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Abstract: The constant growth in population worldwide 
over the past decades continues to put forward the need 
to provide access to safe, clean water to meet human 
needs. There is a need for cost-effective technologies for 
water and wastewater treatment that can meet the global 
demands and the rigorous water quality standards and 
at the same maximizing pollutant efficiency removal. 
Current remediation technologies have failed in keeping 
up with these factors without becoming cost-prohibitive. 
Most recently, nanotechnology has been sought as the 
best alternative to increase access to water supplies by 
remediating those already contaminated and offering 
ways to access unconventional sources. The use of iron 
oxide magnetic nanoparticles as nanoadsorbents has 
led way to a new class of magnetic separation strategies 
for water treatment. This review focuses on highlighting 
some of the most recent advances in core-shell iron oxide 
magnetic nanoparticles and nanocomposites containing 
iron oxide nanoparticles currently being developed for 
water and wastewater treatment of organic pollutants. 
We discuss the novelty of these novel materials and the 
insight gained from their advances that can help develop 
cost-effective reusable technologies for scale-up and 
commercial use.

Keywords: adsorption; environmental remediation; mag-
netic nanoparticles; nanoadsorbent; water treatment.

Introduction
Water contamination continues to be a major environ-
mental problem worldwide. The United Nations esti-
mates around 3.1% of deaths worldwide, which is over 
1.7 million deaths a year, are caused by unsafe or inad-
equate access to water (1). Access to safe drinking water 
is not only a human right but also a necessary factor for 
economic productivity and technological development. 
There is an ever increasing need for the global commu-
nity to develop efficient and affordable technologies to 
improve the quality of water to meet human and environ-
mental needs.

In recent years, nanomaterial-based technologies 
have emerged as promising alternatives to current water 
treatment techniques at lower costs and high efficiencies 
that can, at the same time, meet the increasingly stringent 
water quality standards (2–4). Of particular interest among 
these nanomaterials are iron oxide magnetic nanoparti-
cles (IONPs). In addition to having a high surface area-to-
volume ratio, fast kinetics, strong adsorption capacities 
and high reactivity, IONPs possess the additional prop-
erty of magnetism. When an external magnetic field is 
applied to IONPs, they rapidly aggregate together, serving 
as an easy and cost-effective separation process to extract 
them from aqueous solutions. Once the magnetic field is 
removed, the nanoparticles lose their magnetic moment 
and can easily be redispersed, if they are superparamag-
netic. If small enough, IONPs, such as magnetite (Fe3O4) or 
its oxidation counterpart maghemite (γ-Fe2O3), will exhibit 
superparamagnetic properties. These IONPs can be used 
directly as nanoadsorbents or as the core component of 
core-shell structures, where the IONPs function as mag-
netic separation and the shell provides the desired func-
tionality for pollutant adsorption. Another strategy is to 
incorporate the IONPs into multiphase materials or nano-
composites (5). Additionally, the purification process to 
regenerate these materials does not generate secondary or 
harmful waste and allows for their reuse in environmental 
remediation (6–10).
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Contamination due to organic pollutants continues to 
pose a health risk to aquatic environments and humans. 
Persistent organic pollutants (POPs), such as polycyclic 
aromatic hydrocarbons (PAHs), polychlorinated biphe-
nyls (PCBs), pesticides, various industrial additives and 
pharmaceutical and personal care products (PPCPs), are 
ubiquitous in nature (11, 12). POPs have consistently been 
found in groundwater, drinking water, sewage effluents 
and sludge, and they can enter the food chain and bio-
accumulate to detrimental levels for human health (13, 
14). Despite their widespread distribution, most POPs are 
found at very low concentrations and in complex environ-
mental matrixes making their enrichment, capture and 
degradation a strenuous task. Traditional treatment tech-
niques are limited to site excavation (15), bacterial reme-
diation in situ (16) and degradation with highly reactive 
nanoparticles (zero valent iron, bimetallic Fe0/Pd or Au/
Pd) to less harmful species (10, 17, 18).

In this review, we focus on highlighting some of the 
most recent developments in the application of core-
shell IONPs as nanoadsorbents of organic contaminants 
for water and wastewater treatment. The design of these 
materials and their current applications are discussed, 
placing special emphasis on core-shell structures or nano-
composite materials. The environmental behavior, stabil-
ity and other implications of IONPs use for environmental 
remediation fall out of the scope of this review and there-
fore will not be addressed here.

Core-shell IONPs

Adsorption is the most commonly used technique to 
remove most organic and inorganic contaminants form 
water and wastewater treatment (19–22). Conventional 
adsorbents like activated carbon (AC) are used to trap the 
contaminant within its pores. Nonetheless, despite the 
inexpensiveness of the raw materials needed, the energy 
requirements to obtain high quality AC and regenerate 
it after use has proven to have detrimental environmen-
tal effects on its own (23). Moreover, the efficacy of such 
adsorbents is often limited by available surface area or 
active sites, lack of selectivity and their adsorption kinet-
ics. IONPs, due to their very small size, offer significant 
improvements in terms of higher surface area and sorp-
tion sites and the ability to tune their surface chemistry 
for enhanced selectivity. Core-shell IONPs consist on an 
iron magnetic core and a shell materials that comprises 
the core (outer layer). The shell of these nanoparticles 
can be organic, inorganic or a combination of both, and 
its material selections strongly depends upon the end 

applications and use. The shell tailoring allows for the 
development of nanocomposite materials that have high 
affinity for specific contaminants and can be readily used 
in the environment.

Surfactants are commonly used surface modifiers to 
help control bare IONP aggregation and interactions (24, 
25). Surfactants can be nonionic, amphoteric, cationic or 
anionic depending on the end application. Recently, mag-
netic permanently confined micelle arrays (Mag-PCMAs) 
have been synthesized and have proven to be effective 
in removing organic contaminants from aqueous solu-
tions (26, 27). A silica porous layer is used to confine the 
cationic surfactant micelles into the mesopores prevent-
ing loss during subsequent use. Huang et  al. (28) dem-
onstrated high adsorption rate and capacity for three 
different industrial effluents and PPCPs (methyl orange, 
sulfamethoxazole and gemfibrozil) as well as two differ-
ent PAHs (acenaphthene and phenanrtene). By adding a 
micelle swelling agent during synthesis and then remov-
ing it Huang et  al. (28), were able to increase the pore 
volume and surface area of the Mag-PCMAs, thus increas-
ing their sorption capacity and diffusion rate. The methyl 
orange removal efficiency and the visual color change due 
to fast sorption kinetics of three different Mag-PCMAs syn-
thesized with different amount of swelling agent is shown 
in Figure 1A,B. Here, it can be seen the rapid adsorption 
in the first 30  min, achieving a 98% removal efficiency. 
Further studies showed that pollutant sorption formed 
a monolayer dominated by hydrophobic interactions 
between the surfactants and the molecule in question. 
Overall, Mag-PCMAs show promise as high efficiency sor-
bents for organic pollutant with large pore sizes and more 
porous channels than those synthesized in other ways, 
hence providing a sustainable fast and reusable water 
treatment technique that can be extended and scaled-up 
to continuous batch reactors.

β-Cyclodextrin (β-CD) is a seven glucose cyclic oligo-
saccharide that is well known for its capacity to form host-
guest complexes with a variety of molecules due to the 
formation of cavities with an external hydrophilic surface, 
an internal hydrophobic pocket and a specific diameter 
(29, 30). Thanks to these specific host-guest interactions, 
β-CD has been widely used as a surface modifier of IONPs 
specifically for the capture of some hydrophobic organic 
contaminants, such as PCBs, and has gained interests 
in environmental remediation (31–33). In the past year, 
Wang et  al. (34) developed a core-shell magnetic nano-
particle consisting of a magnetite core and a silica bonded 
β-cyclodextrin layer (Fe3O4@ β-CD) capable of adsorbing 
PCB-28 and PCB-52 in aqueous solutions, as shown in 
Figure 1C. The adsorption capacities of Fe3O4@ β-CD for 
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the PCB congeners were studied in water and incubated 
for 24 h, after which the nanoparticles were isolated with 
a magnet and UV absorbance measurements were used 
to determine the concentration of the residual solution. It 
was demonstrated that the β-CD can increase the binding 
capacity almost three-fold when compared to the magnet-
ite core. The PCB inclusion within the Fe3O4@ β-CD cavity 
was 1 : 1, and due to the specific diameter of the cavity, 
the specific adsorption for PCB-28  was a little higher 
than that for PCB-52. The Langmuir isotherms for PCB-28 
and PCB-52 are shown in Figure 1D, where the absorptive 
capacities of 40.01 and 30.32  mmol/kg, respectively, can 
be seen. The functionalized core-shell nanoparticle devel-
oped by Wang et al. (27) can effectively be used to concen-
trate organic contaminants from water, easily separated 
from the contamination source and readily extended and 
applied for environmental remediation.

Recently, our group has described a novel and ver-
satile one step coprecipitation synthesis methodology of 

curcumin stabilized iron oxide magnetic nanoparticles 
(C-IO MNPs), shown in Figure 2A, that can potentially be 
used in environmental remediation, biomedical and catal-
ysis applications (35). Curcumin is a naturally occurring 
antioxidant and polyphenol found in the Indian spice tur-
meric, with a high content of aromatic groups in its mole-
cular structure (36, 37). The presence of these groups offers 
the possibility of interaction through pi-pi sticking with 
similar molecules, such as PCBs, in a variety of environ-
ments. Bhandari et al. (35) demonstrated successful incor-
poration of the curcumin onto the surface of the IONPs, 
representing around 10–12% in mass of the nanoparticle’s 
weight. The C-IO MNPs showed a 10-fold increase in safe 
administration limits compared to uncoated IONPs when 
incubated for 24  h with human umbilical vein endothe-
lial cells (HUVECs), thanks to the antioxidant response of 
curcumin. Additionally, when these cells were exposed to 
PCB 126 in the presence of C-IO MNPs, a protective effect 
against this inflammatory agent was seen. Figure 2B shows 
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the % viability of HUVECs preincubated with 10 μg/mL of 
C-IO MNPs for 0, 12 and 24 h followed by a 24-h exposure 
to 50 μM PCB 126. It can be seen that the antioxidant effect 
of curcumin protects the cells against PCB 126  showing 
a greater cell viability between treated and nontreated 
cells. This protection can be attributed to the interactions 
between PCB 126 and curcumin, most likely through pi-pi 
stacking, which reduced the bioavailability of this stressor 
and the cell burden in general. The results from this study 
can be further extended to environmental burden and 
reduced bioavailability of organic contaminants such as 
PCBs in contaminated water sources due to the aforemen-
tioned pi-pi stacking interactions that can be employed to 
capture/adsorb and sense these pollutants.

IONP nanocomposites

Another approach to developing high efficiency nanoma-
terials for treatment of POPs in water consists on using 
IONPs in a confined micro- or macroscale support, which 
allows for the nanoparticles to still exhibit their reactivity 

Figure 2: Synthesis method for curcumin functionalized magnetic 
iron oxide nanoparticles. Here the ammonium hydroxide reduces 
the iron salts to produce the magnetic iron oxide nanoparticle (red 
sphere), followed by the formation of a curcumin shell on the IONPs 
through electrostatic interactions (A). Protection against PCB 126 
induced inflammation. HUVECs preincubated with 10 μg/mL cur-
cumin iron oxide nanoparticles for 0, 12 and 24 h followed by 24-h 
exposure to 50 μM PCB126 (B).

while being complemented by the adsorbent properties 
of the accompanying materials. One such material is chi-
tosan (CS). CS is a natural material that is hydrophilic and 
contains active sites along its polymeric chain due to the 
presence of -NH2 groups. Because of these properties, CS 
has recently been regarded as one of the most promis-
ing biosorbents for water and wastewater treatment for 
negatively charged contaminants (38, 39). A very success-
ful nanocomposite fabricated using CS, lignocellulose 
fibers (LCF) and IONPs has been developed by Zhou et al. 
(40) for biosorptive removal of acidic azo dyes. First, the 
CS decorated LCF was prepared via surface deposition 
crosslinking and then magnetized through blending in an 
aqueous solution containing IONPs allowing for sponta-
neous adherence, as seen in Figure 3A. The magnetic CS/
LCF (mCS/LCF) was used to adsorb acid red 18 (AR 18) as 
model azo dye from water at different pH, ionic strength 
and temperature. As expected, the adsorption of azo dyes 
onto mCS/LCF is highly pH dependent due to the protona-
tion of the amino groups ( −NH3

 + ) in CS at lower pH, which 
increases electrostatic interactions between the nega-
tively charged AR 18 anions and the positively charged 
adsorption sites. Additionally, the adsorption isotherms 
of mCS/LCF indicate a homogeneous surface where the 
adsorption process is govern by intraparticle diffusion. As 
the AR 18 molecule is adsorbed onto the exterior surface 
of mCS/LCF, the available sites diminish until satura-
tion is reached. From this point on, the AR 18 molecules 
need to overcome the diffusion resistance of the saturated 
surface to diffuse into the pores, resulting on a longer 
time needed to reach equilibrium. Hence, the two distinct 
slopes observed for the Weber-Morris diffusion model plot 
(Figure 3B) of AR 18 adsorption on mCS/LCF. Furthermore, 
Zhou et al. (40) demonstrated that the removal of AR 18 
remained at around 99.68% throughout 10 consecutive 
cycles. Overall, the newly developed mCS/LCF nanocom-
posite offers a facile and reusable biosorbent that can be 
easily separated from the adsorption medium by means 
of applying a magnetic field, all while obtaining remark-
ably high adsorption capacities, 1181  mg/g compared to 
828.1 mg/g for pure nanochitosan.

Similarly, Arya and Phillip (41) have recently designed 
a nanocomposite containing clay, activated carbon, chi-
tosan and IONPs for the adsorption of pharmaceuticals in 
water. Although activated carbon itself has long been con-
sidered one of the best available control technologies for a 
wide range of pollutants, the removal efficiencies reported 
for hydrophilic pollutants tend to be smaller (42). There-
fore, with this new magnetic clay composite, the ability to 
remove cationic or anionic, and hydrophilic or hydrophobic 
contaminants was achieved. The selected pharmaceuticals 
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for the adsorption studies utilized by Arya and Phillip were 
atenolol (beta blocker), ciprofloxacin (antibiotic) and gem-
fibrozil (lipid regulator), of which the first two are hydro-
philic. A high removal for atenolol and ciprofloxacin was 
observed, 85% and 95%, respectively. This was attributed 
to the hydrophilic nature of these compounds and of the 
CS-clay composite, as well as to cation exchange between 
the cationic form of the pharmaceuticals and the magnetic 
composite. Correspondingly, a high removal of gemfibrozil, 
90%, was seen and attributed to the hydrophobic nature 
of the pharmaceutical and the activated carbon, as well as 
surface interactions with CS. Figure 3C shows the equilib-
rium sorption of the pharmaceuticals to the nanocompos-
ite at different initial concentrations. It can be observed 
that the maximum adsorption capacity was higher for 
ciprofloxacin (39.1 mg/g) than for gemfibrozil (24.8 mg/g) 
and atenolol (15.7  mg/g). Additionally, the equilibrium 

data shed insight into the highly heterogeneous nature of 
the nanocomposite, which favored the adsorption of the 
pharmaceuticals used. The adsorption process was dis-
covered to be occurring through ion exchange rather than 
phisy-sorption. This discovery was corroborated by Figure 
3D, where it was seen that adsorption of these pollutants 
was also highly pH dependent, similar to the findings 
from Zhou et al. (40), and the pH determines the ioniza-
tion of the pharmaceuticals. At lower pH, the adsorption 
of anionic pollutants, like gemfibrozil, will be favored 
because of the presence of protonated amine groups on the 
surface of the clay and CS, as well as the presence of the 
IONPs, which contribute to an overall positive charge on 
the nanocomposite. Finally, the nanocomposite developed 
by Arya and Phillip proves to be a promising adsorbent for 
pharmaceuticals in water and wastewater treatment that is 
reusable and easy to use.

Figure 3: Principle and process of magnetic chitosan/lignocellulose fibers (mCS/LCF) formation and application for acid red 18 (AR18) 
removal (A). Webber-Morris diffusion model plots for the adsorption of AR18 onto mCS/LCF (B). Sorption of three different pharmaceuticals 
at different initial pharmaceutical concentrations (C) and the effect of pH on their adsorption onto a novel nanocomposite composed of clay, 
activated carbon, CS and iron nanoparticles.
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Conclusion
The present review has examined the most recent devel-
opments of iron-based nanoparticle technologies used 
for water and wastewater treatment. The unique prop-
erties of iron nanoparticles, specifically its magnetic 
characteristics, have proven to be advantageous for a 
variety of adsorbents and present great opportunities 
to keep revolutionizing the available techniques for 
organic pollutant remediation. Although many of the 
technologies being developed are still in the laboratory 
research stage, they have shown success in adsorbing 
pollutants from water under different pH, temperature, 
ionic strength and organic matter conditions with high 
adsorption capacities and good reusability, showing 
progress towards pilot testing, upscaling and even 
commercialization.

The challenges faced by water and wastewater treat-
ment IONP technologies rely mainly on the potential for 
human and environmental risk associated with their use, 
life cycle and disposal. The implications of these nano-
materials, however, can prove to be only temporary as 
more research is conducted in the area. Another impor-
tant factor is the cost of making an applying these tech-
nologies, which has recently seen a decrease due to the 
use of readily available and low cost precursor materials 
such as iron, clay, silica and CS, to name a few. In addi-
tion, there is a need for comparative testing to be adopted 
by the research community that allows comparison 
between different adsorbent materials and performance 
so that developments in the area can move forward at a 
faster pace.

The key towards a successful iron oxide nanoadsor-
bents that meet the stringent environmental regulations 
lies in developing a high surface area nanocomposite 
with increased reactivity that does not sacrifice the mag-
netic properties of its components, all while minimizing 
the costs of the entire production process. The future for 
nanoadsorbents based on iron oxide nanoparticles looks 
very promising not only for removal of organic pollutants 
from water and wastewater but for other contaminants 
and from other contaminated media.
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