the effects of calcitriol (VitD effect), PLIN2 knockdown (siPLIN2 effect), 

and the interaction between treatments. When there was a significant interaction between VitD 

and siPLIN2, the Fisher’s LSD post-hoc test was applied. All tests were two-tailed, with statistical 

significance defined as p < 0.05. All data were normally distributed. All quantitative results are 

shown as mean ± SEM of no fewer than 3 independent experiments. Statistical calculations were 

performed using JMP 12 (SAS Institute, Cary, NC, USA). 
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3.4 Results 

3.4.1 Vitamin D drives changes in PLIN2 expression and mitochondrial activity in 

C2C12 myotubes consistent with increased lipid flux 

We first examined the effect of VitD alone on the expression of genes associated with IMCL 

accumulation and mitochondrial metabolism. Using qRT-PCR, we measured gene expression of 

vitamin D receptor (VDR) and PLIN2 in C2C12 myotubes treated with VitD or CTL for 24 hours and 

found that the expression of both genes was increased after VitD treatment (p < 0.05) (Figure 

3.1A). Because PLIN5 is commonly associated with increased lipid storage and increased 

mitochondrial function [206, 208], we also measured its expression with VitD treatment. RT-PCR 

analysis showed that PLIN5 did not change with VitD treatment (Figure 3.1A). To connect 

increased PLIN2 expression with increased IMCL accumulation, we labeled neutral lipid content 

in myotubes using ORO staining. Consistent with other publications [48, 49], we found that IMCL 

content in C2C12 myotubes appeared to be increased following VitD treatment (Figure 3.1B).  

Having confirmed increased PLIN2 expression and IMCL accumulation, we next moved to measure 

changes in mitochondrial metabolism. We completed an initial assessment of mitochondrial 

function by SDH activity staining and found that VitD treatment appeared to increase the intensity 

of SDH activity staining in myotubes (Figure 3.1C). For a detailed, quantitative analysis of the 

VitD’s impact on muscle cell mitochondrial metabolism, we analyzed OCR by Seahorse 

extracellular flux analyzer. Results show that VitD increased OCR throughout the experiment with 

statistically significant increases in OCR after the administration of FCCP (Figure 3.1D-E). To 

further characterize changes in OCR, OCR specific to ATP-production and mitochondrial 

complexes were measured. We found that increases were attributed to OCR driven by complex I 

and maximal OCR. These changes were accompanied by a trend to increase complex II OCR, 

however, this failed to reach statistical significance (p = 0.15) (Figure 3.1F).  

3.4.2 PLIN2 knockdown does not impact mRNA expression of other perilipin genes 

siRNA knockdown was used to investigate the role that PLIN2 plays in regulating VitD-induced 

changes in IMCL and mitochondrial function. RT-PCR quantification of mRNA expression verified 

that siRNA successfully decreased PLIN2 mRNA expression (p < 0.01); cells treated with siVitD 

decreased by 69% and siCTL decreased by 29% compared to their respective scramble controls 
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(Figure 3.2A). While VitD treatment caused increased VDR expression (p < 0.001), there was no 

effect of siRNA and no interaction between the treatments (Figure 3.2B). Perilipins other than 

PLIN2, namely PLIN3 and PLIN5, have been connected with increased mitochondrial activity in 

skeletal muscle [208, 226, 227]. We measured expression of these genes to ensure that these 

perilipins were not upregulated to compensate for decreased PLIN2 expression and found that 

neither was significantly increased under any treatment condition (Figure 3.2C-D).  

3.4.3 PLIN2 knockdown does not prevent lipid accumulation 

Overexpressing PLIN2 has been shown to increase lipid accumulation in skeletal muscle [134, 

228], while knockdown prevents lipid accumulation in multiple tissues [200, 229, 230]. To see how 

PLIN2 knockdown impacts IMCL accumulation in our model, we treated differentiated myotubes 

with palmitate and assessed neutral lipid accumulation with ORO staining. Micrographs showed 

that PLIN2 knockdown did not appear to prevent lipid accumulation in C2C12 myotubes (Figure 

3.3).  

3.4.4 PLIN2 knockdown and VitD exert opposing effects on genes regulating lipid flux 

IMCL storage and lipolysis are tightly regulated at the gene level and are associated with both the 

expression of PLIN2 [184, 192] and VDR [48]. We therefore measured the expression of key 

regulators of triglyceride storage and lipolysis to determine how they are impacted by 

simultaneous PLIN2 knockdown and VitD treatment. We found that VitD increased the expression 

of ATGL (p < 0.001) with no effect of siPLIN2 (Figure 3.4A). Comparative gene identification-58 

(CGI-58) mRNA expression was upregulated by VitD but decreased after PLIN2 knockdown (p = 

0.045) (Figure 3.4B). PLIN2 knockdown downregulated carnitine palmitoyltransferase 1 (CPT1) 

gene expression (p = 0.003) with VitD associated with a trend to slightly decrease expression (p = 

0.104) (Figure 3.4C). These results show a pattern of VitD increasing the expression and PLIN2 

knockdown decreasing the expression of key genes that regulate lipolysis and β-oxidation.  

We next examined the expression of genes integral to triglyceride storage in lipid droplets. We 

found that VitD had a very strong positive effect on diglyceride O-acyltranferase 1 (DGAT1) 

expression (p < 0.001). While comparisons did not reach statistical significance, PLIN2 knockdown 

was associated with a mean increase in DGAT1 expression by approximately 500% compared to 

CTL and 50% compared to VitD (Figure 3.4D). Diglyceride O-acyltranferase 2 (DGAT2) was also 
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strongly upregulated with VitD treatment (p < 0.001). We observed an interaction effect between 

VitD and siPLIN2 (p = 0.006) (Figure 4E). Post-hoc analysis revealed that DGAT2 expression in VitD 

treated myotubes was decreased to CTL levels after PLIN2 knockdown.  

3.4.5 PLIN2 knockdown prevents VitD induced increases in OCR 

To obtain detailed, quantitative analysis of changes in mitochondrial function after treatment 

with VitD and PLIN2 knockdown, we measured OCR using a Seahorse XFe24 extracellular flux 

analyzer (Figure 3.5A). Simplified values obtained from the full OCR trace (Figure 3.5A) are shown 

as bar graphs for ease of interpretation (Figures 3.5B-F). At baseline, both VitD and siPLIN2 had 

significant effects on OCR. There was a significant interaction effect (p = 0.029) (Figure 3.5B). Post-

hoc analysis indicated that OCR was decreased by siVitD, with no other differences between 

groups. Neither VitD nor siPLIN2 produced a significant effect in OCR following the administration 

of oligomycin (Figure 3.5C). VitD did not affect OCR following FCCP injection, but siPLIN2 caused 

a significant decrease in OCR (Figure 3.5D). VitD, but not PLIN2, produced a significant effect 

following the administration of rotenone and succinate with a significant interaction effect (p = 

0.022) (Figure 3.5E). Post-hoc analysis indicated that VitD increased OCR in comparison to CTL, 

but the addition of siPLIN2 decreased OCR in the siVitD cells to levels equivalent to siCTL and CTL 

cells. There were no significant changes in response to either treatment after administration of 

Antimycin A (Figure 3.5F). 

More specific analyses focusing on mitochondrial specific OCR were performed (Figures 3.5G-N). 

Following quantification of the area under the curve (AUC) specific to mitochondrial respiration, 

we found that VitD increased mitochondrial OCR while siPLIN2 decreased OCR (Figure 3.5G). VitD 

decreased basal mitochondrial respiration (p = 0.049), and siPLIN2 produced a trend towards 

decrease (p = 0.066) (Figure 3.5H). No significant responses to treatment were observed in ATP-

Linked OCR, although siPLIN2 produced a trend towards decreased OCR (p = 0.110) (Figure 3.5I). 

VitD produced a trend towards increased Maximal OCR that failed to reach significance (p = 0.084) 

(Figure 3.5J). siPLIN2 significantly decreased Maximal OCR. Similarly, VitD yielded a trend towards 

increased Reserve OCR (p = 0.052), while siPLIN2 caused a significant decrease (Figure 5K). 

Complex I was unaffected by VitD but was decreased by siPLIN2 (Figure 3.5L). Both VitD and 

siPLIN2 had a significant effect on Complex II OCR. Co-treatment of VitD and siPLIN2 produced an 

interaction effect at complex II wherein VitD treatment alone increases OCR with either siCTL or 
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siRNA, but siPLIN2 treatment decreases the magnitude of the VitD effect (Figure 3.5M). VitD 

decreased mitochondrial leak, an indicator of mitochondrial uncoupling, while siPLIN2 caused a 

trend towards decreased mitochondrial leak (p = 0.115) (Figure 3.5N). There were no changes in 

extracellular acidification rate (ECAR), a measurement of glycolysis (Figures. 3.5O-P). In summary, 

VitD produced trends towards increased maximal and reserve mitochondrial OCR, a significant 

increase of OCR driven by complex II, and decreased basal OCR and mitochondrial leak. 

Conversely, siPLIN2 decreased maximal and reserve OCR, OCR driven by both complex I and 

complex II, and a trend towards decreased basal OCR. siPLIN2 reversed the VitD-mediated 

increase of OCR driven by complex II. 

3.5 Discussion 

This study was the first to examine the impact of calcitriol or PLIN2 knockout on mitochondrial 

function in skeletal muscle myotubes and advances our understanding of how these two factors 

modulate muscle bioenergetics. Data supported the hypothesis that calcitriol improves oxidative 

metabolism in differentiated skeletal muscle myotubes and that these benefits were partially 

mediated by the lipid packaging protein PLIN2. We showed that PLIN2 knockdown in myotubes 

decreased mitochondrial function, but did not appear to prevent IMCL accumulation. Our working 

hypothesis is illustrated in Figure 3.6. This study validates PLIN2 as an important component of 

mitochondrial metabolism in skeletal muscle, and bioenergic findings reported here should be 

considered in future studies investigating PLIN2 knockdown or knockout. We speculate that 

changes in mitochondrial metabolism were driven by increased fatty acid oxidation. Future 

investigations should examine the relationship between lipolysis, acyl chain import into 

mitochondria, and β-oxidation in reference to PLIN2 in skeletal muscle.  

We first showed that calcitriol increases PLIN2 mRNA expression and neutral lipid accumulation 

in accord with previously published clinical and in vitro studies from our group [16, 20]. Curiously, 

this appears to be in opposition to a recent publication by Li et al. [42], who showed that a high-

vitamin D dietary intervention in mice reduced PLIN2 expression and prevented IMCL 

accumulation. However, the observed difference reported by Li et al. may be a product of 

pathological lipid accumulation incited by vitamin D deficiency instead of decreased IMCL with 

vitamin D supplementation. While vitamin D deficiency and supplementation may have similar 

effects on PLIN2 expression, evidence suggests the physiological conditions that underlie these 
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scenarios are substantially different. Without markers of mitochondrial activity or β-oxidation, it 

is difficult to gauge the impact of IMCL on mitochondrial health.  

Data obtained in this study through Seahorse oxygen consumption and SDH activity staining 

support the hypothesis that calcitriol treatment drives improved mitochondrial bioenergetics and 

that increased PLIN2 expression and IMCL accumulation after calcitriol treatment is not 

detrimental to mitochondrial function. Others have shown that vitamin D treatments improve 

mitochondrial function in both clinical and in vitro models. Sinha et al. [25] showed that calcitriol 

decreases the half time of creatine phosphorylation, a marker of mitochondrial function, in a 

clinical model. Ryan et al. have shown that calcitriol treatment in human primary myoblasts 

increases OCR in both healthy and cancerous models [26, 43]. However, differentiation of skeletal 

muscle triggers substantial changes in mitochondrial substrate management and bioenergetic 

remodeling [44], and mechanisms in myoblasts cannot be assumed to drive metabolic changes in 

myotubes after the same treatment. 

Consistent with previous work form our group, we showed that calcitriol treatment increased the 

gene expression of ATLG, CGI-58, DGAT1, and DGAT2 [16]. These genes represent the rate limiting 

steps of both lipolysis and TAG acylation, and their upregulation suggests that calcitriol increases 

lipid flux [45]. This potential increase in lipid flux may have beneficial implications for muscle lipid 

storage that decrease the risk of lipotoxicity [28]. While vitamin D is generally accepted to 

contribute to the health and function of a variety of tissues, the role of PLIN2 in lipid homeostasis 

is hotly debated. Many studies suggest that PLIN2 enables steatosis and lipotoxicity [12, 39, 46], 

but others show that it may have a more beneficial effect, especially in skeletal muscle [14]. The 

divergence in the impact of PLIN2 may be associated with the role of lipids in the target tissues, 

specifically, how efficiently lipid is stored and used. We show that PLIN2 knockdown had no 

impact on the expression of several key lipid management genes when comparing CTL to siCTL 

myotubes, however, PLIN2 knockdown prevented calcitriol induced expression of CGI-58, CPT1, 

and DGAT2. CGI-58 is a potent regulator of lipolysis that acts both in conjunction with and 

independent from ATGL [47-49], suggesting that PLIN2 knockdown impairs lipolytic capacity. On 

the other hand, others have reported an increase in lipid oxidation in response to PLIN2 

knockdown in skeletal muscle [14], which implies an increase in lipolysis. It is of note that PLIN2 

also binds to ATGL and prevents the association of CGI-58, thereby decreasing ATGL activity [41]. 

However, excess ATGL activity is known to increase DAG and ceramide abundance and incite 
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metabolic dysfunction [29]. Therefore, it may be important to increase the expression of DGAT in 

harmony with ATGL to prevent the accumulation of bioactive signaling lipids. 

Our results revealed that both DGAT1 and DGAT2 were upregulated with calcitriol treatment; 

however, PLIN2 knockdown prevented calcitriol-induced upregulation of DGAT2. Although both 

DGAT enzymes are important regulators of lipid metabolism, DGAT2 plays a larger role in TAG 

homeostasis [50] and likely contributes more directly to mitochondrial metabolism. DGAT1 is 

thought to mediate TAG acylation in the ER and nascent lipid droplets, whereas DGAT2 is found 

in the ER, cytosolic lipid droplets, and associated with mitochondria [51-53]. This, combined with 

decreased expression of CPT1, suggests that PLIN2 knockdown may make acyl chains less 

available for oxidation in mitochondria and exacerbate lipotoxic effects of aberrant ATGL activity.  

Changes in the expression of lipolytic and lipid storage genes in response to PLIN2 knockdown and 

calcitriol imply changes in IMCL accumulation in myotubes. However, while not quantitative, ORO 

staining presented in this study did not support our hypothesis that PLIN2 is required for IMCL 

accumulation. Although previous studies have shown that PLIN2 knockout prevents lipid 

accumulation in multiple tissues [12, 39, 40], we note that many of studies are in vivo studies 

using complete knockout models. Also, mRNA expression of siCTL vs CTL is only reduced by 

approximately 30% in this study, a much less substantial decrease in expression than the 

approximately 75% knockdown observed in previous PLIN2 knockout in C2C12 cells [14]. This level 

of knockdown may not be sufficient to prevent new LD formation or dramatically reduce IMCL 

accumulation; however, it does allow us to interpret changes as those produced by the increase 

in PLIN2 expression opposed to the simple presence of PLIN2.  

Our investigation into oxygen consumption uncovered dramatic effects of calcitriol 

supplementation that were highly dependent on PLIN2 upregulation. This is most easily observed 

in the increase on OCR measured by AUC after calcitriol treatment that returned to baseline levels 

with PLIN2 knockdown. Strong trends towards increase at maximal (p = 0.084) and reserve OCR 

(p = 0.052) provide evidence that calcitriol increases the mitochondrial oxidative capacity of 

C2C12 myotubes. These increases were both reduced to magnitudes below CTL after PLIN2 

knockdown. Altogether, we observed siPLIN2 effects on basal mitochondrial OCR, maximal OCR, 

reserve OCR, and complexes I and II. Furthermore, all changes in mitochondrial respiration that 

failed to reach significance after PLIN2 knockdown trended to decease OCR. This provides 

evidence that increases in OCR observed after treatment with calcitriol are dependent on PLIN2 
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upregulation. Building on this, because vitamin D drives increases in ATGL and CGI-58 mRNA, and 

no change in ECAR in response to treatments, we hypothesize that increases in OCR are driven by 

increased rates of fatty acid oxidation.  

The dramatic decrease in mitochondrial leak as a result of calcitriol treatment was combined with 

no change in the ATP-linked OCR, suggesting that the VitD effect observed at basal mitochondrial 

OCR may have been driven by decreases in proton leak. As a result, VitD increased the efficiency 

with which mitochondria use oxygen to produce ATP. Decreased rates of electron leak are also 

associated with decreased rates of oxidative stress in mitochondria [54], and calcitriol has been 

shown to decrease oxidative stress and damage in skeletal muscle [55, 56]. Future research should 

investigate molecular connections between calcitriol and mitochondrial oxidative stress. 

We acknowledge the limitation that it is difficult to make strong claims regarding the direct impact 

of lipid flux in the observed changes in mitochondrial metabolism without direct measurement of 

fatty acid oxidation. There was also no notable increase in IMCL with ORO staining after VitD 

treatment as is claimed by previous research [16]. This could be a product of minor differences in 

lipid availability or more efficient lipid clearance with calcitriol treatment, resulting in less IMCL 

accumulation with a similar level of palmitate import. There is growing evidence that lipid species 

are perhaps more important to maintaining cellular function than total lipid abundance, and 

vitamin D has been shown to change the lipid profile in muscle [16, 42]. Finally, this study did not 

assess any markers of cellular stress, limiting our ability to make claims regarding the impact of 

shifts in lipid management after calcitriol treatment. 

We conclude that calcitriol treatment in myotubes increases both IMCL storage and mitochondrial 

function, and that the upregulation of PLIN2 is required to realize metabolic improvements, but 

not IMCL accumulation. Although PLIN2 is not required for increased IMCL accumulation, 

mitochondrial function is markedly impaired after PLIN2 knockdown. Our data suggest that PLIN2 

knockdown is detrimental to metabolic function in skeletal muscle. These findings contribute to 

the understanding of how vitamin D regulates mitochondrial function and the roles of PLIN2 in 

skeletal muscle mitochondrial metabolism. 
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Figure 3.1. Calcitriol increases lipid storage and mitochondrial activity in C2C12 myotubes. (A) 

Gene expression of vitamin D receptor (VDR), perilipin 2 (PLIN2) and perilipin 5 (PLIN5) normalized 

to CTL in differentiated C2C12 myotubes. (B) Representative brightfield micrographs depicting oil 

red O staining. (C) Representative brightfield micrographs depicting succinate dehydrogenase 

activity staining. (D) Oxygen consumption rate (OCR) of myotubes throughout experiment with 

addition of oligomycin, FCCP, rotenone/succinate, and Antimycin A. (E) Total mitochondrial OCR. 

(F) OCR calculated using equations based on those provided by Agilent Biosciences. All data are 

represented as mean ± SEM, n = 5. All micrographs obtained at 32x magnification. Scale bars = 

100 µm. CTL = 0.1% ethanol, 24 h ours; VitD = 100 nM calcitriol, 24 hours. n = 5; bars represent 

mean ± SEM; * p < 0.05, independent t-test. Oligo, Oligomycin; FCCP, Carbonyl cyanide-4-

trifluoromethoxy)phenylhydrazone; Rote/Succ, Rotenenone & Succinate; Anti A, Antimycin A. 
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Figure 3.2. PLIN2 knockdown decreases PLIN2 expression without compensation by other 

perilipin genes. Gene expression in differentiated C2C12 myotubes relative to vehicle control with 

scramble siRNA. Cells were treated with either scramble siRNA and vehicle control (CTL), scramble 

siRNA and 100 nM calcitriol (VitD), PLIN2 siRNA and vehicle control (siCTL), or PLIN2 siRNA and 

100 nM calcitriol (siVitD). All data are represented as mean ± SEM, n = 6. Values not sharing letters 

are significantly different (Fisher’s LSD). p values represent 2-way ANOVA. 
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Figure 3.3. PLIN2 knockdown does not appear to prevent neutral lipid accumulation in C2C12 

myotubes. Oil Red O micrographs show ample lipid accumulation in C2C12 myotubes after 3h of 

treatment with 100 µM palmitate despite PLIN2 knockdown. Images acquired at 40x 

magnification, scale bar = 50 µm. 
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Figure 3.4. PLIN2 knockdown and vitamin D exert opposing effects on genes regulating lipolysis 

and lipid storage. Gene expression in differentiated C2C12 myotubes relative to vehicle control 

with scramble siRNA. Cells were treated with either scramble siRNA and vehicle control (CTL), 

scramble siRNA and 100 nM calcitriol (VitD), PLIN2 siRNA and vehicle control (siCTL), or PLIN2 

siRNA and 100 nM calcitriol (siVitD). All data are represented as mean ± SEM, n = 6. Values not 

sharing letters are significantly different (Fisher’s LSD). p values represent 2-way ANOVA. 
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Figure 3.5. Vitamin D increases mitochondrial function and efficiency dependent on PLIN2 

upregulation. C2C12 myotubes were treated with 100 nM calcitriol and PLIN2 siRNA or their 

respective controls in a 2 x 2 design and OCR was measured by Seahorse XFe24 flux analyzer. (A) 

OCR was increased throughout measurements after treatment with calcitriol (grey lines) while 

siPLIN2 blunts OCR (hashed lines). Differences in OCR after each injection were quantified and 

compared for raw OCR (B-F), OCR specific to mitochondrial activity (H-N), and ECAR (O-P). All data 

are represented as mean ± SEM, n = 3-4. p values calculated by 2-way ANOVA. Bars not sharing 

letters are significantly different (Fisher’s LSD). OCR, Oxygen Consumption Rate; ECAR, 

Extracellular Acidification Rate; FCCP, Carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone. 
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Figure 3.6. Graphical abstract and working hypothesis. VitD treatment increases IMCL 

accumulation, mRNA associated with both lipid storage and lipolysis, and mitochondrial 

respiration in skeletal muscle, but increases in lipolytic gene expression and mitochondrial 

respiration are dependent on PLIN2 expression. Calcitriol treatment (VitD) increases gene 

expression of lipid droplet proteins PLIN2, ATGL, and CGI-58 (top). VitD also increased mRNA 

expression for DGAT proteins that localize to both the endoplasmic reticulum for new lipid droplet 

synthesis (DGAT1) and to mature lipid droplets (DGAT2). These genes together are associated 

with increased capacity for IMCL accumulation and lipolysis and correspond with increased 

mitochondrial respiration. PLIN2 knockdown with siRNA before VitD treatment (bottom) 

decreases the expression of not only PLIN2 but also lipolytic cofactor CGI-58 and lipid droplet 

refilling gene DGAT2 (indicated by faded shapes and hashed lines). This is associated with 

decreases in CPT1 mRNA expression and mitochondrial respiration. VitD = Calcitriol; PLIN2 = 

Perilipin 2; DGAT2 = diglyceride O-acyltransferase 2; DGAT1 = diglyceride O-acyltransferase 1; 

ATGL = adipose triglyceride lipase; CGI-58 = comparative gene identifier 58; CPT-1 = carnitine 

palmitoyltransferase 1
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CHAPTER 4: C2C12 MYOTUBES ARE RESISISTANT TO PALMITATE-INDUCED LIPOTOXICITY WITH 

OR WITHOUT PLIN2 KNOCKDOWN 

4.1 Abstract 

Lipotoxicity is a pathological accumulation of lipid in non-adipose tissue connected with many 

obesity-associated co-morbidities. Signs of lipotoxicity include oxidative stress, endoplasmic 

reticulum (ER) stress, mitochondrial dysfunction, and apoptosis. One of the causes of lipotoxicity 

is an imbalance of lipid accumulation and oxidation favoring lipid accumulation. Lipotoxicity is 

associated with the toxic accumulation of bioactive lipids including diacylglycerols (DAG) and 

ceramides. Perilipin 2 (PLIN2) is a LD protein heavily implicated in the regulation of 

intramyocellular lipid (IMCL), and may be crucial in managing lipid storage and oxidation in 

lipotoxic settings. Additionally, there is evidence that vitamin D supports healthy lipid storage and 

increases lipid oxidation and may therefore prevent or ameliorate lipotoxicity. In this study, we 

combined a siRNA knockdown of PLIN2 in C2C12 myotubes with both calcitriol (VitD), the active 

form of vitamin D, and palmitate (PA) treatments to determine the combined effects of VitD and 

PLIN2 in preventing or ameliorating lipotoxicity. We hypothesized that treatment with PA would 

induce a lipotoxic phenotype in myotubes that would be ameliorated by VitD through increased 

storage and oxidation of TAG via the induction of PLIN2. Results showed that 24 hours of palmitate 

treatment (100 µM) increased IMCL accumulation; the addition of VitD augmented this result. 

Seventy-two hours of palmitate elicited myotube detachment from the growth surface, but this 

was prevented by co-treatment with VitD. Palmitate treatment for 24 hours did not decrease 

mitochondrial function or induce markers of inflammation or ER stress. We conclude that neither 

PLIN2 knockdown nor 100 µM palmitate for 24 hours produced a lipotoxic phenotype in C2C12 

myotubes as determined by decreased mitochondrial function, increased inflammation, or ER 

stress. This suggests that PLIN2 knockdown does not induce lipotoxicity with moderate PA 

treatment. While, this model is unable to conclusively determine the effect of calcitriol on 

lipotoxicity, limited data from this project suggests that calcitriol prevents or ameliorates signs of 

lipotoxicity in C2C12 myotubes. 
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4.2 Introduction 

Rates of obesity and T2DM are increasing around the world and is estimated to have a global 

economic burden of over $2.0 trillion [236]. Many of the morbidities associated with obesity have 

physiological origins in lipotoxicity. Lipotoxicity is the pathological accumulation of lipid in non-

adipose tissue characterized by oxidative stress, mitochondrial dysfunction, ER stress, protein 

misfolding, inflammation, and ultimately contributes to cell dysfunction and apoptosis [210]. It 

has been hypothesized that lipotoxicity is not rooted simply in an overabundance of intracellular 

lipid, but an imbalance between lipid accumulation, storage, and oxidation. Research has shown 

that lipotoxicity is prevented by both sequestration of lipid as triacylglyceride (TAG) [225, 237] 

and increased fatty acid oxidation (FAO) [238, 239]. These findings suggest that lipid turnover is a 

key component to combating lipotoxicity [64, 223].  

Lipid turnover is particularly important in skeletal muscle, the largest storage site of TAG outside 

of adipose tissue. Intramyocellular lipid (IMCL) is stored in lipid droplets, metabolically active 

organelles at the center of lipid accumulation, storage, and oxidation. Lipid droplets are 

enveloped by a phospholipid monolayer studded with proteins that maintain the structural 

integrity of the droplet and regulate both fatty acid acylation and lipolysis [188, 240]. Key to the 

LD proteome is the perilipin family of proteins. Perilipin 2 (PLIN2) is the most abundant perilipin 

protein in skeletal muscle, and may play a major role in regulating TAG storage and lipid flux [134, 

184, 204]. However, there is a substantial debate as to whether PLIN2 prevents or enables 

lipotoxicity in skeletal muscle [47, 197, 228]. 

In the past decade, vitamin D has been recognized as a contributing factor to maintaining muscle 

health. Vitamin D deficiency is associated with increased incidence of falls and functional decline 

in the elderly [75, 77, 94]. One method that vitamin D may impact skeletal muscle function is 

through improved mitochondrial function. Researchers have shown that vitamin D increases 

mitochondrial activity in both clinical [115] and in vitro [118] studies. Calcitriol, the active form of 

vitamin D, is also associated with the prevention of lipotoxicity in the liver, kidney, and bone [39, 

44, 46, 241]. Recent data from our group has also shown that vitamin D treatment increases the 

expression of PLIN2 in vitro [48], and other work has shown that PLIN2 upregulation increases 

IMCL accumulation and fatty acid oxidation without contributing to signs of lipotoxicity [134]. 

However, a direct connection from vitamin D to PLIN2 to lipotoxicity has not been established.  
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This study aimed to determine the role of vitamin D and PLIN2 in regulating key markers of 

lipotoxicity. We hypothesized that treatment with palmitate would induce a lipotoxic phenotype 

in myotubes that would be ameliorated by calcitriol through increased storage and oxidation of 

TAG via the induction of PLIN2. To test this hypothesis, we used a 2x2x2 in vitro model with or 

without PLIN2 siRNA knockdown in differentiated C2C12 myotubes treated with or without 

vitamin D and with or without palmitate. 

4.3 Methods 

4.3.1 Cell culture  

C2C12 myoblasts were obtained from American Type Culture Consortium (ATCC; Manassas, 

Virginia, USA) and grown to a maximum of 60% confluence. At appropriate confluence, cells were 

trypsinized and seeded overnight in growth medium (GM) consisting of DMEM containing 1000 

mg/L glucose with L-glutamine and sodium bicarbonate (MilliporeSigma, Burlington, MA, USA; 

#D6046) supplemented with 10% FBS (Gemini Bio-Products, West Sacramento, CA, USA; #100-

106) and 1% penicillin/streptomycin (Thermo Fisher Scientific, Waltham, MA, USA;Scientific, 

Waltham, MA, USA; #15140-122) in a humidified incubator kept at 37°C and 10% CO2 (Day 0). 

Following overnight seeding, GM was replaced with differentiation medium (DM) consisting of 

DMEM (same as above) supplemented with 2% horse serum (Day 1). DM was changed every other 

day. 

4.3.2 Treatment with calcitriol and palmitate  

After 6 days of differentiation, DM was removed and myotubes were treated with either ethanol 

vehicle (0.1%) with BSA (CTL), 100 nM calcitriol (MilliporeSigma, Burlington, MA, USA; #D1530) 

with BSA (VitD), ethanol vehicle and 100 µM palmitate (PA) or 100 nM calcitriol with 100 µM 

palmitate (VitD+PA) for 24 hours. 

4.3.3 Treatment with PLIN2 siRNA 

On Day 5 in DM, differentiated myotubes were treated with 10 nM Thermo Fisher Stealth siRNA 

against PLIN2 (Thermo Fisher Scientific Waltham, MA, USA; #132001) or medium GC content 

scramble Stealth siRNA (Thermo Fisher Scientific Waltham, MA, USA; #12935300) as previously 

published [134]. All siRNA was prepared in DM with 0.2% Lipofectamine RNAiMAX transfection 
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reagent (Thermo Fisher Scientific Waltham, MA, USA; #13778) and 20% Opti-MEM (Thermo Fisher 

Scientific Waltham, MA, USA; #31985). Cells were treated with siRNA for a total of 48 hours. On 

Day 7, cells were treated with calcitriol and palmitate as described above. Cells with PLIN2 

knockdown are represented in text as siCTL, siVitD, siPA, and siPA+VitD. Cell growth and 

treatment are summarized in Appendix 1. 

4.3.4 Quantitative Reverse Transcriptase Polymerase Chain Reaction (qRT-PCR) 

Cells were seeded 50,000/well in a 24 well culture plate and treated as described above. After 

treatment, media was removed and cells were washed in phosphate buffered saline (PBS) then 

scraped off the plate in 150 µL QIAzol Reagent (Qiagen, Hilden, Germany; #79306). Three wells 

receiving the same treatment were combined and lysed in a bead homogenizer. RNA was isolated 

using an ethanol precipitation on a RNA elution column (Enzymax, Lexington, KY, USA; #EZCR101). 

RNA was then reverse transcribed with a qScript cDNA synthesis kit (Quanta Biosciences, Beverly, 

MA; 101414-106) according to the manufacturer's recommendations. Relative gene expression 

was measured using PowerUp SYBR (Thermo Fisher Scientific, Waltham, MA; #A25778) in a 

QuantStudio 3 real time PCR machine (Thermo Fisher Scientific, Waltham, MA). The geometric 

mean of three housekeeping genes (RER1, VCP, and EMC7) was used as an endogenous control. 

Expression was quantified using the 2ΔΔ-Ct method. Values were normalized to the CTL for each 

respective treatment and reported as fold change. Primers were purchased through Integrated 

DNA Technologies and primer sequences used in this study are listed in Appendix 2.  

4.3.5 Oil Red O Staining  

To assess neutral lipid accumulation, myotubes were treated as described above with or without 

VitD and 100 µM PA for either 24, 48, or 72 hours. Myotubes were fixed in 4% paraformaldehyde 

(PFA) and washed with PBS, then stained with oil red O (ORO) (MilliporeSigma, Burlington, MA 

USA; #O-0625) prepared in triethylphosphate according to the manufacturer’s specifications for 

30 minutes at 37°C with occasional rocking. Cells were then washed and imaged. For all 

cytochemistry experiments, cells were imaged using a Zeiss AxioObserver D1 inverted fluorescent 

microscope (Jena, Germany). Micrographs were taken using a Zeiss AxioCam MR camera and 

analyzed and annotated using AxioVision SE64 Rel. 4.9.1 software (Zeiss, Jena, Germany). 
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4.3.6 Succinate Dehydrogenase (SDH) Activity Staining 

Myotubes were washed with PBS, fixed with 4% PFA and then incubated in 1.2 mM nitro blue 

tetrazolium chloride (NBT) (MilliporeSigma, Burlington, MA, USA; #N6876) with 275 mM succinic 

acid (MilliporeSigma, Burlington, MA, USA; #224731) in PBS at 37°C for 120 minutes. Cells were 

then washed 3 times with PBS and imaged as described above.  

4.3.7 Seahorse Oxygen Consumption Rate (OCR) Assay 

Myoblasts were plated 10,000 per well in a Seahorse XFe24 assay plate (Agilent, Santa Clara, CA, 

USA) overnight in GM, then differentiated, and treated as described above. On the day of the 

assay, fresh Seahorse XF Assay Medium (Agilent, Santa Clara, CA, USA; #102365) was 

supplemented with 5 mM glucose and 1 mM pyruvate and pH adjusted to 7.4. Myotubes were 

washed twice with XF Assay Medium then incubated for one hour in 100 µL of XF Assay Medium 

in a humidified chamber at 37°C with atmospheric CO2. Vehicle and VitD treatments, but not PA, 

were maintained throughout incubation and the assay. Following incubation, XF Assay Medium 

was added to a final volume of 525 µL. OCR and Extracellular Acidification Rate (ECAR) were 

measured at 37°C using Seahorse XFe24 Analyzer (Agilent, Santa Clara, CA, USA). During the assay, 

each treatment was injected sequentially to achieve the following final concentrations: 2.5 µM 

oligomycin (Biomol, Hamburg, Germany; #CM-111), 4 µM carbonyl cyanide-p-

trifluoromethoxyphenylhydrazone (FCCP) (Biomol, Hamburg, Germany; #CM120), 10 mM 

succinate (MilliporeSigma, Burlington, MA, USA; #S-7501) with 0.8 µM rotenone (Biomol, 

Hamburg, Germany; #CM-117), and 1 µM Antimycin A (MilliporeSigma, Burlington, MA, USA; 

#A8674). OCR was normalized to the average basal rate among all treatments for each given 

experiment. Specific rates based on equations suggested by Agilent Biosciences (listed in Table 

A.2) were used to calculate the following OCRs: basal, oligomycin, FCCP, rotenone/succinate, 

Antimycin A, ATP-linked, maximum, reserve, complex I, complex II, leak, non-mitochondrial, and 

mitochondrial area under the curve (AUC).  

4.3.8 Statistical Analysis 

A 2 x 2 factorial ANOVA was used to determine the effects of calcitriol (VitD effect), palmitate (PA 

effect), and the interaction between treatments. The Student’s t-test was used to determine the 

effects of calcitriol alone. When appropriate, a 3 x 3 factorial ANOVA was used to determine the 

effects of calcitriol (VitD effect), palmitate (PA effect), PLIN2 knockdown (siPLIN2 effect) and the 
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interaction between treatments. When there was a significant interaction between two 

treatments, the Fisher’s LSD post-hoc test was applied. All tests were two-tailed, with statistical 

significance defined as p < 0.05. All quantitative results are shown as mean ± SEM of no fewer 

than 3 independent experiments. Statistical calculations were performed using JMP 12 (SAS 

Institute, Cary, NC, USA). 

4.4 Results 

4.4.1 Treatment with PA had no impact on the expression of select lipid storage genes 

in myotubes 

To begin analysis of the impact of PA and VitD on lipid metabolism in myotubes, we measured the 

mRNA expression of several key lipid storage, accumulation, and lipolysis genes using quantitative 

real-time polymerase chain reaction (RT-PCR). Results showed that VitD significantly increased 

vitamin D receptor (VDR) expression by 7.8-fold when compared CTL (p < 0.001) (Figure 4.1A). PA 

treatment had no impact on VDR expression. We next examined the effect of VitD and PA on the 

expression of LD proteins PLIN2 and PLIN5. Treatment with VitD increased PLIN2 expression 

approximately 3.5-fold compared to CTL (p < 0.001) (Figure 4.1B), but PA treatment had no impact 

on PLIN2 expression. PLIN5 mRNA expression was unaffected by either VitD or PA treatment (p > 

0.05) (Figure 4.1C). To complete an initial analysis of genes regulating TAG lipolysis and 

accumulation in myotubes, we examined the expression of ATGL and DGAT1 mRNA. Treatment 

with neither VitD nor PA impacted ATGL expression (Figure 4.1D). VitD increased DGAT1 

expression by 2.8-fold compared to CTL (Figure 4.1E). There was no effect between VitD and PA 

in any of the genes examined.  

4.4.2 VitD augments PA-induced IMCL accumulation and prevents PA-induced cell 

death 

Myotubes were stained with oil red O (ORO) to determine the impact of VitD and PA on IMCL 

accumulation after treating with VitD and 100 µM PA for 24, 48, or 72 hours. Myotubes treated 

with PA showed time-dependent signs of cell death and detachment (Figure 4.2A). This was 

ameliorated with addition of VitD. There was no evidence of cellular stress with VitD alone. 

To examine how PA and VitD impact IMCL storage, we treated cells with 100 nM VitD and 100 µM 

PA for 24 hours. Cells did not appear to show signs of myotube detachment in any treatment 
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(Figure 4.2B). Analysis of micrographs revealed that VitD appeared to produce a greater degree 

of IMCL accumulation than CTL and augmented IMCL accumulation with PA treatment (Figure 

4.2C). All subsequent experiments were completed with 100 µM PA for 24 hours to prevent cell 

death. 

4.4.3 PA treatment did not change mitochondrial metabolism 

To determine the impact of 100 µM PA for 24 hours on mitochondrial metabolism in myotubes 

with and without VitD treatment, we used succinate dehydrogenase (SDH) staining assay. In 

accord with previous research discussed in Chapter 3, VitD appeared to increase the intensity of 

SDH staining in myotubes (Figure 4.3A). There was no clear effect of PA with or without VitD. 

To quantify mitochondrial function in myotubes, we used a Seahorse oxygen consumption assay 

(Figure 4.3B). Analysis of the OCR trace found no impact of PA after injection of oligomycin, FCCP, 

rotenone/succinate, or Antimycin A (Figure 4.3C-G). Treatment with VitD increased OCR after 

injection of FCCP and produced a significant increase in OCR area under the curve (AUC) (Figure 

4.3H). 

To quantify OCR specific to individual mitochondrial complexes, OCR was measured using 

equations described in Appendix 3. Analysis showed that neither basal (Figure 4.3I) nor ATP linked 

(Figure 4.3J) were significantly affected by either 24 hours of either VitD or PA. Both maximal 

mitochondrial OCR (Figure 4.3K) and reserve OCR (Figure 4.3L) were increased with VitD 

treatment, but were unaffected by PA. There was no interaction effect at either measurement. 

There were no responses to individual or combined treatment with VitD or PA when OCR was 

measured at Complex I (Figure 4.3M), Complex II (Figure 4.3N), mitochondrial leak (Figure 4.3O), 

or non-mitochondrial respiration (Figure 4.3P). 

4.4.4 PA, but not VitD, increased baseline lactate production 

While measuring OCR using the Seahorse extracellular flux analyzer, we simultaneously measured 

extracellular acidification rate (ECAR), a marker of glycolysis (Figure 4.4A). Analysis showed that 

100 µM of PA for 24 hours, but not VitD, increased ECAR at baseline measurements (Figure 4.4B). 

However, there were no changes after the addition of oligomycin (Figure 4.4C), FCCP (Figure 

4.4D), rotenone/succinate (Figure 4.4E), Antimycin A (Figure 4.4F), or in the AUC (Figure 4.4G). 
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4.4.5 PLIN2 knockdown does not interact with PA to regulate VDR or perilipin gene 

expression 

To examine the effect of PLIN2 knockout on VDR-mediated lipid management in myotubes, we 

measured the expression of VDR and several perilipin proteins after treatment with 100 µM PA 

for 24 hours. In depth analysis of the effect of VitD in reference to siPLIN2 has been reported in 

Chapter 3. Analysis of the role of PA in lipid management showed that PA did not impact the 

expression of VDR nor any perilipin mRNAs with or without PLIN2 knockdown (Figure 4.3A-D).  

We then examined the expression of several genes key to regulating lipid metabolism in myotubes 

after PLIN2 knockdown. We found that while PA does not have a main effect on ATGL expression, 

it does have an interaction effect with VitD in which VitD abrogates PA-induced ATGL expression 

(Figure 4.3E). PA did not affect the expression of CGI-58 (Figure 4.3F), DGAT1 (Figure 4.3G), or 

DGAT2 (Figure 4.3H). PA significantly increased the expression of CTP1. P Values for all main and 

interaction effects of lipid management genes are reported in Table 1. 

Note: VitD and CTL data presented here and in Figure 4.3 are the same as that 

presented in Chapter 3 and Figure 4. However, this analysis includes comparisons 

with PA not reported in Chapter 3. 

4.4.6 PA did not impact markers of inflammation or endoplasmic reticulum stress 

To determine the effect of PLIN2 on the role of PLIN2 in VitD-mediated changes in lipid 

management to prevent lipotoxicity, we measured the expression of genes associated with 

inflammation and endoplasmic reticulum (ER) stress associated with lipotoxicity after treatment 

with 100 µM PA for 24 hours. We found that VitD increased the expression of IL-1β (Figure 4.6A), 

and siPLIN2 decreased the expression of IL-1β. PA had no effect on the expression of IL-1β. VitD 

decreased the expression of IL-6 with no effect of siPLIN2 of PA (Figure 4.6B). VitD had a strong 

trend towards increased the expression of TNF-α, although this failed to reach statistical 

significance (Figure 4.6C). There was no effect in response to siPLIN2 or PA. We then measured 

the expression of several markers of ER stress. No treatments had a significant effect on the 

expression of GRP78 (Figure 4.6D), GRP94 (Figure 4.6E), ATF4 (Figure 4.6F), or the ratio of spliced 

to unspliced XBP1 (Figure 4.6G). The main and interaction effects of genes associated with 

lipotoxicity are reported in Table 2. 
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4.5 Discussion 

This project aimed to determine the role of VitD and PLIN2 in the regulation of lipid metabolism 

and prevention of lipotoxicity in a hyperlipidic environment. We hypothesized that treatment with 

PA would induce a lipotoxic phenotype in myotubes that would be ameliorated by VitD through 

increased storage and oxidation of TAG via the induction of PLIN2. Results were not sufficient to 

support this hypothesis as the PA treatment used for the majority of this project, 100 µM for 24 

hours, did not consistently induce lipotoxicity. However, 48 and 72 hour treatments with PA did 

induce cell death consistent with lipotoxicity; this lipotoxicity was prevented by co-treatment with 

100 nM calcitriol. These data indicate that treatment with PA alone is not sufficient to induce a 

lipotoxic phenotype, modulate lipid metabolism, or drive gene expression in C2C12 myotubes at 

the concentration used.  

Initial RT-PCR analysis showed that treatment with PA did not affect the expression of VDR or key 

lipid regulatory genes. Treatment with VitD increased the expression of VDR and PLIN2 consistent 

with previous research [48] and upregulated DGAT1 as discussed in depth in Chapter 3. However, 

we did not observe an increase in ATGL as previously published [48] and seen in scramble siRNA 

control samples treated with VitD (Figure 4.3E). These data further support the hypothesis that 

VitD supports lipid accumulation in myotubes. However, it is curious that this response is not 

impacted by PA. Research by de Wilde et al. [242] showed that PA produces a dose dependent 

increase in PLIN2 protein abundance that reached statistical significance at 200 µM for 15 hours. 

There was a dramatic increase in the expression of PLIN2 when PA was increased from 100 µM to 

200 µM. Similarly, Chen et al. observed an increase in PLIN2 expression with a 500 µM treatment 

of PA for 12 hours. The lack of an increase of PLIN2 in response to PA in this study may be 

associated with the relatively low concentration of PA used.  

While there is some debate regarding the ability of PA to induce lipid accumulation in skeletal 

muscle, most research indicates it is a weak inducer of LD formation in comparison to oleate as 

indicated by PLIN2 protein accumulation [238, 242, 243]. Our data support this conclusion. PA 

effectively induced a visibly evident increase in IMCL accumulation as indicated by ORO staining. 

This increase in IMCL was clear at 100 µM PA for 24 hours and was augmented by the addition of 

VitD. The increase in IMCL without a corresponding increase in PLIN2 expression suggests 

decreased PLIN2 abundance in each LD or a decrease in the PLIN2 to IMCL ratio. The decrease of 

this ratio may be associated with an inability to produce LDs to adequately store IMCL is 
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associated with DAG and non-esterified fatty acid accumulation and ER stress [238]. The presence 

of this stress is evidenced in the present model with PA treatment of 48 or 72 hours, which 

produced a clear pathological phenotype in myotubes consistent with lipotoxicity that was 

ameliorated by co-treatment with VitD. Prevention of lipotoxicity with VitD is well documented 

in a range of tissues including kidney and liver [39, 244], although it has not been well investigated 

in skeletal muscle. After the discovery of a clear adverse effect of 100 µM PA after 72 hours, we 

chose a 24-hour treatment to maintain cell integrity and prevent off target effects produced an 

excessively stressful environment. Unfortunately, the lipotoxic phenotype was not maintained 

throughout the duration of the study. This ORO experiment was completed before all minor 

adjustments to cell culture conditions were optimized for myotube growth and differentiation. As 

a result of media conditions catered to robust, healthy cells, myotubes tolerated the 100 µM 

palmitate treatment well and did not show signs of lipotoxicity at later points in the study. 

This lack of lipotoxicity was further evidenced by analysis of mitochondrial metabolism. SDH 

staining appeared to show an increase SDH activity with VitD treatment, but there was no evident 

response to PA. Verifying these results, we saw no response to PA throughout the Seahorse OCR 

assay. This is particularly interesting as PA is a well-documented uncoupler of mitochondrial 

respiration in C2C12 myotubes [245, 246]. We would therefore expect to see either increased 

OCR after the addition of oligomycin indicative of mitochondrial leak and uncoupled respiration. 

However, the effect of PA differs from myoblasts to myotubes and may be highly sensitive to 

differences in lipid profile of both media and the cell itself as well as oxidative environment [215]. 

One mechanism through which PA decreases mitochondrial function is through increased 

ceramide abundance [247]. Therefore, one may not observe mitochondrial deficiency if myotubes 

are not treated with a dose of palmitate sufficient to induce ceramide production. As noted 

previously, 100 µM is a relatively low treatment with palmitate and may have been insufficient to 

induce the stress hypothesized. Indeed, Patkova et al. did not note significant mitochondrial effect 

in myotubes below 200 µM palmitate [245]. Together, these data suggest that our model of 

palmitate treatment did not induce a lipotoxic phenotype, and that the dose of palmitate 

employed was likely too low.  

Concurrent with OCR measurements, the Seahorse XF analyzer measured ECAR, and these data 

can be used to supplement OCR to ascertain a more complete picture of bioenergetic phenotype. 

However, it is important to recognize that the mitochondrial stress test used to generate these 
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data is not designed to specifically diagnose differences in glycolytic metabolism, and results 

should be interpreted with some degree of caution and only to supplement primary outcome 

data. Data revealed an increase in OCR in response to VitD consistent with what was reported in 

Chapter 3, but limited effect PA throughout the assay. However, we did record a significant 

increase in baseline OCR after PA treatment. The most evident analysis of this increase in light of 

our hypothesis is a compensatory response of glycolytic ATP production to account for reduced 

oxidative function. However, OCR analysis does not indicate any significant decrease in ATP-linked 

OCR after PA treatment. One could argue that the low dose PA produced a level of mitochondrial 

stress not clearly evident when examining OCR, but, as glycolysis is much less efficient at 

producing ATP, the effect on glycolytic metabolism is magnified.  

Knockdown of PLIN2 had limited effect on gene expression in relation to PA, but some responses 

were observed in the expressions of ATGL and CPT1. The PLIN2-dependent increase in ATGL 

expression with PA treatment may be associated with the inhibitory function of PLIN2 in ATGL 

function. Because PLIN2 binds ATGL and prevents its association with CGI-58, decreasing the 

amount of PLIN2 in a myotube likely decreases the amount of ATGL that is inhibited at any given 

time. Therefore, less ATGL is required for the same amount of lipolysis when PLIN2 expression is 

suppressed. The increase in CPT1 expression is supported by previous research indicating 

increased CPT1 activity after treatment with 50-100 µM PA [248]. This is likely associated with 

increased lipid clearance in response to increased abundance of fatty acids.  

Post-hoc analysis revealed a PLIN2-dependent increase in ATGL mRNA expression after treatment 

with PA. However, there was no independent PA effect or siPLIN2 effect. This can be compared 

to a PLIN2-independent increase in ATGL after VitD treatment. PLIN2 binds to ATGL and prevents 

its association with CGI-58 to upregulate lipolysis [184]. We speculate that if PLIN2 is knocked 

down, there may be an abundance of free ATGL to associate with CGI-58 and respond to the 

increased palmitate abundance in the cell with increased lipolysis [184]. However, this suggests 

that PLIN2 is not required for an increased lipolytic response to a high amount of exogenous lipid 

after VitD treatment. 

Interestingly, the response of mRNA expression to PA after treatment with lipofectamine and 

scramble RNA (Figure 4.3) differed from that observed without lipofectamine (Figure 4.1). This 

effect was independent of siPLIN2, and previous researchers have not reported a lipofectamine 

effect in lipid metabolism studies. However, lipofectamine may have unexamined effects on 
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metabolic pathways in cell culture; it is conceivable that cationic lipofectamine liposomes form 

complexes with anionic non-esterified fatty acids and mediate their import into the cell during 

the siRNA treatment window, effectively increasing the abundance of lipid in the cell media. 

However, to our knowledge, this hypothesis is untested.  

While PA treatment failed to elicit a substantial effect on markers of lipotoxicity, VitD increased 

TNF-α gene expression (p = 0.054). Although the magnitude of change and SEM similar to that of 

treatment with VitD, the PA effect on TNF-α expression did not approach significance (p = 0.384). 

PA is a well-documented inducer of inflammatory cytokines, and 200 µM palmitate can induce IL-

6, TNFα and CCL2 expression in muscle cells through activation of the NF-κB pathway [249]. 

Further research has shown that TNF-α knockdown prevents palmitate-induced signs of 

lipotoxicity [250]. However, others have shown that 200 µM of PA in C2C12 myotubes is not 

sufficient to induce TNF-α protein or mRNA expression and that a secondary stressor, such as 

glucose, is required to induce inflammation [128, 251, 252]. We attribute the lack of an 

inflammatory, lipotoxic phenotype to a combination of insufficient PA concentration in a cellular 

environment optimized for health. Future work would benefit from a higher dose of PA or glucose 

to adequately stress cells and produce inflammation and endoplasmic reticulum stress.  

The mechanisms controlling VitD-regulated modulation of cytokines are not fully understood. In 

a clinical study examining the relationship between the cytokines IL-6 and TNF-α with 25(OH)D 

and VDR, Pojednic et al. [253] found that VDR protein was negatively associated with 

intramuscular IL-6 protein but, contrary to results shown here, positively associated with IL-6 gene 

expression. This increase in IL-6 gene expression may be a product of endocrine or paracrine 

signaling not present in cell culture models. However, the authors concluded that VitD ultimately 

contributes to decreased IL-6 protein expression. In accord with the present study, they found no 

correlation between any marker of VitD and TNF-α.  

The only recorded effect of PLIN2 knockdown on inflammatory cytokine mRNA expression was 

observed as a PA or VitD-independent reduction of IL-1β. Limited research has investigated the 

interaction between perilipin proteins and cytokines, but one study found that PLIN2 

overexpression in C2C12 cells led to an increased expression of several markers of inflammation 

including NLRP3, caspase-1, and IL-1β [254]. This is curious as IL-1β is a classic marker of the 

inflammasome associated with lipotoxicity [255, 256]. 
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Contrary to our hypothesis, there was no effect of any treatment on markers of ER stress, as both 

PA overabundance and PLIN2 deficiency are associated with ER stress and unfolded protein 

response [202, 238]. Furthermore, sequestration of fatty acids in TAG, a process mediated by 

PLIN2, is known to prevent ER stress [237]. 

The results of this study offer limited insight into how vitamin D and PLIN2 relate to the regulation 

of lipid oxidation in a high lipid environment. We conclude that 100 µM palmitate does not induce 

lipotoxicity but is instead well-tolerated by C2C12 myotubes in an otherwise healthy environment. 

Future work should revisit this hypothesis after defining a consistent model of lipotoxicity using a 

higher dose of palmitate in addition to a secondary stressor.  However, OCR experiments were 

consistent with results reported in Chapter 3 and further support the hypothesis that calcitriol 

increases mitochondrial function in skeletal muscle mytoubes.
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Figure 4.1. Palmitate does not impact mRNA VDR-induced expression of lipid management 

genes. Gene expression of vitamin D receptor (VDR) (A) and key lipid storage and lipolysis genes 

perilipin 2 (PLIN2) (B), perilipin 5 (PLIN5) (C), adipose triglyceride lipase (ATGL) (D), and diglyceride 

acyl-O-transferase (E). Cells were treated with vehicle controls (CTL), 100 µM palmitate (PA), 100 

nM calcitriol (VitD), or 100 µM palmitate and 100 nM calcitriol PA+VitD for 24 hours. Bars 

represent mean ± SEM, n = 5; p calculated by 2-way ANOVA. 
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Figure 4.2. VitD augments PA mediated IMCL accumulation and prevents myotube 

macrostructure derangement. Myotubes were treated with 0, 100 µM palmitate and 0 or 100 

nM calcitriol for 72 hours (A) 48 hours (B) or 24 hours (C) and stained with oil red O 
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Figure 4.3. Calcitriol, but not palmitate, increased mitochondrial metabolism. Myotubes stained 

for succinate dehydrogenase activity (A). Seahorse mitochondrial stress test (B) and quantized 

oxygen consumption rate (OCR) at baseline (C) and after the injection of oligomycin (D), carbonyl 

cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) (E), rotenone with succinate (F), and 

Antimycin A (G). Mitochondrial specific OCR derived from equations described in Appendix 3 (H-

P). Bars represent mean ± SEM, n = 4-5; statistical significance defined as p < 0.05, 2-way ANOVA.  
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Figure 4.4. Palmitate, but not calcitriol, increases baseline extracellular acidification rate. 

Extracellular acidification rate (ECAR) measured during Seahorse mitochondrial stress test (A) and 

simplified values at baseline (B) and after the injection of oligomycin (C), carbonyl cyanide-p-

trifluoromethoxyphenylhydrazone (FCCP) (D), rotenone with succinate (E), Antimycin A (F), and 

the area under the curve (G). Bars represent mean ± SEM, n = 4-5; statistical significance defined 

as p < 0.05, 2-way ANOVA. 
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Figure 4.5. Palmitate had limited effect on calcitriol-induced changes to genes involved in lipid 

storage and metabolism with or without PLIN2 knockdown. Gene expression in myotubes was 

analyzed for genes associated with lipid storage and lipolysis using qRT-PCR after treatment with 

or without 100 nM calcitriol (VitD) and 100 µM palmitate (PA) for 24 hours with or without PLIN2 

knockdown. VDR = vitamin D receptor; PLIN2 = perilipin 2; PLIN3 = perilipin 3; PLIN5 = perilipin 5; 

ATGL = adipose triglyceride lipase; CGI-58 = comparative gene identification-58; DGAT1 = 

diglyceride acyl O-transferase 1; DGAT2 = diglyceride acyl O-transferase 2; CPT1 = carnitine 

palmitoyltransferase 1. Black bars = scramble siRNA, Grey bars = PLIN2 knockdown. Bars represent 

mean ± SEM, n = 6; statistical significance defined as p < 0.05, 3-way ANOVA. Bars not sharing a 

letter are significantly different (Fishers LSD). NB: This figure contains VitD and Veh data also 

published in Chapter 3 of this dissertation. 
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VitD = 100 nm calcitriol; PA = 100 µM palmitate; siPLIN2 = perilipin 2 siRNA knockdown. 
n = 6. 
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Figure 4.6. Neither palmitate treatment nor PLIN2 knockdown induced the transcription of 

genes associated with lipotoxicity. Gene expression in myotubes was analyzed for genes 

associated with inflammation (A-C) and endoplasmic reticulum (ER) stress (D-G) indicative of 

lipotoxicity using qRT-PCR after treatment with or without 100 nM calcitriol (VitD) and 100 µM 

palmitate (PA) for 24 hours with or without PLIN2 knockdown. IL-1β = interleukin 1β; IL-6 = 

interleukin 6; TNF-α = tumor necrosis factor α; GRP78 = glucose-regulated protein, 78 kDa; GRP96 

= glucose-regulated protein, 96 kDa; ATF4 = activating transcription factor 4; XBP1 ratio = spliced 

X-box protein 1/unspliced X-box protein 1. Black bars = scramble siRNA, Grey bars = PLIN2 

knockdown. Bars represent mean ± SEM, n = 6; statistical significance defined as p < 0.05, 3-way 

ANOVA. 
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VitD = 100 nm calcitriol; PA = 100 µM palmitate; siPLIN2 = perilipin 2 siRNA knockdown. n = 6. 
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CHAPTER 5: DISCUSSION 

5.1 Summary of Research Problem & Hypothesis 

Vitamin D and PLIN2 each play an important role in the accumulation and oxidation of 

intramyocellular lipid (IMCL). Although vitamin D is widely considered to be beneficial to lipid 

metabolism and management in a variety of tissues, the benefit of PLIN2 is a subject of debate 

[134, 200, 202, 204, 229, 230]. Furthermore, PLIN2 and vitamin D are both implicated in the 

development or prevention of obesity and lipotoxicity. I hypothesized that vitamin D increases 

IMCL accumulation, β-oxidation, and lipid turnover through a PLIN2-mediated mechanism, 

thereby preventing lipotoxicity in skeletal muscle. This hypothesis was addressed in the 

following in two aims: (1) characterize the effect of vitamin D and PLIN2 on lipid turnover and β-

oxidation in mature myotubes and (2) determine the role of vitamin D and PLIN2 in regulating key 

markers of lipotoxicity.  

5.2 Aim 1: PLIN2 is required for increased mitochondrial oxygen consumption 

Aim 1 was designed to characterize the effect of vitamin D and PLIN2 on lipid turnover and β-

oxidation in mature myotubes. This aim showed that calcitriol, the active form of vitamin D, 

increased mitochondrial metabolism, most notably through complex II of the electron transport 

chain, succinate dehydrogenase (SDH) and that PLIN2 knockdown decreased mitochondrial 

function. Of particular note, our statistical model revealed that PLIN2 knockdown decreased 

calcitriol-induced oxygen consumption by SDH, suggesting that PLIN2 upregulation is necessary 

for calcitriol-induced increase of SDH activity. While these data support my hypothesis, the lack 

of data directly measuring fatty acid oxidation precludes definitive claims regarding the role β-

oxidation or lipid turnover in this mechanism.  

The original design of this study included a 14C-palmitate oxidation assay intended to directly 

measure β-oxidation (Figure 5.1). However, after 6 attempts, data showed no change in fatty acid 

oxidation in response to treatment with either siRNA or calcitriol. Because previous research has 

shown changes in response to both calcitriol and PLIN2 modulation as well as mRNA data showing 

metabolic changes at the gene expression level, I am highly suspicious of the veracity of this data 

and did not include it in previous chapters. The ratios of 14CO2 to acid soluble metabolites (ASM) 

observed in this experiment were higher (1:5) than published by others in a study PLIN2 
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overexpression (1:40) [134]. This may be a product of the increased incubation time (5 hours vs 2 

hours) that was employed to increase signal of 14C in the CO2 fraction. An alternative technique 

to measure fatty acid oxidation using the Seahorse XFe24 in combination with a palmitate-

enriched media with 2-deoxyglucose is currently underway in a second attempt to measure fatty 

acid oxidation after calcitriol treatment and PLIN2 knockdown. 

Another noteworthy experiment not shown in Chapter 3 was a fluorescent labeling of vitamin D 

receptor (VDR) and myosin heavy chain MyHC in C2C12 myotubes (Figure 5.2). Images were not 

included for publication because of the generally low quality of fluorescence and the complicating 

implications of these images; micrographs showed a discrepancy in subcellular location of VDR 

protein between mature myotubes and undifferentiated myoblasts where VDR localized to the 

nucleus in myoblasts (i.e. cells not expressing MyHC) while remaining cytosolic in myotubes. 

These data aligned with those published by Esser and colleagues [89] and raise the important 

question of whether vitamin D signaling in skeletal muscle is caused by canonical nuclear VDR-

driven gene transcription (nVDR), or second messenger systems initiated by membrane VDR 

(mVDR). If results in this project were driven by nVDR-mediated gene transcription in myoblasts, 

it dramatically weakens physiological implications of this work as they are relatively rare in 

skeletal muscle tissue and contribute negligibly to lipid storage and metabolic activity. However, 

because of the strong induction of VDR and high abundance of myotubes observed throughout 

this project, I believe that downstream effects of mVDR are a more likely mechanism for the 

effects produced by calcitriol in this project. If this mechanism indeed drives cellular response in 

the present model, treatment effects may be far downstream from the initial VDR activation [26, 

27, 110]. 

In spite of the aforementioned limitations, metabolic and gene expression data imply that 

calcitriol does induce metabolic changes that favor both lipid accumulation and lipolysis, while 

PLIN2 knockdown results in changes that promote lipid accumulation but limit mitochondrial 

activity. This supports the hypothesis that vitamin D influences lipid flux while showing that PLIN2 

is required for robust lipid clearance. This beneficial role of PLIN2 in lipid clearance should be 

taken into consideration by researchers investigating PLIN2 knockout models as a means of 

investigating obesity, T2DM, or fatty liver disease, as effects produced by impaired lipid flux in 

skeletal muscle may contribute to off-target consequences and systemic maladaptations not 

predicted in organ-specific models [125]. 
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5.3 Aim 2: Palmitate alone may not be enough to produce lipotoxicity in C2C12 

myotube culture 

Aim 2 sought to determine the role of vitamin D and PLIN2 in the prevention of palmitate-induced 

lipotoxicity and address the hypothesis that a palmitate-induced lipotoxic phenotype would be 

ameliorated by VitD through increased storage and oxidation of triacylglyceride (TAG) via the 

induction of PLIN2. While preliminary oil red O experiments showed a strong protective effect of 

calcitriol in response to cellular dysfunction caused by 100 µM palmitate, later experiments 

showed no effect of palmitate on cellular attachment, mitochondrial function, endoplasmic 

reticulum (ER) stress, or inflammation. Thus, the model employed failed to produce lipotoxicity 

and data were unable to support the hypothesis. However, important conclusions can be drawn 

from these negative outcomes.  

Signs of lipotoxicity are not limited to mitochondrial function and inflammation. I attempted a 

liquid chromatography mass spectroscopic analysis to measure changes in lipid species 

abundance, particularly DAG and ceramides, after treatment with palmitate, calcitriol, or PLIN2 

knockdown. However, I was unable to adequately normalize the raw data and was therefore 

unable to interpret meaningfully the results. This experiment was intended not only to quantify 

lipid abundance more reliably than the oil red O experiments discussed in Chapter 3 but also to 

determine if lipid species associated with lipotoxicity were impacted by any treatments. Analyzing 

the lipid profile is an exceedingly important aspect of evaluating lipotoxicity as data continue to 

show that it is not the quantity of lipid that produces a lipotoxicity but instead the quality of lipids; 

that is, the species in a lipid profile have a greater influence on the development of lipotoxicity 

than the total abundance of lipid [131, 139, 247, 257, 258]. The failure of this experiment 

substantially limits interpretation of results, and positive results could have suggested subtle 

changes in lipid metabolism in response to palmitate treatment that did not produce measurable 

changes in other experiments focused on characterizing gene expression or oxygen consumption. 

The most important implications of Aim 2 data stem from the lack of stress after either treatment 

with palmitate or PLIN2 knockdown. Palmitate treatment is considered a standard model for 

lipotoxicity in in vitro studies [215, 259, 260]. However, these results suggest that physiological 

doses of palmitate are not sufficient to produce metabolic, inflammatory, or endoplasmic 

reticulum stress in C2C12 myotubes, indicating that palmitate-based models of lipotoxicity may 

be either insufficient in C2C12 culture or rely on supraphysiological concentrations. Researchers 
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should evaluate both species-specific abundance of fatty acids and the concentration of glucose 

in research using palmitate as a model of lipotoxicity [215, 252]. Several publications have 

suggested that lipotoxicity is dependent on excessive glucose and rebranded the pathology 

glucolipotoxicity [128, 252]. The most prominent hypothesis for this interplay between glucose 

and fatty acids is tied to the glucose-fatty acid cycle, which was first proposed by Randle in 1963 

[261] and revisited recently by Hue and Taegtmeyer [262]. Randle’s hypothesis states that a high 

concentration of both glucose and fatty acid produces an oversupply of substrate to the Krebs 

cycle. Subsequently, surplus acetyl-CoA accumulates in the cytosol and is converted to malonyl-

CoA through acetyl-CoA carboxylase, and Malonyl-CoA in turn inhibits the transport of acyl-CoA 

into mitochondria by inhibiting carnitine palmityltransferase-1. The accumulation of acyl-CoA 

precipitates the accumulation of bioactive, lipotoxic lipids including DAG and ceramides. 

5.4 Overall Conclusion  

Collectively, the findings of my work suggest that calcitriol treatment increases oxidative 

metabolism in myotubes and that this increase is at least in part attributable to the increased 

expression of PLIN2. While β-oxidation was not directly measured, data presented in this study 

give credence to the speculation that calcitriol produces a PLIN2-dependent increase in lipid 

oxidation. The present study shows that calcitriol induced the expression of several genes 

associated with the mobilization of lipids for β-oxidation including ATGL and CGI-58. Similarly, 

calcitriol treatment resulted in an increase in oxygen consumption that was dependent on PLIN2 

expression. Several studies have shown that vitamin D treatment increases whole body fatty acid 

oxidation in both humans and rats [37, 63], while Seahorse analysis of glycolysis by Calton et al. 

[263] revealed that supplementation with vitamin D decreases glycolysis in blood mononuclear 

cells. To my knowledge, there are no studies suggesting that treatment with vitamin D increases 

the rate of glycolysis. In light of this previous research, these findings suggest that the PLIN2-

dependent increase in oxygen consumption after calcitriol treatment is associated with an 

increase in β-oxidation. 

Expanding upon this line of reasoning, data presented in this dissertation support the hypothesis 

that vitamin D and PLIN2 play a role in the prevention of lipotoxicity in skeletal muscle. However, 

I make these speculations cautiously, as I did not induce lipotoxicity and therefore could not 

measure the effects of my treatments on lipotoxicity. Because increased lipid oxidation 
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ameliorates lipotoxicity [239], the increase in oxygen consumption, which was most likely driven 

by β-oxidation, can be loosely tied to a decreased risk of lipotoxicity. In parallel, one can 

reasonably suspect that PLIN2 knockdown increases risk of lipotoxicity through decreased oxygen 

consumption. In opposition to this, several researchers have found that PLIN2 knockdown or 

knockout increases β-oxidation [134, 197]. Ultimately, this study is not sufficient to draw any 

concrete conclusions regarding the roles of PLIN2 knockdown and vitamin D in lipotoxicity. 

In spite of this shortcoming, there are sufficient data to conclude that PLIN2 knockdown decreases 

mitochondrial function in C2C12 myotubes. While there is a large body of literature that suggests 

that PLIN2 knockout is protective against lipotoxicity and obesity, a claim that PLIN2 enables 

lipotoxicity may be overly simplistic. I propose that PLIN2 plays a beneficial role in lipid 

metabolism in skeletal muscle and that without PLIN2, bioenergetic benefits of vitamin D 

supplementation may not be realized. My work suggests that PLIN2 upregulation in response to 

healthy stimuli, such as exercise or high levels of vitamin D, enables greater lipid storage and β-

oxidation. The beneficial upregulation of PLIN2 is accompanied by increased insulin sensitivity and 

increased mitochondrial function without increased markers of oxidative stress or mitochondrial 

dysfunction [48, 208]. This pattern is observed in both skeletal muscle [264, 265] and the liver 

[266] in response to several stimuli including endurance, sprint interval, and resistance exercise 

as well as vitamin D supplementation in projects shown here and published by Jefferson et al. 

[48]. 

5.5 Significance & Impact 

The significance of these findings can be divided into three main contributions to the fields of 

vitamin D and muscle lipid biology. First, these results provide a more detailed description of 

cellular processes underlying vitamin D-induced increases in mitochondrial activity functional 

capacity in skeletal muscle. For several years, researchers have had evidence that vitamin D 

increased mitochondrial function; there is now strong evidence implicating SDH in the observed 

increase. This discovery was verified by modifying the Seahorse protocol to add rotenone and 

succinate before adding Antimycin A. This allowed for observation of oxygen consumption driven 

by SDH. Future researchers should consider including this minor change to the protocol of future 

oxygen consumption rate (OCR) analyses and include it as a new standard of the mitochondrial 

stress test protocol. 
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Secondly, this dissertation provides evidence that PLIN2 knockdown negatively impacts skeletal 

muscle oxidative metabolism under healthy conditions. There is a multitude of studies 

investigating the role of PLIN2 in lipid management in both healthy and pathological 

environments, the results of which are highly contradictory. Some studies suggest that increased 

PLIN2 expression is associated with increased oxygen consumption and protection against 

symptoms of lipotoxicity [48, 204, 208, 242, 264, 265, 267], while others show that PLIN2 

increases with dysfunction and pathology [228]. A large cohort of knockout studies in mice 

suggest that the absence of PLIN2 prevents signs of ectopic fat accumulation [197, 200, 229, 230]. 

This is a long and ongoing conversation within the scientific community, and the role of PLIN2 in 

lipid storage and metabolism is likely nuanced, multifaceted, and context dependent. While my 

results do not solve the puzzle of PLIN2 in lipid metabolism, the information presented here is an 

important contribution to the debate surrounding the nature of PLIN2 abundance in relation to 

metabolic health of skeletal muscle. 

Finally, this project demonstrates that the entire cellular environment must be considered when 

implementing a palmitate-based model of lipotoxicity and that minor changes to cell culture 

models can have a dramatic impact on cellular health and function. To aid future researchers in 

reproducing results, publications investigating the presence or absence of toxic effects in 

response to treatment with palmitate, and lipids in general, should be reported very carefully. 

Methods sections of these publications should include a high degree of specificity when describing 

the composition of cell media, fatty acid preparation and conjugation, cell confluence, time 

allowed for differentiation, and cell passage number. Researchers designing lipotoxicity studies 

should, in turn, pay careful attention to characterizing cell models and pay special attention to 

reproducing results of others before applying previously published models to new experiments.  

5.6 Strengths & Limitations 

The greatest strength of this study is the comprehensive approach to key outcomes. Similar 

metabolic outcomes were examined in three ways; SDH activity, Seahorse XF assay, and fatty acid 

oxidation assay all yield consistent results. It is because of these parallel methods that I can 

confidently reject the results of the 14C-palmitate fatty acid oxidation assay. Without multiple 

experiments in the same model suggesting a phenotype contrary to that demonstrated in one 

experiment, it is exceedingly difficult to dismiss the results.  
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Another strength is the depth of analysis of mitochondrial metabolism afforded by the methods 

used in the Seahorse assay. General Agilent protocols do not include the rotenone/succinate 

injection and, therefore, do show oxygen consumption specific to SDH. Because I completed a 

more exhaustive analysis at the suggestion of the laboratory of Dr. Patrick Sullivan, I was able to 

identify the mitochondrial complex driving PLIN2-dependant differences in oxygen consumption 

after calcitriol treatment. 

Perhaps the greatest weakness of this study was the lack of lipotoxicity in my palmitate treatment 

model. Early in data acquisition, model design, and oil red O experimentation using 100 and 200 

μM palmitate with or without 100 nM calcitriol for 48 or 72 hours produced a dose and time 

dependent effect evidenced by cell detachment and morphological signs of stress in myotubes 

treated with palmitate. This response was ameliorated with co-treatment with 100 nM calcitriol. 

This experiment served as a proof-of-concept that calcitriol prevented palmitate-induced 

lipotoxicity in differentiated C2C12 cells. From these results, I established a 100 μM palmitate 

treatment for 24 hours to shorten treatment durations and prevent off target effects from 

excessive stress. After this experiment was completed, cell culture medium was changed from 

4500 mg/L glucose DMEM to 1000 mg/L glucose DMEM to support more consistent, higher quality 

myotube formation. Subsequent ORO experiments and palmitate treatments did not produce the 

previously observed stress response, but it was not until a significant percentage of the project 

was completed that I recognized this lack of stress. I hypothesize that this was a product of a 

decreased concentration of glucose in the cell medium in alignment with the Randle hypothesis 

of glucolipotoxicity.  

Another limitation of this project was the reliance on mRNA to infer metabolic changes with 

calcitriol treatment. Metabolic endpoints were reliably drawn from the measurement of oxygen 

consumption. However, the mechanisms behind these changes were inferred from the 

interpretation of patterns of mRNA expression, which are not as reliable as those drawn from 

protein content or enzyme activity. Furthermore, several of the proteins implicated in this study 

are post-translationally regulated or vary activity based on sub-cellular localization or protein-

protein interactions. The results obtained from mRNA analysis provide clues to mechanisms 

underlying changes in metabolism, but cannot be assumed to represent changes at the level of 

enzyme activity. 
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Another limitation of this study is the heterogeneous nature of C2C12 cell culture. Because 

differentiation is not perfectly efficient, undifferentiated myoblasts in each experiment contribute 

to two potential problems. First, as myoblasts and myotubes respond differently to calcitriol [89], 

changes observed with calcitriol treatment may be a product of response by myoblasts and not 

myotubes. Secondly, variability of the rate and efficiency of differentiation between experiments 

likely resulted in a difference in the relative abundance of myoblasts and myotubes in each given 

replicate. This could contribute to increased variability, underpowered experiments, and type II 

error. Future experiments in differentiated myocyte culture could employ several strategies to 

minimize these problems. First, using a cell model that differentiates more efficiently, such as 

human primary cells, could prevent myoblast contamination in experiments. Further measures 

could include pharmacological interventions during experiments to increase efficiency of 

differentiation and encourage trimming on undifferentiated cells. Such approaches could include 

promoting differentiation with Insulin-Transferring-Selenium solution or targeting actively 

proliferating myoblasts with cytosine arabinoside (Ara-C). 

5.7 Future Directions 

While this project provides strong evidence that calcitriol increases mitochondrial function in 

skeletal muscle dependent on PLIN2, several questions remain unanswered. These unanswered 

questions can be addressed through future experimentation divided into short term and long 

term goals. Short term questions include projects that could be addressed in one or two 

experiments over the course of several months. Long term questions serve as the foundation of 

future research projects and would likely require years to investigate fully. 

Were this project to continue for another six months, I would focus on three experiments: 1) 

accurate analysis of β-oxidation in response to treatment with calcitriol, 2) mass spectroscopic 

analysis of DAG and ceramide in myotubes treated with 100 µM palmitate to determine if there 

are low level lipotoxic responses in lipid profile in response to the treatment used in project and 

3) reproducing key metabolic measurements in human primary myotube culture to demonstrate 

applicability to human physiology.  

To investigate β-oxidation in myotubes, would employ two simultaneous techniques. I would 

work with a collaborator to troubleshoot the [1-14C]-palmitate fatty acid oxidation assay. This 

assay has been used by multiple researchers and supplies detailed information regarding the rate 
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of β-oxidation and the completeness of said oxidation. For this reason, this is my preferred 

method for measuring β-oxidation. However, I would simultaneously work to gain data through a 

modified Seahorse oxygen consumption assay. This method would include treatment with 100 

µM and no glucose for 2 hours prior to assay and the addition of 50 mM 2-deoxyglucose to prevent 

glucose metabolism. In this condition, fatty acids would be the only substrate available for large 

amounts of oxidation as amino acid oxidation generally contributes negligibly to oxygen 

consumption and ATP production. This approach is not as detailed as the 14C-palmitate approach, 

but it would provide valuable information regarding the relative rates of fatty acid oxidation with 

and without vitamin D treatment and PLIN2 knockdown. 

A reliable LC-MS analysis of DAG and ceramide, two families of lipid species most commonly 

associated with lipotoxicity, would provide great insight into subtle changes that may be occurring 

in response to vitamin D treatment and PLIN2 knockdown. This would therefore be a substantial 

focus were this project to extend for six months. A similar approach would be used as was 

reported in Chapter 4, however, a small sample of cell suspension would be taken from each 

sample for BCA assay and normalization of spectra to protein quantification. This is important as 

phospholipid profile is reported to change in response to vitamin D treatment [47]. 

The final short term experiment would aim to reproduce metabolic outcomes in human primary 

myotubes. Experiments would repeat seahorse analyses with vitamin D and PLIN2 knockdown 

treatments to verify that responses in human primary cells are similar to those observed in 

immortalized mouse cells. I would complete Seahorse analysis using the exact procedures and 

treatment described in Chapter 3. Two-way factorial ANOVA would again be used to determine 

significant effects of each treatment and trends would be compared to those observed in C2C12 

cells.  

Two of the primary questions raised by this project to be addressed with a long term approach 

are 1) what are the mechanisms by which vitamin D increases OCR, and 2) does the observed 

PLIN2-dependent increase in mitochondrial activity ameliorate symptoms of lipotoxicity?  

Future research should focus on more closely examining the effects of calcitriol on various stages 

of lipid metabolism such as TAG acylation, LD formation, and lipolysis from myocellular LDs. 

Experiments to investigate these areas of cellular metabolism should include mass spectroscopic 

analysis of lipids focusing on the abundance of non-esterified fatty acid, monoacylglyceride, DAG, 
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and TAG after the addition of a tracer isotope such as 13C-palmitate. Schweiger has summarized 

advanced methods for measuring lipolysis through protein quantification, phosphorylation 

analysis, protein co-localization, and enzyme activities [268]. Each of these methods should be 

employed to determine how calcitriol impacts lipolysis. Lipid droplet formation can be tracked by 

using fluorescent microscopy markers for ER and neutral lipid in combination with an antibody to 

PLIN2. Localization of PLIN2 to the ER suggests early-stage LD formation, and counting the number 

of LDs after 0, 1, 3, 6, and 24 hours of treatment provides means for a direct analysis of the effect 

of calcitriol on LD formation. Finally, β-oxidation should be measured through one of several 

methods. Use of dually labeled, tritiated 14C-palmitate, as employed by Broderick [269], may 

provide a better internal control than using 14C-palmitate alone. Alternatively, β-oxidation can be 

measured through Seahorse oxygen consumption assay by comparing the respiration of cells 

treated with etomoxir, a CPT-1 inhibitor, with those receiving a vehicle control. 

As the lipotoxic model in this project was not efficacious, future research should improve this 

model and complete the investigation of whether PLIN2 upregulation prevents or ameliorates 

symptoms of lipotoxicity. In accord with the aforementioned attention to cellular environment, 

this research should first take a systematic approach to inducing lipotoxicity in skeletal muscle. 

Treatment should vary the concentrations of palmitate and glucose in media with either horse or 

fetal bovine serum to comprehensively analyze the response of myotubes to palmitate under 

these conditions. For continuity of research and the most effective application of these results to 

future interpretations, time of treatment should be 24 hours. Lipotoxicity should be quantified in 

reference to inflammation (cytokine mRNA and protein expression), ER stress (CHOP, XBP1 

splicing, ATF4 expression), oxidative stress (dichlorofluorescein, dihydroethidium, and 4-

hydroxynonenal staining), and liquid chromatography mass spectroscopic analysis of lipid profile 

(quantification and qualification of ceramide and DAG). 
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Figure 5.1. 14C-palmitate pulse-chase analysis showed that treatment with neither VitD nor 

siPLIN2 significantly impacted fatty acid oxidation. Myotubes treated with or without 100 nM 

VitD and with or without PLIN2 knockdown showed no change in 14C-labeled CO2 (A), acid soluble 

metabolites (B), or cellular lysate after 5 hours of incubation with 100 µM palmitate. 
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Figure 5.2. Fluorescent labeling shows that calcitriol increases VDR expression in the nucleus of 

myoblasts and cytosol of myotubes. Fluorescent labeling of myosin heavy chain (MyHC, green) 

and vitamin D receptor (VDR, red) in C2C12 culture. White arrows show localization of VDR 

expression in the nuclei of cells not expressing MyHC (e.g. myoblasts). Nuclei stained with DAPI. 

Scale bars = 200 µm. 
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APPENDICES 

 
 

Appendix 1. Schematic of cell growth and treatment. C2C12 cells are seeded in growth media 

(GM) overnight in a 24 well plate and differentiated for a total of 6 days in DMEM with 2% horse 

serum (DM) before treatment with palmitate (PA), calcitriol (VitD), both (PA+VitD), or vehicle 

controls (CTL) for 24 hours. All cells are treated with either 10 nM PLIN2 siRNA or scrambled 

control siRNA with 1:500 Lipofectamine RNAiMAX starting day 5 for a total of 48 hours. 
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Appendix 2. List of primer pairs used for RT-PCR. RER1 = Retention in Endoplasmic Reticulum 

Sorting Receptor 1; VCP = Valosin Containing Protein; EMC7 = Endoplasmic Reticulum Membrane 

Protein Complex Subunit 7; VDR = Vitamin D Receptor; ATGL = Adipose Triglyceride Lipase; DGAT1 

= Diacylglyceride O-Acyltransferase 1; CGI-58 = Comparative Gene Identification-58; CPT-1 = 

Carnitine Palmitoyltransferase 1; SCD-1 = Steroyl-CoA Desaturase 1; PLIN2 = Perilipin 2; PLIN3 = 

Perilipin 3; PLIN5 = Perilipin 5. ATF4 = Activating Transcription Factor 4; GRP78 = Glucose 

Responsive Protein, 78 kDa; GRP94 = Glucose Responsive Protein, 94 kDa; IL-1β = Interleukin-1β; 

IL-6 = Interleukin-6; TNF-α = Tumor Necrosis Factor-α 
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Appendix 3. Calculations to derive OCR from Seahorse XFe24. Equations used to determine 

oxygen consumption rates (OCR) after analysis with Seahorse Biosciences XFe24 Extracellular Flux 

Analyzer.  
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