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Universality of local dissipation scales in turbulent boundary layer
flows with and without free-stream turbulence

Sabah F. H. Alhamdi1,2 and Sean C. C. Bailey1,a)
1Department of Mechanical Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
2University of Misan, Amarah, Misan, Iraq

(Received 14 July 2017; accepted 21 October 2017; published online 7 November 2017)

Measurements of the small-scale dissipation statistics of turbulent boundary layer flows with and
without free-stream turbulence are reported for Reτ ≈ 1000 (Reθ ≈ 2000). The scaling of the dissipation
scale distribution is examined in these two boundary conditions. Results demonstrated that the local
large-scale Reynolds number based on the measured longitudinal integral length scale fails to properly
normalize the dissipation scale distribution near the wall in these two free-stream conditions due to
the imperfect characterization of the upper bound of the inertial cascade by the integral length scale.
A surrogate found from turbulent kinetic energy and mean dissipation rate only moderately improved
the scaling of the dissipation scales, relative to the measured integral length scale. When a length scale
based on the distance from the wall [as suggested by Bailey and Witte, “On the universality of local
dissipation scales in turbulent channel flow,” J. Fluid Mech. 786, 234–252 (2015)] was utilized to scale
the dissipation scale distribution, in the region near the wall, there was a noticeable improvement in
the collapse of the normalized distribution of dissipation scales. In addition, unlike in channel flows,
in the outer layer of the turbulent boundary layer, the normalized distributions of the local dissipation
scales were observed to be dependent on the wall-normal position. This was found to be attributable
to the presence of external intermittency in the outer layer as the presence of free-stream turbulence
was found to restore the scaling behavior by replacing the intermittent laminar flow with turbulent
flow. Published by AIP Publishing. https://doi.org/10.1063/1.4996200

I. INTRODUCTION

One of the most significant theories in the study of turbu-
lence is the universal equilibrium hypothesis of Kolmogorov,14

which postulates that the small scales of turbulence are homo-
geneous and statistically isotropic and that, due to a cascade
of kinetic energy from the largest scales of turbulence to the
smallest scales, the smallest scales become disconnected from
the boundary conditions and thus become uniquely and uni-
versally dependent only on the mean rate of dissipation of
turbulent kinetic energy, 〈ε〉, and the kinematic viscosity, ν.
Note that here 〈〉 denotes an ensemble-averaged quantity and
ε can be estimated through

ε =
ν

2

(
∂ui

∂xj
+
∂uj

∂xi

)2

, (1)

in which ui refers to the fluctuating components of the velocity
vector, given by ui(xj, t) = U i(xj, t)� 〈Ui(xj, t)〉, where t denotes
time, xj indicates spatial location, and U i denotes the com-
ponents of the instantaneous local velocity vector. Through
dimensional analysis of 〈ε〉 and ν, length, velocity, and time
scales corresponding to the dissipation of kinetic energy
can be formed: the Kolmogorov dissipation length scale, ηK

∼ (ν3/〈ε〉)1/4; the Kolmogorov velocity scale, uK = (ν〈ε〉)1/4;
and the Kolmogorov time scale, τK = (ν/〈ε〉)1/2. The exis-
tence of a universal equilibrium region was heavily tested
in the succeeding decades, and, as a result, there is a great

a)Electronic mail: sean.bailey@uky.edu

amount of evidence to support Kolmogorov’s concept of small-
scale universality, most notably through the collapse of the
energy spectra scaled by ν, 〈ε〉, and ηK in the dissipation
region, e.g., Grant et al.,10 Saddoughi and Veeravalli,22 and
others.

Key to these theories is the energy cascade process
by which energy is transferred from large energy-producing
eddies, described by the integral length scale, L, down to the
smallest eddies, characterized by ηK . Given the sufficient sep-
aration of these scales, within the universal equilibrium range,
there will be an inertial subrange where the turbulent dynamics
depend only on 〈ε〉 and not on ν. When the spatial sepa-
ration between two points in space, represented by a vector
with components rj, lies in this inertial subrange such that
L� |r|� ηK , the longitudinal structure function of the stream-
wise velocity, Sn, should follow power-law behavior such
that

Sn ≡ 〈(δru)n〉 = An

(
|r |
L

)ζn

, (2)

where An are universal constants and δru represents the
longitudinal velocity increment defined as

δru ≡ (ui(xj + rj) − ui(xj))

(
ri

|r |

)
. (3)

Kolmogorov’s theory indicated that ζn = n/3. However, exper-
imental investigations, e.g., the work of Anselmet et al.,2 have
shown that ζn differs from this linear scaling and has nonlinear
dependence on n. This deviation from the expected behavior
has long been attributed to spatial intermittency in the fine
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structure of the turbulent flow, as reviewed by Frisch,9 for
example. In other words, the dissipation does not occur homo-
geneously in space but instead occurs in compact regions in
space, separated by regions of little-to-no dissipation.

This intermittency persists throughout the universal equi-
librium range, and, as a result, the use of a singular mean
dissipation length scale to describe the turbulent dynamics
does not appear to be sufficient.7 In this context, an alterna-
tive description of the dissipation scale that incorporates the
existence of an entire continuum of local dissipation scales
becomes attractive. Yakhot30 proposed an approach that con-
nects and defines a local scale η using the velocity increment
across that scale, δηu, whereby

η |δηu| ∼ ν, (4)

and δηu is calculated from Eq. (3) with |r| =η. This is analogous
to the definition of a local Reynolds number based on the local
scale η and the velocity increment δηu, defining a dissipative
scale as the one for which this Reynolds number is O(1).18

Yakhot30 suggested that this Reynolds number is connected
to the crossover scales between the inertial subrange and the
viscous dissipation range.

To evaluate these concepts, as η is a random field, there
is particular interest in characterizing this field through its
probability density function (PDF). To address this, Yakhot30

presented an analytical description of the PDF of η. When nor-
malized by η0, this expression provided good agreement with
the PDFs estimated from the high-resolution direct numer-
ical simulation (DNS) data of three-dimensional homoge-
nous isotropic box turbulence of Schumacher.24 The scale η0

is analogous to ηK and is estimated from η0 ≈ LRe−0.73
L .

ReL = 〈|δLu|〉L/ν is a local large-scale Reynolds number
which describes the most energetic eddies, with δLu deter-
mined from Eq. (3) with |r| = L. This can be compared to the
results of scaling arguments which suggest that ηK ≈ LRe−0.75

L ,
and thus the ratio η0/ηK is close to unity, incrementing only
gradually as Re0.02

L as detailed in the work of Hamlington
et al.12

The analytical PDF of η/η0, determined by Yakhot,30 was
compared by Bailey et al.5 to PDFs measured in low-Reynolds-
number turbulent pipe flows at the pipe centerline and within
the upper logarithmic layer and those calculated from homoge-
neous and isotropic DNSs of Schumacher.24 The comparison
found good qualitative agreement between the experimen-
tal results and the analytical description and resulted in the
collapse of the measured and simulated PDFs, fortifying the
hypothesis that there is universality of the form of the PDFs
and hence the distribution of η.

However, PDFs of η were also determined experimentally
by Zhou and Xia,32 this time in buoyancy-driven turbulence.
Instead of finding good agreement between PDFs computed
at different positions within the flow and at different Rayleigh
numbers, the results exhibited a higher probability of there
being scales smaller than η0 than found by Schumacher24

and Bailey et al.5 Zhou et al. attributed this discrepancy to
a much higher level of small-scale intermittency caused by
the presence of thermal plumes, which have a characteris-
tic dimension in a thermal boundary layer that is smaller
than ηK .

Hamlington et al.12 also computed the PDFs of η/η0 from
very high-resolution DNS of turbulent channel flows and deter-
mined that universality of the PDF exists for much of the
channel, except in the near-wall region. A similar position
dependence of the PDF was identified experimentally in free-
shear flows by Morshed et al.16 who showed that this location
dependency is related to large-scale shear through a mean
shear-dissipation Reynolds number. In both studies, the com-
parison of PDFs calculated within regions of reduced shear
to those observed in homogenous and nearly homogeneous
turbulence by Schumacher24 and Bailey et al.5 showed good
agreement. Hence the presence of mean velocity shear appears
to negatively influence the scaling of the PDFs.

Recently, Bailey and Witte4 experimentally determined
the PDFs of η in a turbulent channel flow. They found that
when η0 is used as a normalization parameter, the distributions
of PDFs are in good agreement with those previously reported
experimentally, numerically, and analytically. However, using
η0 as a scaling parameter in the near-wall region leads to a
non-universality of small scales in this region, coinciding with
the presence of increased mean shear. Bailey and Witte found
that the lack of universality could be attributed to the imperfect
description of large scales, L, when using the measured inte-
gral length scale. This influences the scaling parameter η0 and
results in the small scales being poorly described by η0. Thus,
they defined an alternate scaling parameter, η∗, which depends
on a mixing length scale and its corresponding Reynolds num-
ber, with the mixing length scale related to the distance from
the wall. Using η∗ instead of η0, Bailey and Witte found
there to be an improved collapse of the PDFs near the wall.
However, this collapse degraded for y/δ > 0.5, which sug-
gested there exists scaling behavior analogous to the inner-
and outer-scaling that describes the mean flow.

In summary, these recent results imply that the mean shear
impacts the description of the local dissipation scales. How-
ever, this impact appears to be through the scaling parameter
chosen, rather than through the distribution of the PDF itself. In
regions of small mean shear such as in homogenous isotropic
turbulence, in the centerline of channel and pipe flows, and the
center of the Rayleigh-Beŕnard convection cells, the appropri-
ate scaling parameter appears to be η0, which is analogous
to the Kolmogorov scale. In the high-shear regions of turbu-
lent channel flows, this scale appears to be proportional to the
distance from the wall.

The objective of the present research is to investigate
further the scaling of the PDFs within wall-bounded flows
suggested by Bailey and Witte.4 To do this, experiments were
conducted in a turbulent boundary layer developing within
both laminar and turbulent free streams. These results were
used to calculate the PDFs of η at various distances from the
wall and investigate their scaling behavior.

II. EXPERIMENT DESCRIPTION

The experiments were performed in an open circuit wind
tunnel flow facility located in the Experimental Fluid Dynam-
ics Laboratory at the University of Kentucky. This facility has
a test section with a 0.61 m × 0.61 m cross-sectional area
and a length of 1.2 m and can achieve free-stream velocities
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up to 45.7 m/s. For these experiments, the free-stream veloc-
ity was U∞ ≈ 4 m/s. To generate a turbulent boundary layer, a
smooth flat plate with dimensions of 886 mm × 608 mm was
placed in the test section. To trip the boundary layer forming
on the plate, it was equipped at the leading edge by 50.8 mm of
a 60 grit sandpaper trip. A trailing edge flap was also located
on the plate to prevent leading edge flow separation. To pro-
duce the free-stream turbulence, a grid with a solidity of 0.32
and square perforations having mesh sizes of M = 25.4 mm
could be inserted in the inlet of the test section. The resulting
free-stream turbulence intensity at the measurement location
was approximately 2.5%.

To measure the properties of the boundary layer develop-
ing along the smooth plate when mounted in the wind tunnel,
measurements of streamwise velocity, U1, were performed
over a range of wall-normal distances, using a hot-wire probe
made from a platinum-core Wollaston wire etched to a sensing
length of ` = 0.50 mm and diameter of 2.5 µm. This leads to
`+ = `uτ /ν ≈ 6, with uτ being the friction velocity. The maxi-
mum of the ratio `/ηK was≈3 and occurred in the measurement
locations closest to the wall. The probe was operated in a con-
stant temperature anemometer (IFA 300 CTA) system at an
overheat ratio of 1.6. Frequency response of the probe was
measured via square wave test to be 75 kHz. The CTA signal
was low-pass filtered at half the sample frequency, fs, which
was 100 kHz for the case without free-stream turbulence and
200 kHz for the case with free-stream turbulence.

The probe was located 760 mm from the leading edge of
the smooth plate and traversed in the wall-normal direction,
i.e., in the y-direction, from its initial position approximately
100 ± 5 µm from the wall to its final position 120 mm from
the wall. Streamwise velocity was measured at 40 points loga-
rithmically spaced between these two locations. At each mea-
surement location for the baseline case, the data were sampled
for 60 s. For the case with free-stream turbulence, the sam-
ple time was increased to 120 s. The free-stream temperature
was measured by a type K thermocouple and found to remain
approximately constant for each measurement, changing by
less than 0.4 ◦C over the course of a profile measurement.

To traverse the probe normal to the plate surface in the
wind tunnel, a nano-stepping traverse equipped with a high-
accuracy linear encoder and controlled by a stepper motor was
used (0.5 µm resolution and ±3 µm accuracy). An electrical
contact switch was used to set the initial position of the hot-
wire probe from the wall. At the initial measurement location,
the distance from the wall to the probe was found using a
distance measuring microscope (Titan Tool Supply 2DM-1
with±15 µm accuracy). Probe positioning and data acquisition
were controlled by a custom LabVIEW program.

Hot-wire probe calibrations were performed in the free-
stream directly prior to, and following, each measurement
run using a pitot-static tube located in the free stream at the
measurement location. The pre- and post-measurement cali-
brations were used to verify that there was no voltage drift
during a profile measurement. To maximize the sensitivity over
the range of calibration velocities, two transducers with an
accuracy of 0.25%, having sensitivities of 125 and 1245 Pa,
were used to measure the pressure difference between total
pressure and static pressure. The calibration data were fitted

TABLE I. Experimental conditions and symbols used to represent each case
in the following figures.

Free ν/uτ
stream Reτ Reθ uτ (m/s) (µm) θ (mm) δ (mm) Symbol

Laminar 1000 1800 0.19 79 6.2 82 ∆

Turbulent 1000 2100 0.18 83 7.1 85 �

with a fourth-order polynomial to convert the measured time-
dependent voltage into time series of streamwise velocity,
U1(t). As the calibrations were being conducted using the
lower portion of the pressure transducer ranges, before accept-
ing data from a measurement, the calibration curves from each
transducer were verified to be in agreement.

The turbulent boundary layer at the measurement location
had Reynolds number, Reτ = δuτ /ν ≈ 1000 (Reθ = θ U∞/ν
≈ 2000). Here, θ is the momentum thickness, and δ is the
boundary layer thickness calculated at the streamwise mean
velocity, 〈U1〉 = 0.99U∞. Here, δ is the boundary layer
thickness calculated at the streamwise mean velocity, 〈U1〉

= 0.99U∞, and θ is the momentum thickness. The friction
velocity, uτ , was calculated by finding the value of uτ which
best scaled the measured velocity profiles in the near-wall
region to the DNS data of Schlatter and Örlü.23 The exper-
imental conditions for each case are presented in Table I. Note
that zero-pressure-gradient conditions were not enforced or
verified, and thus it is unlikely that the boundary layer is a true
canonical zero-pressure-gradient turbulent boundary layer.
However, we do not believe that any deviations from canonical
flow conditions should impact the scaling arguments discussed
here.

III. OVERVIEW OF MEASURED SCALES OF
TURBULENCE

To describe the turbulence, we first present examples
of the estimated energy and dissipation spectra as well as
the measured statistics. The wavenumber spectra E11(k1) was
estimated through

E11(k1) =
〈U1〉

2π
F11

(
2π
〈U1〉

f

)
, (5)

in which F11( f ) is the frequency, f, spectrum calculated from
the magnitude of the Fourier transform of the velocity fluc-
tuations u1 = U1(t) − 〈U1〉. In order to interpret temporal
information into spatial information in the calculation, Tay-
lor’s frozen flow hypothesis27 was used, where the stream-
wise wavenumber, k1, was found from frequency through
2πf1/〈U1〉. There is much literature on the validity of Taylor’s
hypothesis,3,8,15 which suggests that possible additional cor-
rections are required when translating the temporal domain
into the spatial domain. Such corrections are not attempted
here since the focus of the study is the smallest turbulent scales,
where Taylor’s hypothesis provides a reasonable approxima-
tion of the spatial separation. Note also that these corrections
are not without problems, especially for the low Reynolds
numbers of the present study, where they could lead to bias
of the data prior to the analysis.20,21,25
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In order to estimate ηK , an estimate of 〈ε〉 must first be
found. One approach to calculate 〈ε〉 is from the integration of
the approximated one-dimensional dissipation spectrum D(k1)
after assuming local isotropy29 following

〈ε〉 ≈ 15ν
∫ kc

0
D(k1)dk1 ≈ 15ν

∫ kc

0
k2

1E11(k1)dk1, (6)

where D(k1) was approximated from the longitudinal energy
spectrum through D(k1) = 15νk2

1E11(k1). To minimize the
effect of the f 2 noise of the thermal anemometer and prevent
contamination of the 〈ε〉 estimate by the oversampling of the
velocity signals in the present measurements, an appropriate
cutoff wavenumber, kc, was applied as an upper bound of the
integration. This cutoff was set at the wavenumber when an
inflection started to appear in the frequency spectrum, i.e., the
frequency at which the noise started to overcome the useful
signal.

In this work, the streamwise component of the velocity
was resolved utilizing a single-sensor thermal anemometry
probe, which was not capable of conducting measurements
of all the components of the time series of the local rate-
of-deformation tensor. Hence, an alternate estimate of the
dissipation rate could be obtained using the one-dimensional
approximation26

ε(t) ≈ 15ν

(
∂u1

∂x1

)2

, (7)

which assumes local homogeneity. However, as reported in the
study of Pope,19 for example, such alternatives are only esti-
mated to be qualitatively similar to the instantaneous dissipa-
tion. To evaluate Eq. (7), Taylor’s hypothesis and a first-order
finite difference were used as follows:

ε(t) ≈ 15ν
1

〈U1〉
2

[
u1(t + ∆t) − u1(t)

∆t

]2

, (8)

where∆t = 1/fs. In the present measurements, to minimize con-
tamination from instrumentation noise, the data were filtered
using an additional zero-phase, eight order digital Butterworth
filter. The cutoff frequency was chosen to be kc〈U1〉/2π. Both
Eq. (6) and the mean of Eq. (8) were used to estimate 〈ε〉, and
both were determined to be in agreement. For the remainder
of this work, the values calculated using Eq. (8) are the ones
presented. Note that the assumptions of local homogeneity and

isotropy used to extract surrogates for the three-dimensional
dissipation from one-dimensional measurements break down
near the wall as evidenced by a breakdown of Kolmogorov
scaling at high wavenumbers when using the estimate of
〈ε〉 used here. Hence, only measurement points for which
y+ = yuτ /ν > 25, where such scaling is observed, are included
in the present study.

The measured longitudinal one-dimensional energy spec-
tra and the corresponding approximated one-dimensional dis-
sipation spectra for both the laminar and turbulent free-stream
cases are presented in Figs. 1(a) and 1(b). Two different y
positions are presented, y+ ≈ 30 and 800, as they represent
the points closest to the wall and at the edge of the outer
layer of the boundary layer where the flow is subjected to
an interface between the boundary layer and free-stream con-
ditions and therefore intermittently displays the properties of
each. The energy and dissipation spectra have been normal-
ized by (〈ε〉ν5)1/4 and (〈ε〉η5

K ), respectively, and thus scaled
using Kolmogorov scaling. As expected, for the cases where
the flow is fully turbulent (near the wall and at the edge of the
boundary layer for the case with a turbulent free stream, and
thus, the external intermittency is between boundary layer and
free-stream turbulence), the scaled energy spectra follow Kol-
mogorov scaling at high wavenumbers. For the measurement
in the outer region of the boundary layer when the free stream
is laminar and the external intermittency is between boundary
layer turbulence and laminar flow, this scaling does not hold
and the corresponding spectra does not monotonically decay
and deviate from Kolmogorov scaling at high wavenumbers.
Note that as can be expected for the relatively low Reynolds
numbers investigated here, there is no evidence of an inertial
subrange.

The corresponding estimated one-dimensional dissipation
spectra, shown in Fig. 1(b), provide confidence that the entire
dissipation range has been captured by the measurements.
Whereas for the case where the flow is consistently turbu-
lent, the dissipation spectra appear log-normal, when laminar-
turbulent external intermittency is present, the approximated
one-dimensional dissipation spectra has a different appear-
ance, being skewed toward larger scales and showing more
content at wavenumbers above ηK .

Comparison of the wall-normal dependence of the tur-
bulent statistics measured for the laminar and turbulent free

FIG. 1. (a) Normalized longitudinal
one-dimensional energy spectra mea-
sured at y+ ≈ 30 (hollow symbols) and
800 (filled symbols). (b) Correspond-
ing estimate of the dissipation spectra.
Symbols are as in Table I.
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FIG. 2. Wall-normal dependence of (a)
the mean dissipation rate; (b) the
Kolmogorov scale; (c) the Taylor
microscale; (d) the Taylor Reynolds
number; (e) the integral length scale;
(f) the large-scale Reynolds number; (g)
the alternative integral length scale; and
(h) the alternative large-scale Reynolds
number. Symbols are as in Table I.

stream boundary layers is presented in Fig. 2 with the inner-
scaled dissipation, 〈ε〉+ = 〈ε〉0.4/u3

τ , and the Kolmogorov
scale, η+

K = ηK uτ/ν, presented in Figs. 2(a) and 2(b), respec-
tively. In Fig. 2(a), the inner-scaled profiles of dissipation for
both cases increase with wall-normal distance at the same
rate up to y+ ≈ 350. At locations further from the wall, the
mean dissipation rate of the case without free-stream tur-
bulence decreases rapidly with increasing distance from the
wall until reaching zero at the edge of the boundary layer to
match the dissipation rate of the laminar free stream. Con-
versely, for the boundary layer in the turbulent free-stream,
there is always turbulence present, so the dissipation rate max-
imizes at y+ ≈ 500, above which the dissipation rate decreases
down to the free-stream levels. Comparison of the mean dis-
sipation rate indicates that the differences in the free-stream
conditions largely influence the fine scale behavior only in the
outer layer. The values of η+

K = ηK uτ/ν corresponding to the
mean dissipation rate presented are provided in Fig. 2(b). As
expected, η+

K increases with distance from the wall, and, again,
the difference between the two flow regimes occurs when
y+ & 350.

The Taylor microscale, providing the intermediate length
scale between the large- and small-scale statistics, was deter-
mined from

λ ≈ *
,

30ν〈u2
1〉

〈ε〉
+
-

0.5

. (9)

Figure 2(c) shows the profiles of wall-normal dependence of
the inner-scaled Taylor microscale, λ+ = λuτ /ν, for the two
free-stream conditions. Unlike the Kolmogorov scale, the Tay-
lor microscale changes very little across the boundary layer,
and no difference is observed between the laminar and turbu-
lent free-stream conditions. The corresponding Taylor-scale
Reynolds number was estimated from

Reλ =
λ〈u2

1〉
0.5

√
2ν

. (10)

There is little variation in Reλ, remaining between 100 and
120, for y+ < 350, with its maximum value occurring near
the wall. Closer to the edge of the boundary layer, however,
there is a rapid drop in Reλ, slightly delayed for the turbulent
free-stream for which Reλ ≈ 40.

A key scaling parameter for the large turbulent eddies
is the scale L, and it is common practice to use the inte-
gral length scale to determine L. To find the integral length
scale, we applied Taylor’s hypothesis to the autocorrelation
and integrated such that

L =
〈U1〉

〈u2
1〉

∫ τc

0
〈u1(t + τ)u1(t)〉dτ. (11)

To minimize the impact of experimental bias and precision
errors, which can result in slow convergence in the inte-
gral, the integration was conducted up to τc, which was
either the first zero-crossing of the autocorrelation or the first
inflection point, whichever value was lower. The inner-scaled
profiles of integral length scale L+ = Luτ /ν are shown in
Fig. 2(e). In both laminar and turbulent free-streams, the inte-
gral length scale remains largely constant at L+ ≈ 0.4δ+. Note
that for the turbulent free-stream case, L+ ≈ M+, and we
should not expect to see much difference in the size of the
large scales between the turbulent boundary layer and free-
stream turbulence. Note also that for the measurement points
approaching and in the laminar free-stream, the value of L
was beyond the scale of Fig. 2(e) and is not shown, as the
integral scale calculated only reflects long-wavelength oscil-
lation in the free-stream conditions, as opposed to turbulent
eddies.
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To find the corresponding large-scale Reynolds number,
ReL = 〈|δLu|〉L/ν, the average velocity increment was esti-
mated through time averaging |δLu| ≈ |u1(t + L/〈U1〉)− u1(t)|
for all t. The resulting values of ReL are presented in Fig. 2(f)
and are found to be O(Reτ) near the wall, decreasing toward
the edge of the boundary layer. Interestingly, for most of the
boundary layers, the velocity and length scales describing the
large scales of turbulence, |δuL | and L, appear to be less affected
by the free-stream turbulence conditions than the Kolmogorov
scales.

In summary, the boundary layers with and without free-
stream turbulence demonstrate identical wall-normal depen-
dence of large- and small-scale statistics near the wall,
diverging toward the edge of the boundary layer where external
intermittency becomes increasingly important.

As noted by Bailey and Witte,4 the integral length scale,
L, is a poor indicator of the low-wavenumber boundary of the
inertial cascade, as the calculation of L is biased by the pres-
ence of non-local, potentially “inactive,”28 long-wavelength
motions, for example, the very-large-scale and large-scale
motions, e.g., Kim and Adrian,13 Guala et al.,11 and Balakumar
and Adrian.6 As a result, the scaling parameter η0 is biased
as well and becomes ineffective near the wall. Therefore we
seek alternative descriptions for the large scales, which may be
unbiased by the presence of these long-wavelength motions. In
this respect, we note that it is possible to use dimensional argu-
ments to define an alternative description of the large scales19

using turbulent kinetic energy K and 〈ε〉 such that

L = K3/2

〈ε〉
. (12)

Note that it is possible to modify this quantity to account
for inhomogeneities through the introduction of an additional
coefficient;17 however, that is not done here as these coef-
ficients typically bring L closer to L, whereas we require a
quantity that will describe the more isotropic large scales.
In the present experiments, we use the isotropic approxima-
tion K ≈ 3/2〈u2

1〉 to calculate L in order to investigate the
possibility of using it as a surrogate to L for describing the
largest scales at the start of the energy cascade. A bias is
likely to be introduced in our K estimate by the anisotropy
in the large scales, which will bias high in the turbulent
boundary layer due to the streamwise normal Reynolds stress
being higher than the other two normal components of the
Reynolds stress. Hence L is likely to be slightly longer than
would be found if the full three components of velocity were
measured.

We also note that the estimate ofL presented here assumes
that the small scales are isotropic through the approach used
for the calculation of 〈ε〉, necessitated by the measurements’
inability to resolve the instantaneous velocity gradient tensor.
However, the small scales may not be isotropic, as observed
by Agostini and Leschziner,1 and also it is not expected that
the small degree of anisotropy observed at small scales will
have an appreciable impact on the calculation of L.

Due to its dependence on K, which is a Reynolds number
dependent quantity, there is some Reynolds number depen-
dence in L which could impact the scaling of the dissipation
scales. However, as can be observed in the study of Nedić

et al.,17 most of this Reynolds number dependence is con-
fined to Reθ < 2000; above this value of Reθ , there is very
little Reynolds number dependence due to 〈ε〉 increasing
proportionately with K3/2.

In analogy to ReL, we introduce

ReL =
〈|δLu|〉L

ν
, (13)

where δLu is the longitudinal velocity increment, defined in
Eq. (3), with |r| = L. The wall-normal distribution of the inner-
scaled L and ReL for the two flow regimes is presented in
Figs. 2(g) and 2(h), respectively. This scale is slightly larger
than the integral length scales, being closer to δ+, and displays
more wall-normal dependence. Due to its dependence on 〈u2

1〉,
it drops significantly in the outer layer. In addition, there is
effectively no dependence on free-stream conditions.

IV. SCALING OF LOCAL DISSIPATIVE SCALES

We now seek to examine the scaling of the dissipative
eddies within a turbulent boundary layer. As noted earlier, the
scaling parameter, η0, introduced by Yakhot and Sreenivasan31

scales with the local large-scale Reynolds number through
η0 ≈ LRe−0.73

L and is analogous to ηK ∼ LRe−0.75
L . Hence, how

the local large scales, L, are determined can strongly influence
the value of the scaling parameter η0.

Bailey and Witte4 observed that η0 failed to scale the
PDFs of η near the wall and instead introduced a length-
scale L∗ to characterize the largest nearly isotropic energy-
producing eddies in a channel flow. They assumed a validity
of Townsend’s attached eddy hypothesis,28 which states that in
wall-bounded flows, the scale of Reynolds-stress-contributing
eddies depends on the distance from the wall, y, and can-
not be larger than y since these eddies are confined by the
wall. They therefore suggested that L∗ = 0.8y as an appropri-
ate length scale to describe the local, active contributions to
the Reynolds stress and upper bound of the inertial subrange.
There is no theoretical foundation for choosing the constant of
proportionality 0.8; however, it was determined to be the most
effective value when normalizing the dissipative motions for
y . 0.5δ, the region where Townsend’s attached eddy hypoth-
esis has validity. Correspondingly, they defined

Re∗L =
〈|δLu∗ |〉L∗

ν
, (14)

and anticipated that L∗ was a better descriptor for the energetic
eddies at the upper limits of the universal equilibrium range
and thus leads to a value of the local large-scale Reynolds
number representing local contributions to Reynolds stress,
particularly in the near-wall region of the boundary layer.
Thus, η∗ = L∗Re∗−0.73

L would be a more appropriate scaling
parameter for the small scales, which was found to be the case
for y/δ < 0.5 in a channel flow. However, due to this limited
range of applicability, we seek a better descriptor for the local
large scales. Being based on isotropic approximations, L is
potentially a better estimate for the top of the inertial subrange
cascade than L and should work everywhere in the boundary
layer. Therefore, in this section, we investigate the scaling of
the distribution of the dissipative scale, η, when using scaling
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parameters found by assuming that either L, L∗, or L are the
appropriate descriptors for the large scales.

To find the distribution of η, we use Eq. (4) to define η
and find the PDF of these scales Q(η). This PDF is found by
evaluating the local Reynolds number |δru|r1/ν throughout the
measured time series and identifying instances where it is near
unity. These instances are counted as an occurrence of a dissi-
pation scale with η = r1. Specifically, the Q(η) distribution was
calculated from each velocity time series using the following
procedure, which was introduced in the study of Bailey et al.5

To do so, the values of |u1(t + ∆t) � u1(t)|U1∆t/ν were cal-
culated for all t, resulting in a different value for each point
in the time series. Then, the instances where this quantity was
between 0.5 and 2 were counted as occurrences of dissipation
at a scale η = U1∆t. ∆t was then incremented by 1/fs, and the
process was repeated. These counts were obtained up to U1∆t
= 4L resulting in a count, q(η), of the total number of occur-
rences of η in the range 0 < η < 4L. Finally, the PDF Q(η) was
determined by normalizing such that

Q(η) =
∫ 4L

0
q(η)dη = 1. (15)

This process was repeated for all y positions within the
boundary layer.

To investigate the suitability of the different descriptors of
the large scales, three scaling parameters were used to normal-
ize the PDFs of η: (1) η0 = LRe−0.73

L as introduced by Yakhot
and Sreenivasan31 and used by Schumacher24 and Hamlington
et al.;12 (2) η∗ = L∗Re∗−0.73

L as suggested by Bailey and Witte;4

and (3) ηL = LRe∗−0.73
L . The PDFs of η determined from all

y measurement positions normalized by η0, η∗, and ηL are
presented in Figs. 3(a)–3(c), respectively, for the case without
free-stream turbulence.

As expected, the general shape of the distributions of the
PDFs is in good agreement with the previously reported distri-
butions calculated both experimentally and numerically. Most
notably, this is in the form of a skewed PDF biased toward the
small scales, with a long tail toward the larger scales. For the
most part, the maximum values of the PDFs are near 2.5η0,
3η∗, and 2.2ηL, respectively. However, it can be observed that
each of the scalings displays regions of poor collapse, with
the greatest deviations observed when the PDFs are scaled
by η0.

To provide a more detailed view of the degree of collapse
near the wall under the different scalings, the PDFs for y/δ
< 0.4 are presented on linear axes in Figs. 4(a)–4(c). Con-
sistent with the observations of Bailey and Witte, scaling by
η∗ improves the collapse of the PDFs near the wall relative
to that provided by η0, indicating that the non-universality
of the small scales and dependence on the large-scale shear
observed by Morshed et al.16 and Hamlington et al.12 are due
to the imperfect description of the large scales by L. When nor-
malized by ηL, there is a marked improvement relative to the
η0 scaled PDFs; however, it does not quite provide the same
degree of collapse provided by η∗. This is most noticeable in
the shift of the peak of η/ηL.

To examine the dependency of the different scalings of
the PDFs on the distance from the wall, the PDFs measured
throughout the entire boundary layer are presented in the form
of isocontours of probability in Figs. 4(d)–4(f) for the PDFs
scaled by η0, η∗, and ηL. It can be observed from these isocon-
tours that the greatest deviations from universal scaling do not
appear near the wall, as occurs in a channel flow, but actually
occur for y+ > 350 (or, alternatively, y/δ > 0.35). In this range,
the PDFs normalized by all three scaling parameters vary non-
monotonically, with the highest probabilities shifting to larger
values than those observed near the wall as y increases before

FIG. 3. PDFs of local dissipation scales
from all measured positions within the
boundary layer for the case with a lam-
inar free stream, normalized by (a) η0;
(b) η∗; and (c) ηL.



115103-8 S. F. H. Alhamdi and S. C. C. Bailey Phys. Fluids 29, 115103 (2017)

FIG. 4. Measured PDFs of local dissi-
pation scales for the case without free-
stream turbulence using linear axes,
normalized by (a) η0; (b) η∗; and (c) ηL
for y/δ < 0.4. The wall-normal depen-
dence of the PDFs is shown normalized
by (d) η0; (e) η∗; and (f) ηL.

shifting to smaller values near the edge of the boundary layer.
We attribute this non-universality to the effect of the external
intermittency that exists in the wake region of the boundary
layer. In this region, the flow will be intermittently laminar
and turbulent, with the relative fraction of laminar to turbulent
flow increasing toward the edge of the boundary layer. Hence,
the PDFs of η will be increasingly impacted as the instances of
laminar flow in the time series increase in frequency and length
toward the edge of the boundary layer and increasingly bias
the calculation of Q(η), which does not discriminate between
laminar and turbulent flows.

To support such an intermittency argument, we can look at
equivalent scaling of the PDFs for the case with free-stream tur-
bulence. Although intermittent behavior is still present in this
case, even when boundary layer turbulence is not present, there
is still turbulence present in the free-stream fluid entrained into
the boundary layer. Hence, the impact of the external intermit-
tency on the PDFs of η should be reduced. The PDFs measured
for all y positions when free-stream turbulence is present are
shown in Figs. 5(a)–5(c) scaled by η0, η∗, and ηL, respectively.
In all cases, there is improved agreement between the PDFs
relative to that observed in Fig. 3, with the best agreement
throughout the boundary layer and into the free stream being
offered by the ηL scaling.

There is still some variation among the PDFs shown in
Fig. 5, and we present the wall-normal dependence of this vari-
ation in Fig. 6, which shows the PDFs measured for y/δ < 0.4
in Figs. 6(a)–6(c) on linear axes and the wall-normal depen-
dence throughout the boundary layer via the corresponding
isocontours of the PDF value in Figs. 6(d)–6(f).

Figures 6(d)–6(f) display a much reduced degree of wall-
normal dependence in the wake region for this case, consistent
with the hypothesis that the lack of collapse in the PDFs
observed in Fig. 3 was due to the presence of periods of laminar
flow biasing the calculation of η from the time series.

The results shown in Figs. 6(b) and 6(e) scaled by η∗

demonstrate the same improved collapse near the wall as in
Figs. 4(b) and 4(e) when compared to the same PDFs scaled
using η0, consistent with the results of Bailey and Witte4 that
indicate η∗ is a suitable scaling parameter when y/δ . 0.5.
However, also consistent with the results of Bailey and Witte,4

η∗ is increasingly unsuitable as a normalization parameter in
the far-wall region (y/δ & 0.5).

Conversely, although the ηL scaling does not work quite
as well in the near-wall region as η∗, it does display improved
collapse throughout the boundary layer, as shown in Figs. 5
and 6(f), with the far-wall scaling comparable to that pro-
vided by η0. Near the wall, there is improvement relative to
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FIG. 5. PDFs of local dissipation scales
from all measured positions within the
boundary layer for the case with free-
stream turbulence, normalized by (a)
η0; (b) η∗; and (c) ηL.

FIG. 6. Measured PDFs of local dis-
sipation scales for the case with free-
stream turbulence using linear axes,
normalized by (a) η0; (b) η∗; and (c) ηL
for y/δ < 0.4. The wall-normal depen-
dence of the PDFs is shown, normalized
by (d) η0; (e) η∗; and (f) ηL.
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η0 when the PDFs are scaled by ηL, with the near-wall scaling
comparable to η∗.

V. CONCLUSIONS

Measurements of the turbulent boundary layer with and
without free-stream turbulence were conducted at Reτ ≈ 1000
using a thermal anemometry probe. The data were utilized to
investigate the scaling behavior of the distribution of dissipa-
tive scales within the boundary layer turbulence. Specifically,
the collapse of the probability density functions of the dissipa-
tive scales was examined using normalizing parameters built
from three selected measures of the large scale turbulence.
These were the measured integral length scale, an approxima-
tion based on Townsend’s attached eddy hypothesis introduced
by Bailey and Witte,4 and the length scale built from dimen-
sional analysis of turbulent kinetic energy and dissipation rate.

The measured PDFs of η were consistent with those
observed in other flows. Although, unlike turbulent channel
flows, in the outer region of the boundary layer, there was sig-
nificantly reduced collapse in the scaled PDFs, irregardless of
the scaling used. This lack of collapse was attributed to bias in
the calculation of η introduced by the intermittent presence of
laminar flow in the time series. This attribution was supported
by the significant improvement in the scaling of the proba-
bility density functions when the free-stream conditions were
turbulent.

Within the near-wall region, the local large scale defined
based on the distance from the wall was found to collapse the
probability density functions, for the lower half of the bound-
ary layer. This observation is consistent with prior observations
of scaling within turbulent channel flows and supports the exis-
tence of a universal description for the small scales within
external wall-bounded flows. However, this scaling does not
extend to the outer region of the boundary layer, even for the
case of a turbulent free stream. Instead it was found that scal-
ing the PDFs using a parameter built from the turbulent kinetic
energy and mean dissipation rate provided the best agreement
throughout the entire depth of the boundary layer. Although it
does not provide the same degree of collapse of the PDFs as
the wall-dependent scaling, and relies on a priori knowledge
of 〈ε〉, since this quantity converges on the integral length scale
for homogeneous isotropic turbulence, it should prove to be a
more practical parameter to use in complex flows where the
boundary layer thickness is not known.
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