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On �� -quasinormal subgroups of finite groups

James C. Beidleman and Alexander N. Skiba

Communicated by Evgenii I. Khukhro

Abstract. Let � D ¹�i j i 2 I º be a partition of the set of all primes P and G a finite
group. A set H of subgroups of G is said to be a complete Hall � -set of G if every
member¤ 1 of H is a Hall �i -subgroup of G for some i 2 I and H contains exactly one
Hall �i -subgroup of G for every i such that �i \ �.G/ ¤ ;.

Let �H .A/ D ¹�i 2 �.G/n�.A/ j �.A/\�.H
G/ ¤ ; for a Hall �i -subgroupH ofGº.

We say that a subgroup A of G is �� -permutable or �� -quasinormal in G with respect to
H if AHx D HxA for all x 2 G and all H 2 H such that �.H/ � �H .A/, and �� -per-
mutable or �� -quasinormal inG ifA is �� -permutable inG with respect to some complete
Hall � -set of G.

We study G assuming that �� -quasinormality is a transitive relation in G.

1 Introduction

Throughout this paper, all groups are finite and G always denotes a finite group.
Moreover, P is the set of all primes, � � P and � 0 D P n � . The groupG is called
�-supersoluble provided every chief factor of G is either cyclic or a � 0-group.

If n is an integer, the symbol �.n/ denotes the set of all primes dividing n; as
usual, �.G/ D �.jGj/, the set of all primes dividing the order of G. The symbol
HG denotes the largest normal subgroup of G contained in H � G.

In what follows, � is some partition of P , that is, � D ¹�i j i 2 I º, where
P D

S
i2I �i and �i \ �j D ; for all i ¤ j .

The symbol �.n/ denotes the set ¹�i j �i \ �.n/ ¤ ;º; �.G/ D �.jGj/. The
group G is said to be

(i) � -primary [16] if G is a �i -group for some i 2 I ,

(ii) � -decomposable (Shemetkov [14]) or � -nilpotent (Guo and Skiba [6]) if
G D G1 � � � � �Gn for some � -primary groups G1; : : : ; Gn,

(iii) � -soluble [16] if every chief factor of G is � -primary.

A set H of subgroups of G is a complete Hall � -set of G [15, 17] if every
member ¤ 1 of H is a Hall �i -subgroup of G for some �i 2 � and H contains
exactly one Hall �i -subgroup of G for every �i 2 �.G/.
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Let �H .A/ D ¹�i 2 �.G/ n �.A/ j �.A/ \ �.H
G/ ¤ ; for a Hall �i -subgroup

H 2 Hº.

Definition 1.1. We say that a subgroup A of G is

(i) �� -permutable or �� -quasinormal in G with respect to H if AHx D HxA

for all x 2 G and all H 2 H such that �.H/ � �H .A/,

(ii) �� -permutable or �� -quasinormal in G if A is �� -permutable in G with
respect to some complete Hall � -set H of G.

Recall that a subgroup A of G is said to be

(i) � -permutable or � -quasinormal in G if G possesses a complete Hall � -set
H such that AHx D HxA for all H 2 H and all x 2 G (cf. [16]),

(ii) � -semipermutable in G if G possesses a complete Hall � -set H such that
AHx D HxA for all x 2 G and allH 2 H with �.A/\�.H/ D ; (cf. [7]).

In the classical case when � D ¹¹2º; ¹3º; : : :º, � -permutable, � -semipermutable
and �� -quasinormal subgroups are also called respectively S -permutable [1, 5],
S -semipermutable [5] and � -quasinormal [11, 12].

It is clear that every � -quasinormal subgroup is also � -semipermutable and
every � -semipermutable subgroup is �� -quasinormal.

Example 1.2. Let p > q > r be primes, Cr a group of order r and H D Q Ì Cr ,
where Q is a simple FqCr -module which is faithful for Cr . Let G D P ÌH ,
where P is a simple FpH -module which is faithful for H . Let � D ¹�1; �2; �3º,
where �1 D ¹pº, �2 D ¹qº, and �3 D ¹p; qº0. Then every Sylow r-subgroup of
G is �� -quasinormal but not � -semipermutable. A Hall ¹q; rº-subgroup of G is
� -semipermutable in G but not � -quasinormal.

We say thatG is a T�T -group if �� -quasinormality is a transitive relation inG,
that is, if K is a �� -quasinormal subgroup of H and H is a �� -quasinormal sub-
group of G, then K is a �� -quasinormal subgroup of G. Our purpose here is to
establish the structure of � -soluble T�T -groups.

Theorem A. Let D D GN� and � D �.D/. Suppose that G possesses a com-
plete Hall � -set H such that all members of H are �-supersoluble. Then G is
a � -soluble T�T -group if and only if either G is � -nilpotent or G D D ÌM ,
where:

(i) D and M are Hall subgroups of G and the smallest prime divisor of jGj
divides jM j.

(ii) D is abelian and every element of M induces a power automorphism in D.
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(iii) Every subgroup of G is �� -quasinormal in G.

(iv) IfA andB are respectively a Hall �i -subgroup and a Hall �j -subgroup ofG,
where i ¤ j and �i ; �j 2 �.G/ n �.D/, then the order of ŒA; B� divides
a prime. Moreover, if jŒA; B�j D r ¤ 1, then r 2 �.D/ and either the Sylow
r-subgroupR ofG is cyclic or ŒA;R� D 1 D ŒB;R�; if, also,A is a p-group
and B is a q-group for some primes p and q, then r > p and r > q.

In this theorem GN� denotes the � -nilpotent residual of G, that is, the intersec-
tion of all normal subgroups N of G with � -nilpotent quotient G=N .

One of the main objectives of this paper is to give a correct proof of [12, Theo-
rem 1.1]. The proof given in [12] for this theorem has several gaps. However,
Theorem A and its proof allows us to eliminate all of those gaps. Corollary 1.3,
our next result, is a statement of [12, Theorem 1.1].

Recall that G is said to be a TQT -group [12] if � -quasinormality is a transitive
relation in G.

Corollary 1.3. Let P be a Sylow p-subgroup of G, Q a Sylow q-subgroup of G
such that p ¤ q. The following statements are equivalent:

(1) G is a soluble TQT -group.

(2) G is a supersoluble group which has an abelian normal Hall subgroup
of odd order D such that G=D is nilpotent, every subgroup of D is nor-
mal in G, and every subgroup of G is � -quasinormal in G. Moreover, if
p 62 �.D/ and q 62 �.D/, then the order of ŒP;Q� divides r , where r 2�.D/,
and if jŒP;Q�j D r , then r > p, r > q and either the Sylow r-subgroup R
of G is cyclic or ŒP;R� D 1 D ŒQ;R�.

The following observation covers many steps in the proof of Theorem A.

Theorem B. LetD D GN� and � D �.D/. Suppose thatG possesses a complete
Hall � -set H such that all members of H are �-supersoluble. If all maximal sub-
groups of every Sylow p-subgroup of G are �� -quasinormal in G for all p 2 � ,
thenD is a nilpotent Hall subgroup ofG, the smallest prime divisor of jGj divides
jG W Dj and every chief factor of G below D is cyclic.

Corollary 1.4 (Srinivasan [18]). If every maximal subgroup of every Sylow sub-
group of G is S -permutable in G, then G is supersoluble.

2 Preliminaries

We use N� to denote the class of all � -nilpotent groups.
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Lemma 2.1 (see [16, Lemma 2.5]). The class N� is closed under taking direct
products, homomorphic images and subgroups. Moreover, if E is a normal sub-
group of G and E=E \ˆ.G/ is � -nilpotent, then E is � -nilpotent.

In view of [2, Proposition 2.2.8], we get from Lemma 2.1 the following:

Lemma 2.2. If N is a normal subgroup of G, then

.G=N/N� D GN�N=N:

Lemma 2.3 (Knyagina and Monakhov [10]). Let H , K and N be pairwise per-
mutable subgroups of G and H is a Hall subgroup of G. Then

N \HK D .N \H/.N \K/:

Suppose that G has a complete Hall � -set H D ¹H1; : : : ;Htº. For any sub-
group H of G we write H \H to denote the set ¹H \H1; : : : ;H \Htº. If
H \H is a complete Hall � -set of H , then we say that H reduces into H .

Recall that G is said to be

(i) a D� -group if G possesses a Hall �-subgroup E and every �-subgroup of
G is contained in some conjugate of E,

(ii) a � -full group of Sylow type [16] if every subgroup E of G is a D�i -group
for every �i 2 �.E/,

(iii) � -full [15, 17] provided G possesses a complete Hall � -set.

In view of [15, Theorems A and B], the following fact is true.

Lemma 2.4. If G is � -soluble, then G is a � -full group of Sylow type.

Lemma 2.5 (see [16, Lemma 3.1]). Let H be a �i -subgroup of a � -full group G.
Then H is � -permutable in G if and only if O�i .G/ � NG.H/.

Lemma 2.6. Suppose that G has a complete Hall � -set H D ¹H1; : : : ;Htº such
that the subgroupsH andK of G are �� -quasinormal in G with respect to H . Let
R be a normal subgroup of G and H � L � G. Then:

(1) H0 D ¹H1R=R; : : : ;HtR=Rº is a complete Hall � -set of G=R. Moreover,
if �.H/ D �.HR=R/, then HR=R is �� -quasinormal in G=N with respect
to H0.

(2) If HK D KH and �.H \K/ D �.H/ D �.K/, then H \K is �� -quasi-
normal in G with respect to H .

(3) If for some i we have H � O�i .G/, then H is � -quasinormal in G.
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(4) If H reduces into L, then H is �� -quasinormal in L with respect to L \H .

(5) If G is a � -full group of Sylow type, then H is �� -quasinormal in L.

Proof. Without loss of generality we can assume that Hi is a �i -group for all
i D 1; : : : ; t .

(1) It is clear that H0 D ¹H1R=R; : : : ;HtR=Rº is a complete Hall � -set of
G=R. Now let �i 2 �H0

.HR=R/, that is, �i 62 �.HR=R/ and

�.HR=R/ \ �..HiR=R/
G/ ¤ ;:

Then �i 62 �.H/ since �.H/ D �.HR=R/. On the other hand, we have

.HiR=R/
G
D HG

i R=R ' H
G
i =.H

G
i \R/;

so �.H/ \ �.HG
i / ¤ ;. Hence �i 2 �H .H/ and so

.HR=R/.HiR=R/ D HHiR=R

D HiHR=R

D .HiR=R/.HR=R/:

Thus HR=R is �� -quasinormal in G=R with respect to H0.
(2) Let Hi be a member of H such that �i 2 �H .H \K/, that is, we have

�i 2 �.G/ n �.H \K/ and �.H \K/ \ �.HG
i / ¤ ;. Then �i 2 �.G/ n �.H/

(since �.H\K/ D �.H/) and �.H/\�.HG
i / ¤ ;, so �i 2 �H .H/. Similarly we

get that �i 2 �H .K/. Hence HHx
i D H

x
i H and KHx

i D H
x
i K for all x 2 G. It

is clear also that H \Hx
i D 1. Therefore for every x 2 G we have

HHx
i \KH

x
i D H

x
i .H \KH

x
i /

D Hx
i .H \K/.H \H

x
i /

D Hx
i .H \K/

D .H \K/Hx
i

by Lemma 2.3. Hence H \K is �� -quasinormal in G with respect to H .
(3) Let j ¤ i . Suppose that for some x 2 G we have HHx

j ¤ H
x
j H . Then

�j 62 �H .H/. Hence �.H/ \ �.HG
j / D ; since H is �� -quasinormal in G with

respect to H by hypothesis. But then HG
j is a � 0

i -group, so H � O�i .G/ �

CG.H
G
j /, which implies that HHx

j D H
x
j H . This contradiction shows that we

have (3).
(4) Let Li D Hi \ L for all i D 1; : : : ; t and L D ¹L1; : : : ; Ltº. By hypo-

thesis, L is a complete Hall � -set ofL. Let �i 2 �L.H/, that is, �i 2 �.L/ n �.H/
and �.H/ \ �..Li /L/ ¤ ;. Then �i 2 �.G/ n �.H/ and �.H/ \ �..Hi /G/ ¤ ;
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since .Li /L � LGi � .Hi \ L/
G � HG

i . Hence �i 2 �H .H/, so HHa
i D H

a
i H

for all a 2 L, so L\HHa
i D H.L\H

a
i / D H.L\Hi /

a D HLai D L
a
i H . This

shows that H is �� -quasinormal in L with respect to L \H .
(5) Since G is a � -full group of Sylow type, H is �� -quasinormal in G with

respect to each complete Hall � -set of G. Moreover, this condition implies also
that some complete Hall � -set of G reduces into L, so we (5) by part (4).

The lemma is proved.

Lemma 2.7 (Kegel [9]). Let A and B be subgroups of G such that G ¤ AB and
ABx D BxA for all x 2 G. Then G has a proper normal subgroup N such that
either A � N or B � N .

The following lemma is a corollary of [4, Chapter IV, (6.7)] (see also [3, Lem-
ma 2.12]).

Lemma 2.8. Let N � E be normal subgroups of G such that N � ˆ.E/ and
every chief factor of G between E and N is cyclic. Then every chief factor of G
below E is cyclic.

Lemma 2.9. If H D ¹H1; : : : ;Htº is a complete Hall � -set of G and every mem-
ber of H is �.GN� /-supersoluble, then

H0 D ¹H1N=N; : : : ;HtN=N º

is a complete Hall � -set of G=N and every member of H0 is �..G=N/N� /-super-
soluble.

Proof. It is clear that H0 is a complete Hall � -set of G=N . Now let D D GN�

and � D �.D/. Then .G=N/N� D DN=N by Lemma 2.2, so

�0 D �..G=N/
N� / D �.DN=N/ D �.D=D \N/ � �.D/ D �:

Hence every memberHi of H is �0-supersoluble, soHiN=N is �0-supersoluble.
The lemma is proved.

Lemma 2.10. Let D D GN� and � D �.D/. Suppose that D is a nilpotent Hall
subgroup of G and G possesses a complete Hall � -set H such that all members
of H are �-supersoluble. If every �i -subgroup of G is �� -quasinormal in G for
all �i 2 �.D/, then every subgroup of D is normal in G.

Proof. Suppose that this lemma is false and letG be a counterexample of minimal
order. Let H D ¹H1; : : : ;Htº. We can assume without loss of generality that Hi
is a �i -group for all i D 1; : : : ; t .
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We show that the hypothesis holds on G=N for every minimal normal sub-
group N of G. First note that

.G=N/N� D DN=N ' D=D \N

is a nilpotent Hall subgroup of G=N by Lemma 2.2, and G=N possesses a com-
plete Hall � -set H0 such that all members of H0 are �..G=N/N� /-supersoluble
by Lemma 2.9.

Now let V=N be a non-identity �i -subgroup of G=N for some

�i 2 �..G=N/
N� / D �.DN=N/ D �.D=D \N/ � �.D/:

And let U be a minimal supplement to N in V . Then U \N � ˆ.U /, so U is
a �i -subgroup ofG since V=N D UN=N ' U=U \N . Therefore U is �� -quasi-
normal in G by hypothesis and �.U / D �.UN=N/ D ¹�iº, which implies that
V=N D UN=N is �� -quasinormal in G=N by Lemma 2.6 (1). Hence the hypo-
thesis holds on G=N .

Let H be a subgroup of the Sylow p-subgroup P of D for some prime p 2 � .
We show that H is normal in G. For some i we have P � O�i .D/ D Hi \D.
On the other hand, we haveD D O�i .D/ �O

�i .D/ sinceD is nilpotent. Assume
that O�i .D/ ¤ 1 and let N be a minimal normal subgroup of G contained
in O�i .D/. Then HN=N � DN=N D .G=N/N� , so the choice of G implies
that HN=N is normal in G=N . Hence H D H.N \O�i .D// D HN \O�i .D/
is normal in G.

Now assume that O�i .D/ D 1, so D is a �i -group. Since G=D is � -nilpotent
by Lemma 2.1, Hi=D is normal in G=D and hence Hi is normal in G. There-
fore all subgroups of Hi are � -quasinormal in G by Lemma 2.6 (3) and hypo-
thesis. Since D is a normal Hall subgroup of Hi , it has a complement S in Hi by
the Schur–Zassenhaus theorem. Lemma 2.5 implies that D � O�i .G/ � NG.S/.
Hence Hi D D � S . Therefore

G D HiO
�i .G/ D SO�i .G/ � NG.H/;

so H is normal in G.
Therefore every subgroup of D is normal in G since D is nilpotent by hypo-

thesis. The lemma is proved.

3 Proof of Theorems A and B

Proof of Theorem B. Suppose that this theorem is false and let G be a counter-
example of minimal order. Then D ¤ 1. Let H D ¹H1; : : : ;Htº. We can assume
without loss of generality that Hi is a �i -group for all i D 1; : : : ; t . Let R be
a minimal normal subgroup of G.
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Claim 1. The conclusion of the theorem holds for G=R.

Let V=R be a maximal subgroup of a Sylow p-subgroup P=R of G=R, where
p 2 �..G=R/N� /. Then for some Sylow p-subgroup Gp of G we have P=R D
GpR=R and V D R.V \Gp/. It is clear that V \ Gp is a maximal subgroup
of Gp. Therefore V \Gp is �� -quasinormal in G by hypothesis since

�..G=R/N� / D �.DR=R/ D �.D=D \R/ � �

by Lemma 2.2, so V=R D R.V \Gp/=R is �� -quasinormal in G=R by Lem-
ma 2.6 (1). Consequently, the hypothesis holds for G=R by Lemma 2.9. Hence
we have Claim 1 by the choice of G.

Claim 2. The group D is soluble, so G is � -soluble. Hence G is a � -full group of
Sylow type.

Assume that this is false. By Claim 1 and Lemma 2.2,

.G=R/N� D DR=R ' D=D \R

is nilpotent. HenceR�D. Moreover, ifG has a minimal normal subgroupN ¤R,
thenN � D andD ' D=R\N D D=1 is nilpotent. ThereforeCG.R/ D 1. Then
2 divides jRj by the Feit–Thompson theorem, and a Sylow 2-subgroup Q of R is
not cyclic by [8, Chapter IV, Section 2.8]. Hence jQj > 2.

Let P be a Sylow 2-subgroup of G such that Q D P \R. Then for some
maximal subgroup V of P we have Q — V by the Tate theorem [8, Chapter IV,
Section 4.7], which implies that P D QV and so V \R < P \R D Q. More-
over, V \R ¤ 1 since otherwise we have V \R D P \ V \R D Q \ V D 1
and so jQj D 2. SinceR D R1 � � � � �Rn, whereR1 ' � � � ' Rn are non-abelian
simple groups, it follows that Q D .P \R1/ � � � � � .P \Rn/ and so for some i
we have V \Ri < P \Ri . Note also that V \Ri ¤ 1 since otherwise from the
isomorphism

V.P \Ri /=V ' .P \Ri /=.V \ .P \Ri // D P \Ri=1

we get that the order of a Sylow 2-subgroup of P \Ri divides 2 and so P \Ri
is 2-nilpotent by [8, Chapter IV, Section 2.8], which implies that R is 2-nilpotent.

Assume that 2 2 �k . First we show that R is � -primary. Suppose that this is
false. We can assume without loss of generality that V is �� -quasinormal in G
with respect to H . Then for some j ¤ k and for H D Hj we have H \Ri ¤ 1
since R is not � -primary. Note also that �k 2 �.HG/ since otherwise we have
R\HG D 1, which implies that 1 < HG � CG.R/ D 1. Therefore �k 2 �H .V /,
so VHx D HxV for all x 2 G. By [4, Chapter A, Section 14.1 (a)], we have
L D VHx \Ri is a subnormal subgroup of VHx , where V is a Hall �k-subgroup
of VHx andHx is a Hall �j -subgroup of VHx . Therefore,L D .L\V /.L\Hx/
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by [4, Chapter I, Section 3.2]. Hence

L D .L \ V /.L \Hx/

D .VHx
\Ri \ V /.VH

x
\Ri \H

x/

D .Ri \ V /.Ri \H
x/

D .V \Ri /.H \Ri /
x

D .H \Ri /
x.V \Ri /

for all x 2 Ri , where .H \Ri /.V \Ri / ¤ Ri since V \Ri < P \Ri . There-
fore, Ri is not simple by Lemma 2.7 since H \Ri ¤ 1 and V \Ri ¤ 1. This
contradiction shows that R is � -primary.

Now assume that R � D and R is not abelian. Then

�.V \R/ D �.V / D �.R/ D ¹�kº

sinceR is � -primary, 2 2 �k and V \R ¤ 1. Therefore V \R is �� -quasinormal
in G by Lemma 2.6 (2). But V \R � R � O�k .G/ and so V \R is � -quasi-
normal in G by Lemma 2.6 (3). Hence R � NG.V \R/ by Lemma 2.5 since
R � D � O�i .G/. Therefore V \R � O2.R/ D 1, a contradiction. Thus R is
abelian. Hence D is soluble by Claim 1. Therefore G is � -soluble and so G is
a � -full group of Sylow type by Lemma 2.4.

Claim 3. The group D is nilpotent.

Assume that this is false. Note that RD=R D .G=R/N is nilpotent by Claim 1.
Therefore R � D, R is the unique minimal normal subgroup of G and R — ˆ.G/
by Lemma 2.1. Claim 2 implies that R is a p-group for some prime p. Therefore
R D CG.R/ by [4, Chapter A, Section 15.2], and G D R ÌM for some maximal
subgroup M of G. If jRj D p, then G=CG.R/ D G=R is a cyclic group. Hence
G is supersoluble and therefore D is nilpotent, which contradicts our assumption
on G. Therefore jRj > p.

For some i we have R � Hi \ D. Then Hi D R Ì .Hi \ M/ and Hi is
�-supersoluble by hypothesis. It follows that some maximal subgroup V of R is
normal inHi . LetP be a Sylow p-subgroup ofHi \M . ThenRP 2 Sylp.G/ and
VP is a maximal subgroup of RP , so VP is �� -quasinormal in G by hypothesis.
Then V D V.R \ P / D R \ VP is � -quasinormal in G by Lemma 2.6 (2)–(3).
Therefore O�i .G/ � NG.V / by Lemma 2.5. Hence G D HiO�i .G/ � NG.V /.
The minimality of R implies that V D 1, so jRj D p, a contradiction. Hence we
have Claim 3.

Claim 4. If E is a subgroup of G, then EN � D.
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Note that since E=E \D ' ED=D 2 N and N is a hereditary class by Lem-
ma 2.1, E=E \D 2 N. Hence EN � E \D.

Claim 5. The group D is a Hall subgroup of G.

Suppose that this is false and let P be a Sylow p-subgroup of D such that
1 < P < Gp 2 Sylp.G/. We can assume without loss of generality that Gp � H1
and that R � D.

Claim (a). The group D D P is a minimal normal subgroup of G.

SinceD is nilpotent by Claim 3, it follows thatR is a q-group for some prime q.
Moreover,D=R D .G=R/N� is a Hall subgroup ofG=R by Claim 1. Suppose that
PR=R ¤ 1. Then PR=R 2 Sylp.G=R/. If q ¤ p, then P 2 Sylp.G/. This con-
tradicts the fact that P < Gp. Hence we have q D p and so R � P , therefore
P=R 2 Sylp.G=R/ and we again get that P 2 Sylp.G/. This contradiction shows
that PR=R D 1, which implies that R D P is the unique minimal normal sub-
group of G contained in D. Since D is nilpotent by Claim 3, a p0-complement E
of D is characteristic in D and so it is normal in G. Hence E D 1, which implies
that R D D D P .

Claim (b). We have D — ˆ.G/. Hence for some maximal subgroup M of G we
have G D D ÌM .

This follows from Claim 2 and Lemma 2.1 since G is not � -nilpotent

Claim (c). IfG has a minimal normal subgroupL ¤ D, thenGp D D�.L\Gp/.
Hence Op0.G/ D 1.

Indeed, DL=L ' D is a Hall subgroup of G=L by Claims 2 and (a). Hence
GpL=L D DL=L, so Gp D D � .L \Gp/. Thus Op0.G/ D 1 since D < Gp by
Claim (a).

Claim (d). The group V D CG.D/ \M is a normal subgroup of G and we have
CG.D/ D D � V � H1.

In view of Claims (a) and (b), CG.D/ D D � V , where V D CG.D/ \M is
a normal subgroup of G. By Claim (a), V \D D 1 and hence V ' DV=D is
� -nilpotent by Lemma 2.1. Let W be a �1-complement of V . Then W is charac-
teristic in V and so it is normal in G. Therefore we have Claim (d) by Claim (c).

Claim (e). We have Gp ¤ H1.

Assume that Gp D H1. Let Z be a subgroup of order p in Z.Gp/ \D. Then,
since D � O�1.G/ D Op.G/, Z is normal in G by Lemma 2.5. Hence we have
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D D Z < Gp and soD < CG.D/. Then V D CG.D/ \M ¤ 1 is a normal sub-
group ofG and V � H1 D Gp by Claim (d). LetL be a minimal normal subgroup
of G contained in V . Then Gp D D � L is a normal elementary abelian subgroup
of G by Claim (c). Hence every maximal subgroup of Gp is normal in G by Lem-
mas 2.6 (3) and 2.5. It follows that every subgroup of Gp is normal in G. Hence
jDj D jLj D p. Let D D hai, L D hbi and N D habi. Then N — D, so in view
of the G-isomorphisms

DN=D ' N ' NL=L D Gp=L D DL=L ' D

we get that G=CG.D/ D G=CG.N / is a p-group since G=D is � -nilpotent by
Lemma 2.1. But then Claim (d) implies that G is a p-group. This contradiction
shows that we have Claim (e).

Final contradiction for Claim 5. In view of [15, Theorem A], G has a �1-com-
plement E such that W D EGp D GpE. Let V D W N� . In view of Claims 2
and 4 and Lemma 2.6 (5), the hypothesis holds forW . Moreover, Claim (e) implies
thatW ¤ G. Hence the conclusion of the theorem holds onW by the choice ofG,
which implies that V is a Hall subgroup of W . Moreover, Claim 4 implies that
V � D, so for a Sylow p-subgroup Vp of V we have jVpj � jP j < jGpj. Hence
V is a p0-group and so V � CG.D/ � H1 \W by Claim (d). Hence V D 1.
ThereforeW D EGp D E �Gp is � -nilpotent and soE � CG.D/ � H1. Hence
E D 1 and so D D 1, a contradiction. Thus, D is a Hall subgroup of G.

Claim 6. If p is a prime such that .p � 1; jGj/ D 1, then p does not divide jDj.
In particular, the smallest prime divisor of jGj divides jG W Dj.

Assume that this is false and let P be the Sylow p-subgroup of D. Then, argu-
ing similarly as in the proof of Claim 3, one can show that some maximal subgroup
E of P is normal in G. Hence CG.D=E/ D G since .p � 1; jGj/ D 1 by hypo-
thesis. Since D is a Hall subgroup of G by Claim 5, it has a complement M in G.
Hence G=E D .D=E/ � .ME=E/, where ME=E 'M ' G=D is � -nilpotent.
Therefore G=E is � -nilpotent. But then D � E, a contradiction. Hence p does
not divide jDj. In particular, the smallest prime divisor of jGj divides jG W Dj.

Claim 7. Every chief factor of G below D is cyclic.

Suppose that this is false. Assume that ˆ.D/ ¤ 1 and let R � ˆ.D/. Claim 1
implies that every chief factor ofG=R below .G=R/N� D D=R is cyclic, so every
chief factor of G below D is cyclic by Lemma 2.8. Hence ˆ.D/ D 1, so every
Sylow subgroup of D is elementary. Moreover, there is a prime p 2 �.D/ such
that the Sylow p-subgroup P of D contains a minimal normal subgroup N of G
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such that jN j > p. Let V be a maximal subgroup of P such that P D NV . Then
N \ V ¤ 1. Since D is a Hall subgroup of G, P 2 Sylp.G/. Therefore V is
�� -quasinormal in G, so N \ V is � -quasinormal in G by Lemma 2.6 (2)–(3).
Now, arguing similarly as in the proof of Claim 3, one can show that N \ V is
normal in G. The minimality of N implies that N \ V D 1, so jN j D p. This
contradiction completes the proof of Claim 7.

Claims 3, 5, 6 and 7 show that the conclusion of the theorem holds forG, which
contradicts the choice of G.

The theorem is proved.

Proof of Theorem A. It is enough to show that if G is a � -soluble T�T -group and
G is not � -nilpotent, then conditions (i)–(iv) hold on G. Suppose that this is false
and let G be a counterexample of minimal order. Let H D ¹H1; : : : ;Htº. We can
assume without loss of generality that Hi is a �i -group for all i D 1; : : : ; t .

Claim 1. Every subgroup H of G is �� -quasinormal in G.

It is enough to consider the case when H is a maximal subgroup of G. But
since G is � -soluble by hypothesis, jG W H j is a �i -number for some i and so for
a Hall �i -subgroup Hi of G we have HHi D G. Hence G D HHx

i D H
x
i H for

all x 2 G. Thus we have Claim 1.

Claim 2. We have G D D ÌM , where D is nilpotent and condition (i) holds
for .D;M/.

In view of the Schur–Zassenhaus theorem this directly follows from Theorem B
and Claim 1.

Claim 3. Every subgroup of D is normal in G. Hence D is abelian and every
element of M induces a power automorphism in D.

In view of Lemma 2.10 this follows from Claims 1 and 2.

Claim 4. Condition (iv) holds on G.

First note that since G is � -soluble, it is a � -full group of Sylow type by Lem-
ma 2.4 and so every two Hall �k-subgroups of G are conjugate for all �k 2 �.G/.

Since G=D is � -nilpotent, it follows that DA and DB are normal in G. Hence
AG D A.AG \D/ and BG D B.BG \D/, so AG \ B D 1 and BG \ A D 1.
Let r 2 �.D/.

Claim (a). If r 2 �.AG/ and Cr is a group of order r , then CrBA D ACrB is
a subgroup of G. If r 2 �.BG/, then CrAB D BCrA is a subgroup of G.
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First note that Cr � D since r 2 �.D/ and D is a Hall subgroup of G by
Claim 2. Therefore Cr is normal in G by Claim 3. Claim 1 implies that CrB is
�� -quasinormal in G. On the other hand, we have �.CrB/ \ �.A/ D ; and also
�.CrB/ \ �.A

G/ ¤ ; since r 2 �.AG/, so .CrB/A D A.CrB/ is a subgroup
of G. Similarly one can get the second assertion of Claim (a).

Claim (b). IfCr � AG andCr — BG orCr � BG andCr — AG , then ŒA; B� D 1.

Assume, for example, that Cr � AG and Cr — BG . Then

AG \ CrBA D Cr.A
G
\ BA/

D Cr.A
G
\ B/A D CrA;

so B � NG.CrA/. On the other hand,

BG \ CrBA D B
G
\ ACrB

D .BG \ ACr/B

D .BG \ A/.BG \ Cr/B D B

by Lemma 2.3, so CrA � NG.B/. Hence ŒA; B� � ŒCrA;B� � CrA \ B D 1.

Claim (c). If Cr � AG \ BG and ŒA; B� ¤ 1, then ŒA; B� D Cr .

Claim (a) implies that CrBA and CrAB are subgroups of G, so

CrAB D CrBA:

Hence
AG \ CrAB D Cr.A

G
\ AB/ D CrA.A

G
\ B/ D CrA

andBG \ CrAB D CrB , soCrB � NG.CrA/ andCrA � NG.CrB/. Hence we
have ŒA; B�� ŒCrA;CrB�� CrA\CrB D Cr , so ŒA; B�D Cr since ŒA; B�¤ 1.

Claim (d). If Ct � ŒA; B�, where Ct is a group of prime order t , then we have
Ct � A

G \ BG , t 2 �.D/ and ŒA; B� D Ct . Moreover, if the Sylow t -subgroup
P of D is not cyclic, then ŒA; P � D 1 D ŒB; P �.

Note that Ct � AG \ BG since ŒA; B� � ŒAG ; BG � � AG \ BG . But we have
AG \ BG D A.AG \D/ \ B.BG \D/. Hence t 2 �.D/, so from Claim (c) we
get ŒA; B�DCt . Suppose thatP is not cyclic. Then, by [8, Chapter I, Section 2.20],
P possesses a subgroup C1 ¤ Ct of order t since the smallest prime divisor
of jGj divides jM j by Claim 2. Claim (c) implies that C1 — AG or C1 — BG
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since ŒA; B� D Ct . Hence we have C1 — AG and C1 — BG by Claim (b). Then
ŒC1; A� D ŒC1; B� D 1. But every element a 2 A induces a power automorphism
˛ in P , so in the case when ˛ is non-trivial, it is fixed-point-free by [13, Sec-
tion 13.4.3 (ii)]. Therefore every element of A acts trivially on P , so ŒA; P � D 1.
Similarly we get ŒB; P � D 1.

Finally, suppose that jŒA; B�j D r is a prime and, also, A is a p-group and B
is a q-group for some primes p and q. Then ŒA; B� � D and E D ŒA; B�AB is
a subgroup of G by Claims (a) and (d). Let V be a Hall ¹p; qº-subgroup of E.
Then V ' DV=D is nilpotent, so E is supersoluble. Assume that p > r . Then
A or B is normal in E and so either ŒA; B� � A or ŒA; B� � B , contrary to the
fact that 1 < ŒA;B� � D. Hence r > p. Similarly we get that r > q. Therefore
we have (iv).

Thus conditions (i)–(iv) hold on G, contrary to our assumption on G. The theo-
rem is proved.
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