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Abstract: Mammalian systems have developed extensive 
molecular mechanisms to protect against the toxicity of 
many exogenous xenobiotic compounds. Interestingly, 
many detoxification enzymes, including cytochrome 
P450s and flavin-containing monooxygenases, and their 
associated transcriptional activators [e.g. the aryl hydro-
carbon receptor (AhR)], have now been shown to have 
endogenous roles in normal physiology and the pathology 
of metabolic diseases. This mini-review will focus on two 
such instances: the role of flavin-containing monooxy-
genase 3 (FMO3) in the formation of the cardiometabolic 
disease biomarker trimethylamine-N-oxide (TMAO) and 
the role of AhR as a sensor of endogenous ligands such 
as those generated by the gut microbiota. Understanding 
the roles of xenobiotic sensing pathways in endogenous 
metabolism will undoubtedly lead to a better understand-
ing of how exposure to environmental pollutants can per-
turb these physiological processes.

Keywords: cardiovascular disease; dioxin; FMO3; meta-
bolic pathologies; TMAO.

Introduction

Humans are exposed to multiple endogenous and xenobi-
otic compounds that if left unmodified and excreted could 
impact cellular physiology, leading to detrimental patho-
logical outcomes. Fortunately, mammalian systems have 
evolved multiple signaling systems, including the well-
studied nuclear factor (erythroid-derived 2)-like 2 (Nrf2) 
and aryl hydrocarbon receptor (AhR) pathways, among 
others, which aide in the detoxification, elimination, and 
increased endogenous antioxidant buffering capacity 
against the toxicity of chemical compounds. Two major 
classes of detoxification enzymes, cytochrome P450s 
(CYPs) and flavin-containing monooxygenases (FMOs), 
are known to modify multiple drugs and environmental 
pollutants, generating more readily excreted polar metab-
olites, but emerging data now implicate these xenobiotic-
metabolizing enzymes in the metabolism of endogenously 
formed or diet-derived compounds that are themselves 
associated with disease pathologies. Here, we briefly 
outline the importance of studying such endogenous 
roles by focusing on FMO3’s broad impact on metabolism 
and cardiovascular disease risk as well as the interplay 
between gut microbiota and AhR-CYP1A1 signaling.

Emerging roles of FMO3 
in  cardiometabolic disease
Flavin-containing monooxygenases are a major class of 
enzymes responsible for oxidizing multiple substrates 
including many commonly administered amine- and sul-
fate-containing drugs (1, 2). FMO3 is the primary isoform 
found in the liver, and thus has garnered much attention 
because of its role in drug metabolism and drug-drug inter-
actions. FMO3 expression is modulated by multiple tran-
scription factors (e.g. AhR, FXR, C/EBPbeta) and steroid 
hormones, but inter-species differences are evident (3–6). 
Interestingly, female mice and humans display signifi-
cantly more FMO3 at baseline levels than their male coun-
terparts, although the differences in mice are more robust 
(7). Multiple genetic mutations in the FMO3 gene locus 
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have been discovered in human populations, with the most 
severe causing a loss of function of the enzyme product in 
an autosomal recessive manner. The most obvious pheno-
typic difference in rare individuals who are homozygous 
for loss of function of FMO3 alleles is a distinct fishy body 
odor known as trimethylaminuria, named for the malo-
dourous compound, trimethylamine (TMA), that FMO3 
normally quickly metabolizes (8). It is now known that the 
formation of TMA and oxidation product trimethylamine-
N-oxide (TMAO) is reliant on the gut microbiota-depend-
ent metabolism of dietary precursors such as choline and 
carnitine (9, 10). Previously, it was believed that the FMO3 
product TMAO was a benign compound, but emerging 
data now implicate TMAO’s importance as a biomarker or 
possibly causative contributor to coronary artery disease, 
diabetes, and kidney disease risks (7, 10–13).

Circulating TMAO is garnering much attention as a 
biomarker of multiple cardiometabolic diseases includ-
ing coronary artery disease (CAD), type 2 diabetes, and 
kidney disease (7, 10–12, 14–17). First implicated as a bio-
marker of human disease in 2013, Hazen’s group at the 
Cleveland Clinic described that TMAO could be formed 
in a gut-microbe-dependent manner from dietary sources 
like eggs, and also showed that people with higher TMAO 
were more likely to experience a heart attack or a related 
ailment (10). This work has been widely cited because it 
was one of the first studies to show that bacteria living in 
the gut could create a compound that, at the least, was 
a biomarker of the leading cause of death in the United 
States, cardiovascular disease. Since then, there have 
been some reports implicating TMAO as a causative agent 
of inflammation and disease pathology (12, 17–19). For 
example, TMAO was shown to alter nuclear factor-kappa 
B (NF-κB) signaling in both endothelial and smooth 
muscle cells, leading to a pro-inflammatory response 
(19). Not all data currently support this hypothesis that 
increased TMAO is detrimental to human health. In fact, 
seafood is known to be a good source of TMAO and related 
substrates, but dietary intake of certain fish has been 
linked to protection against cardiovascular disease. Thus, 
other factors may be more important in mechanistically 
explaining this observed link between TMAO and human 
disease, such as alteration of gut microbiota diversity or 
regulation of FMO3.

Although TMAO may have its own pro-atheroscle-
rotic or pro-inflammatory characteristics, emerging 
evidence now implicates a role of FMO3 in cardiometa-
bolic disorders independent of TMAO. Using genetically 
modified mouse models or anti-sense oligo nucleotide 
silencing (ASO), at least three independent laborato-
ries have now shown that FMO3 plays important roles in 

reverse cholesterol transport, glucose and insulin signal-
ing, lipid metabolism, and metabolic dysfunction (7, 9, 20, 
21). Shih et al. showed that a decrease in FMO3 lowered 
circulating TMAO as well as reduced plasma and liver 
levels of glucose and lipids in a mouse model highly sus-
ceptible to atherosclerosis (21). Similar work extended 
these observations to show that ASO-mediated silencing 
of FMO3 altered cholesterol transport; FMO3 downregula-
tion resulted in an apparent preference for transintestinal 
cholesterol excretion (TICE), promotion of macrophage 
reverse cholesterol transport (RCT), a repression of biliary 
cholesterol levels, and decreased intestinal cholesterol 
absorption (20). Finally, multiple epidemiological and pre-
clinical studies have shown that metabolic disorders, such 
as diabetes, and cardiovascular disease/atherosclerosis 
are interconnected, and FMO3 may be a critical mediator 
of these observed associations. In a mouse model of dia-
betes, FMO3-ASO treatment resulted in increased glucose 
sensitivity via alterations of key metabolic control genes 
including FOXO1 and SREBP-2 (7). Additionally, it was 
shown that FMO3 can be inhibited by insulin in vitro, and 
FMO3 expression was increased in obese/insulin-resistant 
clinical patients (7). Most of the discussed work implicat-
ing FMO3 and cardiometabolic signaling was completed 
using ASO technology in mouse models highly suscepti-
ble to diseases (e.g. LDLr -/- or LIRKO mice), so it will be 
important to recapitulate these findings in wild-type and 
FMO3 knockout animals. Multiple research groups have 
shown that AhR may transcriptionally regulate FMO3, 
which may provide evidence linking AhR, TMAO, and car-
diometabolic diseases.

Emerging roles of AhR signaling 
in metabolic function
AhR is a ligand-activated transcription factor involved in 
xenobiotic metabolism with a binding pocket capable of 
interacting with a variety of endogenous and exogenous 
ligands (22). AhR was first characterized as a recep-
tor for dioxins like 2,3,7,8-tetra-chlorodibenzo-p-dioxin 
(TCDD), but additional environmental agonists includ-
ing halogenated hydrocarbons (HAHs) and polycyclic 
aromatic hydrocarbons (PAHs) have also been identified 
and studied. In its inactive state, AhR is located within 
the cytoplasm as a component of a large protein complex 
that includes a dimer of heat shock protein 90 (Hsp90) 
and the co-chaperone protein X-associated protein 2 
(XAP2) (22, 23). Upon binding of an agonist, the AhR 
complex translocates to the nucleus where it dimerizes 
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with the AhR nuclear translocator (ARNT). Upon this 
dimerization, AhR and ARNT can bind to specific DNA 
sequences contiguous to promoter regions called “xeno-
biotic responsive elements” (XREs) (22, 23). The subse-
quent recruitment of co-activators by AhR and ARNT can 
lead to the transcription of numerous genes involved in 
xenobiotic metabolism such as the phase I, phase II, and 
phase III drug-metabolizing enzymes (22). The primary 
function of this increase in expression and induction of 
drug-metabolizing enzymes is to assist in the metabolism 
and clearance of the initial AhR ligands; however, it has 
been observed that during this metabolism, certain pro-
inflammatory pathways can be activated that contribute 
to the development of chronic inflammatory diseases 
(22–24).

Dioxin-like pollutants, including PCBs, are potent 
ligands of AhR, and their interaction can influence 
outcomes related to cardiometabolic disease (25, 26). 
Within vascular endothelial cells, activation of AhR by 
coplanar PCBs (e.g. PCB 126 and PCB 77) contributes to 
a CYP1A1-facilitated uncoupling mechanism resulting in 
an increase in reactive oxygen species (ROS) (27). Subse-
quently, these elevated levels of ROS contribute to dys-
regulation of the cellular redox status, which can lead 
to activation of NF-κB and induction of pro-inflamma-
tory molecules, including cytokines, chemokines, and 
cell adhesion molecules (28, 29). Preclinical data have 
indicated that these PCB-induced pollutants increase 
ROS, and activation of pro-inflammatory pathways can 
contribute to the development of atherosclerosis and 
cardiovascular diseases (28, 29). There are also a few 
human studies linking genetic polymorphisms in key 
AhR-related genes (e.g. CYP1A1) to increased risk of car-
diovascular disease and metabolic disease risk factors 
(30, 31).

While AhR has been classically characterized as a 
mediator of xenobiotic metabolism of organic pollutants, 
emerging research now points to numerous other meta-
bolic and developmental impacts of AhR and CYP1A1 (32). 
Much of our understanding of the endogenous functions 
of AhR comes from studies involving AhR null mice. AhR 
null mice, as expected, are resistant to dioxin-like pollut-
ant toxicity (33). However, compared to their wild-type 
counterparts, AhR null mice have smaller livers, delayed 
growth, and exhibit cardiovascular and fertility abnor-
malities, thus suggesting roles of AhR that extend beyond 
xenobiotic metabolism (34, 35).

Interestingly, AhR null mice also display altered 
energy expenditure and fibroblast growth factor 21 
(FGF21) expression, changes in body weight, and differen-
tial glucose/insulin signaling (36–40).

It has been observed that AhR activation can occur 
in the absence of exogenous ligands, thus suggesting the 
presence of endogenous ligands of AhR (41). Several of 
the known endogenous ligands of AhR are derived, via 
various mechanisms, from the amino acid tryptophan. 
For example, 6-formylindolo(3,2-b)-carbazole (FICZ) is 
produced from tryptophan mediated by UV-light degrada-
tion and has been shown to be a strong activator of AhR 
(42). Furthermore, L-kynurenine, a metabolite of trypto-
phan utilized in the production of niacin, exhibits high 
affinity for AhR and has been observed to be involved in 
modulating immune responses (e.g. mast cell activation) 
(43) and promoting tumor cell survival (44). Interestingly, 
commensal bacteria have also been demonstrated to be 
involved in the production of tryptophan and appear to 
monitor and regulate tryptophan levels based on dietary 
intakes (45). Furthermore, there is evidence that certain 
bacteria can metabolize tryptophan into AhR ligands, 
such as those discussed above. For example, the bacte-
rial species Lactobacillus reuteri (46) and Lactobacillus 
 bulgaricus (47) are capable of producing the AhR ligand 
indole-3-aldehyde, which has been demonstrated to be 
involved in immune responses within the intestines. 
Additionally, indole-3-aldehyde-mediated AhR activa-
tion contributes to interleukin-22 (IL-22) transcription and 
mucosal responses that allow for gut microbial diversity 
and also protects against detrimental fungal coloniza-
tion (e.g. Candida albicans) and inflammation (46). Due 
to the varying responses elicited by the discussed endog-
enous AhR ligands, further research is needed to further 
our understanding of the roles of AhR that extend beyond 
xenobiotic metabolism and the ways in which responses 
may be modulated for therapeutic interventions.

Cardiovascular disease and other metabolic patholo-
gies are known to be ailments related to chronic inflam-
mation. Importantly, recent studies have noted that AhR 
has functions in the regulation of immunity and inflam-
mation (48). In support of this, AhR null mice exhibit 
immune system defects, including spleen enlargement 
and alterations in lymphocyte numbers within the spleen 
(34, 35). It also appears that AhR is important in regulat-
ing T cell differentiation and maintaining the balance 
between regulatory T cells and pro-inflammatory IL-
17-secreting T cells (49). In addition to the role of AhR on 
T cells, recent studies suggest that the AhR pathway also 
affects B cell differentiation and antibody production (32). 
For example, dioxin exposure to activated B cells results 
in suppression of B cell differentiation, and is believed 
to be mediated through the AhR target Bach2 (50). Fur-
thermore, it appears that AhR has important functions in 
protection against pathogenic bacterial infections, as AhR 
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null mice display increased sensitivity to the pathogenic 
gram-positive bacterium Listeria monocytogenes (51).

Within the gut, AhR is highly expressed in both 
immune and non-immune cells and is believed to play a 
role in maintaining intestinal homeostasis. It has been 
demonstrated that activation of AhR via dietary ligands, 
including indole-3-carbinol, derived from the metabolism 
of vegetables such as broccoli and brussel sprouts, is 
required for the innate immune response of intraepithe-
lial lymphocytes and IL-22-secreting lymphoid cells (52, 
53). Furthermore, AhR null mice have reduced numbers of 
these innate immune cells, making them more vulnerable 
to colitis and bacterial infection (54). In mice with dextran 
sulfate sodium (DSS)-induced colitis, administration of 
the endogenous AhR ligand FICZ attenuated colitis and 
reduced levels of pro-inflammatory cytokine production 
while stimulating IL-22 production (55). Similarly, immune 
cells isolated from the gut of humans with Crohns disease 
have low expression of AhR, and treatment with AhR 
ligands has been demonstrated to reduce levels of pro-
inflammatory cytokines and increase IL-22 (55).

Due to the multi-faceted role of AhR in metabolism, 
energy balance, and inflammation, further research 
on how the various endogenous and exogenous AhR 
ligands may differentially regulate these cellular pro-
cesses is needed. Overall, it appears that the AhR signal-
ing pathway functions more than just a xenobiotic sensor 
and rather is capable of integrating signals from a variety 
of sources to produce responses that are modifiable based 
on an individual’s environment.

Conclusion
Exposure to persistent environmental pollutants has been 
associated for many years with increased risk of developing 
many chronic diseases including cardiovascular disease 
and diabetes. Using preclinical and cell culture studies, 
toxicologists have identified multiple causative mecha-
nisms of toxicant-induced disease, including increased 
cellular oxidative stress, endocrine hormone disruption, 
and chronic induction of inflammation. It is now becoming 
clear that many enzymes and genes historically studied 
for their detoxification and xenobiotic-sensing capabili-
ties may also have evolved critical endogenous processes 
that, if altered, can lead to metabolic dysfunction. FMO3, 
a well-studied drug-metabolizing enzyme, now has been 
shown to be critically important in the production of the 
cardiometabolic disease biomarker TMAO, and may also 
have roles in glucose and cholesterol signaling. Similarly, 

the dioxin-sensing transcription factor AhR has now been 
shown to be activated by multiple endogenous ligands, 
many of which are formed by the gut microbiota, and has 
basal roles in metabolism and energy expenditure. Interac-
tions between toxicology, nutrition, and cardiometabolic 
diseases are becoming increasingly more evident, and the 
important endogenous roles for both AhR and FMO3 are 
an example of the critical necessity to reevaluate pollut-
ant-related signaling pathways to understand previously 
underappreciated biological phenomena related to envi-
ronmental insults and disease risks.
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