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ABSTRACT OF DISSERTATION 

 

ASSEMBLY AND TRAFFICKING OF  
THE CYSTIC FIBROSIS TRANSMEMBRANE  

CONDUCTANCE REGULATOR AND ASSOCIATED PROTEINS 
 

Cystic Fibrosis (CF) is an autosomal recessive genetic disease that leads to severe 
malfunction in many organs, but particularly the lungs. The primary cause of this 
malfunction is the decrease of the airway surface liquid layer on the lung epithelium. The 
lack of hydration leads to mucus build up on the epithelial lining, leading to blockage of 
airways. The underlying cause of CF is the dysfunction of the cystic fibrosis 
transmembrane conductance regulator (CFTR), which results from mutations in the 
protein. Almost 90% of CF patients are caused by the deletion of the phenylalanine at 
position 508 of CFTR, which is believed to affect the folding and stability of CFTR. The 
misfolded ΔF508-CFTR undergoes ER associated degradation (ERAD), causing the failure 
of ΔF508-CFTR trafficking to the cell surface. Small molecule correctors yield moderate 
improvements in the trafficking of ΔF508-CFTR to the plasma membrane. It is currently 
not known if correctors increase trafficking through improved cargo loading of transport 
vesicles or through direct binding to CFTR. In this dissertation, real-time measurements of 
trafficking were utilized to identify the mechanistic details of chemical, biochemical, and 
thermal factors that impact CFTR correction, using the corrector molecule VX-809, a 
secondary mutation (I539T), and low temperature conditions. Each individually improved 
trafficking of ΔF508-CFTR to approximately 10% of wild-type levels. The combination of 
VX-809 with either low temperature or the I539T mutation increased the amount of CFTR 
on the plasma membrane to nearly 40%, indicating synergistic activity. The number of 
vesicles reaching the surface was significantly altered; however the amount of channel in 
each vesicle remained the same. Therefore, a 2 step therapeutic approach might be an ideal 
treatment for CF. The first step would be composed of a compound that mimics the 
mechanism of stabilization provided by low temperature or the I539T mutation, while the 
second step would be VX-809 or a similar corrector compound. These studies suggest that 
understanding how low temperature and second site suppressors alter ΔF508-CFTR could 
be key to the development of future therapeutics for the effective treatment of CF.  
 
The precise pathophysiology of cystic fibrosis is not well studied. The involvement of 
another transport protein, epithelial sodium channel (ENaC), makes the situation more 
complicated. ENaC and CFTR are colocalized on the apical surface of epithelia cells. With 
our fluorescence microscopy techniques, we explored the effects of CFTR on the residence 
time of ENaC on the cell membrane. A reliable approach measuring the half-life of protein 
on the cell membrane is required for this study. We present a new approach to quantify the 
half-life of membrane proteins on the cell surface, through tagging the protein with the 
photoconvertible fluorescent protein, Dendra2. Total internal reflection fluorescence 
microscopy (TIRF) is applied to limit visualization of fluorescence to proteins located on 



 
 

the plasma membrane. Photoconversion of Dendra2 works as a pulse chase experiment by 
monitoring only the population of protein that has been photoconverted. As the protein is 
endocytosed the red emission decreases due to the protein leaving the TIRF field of view. 
The half-life of the protein on the plasma membrane was calculated upon imaging over 
time and quantifying the change in red fluorescence. Our method provides a unique 
opportunity to observe real-time protein turnover at the single cell level without addition 
of protein synthesis inhibitors. This technique will be valuable for the future protein half-
life study. 

 

KEYWORDS: cystic fibrosis, membrane protein half-life, TIRF, real-time measurement 
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CHAPTER 1: BACKGROUND INFORMATION 

1.1.Membrane Protein Trafficking and Endocytosis in Cells 

Proteins on the cell membrane are associated with many aspects of cellular function and 

convert extracellular stimuli into intracellular signals. Proteins on the cell membrane 

undergo a complicated process from the initial transcription to the final delivery to the cell 

surface. In addition, proteins have limited life time on the cell membrane as they return to 

the interior of the cell after finishing the mission on the cell surface. The failure of 

trafficking or endocytosis has been connected to several diseases, such as cystic fibrosis 

and Liddle’s syndrome. Therefore, it is essential to understand trafficking and endocytosis 

for the development of new therapeutic approaches of these diseases.  

1.1.1 Transcription and Translation 

Eukaryotic cells have three classes of RNA polymerase, RNA polymerase I, II, III. RNA 

polymerase II is responsible for the transcription of the protein-encoding gene, and thus 

mRNA is transcribed by RNA polymerase II1. Initially, RNA polymerase II interacts with 

the transcription factors, a DNA binding protein, which is capable of recognizing and 

accurately initiating transcription at specific promoter sequence. During transcription, 

RNA polymerase II first generates long mRNA containing untranslated 5’region, multiply 
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exons, multiply introns, and an untranslated 3’ region. Then, introns are removed (splicing) 

to create mature mRNA consisting of exons as well as 5’ and 3’ noncoding regions2-4. A 

gene can produce multiple forms of mature mRNA by using different promoters, selection 

of different polyadenylation sites, or alternative splicing. Transcription occurs in the 

nucleus.    

Translation converts the language of genetic information in the sequence of mRNA into 

the amino acid sequence of a polypeptide chain. Message RNAs export from the nucleus 

to cytoplasm and then protein are synthesized on ribosomes by linking amino acid together 

in a specific order. Protein biosynthesis in all cells includes three distinct phases: (1) 

Initiation: mRNA binding by the small ribosomal subunit (40S) triggers the protein 

synthesization. Then, an initiator aminoacyl-tRNA (tRNAi
Met) recognizes the first codon 

followed by the large ribosomal subunit (60S) joining the initiation complex, which 

prepares for the next stage. (2) Elongation: the ribosome remains binding with the mRNA 

and moves along it in the 5’ to 3’ direction, recruiting aminoacyl-tRNAs whose anticodons 

match with the successive codons. In this manner, the polypeptide grows one amino acid 

at a time and eventually forms a whole polypeptide chain. (3) Termination: This step occurs 

when the ribosome reaches a “stop” codon on the mRNA. At this time, the ribosomal 

subunits release from the mRNA and the primary structure of a protein forms. Cytosolic 

protein are translated on free ribosomes, and secretory protein are translated on ribosomes 

attached to rough endoplasmic reticulum (ER)5-6.  
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1.1.2 Protein Trafficking 

Membrane proteins need to go through the secretory membrane system to eventually arrive 

at the cell membrane. The secretory membrane system is made up of organelles including 

the endoplasmic reticulum (ER), the Golgi complex, and tubulovesicular transport 

intermediates that regulate intracellular membrane transport between them. The linear 

polypeptide chain gives rise to a three dimensional conformation in the ER and then the 

protein is loaded to a secretory cargo and transported to the Golgi complex for further 

processing and maturation. It is sorted and packaged into post-Golgi carriers that move 

through the cytoplasm to fuse with the cell membrane7.  

1.1.2.1 Protein Translocation from Ribosome to the ER 

In higher eukaryotic cells, the translocation of many proteins across the ER membrane 

occurs co-translationally. Protein intended for functioning in membranous organelles or 

exporting from the cells carry an extra amino acid residue at the N-terminus that is the 

signal sequence serving as the reorganization site for sorting and dispatching the protein to 

their proper destination. The protein with the extra N-terminal sequence is called a 

precursor. Signal recognition particles (SRPs), together with signal receptors (SRs), 

associate with the N-terminal sequence of a polypeptide as it undergoes polypeptide chain 

elongation. If the polypeptide N-terminal sequence is a signal sequence, the nascent chain 

will be translocated into ER. The N-terminal signal sequence is clipped off by membrane-

bound signal peptidase after the whole polypeptide chain enters the lumen ER8-10. 
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1.1.2.2 Protein Folding in the ER 

Protein folding is the process through which a linear polypeptide chain acquires its three 

dimensional conformation for its proper biological function. Previous studies showed that 

the linear amino acid sequence was only the information required for proper folding of a 

polypeptide11-13. The driving force for protein folding is the burial of hydrophobic side 

chains from the aqueous solvent, which places the whole system in the lowest Gibbs free 

energy state. Therefore, a folded protein usually has a buried hydrophobic core and a 

hydrophilic surface.  

Protein folding is often assisted by molecular chaperones. Protein folding in E. coli has 

both chaperone independent and chaperone dependent pathways, while protein folding in 

eukaryotic cells is more complicated14. Many molecular chaperons are heat shock proteins 

(Hsp). The principle Hsp chaperones are Hsp70, Hsp60 and Hsp9015. In the chaperone 

dependent pathway, Hsp70 protein binds with an unfolded nascent polypeptide emerging 

from ribosome. Hsp70 protein such as DnaK is made up of two domains: an N-terminal 

ATP-binding domain, and a central domain that binds with the exposed hydrophobic 

regions of the nascent polypeptide. The DnaK : ATP complex receives an unfolded (or 

partially folded) polypeptide chain from the a Hsp40 family member DnaJ.  The formation 

of the DnaK : DnaJ complex with the unfolded polypeptide sufficiently prevents unfolded 

protein aggregation. The substitution of ADP with ATP on DnaK is catalyzed by Grp 

releasing the polypeptide chain form the complex, which gives the unfolded polypeptide 

the opportunity to fold. Partially folded intermediates or, in some cases, completely folded 

proteins are formed with multiple cycles of Hsp70 interaction. The partially folded 
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intermediates may be passed to the Hsp60 chaperonin system to complete the protein 

folding. Hsp60 provides an enclosed environment to the partially folded protein, allowing 

for protein folding proceeding spontaneously in a protective space. Hsp60 chaperones are 

divided into two classes based on the source and structure. Group I Hsp60 chaperones are 

found in bacteria, named GroES-GroEL complex.  Group II Hsp60 chaperones, CCT/TRiC, 

exist in archaea and eukaryotic cells and are analogs of GroEL. After the conformational 

regulation done by Hsp70 and Hsp60, some molecules such as transduction molecules 

require the additional interaction with Hsp90 to be fully functional. Transduction 

molecules include receptor tyrosine kinases, soluble tyrosine kinases, and steroid hormone. 

Cystic fibrosis transmembrane conductance regulator (CFTR) is Hsp90 dependent as 

well16-17.  

1.1.2.3 Protein Transport from the ER to the PM 

Secretory proteins crossing of the ER membrane through ER exit sites is usually 

accomplished by the activities of cytosolic coat protein complex (COP II), which are 

scattered over the ER membrane18. The assembly of COP II is initiated by a GTP binding 

protein, Sar1, which is capable of activing the ER membrane. Sec23/24 and Sec13/31 are 

assembled onto the activated ER membrane to form a COP II bud loading with the cargo 

protein. The COP II buds are delivered to pre-Golgi intermediates that are recognized as 

transport vehicles for protein delivery to the Golgi complex19-21.  

Pre-Golgi intermediates first merge with the cis-face of Golgi, which exists as an elaborate 

tubular network. The cargo proteins then go through polarized stacks of Golgi cisternae to 



6 
 

the trans-Golgi network (TGN) where they are packaged into membrane-bound carriers 

destined for the plasma membrane22. The post-Golgi carrier formation requires 3 steps: (1) 

the secretory proteins initially segregate into discrete domains on Golgi membranes; (2) 

The domains elongate into tubules; (3) the initial segregated domains detach from the Golgi 

body and form post-Golgi carriers23-24. 

After detaching as tubules from the Golgi complex, post-Golgi carriers move toward the 

cell membrane. They remain stationary for a variable period (15–30 s) and then rapidly 

fuse with the plasma membrane. Fusions occur randomly across the cell surface7. 

1.1.3 Endocytosis 

Endocytosis is thought as the process that nutrients and other molecules are taken up from 

the extracellular milieu25, while it is critical in maintaining the balance of protein on the 

cell membrane as well. Extracellular materials transporting to the cytoplasm is usually 

called pinocytosis or phagocytosis depending on the size of the cytoplasmic vesicle and 

the property of the cargo molecules. Molecules on the cell surface mostly internalize to the 

cytoplasm via clathrin-dependent or caveolae-dependent pathways. Clathrin-dependent 

pathways are the major route 26-27 and the mechanism is well studied.  

Clathrin-mediated endocytosis is the uptake of molecules from the cell surface to the 

interior of the cell via clathrin-coated vesicles, which are formed from the cell membrane26, 

28-29. It has been identified by electron microscopy images that clathrin is the major protein 

making the lattice-like coat around vesicles 30. The clathrin-mediated pathway is so far the 
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best characterized endocytosis route. Clathrin does not directly bind with the cargo protein 

or cell membrane. In contrast, the clathrin coating process relies on adaptor protein 2 (AP2) 

and other accessory proteins27-28, 31. The formation of clathrin-coated vesicle requires 5 

stages: (1) Nucleation. The first stage demands the formation of a putative nucleation 

module that defines the sites on the plasma membrane where clathrin will be recruited and 

vesicles will bud. This process calls for plasma membrane-specific lipid 

phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2), including FCH domain only 

(FCHO) proteins, EGFR pathway substrate 15 (EPS15) and intersectins.  These factors 

work together to initiate the formation of clathrin-coated pits by recruiting AP2. (2) Cargo 

selection. Cargo is specifically selected by AP2. AP2 binds both cargo and PtdIns(4,5)P2, 

and then recruits several classes of cargo-specific adaptor. (3) Clathrin coat assembly. 

Clathrin coat is formed through AP2 or accessory adaptor proteins recruiting more clathrin 

triskelia around the pit. (4) Vesicle scission. The vesicle budding process depends on 

dynamin, a mechanochemical enzyme. Dynamin binding at the neck of the vesicle triggers 

membrane scission. This process requires GTP hydrolysis. (5) Uncoating and clathrin 

component recycling. As soon as the vesicle is detached from the cell membrane, the 

clathrin coat is disassembled. The uncoated vesicles move to fuse with their target 

endosomes. The cargo protein in endosomes will be eventually sent to either lysosome for 

degradation or the cell membrane for recycling.  
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1.2.Cystic Fibrosis and Cystic Fibrosis Transmembrane Conductance Regulator 

1.2.1. History of Cystic Fibrosis  

Cystic Fibrosis appeared about 3,000 BC caused by the migration of people, gene 

mutations and new conditions in nourishment. It is most common among people of eastern 

European ancestry and least common in Africans and Asians32. Although cystic fibrosis 

was not yet recognized as a specific disease, literature from Germany and Switzerland in 

the 18th century reported the association between salt loss and illness33. In 1938 Dorothy 

Hansine Andersen published an article, "Cystic Fibrosis of the Pancreas and Its Relation to 

Celiac Disease: a Clinical and Pathological Study", in the American Journal of Diseases of 

Children. She is the first one to describe the characteristic cystic fibrosis of the pancreas 

and correlate it with the previously known lung and intestinal symptoms34. Since then, it 

has been learned that Cystic Fibrosis (CF) is an autosomal recessive disease caused by the 

presence of mutations in both copies of the gene encoding the Cystic Fibrosis 

Transmembrane Conductance Regulator (CFTR). Those with a single working copy are 

carriers. In the United States, about 1 in 3300 newborns are diagnosed with CF and about 

one in 25 people are carriers35.  

1.2.2. Pathology of Cystic Fibrosis 

Cystic Fibrosis (CF) is an autosomal recessive genetic disease that leads to severe 

malfunction in many organs, and particularly the lungs36. The primary cause of this 

malfunction is the decrease of the airway surface liquid layer (ASL) on the lung 
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epithelium37. The lack of hydration leads to mucus build up on the epithelial lining and the 

blockage of airways37-40. This condition is exacerbated by the inability to remove the 

bacteria trapped in this mucous layer, resulting in chronic infection of the respiratory 

system. The underlying cause of CF is the dysfunction of the cystic fibrosis transmembrane 

conductance regulator (CFTR), which results from mutations in the CFTR gene41-42. CFTR 

serves as an ion channel, regulating anion secretion and thereby playing a crucial role in 

maintaining proper fluid volume in the lumen of many organs, including the lungs, 

pancreas, and intestines. Nearly 2000 different mutations can cause CF exist and the most 

prevalent mutation is the deletion of the phenylalanine at position 508 (ΔF508) of 

nucleotide binding domain 1 (NBD1)43. Approximately, 90% of those suffering from CF 

have this mutation on at least one allele. ΔF508 is believed to affect the folding and stability 

of CFTR. As shown in Figure 1.1, the deletion of this single amino acid prevents CFTR 

from undergoing anterograde coat protein complex II (COPII) dependent transport from 

the ER to the Golgi and on to the cell surface; instead the channel undergoes ER associated 

degradation (ERAD)44-47. Evidence points toward local misfolding of ΔF508-CFTR and 

destabilization of the protein once folded48-49. For example, ΔF508-CFTR is more 

susceptible to proteolytic digestion, has a lower open probability once it is on the plasma 

membrane (PM), and unfolds at lower temperature and lower urea concentrations than 

wild-type CFTR50-52. The change in stability of ΔF508-CFTR likely results from a 

combination of decreased structural stability in NBD1 itself and an interruption of normal 

domain-domain interactions48, 53-54.  
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Figure 1.1: Comparison of Wild-type CFTR with ∆F508 CFTR. Left: The regular 
pathway for wild-type CFTR that get transported from the Endoplasmic Reticulum (ER) 
to the Golgi and on to the cell surface. Right: The pathway for ∆F508 CFTR, which 
undergoes ER associated degradation.  
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1.2.3. Structure of Cystic Fibrosis Transmembrane Conductance Regulator 

CFTR is the only one in the ABC (ATP-binding cassette) transporter family that works as 

an ion channel on the apical membrane of epithelial cells. It primarily regulates chloride 

and bicarbonate transport across the cell membrane55-57. CFTR is a single polypeptide chain 

consisting of 1480 amino acid residues. CFTR has a conserved ABC transporter structure 

of 2 Membrane Spanning Domains (MSD) and 2 Nuclear Binding Domains (NBD), but an 

additional regulatory domain (R domain) is unique for CFTR. All these domains arranged 

from N- to C-terminus are MSD1, NBD1, R, MSD2 and NBD2. Each membrane spanning 

domain consists of 6 membrane spanning α-helices and two MSDs can form a pore through 

which ions cross the membrane58. The 4th extracellular loop is glycosylated at residues 894 

and 90059. The R domain seems to be mostly random coil with 5% α-helical structure based 

on NMR and other biophysical approaches60. The R domain has target sites for Protein 

Kinase A for phosphorylation, which initiates the CFTR channel ion transport cycle61.  
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B 

 

Figure 1.2: Structure of Cystic Fibrosis Transmembrane Conductance Regulator 
(CFTR) Structure. (B is reprinted with permission from Liu, F.; Zhang, Z.; Csanády, L.; 
Gadsby, D. C.; Chen, J., Molecular structure of the human CFTR ion channel. Cell 2017, 
169 (1), 85-95. e8.)  
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1.2.4. Life Cycle of CFTR 

In the life cycle of CFTR, four broad pathways have been identified: (1) biosynthesis, 

folding and trafficking from the ER to the PM; (2) endocytosis from the PM to the early 

endosomes; (3) recycling of endocytosed CFTR back to the cell surface; (4) endocytosed 

CFTR for degradation (Figure 1.3).   

The folding of CFTR is primarily through a co-translational mechanism and the post-

translation modification makes moderate changes to the conformation of CFTR. Initially, 

the co-translational folded CFTR inserts into the lipid bilayer of ER, where post-

translational folding takes place. CFTR is core glycosylated in the ER and the glycans 

attached to CFTR are essential for the CFTR interactions with different lectins (in 

particular, calnexin). In the post-translation stage, CFTR binds with molecular chaperones 

and ubiquitin ligase enzymes, which play key roles in degrading the misfolded CFTR. 

Correctly folded CFTR moves to the Golgi complex where it undergoes further 

glycosylation to be fully folded. The mature native CFTR goes through the trans-Golgi 

network and then traffics to the PM. When ∆F508-CFTR is rescued from the ER by 

correctors such as VX-809 or reduced temperature, it is capable of accumulating on the 

plasma membrane. However, the rescued ∆F508-CFTR still folds improperly and it cannot 

function well as an ion channel62. Additionally, it is not as stable as wild-type CFTR on the 

plasma membrane. It has been shown that the half-life of ∆F508-CFTR on the plasma 

membrane is ~4 h, while it exceeds 48 h for wild-type CFTR63.  
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The endocytosis of CFTR is primarily through the clathrin-mediated mechanism64. Initially, 

a putative nucleation module is formed on the site of CFTR molecule on the plasma 

membrane. An endocytic motif on the C-termini of protein is essential for the incorporation 

into clathrin-coated vesicles. CFTR contains a conserved YXXU motif—1421YDSI at the 

C-termini, which works as the endocytic motif recognized by adaptor protein 265. When 

CFTR is specifically selected, the clathrin coating around CFTR starts to form followed by 

the clathrin coating vesicle splitting from the cell membrane. As soon as the vesicle is 

detached from the cell membrane, the clathrin coat is disassembled. The uncoated vesicle 

either forms an early endosome or immediately moves back to the cell membrane for 

recycling. The early endosome could be for recycling or degradation. Classifying of CFTR 

from the cell membrane into different routes is determined by small GTPases of the Rab 

family. Rab 5 regulates the cargo CFTR to enter to the early endosome followed by either 

Rab 7 facilitating the early endosome to form a late endosome for degradation or Rab 4 

assisting the early endosome to recycle back to the cell surface65. Approximately 50% of 

wild-type CFTR is recycled back to the cell membrane rapidly within 5 minutes, while 

those that are not immediately recycled undergo the endosome recycling pathway for a 

slower recycling66. The balance of CFTR on the PM is maintained through anterograde 

trafficking, endocytosis, recycling and lysosomal degradation. 
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Figure 1.3: Life Cycle of CFTR. (1) CFTR is core glycosylated in the ER and then traffics 
to the cell membrane. (2) CFTR is endocytosed from the cell mmebrane through the 
clathrin-mediated pathway and forms an early endosome. (3) The early endosome can 
either immediatelly recyle back to the cell membrane or undergo the endosome recycling 
pathway for a slower recycling. (4) The early endosome forms a late emdosome for 
degradation.  
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1.2.5. Cystic Fibrosis Symptoms and Therapies 

CFTR mainly regulates chloride across the membrane of epithelial cells. ∆F508-CFTR 

causes the failure of chloride transportation, which disrupts salt and water homeostasis. 

This causes thick, sticky mucus building up in essential organs and further leads to 

inflammations in the lungs and complications in digestive system and reproductive system.  

Currently, there is no cure for CF, and treatments can only relieve symptoms. Antibiotics 

are used for lung infections; mucus-thinning drugs can help patients cough up the mucus 

to improve the lung function; bowel surgery is able to remove the blockages in the bowel; 

other procedures include feeding tube, lung transplant, chest physical therapy and so on. 

The mentioned therapy eases CF symptoms but fails to alter the fundamental cause of CF.  

In recent years, new CF drugs were developed aiming at the defect CFTR. VX-770 is the 

first FDA approved CFTR corrector and was marketed in 2012. It was initially approved 

for CF patients caused by the G551D mutation, which results in a dysfunction of CFTR on 

the cell membrane. G551D-CFTR is able to traffic to the cell membrane, while its function 

is significantly reduced67-70. VX-770, a CFTR potentiator, facilitates G551D-CFTR 

channel function by directly binding to the channel to induce a non-conventional mode of 

gating, which increases the channel open probability68, 70-71. VX-809 and VX-770 

conjugated treatment was approved by FDA in 2015 to treat homozygous ∆F508-CFTR, 

which accounts for approximately 70% of CF. ∆F508-CFTR not only reduces the channel 

function, but also leads to its degradation in the ER. In the VX-770/VX-809 combination, 

VX-809 increases the number of ∆F508-CFTR on the cell membrane, and VX-770 
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promotes its channel function42, 60, 72-74. VX-809 is believed to improve ∆F508-CFTR cell 

surface expression, but its action mechanism is not well studied. In 2018, the combination 

of VX-661 and VX-770 was approved by FDA for homozygous ∆F508-CFTR and 

heterozygous ∆F508-CFTR patients. Similarly, VX-661 increases the amount of CFTR 

delivered to the cell surface, and VX-770 enhances the chloride transport75-78. Different 

from VX-770/VX-809, VX-770/VX-661 can also be applied for heterozygous ∆F508-

CFTR patents. Clinical trials showed that VX-770/VX-661 was effective for those who 

were with the F508del mutation and a second mutation predicted to be responsive to VX-

770/VX-661, but it was not shown to be effective in patients who were with the F508del 

mutation and a second mutation not predicted to be responsive to VX-770/VX-66179. 

1.3.Epithelial Sodium Channel and Epithelial Sodium Channel Related Diseases 

The Epithelial Sodium Channel (ENaC) is selectively permeable to Na+ . It is primarily 

responsible for the reabsorption of sodium ions at the collecting ducts of the kidney. ENaC 

is assembled as a heterotrimer composed of three homologous subunits α, β, and γ80. Each 

subunit contains two transmembrane spanning domains, and a large extracellular loop. The 

α, β, and γ subunits are encoded by SCNN1A, SCNN1B, and SCNN1G, respectively. The 

α subunit is required for a functional ENaC channel, while homosubunit structures can still 

be expressed on the cell surface.  

Water makes up of 60-70% of human body weight and ENaC plays a key role in 

maintaining Na+ and water hemostasis. Dysregulation of ENaC channel activity, 

localization on the cell membrane, and residence time on the cell membrane is associated 
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with severe human diseases. Some ENaC related diseases are caused by the mutations in 

the genes encoding ENaC subunits.  

Multi-system pseudohypoaldosteronism type 1 (PHA1B) is an autosomal recessive disease, 

resulting from homozygous or heterozygous mutations in the gene encoding for α, β, and 

γ subunits. The mutations lead to the loss of ENaC function causing recurrent salt wasting 

episodes in multiple organs80. PHA1B patients suffer from metabolic acidosis and 

hypertension during recurrent salt wasting episodes. Impaired Na+ reabsorption also results 

in severe salt loss in kidney. Other influences include increased chloride in sweat and 

salivary, impaired fertility and recurrent lower pulmonary tract infections. The symptoms 

are seen in patients from infant age and relieved as patients getting older. The current 

therapy is supplying high NaCl (up to 45 g/day) to the patients lifelong77, 81-82.  

Liddle syndrome is another ENaC associated disease. Liddle syndrome is an autosomal 

dominant disease cause by mutations in PY motif at the C-terminus of β, or γ subunits. The 

mutations lead to the gain of ENaC function, which attributes to the extended residence 

time of ENaC on the cell membrane. Liddle syndrome patients also show metabolic 

acidosis and hypertension due to breaking the homeostasis balance. Gained Na+ 

reabsorption results in over fluid reabsorption in kidney81-82. This disease is mainly found 

in people in their childhood or young adulthood, and it is rare in infants. The therapies 

include using diuretics to block ENaC and low salt diet for the patients.  
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Figure 1.4: Diagram Demonstrating the Arrangement of the ENaC Subunits. A 
functional ENaC channel is consisted of α, β, and γ subunits. Each subunit contains two 
transmembrane spanning domains, and a large extracellular loop. 
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1.4.Fluorescence Microscopy in Biological Systems 

Fluorescence microscopy is currently one of the most powerful and widely used techniques 

for biological studies. Fluorescence microscopy employs fluorophores which are able to 

absorb light at a specific wavelength and emit light at a longer wavelength. Fluorophores 

are very bright under a microscope and thus they are easily distinguishable from the 

background signals. This optical property makes it straightforward to obtain images of the 

fluorophores labeled molecules with high contrast and observe biological activities in 

living conditions.  Though the spatial resolution is not as high as that of electron 

microscope, fluorescence microscope allows for observing a living sample without 

damaging it. Fluorescence microscopy can be used to visualize fundamental cellular 

processes such as membrane protein expression, ion channel activities, and membrane 

receptor/ligand interaction. 

1.4.1 Principles of Fluorescence  

Fluorescence is the emission of light that occurs after fluorophores absorb energy from 

excitation light. In most cases, the emission light is of longer wavelength than the 

absorption light. The wavelengths of absorption and emission are both closely associated 

with the outermost electron orbitals in the fluorophore molecules. After absorbing energy 

(photos), a fluorescent molecule in the ground state moves an electron into a higher energy 

level orbital and alters the electronic, vibrational and the rotational states. The molecule is 

in the so-called “excitation state”. Eventually, the absorbed energy is released mostly due 

to vibrational relaxation or fluorescence emission and the fluorophore returns back to the 
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ground state. Fluorophores typically contain ring structures (aromatic groups) with π bonds. 

These compounds are selected for fluorophores as the energy differences between the 

ground state orbitals and the excited state orbitals is relatively small. Thus, the relatively 

low energy photons in the visible light region are capable of being used to excite 

fluorophores from the ground state to the excitation state83-84.  

The Jablonski diagram (Figure 1.5) is useful to understand the excitation and emission 

process. Molecules could be in the singlet or triplet electronic state based on the angular 

momentum of the electrons. Electrons usually stay paired with opposite spins (+ ½ and − 

½) in a single orbital, resulting in the cancellation of the magnetic moments. S0 is the 

ground state with the lowest energy level. S1 and S2 are excited singlet states in which the 

outer electron is excited to a higher energy level orbital; S2 contains more energy than S1. 

An electron is able to quickly relax from the upper vibrational (rotational) energy level to 

the lowest vibrational (rotational) energy level in the same excitation state. Then, the 

electron has three pathways to release energy to the ground state: 1) the fluorescence decay 

pathway; 2) the nonradiative decay pathway; 3) intersystem crossing. Intersystem crossing 

describes a pair of electrons undergoing transition from the singlet state to the triplet state85-

86.  The triplet state is that a pair of nonbonding electrons exist in two separate orbitals with 

the spin of electrons parallel to each other and the triplet state is not allowed according to 

quantum theory. Therefore, transition of electrons directly from the ground singlet state to 

the triplet state is forbidden. However, intersystem crossing makes the forbidden transition 

possible. An electron can be excited from the ground state S0 to the S1 excitation state first, 

then goes through the intersystem crossing from S1 to T1 state, and eventually goes back to 

the ground state from the T1 state85, 87.  
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Figure 1.5: Jablonski Diagram. 
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1.4.2 Epifluorescence  

Epifluorescence is the most common technique used in fluorescence microscopy. In this 

technique, an excitation beam is used to illuminate the whole specimen and emissions are 

all collected by a camera or seen by eye. In epifluorescence, the excitation light first passes 

through a filter to remove the unwanted wavelength from the excitation light. Then, it 

directly illuminates the sample through an objective, resulting in fluorescence. A dichroic 

is used to separate the emitting fluorescence from the reflected excitation light. 

Furthermore, an emission filter is utilized to transmit specific wavelengths of the emitted 

light before it is collected by the camera.  

The major advantage of wide-field epifluorescence is the big illumination area. Other 

advantages include low cost, simple instrumentation and flexibility. The disadvantage of 

epifluorescence is the low image contrast and low spatial resolution83, 85. As emissions 

generated from the entire specimen are all collected, the presence of out of focus emission 

results in the low spatial resolution. In addition, exposing to high intensity excitation beam 

may cause photodamage to the living tissues and photobleach the fluorophores88-89.  

1.4.3 Total Internal Reflection Fluorescence (TIRF) Microscopy  

Total Internal Reflection Fluorescence (TIRF) Microscopy is a wide-field illumination 

technique that illuminates only the fluorophores near the glass coverslip90. It has been 

widely used in biological imaging as it significantly minimizes the fluorescence 

background and has high spatial resolution91.  
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As the excitation beam enters from a high index of refraction medium to a low index of 

reflection medium, the angle of the beam changes in accordance with the Snell’s law: 

θc =sin-1 (n1 / n2), 

n1 and n2 are the refractive indices of the sample and the cover slip, respectively. The 

refractive index must be less than that of cover slip.  

If the incident angle is less than the critical angle (θc), the excitation light can pass the 

sample-cover slip interface and be reflected by the sample-cover slip interface.  When the 

incident angle is greater than the critical angle, the excitation light is only reflected off the 

sample-cover slip interface back into the cover slip. In this case, some of the incident 

energy penetrates the sample-cover slip interface, creating the evanescent field. This is the 

excitation field employed in TIRF microscopy. The intensity (I) of the evanescent field 

decays exponentially with the distance from the interface (z). The intensity of the 

evanescent field at any position z is described by: 

Iz=I0
-z/d, 

Where, I0 is the intensity of the evanescent field at z=0. I0 is related to the intensity of the 

incident beam by a complex function of θ and polarization. The depth of the evanescent 

field, d, is the distance from the cover slip at which the excitation intensity decays to 1/e, 

or 37%, of I0. Depth d is defined by: 

d = (λ0/ 4π) *(n2
2sin2θ – n1

2)–1/2, 
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Where, λ0 is the wavelength of the excitation light in a vacuum, θ is the incident angle92.  
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Figure 1.6: Epifluorescence and Total Internal Reflection Fluorescence. Top: 
Epifluorescence. The incident beam is perpendicular to the cover glass and all the 
fluorophores are illuminated by the incident beam. Bottom: Total internal reflection 
fluorescence. The incident angle is above the critical angle and the incident bean is 
reflected off the cover glass surface. Energy passed through the coverslip creates the 
evanescent field, which decays exponentially into the sample. Evanescent field is usually 
less than 200nm above the glass coverslip. 
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1.4.4 Confocal Microscopy 

In a wide-field microscopy system, the presence of out of focus emission beam results in 

low spatial resolution. This problem can be solved by adding a pinhole to the light pathway, 

and the new system is called confocal microscopy. A laser is used as the excitation source 

in a confocal microscopy system is as it is brighter and smaller in size than the mercury 

lamp used in wide-field microscopy. There are two possible instrumental setups: (1) a 

pinhole in the excitation pathway (The left diagram in Figure 1.7 shows this setup); (2) a 

pinhole in the emission pathway. In the first setup, the excitation light is directed toward a 

sample through a pinhole. Thus, only the light passing through the pinhole hits the sample, 

restricting the illumination size in the specimen. In the second setup, the specimen is 

illuminated by the excitation beam in the way of wide-field microscopy, and a pinhole is 

placed in the emission light pathway. Only emission light passing through the pinhole can 

be received by the detector93-94. In confocal microscopy, a pinhole removes all of the out 

of focus emission light and improves the spatial resolution of images. On the other hand, 

the pinhole leads to a very small illumination size, which limits its application to a big size 

sample. The problem can be overcome by developing a scanning confocal microscopy 

where a stage holding the sample moves 95 or a laser source moves 96 to record a whole 

image of the sample.  
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Figure 1.7: Comparison of Confocal Microscopy with Wide-Field Microscopy.  Lift: 
Confocal Microscopy. Before hitting the sample, the excitation light passes through a pin 
hole to narrow the illumination volume in the sample. In this manner, the emission lights 
are all focused on the camera resulting in high resolution images. Right: Wide-field 
Microscopy. The whole sample is illuminated by the excitation beam. Out-of-focus 
emission lights are all detected by the camera. 
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1.4.5 Single Molecule Fluorescence Microscopy  

The existence of millions of molecules in a biological system makes it possible to have 

millions of reactions occur at the same time. A better understanding of these biological 

reactions can provide essential information to understand the secret of life. Ensemble 

techniques that simultaneously detect multiple fluorophores have been widely used and  

provided valuable information for biological studies97. However, owing to the detections 

of multiple fluorophores, the dynamic information of each single molecule is lost. Recent 

development of fluorescence microscopy makes it possible to study the individual 

molecules. In single molecule fluorescence microscopy, biological molecules are labeled 

with fluorophores, and the dynamic of the biological molecule is detected by resolving 

measurements from the affiliated fluorophore98.  

One of the common single molecule techniques is single molecule FRET. There are two 

experimental setups for single FRET studies: the first one is immobilizing the fluorophores 

(a FRET pair) labeled biological molecules on a cover slip and utilizing the TIRF 

instrumental setup to image the molecules on the glass; the other one is having the 

fluorophores (a FRET pair) labeled biological molecules in solution and applying confocal 

instrumental setup to look at the biological molecules diffusing through the focal point. In 

my work, the diffusion style single molecule FRET approach is utilized. To perform this 

experiment, two fluorophores (one is donor; the other is acceptor) are required to tag on a 

protein molecule. When the protein molecule is denatured or unfolded, the distance 

between the two fluorophores is not in the FRET distance range (1-10nm)99. Therefore, the 

energy transfer between the FRET pairs is not efficient and only low FRET efficiency 
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events are observed. When the protein is fully folded, the two fluorophore distance is 

reduced resulting in high FRET efficiency events. A single fluorescent burst is observed as 

a single protein molecule tagged with a FRET pair freely diffuses through the detection 

volume of a confocal microscopy. A pulsed laser excitation system coupled with time-

correlated single-photon counting electronics recording the arrival time and fluorescence 

delay of each photon, is applied to alternately excite the donor and acceptor. The yield 

fluorescence signals are collected by avalanche photodiode (APD). A burst gives rise to a 

FRET efficiency, E. Thousands of fluorescent bursts are accumulated and a histogram of 

FRET efficiencies are plotted resolving the folded and unfolded protein subpopulations100-

101. 
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1.4.6 Förster Resonance Energy Transfer (FRET) 

1.4.6.1 Principle of Förster Resonance Energy Transfer 

Förster resonance energy transfer (FRET) is the process in which energy is transferred 

between two sufficiently close fluorescent molecules through non-radiative dipole-dipole 

coupling. Förster resonance energy transfer is named after Theodor Förster, who first 

developed the theory of resonance energy transfer in 1948102. FRET occurs when (1) the 

distance between the donor and the acceptor is in the range of 1-10 nm; (2) there is a 

substantial overlap of the donor emission spectrum and the acceptor absorption spectrum; 

(3) the appropriate alignment of orientation of the donor emission dipole moment and the 

acceptor absorption dipole moment; (4) a donor has a high quantum yield (Φd). (Figure 1.8) 

The FRET efficiency (E) is the quantum yield of the energy transfer, the fraction of energy 

transfer per donor excitation event.  

E = 
௄ಶ೅

௄೑ା௄ಶ೅ା∑௄೔
 

Where KET is the rate of energy transfer, Kf is the radiative decay rate, and the Ki is the rate 

constants of any other decay excitation pathway.  

E depends on the donor-acceptor distance r with an inverse the sixth power law.  

E=
ଵ

ଵାሺ௥ ோబ⁄ ሻల
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Where R0 is the distance at which the energy transfer efficiency is 50%103. R0 depends on 

the overlap of donor emission spectrum and acceptor absorption spectrum, and the 

orientation of the donor emission dipole and acceptor absorption dipole.  

R0=2.8×1017 ▪ κ2 ▪ Φd ▪ εA  ▪ J（λ）
1/6 

Where κ2 represents the angle of the donor and acceptor dipoles; Φd is the quantum yield 

of the donor, which is defined as the ratio of the number of photons emitted to the number 

of absorbed. Φd depends on the environment of the donor and the acceptor104. εA is the 

maximal acceptor extinction coefficient ( mol-1 cm-1). J（λ）is the overlap of donor emission 

spectrum and acceptor absorption spectrum.  

FRET is unique and capable of providing signals sensitive to intra- and intermolecular 

distances in the range of 1-10nm. Therefore, FRET is widely used to study molecular 

interaction and conformation with a spatial resolution far beyond the diffraction limit 

(~
஛

ଶே஺
	, NA is the numerical aperture of the objective) of optical microscopy.  

1.4.6.2 Intensity Based FRET Method 

Since the rate of energy transfer cannot be determined directly (because it is a dark process), 

the efficiency of energy transfer can be calculated from altered parameters, such as 

fluorescence intensity, lifetime or bleaching kinetics105. In my work, the intensity based 

FRET is utilized.  
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In case of FRET, the donor quantum yield is diminished (QDA<QD, donor in presence of 

acceptor, DA), resulting in reduced donor fluorescence intensity (IDA<ID). Energy 

transferred from the donor to the acceptor increases the acceptor fluorescence intensity, 

which is defined as sensitized emission.  This method uses only one laser to excite the 

donor and records the emission from both donor and acceptor. The FRET efficiency is 

basically calculated by comparing the measured fluorescence intensities in the donor and 

the acceptor channels after donor excitation.  

E=
௙ವ೐ೣ
ಲ೐೘

௙ವ೐ೣ
ವ೐೘	ା௙ವ೐ೣ

ಲ೐೘ 

Where ஽݂௘௫
஽௘௠ is the number of photons in the donor channel after donor excitation, ஽݂௘௫

஺௘௠ is 

the number of photons in the acceptor channel after donor excitation.  

However, single laser excitation has spectral cross-talk problems as the emission spectrum 

of donor fluorophores is often so broad that it is impossible to avoid the detection of donor 

emitted photons in the acceptor emission channel. This problem is solved by the 

development of alternating-laser excitation (ALEX). In an ALEX microscopy system, the 

excitation of the donor is alternated with the excitation of acceptor106. We are capable of 

detecting the number of photons in the acceptor channel after acceptor excitation 

( ஺݂௘௫
஺௘௠ሻ	for each burst. The three parameters ஽݂௘௫

஽௘௠, ஽݂௘௫
஺௘௠, ஺݂௘௫

஺௘௠ provide a way to verify the 

presence of the acceptor in a fluorescent active form by defining the raw stoichiometry.  

Sraw=	 ௙ವ೐ೣ
ವ೐೘ା	௙ವ೐ೣ

ಲ೐೘

௙ವ೐ೣ
ವ೐೘ା௙ವ೐ೣ

ಲ೐೘ା௙ಲ೐ೣ
ಲ೐೘ 
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For donor only species, Sraw is 1; for acceptor only species, Sraw is 0. With the proper 

alternating excitation of donor and acceptor, a molecule tagged with a donor and an 

acceptor shows a stoichiometry that is distinguishable from the donor-only and acceptor-

only species. Thus, Sraw allows us to determine the labeling stoichiometry106. By having a 

two dimensional ES histogram, we are able to separate low FRET species from donor only 

species based on the respective stoichiometry. In this manner, low FRET molecules can be 

studied using ALEX microscopy.   
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Figure 1.8: Schematic Mechanism of FRET. (A) In a FRET pair, the donor emission and 
the acceptor absorption must partially overlap with each other to have FRET occur. (B) 
The donor and acceptor excitation and emission with/without FRET.  
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1.5.Fluorescent Proteins 

1.5.1 pH Sensitive Fluorescent Protein 

Wild-type green fluorescent protein (GFP) has a bimodal absorption spectrum with two 

peak maxima, at 395 and 475 nm107. The two maxima is caused by the protonated and 

deprotonated states of Tyr 66, which forms part of the chromophore. A given GFP is 

trapped in either of two alternative states: in the protonated state, the chromophore is 

excited at 395 nm; in the deprotonated state, it is excited at 475 nm. Miesenbock et al, tried 

to convert wild-type GFP to a pH sensitive fluorescent protein though making mutations 

that facilitate conformers exchange, or switch changes in pH to changes in the electrostatic 

environment of the chromophore108. Two classes of pH sensitive fluorescent protein are 

generated: Ratiometric pHluorins and ecliptic pHluorins. Ratiometric pHluorin shows a 

reversible excitation ratio change between pH 7.5 and 5.5 with a response time of <20 ms 

(Figure 1.9 B). Ecliptic pHluorins do not show fluorescence quench until pH is lower than 

6, where the excitation peak at 475nm vanishes but the 395 nm excitation peak remains. 

Fluorescence returns within 20 ms after exposing to neutral pH108 (Figure 1.9 C).  
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Figure 1.9: Fluorescence Excitation Spectra. (A): Wild-type GFP (B): Ratiometric 
pHluorin (C): Ecliptic pHluorin. (Reprinted by permission from Miesenböck, G.; De 
Angelis, D. A.; Rothman, J. E.Nature 1998, 394 (6689), 192.) 
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1.5.2 Photoconvertible Fluorescent Protein: Dendra2 

Dendra, derived from octocoral Dendronephthya sp, is a mutant of the GFP-like protein 

(Figure 1.10)109. Dendra is capable of being irreversibly photoconverted from green 

emissive form to red emissive form by exposing to the UV-violet light (e.g. 405 nm) or 

blue light (e.g. 488 nm). Gurskaya et al showed that intense blue light (0.5–0.7 W/cm2) 

activation resulted in the appearance of bright red fluorescence in Dendra-expressing cells, 

while low intensity blue light (<50 mW/cm2) for the same time period or even prolonged 

exposure time failed to photoconvert Dendra110. This behavior makes it possible to select 

fluorescent cells without photoconverting them by using a low intensity 488 nm light. 

Dendra 2 is a mutational Dendra with alanine at position 224 replaced by valine, which 

leads to better maturation and brighter fluorescence both before and after photoconversion. 

In response to intense UV-violet or blue light, Dendra 2 undergoes irreversible 

photoconversion, causing a decrease of green fluorescence and the appearance of red 

fluorescence56. After complete photoconversion, red fluorescence increases about 100~300 

fold and green fluorescence decreases about 10-15 fold, which results in up to 4000 fold 

red to green fluorescence contrast. The maturation time of Dendra2 (the t1/2, or half-life for 

the immature state) is only 38 min111. The stability of Dendra2 has also been tested such 

that the fluorescence intensity of Dendra2 expressed in cells remains stable for several 

hours when cells are treated with protein synthesis inhibitor cycloheximide112. Thus, 

Dendra2 is an ideal fluorescent protein for labeling.  
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Figure 1.10 : Structure of Dendra 2. Top and side views of the overall fold of a Dendra2 
monomer in cartoon representation, with the embedded chromophore shown as sticks. (B) 
Top and side views of the chromophore. (Reprinted with permission from Adam, V.; 
Nienhaus, K.; Bourgeois, D.; Nienhaus, G. U., Structural basis of enhanced 
photoconversion yield in green fluorescent protein-like protein Dendra2. Biochemistry 
2009, 48 (22), 4905-4915.) 
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CHAPTER 2: OVERVIEW AND STATEMENT OF PROJECTS 

2.1.Motivation and Projects Overview  

Almost 90% of CF patients are caused by the deletion of the phenylalanine at position 508 

of CFTR, which is believed to affect the folding and stability of CFTR50, 113. The misfolded 

ΔF508-CFTR undergoes ER associated degradation (ERAD), causing the failure of 

ΔF508-CFTR trafficking to the cell surface44-47. Despite significant research interest, the 

exact mechanism of how the ΔF508 mutation causes the folding and functional defects is 

still unclear. A pharmacological approach that targets the underlying cause of the disease 

has led to the development of compounds that are partially effective114-116. One of these 

compounds, VX-809 acts as a chemical chaperone for ΔF508-CFTR, producing 10-15% 

of wild-type plasma membrane protein levels in cell based assays114. This is well below 

the required 25-50% needed for a therapeutic approach to relieve the majority of CF 

symptoms117. ΔF508-CFTR has a lower open probability on the plasma membrane 

compared to wild-type118-119; thus correction to above 50% of wild-type levels may be 

required to achieve sufficient functional activity to relieve symptoms. In addition to these 

small molecule chaperones, low temperature (27 °C) and secondary mutations within 

CFTR, such as I539T and G550E as well as others, have also been shown to increase the 

population of ΔF508-CFTR on the plasma membrane52, 120. However, full mechanisms of 

these correctors have not been resolved.  Thus, one of the goals of my work was to elucidate 

the mechanism of the correctors (compound VX-809, low temperature and second site 

suppressor I539T) induced ΔF508-CFTR trafficking for the development of new cystic 

fibrosis therapeutics.  
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The fundamental cause of ∆F508 related cystic fibrosis is that the deletion of phenylalanine 

in position 508 affects the proper folding of CFTR and alters its stability50, 113. Whereas, 

the precise mechanism of ∆F508 is still elusive with many unanswered questions. 

Understanding the detailed wild-type CFTR folding and ∆F508-CFTR misfolding actions 

will be greatly beneficial to the development of CF therapies. Both experimental and 

theoretical methods have been utilized to intensely study the folding mechanism of protein. 

Owing to the extremely complex protein folding mechanism, no single technique so far is 

adequate for fully understanding it. Therefore, new technologies are developed to provide 

new and deeper insights into the folding mechanism. Although bulk measurements have 

been widely used, many essential aspects of protein folding information are lost due to the 

complexity of protein structures and the stochastic nature of these processes. For instance, 

“transition state” molecules do not belong to any state populations121, which makes the 

study of intermediate states of folding more mysterious. Single molecule techniques offer 

new access to information unavailable from bulk measurements such that it is capable of 

providing dynamic information at the single molecule resolution. Hence, single molecule 

technique is ideal for the study of the dynamics of protein folding reactions.  

The precise pathophysiology of cystic fibrosis is not well studied with many unanswered 

questions. The involvement of another transport protein, epithelial sodium channel (ENaC), 

makes the situation more complicated. ENaC and CFTR are colocalized on the apical 

surface of epithelia cells and have functional interactions. With our fluorescence 

microscopy techniques, we would like to explore the effects of CFTR on the residence time 

of ENaC on the cell membrane. A reliable approach measuring the half-life of protein on 

the cell membrane is required for this study. Recently, techniques to measure the half-life 
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of plasma membrane proteins on the cell surface include surface biotinylation with western 

blot analysis, ligand binding, and functional studies such as electrophysiology or calcium 

imaging 122-124. These techniques suffer from low temporal resolution of membrane 

receptor half-life and can be low throughput. Additionally, the procedure is complicated 

by the need to use translation blockers or intracellular protein trafficking inhibitors to 

eliminate the insertion of newly trafficked protein into the plasma membrane 125-127. This 

also increases the error as translation blockers could affect other cellular processes that 

may relate to membrane protein residence time at the cell surface. Therefore, another goal 

of my work was to develop a high temporal resolution approach to quantify the half-life of 

protein on the cell membrane.  

2.2.Correctors Alter Expression and Trafficking of CFTR 

The goal was to explore how reduced temperature, the second site suppressor I539T, and 

the small molecule corrector VX-809 work alone and in combination to affect the 

intracellular distribution and trafficking of CFTR. We determined the amount of protein 

on the cell surface, along with the rate of delivery of vesicles containing CFTR to the 

plasma membrane. These studies, for the first time, measured protein trafficking in real 

time. To perform the experiments, transiently transfected human embryonic kidney (HEK) 

293T cells were used to express wild-type CFTR or CFTR mutations on the plasma 

membrane. The 4th extracellular loop of wild-type CFTR or CFTR mutations was 

genetically labeled with a pH-sensitive version of GFP, better known as superecliptic 

pHluorin (SEP).  Total internal reflection fluorescence was used to measure expression and 

distribution of SEP-labeled CFTR.    
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2.2.1 Total Internal Reflection Fluorescence (TIRF) 

TIRF microscopy is utilized to visualize the fluorophore-labeled CFTRs on the plasma 

membrane. This setup is capable of detecting fluorophores to a depth of 200 nm above the 

cell-glass interface when excited by total internal reflection laser. SEP-CFTRs localized on 

the PM, in the peripheral ER near the PM, and in the vesicles between PM and ER are 

within the TIRF excitation range. Super ecliptic pHluorin (SEP) was excited with a 488 

nm diode-pumped solid-state (DPSS) laser through the objective (Olympus 1.49 NA 60x 

oil immersion). An electron multiplying charge coupled device (EMCCD) was employed 

to detect the SEP fluorescence signal. In order to obtain total internal reflection, the laser 

was focused on the back aperture of the objective lens and the angle of the beam was 

adjusted using a stepper motor. Since bulk of the cell is not illuminated, fluorescence 

background is decreased and thus the signal to noise ratio at the plasma membrane is 

increased.  

2.2.2 Super-Ecliptic pHluorin (SEP) to Measure Expression 

Super-Ecliptic pHluorin (SEP) is a pH sensitive fluorescent protein fluorescent with a 488 

nm excitation  at a neutral pH but not fluorescent under acidic conditions (pH<6). Previous 

studies showed that SEP-labeled proteins on the cell surface lost all detectable fluorescence 

upon exposure to low pH (5.4) extracellular solution, while those localized in the ER 

membrane were not affected. Thus, SEP labeling allows us to measure only the protein 

population localized on the cell surface128.  
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The 4th extracellular loop of CFTR was genetically incorporated with SEP in order to have 

SEPs on the cell surface orient to the extracellular side. SEP excited by the 488 nm laser is 

fluorescent in a pH7.4 environment.  Adjusting the pH to acidic condition (pH<6) prevents 

SEP fluorescence. When cells expressing CFTR were in pH 7.4 extracellular solution, 

CFTRs on the PM and in the peripheral ER (pH>7) were all fluorescent, but those localized 

in the Golgi and the trafficking vesicles at the lower pH condition were not visible. Then, 

the extracellular solution was changed to an identical solution except the pH was adjusted 

to 5.4. Since SEPs were oriented to the extracellular side of CFTR, they were exposed to 

an acidic environment and failed to fluoresce. Changing the pH of the extracellular solution 

does not alter the pH of the peripheral ER, Golgi or the trafficking vesicles. Therefore, the 

observed fluorescence was solely from CFTRs in the peripheral ER when cells were in the 

pH 5.4 extracellular solution. This process is illustrated in Figure 2.1.  

CFTRs are not only on the PM or in the ER, but also located in vesicles between the PM 

and ER. The SEP assay can also be used to determine the population of CFTR located in 

the acidic vesicles. NH4Cl is added to the extracellular solution to equilibrate the pH of the 

lumen vesicles to that of the extracellular solution, as the plasma membrane is permeable 

to NH3. NH3 moves to the intracellular side of the cell until NH3 equilibrates the two sides 

of the plasma membrane. Initially, growth medium in the cell-seeded dish was replaced 

with pH 7.4 extracellular solution without NH4
+. Images of the selected cells were taken 

and then the extracellular solution was changed to the same pH 7.4 extracellular solution 

with NH4
+. When no NH4

+ is in the extracellular solution, only SEPs on the PM and in the 

ER are exposed to the pH 7.4 environment and fluoresce. As the additional NH4
+ increases 
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the pH of the lumen vesicles to above pH 6, SEPs on the PM, in the ER, and in the vesicles 

are all visible. (Figure 2.2) 

  



46 
 

 

Figure 2.1: Cartoon Illustrating Changes in Membrane Fluorescence due to the 
change of the Extracellular Solution pH. When the extracellular solution is pH 7.4, SEP-
labeled CFTRs on the PM and in the ER are fluorescent. (B) When the extracellular 
solution is pH 5.4, SEP-labeled CFTRs in the ER are fluorescent and SEP-labeled CFTRs 
on the PM fail to fluoresce. 
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Figure 2.2: Cartoon Illustrating NH4+ Changing Fluorescence in the Interior of a 
Cell. When NH4Cl is added to the extracellular solution, SEP-labeled CFTRs on the PM, 
in the ER, and in the vesicles are fluorescent. (B) When extracellular solution does not 
contain NH4Cl, SEP-labeled CFTRs on the PM and in the ER are fluorescent. 
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TIRF images were collected for each cell at both pH 7.4 and pH 5.4 conditions. Figure 2.3 

shows the fluorescence change of an individual cell upon exposure to the two pHs 

extracellular solutions. For quantitation, the integrated density (ID) for each image is 

determined.  The ID is defined as the product of the average fluorescence intensity and the 

total number of pixels occupied by the cell. The plasma membrane integrated density 

(PMID) is a readout of the level of CFTR on the cell surface, where an increase in the 

PMID correlates to an increase in the number of SEP- CFTR on the plasma membrane.  

ܦܫܯܲ ൌ ܴܧ ൅ 7.4ሻ	ܪ݌ሺ	ܦܫ	ܯܲ െ  5.4ሻ	ܪ݌ሺ	ܦܫ	ܴܧ

The vesicle integrated intensity (Vesicle ID) is a readout of the level of CFTR located in 

the vesicles, where an increase in the Vesicle ID correlates to an increase in the number of 

SEP- CFTR in the vesicles.  

ܦܫ	݈݁ܿ݅ݏܸ݁ ൌ ܴܧ ൅ ܯܲ ൅ NH3ሻ	with	ܵܥܧሺ	ܦܫ	݈݁ܿ݅ݏܸ݁ െ ܴܧ ൅  NH3ሻ	no		ܵܥܧሺ	ܦܫ	ܯܲ

The ratio of CFTR on the plasma membrane is calculated from the integrated density of 

CFTR on the plasma membrane (pH 7.4 ID – pH 5.4 ID) divided by the total integrated 

density at pH 7.4. The ratio of CFTR on plasma membrane compared to the total (ER + 

PM) CFTR was used to quantify the distribution between the PM and peripheral ER. An 

increase in the percentage of CFTRs found on the plasma membrane (% PM) corresponds 

to a change in the distribution of CFTRs between the ER and PM. 

ܯܲ	% ൌ	 ௉ெூ஽

ாோା௉ெ	ூ஽	ሺ௣ு	଻.ସሻ
  %100	ݔ	
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Figure 2.3: Example of an HEK293T Cell Expressing SEP-CFTR. (A) When the 
extracellular solution is pH 7.4, SEP-labeled CFTRs on the PM and in the ER are 
fluorescent. (B) When the extracellular solution is pH 5.4, SEP-labeled CFTRs in the ER 
are fluorescent, but SEP-CFTRs on the PM fail to fluoresce. (C) The fluorescence intensity 
in B subtracted from the fluorescence intensity in A equals the SEP-CFTR on the plasma 
membrane. 
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2.2.3 Detection of Single Vesicle CFTR Insertion Events 

In trafficking vesicles, the SEP tag is oriented towards the low pH interior, resulting in 

quenching of the fluorescence signal. When the vesicles merge with the PM, SEP is 

exposed to a neutral pH extracellular solution, reactivating fluorescence. Hence, each 

vesicle insertion results in a burst of fluorescence. Figure 2.4 shows an example of an 

insertion event in cells expressing wild-type CFTR tagged with SEP.  After the initial 

insertion and the burst of fluorescence, a spreading of the emission is observed and 

corresponds to full fusion of the vesicle with the PM. An insertion event experiment was 

performed to quantify the rate of CFTR trafficking to the cell membrane. Differences in 

the trafficking rates of CFTR upon exposure to different correctors were measured.   

It is possible that the amount of CFTR loaded into each trafficking vesicle could also be 

different. To determine if this could be the case, we compared the relative fluorescence 

intensity of vesicles containing CFTRs upon exposure to different correctors. We selected 

a region of interest that encompassed the insertion event and determined the average 

fluorescence intensity of the frame before vesicle arrival and again at the brightest point of 

vesicle insertion. The difference between these values was used to calculate the 

fluorescence signal from the insertion event and thus represented the relative number of 

CFTR in the vesicle. Differences in the amount of CFTR loaded into each trafficking 

vesicle upon exposure to different correctors were measured.   
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Figure 2.4: An Example of a Single Vesicle Insertion Event.  (A) TIRF image of a whole 
cell. (B) - (F) the magnified red box in image A. At time 0, SEP labeled CFTR in a 
trafficking vesicle arrives at the cell surface. SEP exposure to a pH 7.4 extracellular 
solution turns on the fluorescence of SEP, and thus a burst of fluorescent is observed. As 
the vesicle fuses with the plasma membrane, the fluorescent burst spreads out.  
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2.3.CFTR-NBD1 Structure Study Using Single-Molecule FRET 

Single –molecule FRET is well suited to investigate the structure and dynamics of a protein 

as it can resolve the folded and unfolded subpopulations to reveal protein structure 

information. To perform this experiment, two fluorophores (one is donor; the other is the 

acceptor) are required to tag the protein. As the protein is denatured, the distance between 

the two fluorophores is not in the FRET distance range (1-10nm). Therefore, the energy 

transfer between the FRET pair is not efficient, and only low FRET efficiency events are 

observed. With the protein fully folded, the two-fluorophore distance is reduced resulting 

in high FRET efficiency events (Figure 2.5). A pulsed laser excitation system, coupled 

with time-correlated single-photon counting electronics recording the arrival time and 

fluorescence delay of each photon, was applied to alternatively excite the donor and 

acceptor. As a single protein molecule labeled with a FRET pair freely diffuses through 

the detection volume of a confocal microscopy, a single fluorescent burst is captured by 

the APD and gives rise to a FRET efficiency, E (details have been explained in Chapter 1). 

Thousands of fluorescent bursts are accumulated and a histogram of efficiencies of those 

FRET events is plotted resolving the folded and unfolded protein subpopulations (Figure 

2.6). 

The most common mutation is a deletion of the phenylalanine at position 508 in NBD1. 

This mutation is associated with 90% of CF cases. Therefore, research of NBD1 is of 

significant interest. Our goal was to determine how the structural properties of NBD1 were 

altered due to the mutation and determine the effect of other conditions such as VX-809, 

reduced temperature and the second site suppressor I539. In this study, NBD1 was 



53 
 

expressed in E.Coli, and purified using Ni-NTA Agarose, as a His tag was added to the C-

terminus. A FRET pair, Cy3 (donor) and Cy5 (acceptor), was incorporated at the two 

remaining cysteine sites of NBD1 using maleimide-thiol linker chemistry. Maleimide 

attached to the fluorescent dyes Cy3 and Cy5 can react with the sulfhydryl group of the 

cysteine on NBD1 resulting in labeling (Figure 2.7 A). Two cysteines at position 491 and 

524 exist in NBD1. When NBD1 is fully folded, the distance between C491 and C524 is 

approximately 1.4 nm, resulting in an efficient energy transfer between the donor and 

acceptor. The distance between the two fluorophores, however, will be beyond the FRET 

distance range as the protein is unfolded. Energy from the donor cannot be transferred to 

the acceptor efficiently, and no high FRET efficiency event is observed. The properly 

labeled CFTR-NBD1 protein molecules were in diluted solution to ensure single molecules 

diffuse through the focused laser beam. As each NBD1 passed through the focal volume, 

the donor molecule was excited, and energy transfer was observed if the acceptor was in a 

close enough proximity. The structure information of NBD1 molecules was resolved by 

the FRET efficiency.  
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Figure 2.5: Comparison of FRET Event in Denatured Protein and Folded Protein. 
Left: The distance of FRET pair labeled on the denatured protein is beyond the FRET 
distance range. Energy cannot be transferred from the donor fluorophore to the acceptor 
fluorophore. Right: Though the FRET pair is far away from each other in the primary 
structure of the protein, energy is transferred between the FRET pair efficiently since the 
protein is folded. 
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Figure 2.6: Representative FRET Efficiency Populations Showing the Protein Folding 
States. The two populations are collected from the same protein in two states. Top: protein 
in a buffer solution maintaining its native structure. A high FRET efficiency (80-100%) 
population is seen indicating the protein is fully folded. Bottom: protein in the same buffer 
solution but containing 6M GuHCl to fully denature the protein. FRET efficiency shifts to 
30-50%. A FRET efficiency difference can be seen when the protein structure changes.  
  



56 
 

A 

 

B 

 

Figure 2.7: CFTR-NBD1 Fluorescent Labeling. (A) The maleimide – thiol chemistry 
reaction. (B) The structure of CFTR-NBD1 and the position of the two cysteines for 
fluorescent dyes labeling. B is created from PBD 2BBO. 
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2.4.A New Approach to Measure the Half-life of Protein on the Plasma Membrane 

The goal was to develop a new pulse-chase approach utilizing total internal reflection 

fluorescence microscopy (TIRFM) to determine the half-life of protein on the cell 

membrane. A photoconvertible fluorescent protein, Dendra2, is applied in this approach as 

a fluorescent label. Dendra2, derived from octocoral Dendronephthya sp, is a mutant of the 

GFP-like protein109. Dendra2 is capable of being photoconverted from a green emissive 

form to red emissive form by exposure to UV-violet light (e.g. 405 nm) or blue light (e.g. 

488 nm). Previous studies showed the appearance of bright red fluorescence in Dendra-

expressing cells could be initiated by intense blue light (0.5–0.7 W/cm2), while low 

intensity blue light (<50 mW/cm2) for the same time period or even prolonged exposure 

time failed to photoconvert it110. This behavior makes it possible to select the fluorescent 

cells using a relatively low intensity (<50 mW/cm2) 488nm laser without photoconverting 

them. The maturation time of Dendra2 (the t1/2 or half-life for the immature state) is only 

38 min111. The stability of Dendra2 has also been tested such that the fluorescence intensity 

of Dendra2 expressed in cells remains stable for several hours when cells are treated with 

protein synthesis inhibitor cycloheximide112. Thus, Dendra2 is an ideal fluorescent protein 

for labeling.  

This new approach is utilized to quantify the half-life of epithelial sodium channel (ENaC) 

on the plasma membrane. HEK 293T cells expressing Dendra2 tagged ENaC were 

selectively photoconverted with 405 nm TIRF excitation to ensure the photoconvertion of 

protein occurs only at the plasma membrane (Figure 2.8 A). A population of Dendra2 on 

the cell surface with red emission was generated, and then time-lapse images of the same 
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field of view were taken to monitor endocytosis of ENaC (Figure 2.8 B). The half-life of 

the protein on the plasma membrane was calculated by quantifying the decay in the red 

fluorescence over time. Although new membrane protein is continuously delivered to the 

cell surface, it only exhibits green fluorescence not detectable in the red emission channel. 

As seen in Figure 2.9, cells are solely fluorescent in the green emission channel before 

exposure to 405 nm TIRF excitation. After the exposure, fluorescence is observed in both 

the green and red emission channels. The green fluorescence intensity is reduced after 

photoconvertion mostly due to a fraction of the population switched from green to red 

fluorophores.  
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Figure 2.8: Cartoon Illustrating the Method Utilizing Dendra2 to Measure PM 
Protein Half-Life. (A) The fluorescent behavior of cells expressing Dendra2 before and 
after photoconversion.  (B) The dynamic process of PM protein endocytosis and trafficking 
after a fraction of Dendra2 photoconverted to the red emissive form.  
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Figure 2.9: Example of TIRF Based Photoconversion and Fluorescence Decay. (A) 
TIRF images of a single cell before and after UV-violet photoconversion in both green and 
red emission channels with 488 nm and 561 nm excitation, respectively. (B) Representative 
time-lapse TIRF images in the red emission channel at different time points.  
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CHAPTER 3: MATERIALS AND METHODS 

3.1.Materials 

3.1.1 Reagents 

Matrigel was purchased from Corning.  Lipofectamine 2000 transfection reagent was 

purchased from Invitrogen.  35 mm glass bottom petri dishes were obtained from Cell 

E&G. Cy3-maleimide and Cy5-maleimide were purchased from Lumiprobe. Azithromycin 

and L-ascorbic acid was purchased from Sigma Aldrich. Dynasore ≥98% was obtained 

from Enzo Life Science.  

3.1.2 Plasmid Constructs  

3.1.2.1 CFTR-SEP Plasmid Constructs 

A pH-sensitive variant of GFP (Super ecliptic pHluorin; SEP) was utilized to quantify 

CFTR distribution on the plasma membrane (PM) and in the endoplasmic reticulum (ER). 

SEP was amplified by PCR using primers containing the AgeI and BsiWI restriction sites 

and cloned into a pcDNA 3.1 plasmid containing the gene for CFTR, which had AgeI and 

BsiWI restriction sites incorporated into the extracellular loop 4 of CFTR using the 

quikchange II site-directed mutagenesis kit. The cloning of SEP into the 4th extracellular 

loop of CFTR was carried out to ensure that SEP was oriented on the lumenal side of the 

ER and extracellular region of the cell when resident on the PM. The quikchange II site-
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directed mutagenesis kit was also used to create the F508 deletion in CFTR. This construct 

was then used to incorporate the I539T mutation to generate I539T/ΔF508-CFTR. 

3.1.2.2 CFTR-NBD1 Plasmid Construct 

Wild-type CFTR-NBD1 gene consisting of 291 amino acids was cloned between NcoI and 

XhoI restriction sites of pET28 vector. His tag was incorporated into the C-terminal of 

NBD1 for the following protein purification. Kanamycin resistance gene existed in the 

vector for further colony selection.  

3.1.2.3 ENaC Plasmid Constructs 

Full length SCNNIA, SCNNIB and SCNNIG cDNA were purchased from Origene and 

cloned in pcDNA 4TO. The fluorescent protein Dendra2 was incorporated in to the C-

terminus of each construct via NotI and XhoI restriction sites. The quickchange II site-

directed mutagenesis kit (Agilent Technologies) was used to create the Y618A mutation in 

SCNNIB. The Y618A corresponds to a tyrosine to alanine change in position 618 in 

SCNNIB. All constructs were verified by sequencing. 

3.2.Methods to Determine CFTR Expression and Trafficking 

3.2.1 Cell Culture  

Human embryonic kidney (HEK) 293T cells were cultured using standard tissue culture 

techniques at 37 oC and 5.6% CO2.  HEK 293T cells were maintained in growth media 
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consisting of Dulbecco’s Modified Eagle Medium (DMEM), 10% fetal bovine serum, and 

1% penicillin, and streptomycin 128-129. Culture flasks were coated with a matrigel solution 

consisting of 1% matrigel in DMEM media. The matrigel solution added to the flasks and 

allowed to incubate for 5-10 min, then aspirated before the addition of cells. Cells were 

maintained in matrigel coated 75 cm2 cell culture flasks. 

3.2.2 Transfection and Cell Preparation for Total Internal Reflection Fluorescence 

(TIRF) Microscopy Imaging 

For transfection with CFTR constructs, 3 x 106 cells were seeded into a matrigel coated 

T75 flask. The following day, the growth media in the HEK 293T flask was replaced with 

10 mL of opti-MEM.  Cells were transfected with 14 μL Lipofectamine-2000 mixed with 

250 μL opti-MEM and separately 3.5 μg plasmid was mixed with 250 μL opti-MEM and 

incubated at room temperature for 5 min. The separate aliquots were then combined and 

allowed to incubate for 25 min at room temperature, and then added to the cells. After 24 

h at 37 °C the cells were rinsed with PBS and dissociated with Trypsin. 200,000 cells were 

then plated onto matrigel coated 35 mm glass bottom dishes. In order to ensure the matrigel 

was thin enough for TIRFM, the 1% matrigel solution was left on the glass bottom dishes 

for 10 min at room temperature. The dishes were thoroughly rinsed with PBS prior to the 

addition of cells. Cells were incubated for an additional 24 h in growth medium at 37 °C 

before imaging.  
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3.2.3 Exposure to Pharmacological Agents 

VX-809 treatment: After the transfected cells were seeded on a glass bottom dish, they 

were incubated at 37°C for 2 h for settling down. Then, growth medium in the dish was 

replaced by opti-MEM supplemented with 1% FBS, penicillin, and streptomycin 

containing 3 μM VX-809. The cells were incubated at 37°C for additional 24 h before 

imaging. 

Reduced temperature correction: After the transfected cells were seeded on a glass bottom 

dish, they were incubated at 37°C for 2 h for settling down. Then, cells were incubated at 

the reduced temperature incubator for additional 24 h before imaging.  

Azithromycin treatment: After the transfected cells were seeded on a glass bottom dish, 

they were incubated at 37°C for 2 h for settling down. Then, cell growth medium in the 

dish was replaced by opti-MEM supplemented with 1% FBS, penicillin, and streptomycin 

containing 5 μM azithromycin. The drug was incubated with the transfected cells at 37°C 

for 24 h before imaging. For the combined azithromycin and VX-809 treatment, cell 

growth medium in the dish was replaced by opti-MEM supplemented with 1% FBS, 

penicillin, and streptomycin containing both 5 μM azithromycin and 3 μM VX-809.  

VX-770 treatment: Before imaging, medium in the cells seeded dish was replaced by an 

extracellular solution (recipe mentioned in section 3.2.5) containing 100 nM VX-770. Cells 

were incubated at 37 °C with VX-770 for 15 min before imaging. For the combined VX-

770 and VX-809 or azithromycin treatment, cells were treated with VX-809 or 
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azithromycin 24 h before imaging as mentioned above. VX-770 was added 15 min before 

imaging. 

3.2.4 TIRF imaging of Super Ecliptic pHluorin 

Objective style total internal reflection fluorescence microscopy was utilized for all 

imaging studies. This setup is capable of detecting fluorophores to a depth of 200 nm above 

the cell-glass interface when excited by total internal reflection laser. CFTR-SEP localized 

on the PM, in the peripheral ER near the PM, and in the vesicles between PM and ER was 

within the TIRF excitation range. Super ecliptic pHluorin (SEP) was excited with a 488 

nm DPSS laser through the objective (Olympus 1.49 NA 60x oil immersion). An electron 

multiplying charge coupled device (EMCCD) (Andor iXon Ultra 897) was employed to 

detect the SEP fluorescence signal. In order to obtain total internal reflection, the laser was 

focused on the back aperture of the objective lens and the angle was adjusted using a 

stepper motor to translate the beam laterally across the objective lens.  

3.2.5 Measuring CFTR Expression and Distribution 

SEP excited by the 488 nm laser was fluorescent at pH 7.4.  Adjusting the pH to acidic 

conditions (pH<6) prevented SEP fluorescence. Before imaging, growth medium in the 

dish was replaced by a pH 7.4 extracellular solution (150 mM NaCl, 4 mM KCl, 2 mM 

MgCl2, 2 mM CaCl2, 10 mM HEPES and 10 mM glucose). CFTR on the PM and in the 

peripheral ER (pH>7) was visible under these conditions, while CFTR localized in the 

Golgi and trafficking vesicles at the lower pH were not visible. Initial images were 
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collected at pH 7.4, and then the extracellular solution was changed to an identical solution 

except that the pH had been adjusted to 5.4. Since SEP was located on the extracellular 

side of CFTR, it was exposed to pH 5.4. At pH 5.4 the observed fluorescence was solely 

from CFTR in the peripheral ER. TIRF images were collected for each cell at both pH 7.4 

and pH 5.4. For quantitation, the integrated density (ID) for each image was determined.  

The ID is defined as the product of the average fluorescence intensity and the total number 

of pixels occupied by the cell. The ratio of CFTR on the plasma membrane was calculated 

from the integrated density of CFTR on the plasma membrane (pH 7.4 ID – pH 5.4 ID) 

divided by the total integrated density at pH 7.4. The plasma membrane integrated density 

(PMID) is a readout of the level of CFTR on the cell surface, where an increase in the 

PMID correlates to an increase in the number of CFTR-SEP channels on the plasma 

membrane. The ratio of CFTR on plasma membrane compared to the total (ER + PM) 

CFTR was used to quantify the distribution between the PM and peripheral ER. An increase 

in the percentage of receptors found on the plasma membrane (% PM) corresponds to a 

change in the distribution of receptors between the ER and PM.  TIRF images were 

acquired using an exposure time of 200 ms, and a scanning stage was used to record the 

position of each cell to allow for a return to the exact same field of view for the images at 

pH 5.4 and 7.4.  All experiments carried out with VX-809 used a concentration of 3 μM. 

Control experiments were performed with DMSO in the absence of VX-809. 

Since the plasma membrane is permeable to NH3, we altered the pH of the intracellular 

fluid by adding NH4
+ to the extracellular solution. NH3 moves into intracellular side of the 

cell until NH3 equilibrates between the two sides of plasma membrane. Before imaging, 

growth medium in a dish was replaced with a pH 7.4 extracellular solution without NH4
+ 
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(150 mM NaCl, 4 mM KCl, 2 mM MgCl2, 2 mM CaCl2, 10 mM HEPES and 10mM 

glucose). After images were collected, the extracellular solution was changed to the exact 

same pH 7.4 extracellular solution but with NH4
+ (100 mM NaCl, 4 mM KCl, 2 mM MgCl2, 

2 mM CaCl2, 50 mM NH4Cl, 10 mM HEPES and 10 mM glucose). When no NH4
+ was in 

extracellular solution, only SEPs on the PM and in the ER were exposed to the pH 7.4 

environment. NH3 increases the pH in vesicles and turns on the fluorescence of SEPs in the 

vesicles. When NH4
+ is in the extracellular solution, SEPs on the PM, in ER, and in vesicles 

are all visible. The integrated density of CFTR in vesicles was calculated by subtracting 

the images of pH 7.4 extracellular solution without NH4
+ from those of pH 7.4 extracellular 

solution with NH4
+.  

3.2.6 Measuring CFTR Trafficking 

To measure insertion events, real time images were acquired at a frame rate of 200 ms for 

1000 frames to capture single vesicles integrating into the PM.  Insertion events were 

counted by manually analyzing all 1000 frames.  Insertion events were defined as a burst 

of fluorescence at the membrane lasting at least 2 frames (400 ms) and including lateral 

spreading of fluorescence to ensure transient full fusion of the delivery vesicle to the 

membrane.  Persistent, continuously repeating bursts of fluorescence were not counted 

since a discrete exocytic event could not be ruled out.  
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3.2.7 CFTR PM Display Data Analysis 

Quantification of fluorescence intensity was determined using ImageJ by manually 

selecting an intensity-based threshold and region of interest.  All figures show results from 

a single imaging session that are representative of data collected on at least three separate 

occasions.  All graphs show the mean with error bars representing SEM.  P-values were 

determined using a two-tailed t test with equal variance not assumed. 

3.3.Methods to Study CFTR-NBD1 Structure 

3.3.1 CFTR-NBD1 Expression and Purification. 

CFTR-NBD1 was expressed in E.Coli BL21 (DE3). E.Coli transformed with NBD1 

plasmid were grown in 200 ml LB medium containing 50ug/ml Kanamycin. NBD1 

expression was induced at 0.7 OD600 with a final concentration of 0.75mM 

isopropylthiogalactoside. Cells were shaking for additional 24 h at room temperature for 

protein expression. Then, cells were spinned down and resuspended in 10ml cold lysis 

buffer (50 mM Tris, 100 mM L-Arginine, 50 mM NaCl, 5 mM MgCl2 hexahydrate, 12.5% 

Glycerol, 0.25% Triton X-100, 2 mM 2-Mercapto Ethanol, 2 mM ATP, pH 7.6, ATP was 

added right before use). Cells in lysis buffer were sonicated on ice for 1 min and cooled on 

ice for additional 5 min. Sonication was repeated for 3 times to ensure complete cell lysis. 

The lysed cells were centrifuged at 24,000 rpm, 4°C for 1 hour. The supernatant was mixed 

with 1ml Ni-NTA agarose resin (Invitrogen ProBond Resin) at 4°C under rotation in an 

end-over-end rotor. The protein-resin mixture was centrifuged at 700 g, 4 °C for 2 min and 
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then the supernatant was dumped as NBD1 protein was bound with Ni-NTA resin. The Ni-

NTA resin binding with NBD1 was transferred to an empty Ni-NTA spin column and 

rinsed 3 times with 1.6 ml washing buffer (20 mM Tris, 500 mM NaCl, 60 mM Imidazole, 

12.5% Glycerol, pH 7.6). NBD1 was eluted from the Ni-NTA resin by adding 400 ul 

elution buffer (20 mM Tris, 250 mM NaCl, 250 mM Imidazole, 12.5% Glycerol, pH 7.6) 

to the column and spinning at 700×g, 4°C for 2 min. The flow through was the purified 

NBD1 protein in elution buffer and stored at -80°C. 

3.3.2 Labeling NBD1 with Cy3 and Cy5 and Remove Extra Dyes from the Protein 

0.05 mg NBD1 in elution buffer was mixed with 0.8 ul 10 mM Cy3-maleimide and 0.8 ul 

10 mM Cy5-maleimide, and the mixture was stored at 4°C overnight to allow the 

maleimide-thiol reaction to occur. Then, the mixture was dialyzed for 24 h using dialysis 

membrane (Spectra/Por Dialysis Membrane, Molecular weight cut-off: 10,000) in a 

dialysis buffer (20 mM Tris, 250 mM NaCl, 12.5% Glycerol final pH7.6). The dialysis 

buffer was replaced with new dialysis buffer after the first 4 h dialysis. Dialysis is to 

remove imidazole and the extra dyes from the protein.  

3.3.3 Sample Preparation and Measurement 

Protein samples were diluted to 35 pM in buffer containing 20 mM Tris, 250 mM NaCl, 

12.5% Glycerol (final pH7.6). 
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Experiments were performed using an alternating light excitation (ALEX) confocal 

microscope system. The donor and acceptor tagged on a NBD1 molecule were excited 

alternatively with a pulsed 532 nm pulsed diode laser (20 MHz repetition rate, Picoquant) 

and a pulsed 640nm pulsed diode laser (20 MHz repetition rate, Picoquant). 100 ul protein 

solution was placed on a #1.5 cover glass and excited through a water immersion objective 

(60×, 1.20 NA, Nikon). The two excitation beams were completely overlapped and focused 

at a focal point 30 µm above the #1.5 cover glass. Donor and acceptor emissions were 

collected through the same objective and then they were separated from the excitation beam 

through a dichroic mirror. The pure emissions went through a spatial filter 100 µm diameter 

pinhole to remove the out- of focus beams. A second dichroic was then utilized to separate 

the donor and acceptor emission signals. The donor emission/acceptor emission was further 

cleaned by passing a 575 nm/40 nm band-pass filter (donor, Chroma)/ 667 nm/30 nm band 

pass filter (acceptor, Chroma). Single photons were collected using avalanche photodiodes 

(APDs), which converted light signals to electrical signals and then sent them to a photon 

counter (Picoharp 300, Picoquant). The photon counter converted electrical signals to 

digital signals and sent them to a PC where they were visualized in real-time (100 ms 

refresh rate) using the Symphotime 64 software (Picoquant). 

3.3.4 Data Analysis 

FRET efficiency was determined using Symphotime 64 software. Data were exported to 

Microsoft Excel and further exported to OriginPro8 (Origin Lab) where the FRET events 

were histogrammed.  
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3.4.Methods to Determine ENaC Half-life on the Plasma Membrane 

3.4.1 Cell Culture  

Human embryonic kidney (HEK) 293T cells were cultured using standard tissue culture 

techniques at 37 oC and 5.6% CO2.  HEK 293T cells were maintained in growth media 

consisting of Dulbecco’s Modified Eagle Medium (DMEM), 10% fetal bovine serum, and 

1% penicillin, and streptomycin 128-129. Culture flasks were coated with a matrigel solution 

consisting of 1% matrigel in DMEM media. The matrigel solution added to the flasks and 

allowed to incubate for 5-10 min, then aspirated before the addition of cells. Cells were 

maintained in matrigel coated 75 cm2 cell culture flasks. 

3.4.2 Transfection and Cell Preparation for TIRF Imaging 

For transfection with CFTR constructs, 1 x 106 cells were seeded into a matrigel coated 

T25 flask. The following day, the growth media in the HEK 293T flask was replaced with 

7 mL of opti-MEM.  Cells were transfected with 5 μL Lipofectamine-2000 mixed with 250 

μL opti-MEM and separately 1.5 μg plasmid was mixed with 250 μL opti-MEM and 

incubated at room temperature for 5 min. The separate aliquots were then combined and 

allowed to incubate for 25 min at room temperature, and then added to the cells. After 10 

h of incubation at 37 °C, the transfection media was replaced with growth media. After an 

additional 12-14 h incubation, the transfected cells were dissociated with Trypsin and 5 × 

105 cells were plated on a 35 mm matrigel coated glass bottom dish in growth medium. In 

order to ensure the matrigel was thin enough for TIRFM, the 1% matrigel solution was left 
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on the glass bottom dishes for 10 min at room temperature. Cells were incubated at 37 °C 

for an additional 24 h before imaging. For αβγ, SCNNIA, SCNNIB and SCNNIG were 

cotransfected in HEK 293T cells. Similarly, in the CFTR-ENaC interaction study, 

SCNNIA, SCNNIB SCNNIG and CFTR were cotransfected in HEK 293T cells.  

3.4.3 TIRF Imaging of Dendra2 

Objective-style TIRFM was utilized for all imaging studies. This setup is capable of 

detecting fluorophores on the plasma membrane and minimizes the fluorescence 

background from intracellular components. Dendra2 was excited with a 488 nm or 561 nm 

DPSS laser through the objective (Olympus 1.49 NA 60x oil immersion, Tokyo, Japan).  

In order to obtain total internal reflection, the laser was focused on the back aperture of the 

objective lens and the angle was adjusted using a stepper motor to translate the beam 

laterally across the objective lens. An electron multiplying charge coupled device 

(EMCCD) (Andor iXon Ultra 897, Belfast, United Kingdom) was employed to detect the 

Dendra2 fluorescence signal.  

3.4.4 ENaC Half-Life Measurement 

Photoconvertable fluorescent protein (Dendra2) was utilized to measure the ENaC half-life 

on the plasma membrane. Before imaging, growth media in the glass bottom dish was 

replaced with Leibovitz's L-15 with 100 uM ascorbic acid. At the start of each imaging 

session a control experiment was performed to correct for photobleaching during data 

collection. To obtain the correction curve, a randomly selected cell was photoconverted in 
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TIRF with a 405 nm laser; then 22 consecutive TIRF images were taken with 561 nm 

excitation. This was used to simulate the same level of laser exposure that occurs during 

the time-lapse imaging session. The fluorescence decay observed in these images results 

from 561 nm induced photobleaching. We assume on this time scale (<60 seconds) that 

protein endocytosis is negligible. Several cells in the same dish were then identified and 

the xy location was recorded. TIRF images of these selected cells were taken before 

Dendra2 photoconversion using both 561 nm and 488 nm excitation. This verified the 

absence of any fluorescence in the red emission channel prior to photoconversion. These 

cells were then exposed to TIRF oriented 405 nm laser (~16.5 mW at the objective) 

excitation for 3 seconds. Medium in the glass bottom dish was changed from Leibovitz's 

L-15 with 100 uM ascorbic acid to regular Leibovitz's L-15 after the photoconversion 

taking care to not move the position of the dish. Real-time TIRF images were then acquired 

for both 561 nm and 488 nm excitation to collect emission in both the red and green 

channels at 20 min interval for a total of 7 h. The intensity of both 488 nm and 561 nm 

lasers on the objective were ~ 1.0 mW and the 405 nm laser intensity on the objective was 

~ 16.5 mW. The cells were kept at 37 °C for the duration of the experiment using a stage 

top incubator. For control studies with dynasore, 80uM dynasore was added to the imaging 

media containing ascorbic acid 20 minutes before imaging and the medium was then 

changed to L15 with 80 uM dynasore after photoconversion.  

3.4.5 Data Analysis 

Quantification of fluorescence integrated density (ID) was determined using ImageJ (NIH) 

by manually selecting an intensity-based threshold and region of interest. The decay in the 



74 
 

fluorescence ID of each image series using the decay constructed from the control images 

where the decay resulted from photobleaching. This removed the decay related to 

photobleaching in each data set. The resulting fluorescence decay in each data set after 

correction was then attributed to the departure of the fluorescently labeled protein from the 

TIRF field of view due to endocytosis.  The measured protein intensity data was initially 

fit to the exponential equation to determine the half-life (T1/2). All graphs show the mean 

with error bars representing SEM. P-values were determined using a two-tailed t test with 

equal variance not assumed. 
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CHAPTER 4: RESULTS 

4.1 Correctors Alter Expression and Trafficking of CFTR 

4.1.1 Reduced Temperature and Second Site Suppressor (I539T) Promote ΔF508-CFTR 

Expression on the PM 

SEP, a pH-sensitive variant of green fluorescent protein (GFP)128, 130-131, was used to 

quantify changes in CFTR distribution. A second site suppressor is defined as adding a 

second mutation to a mutant gene to partially revert the effect of the first mutation. In my 

study, we added I539T to ΔF508-CFTR to moderately revert the issue caused by ΔF508. 

SEP is emissive with 488 nm excitation at neutral pH but the emission is quenched under 

acidic conditions (pH <6). Previous studies showed that SEP-labeled receptors on the cell 

surface lost all detectable fluorescence upon exposure to low pH (5.4) extracellular 

solutions, while those localized in the ER membrane were not affected. Thus, SEP labeling 

allows for the measurement of only the receptor population localized to the cell surface128. 

The SEP tag was incorporated into the extracellular region of CFTR to allow for pH 

dependent fluorescence measurements to be made, whereby differentiation between 

intracellular and PM inserted CFTR could be quantified.  HEK 293T cells expressing wild-

type CFTR, ΔF508-CFTR, or I539T/ΔF508-CFTR were exposed to neutral (pH 7.4) and 

acidic (pH 5.4) conditions while recording TIRF images. Figure 4.1 shows representative 

TIRF images of cells expressing wild-type, ΔF508 at 30 °C, and I539T/ΔF508. The top 

row contains images of each cell at neutral pH, while the bottom shows the same cell at an 

acidic pH. At neutral pH, CFTR-SEP on the plasma membrane was fluorescent and visible 
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within the TIRF excitation volume. The peripheral ER that is within approximately 150 

nm of the cell surface was also visible in TIRF.  The ER population has the SEP-tag 

oriented on the luminal side of the organelle, which has a neutral pH, and is therefore 

fluorescent. As a result, the signal at this pH contains the PM as well as peripheral ER 

populations of CFTR-SEP. CFTR in the Golgi or in trafficking vesicles was not fluorescent 

due to the intra-organellar orientation of the SEP in these acidic environments. When the 

extracellular solution is replaced with an acidic solution the fluorescence of CFTR on the 

PM is eliminated. Thus, at an acidic pH the TIRF image is composed of fluorescence 

entirely from the peripheral ER (lower row of Figure 4.1). Calculating the fluorescence 

integrated density at pH 7.4 (ER+ PM ID) and subtracting the fluorescence integrated 

density at pH 5.4 (ER ID) allowed us to calculated the plasma membrane integrated density 

(PMID). This served as a real-time readout of CFTR levels on the PM.   
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Figure 4.1: TIRFM Images Illustrating Increased CFTR Levels. TIRF images of HEK 
cells expressing wild-type CFTR-SEP, ΔF508-CFTR at 30oC, and I539T/ΔF508-CFTR. 
The top row shows images taken with an extracellular solution of pH 7.4 and the bottom 
row with pH 5.4. The loss of fluorescence at pH 5 represents the level of CFTR on the 
plasma membrane. 
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Distribution of CFTR within the cell was compared using percent plasma membrane (% 

PM), calculated by dividing the PM integrated density (difference between pH 7.4 and pH 

5.4 images) with the total integrated density of receptors fluorescing on the PM and ER at 

pH 7.4. At 37 °C, we observed no detectable ΔF508-CFTR in the TIRF field of view. A 

7 °C reduction in the temperature or adding a second site mutation, however, increased the 

ΔF508-CFTR expression and made the detection of ΔF508-CFTR possible.  As shown in 

Figure 4.2, the PM fraction of ΔF508-CFTR at 30°C was ~ 30%, and total cell surface 

expression of ΔF508-CFTR in the same condition was ~10% of the wild-type level. CFTR 

containing both a ΔF508 mutation and the second site suppressor I539T mutation 

(I539T/ΔF508-CFTR) exhibited ~38% PM fraction, and total cell surface expression of 

ΔF508-CFTR increased to ~10% of the wild-type level. 
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Figure 4.2: The CFTR Cell Surface Distribution and Expression. (A):  the ratio of the 
plasma membrane to total fluorescence visible in the TIRF field of view. (B): the 
subtraction of ER ID from PM+ER ID. WT is short for wild-type. 
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4.1.2 VX-809 Works Synergistically with Reduced Temperature and a Second Site 

Suppressor to Traffic ΔF508-CFTR 

VX-809 (C24H18F2N2O5), is an FDA approved drug for cystic fibrosis treatment. Currently, 

it is used in combination with VX-770 but has no medical use on its own. VX-809 acts as 

a chaperon during the protein folding, while the exact action mechanism remains unknown. 

We combined VX-809 with low temperature or I539T and showed the combination effects 

on ΔF508-CFTR trafficking. Approximately 75% of wild-type CFTR visible in the TIRF 

field of view was found on the PM. This fraction went up to 85% in the presence of 3 μM 

of VX-809 (Figure 4.3), while control experiments using DMSO (0.02%) showed no 

change in CFTR levels. This is consistent with reports of high levels of wild-type CFTR 

trafficking132. Similar studies showed that 35% of visible I539T/ΔF508-CFTR was 

displayed on the PM, and that this increased to nearly 60% in the presence of VX-809 

(Figure 4.3). The same measurement with ΔF508-CFTR at 30 °C indicated that ~25% of 

the protein was displayed on the PM. This increased to approximately 55% in the presence 

of VX-809. In all cases there was a shift in the distribution of protein from the peripheral 

ER toward the plasma membrane. It should be noted that in this assay we did not detect 

any ΔF508-CFTR on the PM at 37 °C in the absence of VX-809, consistent with other 

reports using traditional techniques.  
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Figure 4.3: Plasma Membrane Fraction. Comparison of the ratio of plasma membrane 
to total fluorescence visible in the TIRF field of view. This reveals changes in the 
distribution of receptors from the peripheral ER to the PM. A large portion of intracellular 
CFTR is shifted to the PM for I539T/ΔF508 and ΔF508 when exposed to VX-809 (open 
bars designated with a + sign), suggesting the drug facilitates trafficking of a pool of CFTR 
stabilized by low temperature or second site suppressors. 
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To further quantify the cell-surface CFTR, we examined the integrated density of the 

fluorescence on the PM. This allows for quantifying only the amount of CFTR at the PM, 

eliminating any signal that may be coming from CFTR either in the ER or close to the PM. 

Figure 4.4 shows the raw integrated density (average fluorescence intensity multiplied by 

the number of pixels within a cell) for the same conditions in Figure 4.3. The high level of 

wild-type CFTR on the PM increased by approximately 20% in the presence of VX-809, 

showing that the compound affects the trafficking of wild-type CFTR. This indicates that 

a high percentage of CFTR does not form a conformation capable of ER export, but is 

amenable to export upon the addition of a chemical chaperone. CFTR containing both the 

disease causing ΔF508 mutation and the second site suppressor I539T mutation 

(I539T/ΔF508-CFTR) exhibited only ~10% of the level of PMID compared to wild-type 

CFTR. VX-809 corrected the trafficking of I539T/ΔF508-CFTR to ~40% of wild-type 

levels. This is substantially more than the sum of the protein levels seen for I539T/ΔF508-

CFTR and VX-809 separately. Similar results were seen for ΔF508-CFTR at 30 °C. 

Consistent with previous studies that examined low temperature correction of ΔF508-

CFTR, we show that approximately 8% of the wild-type population can be corrected120, 133. 

After exposure to VX-809 for 24 hours, the cells under the same conditions showed an 

increase in population at the plasma membrane, as ΔF508-CFTR at 30 °C in the presence 

of the compound exhibited ~40% of wild-type levels of PMID.   
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Figure 4.4. The Effect of VX-809 on Cell Surface CFTR. Comparison of the total 
amount of CFTR displayed on the plasma membrane as determined by the fluorescence 
change from the pH sensitive SEP label. A synergistic effect is observed for I539T/ΔF508 
and ΔF508 when exposed to VX-809, as indicated by the large increase in CFTR PM level. 
Solid bars represent the data for CFTR in the absence of compound, while open bars are 
with VX-809. 
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4.1.3 The Immunomodulatory Mechanism of AZM is Different from That of Either 

Reduced Temperature or VX-809.  

Azithromycin (AZM), a macrolide antibiotic, has medical use for the treatment of CF 

patients. Clinical studies show an improvement of patients treated with AZM compared 

with those receiving placebo, but the molecular mechanism remains unknown. Conflicted 

conclusions had been made over the years. Melotti's group showed the anti-inflammatory 

effect of azithromycin on the cystic fibrosis cell line134, while Tabary’s group described 

that azithromycin fails to reduce inflammation in cystic fibrosis airway epithelial cells135. 

Additionally, a few groups report that azithromycin is able to restore Cl- efflux of CF cells, 

which is evidence to support  azithromycin works as more than an antibiotic for CF 

patients136-137. Therefore, further study of the AZM action mechanism is required to 

determine the anti-inflammatory effect of azithromycin on CF. We performed experiments 

to test the effect of AZM on CFTR distribution and cell surface expression. AZM treatment 

was applied to I539T/ΔF508-CFTR. As seen in Figure 4.5 A, approximately 27% of 

I539T/ΔF508-CFTR was distributed across the plasma membrane, while this fraction went 

up to 50% in the presence of azithromycin. The two fraction values were significantly 

different from each other. Cells with treatment of VX-809 showed approximately 82% 

I539T/ΔF508-CFTR distributed on the plasma membrane and exhibited similar 

distribution with combined treatment of VX-809 and azithromycin. In addition, a 

combination of low temperature correction with azithromycin treatment was not 

statistically different in terms of the CFTR plasma membrane ratio as compared to low 

temperature correction on its own (Figure 4.5 A). I539T/ΔF508-CFTR cell surface 

expression showed the same results that AZM increase the amount of I539T/ΔF508-CFTR 
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on plasma membrane 2.5 fold compared with noncorrected I539T/ΔF508-CFTR. However, 

AZM failed to alter I539T/ΔF508-CFTR cell surface expression when it is combined with 

VX-809 or low temperature (Figure 4.5 B).  
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Figure 4.5: The Effects of Azithromycin on I539T/ΔF508-CFTR PM Fraction and 
PMID. The black bar is wild-type CFTR.  Red bars are I539T/ΔF508-CFTR without 
azithromycin treatment. Blue bars are I539T/ΔF508-CFTR with azithromycin treatment. 
Azithromycin only changes the I539T/ΔF508-CFTR distribution and cell surface 
expression when no other correction is combined. ( **, p<0.05)  
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PM fraction and PMID experiments to study the AZM effect on ΔF508-CFTR were 

performed as well. We compared the effect of AZM on low temperature or VX-809 treated 

ΔF508-CFTR but not ΔF508-CFTR without correction since ΔF508-CFTR without 

correction showed undetectable levels of fluorescence on the cell surface. As seen in Figure 

4.6 A, approximately 40% of reduced temperature corrected ΔF508-CFTR was distributed 

on the plasma membrane, and the presence of azithromycin did not statistically alter the 

fraction. Cells with treatment of VX-809 showed 68% ΔF508-CFTR distributed on the 

plasma membrane and exhibited a similar distribution with a combined treatment of VX-

809 and azithromycin (57%). In addition, the PMID of VX-809 treated ΔF508-CFTR was 

5.6 x 105 ± 1.1 x 105. Upon AZM exposure, this PMID value did not significantly change 

(6.2 x 105 ± 1.8 x 105). Similarly, no statistical change was seen in the AZM treated 

30°C/ΔF508-CFTR compared with ΔF508-CFTR at 30°C (Figure 4.6 B).   
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Figure 4.6: The Effects of Azithromycin on ΔF508-CFTR PM Fraction and PMID. 
No statistical difference is seen in the AZM treated ΔF508-CFTR.  
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4.1.4 VX-770 does not Work Synergistically with VX-809 and Azithromycin 

VX-770 (C24H28N2O3), trade name Kalydeco, is an FDA approved drug for cystic fibrosis 

treatment. Currently, it is used in conjunction with VX-809 to treat ΔF508-CFTR. It can 

also be used on its own for G551D-CFTR treatment, which accounts for 4–5% of cystic 

fibrosis cases. G551D results in a dysfunction of CFTR on the cell membrane. G551D-

CFTR is able to traffic to the cell membrane, while it significantly reduces chloride 

transportation across the cell membrane. VX-770, a CFTR potentiator, facilitates chloride 

transportation by directly binding to the channels to induce a non-conventional mode of 

gating which increases the channel open probability68, 70-71. 

We performed experiments to test the effect of VX-770 on CFTR distribution and cell 

surface expression in the presence of VX-809 or azithromycin. As seen in Figure 4.7 A, 

approximately 40% of VX-809 corrected ΔF508-CFTR was distributed on the plasma 

membrane, and the presence of VX-770 did not statistically alter the fraction (~44%). Cells 

treated with azithromycin showed ~18% ΔF508-CFTR distributed on the plasma 

membrane, and the combined azithromycin and VX-809 failed to significantly increase the 

distribution value (~27%). In addition, the PMID of VX-809 treated ΔF508-CFTR was 7.7 

x 105 ± 2.6 x 105. Upon VX-770 exposure, this PMID value did not significantly change 

(4.5 x 105 ± 1.2 x 105). Similarly, no statistical change was seen in the AZM corrected 

ΔF508-CFTR distribution or cell surface expression in the presence or absence of VX-770 

(Figure 4.7 B). 
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Figure 4.7: The Effects of VX-770 on ΔF508-CFTR PM Fraction and PMID. No 
statistical difference is seen in the VX-770 treated ΔF508-CFTR. 
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4.1.5 A Larger I539T/ΔF508-CFTR Pool in the Vesicles near The Cell Surface than 

That of Wild-Type CFTR 

CFTRs are not only on the PM or in the ER, but also located in vesicles between the PM 

and ER. In order to determine the population of CFTR located in the acidic vesicles, we 

used an approach to equilibrate the pH of the lumen vesicles to that of the extracellular 

solution. NH4Cl was utilized to increase the pH of the lumen vesicles. The pH of the 

intracellular fluid is changed by adding NH4
+ to the extracellular solution since the plasma 

membrane is permeable to NH3. NH3 moves to the intracellular side of the cell until NH3 

equilibrates the two sides of the plasma membrane. Initially, growth medium in the imaging 

dish was replaced with pH 7.4 extracellular solution without NH4
+. Images of the selected 

cells were taken, and then the extracellular solution was changed to the same pH 7.4 

extracellular solution with NH4
+. When no NH4

+ is in the extracellular solution, only SEPs 

on the PM and in the ER are exposed to the pH 7.4 environment. As the additional NH4
+ 

increases the pH of the lumen vesicles to above 6 with the additional NH4
+, SEPs on the 

PM, in the ER, and in the vesicles are all visible. In this manner, we are able to quantify 

the integrated density (ID) of CFTR in the vesicles, which equals the difference between 

integrated density measured with NH4
+ and that measured without NH4

+. These 

experiments were performed for HEK 293T cells expressing I539T/ΔF508-CFTR. 

I539T/ΔF508-CFTR showed an approximately 10-fold vesicle ID increase compared to 

wild-type CFTR, which corresponded to the amount of I539T/ΔF508-CFTR in the vesicles 

near the cell surface, 10 times more than wild-type CFTR in the same place. In addition, 

I539T/ΔF508-CFTR with azithromycin treatment also exhibited a larger amount of 

I539T/ΔF508-CFTR than wild-type CFTR in the vesicles (Figure 4.8).   
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Figure 4.8: The Distribution of CFTR in the Vesicles.  A 10 times more amount of 
I539T/ΔF508-CFTR was located in the vesicles than in wild-type CFTR. I539T/ΔF508-
CFTR with azithromycin treatment correction showed 4 times the amount of wild-type 
CFTR in the vesicles. 
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4.1.6 Changes in PM CFTR Levels are Related To Differences in Trafficking Rates.  

Changes observed in the presence of VX-809 or differences seen between mutations 

(I539T/ΔF508 and ΔF508) could be related either to differences in trafficking rates to the 

PM, or to the half-life of the protein on the cell surface. To determine if differences in 

trafficking rates accounted for the observed CFTR levels on the PM, we performed 

experiments to quantify the rate of transport of CFTR to the cell surface. In trafficking 

vesicles, the SEP tag is oriented toward the low pH interior, resulting in quenching of the 

fluorescence signal. When the vesicles merge with the PM the protein is exposed to a 

neutral pH extracellular solution, reactivating fluorescence. This results in a burst of light 

for each vesicle insertion. The supplementary movie shows an example of such insertion 

events in cells expressing wild-type CFTR-SEP.  After the initial insertion and burst of 

fluorescence, we observed a spreading of the emission, corresponding to full fusion of the 

vesicle and diffusion into the PM.  

We quantified the individual insertion events for cells expressing wild-type CFTR and 

I539T/ΔF508-CFTR with VX-809. Figure 4.9 A shows a time course of a single insertion 

event for wild-type CFTR.  At time 0 the vesicle has just started to arrive, and the 200 ms 

per frame sequence of images shows a burst of fluorescence at 200 ms (shown inside the 

blue circle), which then begins to spread out as the protein diffuses into the plasma 

membrane. For the same time period, cells expressing wild-type CFTR exhibited twice as 

many insertion events as cells expressing I539T/ΔF508-CFTR with VX-809 (Fig. 4.9 B). 

This approximately matches the differences in the level of surface protein shown in Figure 

4.4.  



94 
 

It is possible that the amount of CFTR loaded into each trafficking vesicle could also be 

different. To determine if this could be the case, we compared the relative fluorescence 

intensity of vesicles containing wild-type to I539T/ΔF508-CFTR. We selected a region of 

interest that encompassed the insertion event and determined the average fluorescence 

intensity the frame before vesicle arrival and again at the brightest point of vesicle insertion. 

The difference between these values was used to calculate the fluorescence signal from the 

insertion event and thus represented the relative number of channels in the vesicle. We 

found no difference between wild-type and I539T/ΔF508-CFTR signal intensities (Figure 

4.9 C). Thus, the differences seen in the CFTR protein levels are consistent with the 

differences in the rate of arrival of CFTR on the plasma membrane, not the number of 

channels per vesicles.  
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Figure 4.9: Quantifying Trafficking Rates via Counting Vesicle Insertion Events. (A) 
Series of images of wild-type CFTR-SEP showing an insertion event. The first frame shows 
just before the insertion event and the subsequent frames show the progression of the 
vesicle inserting. By 1.4 sec the vesicle has fully merged and the receptors are diffusing 
into the PM. (B) Comparison of the number of insertions per cell per 3 min for wild-type 
CFTR and I539T in the presence of VX-809. (C) A comparison of the average intensity of 
the insertion events. The trafficking rate of wild-type is roughly twice that of I539T with 
VX-809 which matches the relative PM levels. Conditions indicated as I539T represent 
ΔF508-I539T mutations. 
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4.1.7 A Range of Temperatures Stabilize ΔF508-CFTR and are Differentially Affected 

by VX-809 

We performed a set of experiments to determine the effect of temperature in the presence 

and absence of VX-809 on the levels of ΔF508-CFTR and ΔF508/I539T-CFTR on the PM. 

Using our SEP assay, we measured the relative PMID of ΔF508-CFTR at 27, 30, 32, 34, 

and 37 °C in the presence and absence of 3 μM VX-809. Cells cultured at 37 °C showed 

no measurable levels of ΔF508-CFTR on the PM. However, cells cultured at all of the other 

temperatures clearly displayed ΔF508-CFTR on the PM. In the absence of VX-809, values 

ranging from 8 to 12% of wild-type were obtained for 27, 30, 32, and 34 °C (Figure 4.10 

A). The combination of low temperature and exposure to 3 μM VX-809 resulted in 3 to 4-

fold higher levels of ΔF508-CFTR as compared to low temperature alone. Low temperature 

caused no change in the levels of I539T/ΔF508-CFTR (Figure 4.10 B), with the exception 

of a slight change at 34 °C; protein levels at all remaining temperatures were similar to that 

observed at 37 °C.  As shown earlier in Figure 4.3, VX-809 resulted in higher PM levels 

of I539T/ΔF508-CFTR (50% of WT) at 37 °C. At reduced temperatures we also observed 

an increase in I539T/ΔF508-CFTR. At 27 °C levels are increased to 45% of wild-type 

levels.  However, at 32 °C we achieved near 100% of wild-type in the presence of VX-809. 
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Figure 4.10: Temperature Dependence of VX-809 Activity on ΔF508 and I539T-
ΔF508 CFTR. A. Total amount of ΔF508 CFTR displayed on the plasma membrane as 
determined by the fluorescence change from the pH sensitive SEP label. Experiments were 
performed across a range of temperatures, with (+) or without (-) VX-809. B. Total amount 
of I539T-ΔF508 CFTR on the plasma membrane as determined by the fluorescence change 
from the pH sensitive SEP label across a range of temperatures and with (+) and without (-
) VX-809. 
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4.2 Single-Molecule FRET to Study NBD1 Structure  

Single – molecule FRET is well suited to investigate the structure and dynamics of proteins. 

With this technique, a donor fluorophore and an acceptor fluorophore are both tagged on a 

protein molecule. When the protein is fully folded, the two fluorophores are close to each 

other, and energy can be transferred from the donor fluorophore to the acceptor fluorophore. 

As the protein is denatured, the distance between the two fluorophores is beyond the FRET 

distance range (1-10nm). Therefore, the energy transfer between the FRET pair is not 

efficient and low FRET efficiency events or even no FRET event is observed (Figure 4.11). 

A single fluorescent burst is observed as a single protein molecule labeled with a FRET 

pair freely diffusing through the detection volume under confocal microscopy. A burst 

gives rise to a FRET efficiency, E (details has been explained in Chapter 1). Thousands of 

fluorescent bursts are accumulated, and a histogram of FRET efficiencies are plotted 

resolving the folded and unfolded protein subpopulations (Figure 4.11). 

In this study, CFTR-NBD1 was expressed in E.Coli and purified using  Ni-NTA Agarose, 

as the NBD1 had a His tag at the C-terminus (NBD1 mentioned in this section refers to 

wild-type CFTR-NBD1). NBD1 consists of 291 amino acids from position 388 to 678 of 

CFTR. The Coomassie blue stain of purified NBD1 is shown in Figure 4.12 A. A FRET 

pair, Cyanine3 (Cy3) and Cyanine5 (Cy5), was utilized to label cysteines of NBD1 and 

worked as donors and acceptors, respectively. Cy3 and Cy5 are the most widely used FRET 

pair. Cy3 fluoresces greenish-yellow with a maxima of 550 nm excitation and 570 nm 

emission, and Cy5 is fluorescent in the red region with a maxima of 650 nm excitation and 

670 nm emission. Maleimide conjugated to the fluorescent dye reacts with a sulfhydryl 
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group of the cysteine on NBD1 to tag the protein with the dye. The maleimide-thiol reaction 

took place as soon as the two fluorophores and purified protein were mixed together. Two 

cysteines at position 491 and 524 exist in NBD1.  As a result, there were three differently 

labeled NBD1 populations: NBD1 molecules labeled with two Cy3s (25%); NBD1 

molecules labeled with two Cy5s (25%); NBD1 molecules labeled with one Cy3 and one 

Cy5 (50%). FRET is impossible to occur in the first two populations since it is lacking the 

necessary fluorophore. When NBD1 is fully folded, the efficient energy transfer happens 

in the NBD1 molecules tagged with both Cy3 and Cy5. The distance between the two 

fluorophores, however, will be beyond the FRET distance range as the protein is unfolded 

(Figure 4.12 B). 
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Figure 4.11: Cartoons Illustrating the Folding State of Protein and the Efficiency of 
FRET Events. When protein is denatured, low FRET efficiency events are observed. As 
protein is fully folded, high FRET efficiency events are seen.  
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Figure 4.12: Wild-Type NBD1 Purification and Labeling. (A) Coomassie blue stain of 
wild-type CFTR-NBD1. (B) The structure of NBD1 and the position of the two cysteines.  
The structure is created from PBD 2BBO. 
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However, as the NBD1 molecules labeled with Cy3 and Cy5 diffused through the detection 

volume, only a low FRET efficiency protein population was observed (Figure 4.13). This 

result indicated that the NBD1 molecules were unfolded. To determine the reason for 

losing high FRET efficiency events, a positive control experiment was performed. 

Interleukin 1 beta (IL-1B) is a cytokine protein consisting of 157 amino acids. Previous 

studies showed that IL-1B remained fully folded after being isolated from E. Coli. In 

addition, IL-1B has two cysteines at position 8 and 71 and the distance between them is ~ 

2 nm (Figure 4.14 A). Thus, IL-1B is perfect for being a positive control protein in this 

study. IL-1B with a His tag at the C-terminus was expressed in E. Coli BL21 (DE3) and 

purified using the same Ni-NTA Agarose (Figure 4.14 B). The FRET pair, Cy3 and Cy5, 

was utilized to label cysteines of IL-1B. High FRET efficiency events were observed 

(Figure 4.14 C), indicating the confocal microscopy system functioned well and the 

missing of high FRET efficiency events in the NBD1 experiment was caused by NBD1 

losing its native structure.  
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Figure 4.13: FRET Efficiency Histograms of NBD1. Only a low FRET efficiency NBD1 
population is seen in this histogram.  
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Figure 4.14: Interleukin 1 beta Structure and FRET Efficiency. (A) Structure of IL-1B 
and the positons of the two cysteines. The structure is created from PBD 3LTQ. (B) 
Coomassie blue stain of purified IL-1B. (C) FRET Efficiency Histograms of IL-1B. A high 
FRET efficiency IL-1B population is seen in this histogram.   
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To understand the reason for NBD1 unfolding, I utilized a different technique to further 

explore NBD1 structure. The secondary structure of NBD1 was determined by circular 

dichroism (CD) spectroscopy. I compared my CD data with published data from a previous 

CFTR-NBD1 publication wherein a similar NBD1 purification approach and CD 

spectroscopy protocol were utilized and the NBD1 molecules were assumed in their native 

folded state. The NBD1 sample was scanned from 195-260 nm. As seen in Figure 4.15, the 

CD spectroscopy curve I measured and the published CD curve have a positive band at 198 

nm and two negative bands at 208 nm and 222 nm. In addition, the overall trend of the two 

curves is the same. This suggests that the purified NBD1 maintains its native secondary 

structure. Combined with the failure of seeing the expected high FRET efficiency NBD1 

population, this indicates that the protein might not maintain its tertiary structure during 

the NBD1 purification process. A more thorough discussion of potential reasons for 

destabilized proteins is in chapter 5. 
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Figure 4.15: Comparison of the NBD1 CD Spectroscopy Data I Recorded with a 
Published One. (A): The wild-type NBD1 CD spectroscopy data I measured. (B): The 
NBD1 CD spectroscopy data from published literature (Reprinted with permission from 
Rabeh, Wael M, et al. Cell 148.1-2 (2012): 150-63.) This literature measured both wild-
type and ΔF508 CFTR CD spectroscopy. We compared the wild-type NBD1 CD 
spectroscopy data in this same literature with the one I measured. 
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4.3 High Resolution Measurement of Membrane Protein Endocytosis 

4.3.1 Principle of This Approach 

We have developed a simple and straight-forward approach with high resolution to 

determine the half-life of protein on the plasma membrane using Dendra2. In response to 

405 nm light, Dendra 2 undergoes irreversible photoconversion that alters the protein from 

emitting green light only to both green and red light when excited by the proper wavelength. 

Dendra2 is a stable and long-lived protein that does not alter the degradation of the fused 

protein2. Protein with Dendra2 tagged at the C-terminus was expressed in HEK 293T cells. 

We manually selected cells expressing membrane protein and photoconverted the 

population of protein residing on the cell membrane using TIRF oriented 405 nm light. As 

seen in Figure 2.8, a population of Dendra2 on the cell surface is fluoresces red after 

photoconversion.  Then, real-time TIRF red fluorescence images were taken to monitor 

PM protein endocytosis. The endocytosis of Dendra2 tagged membrane protein causes the 

red fluorescence to decrease over time. Thus, the half-life of the protein on the PM is 

calculated by quantifying the decay in the red fluorescence over time. As proteins on the 

plasma membrane undergo endocytosis, newly synthesized proteins traffic to the plasma 

membrane at the same time. The new proteins have no influence on the monitoring of the 

red fluorescence since they are not photoconverted and exhibit green emission only. Figure 

2.9 shows that cells were solely fluorescent in the green emission channel before being 

exposed to TIRF 405 nm light, and cells were fluorescent in both green and red emission 

channels after photoconversion. The green fluorescence intensity after photoconversion 

decreased compared with the pre-photoconversion intensity, which attributed to a fraction 
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of the population from green to red fluorophores (Figure 2.8). The representative images 

in Figure 2.9 B were selected from the time-lapse images, showing red fluorescence 

intensity decease over time. The quantified fluorescence intensity over time was plotted 

and fitted to an exponential equation to calculate the half-life of the PM protein. 
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4.3.2 Fluorescent Decay is not Caused by Lateral Diffusion 

We used this approach to measure the half-life of the Epithelial Sodium Channel (ENaC) 

on the plasma membrane where time-lapse TIRF images were taken every 20 min. To 

verify that the loss of fluorescence intensity was due to endocytosis of the membrane 

protein rather than lateral diffusion along the cell surface, we performed control 

experiments with Dynasore, a small molecule dynamin inhibitor of GTPase activity which 

completely inhibits clathrin-mediated endocytosis in eukaryotic cells. Thus, any observed 

red fluorescence decay in the dynasore control experiment was caused by other sources 

such as diffusion of the protein along the cell surface outside of the TIRF field of view. As 

seen in Figure 4.16, a slight decay (less than 15%) is observed after 7 hours when α ENaC 

is treated with dynasore, indicating minimal loss of fluorescence due to diffusion or other 

sources. This indicates that the substantial fluorescence decay observed in the absence of 

dynasore can be attributed to endocytosis. Based on these studies, we assume that lateral 

diffusion has a negligible effect on the observed decrease in red fluorescence intensity.  
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Figure 4.16: Compare Dynasore Treatment with Nondynasore Treatment Α ENaC in 
Terms of Red Fluorescence Decay. Time course of red fluorescence intensity values of 
cells transfected with α ENaC -Dendra2 with or without Dynasore treatment. The values 
at time 0 were normalized. 
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4.3.3 Eliminating the Influence of Endosomes in the TIRF Field of View  

The typical thickness of the plasma membrane is around 10 nm and the size of endosomes 

is in the range of 40-60 nm. TIRF allows us to illuminate fluorophores from the plasma 

membrane up to 150 nm. Thus, not only are the fluorophores on the plasma membrane 

illuminated, but also the endosomes. The fluorescent intensity of the TIRF images includes 

the fluorescence on the cell surface and the fluorescence from the endosomes. One concern 

was if the reduction in fluorescence in Figure 2.9 B was caused by the endosomes moving 

out of the evanescent field or by endocytosis. The final step of endocytosis is that a clathrin-

coated pit must separate from the plasma membrane and move into the cytosol as a coated 

vesicle. Previous studies labeled fluorescent protein on the clathrin to observe the 

movement of single endosomes. Merrifield et al. tagged clathrin with DsRed in a Swiss 

3T3 cell line and tracked the movement of single clathrin-coated pits under TIRF 

illumination and reported that the clathrin-coated structures significantly dimmed after 50 

sec138. Another study showed similar results using AP2, an endocytic adaptor molecule 

which is colocalized with clathrin. Macro et al. labeled AP2 with GFP in Dictyostelium. 

They followed AP2 puncta for 10 minutes under the TIRF illumination. All puncta 

observed to appear on the surface disappeared within 6 minutes, with an average duration 

in the TIRF field of view of 56.3±4.2 seconds139. Merrifield et al. has examined in vivo 

clathrin does not uncoat the endosomes until the endosomes are separated from the plasma 

membrane by several hundred nanometers, which is far more than the depth of TIRF 

illumination138. Thus, the movement of clathrin or Ap2 represents the movement of cargo 

protein in the endosome.  
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In our study, we observed a dramatic fluorescence decrease minutes after the 

photoconversion. The fluorescence drop of the first 20 minutes is far bigger than that of 

the following 20 minutes time intervals. This is potentially caused by the disappearance of 

photoconverted protein in the endosomes. We observed the dot-like structures in the image 

taken right after photoconversion and the disappearance of them in the following images. 

This suggests photoconverted endosomes moving out of the TIRF field of view (Figure 

4.17 A). To account for the loss of fluorescence by endosomes, we collected images with 

a 20 minutes delay after photoconversion. Previous studies showed that endosomes 

disappear from the evanescent field usually within 1-2 minutes after separation from the 

plasma membrane138-141. With this delay, all of the endosomes photoconverted in the TIRF 

field were gone from the following time-lapse images. Thus, the red fluorescence 

disappearance was caused by the endocytosis of protein on the cell surface. The half-life 

of protein was quantified by fitting the curve of fluorescence intensity over time to an 

exponential equation.   
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Figure 4.17: Red Fluorescence Drops Dramatically in the First 20 minutes. (A) 
Example of TIRF images taken at different time points for the same cell. (B) The 
fluorescence intensities of images in (A) are plotted in (B). 

0 20 40 60 80
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

N
o

rm
al

iz
ed

 F
l. 

In
te

n
si

ty

Time (mins)



114 
 

4.3.4 Half-Life of ENaC Subunits on the Plasma Membrane 

Time-lapse images were taken for a total 7 hours with 20 minutes time intervals, meaning 

a single cell would be exposed to TIRF 561 nm light for 22 frames. Therefore, another 

factor we need to consider is the influence of photobleaching on the observed fluorescence 

intensity. A control experiment was performed to eliminate influence caused by laser 

induced photobleaching. In the control studies, a randomly selected cell was 

photoconverted by TIRF 405 nm; then 22 TIRF 561 nm images were acquired with a time 

interval of 1 sec. A ~10-20% fluorescence decay was usually observed in the 22 images 

(Figure 4.18), which is caused by the 561 nm light photobleaching as we assume protein 

endocytosis in this short time is negligible. Thus, it is necessary to remove photobleaching 

influence from the time-lapse images. The fluorescence integrated density of the control 

images was normalized with the first one assumed to be 1. The fluorescence intensities of 

each time-lapse image were divided by that of the corresponding number image in the 

control experiment. The new fluorescence intensities after correction were used for further 

data analysis. 

We measured the plasma membrane half-life of α, β, and γ subunits on their own. The 

subunits on the PM exhibited similar half-life on the cell membrane where α, β, and γ gave 

a half-life of 1.52 h, 1.62 h and 1.49 h, respectively (Figure 4.19). However, when α, β, 

and γ subunits were expressed together, the half-life (2.41h) was significantly longer than 

that of those subunits on its own.  A mutation in the PY motif (PPxY) of β subunit (βY618A) 

is connected with a heritage disease, Liddle’s syndrome, which is caused by the longer 

residing time of ENaC on the cell membrane. The PY motif serves as the binding sites of 
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protein ubiquitin E3 ligase such as nedd4, which ubiquitylates the channel and promotes 

its endocytosis. The single mutation in the PY motif of the β subunit makes protein 

ubiquitin E3 ligase fail to bind to it and disrupts the following endocytosis and degradation. 

The β subunit had 1.62 h half-life on the PM, while the Y618A mutant increased the half-

life to 3.58 h. We also compared the half-life when α and γ were expressed with the mutant 

β. Though a statistically significant increase in the residence time on the cell surface was 

seen, the presence of the other subunits compensated for the effect of the mutation.  The 

half-life of αβY618Aγ was 2.97 h, and the half-life of αβγ was 2.41 h. Figure 4.19 A is the 

plots of red fluorescence intensity values over time. The half-life calculated in Figure 4.19 

B was based on the red fluorescence decay curves of Figure 4.19 A. 
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Figure 4.18: Representative TIRF Images of Photobleaching Control Experiment. 
The control TIRF Images are taken with a 1 second time interval. ~10-20% intensity decay 
is usually observed due to the photobleaching caused by the 561 nm laser. In the 
representative images, a 19% fluorescent intensity decay is seen in frame 22. 
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Figure 4.19: Half-Life of ENaC Subunits on the Plasma Membrane. (A) Time course 
of red fluorescence intensity values of cells transfected with Dendra2 labeled different 
ENaC subunit(s). Values were fitted to a single exponential equation and the values at time 
0 were normalized. (B) Bar diagram of ENaC subunits half-life. Values are average ± SE 
(10-15 cells were measured for each experiment). Two tails t-tests (P=0.05) were 
performed with unequal variance assumed.   
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4.3.5 Both Wild-Type CFTR and ΔF508 CFTR do not Alter ENaC Half-Life 

Previous studies showed that the cystic fibrosis transmembrane regulator (CFTR) 

interacted through scaffold proteins to indirectly regulate ENaC. Inhibited ENaC function 

was seen in the presence of CFTR. One hypothesis contends presence of CFTR may alter 

the residence time of ENaC on the cell surface. Thus, we measured the half-life of ENaC 

in the presence of wild-type CFTR and in the presence of a CFTR mutation (∆F508) that 

prevented it from reaching the cell surface. CFTR wild-type or ∆F508 were co-transfected 

with ENaC in HEK 293T cells. As shown in Figure 4.20, the half-lives of the α subunit 

with CFTR WT and CFTR ΔF508 were 1.49 h, 1.54 h, respectively, which were not 

significantly different from that of the α subunit on its own (1.52 h). We also measured the 

half-lives of αβγ with CFTR wild-type (2.11 h) and CFTR ∆F508 (2.56 h). These results 

were not significantly different from that of αβγ (2.41 h) as well (Figure 4.21). This 

indicates that the bridging scaffold proteins between CFTR and ENaC do not sense the loss 

of CFTR by influencing the residence time of ENaC on the cell surface.  The time course 

of red fluorescence intensity values of the cells expressing Dendra2 labeled ENaC 

subunit(s) with or without CFTR are also shown in Figure 4.20 A and Figure 4.21 A. 
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Figure 4.20: Half-Life of α Subunit on the Plasma Membrane in the Presence of Wild-
Type CFTR or ∆F508 CFTR. (A) Time course of red fluorescence intensity values of 
cells expressing Dendra2 labeled α subunit with or without CFTR. Values were fitted to a 
single exponential equation and the values at time 0 were normalized. (B) Bar diagram of 
α Subunit half-life with or without CFTR. Values are average ± SE (10-15 cells were 
measured for each experiment).  Two tails t-tests (P=0.05) were performed with unequal 
variance assumed.  

0 1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

N
o

rm
al

iz
ed

 F
I. 

In
te

n
si

ty

Time (Hour)

 SCNN1A
 SCNN1A+CFTR WT
 SCNN1A+CFTR DF508



120 
 

A 

 
B 

 
 

Figure 4.21: Half-Life of αβγ ENaC on the Plasma Membrane in the Presence of Wild-
Type CFTR or ∆F508 CFTR. (A) Time course of red fluorescence intensity values of 
cells expressing Dendra2 labeled αβγ ENaC with or without CFTR. Values were fitted to 
a single exponential equation and the values at time 0 were normalized. (B) Bar diagram 
of αβγ ENaC half-life with or without CFTR. Values are average ± SE (10-15 cells were 
measured for each experiment).  Two tails t-tests (P=0.05) were performed with unequal 
variance assumed.  
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CHAPTER 5: DISCUSSION AND CONCLUSIONS 

5.1 Correctors Alter Expression and Trafficking of CFTR 

Recent studies have suggested that multiple therapeutics that target different CFTR 

domains may be used in combination to correct ΔF508-CFTR trafficking and function43, 

142. Previous work has primarily focused on the use of chaperones that can increase protein 

trafficking out of the ER in combination with sensitizers that improve ion channel function 

at the plasma membrane. Much remains to be understood, however, as to the mechanistic 

details of these chemical chaperones. Most reports have primarily hypothesized that the 

compounds act by stabilizing CFTR at different domains or domain-domain interfaces.   

The work presented here suggests that therapeutic small molecules that could stabilize 

ΔF508-CFTR in the ER, interrupting protein degradation, could be used in combination 

with a second compound that facilitates transport out of the ER. The first compound in 

effect would mimic the mechanism that provides the stability conferred by I539T and low 

temperatures. There are thus two distinct mechanisms to improve levels of CFTR on the 

plasma membrane.  

5.1.1 VX-809 Works Synergistically with Temperature and a Second Site Suppressor to 

Traffic ΔF508-CFTR 

In this study we performed real-time experiments to determine the cellular distribution, 

trafficking rates, and action of CFTR in the presence of the corrector molecule, VX-809, 
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alone and in combination with conditions known to stabilize ΔF508-CFTR. Using TIRF, 

we measured the distribution of CFTR between the PM and the peripheral ER, and clearly 

showed that 75% of wild-type CFTR was present on the PM and very little was located in 

the peripheral ER. We were unable to detect any ΔF508-CFTR at 37 °C on the PM, 

indicating that all of the protein was in the ER. We did observe clear temperature dependent 

changes in PM ΔF508-CFTR and ΔF508-CFTR containing the second site suppressor 

mutation. In both cases, approximately 30% of the protein visible in TIRF was located on 

the PM. This suggests that these conditions are able to stabilize the protein, protecting it 

from degradation and moderately shifting distribution to the cell surface.  

The TIRF measurement was restricted to protein within 200 nm of the cell surface, so does 

not represent total protein within the cell. It does, however, demonstrate large differences 

in distribution between the peripheral ER and PM for wild-type and mutant CFTR. 

Traditionally, comparison of core glycosylated and complex glycosylated protein via 

western blot has been used to determine distributions between protein in the ER and protein 

that has trafficked out of the ER. However, complex glycosylation does not mean that the 

protein has been inserted into the plasma membrane. The PM insertion was directly 

visualized by utilizing SEP emission in this study.  

Electrophysiology measurements of CFTR function compare fully functional wild-type 

and defective CFTR, which has been shown to exhibit temperature dependent functional 

properties. In contrast to individual channel function measurements, the trafficking studies 

presented here directly quantify protein populations. In the presence of VX-809, a clear 

shift of the protein from the ER to the PM was observed for low temperature ΔF508 and 
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ΔF508/I539T, with approximately 60% of the visible protein on the cell surface. This 

suggests that low temperature and second site suppressors are capable of creating an 

export-ready pool of CFTR in the ER that VX-809 can act on. This export-ready pool is 

likely to be more stable, but not stable enough for ER export without VX-80952.  

In our studies it appears that VX-809 acts synergistically with other stabilizing conditions, 

increasing the amount of PM protein from less than 10% to 40% of wild-type levels. At 37 

°C, VX-809 results in approximately 10% of wild-type levels of protein on the cell surface. 

In the absence of VX-809, low temperatures led to 5-10% of wild-type levels.  If these 

effects were additive, we would expect to see 15-20% of wild-type levels. This study is the 

first to report on the synergistic activity of the second site mutation (I539T), and further, 

provides an imaging approach to directly measure protein populations in different sub-

cellular locals. The disparity between this finding and previous measurements using 

electrophysiology and western blots which showed additive effects is likely because these 

prior reports were not directly measuring the amount of cell surface protein.  

We also examined the total amount of protein on the cell surface for several other 

conditions. Similar to studies by other groups, our data showed that at 37 °C VX-809 

increased the trafficking of ΔF508-CFTR to approximately 10% of wild-type levels. When 

we reduced the temperature (30 °C) to stabilize the protein through thermal effects, we 

observed approximately 10% of wild-type levels. The biochemical approach to 

stabilization using ΔF508/I539T yielded similar levels (10% of wild-type) at 37 °C. 

However, we saw a marked increase in the level of mutant CFTR at the surface when either 

of the stabilizing conditions (reduced temperature or I539T) was combined with VX-809. 
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Interestingly, the combination of low temperature and the I539T mutation did not alter the 

levels of ΔF508 beyond what was seen separately with low temperature or the secondary 

mutation. These results suggest that the second site mutation and lowered temperature work 

via the same mechanism and each induces a maximal effect, while the chemical chaperone 

functions through a complementary process. 

The lack of temperature correction for ΔF508/I539T suggests that low temperature assists 

the protein to adopt a similar, partially stable conformation as seen with I539T. In contrast, 

the ΔF508 defect appears to be partially restored through manipulation of temperature. A 

synergistic increase in PM ΔF508-CFTR occurred when temperature manipulation or the 

second site suppressor mutation were combined with VX-809. Combined with the 

subcellular distribution measurements, this again points to a mechanism where VX-809 

could be acting on a stabilized pool of CFTR that is protected from degradation, but unable 

to traffic efficiently in the absence of a chemical chaperone. This is supported by our 

observation that for both the second site suppressor and low temperature that in the 

presence of VX-809 the distribution of CFTR shifts significantly toward the plasma 

membrane. In the absence of the compound 25-30% of CFTR is on the plasma membrane 

within in our assay. In the presence of compound this shifts to 55-60% indicating a release 

of protein from the ER to the plasma membrane.  

In order to determine the distribution of the stabilized ΔF508-CFTR, we also quantified 

the amount of ΔF508-CFTR in the vesicles and the Golgi complex, where SEPs are not 

visible in the pH studies. The integrated density (ID) of CFTR in the vesicles was quantified 

by measuring the difference between ID measured in the presence and absence of NH4
+. 
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This experiments were performed for HEK 293T cells expressing I539T/ΔF508-CFTR. 

I539T/ΔF508-CFTR showed an approximately 10-fold vesicle ID increase compared to 

wild-type CFTR, which corresponded to 10 times the amount of wild-type CFTR in the 

vesicles. This further supports the hypothesis we made that the second site suppressor 

I539T stabilizes ΔF508-CFTR in ER. Furthermore, the stabilized ΔF508-CFTR is not only 

located in ER, but also in the trafficking vesicles. Now it is clear that a large population of 

ΔF508-CFTR stabilized by the second site suppressor I539T is located in the Golgi 

complex and the trafficking vesicles, while the stabilized ΔF508-CFTRs fail to reach the 

cell membrane.  

5.1.2 The Immunomodulatory Mechanism of AZM is Different from That of Either 

Reduced Temperature or VX-809 

Azithromycin (AZM) is a macrolide antibiotic, which was initially used to treat 

inflammation for CF patients. Later, it was reported that azithromycin had both 

immunomodulatory and anti-inflammatory properties that were able to reduce the lung 

damage associated with CF. In this dissertation, the influences of AZM on CFTR 

distribution and cell surface expression were quantified using TIRF microscopy. AZM 

shifted I539T/ΔF508-CFTR distribution from the ER to the PM and improved 

I539T/ΔF508-CFTR cell surface expression. However, when AZM was combined with the 

reduced temperature or VX-809, the conjugated treatment did not alter I539T/ΔF508-

CFTR distribution or cell surface expression compared to reduced temperature or VX-809 

on its own. As we have seen in our previous results, I539T/ΔF508-CFTR is stabilized in 

the reduced temperature condition and thus additional trafficking promotors like VX-809 
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strongly facilitate I539T/ΔF508-CFTR traffic from the ER to the cell surface. However, in 

the AZM study, the improvement caused by AZM is not addable with that resulted from 

reduced temperature. Hence, we infer that AZM does not promote the trafficking of 

I539T/ΔF508-CFTR to the cell surface. On the other hand, when I539T/ΔF508-CFTR was 

treated with a trafficking promotor VX-809, the additional AZM did not make significant 

changes in I539T/ΔF508-CFTR distribution and cell surface expression. Therefore, AZM 

is not capable of stabilizing I539T/ΔF508-CFTR in ER, either. Similar observations were 

seen when ΔF508-CFTR was treated with AZM. The immunomodulatory mechanism of 

AZM is different from that of either reduced temperature or VX-809.  

5.1.3 No Additional Influence of VX-770 on ΔF508-CFTR Observed 

The FDA approved drug VX-770 is a CFTR potentiator, which has been known to facilitate 

CFTR channel activities by directly binding to the channel to induce a non-conventional 

mode of gating which increases the channel open probability68, 70-71. Now it is used 

combined with VX-809 for the treatment of CF patients with the ΔF508 mutation. In this 

study, the effect of VX-770 on CFTR distribution and cell surface expression was 

quantified using TIRF microscopy. VX-770 neither altered VX-809 corrected ΔF508-

CFTR distribution nor cell surface expression. Similarly, no statistical change was seen in 

the AZM corrected ΔF508-CFTR distribution or cell surface expression in the presence or 

absence of VX-770. No influence of VX-770 on CFTR trafficking was observed. Hence, 

VX-770 is only known to promote CFTR channel activities.  
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5.1.4 A Range of Temperatures Stabilize ΔF508-CFTR and are Differentially Affected 

by VX-809 

While standard low temperature experiments with ΔF508-CFTR use 27 °C, we found that 

intermediate temperatures between 27 °C and 37 °C were as good or better at stabilizing 

the mutant protein. While at 37 °C we observed no detectable ΔF508-CFTR on the PM, 

just a 3 °C reduction in the temperature results in the detection of 10% of wild-type levels. 

Lower temperatures (27-32 °C) did not further improve trafficking. This suggests that a 

moderate change in temperature is sufficient to stabilize mutant CFTR to assume a 

conformation that is partially export-ready, and that further reduction in temperature does 

not assist the protein in assuming a more stable conformation or does not increase the pool 

of mutant CFTR that obtains a stable conformation. Thus, increasing stability by reducing 

the temperature to 34 °C represents a thermodynamic plateau. 

The addition of VX-809 also showed that intermediate temperatures were superior for the 

synergistic effect of temperature and drug to 27 °C. A 2 to 4 °C reduction in temperature 

yielded an increase to roughly 10% of wild-type in the absence of the compound, but when 

the compound was added these same temperatures yielded near 40% of wild-type. The 

same conditions at 27 °C showed less than 30% of wild-type. The results were even more 

striking for I539T/ΔF508-CFTR. This further supports the idea that reduced temperature 

or second site suppressor mutations result in a high degree of stabilization, but little 

trafficking.  
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5.1.5 Changes in PM CFTR Levels are Related to Differences in Trafficking Rates 

Increases in cell surface numbers could result from changes in trafficking or from changes 

in residence time on the plasma membrane. To differentiate these two possible 

mechanisms, we performed a set of experiments to quantify the arrival of CFTR to the cell 

surface. We quantified trafficking rates by counting the number of insertion events and 

determined the number of channels in vesicles by the average emission intensity. Figure 

4B shows that wild-type CFTR traffics at roughly twice the rate seen for ΔF508/I539T in 

the presence of VX-809. This matches the differences observed in surface protein levels, 

suggesting that I539T and VX-809 alter surface levels by increasing trafficking rates. This 

may be due to an increase in the percentage of stable protein that is trafficking ready. 

Overall, these studies show that certain conditions that stabilize ΔF508-CFTR, specifically 

low temperature or the introduction of a secondary mutation, result in an increase in the 

population of protein that can be corrected by VX-809, resulting in higher levels of CFTR 

at the PM than the sum of the conditions alone. This is consistent with a mechanism where 

low temperature or key mutations increases a stable pool of ΔF508-CFTR in the ER that is 

more resistant to degradation but not fully export-ready. The interaction of VX-809 with 

this stable pool leads to the synergistic effects observed in these studies. As seen in recent 

clinical trials, existing therapeutics such as VX-809 can partially correct the trafficking of 

ΔF508-CFTR, but on their own are not sufficient to eliminate the majority of CF 

symptoms. However, therapeutics that could achieve the levels of correction seen with the 

combination of I539T and VX-809 in this study would be sufficient to eliminate the 

majority of CF related symptoms143. This suggests that a 2 step therapeutic approach might 
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be an ideal treatment for CF. The first step would be composed of a compound that mimics 

the mechanism of stabilization provided by low temperature or the I539T mutation, while 

the second step would be VX-809 or a similar corrector compound. These studies suggest 

that understanding how low temperature and second site suppressors alter ΔF508-CFTR 

could be key to the development of future therapeutics for the effective treatment of CF.  

5.2 Single-Molecule FRET to Study NBD1 Structure 

The fundamental cause of ∆F508 related cystic fibrosis is that the deletion of phenylalanine 

in position 508 affects the proper folding of CFTR and alters its stability. Understanding 

the detailed wild-type CFTR folding and ∆F508-CFTR misfolding actions will be greatly 

beneficial to the development of CF therapies. Single molecule techniques offer new access 

to information unavailable from bulk measurements such that it is capable of providing 

dynamic information at the single molecule resolution. By combining fluorescence 

correlation spectroscopy (FCS) with single molecule techniques, it is not necessary to 

immobilize protein molecules on a glass surface, which is required for TIRF-single 

molecule measurement with the downside of altering the native properties of protein 

molecules. Whereas, protein molecules can diffuse freely in solution in the FCS-single 

molecule study with no external force. Therefore, the native properties of protein molecules 

are best maintained.  

Previous CFTR studies usually monitored CFTR in cells, which provided essential 

information for CFTR expression, distribution, channel activities and degradation. Protein 

in cells maintains its native properties and exhibits real response to external stimuli. 
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However, in that case, measurements can only be taken at single cell resolution. Single 

molecule studies require the isolation of protein molecules from the cell. The isolated 

molecules provide more straight forward responses upon external stimuli. The single 

molecule NBD1 project goal was to directly collect structural information from isolated 

NBD1. In this study, NBD1 molecules were tagged with a FRET pair Cy3 and Cy5 on the 

sites of two cysteines. As the protein is denatured, the distance between the two 

fluorophores is not in the FRET distance range (1-10nm)99, 105. As a result, the energy 

transfer between the FRET pair is not efficient, and thus only low FRET efficiency events 

are observed. With the protein fully folded, the two-fluorophore distance is reduced and 

high FRET efficiency events are observed. As a single protein molecule labeled with a 

FRET pair freely diffuses through the detection volume of confocal microscopy, a single 

fluorescent burst is captured and gives rise to a FRET efficiency, E. Thousands of 

fluorescent bursts are accumulated and a histogram of efficiencies of those FRET events is 

plotted resolving the folded and unfolded protein subpopulations. 

However, only low FRET efficiency events were observed in my study, suggesting NBD1 

molecules failed to maintain its tertiary structure. To determine the reason of losing high 

FRET efficiency events, a positive control experiment with interleukin 1 beta (IL-1B) was 

performed. IL-1B is a cytokine protein consisting of 157 amino acids and it is capable of 

maintaining its fully folded structure in the isolated condition. In addition, the existence of 

two cysteines in IL-1B makes it a perfect protein for the positive control experiment. IL-

1B showed a high FRET efficiency population, which demonstrated the confocal 

microscopy system functioned well. Thus, the low FRET efficiency population we saw in 

the NBD1 study indicated the NBD1 molecules were unfolded. The reason could be: (1) 
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other CFTR domains are required to initiate NBD1 folding or to maintain its fully folded 

state; (2) the protein purification protocol I used may not be ideal for NBD1 isolation.  

The presence of other CFTR domains might be required for NBD1 folding. Previous CFTR 

studies had successfully purified the whole human CFTR and zebrafish CFTR57, 144-145. The 

channel function of isolated whole CFTR was verified, which demonstrated that the whole 

CFTR was capable of maintaining its folded state in the isolated condition144. It has been 

demonstrated that domain-domain interactions are essential for CFTR folding. The 

deletion of phenylalanine at position 508 disrupts the proper interactions as Phe508 

provides hydrophobic contacts for domain-domain interactions that are indispensable for 

stabilization of  CFTR146. As the CFTR single domain study is very limited so far, it is still 

obscure if the existence of other CFTR domains is demanded for the proper NBD1 folding 

or maintaining its folded state. Further CFTR domain interactions information is necessary 

to answer the question, which provides a direction for the future CFTR research.  

There is another possibility that NBD1 was fully folded in E Coli but lost its native 

conformation during the protein purification process. The NBD1 purification protocol was 

reproduced from a previous publication (Rabeh, Wael M, et al. Cell 148.1-2 (2012): 150-

63.). I compared my circular dichroism (CD) data with a published CD curve wherein a 

similar NBD1 purification approach and CD spectroscopy protocol were utilized and the 

NBD1 molecules were assumed in their native folded state. The two CD curves both 

exhibited a positive band at 198 nm and two negative bands at 208 and 222 nm. In addition, 

the overall trend of the two curves were the same. If the CD data in that publication revealed 

NBD1’s native secondary structure, it was reasonable to claim that the NBD1 in my study 
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maintained its secondary structure. That literature, however, neither showed the tertiary 

structure of the isolated NBD1 nor demonstrated its folding state. Thus, there is a possibity 

that the isolated NBD1 they measued lost its folded state during the purfication process. 

Since we cannot validate the realiblity of the NBD1 purfication protocal, it is possible to 

be the reason causing NBD1 unfolding. The NBD1 purification protocol might need to be 

modified to stabilize NBD1 and maintain  its native state.  

5.3 High Resolution Measurement of Membrane Protein Endocytosis 

The precise pathology of cystic fibrosis is not well studied with many unanswered 

questions. The involvement of another transport protein, epithelial sodium channel 

(ENaC), makes the situation more complicated. ENaC and CFTR are colocalized on the 

apical surface of epithelia cells and have tissue specific functional interactions. The 

presence of CFTR reduced the Na+ current in the airways, while it increased ENaC-

mediated sodium transport in the sweat duct147-149. In addition, when CFTR and ENaC were 

co-expressed in oocytes cells, reduced functional expression of ENaC was observed even 

before activation of CFTR150. Therefore, the CFTR-ENaC interaction is an interesting topic 

to study. Previous studies mostly showed the presence of CFTR altered the channel 

activities of ENaC. With our fluorescence microscopy techniques, we would like to explore 

the effects of CFTR on the residence time of ENaC on the cell membrane. The approaches 

currently used to determine protein half-life showed discrepant measured ENaC half-lives. 

Yu et al did single-channel analysis of ENaC to quantify the half-life of ENaC and reported 

that the average half-life of ENaC in CHX-treated cells was 1.45± 0.24 h, while it was 

3.28± 0.89 h with the puromycine treatment 125. Additionally, these techniques suffer from 
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low temporal resolution of membrane protein half-life and can be low throughput. 

Therefore, an approach with high temporal resolution is highly needed.  

We developed a new approach to quantify the half-life of protein on the cell surface, 

through labeling the protein with the photoconvertible fluorescent protein, Dendra2. 

Previous studies demonstrated the application of Dendra2 to study the protein degradation 

in the cytoplasm utilizing confocal microscope 151. However, it could not be applied to 

study protein on the plasma membrane due to the confocal microscopy visualization 

limitation. In this dissertation, we extended the application of Dendra2 to monitor protein 

on the plasma membrane by utilizing TIRF microscopy, which makes it possible to limit 

the visualization to a narrow region near the plasma membrane.  

Using this approach, we measured the half-life of different ENaC subunits and mutations. 

Typically, ENaC on the cell membrane turns over rapidly, with a reported half-life of ~40-

120 min in cultured cells 152-155. The half-life we measured for ENaC α, β, γ subunits were 

1.52 h, 1.62 h, and 1.49 h, respectively, indicating near identical stability on the plasma 

membrane. When α, β, γ subunits coexpressed together, the half-life increased to ~2.41h.  

The heterotrimic ENaC structure exhibited increased stability on the plasma membrane 

compared with homo trimer. Additionally, it has been reported that the mutation in the PY 

motif of β subunit results in a longer half-life on the membrane156. Our observations were 

consistent with this. The 3.58 h half-life of βY618A was more than two-fold of that of β wild-

type. However, the residence time of α, γ subunits coexpressing with βY618A (~2.97h) was 

just slightly longer than that of α, γ subunits with wild-type β subunit (~2.41h). In a homo 

trimer, the mutation is sufficient to disrupt interactions with cellular machinery responsible 
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for the endocytosis of ENaC, while the presence of the other subunits appears to 

compensate for the effect of the mutation.  

To determine the influence of CFTR on the half-life of ENaC subunits, we also measured 

the half-lives in the presence of CFTR WT or ∆F508. The half-life we measured for ENaC 

α in the presence of CFTR WT and ∆F508 were 1.49 h, and 1.54 h, which were not 

statistically different from that of α ENaC subunit alone (1.52 h). Similar results were seen 

for the co-expressed α, β, γ subunits that the presence of wild-type or ∆F508 CFTR did not 

alter the half-life of α, β, γ heterotrimer ENaC. The presence of CFTR has influences on 

the channel activities of ENaC, while, it fails to alter the half-life of ENaC on the cell 

membrane. As the CFTR-ENaC interaction mechanism is still not fully understood, future 

studies could be developed to determine if the changing of ENaC function in the presence 

of CFTR is caused by changes of ENaC trafficking and cell surface expression, which can 

be studied using the SEP pH approach.  

Although the CFTR-ENaC interaction is not resolved, apparent advantages of the proposed 

methods should be noted. This approach has a simple and straight forward experimental 

procedure. Time-lapse images of individual cells were automatically taken with a program 

set up, which not only saved time but also made it possible to take as many as data 

points(images) as needed. The currently used techniques such as biotinylation-western 

blotting, radioactive pulse-chase and electrophysiology approach have complicated 

experimental procedures, which limits number of data points taken and thus limits the 

temporal resolution. Hence, our method has a much higher temporal resolution compared 

to the current approaches. On the other hand, we avoid the errors caused by compounds 
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that may alter cellular metabolism. Protein translation inhibitor or trafficking inhibitor is 

required in the electrophysiology related approaches. The additional compounds may 

strongly affect cellular metabolism and have influences on the protein half-life 

measurement. In contrast, our technique does not require them, and avoids the errors 

caused by that. Our method provides a unique opportunity to observe real-time protein 

turnover at the single cell level without addition of protein synthesis inhibitors. This 

technique will be extremely valuable for studying the protein half-life on the cell 

membrane. 

The work in this dissertation provides strong evidence for a synergistic effect of VX-809 

with either reduced temperature or the second site suppressor I539T. The increase in the 

population of CFTR on the cell surface is not sufficient to eliminate the majority of CF 

related symptoms when ΔF508-CFTR is treated with VX-809, reduced temperature or 

I539T alone. However, the levels of correction seen with the combination of I539T and 

VX-809 in this study would be adequate for the CF symptoms elimination.  Therefore, we 

proposed a two steps therapeutic approach that the first step would be a compound that 

mimicked the mechanism of stabilization provided by low temperature or the I539T 

mutation, and the second step would be VX-809 or a similar corrector compound. This 

proposed approach provides a direction for the future CF drug development. Further CF 

research could focus on the mechanism of reduced temperature and I539T, as well as 

screening compounds that mimic the mechanism of reduced temperature or I539T.  

In this dissertation, we also developed a new method to measure the half-life of protein on 

the cell membrane with less labor intense but much higher temporal resolution. It changes 
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the situation that all half-life measurements suffer from low temporal resolution and are 

even influenced by the errors resulting from additional compounds.  Our method can be 

expanded to a variety of classes of membrane proteins. For instance, this technique can be 

employed to study the stability of CFTR on the cell surface. Ideally, this technique will 

impact research related to any membrane protein half-life studies.  
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