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ABSTRACT OF DISSERTATION 

 

 

CLASSIFYING SOIL MOISTURE CONTENT USING REFLECTANCE-BASED 

REMOTE SENSING 

 

 

The ability to quantify soil moisture spatial variability and its temporal dynamics 

over entire fields through direct soil observations using remote sensing will improve early 

detection of water stress before crop physiological or economic damage has occurred, and 

it will contribute to the identification of zones within a field in which soil water is depleted 

faster than in other zones of a field. 

The overarching objective of this research is to develop tools and methods for 

remotely estimating soil moisture variability in agricultural crop production. Index-based 

and machine learning methods were deployed for processing hyperspectral data collected 

from moisture-controlled samples.  

In the first of five studies described in this dissertation, the feasibility of using “low-

cost” index-based multispectral reflectance sensing for remotely delineating soil moisture 

content from direct soil and crop residue measurements using down-sampled spectral data 

were determined. The relative reflectance from soil and wheat stalk residue were measured 

using visible and near-infrared spectrometers. The optimal pair of wavelengths was chosen 

using a script to create an index for estimating soil and wheat stalk residue moisture levels. 

Wavelengths were selected to maximize the slope of the linear index function (i.e., 

sensitivity to moisture) and either maximize the coefficient of determination (R2) or 

minimize the root mean squared error (RMSE) of the index. Results showed that 

wavelengths centered near 1300 nm and 1500 nm, within the range of 400 to 1700 nm, 

produced the best index for individual samples; however, this index worked poorly on 

estimating stalk residue moisture.  

In the second of five studies, 20 machine learning algorithms were applied to full 

spectral datasets for moisture prediction and comparing them to the index-based method 

from the previous objective. Cubic support vector machine (SVM) and ensemble bagged 

trees methods produced the highest composite prediction accuracies of 96% and 93% for 



 

 

silt-loam soil samples, and 86% and 93% for wheat stalk residue samples, respectively. 

Prediction accuracy using the index-based method was 86% for silt-loam soil and 30% for 

wheat stalk residue.  

In the third study, a spectral measurement platform capable of being deployed on a 

UAS was developed for future use in quantifying and delineating moisture zones within 

agricultural landscapes. A series of portable spectrometers covering ultraviolet (UV), 

visible (VIS), and near-infrared (NIR) wavelengths were instrumented using a Raspberry 

Pi embedded computer that was programmed to interface with the UAS autopilot for 

autonomous reflectance data acquisition. A similar ground-based system was developed to 

keep track of ambient light during reflectance target measurement. The systems were tested 

under varying ambient light conditions during the 2017 Great American Eclipse. 

In the fourth study, the data acquisition system from the third study was deployed 

for recognizing different targets in the grayscale range using machine learning methods 

and under ambient light conditions. In this study, a dynamic method was applied to update 

integration time on spectrometers to optimize sensitivity of the instruments. It was found 

that by adjusting the integration time on each spectrometer such that a maximum intensity 

across all wavelengths was reached, the targets could be recognized simply based on the 

reflectance measurements with no need of a separate ambient light measurement. 

Finally, in the fifth study, the same data acquisition system and variable integration 

time method were used for estimating soil moisture under ambient light condition. Among 

22 machine learning algorithms, linear and quadratic discriminant analysis achieved the 

maximum prediction accuracy. 

A UAS-deployable hyperspectral data acquisition system containing three portable 

spectrometers and an embedded computer was developed to classify moisture content from 

spectral data. Partial least squares regression and machine learning algorithms were shown 

to be effective to generate predictive models for classifying soil moisture. 

 

KEYWORDS: Remote sensing, Spectroscopy, Soil moisture, Machine learning, 

Unmanned aircraft system, Ambient light calibration. 
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  INTRODUCTION 

Agricultural irrigation management is increasingly becoming a vital factor to 

supply enough food to a growing population. Irrigation – as the primary fresh water 

consumer – has a large influence on water shortage issues (Gleick, 2003).The development 

of irrigation and nutrient management practices for food production has resulted in 

substantial increases in crop yield, accounting for over 80% of the gains in the global 

supply of wheat, rice, and corn since the 1960s (Cassman, 1999). Nearly 23 million 

hectares of land were irrigated in the U.S. during 2012, accounting for 31% of total U.S. 

freshwater use (USDA, 2015).  

Novel technologies, such as variable-rate irrigation, help to control water usage and 

result in more efficient irrigation than traditional methods (O’Shaughnessy et al., 2015; 

Yari et al., 2017). To spatially implement variable-rate irrigation, a prescription map 

containing information about the actual water status of the field is needed (Buck et al., 

2016). Many of the smart irrigation systems available for scheduling water application rely 

on either soil water holding capacity maps or low spatial resolution sub-soil sensor 

networks (Yule et al., 2008). Both methods may not be optimized, particularly in instances 

where the sensing technology is not spatially matched with the application technology. 

Increasing the spatial resolution of intensive management practices requires the 

optimization of inputs and can reduce the overall level of inputs required to produce the 

same output (Raun et al., 2002). High spatial resolution methods (10 m grid or smaller) for 

identifying water stress typically involve the use of remote sensing of a crop canopy using 

combinations of visible and near-infrared (Peñuelas et al., 1997) or thermal infrared 

sensing (Carlson et al., 1981; Nemani & Running, 1989). Traditional deployments include 
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satellite, conventional aircrafts, and ground-based sensors but are limited in terms of cost, 

temporal, and spatial resolution. 

Remote sensing is useful for obtaining field-scale and site-specific information 

about the drought status in a field and generating near real-time irrigation prescription 

maps. Reflectance-based remote sensing is a potential method for quantifying soil moisture 

and delineating moisture management zones. Several studies have focused on using visible, 

multispectral, or hyperspectral cameras mounted on drones to evaluate crop/soil status at 

high spatial resolutions. This technology has received much attention in the past few 

decades for identifying the spatial variability (or behavior) ofwater stress in agricultural 

applications (Atzberger, 2013; Bernardes et al., 2012; Carlson et al., 1981; Doraiswamy et 

al., 2005; Nemani & Running, 1989; Peñuelas et al., 1997; Thenkabail et al., 2014). In 

many applications, the crop was the visual target for indirectly measuring soil or crop 

parameters. However, there may still be useful information available from direct soil 

reflectance measurements. The ability to quantify soil moisture variability and its temporal 

dynamics over entire fields through direct soil observations using remote sensing will 

improve early detection of water stress before crop physiological or economic damage has 

occurred, and it will contribute to the identification of zones within a field where soil water 

is depleted faster than in other zones. 

A common way of applying remote sensing in a field is to select a couple of narrow-

band ranges of wavelengths with the potential to provide a sufficiently accurate estimation 

of a field parameter based on reflectance values. Combinations of these narrow-band 

ranges are used to compute indices that are correlated with crop and soil parameters. For 

instance, the normalized difference vegetation index (NDVI), which is typically a 
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combination of red and near-infrared bands, is one of the most ubiquitous remote sensing 

indexes in agriculture for predicting field parameters correlated to crop vigor. The 

normalized difference water index (NDWI), which typically replaces one of the NDVI 

bands with a water-absorption band in the near-infrared range, has been shown to be a 

better performing index than NDVI for estimating water stress (Gao, 1996; Gu et al., 2007). 

A limited number of narrow-band wavelengths are used for index generation to 

reduce sensor cost and complexity. However, by relying on only one or two wavelengths 

for parameter estimation, information which can be extracted from other wavelengths are 

ignored. On the processing end, building the model to extract information from 

hyperspectral data is computationally intense, but it is not necessarily cost prohibitive and 

it has little bearing on cost once the model for estimating a crop or soil parameter has been 

developed. 

In recent years, new approaches and algorithms (e.g. machine learning algorithms) 

have been developed and are well suited for handling big datasets with many input 

variables. Learning algorithms are regularly used in daily life, frequently without being 

noticed. Learning algorithms try to mimic how the human brain learns by recognizing 

patterns and rules in a dataset (Jensen et al., 1999). A computer is given a dataset containing 

a large number of input variables and samples. The response variable value for each set of 

variables and samples is also known. In this way, a learning algorithm tries to “understand” 

how a set of inputs produces a specific output. By recognizing patterns in a training dataset, 

an algorithm is trained and can be used to classify new samples. An advantage of this 

method is that it enables computers to be trained by learning from experiences without 

being explicitly programmed using an analytical model or simple empirical model. The 
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algorithm performance generally increases by experiencing more samples, assuming the 

samples accurately represent the modeled process. 

Machine learning is a widely-used technology, and in the last decade, it has been 

applied to remotely sensed data in the agricultural domain. Specific examples include 

drought assessment using MODIS and AVIRIS satellite data (Park et al., 2016; Trombetti 

et al., 2008), forecasting vegetation health using MODIS satellite data (Nay, Burchfield, & 

Gilliganc, 2016), estimating LAI index using MODIS and CYCLOPS (Verger et al., 2008) 

and Landsat ETM+ satellite data (Walthall et al., 2004), weed detection using manual RGB 

imagery (visible light imagery comprised of red, green, and blue pixels) on the ground 

(Cho et al., 2002; Jafari et al., 2006) and multispectral and RGB imagery on a UAS (Koot, 

2014), and plant classification using hyperspectral and RGB images (Moreno et al., 2014). 

Traditional deployments of remote sensing include satellite and conventional 

aircraft, but are limited in terms of cost, temporal resolution, and spatial resolution. 

Unmanned aircraft systems (UAS), or drones, are relatively new tools for collecting remote 

sensing data in agricultural applications (Chrétien et al., 2015; Pádua et al., 2017). In one 

study, traditional methods of remote sensing, including satellites and manned aircraft 

systems, were compared to a UAS method. It was concluded that UAS were more cost-

effective in small fields and UAS were shown to have the potential to provide higher spatial 

precision data (Matese et al., 2015). 

Spectral reflectance data collected using UAS are increasingly used in research to 

estimate different soil and crop parameters. Example applications of UAS-based remote 

sensing in the agricultural domain include estimating soil fertility (Bajwa & Tian, 2005), 

generating vegetation indices (Berni et al., 2009; Candiago et al., 2015), assessing tree 
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crowns for breeding applications (Díaz-Varela et al., 2015), yield estimation (Geipel et al., 

2014), plant classification (Hung et al., 2014), weed detection (Koot, 2014), and controlling 

herbicide applications (Xiang & Tian, 2011). 

Advances in spectrometer development have led to more portable systems, or 

micro-spectrometers, that are particularly suitable for UAS deployment due their small size 

and mass. One study showed that measurements from UAS-deployed micro-spectrometers 

were highly correlated with parameters measured at ground level and concluded that the 

UAS platform could provide a faster method for spectral data collection compared to 

traditional remote sensing methods (Burkart et al., 2014). Nevertheless, calibrating these 

sensors for various ambient light conditions and avoiding saturation are challenges needed 

to be dealt with. Field spectrometers are mostly limited to data collection in a specific 

period and ambient light condition (Damm et al., 2011; Gao et al., 2002, 2004; Guanter et 

al., 2006). Using reference tarps is another common approach for compensating against 

ambient light changes. A measurement from tarps needs to be taken for each measurement 

from a land target to continuously keep track of ambient light changes (Shanahan et al., 

2001). But since it is practically difficult, especially for large field scales, only a few 

measurements from tarps can be taken during the data collection process. An alternative 

method is to use a second sensor for measuring ambient light spectra while measuring 

reflectance (Burkart et al., 2014; Von Bueren et al., 2015).  

In spite of all efforts have been made on this area, a low-cost hyperspectral system 

for estimating soil moisture at different ambient light condition is desired. This system 

should provide a highly accurate prediction model while the model is kept computationally 

simple for a common processor. Hence, developing a hyperspectral data acquisition system 
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coupled with a data processing method for estimating soil moisture from a UAS platform 

and under ambient light conditions will lead to more efficient field monitoring and 

irrigation management.  

1.1 PROJECT OBJECTIVES 

The overarching objective of this research is to develop tools and methods for 

remotely estimating soil moisture variability at a pilot scale in agricultural crop production. 

The proposed study aims to integrate spectral data collected using a UAS-deployed 

spectrometer with ground reference sampling to determine the ability to predict soil 

moisture measurements. Specific objectives include to: 

  

1. Determine the feasibility of using “low-cost” index-based multispectral reflectance 

sensing for remotely delineating soil water content from direct soil and crop residue 

measurements from down-sampled spectral data. 

2. Apply machine learning algorithms to full spectral datasets for moisture estimation 

and comparing to index-based method from previous objective. 

3. Instrument a series of portable spectrometers and integrate into an unmanned 

aircraft system for autonomous data collection. 

4. Recognize different reflectance targets in the greyscale range by compensating 

against ambient light changes using variable integration time during data collection 

and machine learning for post processing.   

5. Testing the capability of the data acquisition system and predictive models 

generated by machine learning algorithms to estimate soil moisture under ambient 

light condition.  
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1.2 ORGANIZATION OF THESIS 

This dissertation is organized in seven chapters. Chapter 1 establishes a broad 

background information and the general rationale of this research along with specific 

research objectives. Chapter 2 describes the feasibility of using a customized index-based 

multispectral reflectance sensing for remotely delineating soil and crop residue water 

content. Chapter 3 provides a comparison between multiple machine learning methods and 

an index-based estimation from the hyperspectral dataset collected under controlled-light 

conditions. Chapter 4 describes the process of instrumenting a series of portable 

spectrometers and integrating it into an unmanned aircraft system for autonomous data 

collection. Also, the system evaluation during the 2017 Great American Eclipse is included 

in this chapter. Chapter 5 describes a study for testing an approach with constant changing 

of integration time of reflectance spectrometers for recognizing reflectance targets painted 

with different colors in grayscale range. Also, it shows the optimal method for calibrating 

reflectance measurements. Chapter 6 takes results from the previous study into account and 

demonstrates the capability of the data acquisition system in estimating soil moisture under 

ambient light conditions. Also, prediction accuracy of models generated using multiple 

machine learning algorithms are evaluated. Chapter 7 concludes major findings from the 

present research and discusses the future work.  

The research presented in this dissertation is either published or submitted for 

publication in peer-reviewed scientific journals: 

1. Hamidisepehr, A., Sama, M. P., Turner, A. P., & Wendroth, O. O. (2017). A 

Method for Reflectance Index Wavelength Selection from Moisture-Controlled 
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Soil and Crop Residue Samples. Transactions of the ASABE, 60(5), 1479-1487. 

(Chapter 2) 

2. Hamidisepehr, A., Sama, M. P. (2017). Moisture Content Classification of Soil and 

Stalk Residue Samples from Spectral Data using Machine Learning. Transactions 

of the ASABE, Under Review. (Chapter 3)  
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  OBJECTIVE 1: A METHOD FOR REFLECTANCE INDEX 

WAVELENGTH SELECTION FROM MOISTURE CONTROLLED SOIL AND 

CROP RESIDUE SAMPLES 

2.1 SUMMARY 

Reflectance indices are a method for reducing the dimensionality of spectral 

measurements used to quantify material properties. Choosing the optimal wavelengths for 

developing an index based upon a given material and property of interest is made difficult 

by the large number of wavelengths typically available to choose from and the lack of 

homogeneity when remotely sensing agricultural materials. This study aimed to determine 

the feasibility of using a low-cost method for sensing the water content of background 

materials in traditional crop remote sensing. Moisture controlled soil and wheat stalk 

residue samples were measured at varying heights using a reflectance probe connected to 

visible and near-infrared spectrometers. A program was written that used reflectance data 

to determine the optimal pair of narrowband wavelengths to calculate a normalized 

difference water index (NDWI). Wavelengths were selected to maximize the slope of the 

linear index function (i.e. sensitivity to moisture) and either maximize the coefficient of 

determination (R-squared) or minimize root mean squared error (RMSE) of the index. 

Results showed that wavelengths centered near 1300 nm and 1500 nm, within the range of 

400 nm to 1700 nm, produced the best index for individual samples.  Probe height above 

samples and moisture content were examined for statistical significance using the selected 

wavelengths. The effect of moisture was significant for both bare soil and wheat stalks, but 

probe height was only significant for wheat stalk samples. The index, when applied to all 

samples, performed well for soil samples but poorly for wheat stalk residue samples. Index 
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calculations from soil reflectance measurements was highly linear (R2 > 0.95) and 

exhibited small variability between samples at a given moisture content, regardless of 

probe height. Index calculations from wheat stalk residue reflectance measurements were 

highly variable, which limited the usefulness of the index for this material. Based on these 

results, it is expected that crop residues, such as wheat stalk residue, will reduce the 

accuracy of remotely sensed soil surface moisture measurements. 

2.2 INTRODUCTION 

The development of irrigation and nutrient management practices for food 

production has resulted in substantial increases in crop yield, accounting for over 80% of 

the gains in global supply of wheat, rice, and corn since the 1960’s (Cassman, 1999). While 

this development has limited the expansion of agricultural land, it has also resulted in a 

reduction in biodiversity (Cardinale et al., 2012) and placed a large burden on global water 

resources (Hatfield, 2015). Nearly 23 million hectares of land were irrigated in the United 

States during 2012, accounting for 31% of total U.S. freshwater use (USDA, 2015). Many 

of the smart irrigation systems available for scheduling water application rely on either soil 

water holding capacity maps or low spatial resolution sub-soil sensor networks (Yule et 

al., 2008).  Both methods may not be optimized – particularly in instances where the 

sensing technology is not spatially matched with application technology. Increasing the 

spatial-resolution of intensive management practices can help with optimizing inputs and 

reducing the overall level of inputs required to produce the same output (Raun et al., 2002). 

High spatial resolution methods (10 m grid or smaller) for identifying water stress 

typically involve the use of remote sensing of a crop canopy using combinations of visible 

and near-infrared light (Penuelas et al., 1997), or thermal infrared sensing (Carlson et al., 
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1981; Nemani & Running, 1989). Traditional deployments include satellite, conventional 

aircraft, and ground-based sensors but are limited in terms of cost, temporal and spatial 

resolution. Perhaps the most successful adoption of remote sensing technology in 

production agriculture has been the use of the normalized difference vegetation index 

(NDVI) to detect crop vigor, which is then correlated to a myriad of parameters in addition 

to water stress. These include vegetation cover (Carlson & Ripley, 1997), crop nitrogen 

status (Solari et al., 2008), crop yield (Benedetti & Rossini, 1993), and phenotype 

(Svensgaard et al., 2014). An alternative to NDVI is the normalized difference water index 

(NDWI), which typically uses longer wavelengths of light beyond the sensitivity of 

silicone-based photodiodes (Gao, 1996) and is potentially better suited to identifying crop 

water stress (Gu et al., 2007). 

Two challenges for remotely sensing crop water stress using traditional methods 

are the absorption light due to atmospheric moisture and the contribution of soil reflectance 

on the overall vegetation reflectance spectra. Active ground-based sensors have been 

shown to overcome atmospheric limitations in nitrogen sensing by providing a light source 

(Holland et al., 2004; Mullen et al., 2003; Raun et al., 2002). The effect of soil type and 

conditions on canopy reflectance indices has also been addressed through calibrated 

indices, such as the soil adjusted vegetation index (SAVI) (Huete, 1988) or by removing 

the soil contribution from the reflectance spectra (Huang et al., 2009). In all the 

aforementioned applications, the crop was the visual target for indirectly measuring soil or 

crop parameters. However, there may still be useful information available from direct soil 

reflectance measurements. This work aims to study the reflectance spectra of bare soil and 

crop residue to determine if they can contribute to crop water stress detection. The ability 
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to quantify spatial soil moisture variability and its temporal dynamics over entire fields 

through direct soil observations using remote sensing will improve early detection of water 

stress before crop physiological or economic damage has occurred, and it will contribute 

to the identification of zones within a field in which soil water is depleted faster than in 

other zones of a field. 

The main objective of this study was to determine the feasibility of developing a 

low-cost reflectance sensor for remotely delineating soil water content from a ground or 

low altitude UAS-deployed platform. Specific objectives include to: 

1. Collect visible and near-infrared spectral response from moisture-controlled soil and 

crop residue samples. 

2. Identify the optimal wavelengths for a normalized index based upon user-defined 

constraints. 

3. Determine if the effect of height of the sensor above the sampled surface is statistically 

significant.  

2.3 MATERIALS AND METHODS 

2.3.1 Sample preparation 

In this study, soil samples with pre-determined water contents were prepared for 

two materials: silt-loam soil and wheat residue stalks. These materials were chosen as they 

represent potential background materials when observing row crops, such as corn or 

soybean, at early growth stages. 120-mL plastic containers with air-tight removable lids 

were used to contain the moisture-controlled samples. The soil was air dried, ground and 

passed through a 2-mm sieve. The initial moisture content (wet basis) of the soil was 

determined gravimetrically by drying a sample in a convection oven at 105°C for over 24 
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h and measuring the resulting reduction in mass. The stalks were dried in a similar manner 

to the soil samples to prevent decomposition. Each container was marked at a depth of 35 

mL (for bare soil) and 120 mL (for stalks) and filled to the mark and lightly tapped to firm 

up the soil/stalks. Seven moisture levels were chosen (air dry (Giada et al., 2003)  or 0% 

(stalks), 5%, 10%, 15%, 20%, 25%, and 30%). The mass of soil/stalks inside each sample 

container was measured with the mass of the container removed and used to determine the 

required mass of water to reach the target moisture content. Water was added to each 

sample using a pipet with a volumetric precision of 0.01 ml and the final mass was 

recorded. Then the lid of each container was closed, and the samples were equilibrated over 

several days to let the water redistribute through the sample. Three replications were 

prepared for each moisture level to minimize the effect of sample preparation error on the 

result. In total, 21 soil samples and 21 stalk samples were prepared.  

2.3.2 Instrumentation Hardware 

Reflectance was measured using visible and near-infrared spectrometers (HR400-

7-VIS-NIR, NIRQuest512; Ocean Optics; Dunedin, FL) with a tungsten-halogen light 

source (HL-2000-HP-FHSA; Ocean Optics; Dunedin, FL). A fiber optic reflectance probe 

(QR200-12-MIXED: Ocean Optics; Dunedin, FL) was used to transmit source light to the 

sample and reflected light to the spectrometers. The reflectance probe consisted of twelve 

200 µm diameter transmission fibers spaced concentrically around two 200 µm diameter 

reflectance fibers and was 2 m in length. The spectrometers were calibrated to 0 and 100% 

reflectance by blocking the light source for the background measurement and using a 

Spectralon calibration target (WS-1-SL; Ocean Optics; Dunedin, FL) for the reference 
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measurement, respectively. The effective spectral range was 400 to 1700 nm with an 

overlap at 900 nm between the two spectrometers. 

A consistent method was needed to position the reflectance probe above each 

sample to minimize bias and reduce variability due to probe height. A reflectance test 

fixture (Figure 2-1) was designed and fabricated to consistently position the spectrometer 

reflectance probe above the sample surface. The fixture consisted of three main 

components that were 3D printed from black ABS plastic: a sample holder for centering 

the sample container underneath the probe, an outer probe mount that rested directly on top 

of the sample surface, and an inner probe mount for setting the height of the probe above 

the sample surface. The inner probe mount had stainless-steel dowel pins pressed into the 

sidewall that slid down guides in the outer probe mount. The height of the probe was set 

by rotating the inner probe mount inside the outer probe mount at one of five height index 

points. The probe heights were evenly spaced between 0.64 to 5.76 cm in increments of 

1.28 cm. The 24.8° field-of-view (FOV) of the reflectance probe resulted in a sampling 

area of approximately 0.06 to 5 cm2. The sampling diameters and areas for all heights are 

shown in Table 2-1. The maximum height was selected based on the reflectance probe 

FOV and the sample size to limit the side walls of the outer probe mount from affecting 

the reflectance measurement. 
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Figure 2-1: Cut-view of the reflectance test fixture used to position the spectrometer 

probe above a soil/stalk sample. 

 

Table 2-1: Reflectance probe heights and resulting sampling diameters and areas 

Height 

# 

Probe 

Height 

(cm) 

Sampling 

Diameter 

(cm) 

Sampling 

Area 

(cm2) 

H1 0.64 0.28 0.06 

H2 1.92 0.84 0.55 

H3 3.20 1.40 1.54 

H4 4.48 1.96 3.02 

H5 5.76 2.52 4.99 

 

2.3.3 Data Collection 

OceanView (Version 1.4.1; Ocean Optics; Dunedin, FL) software was used to 

configure the spectrometers and record the reflectance response. A graphical program was 



16 

 

written that calculated reflectance from each spectrometer, combined the two results into a 

single array, and graphed the results in real-time. The system was calibrated every time the 

height of the probe was changed and whenever the spectrometers and light source were 

powered on. The software was configured to record three measurements per sample. Given 

that there were three samples for each moisture content, three replications for each sample, 

and three measurements for each replication, there were 27 total reflectance responses for 

every combination of moisture content and height. This replication structure was intended 

to reduce the influence of variability in sample preparation, reflectance probe position, and 

sensor noise on the resulting index calculation.  

Reflection measurements were normalized between 0 and 1 (0 and 100%) by 

subtracting the background measurement intensity from the raw measurement intensity and 

reference target measurement intensity, and taking the ratio of the resulting differences 

(Equation 1). 

 
𝑅𝜆 =

𝑀𝜆 − 𝐶𝜆
0

𝐶𝜆
1 − 𝐶𝜆

0  (1) 

 

Where: 

𝑅 was the normalized reflectance measurement from a sample (%) 

𝑀 was the raw measurement intensity from a sample (A/D counts) 

𝐶0  was the background measurement intensity with the light source 

obstructed (A/D counts) 

𝐶1 was the reference target measurement intensity (A/D counts) 

𝜆 was the specific wavelength (nm) 
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Each reflectance measurement was stored in a tab-delimited text file containing the 

spectral response along with the spectrometer settings. A file naming scheme was used to 

label each text file to better facilitate post-processing. Filenames included: a sample code 

for identifying sensor height, replication and the sample container; a string corresponding 

to the data type within OceanView; and a local timestamp (Figure 2-2). A MATLAB script 

(R2015b; The Mathworks; Natick, MA) was written to access all text files from a single 

folder and categorized them using the filename sample code. The script stored data as 

columns in a single Excel spreadsheet with the corresponding sample codes as headers in 

the first row of each column. 

 

Figure 2-2: Filename format for output text files of the spectrometers. Fixed values 

are shown in black and variables are shown in red. 

 

2.3.4 Data Analysis 

A second MATLAB script was written to perform data analysis. The script read in 

the entire dataset, calculated normalized indices for all pairs of wavelengths, and identified 

the “best” pair based upon user defined criteria (139). The normalized index was composed 

of two distinct narrowband ranges identified by their center wavelengths and obtained for 

every possible pair in ascending order over the 400 to 1700 nm range (Equation 2). 
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𝐼𝜆1,𝜆2 =

𝑅𝜆1 − 𝑅𝜆2

𝑅𝜆1 + 𝑅𝜆2
 (2) 

Where: 

𝐼𝜆1,𝜆2 = normalized index for wavelengths centered at 𝜆1 and 𝜆2 (-1 to 1) 

𝑅𝜆1, 𝑅𝜆2 = average reflectance at wavelengths centered at 𝜆1 and 𝜆2 (%) 

𝜆1 >  𝜆2 to reduce the number of computations by a factor of two 

Selecting the “best” pair of wavelengths for calculating a reflectance index to 

predict moisture content implied several assumptions and required constraints to simplify 

the optimization process. It was assumed that the low-cost sensor would use either a silicon 

or indium-gallium-arsenide (InGaAs) photodetector coupled with narrow-band filters to 

detect specific wavelengths of visible and NIR light. For this study, the bandwidths were 

set to ± 25 nm and assumed to be uniformly distributed about a center wavelength. 

Preliminary reflectance index calculations using manually-selected wavelengths revealed 

a linear relationship between sample moisture content and the normalized index. Moreover, 

sensor height above the sample had little effect on index values. Therefore, a linear 

regression model was used to estimate moisture content based on the average normalized 

index measurement. Three optimization parameters were initially chosen: the coefficient 

of determination (R-Squared) of the linear regression between moisture content and the 

reflectance index; the root mean squared error (RMSE) between the actual and predicted 

moisture content; and the slope of the linear regression, which represented sensitivity. The 

pair of wavelengths with the highest slope, the lowest RMSE, and the highest R-Squared 

were considered the optimal solution by maximizing sensitivity and minimizing error. The 

optimization parameters were stored for each normalized index calculation and plotted in 



19 

 

the form of slope versus R-Squared and slope versus RMSE to determine if local optima 

or a global optimum existed. 

A third script was written to determine the performance of the index for predicting 

moisture (134). The “best” wavelengths resulting from the previous step were used as 

inputs and the normalized index for all samples was computed. A statistical analysis was 

conducted to determine if probe height above the sample was statistically significant. The 

experiment was set up with a factorial design in moisture content and height (7×5) for bare 

soil. The data were subjected to variance analysis and appropriate means separation was 

conducted using statistical software (JMP 12; SAS; Cary, NC). The linear regression model 

from the average normalized index and the individual index values were used to determine 

a 95% prediction interval. 

2.4 RESULTS AND DISCUSSION 

2.4.1 Spectrometer Calibration 

The purpose of the calibration was to remove non-uniformity in spectral response 

due to the variability in the light source, optical fibers, and spectrometer detector with 

respect to wavelength. Figure 2-3 illustrates the raw intensity reference response from the 

spectrometers with the probe set to height H3 above the calibration target and the light 

source adjusted to maximize intensity without saturation at any wavelength of either 

spectrometer. The visible spectrometer always saturated before the NIR spectrometer and 

thus determined the intensity of the light source. Heights H4 and H5 used the full light 

source intensity and therefore did not use the full intensity range of either spectrometer. 

The other three heights produced similar responses that were scaled along the intensity 

axis. The intensity axis represented the raw analog-to-digital (A/D) converter result from 
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the spectrometers’ photodetectors. The visible spectrometer was a 14-bit resolution (0-

16383) measurement and the NIR spectrometer was a 15-bit resolution (0-32767) 

measurement.  

 

Figure 2-3: Intensity of reflected light versus wavelength for the reference 

measurement at height H3 (3.2 cm). 

 

Figure 2-4 illustrates the raw intensity background response from the spectrometers 

when the light source was blocked. The small variations across wavelengths were due to 

noise in the spectrometer detector. The NIR spectrometer had a large offset from zero as 

compared to the visible spectrometer, which was due to operating in a high-gain mode. The 

high-gain mode was necessary to obtain a sufficient signal from the NIR spectrometer 

when using a single light source and reflectance probe. 
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Figure 2-4: Intensity of reflected light versus wavelength for the background 

measurement at height H3 (3.2 cm). 

 

Figure 2-5 shows the results of the calibration process where non-uniformity had 

been removed across all wavelengths when calculating background reflectance and the 

reflectance from the reference target. Data from both spectrometers were spliced into a 

single dataset by removing data from the visible spectrometer past 900 nm and combining 

it with all data from the NIR spectrometer. Note that wavelengths less than 500 nm still 

deviated from the desired 0 and 100% reflectance for the background and reference 

measurements, respectively. This was due to low relative sensitivity of the visible 

spectrometer below this wavelength and indicated that more noise should be expected 

when using wavelengths in this range to calculate indices. 
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Figure 2-5: Calibrated and combined reflectance response for a background and 

reference measurement at height H3 (3.2 cm). 

 

2.4.2 Bare Soil 

Figure 2-6 shows the reflectance for varying water content of soil samples versus 

wavelength. Each series is the average of all samples at a particular moisture content across 

all heights. The general spectral response of the soil samples was an increase in relative 

reflectance as wavelength increased. Drier samples typically reflected more light on 

average, but there were instances where the average reflectance across all wavelengths was 

not in order. For example, both the 25% and 30% moisture content samples measured at 

height H3 reflected more light than the 20% moisture content sample. This phenomenon 

was likely caused by small variations in the distance between the measured area and the 

spectrometer probe. Despite efforts to control the exact distance with a reflectance probe 

test fixture, uncontrolled variations in the soil surface shape (i.e., flat, convex, concave) 

likely had a substantial impact on average reflectance. Given that the soil surface in the 
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field could never be carefully controlled on the scale that was relevant to this experiment, 

no further adjustments to the sample were made. The non-ordered progression of average 

reflectance also illustrated why a two- or more-wavelength index was crucial for modeling 

the relationship between reflectance and moisture content. No single wavelength will 

produce a monotonic relationship with suitable sensitivity. However, it was observed that 

the relative dip in reflectance between 1400 nm to 1500 nm, when compared to other 

wavelengths for the same moisture content, exhibited a clear pattern. As moisture content 

increased, the relative reflectance inside this range tended to decrease while the rest of the 

spectral response followed a consistent profile. 

 

 

Figure 2-6: Average relative reflectance versus wavelength for varying nominal soil 

moisture contents in bare soil. 

 

The transition between the visible and near-infrared spectrometers at 900 nm 

produced a noticeable artifact in the relative reflectance measurement. Increasing the 
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number of spectrometer calibration points between 0% and 100% reflectance might have 

mitigated this non-linearity but a simpler solution was to ensure that wavelengths near this 

transition were not used when calculating an index. 

As previously stated, the goal of the optimization process for selecting the “best” 

pair of wavelengths used to calculate a moisture content prediction index was to select the 

index that produced the largest slope while either maximizing the R-Squared or minimizing 

the RMSE of the index function. Without knowing the relationship between the constraints, 

it was difficult to prioritize one constraint over the other. Rather than arbitrarily weighting 

each constraint, the resulting relationship between all pairs of wavelengths was plotted for 

both slope versus R-Squared (Figure 2-7) and slope versus RMSE (Figure 2-8).  

 

Figure 2-7: The slope of linear regression of reflectance and moisture content vs. 

R-Squared on bare soil 
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Figure 2-8: The slope of linear regression of reflectance and moisture content vs. 

RMSE on bare soil 
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There was no global optimum when using RMSE but R-Squared did produce a 

grouping of indices where both the slope and R-Squared were close to their respective 

maxima. The two wavelengths that produced this relationship were centered near 1300 nm 

and 1500 nm. When using RMSE, a peak occurred at a slope of approximately 0.0058 

Index %MC-1 and an RMSE of 0.013. The corresponding wavelengths for this index were 

also centered near 1300 nm and 1500 nm. 

The index values from 50 nm wide bands centered at 1300 nm and 1500 nm for all 

samples are shown in Figure 2-9 along with the linear regression model and 95% prediction 

interval. Variability in the calculated index among samples at a given moisture content 

tended to increase as moisture content increased. Average index values varied from 0 to 

0.15 for soil samples at 3.3% to 30% moisture content, respectively. 

 

Figure 2-9: Normalized index for bare soil using 50 nm bands centered at 1300 and 

1500 nm along with the linear regression and 95% prediction interval. 
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2.4.3 Wheat Stalk Residue 

Wheat residue stalks produced a similar spectral response to bare soil, where the 

reflectance generally increased with respect to wavelength and a dip occurred between 

1400 and 1600 nm (Figure 2-10). Both the discontinuities between the two spectrometers 

and the dip at the water absorption bands were more pronounced, while the average 

difference in reflectance between moisture contents was smaller. Again, the discontinuities 

could have been better addressed through a more complex calibration process but that was 

deemed unnecessary for this experiment. The average reflectance was not well correlated 

with moisture content and was likely driven by effective height of the stalk surface, which 

was less carefully controlled than the soil surface due to the physical structure of the stalks. 

 

 

Figure 2-10: Average relative reflectance versus wavelength for varying nominal 

moisture of wheat residue stalks along with the linear regression and 95% prediction 

interval. 
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Since similar patterns between reflectance and wavelengths existed between bare 

soil and stalks, it was expected that the optimization process would provide a pair of “best” 

wavelengths close to the results of bare soil. Plots between R-square (Figure 2-11) and 

RMSE (Figure 2-12) versus slope revealed similar patterns as wavelengths were 

incrementally changed but the overall shapes differed from the results of bare soil. In both 

instances, optima occurred at smaller slopes and either lower R-squared or higher RMSE 

values, indicating that the index would not likely perform as well as it did for bare soil. 

However, the local optima still corresponded to the same pair of wavelengths near 1300 

nm and 1500 nm, which indicated that the same sensor may function, albeit less accurately, 

in areas that include both bare soil and wheat stalk residue. A single pair of wavelengths 

across a variety of soil and crop material compositions would be advantageous for applying 

a low-cost sensor across varying commodities and production practices. 

 

Figure 2-11: The slope of linear regression of reflectance and moisture content 

versus R-squared on residue stalks 
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Figure 2-12: The slope of linear regression of reflectance and moisture content 

versus RMSE on residue stalks 

 

The index values from 50 nm wide bands centered at 1300 nm and 1500 nm 
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Figure 2-13: Normalized index for wheat stalk residue using 50 nm bands centered 

at 1300 and 1500 nm. 
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height of the sensor, and perhaps classification of the ground cover, may be necessary for 

remotely sensing soil surface moisture content. 

Table 2-2: Average index measurements for bare soil and wheat stalk residue at 

varying moisture contents and sensor heights. 

Sample Moisture Index Value 

 Content (%) H1 H2 H3 H4 H5 

Bare Soil 

 

3.33 -0.0006 0.0016 0.0011 0.0027 0.0006 

5.0 0.0088 0.0111 0.0100 0.0122 0.0104 

10.0 0.0337 0.0335 0.0324 0.0316 0.0316 

15.0 0.0532 0.0581 0.0561 0.0557 0.0555 

20.0 0.0814 0.0936 0.0994 0.1001 0.1012 

25.0 0.1217 0.1230 0.1219 0.1253 0.1267 

30.0 0.1661 0.1716 0.1722 0.1615 0.1575 

Wheat Stalk 

Residue 

0.0 0.0101 0.0461 0.0201 0.0514 0.0497 

5.0 0.0236 0.0404 0.0487 0.0423 0.0574 

10.0 0.0105 0.0668 0.0784 0.0822 0.0939 

15.0 0.0422 0.0225 0.0551 0.0606 0.0599 

20.0 0.0457 0.0704 0.1021 0.0831 0.0863 

25.0 0.0705 0.0956 0.1330 0.1408 0.1362 

30.0 0.1908 0.1597 0.2056 0.2113 0.1835 

 

 

 

 

 

 

Table 2-3: Parameter estimates and significance testing of height and moisture on 

the index. 

Sample Parameter Estimate Std. Error t Ratio Prob. > |t| 

Bare Soil 
Height 0.0006356 0.000851 0.75 0.4604 

Moisture 0.0061931 0.000129 48.04 < 0.0001 

Wheat Stalk 

Residue 

Height 0.0108258 0.003532 3.07 0.0044 

Moisture 0.0045207 0.000499 9.05 < 0.0001 
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2.5 CONCLUSIONS 

Moisture controlled soil and wheat stalk residue samples were prepared and 

measured at varying heights using a reflectance probe connected to visible and near-

infrared spectrometers. A computer program was written that used reflectance data to 

determine the optimal narrowband wavelengths when calculating a NDWI based upon 

user-defined constraints and the statistical significance of height and moisture content were 

determined for the “best” pair. Constraints for this study were configured to maximize the 

slope of the index (i.e. sensitivity to moisture) and either maximizing the R-squared or 

minimizing the RMSE of the index function. A linear model was chosen to represent the 

index when fitting parameters. Results showed that wavelengths centered near 1300 nm 

and 1500 nm, within the range of 400 nm to 1700 nm, produced the best index for 

individual samples. An advantage of this pair of wavelengths is that they can be sensed 

from a single type of sensor using narrowband optical filters. The 1500 nm band, when 

measured from an active ground-based sensor, will provide spectral information not 

available when using passive aerial or satellite based remote sensing methods due to 

absorption from atmospheric moisture. The index, when applied to all samples, performed 

well for the soil samples but poorly on the wheat stalk residue samples. Index calculations 

from soil reflectance measurements were highly linear (R2 > 0.95) and exhibited small 

variability between samples at given moisture content, regardless of measurement height. 

Index calculations from wheat stalk residue reflectance measurements were highly 

variable, which limited the usefulness of the index for this type of material. Based on these 

results, it is expected that crop residues, such as wheat stalk residue, will reduce the 

accuracy of remotely sensed soil surface moisture measurements. Future work should 
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include heterogeneous samples that include both soil and crop residue in varying 

proportions to determine the composite response. As new low-cost sensors are developed, 

the optimization parameters used to determine the “best” wavelengths should be refined 

based on actual sensor response, rather than ideal assumptions. 
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  OBJECTIVE 2: MOISTURE CONTENT CLASSIFICATION OF 

SOIL AND STALK RESIDUE SAMPLES FROM SPECTRAL DATA USING 

MACHINE LEARNING 

3.1 SUMMARY 

Remotely sensed spectral data are commonly used to quantify material properties 

in agricultural applications. Typically, only a few distinct spectral bands are selected and 

formulated into a reflectance index to avoid expensive computations while it causes more 

prediction inaccuracies due to ignoring other useful wave bands. Machine learning presents 

an alternative approach for quantifying material properties from spectral data due to the 

ease at which it can be used to process large datasets. This study aimed to test several 

commercially available machine learning algorithms using spectral data collected from 

moisture-controlled silt-loam soil and wheat stalk residue samples. The spectral data used 

in this analysis were previously used to develop a normalized difference water index 

(NDWI) for remotely quantifying the moisture content of background materials by 

selecting a pair of narrowband wavelengths. However, results showed mixed performance 

for index-based processing. In this study, raw spectral data were preprocessed using partial 

least squares (PLS) regression to optimize the number of input components. The 

components were fed into 20 different machine learning algorithms available in MATLAB 

and the best two performing methods were compared to the index-based method. Cubic 

support vector machine (SVM) and ensemble bagged trees methods produced the highest 

composite prediction accuracies of 96% and 93% for silt-loam soil samples, and 86% and 

93% for wheat stalk residue samples, respectively. Prediction accuracy using the index-
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based method was 86% for silt-loam soil and 30% for wheat stalk residue. A potential 

limitation of both machine learning methods was the discrete classification of moisture 

content rather than the continuous output of the index-based method. However, the 

substantial improvement of prediction accuracy of individual samples likely outweighs 

concerns about limited precision. 

3.2 INTRODUCTION 

Agricultural irrigation management is increasingly becoming a vital factor to 

supply enough food to a growing population. Irrigation – as the primary fresh water 

consumer – has a large influence on water shortage issues (Gleick, 2003). Remote sensing 

is useful for obtaining field-scale information about the drought status in a field and has 

received much attention in the past few  decades for identifying water stress in agricultural 

applications (Atzberger, 2013; Bernardes et al., 2012; Carlson et al., 1981; Doraiswamy et 

al., 2005; Nemani & Running, 1989; Peñuelas et al., 1997; Thenkabail et al., 2014).  

A common way of applying remote sensing in a field is to select a couple of narrow-

band ranges of wavelengths with the potential to provide a sufficiently accurate estimation 

of a field parameter based on reflectance values. Combinations of these narrow-band 

ranges are used to compute indices that are correlated with crop and soil parameters. For 

instance, the normalized difference vegetation index (NDVI), which is typically a 

combination of red and near-infrared bands, is one of the most ubiquitous remote sensing 

indexes in agriculture for predicting field parameters correlated to crop vigor. The 

normalized difference water index (NDWI), which typically replaces one of the NDVI 
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bands with a water-absorption band in the near-infrared range, has been shown to be a 

better performing index for estimating water stress (Gao, 1996; Gu et al., 2007). 

A limited number of narrow-band wavelengths are used for index generation to 

reduce sensor cost and complexity. However, by relying on only one or two wavelengths 

for parameter estimation, information which can be extracted from other wavelengths are 

ignored. On the processing end, building the model to extract information from 

hyperspectral data is computationally intense, but it’s not necessarily cost prohibitive and 

it has little bearing on cost once the model for estimating a crop or soil parameter has been 

developed. 

In recent years, new approaches and algorithms (e.g. machine learning algorithms) 

have been developed and are well suited for handling big datasets with many input 

variables. Learning algorithms are regularly used in daily life, frequently without being 

noticed. For example, web search engines commonly use learning algorithms to rank web 

pages. Learning algorithms try to mimic how the human brain learns by recognizing 

patterns and rules in a dataset (Jensen et al., 1999). A computer is given a dataset containing 

a large number of input variables and samples. The response variable value for each set of 

variables and samples is also known. In this way, a learning algorithm tries to “understand” 

how a set of inputs produces a specific output. By recognizing patterns in training dataset, 

an algorithm is trained and can be used to classify new samples. An advantage of this 

method is that it enables computers to be trained by learning from experiences without 

being explicitly programmed using an analytical model or simple empirical model. The 

algorithm performance generally increases by experiencing more samples, assuming the 

samples accurately represent the modeled process. 
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In general, there are two main classifications for machine learning algorithms: 

unsupervised learning and supervised learning. Unsupervised learning allows users to 

approach problems with little or no idea what the results should look like. The structure 

can be derived from data, where the effect of the variables is not necessarily known. 

Supervised learning applies when there are a large number of samples, where each sample 

pairs a number of input and output values. 

 Machine learning is a widely-used technology, and in the last decade, it has been 

applied to remotely sensed data in agricultural domain. Specific examples include drought 

assessment using MODIS and AVIRIS satellite sensors (Park et al., 2016; Trombetti et al., 

2008), forecasting vegetation health using MODIS satellite sensors (Nay, Burchfield, & 

Gilligan, 2016), estimating LAI index using MODIS and CYCLOPS (Verger et al., 2008) 

and Landsat ETM+ satellite data (Walthall et al., 2004), weed detection using manual RGB 

imagery on the ground (Cho et al., 2002; Jafari et al., 2006) and multispectral and RGB 

imagery on a UAS (Koot, 2014), and plant classification using hyperspectral and RGB 

images (Moreno et al., 2014). 

Multiple learning algorithms have been specifically used in this study for estimating 

soil moisture content. Among them, support vector machines (SVMs), artificial neural 

networks, and Bayesian methods have resulted in more powerful models based upon 

examples in the literature. Neural networks are considered as a traditional non-linear 

machine learning method for estimating soil moisture. However, it is hypothesized that 

simpler methods, in particular SVMs, may have the same performance or even outperform 

neural networks for estimating soil moisture. In addition, SVMs provided more robustness 

against noise in the training process (Ahmad et al., 2010; Pasolli et al., 2011; Wu et al., 
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2007). Bayesian methods are another prevalent machine learning method for estimating 

soil moisture and were also shown to perform similarly to neural networks for estimating 

soil moisture content (Notarnicola et al., 2008).       

In a previous study by Hamidisepehr et al. (2017), visible and near-infrared 

spectrometers with an effective measurement range between 400 nm and 1700 nm were 

deployed to measure reflectance on moisture controlled soil and crop residue samples. In 

that study, a brute force optimization method was developed to determine the optimal pair 

of wavelengths used to create a moisture predicting index that maximized sensitivity of the 

index to changes in moisture content while minimizing error. Results showed that 

wavelengths centered around 1300 nm and 1500 nm produce the linear index model with 

the highest sensitivity to moisture content (slope), highest coefficient of determination (R2) 

of the linear regression between the index values and moisture content, and lowest root 

mean squared error (RMSE) between predicted and actual moisture contents. The emphasis 

for using two wavelengths, rather than the full spectrum, was towards the development of 

a low-cost narrow-band sensor for field use. While results for soil samples appeared 

promising in terms of the ability to model the index response to soil moisture content, crop 

residue moisture content was difficult to accurately predict. Furthermore, prediction 

accuracy for soil and crop residue moisture contents were 86% and 30%, respectively, 

when index values from individual samples were used to classify moisture content. This 

study aims to expand upon that work by applying machine learning algorithms to the full 

spectral data to improve the prediction accuracy of moisture content in soil and crop residue 

samples. 
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The main objective of this study was to determine if machine learning could be 

used to develop a prediction model using relative reflectance data collected from moisture-

controlled soil and crop residue samples. Specific objectives include: 

1. Determine the appropriate number of spectral wavelengths to be used as input into a 

machine learning algorithm. 

2. Test pre-configured machine learning algorithms available in MATLAB to determine 

which method produced the highest prediction accuracy. 

3. Compare the results of the machine learning methods to a reflectance index-based 

method. 

3.3 MATERIALS AND METHODS  

3.3.1 Sample Preparation and Data Collection 

The spectral dataset from Hamidisepehr et al. (2017) contained three replications 

of seven different moisture contents for separate silt-loam soil samples and wheat stalk 

residue samples. Relative reflectance was measured nine times at five different probe 

heights (0.64, 1.92, 3.20, 4.48, and 5.76 cm) above the sample surface – corresponding to 

five different sampling areas (0.06, 0.55, 1.54, 3.02, and 4.99 cm2), given the 24.8° field-

of-view of the backscatter reflectance probe used. Probe height and the order of samples 

within a given probe height were randomly selected to randomly distribute error resulting 

from drift in the measurement system. The backscatter reflectance system used to collect 

the spectral data was recalibrated against a white Spectralon calibration target every time 

the probe height was changed. A more detailed description of the instrument setup can be 
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found in Hamidisepehr et al. (2017). The sampling scheme resulted in 945 measurements 

per material type across the range of established moisture contents.  

3.3.2 Spectral Data Preprocessing 

There were a total of 1024 distinct wavelengths measured in the spectral range of 

400 to 1700 nm. While each wavelength could be considered an input variable to a machine 

learning algorithm, many of the wavelengths do not contain unique information (i.e. they 

were highly correlated to other wavelengths). Therefore, the raw spectral data were 

compressed using a partial least squares (PLS) regression method using MATLAB 

(R2015b; The Mathworks; Natick, MA) to reduce the number of input components and 

speed up data processing. The MATLAB function plsregress was used to apply the PLS 

regression method to the raw spectral data (141). The function returned two parameters 

that were useful for determining the appropriate number of components to be used in the 

machine learning process – estimated mean squared prediction error and the variance 

explained in the output parameter (moisture content). In order to find the optimal number 

of input components, estimated mean squared prediction error and variance explained in 

moisture content were plotted against the number of input components. The number of 

input components which provided a low prediction error and high variance explained in 

moisture content was selected as the optimal number of input variables to the machine 

learning algorithms. Each component was the combination of multiple correlated 

wavelengths and, given the nature of the machine learning process, no information 

regarding the actual wavelengths associated with a component was necessary. 
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3.3.3 Machine Learning Method 

Each preprocessed spectral measurement included an array of relative reflectance 

data (input variables) that corresponded to a given moisture content (response variable). 

The goal of the machine learning process was to develop an empirical model that could be 

used to classify the moisture content of samples that were not used to train the model. In 

this study, soil water content classification levels were set to 3.3%, 5%, 10%, 15%, 20%, 

25%, and 30% for soil samples, and water content of 0%, 5%, 10%, 15%, 20%, 25%, and 

30% for stalk residue samples. After training the model, the prediction accuracy was tested 

by comparing the frequency of correct classifications across an independent testing dataset 

to identify the algorithm(s) and resulting model(s) that best estimated moisture content 

across both material types. 

The entire dataset for each material type was randomly divided into three subsets: 

a training dataset, a validation dataset, and a testing dataset. In this study, 70%, 15%, and 

15% of a dataset was allocated to training, validation, and testing, respectively. In the 

training dataset, the weights of all variables were automatically adjusted as the model was 

trained. The validation dataset was used to minimize overfitting and verified that any 

increase in accuracy over the training dataset yielded an increase in accuracy over a data 

set that has not been previously shown to the machine. If the accuracy over the training 

dataset increased, but the accuracy over the validation dataset remained the same or 

decreased, then the model was overfitted and training should be stopped. Finally, the 

testing dataset was used to assess the predictive accuracy of the model (Figure 3-1). The 

entire training/validation/testing process was repeated ten times to investigate the 

variability in classification performance for different machine learning algorithms. 
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Figure 3-1: Learning process in a machine learning algorithm. Raw spectral data 

are preprocessed and subdivided into independent training, validation, and test datasets. 

The model is trained and validated until improvement in the model reaches a minimum 

threshold, and then the model is tested to determine the accuracy of prediction. 

 

There were 20 different predeveloped machine learning algorithms available using 

the Classification Learner App in MATLAB at the time of this study. These algorithms 

included, among others, decision trees, support vector machines (SVM), nearest neighbor 

classifiers, ensemble classifiers, and a two-layer feed-forward neural network. The 

preprocessed dataset was organized as a matrix with reflectance components in columns 

and measurement samples in rows (Table 3-1). The last column contained the actual 

moisture content value for each sample. The components generated from PLS regression, 
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while generated from sets of wavelengths, are no longer in units of relative reflectance (i.e., 

0-100% of a reference white target). Combinations of wavelengths that were negatively 

correlated produced negative component values. Each machine learning algorithm was fed 

the same pre-processed dataset to determine which methods performed well for both soil 

and wheat stalk residue samples.  

 

Table 3-1: Format of preprocessed data used for evaluating machine learning 

algorithms. A total of 20 components from each of 945 samples representing seven 

moisture contents were used to train, validate, and test 20 different machine learning 

algorithms. 

Measurement 

Number 

Component Moisture 

Content (%) 1 2  20 

1 -0.03101544 -0.031569856 … -0.008929973 3.33 

2 -0.03105864 -0.031872024 … -0.010776602 3.33 

…
 

…
 

…
 

 …
 

…
 

945 0.024192134 0.020611746 … 0.070482093 30 

 

3.3.4 Machine Learning vs. Index-Based Method Comparison 

The normalized difference water index for estimating moisture content in silt-loam 

soil and wheat stalk residue defined in Hamidisepehr et al. (2017) produced a continuous 

value moisture content output. In order to make a more direct comparison between machine 

learning and index-based methods, the index-based moisture estimations were classified 

into the same levels used in the machine learning assessment by rounding to the nearest 

classification level. The prediction accuracy for each known moisture level and the overall 

prediction accuracy were determined by computing the percentage of correct predictions. 
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An important difference in the analysis in contrast to the machine learning method was that 

independent testing data were not used when classifying moisture levels from index values. 

Rather, the same data used to fit the index model were used. Therefore, it is expected that 

the prediction accuracy of the index-based method is overestimated as compared to what 

would have occurred had separate datasets been used for building the index model and 

testing. 

3.4 RESULTS AND DISCUSSION 

3.4.1 Spectral Data Preprocessing 

Figure 3-2 illustrates estimated mean squared prediction error and percent variance 

explained in moisture content for a varying number of components. The percent variance 

explained in moisture content increased as number of components increased, which was 

expected, although there were diminishing returns as the number of components increased. 

Over 90% of the variance in moisture content was explained by four components and over 

95% by 24 components. The estimated mean squared prediction error initially decreased 

until reaching a minimum of 6.4% at 20 components, and then began to increase.  By 

generating a model with only 20 components, the lowest estimated mean squared 

prediction error and 94.7% of the variance explained in moisture content were achieved. 

Thus, 20 components were selected as the optimal number of components to preserve 

accuracy while reducing computation time and overfitting. Any increase in the number of 

components beyond 20 for this dataset would only result in a marginal increase in percent 

variance explained in moisture content while also increasing the estimated mean squared 

prediction error due to overfitting. 
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Figure 3-2: Percent variance explained in moisture and estimated mean squared 

prediction error for 1 to 60 components. 

 

The dimensionality of the dataset was reduced significantly from 1024 wavelengths 

to 20 components. Thus, the process of generating the model and estimating moisture was 

substantially faster and the likelihood of overfitting was decreased by removing redundant 

components. A typical reduction in training time of 50% was observed for most algorithms 

after preprocessing raw spectral data. 

3.4.2 Machine Learning Method 

All 20 different pre-configured machine learning algorithms available in MATLAB 

at the time of this study were tested to determine the prediction accuracy for both silt-loam 

soil and wheat stalk residue samples. The prediction accuracy of the machine learning 

algorithms is shown in Figure 3-3. In general, the moisture content of silt-loam soil samples 

was more accurately predicted than wheat stalk residue samples. The cubic support vector 

machine (SVM) and ensemble bagged trees methods stood out from the other methods due 

to the relatively high prediction accuracy for both material types, which was desirable due 
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to the likelihood of observing both materials in combination under field conditions. The 

ensemble bagged tree method was also the global optimum when considering both material 

types, having the highest combined prediction accuracy for both materials. An important 

note was that, because the training, validation, and testing datasets were randomly 

distributed, the results presented varied slightly with individual prediction accuracies 

varying by a few percent each time the machine learning process was repeated. The 

standard deviation in prediction accuracy is shown in Figure 3-3 as error bars and 

represents the results of ten replications randomly distributing the full data between 

training, validation, and testing datasets. Increasing the number of samples would likely 

have reduced the variation in prediction accuracy between processing attempts. 

 

Figure 3-3: Prediction accuracy for 20 machine learning algorithms applied to 

relative reflectance data from moisture-controlled silt-loam soil and wheat stalk residue 

samples. 
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Figure 3-4 and Figure 3-5 illustrate the prediction accuracy by moisture content for 

both materials when using the cubic SVM and ensemble bagged tree methods. The rows 

represent predicted moisture content and columns represent actual moisture content. In this 

matrix form, if the moisture is predicted correctly, the measurement would be placed on 

the diagonal of the matrix. Elements not on the diagonal are the result of misclassification 

for a given sample. The numbers displayed in each cell indicate the frequency of 

occurrence as a percentage of predictions for a given moisture content and the relative 

opacity of the cell corresponds to the same percentage. The overall accuracy of an 

algorithm is represented by the ratio of the number of correct predictions and the total 

number of predictions. The overall accuracy for silt-loam soil samples were 96% for cubic 

SVM and 93% for ensemble bagged trees. The overall accuracies for wheat residue stalks 

samples were 86% for cubic SVM and 93% for ensemble bagged trees. The most frequent 

prediction inaccuracies in soil samples happened at lowest and highest moisture content 

levels in both algorithms. For residue stalks samples, higher percentages of prediction 

inaccuracies were scattered across all moisture content levels. As with the previously 

described small variation in overall prediction accuracy each time the dataset was 

processed, minor variations in individual moisture content prediction accuracies also 

occurred. 
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Figure 3-4: Machine learning classification results for silt-loam soil samples using 

a) Cubic SVM; b) Ensemble Bagged Trees. 

 

 

Figure 3-5: Machine learning classification results for residue stalks samples using 

a) Cubic SVM; b) Ensemble Bagged Trees. 

  

3.4.3 Machine Learning vs. Index-Based Method Comparison 

Figure 3-6 illustrates the prediction accuracy by moisture content of the index-

based method. The average prediction accuracies for both materials were substantially 
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higher when using cubic SVM and ensemble bagged trees machine learning methods as 

compared to what was obtained from the index-based method in the previous work, 

especially for wheat stalk residue samples. Most if the improvement in soil moisture 

classification was attributed to just one classification level, 3.3% MC, and the remainder 

came from two additional classification levels, 15% MC and 20% MC. In fact, the 

remaining moisture contents were better predicted using the index-based method than with 

machine learning. However, the average prediction accuracy improved by 10% when using 

the Cubic SVM method. The index-based method performed poorly at moisture content 

levels where there were large overlaps in index values. Averaging multiple samples would 

improve the performance of the index-based classification method. 

 

Figure 3-6: Index-based method classification results for a) silt-loam soil samples 

and b) wheat stalk residue samples. 

 

There are several considerations when comparing the index-based and machine 

learning methods for moisture content prediction. Reflectance indices produce a 

continuous output whereas machine learning algorithms typically classify the sample into 
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a predetermined bin. The relative improvement in prediction accuracy of the machine 

learning algorithms shown in Table 3-2 are partly a result of only having seven 

classification levels. If more moisture content treatments had been used, it is likely that the 

overall performance of the machine learning algorithms would have degraded due to the 

smaller thresholds for classifying a measurement. On the other hand, having a continuous 

output may not be inherently more useful for irrigation management due to a limited 

number of controllable output states. Machine learning as it was applied in this study 

represents a less precise, but more accurate method for moisture content prediction. 

Another key advantage to machine learning over index-based methods is the ability to 

accurately predict the moisture content of a single sample, which is how the data were 

compared in this study. The previous work by Hamidisepehr et al. (2017) showed that 

moisture controlled sample replications produced a wide range of reflectance index values, 

and when taken on average produced a highly linear relationship between silt-loam soil 

moisture content and the index value (R2 = 0.96) and a moderately linear relationship 

between wheat stalk residue moisture content and the index value (R2 = 0.45). At least in 

case of the silt-loam soil samples, collecting multiple measurements and averaging them 

rather than relying on just one would have a substantial impact on moisture content 

prediction accuracy. 
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Table 3-2: A comparison of overall prediction accuracy between index-based 

method and two most accurate machine learning methods for silt-loam soil and wheat stalk 

residue samples 

Material 
Index-Based 

Method 

Machine Learning Methods 

Cubic SVM 
Ensemble 

Bagged Trees 

Silt-Loam 

Soil 
86% 96% 93% 

Wheat Stalk 

Residue 
30% 86% 93% 

 

3.5 CONCLUSION 

Relative reflectance spectral data from moisture-controlled silt-loam soil and wheat 

stalk residue samples was used to test the ability of several machine learning algorithms to 

predicted moisture content from the spectral data. This method was in contrast to an index-

based method used in a previous study of the same spectral data. Previous work has tended 

to focus on a pair of wavelengths rather than the full spectrum. It was hypothesized that 

the machine learning approach would yield better prediction accuracy because of utilizing 

a larger number of components from the spectral data. The appropriate number of 

components for this dataset was determined to be 20 using PLS regression. The 

components were fed into 20 different machine learning algorithms, from which cubic 

SVM and ensemble bagged trees produced the highest combined prediction accuracy for 

silt-loam soil samples (over 93%) and wheat stalk residue samples (over 86%). This 

represented a substantial improvement over the index-based method, where only two 

wavelengths were used to develop a moisture prediction model. The high variability in 

performance between machine learning methods demonstrates the importance of trying 
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multiple methods for a given dataset rather than simply selecting one based upon previous 

work. Several machine learning methods resulted in unacceptable low moisture 

classification performance, or a large deviation in classification performance between 

multiple material types that are frequently observed together in nature. 

The results of this study were from laboratory prepared samples of individual 

material types measured under controlled conditions. Field application of this work will 

require additional considerations including, among other factors, more complex 

distributions of materials and variability in ambient light. Future work should include 

testing of this process under field conditions to demonstrate the applicability as a high-

throughput method for remotely sensing moisture content of soils and crop residues. 
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 OBJECTIVE 3: INSTRUMENTING LOW-COST SPECTRAL 

REMOTE SENSING ABOARD A SMALL UNMANNED AIRCRAFT SYSTEM 

AND A METHOD FOR AMBIENT LIGHT COMPENSATION 

4.1 SUMMARY 

Small unmanned aircraft systems (UAS) are a relatively new tool for collecting 

remote sensing data at dense spatial and temporal resolutions. This study aimed to develop 

a spectral measurement platform capable of being deployed on a UAS for future use in 

quantifying and delineating moisture zones within agricultural landscapes. A series of 

portable spectrometers covering ultraviolet (UV), visible (VIS), and near-infrared (NIR) 

wavelengths were instrumented using a Raspberry Pi embedded computer that was 

programmed to interface with the UAS autopilot for autonomous reflectance data 

acquisition. A second set of identical spectrometers were fitted with calibrated irradiance 

lenses to measure ambient light energy during reflectance data acquisition. Data were 

collected during the 2017 Great American Eclipse in Russellville, Kentucky while 

observing a reflectance target to determine the ability to compensate for ambient light 

conditions. A compensation routine was developed that scaled raw reflectance data by 

sensor integration time and ambient light energy. Results indicated the potential for 

mitigating the effect of ambient light when passively measuring reflectance on a portable 

spectral measurement system. 

4.2 INTRODUCTION 

Efficient irrigation management is one of the most important issues producers face 

in arid and semi-arid areas.(Kang et al., 2000; Perry, 2007) Novel technologies, such as 
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variable-rate irrigation, help to control water usage and result in more efficient 

irrigation.(O’Shaughnessy et al., 2015; Yari et al., 2017) To spatially implement variable-

rate irrigation, a prescription map containing information about the actual water status of 

the field is needed.(Buck et al., 2016) Remote sensing is one possible method to obtain 

water status at field-scales necessary for generating near real-time irrigation prescription 

maps. Traditional deployments of remote sensing include satellite and conventional 

aircraft, but are limited in terms of cost, temporal resolution, and spatial resolution. 

Unmanned aircraft systems (UAS), or drones, are relatively new tools for collecting remote 

sensing data in agricultural applications.(Chrétien et al., 2015; Pádua et al., 2017) In one 

study, traditional methods of remote sensing, including satellites and manned aircraft 

systems, were compared to a UAS method. It was concluded that UAS were more cost-

effective in fields smaller than five hectares and UAS were shown to have the potential to 

provide higher spatial precision data.(Matese et al., 2015) 

Reflectance-based remote sensing is a potential method for quantifying soil 

moisture and delineating moisture management zones. Several studies have focused on 

using visible, multispectral, or hyperspectral cameras mounted on drones to evaluate 

crop/soil status at high spatial resolutions. Spectral reflectance data collected using UAS 

are extensively used in research to estimate different soil and crop parameters. Example 

applications of UAS-based remote sensing in the agricultural domain include estimating 

soil fertility(Bajwa & Tian, 2005), generating vegetation indices(Berni et al., 2009; 

Candiago et al., 2015), assessing tree crowns for breeding applications(Díaz-Varela et al., 

2015), yield estimation(Geipel et al., 2014), plant classification(Hung et al., 2014), weed 

detection(Koot, 2014), and controlling herbicide applications.(Xiang & Tian, 2011) 



55 

 

Advances in spectrometer development have led to more portable systems, or 

micro-spectrometers, that are particularly suitable for UAS deployment due to their small 

size and mass. One study showed that measurements from UAS-deployed micro-

spectrometers were highly correlated with parameters measured at ground level and 

concluded that the UAS platform could provide a faster method for spectral data collection 

(Burkart et al., 2014). A subsequent study, where a visible micro-spectrometer was used to 

measure reflectance, showed that the remote sensing estimations were highly correlated to 

ground spectral measurements collected with a portable field spectrometer (Von Bueren et 

al., 2015). In another study, a spectrometer coupled with a camera was mounted on a UAS 

to measure reflectance values from different targets. The same model spectrometer had 

previously been used to collect data from a satellite in orbit, and when data collected from 

these two platforms were compared, it was confirmed that the UAS provided an efficient 

platform for collecting spectral data (Tsouvaltsidis et al., 2015). 

Calibration of hyperspectral measurement systems is challenging due to the large 

number of factors that can influence spectral response. For lab-based spectrometry, 

measurements are taken under controlled light conditions, which cannot be applied with 

UAS-deployed spectrometers under field condition with frequent changes in ambient light. 

The empirical line method is one of the common approaches for calibrating hyperspectral 

images against variable illumination. In this approach, tarps or panels with known relative 

reflectance are placed in a field during the data collection. By finding the relationship 

between known reflectance values and digital count output of the sensor, an equation is 

obtained and then applied to all measurements to complete the calibration process (Burkart 

et al., 2014; Von Bueren et al., 2015). The data collection period is limited since changing 
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sun angle during data acquisition affect the reflectance (Bajwa & Tian, 2005). Transient 

cloud cover can also substantially affect the amount of ambient light present over short 

durations. Another shortfall is the practical limitation of having tarps or other reference 

targets in all images, especially when high resolution data is desired or a large area is 

covered (Zeng et al., 2017). Devising a method that can keep track of ambient light changes 

while measuring the reflectance from a spectral target is desired. By automating this 

measurement process through concurrent ambient light detection, a compensated 

reflectance can be obtained for every single wavelength in the spectrum at a low cost and 

under various ambient light conditions (Cocks et al., 1998; Eismann, 2012). 

Previous work by Hamidisepehr et al. (2017) showed that relative reflectance in the 

visible and near-infrared range could be used to optimally develop a normalized difference 

water index (NDWI) that predicted soil moisture content from direct soil observations. 

However, the experiment relied on a controlled light source, which is not practical for 

UAS-based spectral measurements. In this study, the overall goal was to develop a spectral 

sensing platform suitable for UAS deployment and to measure the reflectance from a 

reference target to assist with the development of a calibration procedure that is functional 

over a wide range of ambient light conditions. Specific objectives included:  

1. Instrument a series of portable spectrometers and integrate into a UAS for autonomous 

data collection. 

2. Develop a method to compensate for ambient light conditions and sensor integration 

time when collecting raw spectral reflectance measurements. 
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4.3 MATERIALS AND METHODS 

4.3.1 Sensor Instrumentation 

Two spectral data acquisition systems were used in this study: an updward-facing 

ambient light system to measure solar irradience at ground level, and a downward-facing 

reflectance system to measure reflectance from a target located at ground level. Both 

systems consist of three spectrometers (STS, Ocean Optics, Dunedin, FL) in the ultraviolet 

(UV), visible (VIS), and near-infrared (NIR) ranges (Table 4-1). Ambient light and 

reflectance raw spectral measurements were reported as 14-bit digital count values in 

integer format. The ambient light spectrometers were fitted with optical diffusers and 

factory calibrated in compliance with NIST practices. Calibration data were used to convert 

raw spectral measurements at each wavelength from an integer count value to units of 

energy. The reflectance spectrometers were fitted with collimating lenses to set the field-

of-view (FOV) and align the light entering the spectrometers. 

Table 4-1 Model number and lens type for individual spectrometers in ambient light 

and reflectance systems. 

System Spectrometer Type Model Number Optics 

Ambient light 

UV STS-UV-L-25-400-SMA CC-3-DA 

VIS STS-VIS-L-50-400-SMA CC-3-DA 

NIR STS-NIR-L-25-400-SMA CC-3-DA 

Reflectance 

UV STS-UV-L-100-400-SMA 74-DA 

VIS STS-VIS-L-100-400-SMA 74-DA 

NIR STS-NIR-L-100-400-SMA 74-DA 

 

4.3.2 Data Acquisition System 

The target application for this measurement system was to automate the collection 

of spectral reflectance data from a UAS platform while compensating for varying ambient 
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light conditions. This meant data from multiple spectrometers would need to be remotely 

recorded at defined locations or intervals. To accomplish this requirement, each system 

was coupled with a Raspberry Pi 3 (RPi) (B V1.2, Raspberry Pi Foundation, Cambridge, 

United Kingdom) as an embedded data acquisition system to control the measurement 

process. The spectrometer manufacturer provided a software development kit (SDK) for 

the RPi that was preinstalled on a Raspbian distribution of Linux (Version 7; Raspberry Pi 

Foundation, Cambridge, United Kingdom). The SDK configured the RPi as a web server, 

facilitating wireless control of individual spectrometers via a WiFi connection to a PC. 

Since WiFi control of the UAS-deployed system would not be practical in production 

agricultural applications due to limited range, a pulse-width-modulation (PWM) to digital 

converter was used to allow the UAS autopilot to trigger measurements using a digital 

input on the RPi. The UAS was fitted with a commercial autopilot system (A3, DJI, 

Nanshan District, Shenzhen, China) and configured to output a PWM signal corresponding 

to the “shutter” command normally used to trigger the capture of imagery from an on-board 

camera. As a result, triggering the spectrometer was identical to taking a picture from the 

perspective of mission planning software. Figure 4-1 shows the major components used in 

the reflectance and ambient light systems. 
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Figure 4-1 Hardware block diagram schematic of the data acquisition system 

including major components for (a) ambient light and (b) reflectance measurement 

systems.   

 

Components inside the autopilot included: a voltage regulator (A300P-PMU PRO, 

DJI) to regulate input voltage to the autopilot, a GPS receiver (A300P-GPS COMPASS 

PRO, DJI) to update the time and the location of the UAS, and a radio control (RC) 

transmitter (GL858A, DJI) and receiver (R810A, DJI) to control the UAS manually and 

also to monitor the flight via a live video feed. 

Both ambient light and reflectance systems were equipped with similar supporting 

components including: a voltage regulator (2858, Pololu, Las Vegas, NV) to set the RPi 

input voltage at 5 V, a GPS receiver (BU-353S4, USGlobalSat, Chino, CA) with a USB 

connection to synchrnoize the local time on the RPi to Universal Coordinated Time (UTC), 
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and three LEDs to indicate the system was on, if sensors were taking measurement, and to 

show if the system was expecting an external signal to trigger a measurement or if sampling 

was to proceed automatically on a pre-programmed interval. A PWM-to-digital converter 

(2801, Pololu, Las Vegas, NV) was used in the reflectance system to allow the autopilot to 

trigger functions on the RPi via a logic level on a digital input pin. For UAS operations, 

the ambient light system was configured to collect data on a regular interval during UAS 

deployment, rather than triggering remotely, to remove the need for a wireless trigger 

between the UAS and ambient light system. For ground operations, both systems were 

configured to collect data on a regular interval. Ambient light and reflectance spectral data 

were interpolated to a synchronous time interval prior to compensating reflectance values 

for ambient light. 

Two Python scripts were written and configured to run immediately upon startup. 

The first script continously polled digital input pins associated with pushbutton switches 

and the PWM-to-digital converter. Upon receiving the appropriate signal, or in the event 

the system was configured to take measurements at a predefined interval, the script would 

generate a series of HTML function calls to the SDK web server causing the spectrometers 

to take measurements and the RPi to record the data on the onboard SD card. Each 

measurement produced a new file with a unique filename. Filenames consisted of the 

spectrometer serial number and a local date/time stamp (144). The second script initiated 

the GPSD Linux library that facilitated communication with the GPS receiver and regularly 

updated the local date and time on the RPi to UTC. This was necessary because the RPi 

does not have a real-time clock for keeping track of local time while powered down and is 

normally configured to set the local time from a network time protocol (NTP) time server 
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via the internet (142). Figure 4-2 and Figure 4-3 demonstrate the data collection process in 

each set of spectrometers when operating at a regular interval and through a digital input 

trigger, respectively. An on-off pushbutton switch mounted to each system was used to 

determine which process was implemented so that identical programs resided on the 

ambient light and reflectance systems. 

 

Figure 4-2 Embedded control and data acquisition software block diagram for the 

ambient light system. 
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Figure 4-3 Embedded control and data acquisition software block diagram for the 

reflectance system. 

 

Each path leaving the StartRPi block represents an individual Python script. In the 

left path, the UTC timestamp is extracted from the most recent GPS data packet and used 

to update the time on the RPi at a 5-second interval. The right path differ slightly depending 

on whether the system is intended to be triggered on a regular interval based on a timer 

(Figure 4-2) or by a change of state on a digital input corresponding to a signal from the 
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PWM-to-digital converter when used with the autopilot (Figure 4-3). Regardless of the 

trigger method, the RPi stored the current local time and recorded data from the 

spectrometers into tab-delimited text files. Figure 4-4 shows a picture of the reflectance 

system mounted on a multi-rotor UAS. More information on dimensions of the data 

acquisition systems can be found in 173. 

 

Figure 4-4 Reflectance system mounted on a DJI S1000+. Spectral data are 

recorded at pre-defined GNSS waypoints by triggering the shutter command in the UAS 

autopilot. 

 

4.3.3 Reflectance Target and Test Stand 

A reference target was fabricated and calibrated against a white standard. The 

reflectance target consisted of a 30.5 cm × 30.5 cm × 1.9 cm piece of plywood with a 0.08 

cm thick Teflon sheet glued to the surface. A threaded insert was mounted at the center of 

the reference target to allow the reference target to be mounted to a standard surveying 

tripod during field use. The reference target was calibrated using a backscatter reflectance 
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system that consisted of: visible and near-infrared spectrometers (HR400-7-VIS-NIR, 

NIRQuest512, Ocean Optics, Dunedin, Fla.), a tungsten-halogen light source (HL-2000-

HP-FHSA, Ocean Optics), a fiber optic backscatter reflectance probe (QR200-12-MIXED, 

Ocean Optics), and a Spectralon calibration target (WS-1-SL, Ocean Optics). It was 

assumed that the reflectance target had a constant spectral response at different 

temperatures and atmospheric conditions. 

A test stand was used to consistently position the target underneath the reflectance 

system. The height of stand is adjustable for different areas of coverage and has a square 

base for positioning the reflectance target. Spectrometers were located on the top of the 

stand above the target and off-center to prevent the middle spectrometer from sampling the 

threaded insert (Figure 4-5). The height of reflectance spectrometers was adjustable, and 

the area sampled and overlap between individual spectrometers was a function of the height 

of the reflectance spectrometers lenses above the reflectance target and the field of view 

(FOV) (171). 
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Figure 4-5 Stand for mounting spectrometers and placing reference target 

underneath sensors. 

 

Table 4-2 and Figure 4-6 show the elliptical area covered at different heights above the 

reflectance target. In this setup, ambient light spectrometers were co-located on the top of 

reflectance spectrometers to mitigate variability in ambient light at the sensor location and 

the reflectance target.  
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Figure 4-6 Schematic of area covered by a STS spectrometer on the reflectance 

target. 

 

Table 4-2 Major (X) and minor (Y) axis dimensions of the FOV covered by the 

STS spectrometers using 74-DA lenses at different sensor heights above the reflectance 

target. 

FOV 

Dimensions 

Height Above Target (m) 

1 0.75 0.5 0.25 

Y (m) 0.04 0.03 0.02 0.01 

X (m) 0.09 0.06 0.04 0.02 

 

4.3.4 Integration Time 

In addition to ambient light conditions, integration time of the reflectance 

spectrometers was considered as an important parameter in reflectance measurements. 

Integration time is effectively a form of gain on the input signal – if set too high, the 

spectrometer will produce a saturated output, and if set too low, the output will lack 
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sufficient detail for target classification. Doubling the integration time was assumed to have 

a similar effect of doubling the ambient light intensity. In this study, integration time for 

each reflectance spectrometer was manually adjusted to maximize the output signal without 

saturation in any wavelength during maximum ambient light intensity and kept constant 

during data collection. The integration times for the ambient light spectrometers were set 

according to the manufacturer’s recommendations to use the factory solar irradiance 

calibrations. Considering different integration times on each spectrometer, there were 

different time intervals for consecutive measurements for the ambient light and reflectance 

systems. Each spectral measurement reported was an average of 5 sequential measurements 

and there are three replications for each measurement, totaling 15 measurements on each 

spectrometer per measurement interval. Table 4-3 shows the integration time for each 

spectrometer and measurement interval for each system. 

Table 4-3 Integration time and measurement interval for ambient light and 

reflectance spectrometers  

Spectrometers 
Integration Time (ms) 

Measurement   

Interval (s) 

UV VIS NIR  

Ambient light 1000 180 1000 29 

Reflectance 70 35 55 16 

 

Ideally, each reflectance measurement should be paired with an ambient light 

measurement taken at the same time. However, since integration times varied based on the 

spectrometer type and function, measurements were not temporally synchronized. To 

compensate for asynchrnonous sampling, ambient light measurements were interpolated 

using two adjacent measurements and weighted according to the difference between the 
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time of ambient light measurement and the time of reflectance measurement (ordinary 

kriging method). 

4.3.5 Compensation Equation 

Ambient light and sensor integration time were assumed to have a linear 

relationship with the raw measurement intensity from the reflectance system. Thus, the raw 

measurement intensity for each reflectance spectrometer was divided by the ambient light 

energy measured by the corresponding ambient light spectrometer and the integration time 

of the reflectance spectrometer. Compensating for ambient light and sensor integration 

time was accomplished using 

 𝑅𝜆 =
𝑀𝜆

𝑆𝜆 × 𝑡𝑖
 (1) 

where 𝑅 were the compensated reflectance measurements from a sample (counts × 

µJ-1 × ms-1), 𝑀 were the raw measurement intensities from the reflectance spectrometer 

(counts), S were the ambient light energies (µJ), ti was the integration time of the 

reflectance spectrometer (ms), and 𝜆 were the center points of each wavelength (nm). 

4.3.6 Spectral Data Collection 

Spectral data were collected during the 2017 Great American Eclipse at the 

Russellville-Logan County Airport in Russellville, KY on August 21, 2017. The 

spectrometer systems were mounted to the test frame and configured to record 

automatically between approximately 1:15 pm and 4:00 pm EDT (Figure 4-7). Data 

collection encompassed the entire eclipse, including totality. The stand was oriented such 

that no shadows from components above the target would be cast on the target, which 
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would have resulted in an offset between the ambient light system and the reflectance 

system. 

 

Figure 4-7 Data acquisition during the Great American Eclipse 2017 

 

Data processing and analysis were performed in MATLAB. A script was written to 

process data in four steps: 1) importing reflectance and ambient light data, 2) synchronizing 

reflectance and ambient light data, 3) applying the solar irradiance calibration to the 

ambient light data, and 4) compensating reflectance data with calibrated irradiance data 

and sensor integration time (158). 
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4.3.7 Weather Station Data Collection and Spectral Comparison 

During this experiment, a weather station (HOBO U30, Onset Computer 

Corporation, Bourne, MA) was deployed to collect atmospheric data including ambient 

light, temperature, and humidity. Ambient light data from the weather station pyranometer 

(S-LIB-M003, Onset Computer Corporation) was used to track the progress of the eclipse 

and serve as a reference for the spectrometers in the event any anomalous data were 

collected. The pyranometer measured solar power per unit area however, it did not provide 

separate intensities for each wavelength. Instead, it computed a weighted average from the 

spectrum ranging 300 to 1100 nm and output a single value from each measurement. 

Weights for different wavelengths were provided in the user manual (HOBO_DataLogger) 

and used to compare results between the pyranometer and the ambient light spectrometers. 

Data from all three ambient light spectrometers were spliced together to form a single 

spectrum encompassing the same range as the pyranometer prior to computing the 

weighted average at each sample time. 

Before applying weights to ambient light spectrums, units were converted from 

digital count values at individual wavelengths to a single estimate of power in watts using 

a few steps. First, calibration coefficients provided by the spectrometers manufacturer were 

applied to ambient light measurements to change the units from counts to joules. Second, 

by dividing the energy in joules by integration time for each ambient light spectrometer, 

instantaneous power was obtained in watts. Measurements taken by weather station sensor 

were in watts per square meter, which represented the amount of light energy absorbed by 

the sensor in a second over a unit surface area; however, the area inside the spectrometers 

that energy was received was not known. Therefore, a linear regression model was used to 
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determine the relationship between power per unit surface area and instantaneous power – 

effectively modeling the surface area of the spectrometers. 

4.4 RESULTS AND DISCUSSION  

4.4.1 Reference Target 

To benchmark the reflectance target, spectral responses were compared to a 

reference target which established 0% and 100% relative reflectance for the backscatter 

reflectance system. Figure 4-8 shows that the relative reflectance of the reflectance target 

fell between 60% and 82% of the reference target. While not critical for this experiment, 

the reference target calibration would allow the data presented to subsequently be 

benchmarked to a reference standard if needed. It also indicated that the reflectance target 

did not uniformly reflect light across the wavelengths sampled during the experiment and 

tended to absorb NIR light at a higher rate than VIS light. 

 

Figure 4-8 Reflectance target spectrum versus reference and background spectrums 
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4.4.2 Ambient Light and Reflectance Measurements 

 

In Figure 4-9, the raw spectral data from the ambient light spectrometers can be 

seen in uncalibrated units of 14-bit integer counts. Each line represents an individual 

measurement and there were 413 measurements in total for each ambient light 

spectrometer. The variability in intensity for most of the wavelengths was high as a result 

of ambient light changes during the eclipse. Low-intensity responses represent the 

measurements taken near totality. On the other hand, high intensity responses indicate the 

measurements were taken near the beginning or end of the eclipse. While not immediately 

apparent, a single “dead” pixel was identified at 876.2 nm in the NIR spectrometer (Figure 

4-9c), which became obvious when computing the compensated reflectance (Figure 4-12c). 

   

Figure 4-9 Raw ambient light measurements during the eclipse for (a) UV; (b) VIS; 

(c) NIR spectrometers 

 

Interpolating ambient light measurements to the reflectance measurement sampling 

interval and applying calibration coefficients produced spectral responses in units of 

microjoules (Figure 4-10). Applying the calibration coefficients removed much of the 

spectral variability inherent in the ambient light systems that occurs near the upper and 
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lower wavelengths. The resulting spectral responses closely match each other in areas 

where the sampled wavelengths intersect with some minor variations. The relatively small 

signal strength at the boundaries of each spectrometer are most likely responsible for 

discontinuities between spectral energy values across spectrometers. 

   

Figure 4-10 Calibrated ambient light measurements during the eclipse for (a) UV; 

(b) VIS; (c) NIR spectrometer 

 

The raw reflectance data are shown in Figure 4-11 exhbiting similar responses as 

the raw ambient light measurements with similar variability in intensity due to varying 

ambient light intensity during the eclipse. Again, the lowest raw reflectance intensity 

occurred during totality, and the high-intensities represented measurements at the 

beginning or the end of the eclipse. The VIS reflectance spectrometer had a single “hot” 

pixel at 787.4 nm (Figure 4-11b) that was ignored during subsequent analysis of the 

compensated reflectance spectrum. 



74 

 

   

Figure 4-11 Raw reflected light measurements from a constant target during the 

eclipse for (a) UV; (b) VIS; (c) NIR spectrometers. 

Calibrated ambient light and spectrometer integration times were combined with 

the raw reflectance intensity measurements using Equation 1 (Figure 4-12). The intensity 

unit changed accordingly to integer counts per microjoule of ambient light energy per 

millisecond of spectrometer integration time. The result of the compensation was a large 

reduction in variability centered around an average response with only a few outliers for 

each spectrometer. This meant that if a spectral measurement was taken from the 

reflectance target at a random ambient light condition, the compensated spectrum would 

have a high probability of being located near the average response. 

   

Figure 4-12 Compensated reflected light measurements from a constant target 

during the eclipse for (a) UV; (b) VIS; (c) NIR spectrometers 
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4.4.3 Compensation Evaluation 

Discrete probability density functions (PDFs) were used to visualize the reduction 

in variability due to ambient light conditions. One wavelength was selected for each 

spectrometer, which had the highest intensity variability in raw reflectance measurements. 

Figure 4-13 shows how the compensation process improved the probability for classifying 

the reflectance target when considering a single wavelength. It was desired to have 

approximately the same relative intensity for different measurements taken regardless of 

ambient light conditions. It can be observed that the intensity is highly scattered in raw 

reflectance measurements; whereas, after compensation, the probability is high only at one 

or two intensity groups. In other words, since the target is constant, the compensated 

reflectance intensity varied little over a wide range of ambient light conditions. When 

applied to all wavelengths, a unique signature for the target would be defined and it could 

be recognized using this signature, regardless of ambient light conditions. 
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Figure 4-13 Discrete PDFs of the reflectance intensity from the constant target at 

the wavelength with the peak reflectance intensity: (a) UV, (b) VIS, and (c) NIR before 

compensation; and (d) UV, (e) VIS, and (f) NIR after compensation. 

 

4.4.4 Validation of Ambient Light Spectrometers using Weather Station Pyranometer 

Data 

A pyranometer mounted on a portable weather station was used as a benchmark for 

tracking changes in the ambient light system measurements during the eclipse. A linear 

regression model was used to determine the relationship between power per unit surface 

area from the pyranometer and instantaneous power from ambient light spectrometers and 

to model the cross-sectional area of the spectrometer at different times of measurement 

(Figure 4-14). A high coefficient of determination revealed the relationship was highly 

linear. (R-squared=0.97). Some hysteresis between the two sensors is evident as two 

distinct groupings that trended apart before and after the eclipse. 
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Figure 4-14 Linear regression between pyranometer radiance and ambient light 

spectrometer power 

The linear regression model was used to represent the cross-sectional area of the 

spectrometers. Figure 4-15 illustrates how solar radiance varied during the eclipse using 

both ambient light spectrometers and the pyranometer. As expected, a similar pattern was 

observed between the two sensors with the largest deviations occurring at the beginning 

and end of the eclipse. The directional change in the offset is a result of the hysteresis 

exhibited in Figure 4-14. Momentary dips in solar radiance caused by transient clouds were 

detected by both systems, confirming they were not anomalies. The lowest solar radiance 

was measured around 14:30 EDTcorresponding to totality. 
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Figure 4-15 Comparing ambient light data collected by ambient light sensor on a 

weather station and ambient light spectrometers  

4.5 CONCLUSION 

In the first part of this study, a platform was developed to be deployed on a UAS to 

measure the reflectance intensity from a target. Two sets of portable STS spectrometers in 

three ranges of UV, VIS, and NIR were used along with a RPi to form a reflectance system 

and an ambient light system. In the second part of this study, a method for compensating 

for ambient light conditions and sensor integration time was developed and tested during 

the 2017 Great American Eclipse. Results showed a large variability in reflected light 

intensity due to significant changes in sun radiance. Reflectance values were compensated 

using ambient light measurements and integration time. Compensated reflectance values 

exhibited a consistent spectral signature for measurements taken at different ambient light 

conditions. This method will be useful for future field work where ambient light conditions 

cannot be controlled and the sensor integration time may need to be adjusted to optimize 
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the sensitivity of the spectrometer. Future work should include testing the ability to classify 

different targets at varying ambient light conditions and to automatically adjust the 

integration time of each reflectance spectrometer based on previous measurements to 

maximize sensitivity. 
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  OBJECTIVE 4: CLASSIFYING REFLECTANCE TARGETS 

FROM HYPERSPECTRAL DATA COLLECTED UNDER AMBIENT LIGHT 

CONDITIONS USING A PASSIVE LOW-COST REMOTE SENSING SYSTEM 

5.1 SUMMARY 

The main objective of this study was to develop a spectral measurement 

instrument for deployment on a small unmanned aircraft system (sUAS) and to test the 

ability of the system to classify distinct targets across a wide range of ambient light 

conditions. A series of portable spectrometers covering ultraviolet (UV), visible (VIS), 

and near-infrared (NIR) wavelengths were instrumented using an embedded computer 

and programmed to interface with the sUAS autopilot for autonomous data acquisition. A 

second set of identical spectrometers were fitted with calibrated irradiance filters to 

capture ambient light during data acquisition. This study aimed to determine the 

feasibility of using this low-cost method for classifying six grayscale reflectance targets 

under different ambient light conditions. Three compensation modes with variable 

integration time were developed to update integration time on the reflectance system 

based on ambient light conditions (M-1, M-2, and M-3). Sensor integration time was 

automatically updated after each measurement to optimize the subsequent measurement. 

Spectral data processing was conducted in two steps. First, raw spectral data were 

preprocessed using a partial least squares (PLS) regression method to compress highly 

correlated wavelengths and to avoid overfitting. Next, various machine learning 

algorithms were trained, validated and tested to determine the overall prediction accuracy 
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of each algorithm for differentiating reflectance targets. The resulting compensated 

reflectance exhibited a consistent spectral profile and average intensity across a wide 

range of ambient light conditions for each target. Results indicated the potential for 

mitigating the effect of ambient light and optimizing integration time when passively 

measuring reflectance on a portable spectral measurement system. Eventually, it was 

observed that data collected with VIS spectrometer, with M-1 compensation mode, and 

using quadratic discriminant method provided a perfect target recognition.  

5.2 INTRODUCTION 

In precision agriculture, it is aimed to recognize the variability in field parameters 

using sensors before making decisions for applying agricultural inputs (Zhang & Kovacs, 

2012). Remote sensing is currently among the most widely studied topics in precision 

agriculture (Mulla, 2013). For instance, unmanned aerial systems (UASs) are relatively 

new tools for being applied in remote sensing projects (Adão et al., 2017; Khanal et al., 

2017) and have become very popular for agricultural applications. UAS-based farm studies 

have covered a wide range of applications including sensing biomass and nitrogen status 

(Hunt et al., 2005), monitoring wheat (Lelong et al., 2008), and monitoring rangelands 

(Rango et al., 2009). UASs provide a more versatile method for remote data collection with 

a high resolution compared to satellite and ground-based methods (Rudd et al., 2017).  

In UAS-based projects, multispectral, thermal, or RGB cameras are most 

commonly deployed for monitoring a field and for estimating its parameters (Bendig et al., 

2014; Berni et al., 2009; Hamidisepehr et al., 2017; Kelcey & Lucieer, 2012; Paredes et 
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al., 2017). Traditionally, a couple of narrow-band ranges, which potentially have a high 

capability in estimating one or more field parameters, are selected (Candiago et al., 2015; 

Kalisperakis et al., 2015) to create an index like normalized difference vegetation index 

(NDVI). But in this way, the information that can be extracted from the other wavelength 

ranges are either filtered out or ignored. Most of the commercially available sensors are 

designed to work in one or two ranges of wavelengths to reduce sensor cost and data 

processing complexity. 

Portable spectrometers are relatively inexpensive tools which can derive a complete 

spectrum from a broad spectral effective range and due to their small size they can be 

mounted on a UAS platform (Burkart et al., 2014; Von Bueren et al., 2015). In the both of 

these studies, two STS spectrometers were deployed. One spectrometer was oriented 

towards the ground and measured the reflectance from a reference white target. The other 

was mounted on a UAS to measure reflectance from actual land targets. The ratio of actual 

target reflectance and the reference target was considered as compensated reflectance from 

the target. Obtained spectrums can be analyzed partially or entirely to estimate different 

agricultural indices in a field such as NDVI, NDWI, and LAI. Nevertheless, calibrating 

these sensors for various ambient light conditions and avoiding saturation are challenges 

needed to be dealt with. Field spectrometers are mostly limited to data collection in a 

specific period and ambient light condition (Damm et al., 2011; Gao et al., 2002, 2004; 

Guanter et al., 2006). Using reference tarps is another common approach for compensating 

against ambient light changes. To keep track of ambient light changes continuously, a 

measurement from tarps needs to be taken for each measurement from a land target 
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(Shanahan et al., 2001). However, since it is practically difficult especially for large field 

scales, only a few measurements from tarps can typically be taken during the data 

collection process.  

Using machine learning algorithms is a data processing method which provides an 

opportunity to process massive datasets like full spectra with a large number of input 

variables and samples and make a prediction model for unseen samples. Different machine 

learning algorithms have already been used for classification of hyperspectral images 

(Melgani & Bruzzone, 2004), weed detection (Koot, 2014), plant disease detection (Rumpf 

et al., 2010), biotic stress detection (Behmann et al., 2015), water quality monitoring (Kim 

et al., 2014), human learning (Matveeva et al., 2016; Mousavi et al., 2016), and many other 

applications. Several studies focused on developing algorithms and methods for feature 

selection to reduce the dimensionality of very large datasets (Serpico & Bruzzone, 2001; 

Serpico & Moser, 2007). By compressing the dataset, the other issue derived from large 

spectral data can be addressed (Ye et al., 2017).   

In this study, a data acquisition system for collecting hyperspectral data consisted 

of two sets of STS spectrometers coupled with Raspberry Pi (RPi) embedded computers 

were used (Hamidisepehr & Sama, 2018). This study aimed to expand upon previous work 

by devising a method to compensate the portable spectrometers integration time 

(measurement period) against varying ambient light conditions by updating integration 

time for each measurement. Designing a dynamic compensation process on a UAS 

platform would enable spectral data to be collected over a wide range of ambient light 

conditions with limited impact on sensor sensitivity. Specific objectives included: 
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1. Develop a variable integration time to automate compensating reflectance 

measurements against ambient light on the spectral data acquisition system 

from Chapter 4. 

2. Test the system on multiple targets and assess classification accuracy on 

multiple models generated by different machine learning algorithms.  

5.3 MATERIALS AND METHODS 

5.3.1 Hardware Setup 

Two data acquisition systems were deployed for data collection process – an 

updward-facing ambient light system for measuring ambient light intensity and a 

downward-facing reflectance system for measuring reflectance from a target located 

underneath sensors. Each system consisted of three STS spectrometers (STS, Ocean 

Optics, Dunedin, FL) in the ultraviolet (UV), visible (VIS), and near-infrared (NIR) ranges 

as data collection devices and a Raspberry Pi 3 (RPi) (B V1.2, Raspberry Pi Foundation, 

Cambridge, United Kingdom) as an embedded data acquisition system for controlling the 

measurement process. A test stand was used to hold both systems and target consistently 

relative to each other. 

5.3.2 Reflectance Targets 

Five 0.3 m square plywood targets painted in varying shades of gray, and one target 

laminated with a 0.8 mm thick sheet of PTFE, were fabricated as reflectance targets to be 

placed underneath the spectrometers. Each was painted with a different color in grayscale 

range (Figure 5-1). The relative reflectance of each target was measured using visible and 
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near-infrared spectrometers (HR400-7-VIS-NIR, NIRQuest512; Ocean Optics; Dunedin, 

FL) with a Spectralon calibration target (WS-1-SL; Ocean Optics; Dunedin, FL) serving 

as the calibration reference target. Nine spectral measurements were taken at uniformly 

spaced locations and averaged. 

 

 

Figure 5-1: Reflectance targets in the greyscale range 

 

5.3.3 Data Collection 

The data were collected at five days on September 14, 15, 18, 19, and 21 of 2017 

on the roof of Charles E. Barnhart Building in Lexington, Kentucky. The test stand was 

oriented so that shadows would not be made on the targets since it would change 

reflectance spectrum. Data were collected periodically in ten-second intervals. Each 

measurement interval included three individual measurements that were stored in a tab-

delimited text file. Each file includes the time of measurement and the serial number of the 

spectrometer to facilitate tracking measurements with different time and with different 

spectrometers. 
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5.3.4 Updating Integration Time 

Integration time is the amount of time that a spectrometer sensor is exposed to light. 

Increasing the integration time has a similar effect to applying a gain to the spectral signal, 

making patterns or unique features more discernable. Increasing integration time by an 

excessive amount, however, reduces sampling rate and will eventually cause saturation in 

spectral data at one or more wavelengths. A saturated measurement is not useful for signal 

classification. Hence, the optimal situation is for each measurement to be taken with the 

maximum integration time that does not result in saturation.  

Reflectance intensity varies when the ambient light condition changes e.g. due to 

clouds and sun angle. A fixed target will produce varying spectral signatures using a 

spectromter if integration time is set constant. In order to set an appropriate integration 

time for each specific ambient light condition, a method to update integration time based 

on the ambient light condition and the spectral response from the last measurement was 

used. In other words, each measurement was considered as a feedback for the next 

measurement. In this process it was assumed that subsequent measurements are observing 

targets with similar spectral reflectance. 

The process started with setting an initial integration time on each reflectance 

spectrometer and recording a measurement. A continuously running Python script then 

read in the most recent measurement. Outliers in the spectral data due to hot and dead pixels 

at certain wavelengths were detected and removed. The maximum intensity of the spectrum 

was determined and compared to the maximum possible intensity without saturation (214-



 

87 

 

 

1 = 16,383). The maximum intensity was set to 12,000 counts as a safe threshold. Thus, 

the updated integration time for a given target was calculated from equation 5-1. 

 
𝐼𝑇𝑘+1 =

𝑀𝑘

𝑀𝑚𝑎𝑥
∗ 𝐼𝑇𝑘 

(5-1) 

where: 

𝐼𝑇𝑘+1 was the integration time for the next spectral measurement from a 

given target (ms) 

𝑀𝑘 was the maximum raw measurement intensity in the current spectrum 

from a target (A/D counts) 

𝑀𝑚𝑎𝑥 was the maximum possible raw measurement intensity without 

saturation (A/D counts) 

𝐼𝑇𝑘 was the integration time for the current spectral measurement intensity 

from a given target (ms) 

It was assumed that there is a linear relationship between integration time and 

reflectance intensity. By updating the integration time based on the ambient light condition, 

it is expected that the reflectance intensity spectrum ideally becomes the same for different 

ambient light conditions if the same target is measured. Figure 5-2 shows hypothetically 

how a spectrum changes by updating integration time. Hence, by any detectable change in 

ambient light, the integration time would be updated for the next measurement.  
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Figure 5-2: Schematic of updating integration time based on initial and maximum 

reflectance intensity 

 

On the other hand, integration times for ambient light spectrometers were kept 

constant. These integration times were defined by the manufacturer and set to one second 

on both UV and NIR spectrometers, and 180 milliseconds for VIS spectrometer to measure 

solar irradiance. 

5.3.5 Compensating for Ambient Light 

Data from two sets of spectrometers for each target were collected over five days. 

Since the integration time on ambient light and reflectance spectrometers were different, 

the measurements were not temporally synchronized. Due to longer integration times on 

ambient light spectrometers, fewer measurements were obtained compared to reflectance 

measurements. The ambient light measurements were interpolated to the moments when 

reflectance was measured. Ambient light measurements were calibrated using coefficients 



 

89 

 

 

for different wavelength provided by the manufacturer. After applying coefficients ( counts 

/ J), the intensity unit changed from counts to microjoules (µJ) (Equation 5-2).  

 
𝐶𝐴𝜆 =

𝐴𝜆 

𝑐𝑜𝑒𝑓𝑓.𝜆 
 

(5-2) 

Where: 

CA was the calibrated ambient measurement intensity (J) 

A was the raw ambient light measurement intensity (A/D counts) 

λ was the specific wavelength (nm) 

Three compensation modes were considered for the calibrating reflectance 

measurements and each mode was evaluated based on the predictive power of generated 

models 164): 

1. Raw reflectance (counts) as M-1 

2. Dividing reflectance data by its corresponding integration time (counts/ms) as 

M-2 (equation 5-3)  

 
𝑅𝜆 =

𝐼𝜆 

𝐼𝑇
 

(5-3) 

Where: 

R was the calibrated reflectance measurement intensity (counts/ms)  

I was the raw reflectance measurement intensity (A/D counts) 

IT was the integration time in the specific measurement (ms) 

λ was the specific wavelength (nm) 
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3. Dividing reflectance data by ambient light measurement taken at the same 

moment and the corresponding integration time of the reflectance spectrometer 

(counts×µJ-1×ms-1) as M-3 (equation 5-4). 

 
𝑅𝜆 =

𝐼𝜆 − 1500

𝐶𝐴𝜆 ∗ 𝐼𝑇
 

(5-4) 

Where: 

R was the calibrated reflectance measurement intensity (counts×µJ-1×ms-1)  

I was the raw reflectance measurement intensity (A/D counts) 

IT was the integration time in the specific measurement (ms) 

CA was the calibrated ambient measurement intensity (µJ) 

λ was the specific wavelength (nm) 

5.3.6 Preprocessing 

Each spectrometer covered a range of several distinct wavelengths (UV between 

184nm-667nm, VIS between 338nm-825nm, and NIR between 634nm-1124nm and with 

0.5nm step) which each can be considered as an input variable in a predictive model. Since 

many of the wavelengths are highly correlated, they can be combined to reduce the 

dimensionality of the dataset. A preprocessing method, partial least square (PLS) 

regression, was used to compress dataset, solve collinearity issues, speed up subsequent 

processing. The optimal number of components after preprocessing was obtained using 

two parameters, i.e. the estimated mean squared prediction error and the variance explained 

in the output variable. The number in which a high variance in output was explained with 

a low prediction error was considered as the optimal number of input components. The 
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preprocessing step, including compressing the dataset and finding the optimal number of 

components, was conducted using MATLAB (R2017a; The Mathworks; Natick, MA). 

5.3.7 Machine Learning 

Using the Classification Learner app in MATLAB (R2017a), 22 leaning 

algorithms, including decision trees, discriminant analysis, support vector machines 

(SVM), nearest neighbor classifiers, and ensemble classifiers, were used to train models 

for identifying targets based on their spectral measurements. The data was fed into 

individual algorithms as a matrix where columns represented wavelengths (predictors) and 

rows represented instances of each measurement. The last column (response) was allocated 

to target codes (C1 through C6). The dataset was divided to: 70% training dataset, 15% 

validation dataset, and 15% for testing dataset. For each measurement in training dataset, 

predictors or input variables were paired with response or actual output. It is necessary to 

have the output of every row data for supervised learning. The validation dataset was used 

to determine how well the model has been trained based on the predicting expected output. 

Model properties, such as classification error and overfitting index are estimated during the 

validation step. Finally, in the testing dataset, unseen data to the machine are applied, and 

the prediction power of a model is estimated by comparing the correct output and the 

predicted output. By doing these three steps for each learning algorithm, 22 models were 

trained, and their prediction accuracies were obtained. Each treatment was run five times 

with randomly distributed training, validation, and testing data to find the best algorithm 

which has a higher accuracy in different combinations of spectrometer type and 

compensation mode. 
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5.3.8 Statistical Analysis 

Three spectrometers and three compensation modes were considered in this 

experiment. It was desired to see if there were any significant differences between various 

types of spectrometers and the methods of compensation in terms of prediction accuracy 

in target recognition. This test shows in which mode of compensation and with which 

spectrometer type, the prediction accuracy is higher than others and also if the difference 

between groups is significant. Then, the optimal algorithm was tested for each combination 

of compensation mode and spectrometer type to check the significance of these two 

parameters on the predictive power of the model. The experiment was set up with a factorial 

design using spectrometer type and compensation mode (3×3). The data were subjected to 

analysis of variance and a multiple comparisons test was conducted using MATLAB 

(R2017a). At the end of this analysis, the spectrometer type and compensation mode which 

provided higher overall accuracy were chosen as the optimal selection. The null hypothesis 

was that there is no significant difference between spectrometer type and compensation 

mode with the prediction accuracy of the optimal model. 

5.4 RESULTS AND DISCUSSION 

5.4.1 Benchmarking 

Targets were benchmarked using the reference target so that the reference target 

reflected nominally 100 percent at all wavelengths after laboratory spectrometer 

calibration. Figure 5-3 shows how different grayscale targets reflected a constant light 

versus the reference target and when the light source was blocked (background). Darker 
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targets clearly reflected less compared to lighter targets. Targets C4 and C5 resulted in 

relative reflectances in excess of 100%, indicating they were “brighter” than the calibration 

standard over a range of wavelengths. A consistent trend across all targets was a decrease 

in relative reflectance as wavelength increased. 

 

Figure 5-3: Spectrums of reflectance targets with lab spectrometers calibrated with 

the Spectralon reference target 

 

5.4.2 Ambient and Reflectance Measurements 

In this section, spectrums obtained from each mode of compensation for the UV 

spectrometer are shown. Due to the similarity of the process, the compensation process 

only on one spectrometer type has been shown. Data from the other two spectrometer types 

are located in 174. Figure 5-4 shows the raw ambient light spectra. It can be observed that 

there was large variability in ambient light condition due to measurement at different 
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ambient light conditions. This variability directly affects reflectance measurements, which 

illustrates the necessity of compensating reflectance measurements against ambient light 

conditions. 

   

   

Figure 5-4: Raw ambient light measurements from UV spectrometer collected 

during reflectance measurement for six targets (a. darkest target, e. lightest target, f. white 

PTFE target) 

In the next part, raw reflectance data with variable integration time are shown (M-

1) (Figure 5-5). Reflectance spectra were filtered to skip saturated measurements and low-

intensity spectra. Saturation happened just a few times during the data collection at the 

moments when the target was switched from a dark target to a brighter one. Since the 

integration time is longer on darker targets, it takes one or more measurements to adjust 

the integration time with a brighter target. Also, switching from a bright target to a darker 
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one leads to low-intensity spectrums for first few measurements which causes lower 

sensitivity in obtaining information. Since integration time is adjusted to compensate for 

varying ambient light, all spectra exhibited similar average intensities between targets.  

   

   

Figure 5-5: Reflectance measurements with variable integration time with M-1 

mode of compensation for six targets of: a. C1; b. C2; c. C3; d. C4; e. C5; f. C6. 

By dividing each raw reflectance measurement by its corresponding integration 

time (M-2), data are scattered. It was now easier to visually distinguish dark and light 

targets, although, identifying light targets of C4, C5, and C6 was still difficult due to similar 

spectra (Figure 5-6).  
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Figure 5-6: Reflectance measurements with variable integration time with M-2 

mode of compensation for six targets of: a. C1; b. C2; c. C3; d. C4; e. C5; f. C6. 

Next, each raw reflectance measurement was divided by its corresponding 

integration time and simultaneous ambient light measurement (M-3). According to Figure 

5-7, darker targets were more easily distinguished while brighter targets have multiple 

similar spectra like the previous step and with a noticeable overlap. Target C4 was now 

more distinct from C5 and C6 than in the previous method. 
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Figure 5-7: Reflectance measurements with variable integration time with M-3 

mode of compensation for six targets of: a. C1; b. C2; c. C3; d. C4; e. C5; f. C6. 

5.4.3 Preprocessing 

Spectral data in different modes of compensation were modeled using machine 

learning algorithms to evaluate how accurate an algorithm can estimate the target based on 

existing training dataset. Before applying machine learning algorithms, estimated mean 

squared prediction error and percent variance explained in the output were used as decision 

criteria to find the optimal number of components for target recognition. As expected, there 

were many highly correlated wavelengths that could be combined to compress the dataset 

and make the subsequent data processing faster and to avoid overfitting. Based on Figure 

5-8, a model with around 20 components would result in a low estimated mean squared 
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prediction error and also about 90 percent of the variability in the output can be explained. 

For components more than 20, amount of error increases due to overfitting. On the other 

hand, increasing the number of components, increases the amount of variance explained in 

general. For more than 20 components, however, there is only a slight increase in variance 

explanation by adding many components. Our models were tested with a few more and 

less components than 20 to make sure about the optimal number. Based on these 

preliminary results, 20 was considered as the optimal number of components to feed into 

learning algorithms.    

 

Figure 5-8: Estimated error and the variance explained in the output versus number 

of components in a model 

 

5.4.4 Machine Learning Algorithms 

Twenty-two pre-configured machine learning algorithms were used to train models 

for each combination of compensation mode and for each spectrometer type. Figure 5-9 

shows the prediction accuracy of models generated from the UV spectrometer. It can be 
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observed that Quadratic Discriminant, Linear Discriminant, Linear SVM, Quadratic SVM, 

and Cubic SVM are all accurate models; however, Quadratic Discriminant is slightly more 

accurate than others for all three compensation modes. Each model was generated ten times 

with random selection of training and testing dataset and the average prediction accuracy 

for each model was obtained.  

 

Figure 5-9: Prediction accuracy for 22 machine learning algorithms applied to 

relative reflectance data collected by the UV spectrometer from reflectance targets and 

for three compensation modes. 

Figure 5-10 shows the models generated from data collected with VIS spectrometer 

for three compensation modes and again Quadratic Discriminant provided the highest 

accuracy with a slight difference for three compensation modes. 
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Figure 5-10: Prediction accuracy for 22 machine learning algorithms applied to 

relative reflectance data collected by the VIS spectrometer from reflectance targets and for 

three compensation modes. 

The prediction accuracy of models generated from data collected by NIR 

spectrometers is shown in Figure 5-11. The prediction accuracy was lower compared to 

models from UV and VIS spectrometers data. Quadratic SVM had a slightly higher 

performance in terms of prediction accuracy. 
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Figure 5-11: Prediction accuracy for 22 machine learning algorithms applied to 

relative reflectance data collected by the NIR spectrometer from reflectance targets and for 

three compensation modes. 

Table 5-1 contains the average of each model for different compensation modes and 

spectrometer type. Each combination of spectrometer type and compensation mode was 

repeated five times to provide replications. 

Table 5-1: The prediction accuracy for 22 machine learning algorithms in target 

recognition and for different compensation modes and spectrometer types 
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Algorithm 
M-1 M-2 M-3 

UV VIS NIR UV VIS NIR UV VIS NIR 

Complex tee 96.9 96.6 90.3 96.4 95.6 95.5 98.9 94.4 92.6 

Medium tree 96.9 96.6 81.6 96.4 95.5 92.9 98.9 94.0 90.8 

Simple tree 78.0 81.1 53.2 78.9 74.5 64.9 87.4 75.4 69.6 

Linear discriminant 100 100 96.4 99.3 99.0 95.9 99.4 99.2 93.9 

Quadratic discriminant 100 100 99.5 99.9 99.9 99.4 99.7 99.4 97.5 

Linear SVM 99.9 100 99.0 99.6 99.8 98.5 99.7 99.4 97.2 

Quadratic SVM 99.9 100 99.5 99.8 99.9 99.7 99.9 99.4 98.6 

Cubic SVM 99.9 100 99.3 99.9 99.9 99.4 99.7 99.6 98.5 

Fine Gaussian SVM 88.9 80.7 81.2 83.6 78.9 73.0 88.2 89.4 87.3 

Medium Gaussian SVM 99.9 100 98.6 99.5 99.5 99.1 99.1 98.4 97.5 

Coarse Gaussian SVM 100 100 90.9 98.7 97.9 94.8 99.3 99.5 93.5 

Fine SVM 99.9 99.8 96.5 99.6 99.6 98.7 99.5 98.9 98.1 

Medium KNN 99.6 98.7 92.1 98.8 96.7 93.8 97.4 97.1 93.8 

Coarse KNN 89.7 87.3 61.7 63.7 51.1 41.6 62.7 59.8 34.4 

Cosine KNN 99.5 98.5 91.3 99.1 97.3 96.4 97.9 97.7 94.3 

Cubic KNN 99.2 98.3 88.7 98.4 95.9 90.5 96.7 96.6 92.4 

Weighted KNN 99.8 99.8 95.6 99.5 99.2 96.5 99.0 98.1 96.8 

Ensemble boosted trees 98.2 86.8 92.5 97.9 97.6 97.8 21.0 96.5 95.2 

Ensemble bagged trees 99.9 99.2 97.8 99.3 99.6 99.1 99.6 99.0 97.8 

Subspace discriminant 100 100 86.9 98.8 98.8 91.0 98.2 98.8 92.7 

Subspace KNN 99.9 100 98.1 99.7 99.6 99.2 99.7 99.0 98.5 

RUSboosted trees 98.8 97.5 92.3 98.1 97.9 98.3 99.1 97.6 93.9 

 

In the next step, a statistical analysis was conducted to see if the effect of different 

compensation modes and the type of spectrometer had significant impact on overall 

prediction accuracy. Based on Table 5-2, both of these two variables had a significant effect 

on prediction accuracy and the null hypothesis was rejected because of the low p-value. 

Also, the results of the multiple comparison test in MATLAB (Figure 5-12-a) showed that 

the difference between M-3 with M-1 and M-2 was significant. But there was no significant 

difference between M-1 and M-2; however, M-1 provided a slightly higher prediction 

accuracy. The NIR spectrometer had a lower overall prediction accuracy on different 

compensation modes and it can be observed from the multiple comparison test that there 
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is a significant difference between NIR and both VIS and UV. No significant effect was 

observed between UV and VIS spectrometers; however, VIS spectrometer data provided a 

slightly more accurate models than UV for target recognition (Figure 5-12-b).  

 

Table 5-2: Significance testing of compensation mode and spectrometer type on 

overall accuracy of the predictive model 

Source Sum of square df Mean square F Prob>F 

Compensation mode 4.43 2 2.21 117.31 1.19e-24 

Spectrometer type 8.068 2 4.03 213.44 5.13e-33 

 

 

 

a. 

 

b. 

Figure 5-12: Multi-comparison significance test between different a. compensation 

modes b. spectrometer type 

 

Based on the overall data analysis, the highest prediction accuracy was obtained 

using data collected with the VIS spectrometer and applying M-1 compensation mode and 

with a model generated using the Quadratic Discriminant algorithm. 
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The confusion matrix in Figure 5-13 demonstrates more details about the predictive 

power of the optimal model derived from reflectance measurements with M-1 

compensation mode obtained by the VIS spectrometer and using Quadratic Discriminant 

method. In this matrix, rows represent the actual target and columns represent the predicted 

target. If a specific prediction was correct on a target, then it is placed on the diagonal of 

the matrix. The cells not on the diagonal, however, show the inaccuracies in predictions. 

The number on each cell indicates the percentile of the frequency of a specific prediction. 

On the optimal model, no inaccuracy has found all predictions matched with the actual 

target. It is worth noting that this experiment used idealized targets that were uniformly 

distinct across a wide range of wavelengths. Identical performance should not be expected 

with observing more “natural” targets. The optimal sensor type and modeling method may 

also vary based upon the target. 

 

Figure 5-13: Confusion matrix for estimating reflectance target using Quadratic 

Discriminant algorithm 
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5.5 CONCLUSIONS  

Six targets were provided with differences either in colors or material in the 

grayscale range. Then, these targets were benchmarked using visible and near-infrared 

spectrometers calibrated with a reference target. Two data acquisition systems (reflectance 

and ambient light) were used for collecting spectral data at five days at different times of 

day to cover a large portion of ambient light variability in the spectral dataset. A system 

was designated for measuring ambient light, and sun radiance and the other series measured 

the reflectance from targets. A mechanism was applied to update the integration time of 

each reflectance spectrometer based on ambient light condition. Then, spectral data were 

compensated for ambient light condition in three different modes; raw reflectance (M-1), 

reflectance divided by the corresponding integration time (M-2), and reflectance divided 

by the corresponding integration time and ambient light (M-3). Twenty-two learning 

algorithms were used to generate models for recognizing reflectance targets for each 

combination of spectrometer type and compensation mode. Most of the algorithms had a 

prediction accuracy over 90%. The Quadratic SVM model generated from VIS 

spectrometer data with M-1 compensation mode provided the maximum prediction 

accuracy (100%). Based on a statistical analysis, it was found out that both spectrometer 

type and compensation mode have a significant effect on the prediction accuracy of targets. 

Also, the difference between NIR spectrometer with UV and VIS was significant unlike 

the difference between VIS and UV. M-3 was significantly different from M-1 and M-2 

while the M-1 and M-2 were not significantly different. It was concluded that by adjusting 
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integration time based on ambient light conditions, machine learning models could provide 

a sufficiently high accuracy for recognizing targets according to their spectral responses. 
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  OBJECTIVE 5: MOISTURE CONTENT CLASSIFICATION OF 

SOIL FROM SPECTRAL DATA COLLECTED UNDER AMBIENT LIGHT 

CONDITIONS USING A PASSIVE LOW-COST REMOTE SENSING SYSTEM 

AND MACHINE LEARNING 

6.1 SUMMARY 

Estimating soil/crop parameters such as soil water content using remote sensing 

under ambient light condition is challenging and often involves a complicated calibration 

process. The objective of this study is to use a novel hyperspectral data acquisition system, 

including UV, VIS, and NIR spectrometers, developed from a previous study for estimating 

the soil moisture level under ambient light condition. To automate compensating against 

ambient light changes, a technique for updating integration time during data collection was 

deployed. 21 moisture-controlled sample chosen from 7 moisture levels were measured at 

different times over two days. The data collection on each sample was 20 minutes. To keep 

track of effect of water content change during data collection, the data collection period 

was divided to three periods of 5, 10, and 20 minutes. A preprocessing step was conducted 

to compress the dataset using PLS regression method. Then, preprocessed data were fed 

into 22 machine learning algorithms and prediction accuracy of each model with data 

collected from each spectrometer and each data collection period was obtained. It was 

found out that linear discriminant on the models generated with a 10-minute period of data 

collection performed the best. 
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6.2 INTRODUCTION 

During last few decades, agricultural production has significantly increased while 

the cropland extent has either remained the same or only increased by a small percentage 

(Gleick, 2003; Ozdogan et al., 2010). Intensive agricultural production is the primary 

consumer of fresh water (Rosegrant et al., 2008) and irrigation puts more pressure on water 

resources in a specific area to meet water needs (Cai & Rosegrant, 2002). Instead of 

applying water uniformly over a field, it is desirable to irrigate site-specifically if the field 

soil is spatially variable. Variable rate irrigation is an effective method to optimize the 

water usage during irrigation and applying water at the right amount and in the right place. 

Hence, tracking soil moisture cross a field spatially and temporally at sufficient resolution 

would be desired. Soil moisture is also associated with nutrient availability for plants and 

overall field performance (Khanal et al., 2017). Generating prescription maps for entire 

fields using spectral remote sensing data has been a popular approach in order to implement 

variable rate irrigation. There are three main platforms for collecting spectral data: 

satellites, conventional aircraft, and unmanned aircraft systems (UAS). Regardless of the 

type of platform, soil moisture is a primary component that affects spectral response 

(Lobell & Asner, 2002; Rossel et al., 2006). Each of these platforms was deployed in 

several studies and experiments. 

Satellite and conventional aircrafts provide data at a lower resolution for field 

scales. There are also temporal and cost limitations for data collection from these two 

platforms (Montes de Oca et al., 2018). On the other hand, UAS are a cost effective method 

that are evolving rapidly and can provide data at high spatial and temporal resolutions 
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(Hakala et al., 2018). UAS flight time is a major limitation on large scale fields – especially, 

for heavy payloads (Gnyp et al., 2016).  

Spectral remote sensing data are collected through either hyperspectral or 

multispectral sensors. Multispectral sensors measure reflected light in a few certain 

wavebands in a wide spectral range (Bokolonga et al., 2016; Rabatel et al., 2014) while 

hyperspectral sensors or spectrometers collect data at many wavelengths in a broad spectral 

range (Lee et al., 2010). Multispectral sensors are common since they create a smaller 

dataset which facilitates the data processing compared to the larger datasets obtained from 

spectrometers and very large datasets obtained from hyperspectral cameras. On the other 

hand, hyperspectral data contain more information which can be used for monitoring 

different field parameters simultaneously while multispectral data is limited to measure 

few parameters and with lower spectral details. In a study by Gnyp et al. (2016), tractor-

based and UAS-based spectrometer data were compared, and it was concluded that both 

systems have the potential for monitoring nitrogen status in a winter wheat field. Portable 

spectrometers are suitable for UAS deployment at relatively low cost. STS spectrometers 

mounted on a UAS were tested in multiple studies for hyperspectral measurements and 

compared with conventional field spectrometers. Promising results were shown for further 

experiments (Burkart et al., 2014; Tsouvaltsidis et al., 2015; Von Bueren et al., 2015). In a 

study by Zeng et al. (2017), spectral data from a portable spectrometer was fused with 

multispectral camera images to provide expanded spectral information for at each pixel.  

 Multiple studies were conducted for estimating soil moisture based on the spectral 

analysis in which a reference measurement before each reflectance was necessary for field 
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condition unless ambient light is controlled in a lab condition (Hamidisepehr et al., 2017; 

Kaleita et al., 2005). Ambient light changes during spectral data collection is a challenge 

that must be addressed before using the data to make management decisions. Transient 

clouds and changes in sun angle cause changes in measured spectra that do not correspond 

to changes in the parameter of interest. Using calibration tarps in the field during data 

collection as a reference is a possible solution for normalizing reflectance data; however, 

these targets should be included in all measurements for an accurate ambient light tracking. 

Recently, several machine learning methods are more commonly used in the 

literature due to their capability for handling datasets with high dimensionality. Among 

these algorithms, some of them have more popularity for remote sensing data on 

agricultural applications. For instance, support vector machines (SVM) have been used for 

predicting soil water content (Pasolli et al., 2011). It was shown by Wu et al. (2007) and 

Ahmad et al. (2010) that SVM outperformed artificial neural networks (ANN) in estimating 

soil water content. Linear discriminant analysis (LDA) and quadratic discriminant analysis 

(QDA), both based on Bayesian discriminant theory, have been used for processing remote 

sensing data for agricultural targets (Lee et al., 2010) including weed detection on radish 

(Cho et al., 2002), sugar beet (Jafari et al., 2006), carrots (Piron et al., 2011), and also from 

a UAS platform (Koot, 2014). Bayesian methods, besides ANN and SVM, are also a 

prevalent approach for estimating soil moisture from remote sensing data (Ali et al., 2015; 

Notarnicola et al., 2008; Paloscia et al., 2008). There are other learning algorithms which 

have been used for drought monitoring such as decision trees (Im et al., 2016; Park et al., 

2016). Partial least squares (PLS) and principal component analysis (PCA) or even 
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heuristic methods are also useful to reduce the dimensionality of the dataset by eliminating 

redundancy and creating independent parameters for estimating a specific parameter 

(Mulla, 2013; Ye et al., 2017). 

Previously, a UAS-deployable spectral data acquisition system was developed with 

a dynamic system to update integration time of spectrometers during varying ambient light 

conditions. The system was shown to successfully recognize targets painted with different 

grayscale targets (Hamidisepehr & Sama, 2018). The main objective of this study was to 

apply the same method for estimating soil moisture content under varying ambient light 

conditions. Specific objectives include: 

1. Test the system on soil samples at different moisture contents under varying 

ambient light conditions. 

2. Assess prediction accuracy on multiple models generated by different machine 

learning algorithms for classifying soil moisture content. 

6.3 MATERIAL AND METHODS 

6.3.1 Sample Preparation 

In this study, samples with predetermined moisture level were prepared from silt 

loam soil. Plastic containers (950 mL) volume with airtight removable lids were used to 

hold samples with different moisture contents. The soil was air-dried before preparing 

samples with various moisture levels passed through a 2 mm sieve to avoid disturbance 

through larger mineral and organic particles. To determine the initial moisture 

gravimetrically, a sample was put in a convection oven at 105 °C for over 24 hours. Mass 
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of the sample before and after drying was compared to find out the initial soil moisture 

content. It was intended to provide samples in seven moisture levels: air dry, 5%, 10%, 

15%, 20%, 25%, and 30%. Each container was filled with 150 mL of soil, and the surface 

was kept flat and uniform. The net mass of soil was measured by subtracting of container 

tare from the entire weight of the sample. In the next step, the amount of water required for 

each sample to reach a certain moisture content was determined. Water was sprayed onto 

the soil surface as evenly as possible. The lid of each container was closed for several days 

to allow the added moisture to redistribute through the sample. If moisture stayed on the 

very top surface of the soil sample, the container was shaken to mix the top surface layer 

with a lower level. Samples then were left to equilibrate for several more days to ensure 

even moisture distribution through the sample. Three replications were prepared for each 

moisture level for a total of 21 soil samples for this experiment. 

6.3.2 Spectral Data Collection 

Reflected light from each sample was measured using three portable spectrometers 

(STS, Ocean Optics, Dunedin, FL) in the ultraviolet (UV), visible (VIS), and near-infrared 

(NIR) ranges. These spectrometers were coupled with a Raspberry Pi 3 (RPi) (B V1.2, 

Raspberry Pi Foundation, Cambridge, United Kingdom) to control the measurement 

process. There were two python scripts running continuously on the RPi: the first one was 

for communicating with a GPS receiver for updating time on the RPi, and the second script 

enabled the system for periodic data collection and recording each measurement as a tab-

delimited text file with a time-formatted file naming schema. The serial number of the 
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respective spectrometer was recorded in each filename to facilitate tracking individual 

measurements.  

Data collection was implemented on May 10 and 11, 2018 between approximately 

10 am and 4 pm on the roof of the Charles E. Barnhart Building in Lexington, KY. Samples 

at different moisture contents were measured during different ambient light conditions in 

the morning and in the afternoon. Each sample was placed in the measurement spot for 

about 20 minutes and approximately 230 measurements were made during each 

measurement period by each spectrometer. The length of each measurement process varied 

based on the spectrometer type and ambient light automatically by updating integration 

time, but was typically less than 10 s. There was a 10-second break after finishing each 

measurement from all spectrometers before the next measurement was made. The 

integration time of a spectrometer is an important parameter which needs to be set in a way 

to provide maximum performance from sensors. If integration time was set too high on a 

given spectrometer, the resulting spectrum would saturate at the maximum intensity. If 

integration time was set too low, the resulting spectrum would either saturate at the 

minimum intensity (dark current) or be insensitive to the parameter of interest. Changes in 

ambient light cause different spectral responses from a constant target. In order to 

compensate for the ambient light conditions, a dynamic approach for adjusting integration 

time near real time was implemented. In this approach, a maximum intensity with no 

saturation was considered as a threshold. The ratio of threshold intensity and the maximum 

intensity from the last measurement was used as a gain to obtain the integration time for 

the next measurement.     
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During the 20-minute measurement period, the moisture content of each soil sample 

decreased due to evaporation. Moisture content after the measurement period was 

determined gravimetrically by putting each sample in an oven for over 24 hours at 105°C. 

Given the change in moisture content during a measurement period, the entire measurement 

period was subdivided into three different periods: the first 5 minutes, the first 10 minutes, 

and the entire 20 minutes after starting to take measurements. Models were trained for all 

three intervals and compared in terms of prediction accuracy on samples which had not 

been shown to the learning algorithm during the training process. 

6.3.3 Test Stand and Sample Holder 

A test stand was deployed to locate a soil sample underneath the spectrometers. The 

height of the reflectance spectrometers was set at 1 m; however, it can be adjusted for 

further experiments. Initially, plastic sample containers were intended to use as sample 

holder; however, it was observed that the edges of a container would cast a shadow on soil 

surface during data collection. Therefore, a sample holder was designed with a hollowed 

rectangular pocket in the center for placing the soil sample. The sample holder was milled 

from a sheet of black Delrin plastic and the outer surface painted flat black to minimize 

specular reflections from the sample holder surface. The dimensions of pocket were 

selected based on the field of view of three adjacent spectrometers and the area that they 

cover from a 1 m height. A drawing of the two data acquisitions systems and the sample is 

shown in Figure 6-1. Dimensional information on different parts can be found in 172 and 

173. 
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Figure 6-1: CAD drawing of data acquisition systems and the sample holder 

mounted on the test stand   

6.3.4 Spectral Data Preprocessing 

Raw reflectance was measured at 1024 distinct wavelengths for each type of 

spectrometer individually. In order to avoid issues with multi-collinearity, highly 

correlated wavelengths were combined to create a single independent parameter using 
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partial least squares (PLS) regression method in MATLAB (R2017a; The Mathworks; 

Natick, MA). Reducing the number of input variables also reduced the dimensionality of 

the dataset – making subsequent model training faster. Two decision making criteria were 

considered to find the optimal number of wavelengths for generating a prediction model: 

estimated mean squared prediction error and variance explained in moisture content. The 

optimal number of components has both a low estimated mean squared error and a high 

variance explanation of the soil moisture content. 

6.3.5 Ambient Light Measurements 

A second data acquisition system similar to the reflectance system faced upward to 

keep track of ambient light changes. The only difference between two sets is that ambient 

light spectrometers were fitted with optical diffusers and reflectance spectrometers were 

fitted with collimating lenses for setting the field-of-view. Ambient light spectrometers 

were calibrated by the manufacturer in compliance with NIST practices. A calibration 

coefficient was provided for each wavelength to calibrate the ambient light data, and the 

intensity unit changed from count value to units of energy. Unlike reflectance 

spectrometers, ambient light spectrometers were set to a constant integration time defined 

by the manufacturer; 1 s on UV and NIR spectrometers and 180 ms on VIS spectrometer.  

6.3.6 Machine Learning Methods 

Cross-validation method was defined as the validation method. This method 

protected the model against overfitting by partitioning the dataset into five folds (or 

divisions). Each fold is a random selection of training/validation/testing data. For each fold, 
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a model was trained using the out-of-fold observations, and then the model performance 

was assessed using in-fold-data. Prediction accuracy on each fold was estimated, and the 

average overall accuracy over all folds was calculated.  

At the time of this study, there were 22 pre-developed learning algorithms available 

in the Classification Learner App in MATLAB (R2017a) including decision trees, support 

vector machines (SVM), nearest neighbor classifiers, ensemble classifiers, and 

discriminant analysis (Bayesian method). The same validation method was deployed for 

all learning algorithms. 

At the end of the learning process, 22 models were generated for each spectrometer 

and for each measurement period. The prediction accuracy of these models was compared 

to find the optimal spectrometer for soil moisture estimation. The goal was to reduce the 

number of sensors to minimize the size of the data acquisition system and reduce the data 

processing complexity. Payload size and mass affect UAS performance. It would be ideal 

to have only one spectrometer deployed on the data acquisition system if it could provide 

a soil moisture classification model with sufficiently high prediction accuracy. The 

learning algorithm and the spectrometer type which provided the highest prediction 

accuracy compared to other models was chosen as the optimal model for estimating soil 

moisture. 
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6.4 RESULTS AND DISCUSSION 

6.4.1 Ambient light data 

Ambient light data was collected alongside soil reflectance measurements to keep 

track of the solar irradance. This allowed the range of solar radiance to be compared across 

all soil samples to help ensure that solar irradance was well-distributed across all samples. 

Figure 6-2 shows ambient light spectrums collected using NIR spectrometer at different 

ambient light conditions. Each subfigure illustrates the ambient light condition when a 

specific soil moisture was measured.   
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Figure 6-2: Calibrated ambient light measurements simultaneously with soil 

reflectance measurement with NIR spectrometer with soil moisture content of a. air dried; 

b. 5%; c. 10%; d. 15%; e. 20%; f. 25%; g. 30%. 

  

6.4.2 Spectral data from soil samples 

Full spectra from three types of spectrometers and for seven soil moisture levels 

were obtained during data collection. Each moisture level was replicated at three different 

times of the day to include more variability in the ambient light during data collection. 

Figure 6-3 shows spectra obtained with the NIR spectrometer on seven moisture levels. 

Spectra obtained from UV and VIS spectrometers can be found in 183. As expected, 

spectra from each moisture level are similar to each other with a peak intensity close to the 

defined threshold intensity due to the variable integration time method.  



 

120 

 

 

   

   

 

Figure 6-3: Compensated reflected light measurements with NIR spectrometer 

from soil samples with soil moisture content of a. air dried; b. 5%; c. 10%; d. 15%; e. 20%; 

f. 25%; g. 30%  
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6.4.3 Spectral data preprocessing 

The PLS regression preprocessing method helped to reduce the dimensionality of 

the spectral dataset. Figure 6-4 shows the amount of estimated error and also variance 

explanation in soil moisture at a different number of components. Number of components 

ranging from seven to twenty were tested as a preliminary evaluation. Fifteen components 

provided models with the lowest complexity and the highest prediction accuracy; however, 

there were only slight differences in this range which might differ from one experiment to 

the other. Fifteen components meet both criteria of high variance explanation and low 

estimated error. The percent of variance explanation increases at a faster rate for lower 

number of components, but the rate is gradually decreasing for a higher number of 

components. On the other hand, the amount of estimated error decreases by increasing the 

number of components for lower range while the error did not decrease noticeably after 15 

components. Hence, 15 components were determined as the optimal number of 

components for feeding to machine learning algorithms. The optimal number was about 

the same for different types of spectrometers; although, they were not shown in the figure. 

A few higher and lower number of components were tested as a preliminary work to make 

sure 15 was the optimal number components.   
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Figure 6-4: Percent variance explained in moisture, and estimated mean squared 

prediction error for 1 to 60 components. 

6.4.4 Machine learning method 

Twenty-two models with 15 components were trained for each type of spectrometer 

and three lengths of data collection periods. Seven models which had the highest accuracy 

on average for all three types of spectrometers are shown in Figure 6-5. Among these 

models, a linear discriminant analysis model provided the maximum prediction accuracy 

for both VIS and NIR spectrometers and the 10-minute measurement period of data 

collection. The same results were obtained for the first 5-minute measurement period of 

data collection (182). 
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Figure 6-5: Prediction accuracy for the 22 machine learning algorithms applied to 

relative reflectance data with three types of spectrometers during a 10-minute measurement 

period. 

Linear discriminant analysis algorithm provided perfect prediction accuracies for 

both VIS and NIR spectrometers. It should be noted that there was considerable overlap in 

spectral ranges of VIS and NIR spectrometers, which provides some insight as to why they 

exhibited similar results.  

Figure 6-6 shows the prediction accuracy after a 20-minute data collection period 

using the same learning methods. For the 20-minute data collection, the quadratic 

discriminant analysis model provided a higher accuracy on average for all three 

spectrometers while the linear discriminant analysis model had higher performance on the 

VIS spectrometer data. Since the soil moisture was decreasing during the data collection 

measurement period, the prediction accuracy during the 20-minute measurement period 

was less than the 5-minute and 10-minute measurement periods. The amount of variability 

0
10
20
30
40
50
60
70
80
90

100

P
re

d
ic

ti
o

n
 A

cc
u

ra
cy

 (
%

)

UV VIS NIR



 

124 

 

 

in soil moisture depends on initial moisture level of a given sample and the ambient air 

conditions. This difference was generally larger for high moisture levels due to more free 

water to evaporate. Also, it was observed that the top thin layer of soil, especially at higher 

moisture levels, was brighter than deeper layers, which lost less moisture during data 

collection. High overall accuracy in the 20-minute period was obtained from VIS 

spectrometer compared to other spectrometers. It was expected to obtain lower accuracy in 

UV spectrometer; however, lower accuracy for the NIR spectrometer observations was a 

little unexpected. Figure 6-6 demonstrated that the spectral measurement is not limited to 

the thin top layer and can obtain information about deeper layers. Light in shorter 

wavelengths contains more energy which can help the light to penetrate more and collect 

information from deeper layers. Wavelengths in the VIS spectrometer are shorter than the 

ones in the NIR spectrometer and have the capability to extract information from deeper 

layers of soil samples (Jackson & Huete, 1991), and it can be considered as a possible 

explanation on better performance of VIS over NIR spectrometer on Linear Discriminant 

method during the 20 minute measurement period.    
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Figure 6-6: Prediction accuracy for the 22 machine learning algorithms applied to 

relative reflectance data on three types of spectrometers during a 20-minute measurement 

period. 

The confusion matrix is an illustrative method to show the scattering of 

inaccuracies in soil moisture estimation. Two confusion matrixes are shown in Figure 6-7 

on data collected by NIR spectrometer. One came from the model generated with the data 

collection in the 10-minute measurement period and using linear discriminant analysis 

(Figure 6-7-a). The other one was from the model with data collection in the 20-minute 

measurement period using quadratic discriminant analysis (Figure 6-7-b). The 10-minute 

period of data collection generated a matrix with every sample properly classified. On the 

other hand, for the 20-minute period, several inaccuracies were observed with no 

discernable pattern. However, the overall prediction accuracy was still over 98%.  
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Figure 6-7: Soil moisture classification results for models generated from data 

collected with NIR spectrometer from a) the 10-minute data collection and using linear 

discriminant analysis and b) the 20-minute data collection with quadratic discriminant 

analysis. 

6.5 CONCLUSIONS 

Previously, a UAS-deployable spectral data acquisition system was developed with 

a dynamic system to update the integration time of spectrometers during varying ambient 

light conditions. The system was shown to successfully recognize varying grayscale 

targets. In this study, this system was deployed to classify soil moisture content using 

spectral data. The capability of the system for differentiating between different moisture 

levels under varying ambient light conditions was tested. A broad spectrum was obtained 

from each measurement with each spectrometer. The dataset was compressed using PLS 

regression to eliminate redundant information (correlated wavelengths). After 

preprocessing, 22 models were trained using data with three different spectrometers to find 

out about the optimal model and sensor which provided the highest prediction accuracy. 
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Three periods of data collection were considered post sample deployment (5, 10, and 20-

minute) to observe the effect of soil moisture content change during the data collection 

period. The linear discriminant model combined with the VIS spectrometer and a period 

up to 10 minutes resulted in 100% classification accuracy on seven soil moisture content 

levels ranging from <5% to 30% moisture content. 
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  SUMMARY AND CONCLUSIONS  

The primary objective of this dissertation was to develop tools and methods for 

remotely estimating soil water content. In the first study, moisture-controlled soil and 

wheat stalk residue samples were prepared and measured at varying heights using a 

reflectance probe connected to visible and near-infrared spectrometers. A computer 

program was written that used reflectance data to determine the optimal narrowband 

wavelengths based on user-defined constraints, and the statistical significance of sensor 

height and moisture content was determined for the “best” pair. Constraints for this study 

were configured to maximize the slope of the index (i.e., sensitivity to moisture) and either 

to maximize the R2 or minimize the RMSE of the index function. Results showed that 

wavelengths centered near 1300 nm and 1500 nm, within the range of 400 to 1700 nm, 

produced the best index for individual samples. An advantage of this pair of wavelengths 

is that they can be sensed with a single type of sensor using narrowband optical filters. The 

1500 nm band, when measured with an active ground-based sensor, will provide spectral 

information not available when using passive aerial or satellite-based remote sensing 

methods due to absorption from atmospheric moisture. When applied to all samples, the 

index performed well for the soil samples but poorly for the wheat stalk residue samples. 

Based on these results, it is expected that crop residues, such as wheat stalks, will reduce 

the accuracy of remotely sensed soil surface moisture measurements. Future work should 

include heterogeneous surfaces that include both soil and crop residue in varying 

proportions to determine the composite response.  
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In the second study, the same spectral data from the first study was used but with a 

different type of data processing. Relative reflectance spectral data from moisture-

controlled silt-loam soil and wheat stalk residue samples was used to test the ability of 

several machine learning algorithms to classify moisture content from the spectral data. 

This method contrasted with an index-based method used in a previous study of the same 

spectral data. Previous work has tended to focus on a pair of wavelengths rather than the 

full spectrum. It was hypothesized that the machine learning approach would yield better 

prediction accuracy because of utilizing a larger number of components than index-based 

method from the spectral data. The appropriate number of components for this dataset was 

determined to be 20 using PLS regression. The components were fed into 20 different 

machine learning algorithms, from which cubic SVM and ensemble bagged trees produced 

the highest combined prediction accuracy for silt-loam soil samples (over 93%) and wheat 

stalk residue samples (over 86%). This represented a substantial improvement over the 

index-based method, where only two wavelengths were used to develop a moisture 

prediction model. 

Third study was aimed to develop a spectral sensing platform suitable for UAS 

deployment and to measure the reflectance from a reference target to assist with the 

development of a calibration procedure that is functional over a wide range of ambient light 

conditions. This study included two parts. In the first part of this study, a platform was 

developed to be deployed on a UAS to measure the reflectance intensity from a target. Two 

sets of portable STS spectrometers in three ranges of UV, VIS, and NIR were used along 

with a RPi to form a reflectance system and an ambient light system. In the second part of 



 

130 

 

 

this study, a method for compensating for ambient light conditions and sensor integration 

time was developed and tested during the 2017 Great American Eclipse. Results showed a 

large variability in reflected light intensity due to significant changes in sun radiance. 

Reflectance values were compensated using ambient light measurements and integration 

time. Compensated reflectance values exhibited a consistent spectral signature for 

measurements taken at different ambient light conditions. This method will be useful for 

future field work where ambient light conditions cannot be controlled and the sensor 

integration time may need to be adjusted to optimize the sensitivity of the spectrometer.  

In the fourth study, the objective goal was to test the data acquisition system from 

the last study to recognize reflectance targets under ambient light conditions. Six targets 

were painted with different colors in the grayscale range. Then, these targets were 

benchmarked using visible and near-infrared spectrometers calibrated with a reference 

target. Two sets of spectrometers coupled with an embedded data acquisition system were 

used for collecting spectral data at five days at different ambient light conditions. A set was 

designated for measuring ambient light, and sun radiance and the other set measured the 

reflectance from targets. A mechanism was applied to update the integration time of each 

reflectance spectrometer based on ambient light condition. Then, spectral data were 

calibrated against ambient light condition and integration time. Twenty-two learning 

algorithms were used to generate models for recognizing reflectance targets from each 

other. It was determined that most of the algorithms had a prediction accuracy over 90%. 

The quadratic discriminant model provided the perfect prediction accuracy. It was 

concluded that by calibrating the system against ambient light conditions, machine learning 
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models could provide a sufficiently high accuracy for recognizing targets from their 

spectral responses. 

In the last study, the system developed in Chapter 4 and evaluated in Chapter 5 

using simple targets was tested for classifying moisture contents of soil samples. 

Integration time on individual spectrometers was adjusted according to the ambient light 

condition. By compensating against ambient light changes, reflectance measurements 

focus on other sample characteristics including soil moisture content. A preprocessing step 

using PLS regression was implemented on spectral data to reduce the dimensionality of the 

dataset and avoid overfitting. In the preprocessing step, the number of variables from 1024 

wavelengths reduced to 15 independent parameters. Linear discriminant analysis method 

on data collected from NIR and VIS spectrometers, among 22 learning algorithms, 

generated a model with a perfect prediction accuracy based on a 10-minute data collection. 

For longer periods of data collection, several more misclassifications occurred in all models 

due to changes in soil moisture content during data collection. For a 20-minute data 

collection, quadratic discriminant analysis resulted in a model with the highest 

performance (98%) from data collected by NIR spectrometer. It can be concluded that the 

hyperspectral data acquisition system introduced in this study along with the linear 

discriminant analysis for processing can be used for soil moisture remote sensing. 
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  FUTURE WORK 

Future work based on results obtained in the first study should include 

heterogeneous samples that include both soil and crop residue in varying proportions to 

determine the composite response. As new low-cost sensors are developed, the 

optimization parameters used to determine the “best” wavelengths should be refined based 

on actual sensor response, rather than ideal assumptions. Also, as a future work for both 

first and second study to test have similar experiments in field conditions. The results of 

these two studies were from laboratory prepared samples of individual material types 

measured under controlled conditions. Field application of this work will require additional 

considerations including, among other factors, more complex distributions of materials and 

variability in ambient light. Future work should include testing of this process under field 

conditions to demonstrate the applicability as a high-throughput method for remotely 

sensing moisture content of soils and crop residues. 

Future work based on results obtained in the third study should include testing the 

ability to classify different targets at varying ambient light conditions and to automatically 

adjust the integration time of each reflectance spectrometer based on previous 

measurements to maximize sensitivity which was conducted in the fourth study. Similarly, 

testing the same system and method for classifying soil samples was considered as a future 

work for third and fourth studies which have been successfully accomplished in the fifth 

study.  

The next step to continue this path would be to measure the soil or crops spectrally 

from a UAS platform and estimate soil moisture based on the reflectance measurements. 
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Different field parameter estimations should be tested for other common parameters which 

can be classified based on spectral measurements. 
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APPENDICES 

A. CODES 

A.1. Optimal Index Program 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Title: Optimal_index.m % 
% Author: Ali Hamidisepehr (c) 2016 % 
% Function: This script reads in a reflectance data file and % 
% calculates the performance of all possible indexes. % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

clc;close all;clear; 
num_samples=21; % Number of samples in total excluding reference and 

background data 
num_same_sample=3;% We might have samples with almost the same moisture 

content. We specify the number of them here 
num_moisture_levels=7;% number of different moisture levels 
num_replication=3; % Number of replications for each sample. (Different 

from samples with almost the same moisture) 
[x x_txt raw]=xlsread('Dataset_Overall_stalks.xlsx');%Reading the 

dataset including all measurements with full specturm 
same_HM=zeros(length(x),1);b=zeros(length(x),1);r=zeros(length(x),1);% 

initializing a matrix for putting samples with same moistureand height 

together  
wavelength=x(:,1);% the first column of the excel file produced 

includes wavelength values 
VIS=0;NIR=0;% initialize two values for vision and NIR range 
bandwidth=25;% bandwith or the width of wavelength range centered at 

above values 
% The codes or names correspond to different moisture. Notice that when 

we 
% have more than one sample with the same moisture we must put them 

close 
% together. Say the first three arrays in the matrix represent samples 

with 
% the same moisture 
moist={'S1_'; 

'S2_';'S3';'S4';'S5';'S6';'S7';'S8';'S9';'S10';'S11';'S12';'S13';'S14';

'S15';'S16';'S17';'S18';'S19';'S20';'S21'};  
height=['H1';'H2';'H3'; 'H4'; 'H5']; % Defining different heights 
moist2=[1:num_moisture_levels*num_same_sample];% this matrix is 

technically same as moist matrix. the only difference is this one 

includes numerical values 
Moist_values=[0 5 10 15 20 25 30];% moisture levels used in soil 

samples 
average_all=zeros(length(wavelength),1);%this variables is for putting 

averages of all moisture levels togther 
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%In this script we plot our data for each given height and all moisture 
%levels. The main loops changes height level 
for  h=1:length(height)  
    figure % for each height one figure plots all moisture levels  
    hold on 
%This loops take into account only samples with different moisture so 

that 
%we combine samples with the same moisture 
for  m=1:num_same_sample:length(moist) 

  
% This loop goes through all columns one by one to detect columns with 

the 
% same height and moisture 
for v=1:length(x_txt) 
    k=m; % Variable k is used to take all the same moisture samples 

into account through using a while loop 
    while k<num_same_sample+m 
    t=strfind(x_txt(v),(moist{k}));%For each column, check if there is 

the desired moisture in the label of the column  
    p=strfind(x_txt(v),height(h,:));%For each column, check if there is 

the desired height in the label of the column 
    if ~isempty(t{1}) && ~isempty(p{1})% If the column is the deired 

one with desired moisture and height  
       same_HM=[same_HM x(:,v)]; % Put all the columns with same 

moisture and height next to the each other 

    
    end 
    k=k+1; 
    end 
end 
same_HM(:,1)=[];% Since we intialized with a column of zeros, we remove 

that column from the last result 
average=mean(same_HM,2);% Take an average between all samples and 

replications with the same moisture and height 
average_all=[average_all mean(same_HM,2)];%combining heights and 

putting "average" values next to each other 

  

  
plot(x(:,1),average,'DisplayName',['Sample ' 

num2str(moist2(m:m+num_same_sample-1))])% plot the average data vs 

wavelength  
xlabel('Wavelength(nm)');ylabel('%Reflectance'); 
same_HM=zeros(length(x),1);%Reset the matrix same_HM to the initialized 

zeros again at the end of each iteration  
end 
for m=length(moist):length(moist)+2 % for data related to background 

and refrence we repeat what we did before in the loops  
    for v=1:length(x_txt) 

     
    t=strfind(x_txt(v),'BACK');% For each column, check if there is 

Background in the label of the column 
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    g=strfind(x_txt(v),'REF');% For each column, check if there is 

Reference in the label of the column 
    p=strfind(x_txt(v),height(h,:));%For each column, check if there is 

the desired height in the label of the column 
    if ~isempty(t{1}) && ~isempty(p{1})% If the column is the deired 

one(the result of strfind is a cell so that we should use its numerical 

value by using {}) 
       b=[b x(:,v)];% Put all the columns with 'Background' and the 

same height next to the each other 
    elseif ~isempty(g{1}) && ~isempty(p{1}) 
                r=[r x(:,v)]; % Put all the columns with 'Reference' 

and the same height next to the each other       
       end 

     
    end 
end 
b(:,1)=[];% Since we intialized with a column of zeros, we remove that 

column from the last result 
background=mean(b,2);% Take an average between all samples with 

'Background' and the same height 
r(:,1)=[];% Since we intialized with a column of zeros, we remove that 

column from the last result 
reference=mean(r,2);% Take an average between all samples with 

'Reference' and the same height 
plot(x(:,1),background,'DisplayName','Background ') 
plot(x(:,1),reference,'DisplayName','Reference ') 
hold off 
legend('-DynamicLegend','Location','Best') 
title(['Reflectance versus Wavelength for Varying Soil Moisture with 

Height ',num2str(h)]) 
b=zeros(length(x),1);r=zeros(length(x),1); %Reset matrixes 'b' and 'r' 

to the initialized zeros again 
end 
C=1; 
VIS(1)=[];NIR(1)=[]; 
average_all(:,1)=[];%we initialized this with zero and now it should be 

eliminated 
%By this for loop we go through all pairs of wavelengths one by one to 
%check which pair provides the best prediction for moisture content 

based 
%on measured Reflectance using Rsquare, RMSE and slope of the linear 
%regression of moisture and index value 
for i=23:bandwidth:length(wavelength) 
    for j=1:bandwidth:length(wavelength) 

     
        if j>i % the second wavelength must be greater the first one to 

avoid redundancy 
        VIS=0;NIR=0; 
        %set the values for wavelength 1 & 2 
        wave_range2=wavelength(j); 
        wave_range1=wavelength(i); 
        for zz=1:length(Moist_values)*length(height) 
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        Range_VIS=average_all((wavelength>=(wave_range1-bandwidth) & 

wavelength<=(wave_range1+bandwidth)),zz);% select the desired range of 

first wavelength and Extract average reflectance values associated with 

them in desired column  
        VIS=[VIS mean(Range_VIS)];%put average values of the first 

range of wavelength next to each other so that for each given moisture 

and height 
        Range_NIR=average_all((wavelength>=(wave_range2-bandwidth) & 

wavelength<=(wave_range2+bandwidth)),zz);% select the desired range of 

second wavelength and Extract average reflectance values associated 

with them in desired column 
        NIR=[NIR mean(Range_NIR)];%put average values of the second 

range of wavelength next to each other so that for each given moisture 

and height 
        end 
        %we initialized these with zero and now it should be eliminated 
        VIS(1)=[]; 
        NIR(1)=[]; 
        %in this loop we seperate differnt heights for Vision and NIR 
        %ranges and put them in rows 
        for gg=1:length(height) 
        VIS_Height(gg,:)=VIS(((gg-

1)*num_moisture_levels)+1:gg*num_moisture_levels);  
        NIR_Height(gg,:)=NIR(((gg-

1)*num_moisture_levels)+1:gg*num_moisture_levels); 
        NDWI(gg,:)=(VIS_Height(gg,:)-

NIR_Height(gg,:))./(VIS_Height(gg,:)+NIR_Height(gg,:));%caluculate the 

Index elment_wisely 
        end 
%based on statistical analysis Height doesn't affect on the results 
%significantly then we could combine heights 
one_height_NDWI=mean(NDWI); 
%fit a model so that dependant axis is moist values and independant 

axis is 
%NDWI 
mdl=fitlm(Moist_values,one_height_NDWI,'linear','RobustOpts','on'); 
rsquare=mdl.Rsquared.Ordinary;%obtain the Rsqure value for each index 
rmse=mdl.RMSE;%obtain the RMSE value for each index 
coefficients=mdl.Coefficients.Estimate; 
slope=coefficients(2);%%obtain the slope for each index 

  
%creating a row of matrix for each index including two wavelengths and 
%three decision criteria 
index_all(C,:)=[wavelength(i) wavelength(j) rsquare rmse slope]; 
C=C+1; 

  
    end 
    end 
end 
figure 
scatter(index_all(:,3),index_all(:,5)) 
xlabel('R_Squared');ylabel('Slope'); 
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figure 
scatter(index_all(:,4),index_all(:,5)) 
xlabel('RMSE');ylabel('Slope'); 
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A.2.  Creating a Comprehensive Data File from All Text Files 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Title: Dataset_Overall_stalks.m % 
% Author: Ali Hamidisepehr (c) 2016 % 
% Function: This script reads all reflectance data text files and % 
% put them in one single Excel file. % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function Dataset_Overall_stalks() 
clear;clc;close all; 
folder = pwd;% get the directory 
Listing = struct2cell(dir(folder)); % list all files in the current 

directory 
FileNames = Listing(1,:)';% put all the file names in a column 
h=zeros(2505,1);% intializing a variable that shows the number of 

wavelengths  
label='Wavelength';% intializing a variable that is going to used later 

as label in an excel file 
data_lines=16;% while extracting text file into a table, actual data 

will start from line 16 for data obtained with the spectrometer 
% this for loop goes through all files in the current directory to 

check if 
% each one is reflection data of soil samples or not 
for i=1:length(Listing) 
    z=[0]; 
    k = strfind(char(FileNames(i)),'Reflection'); %distinguish files 

which contain reflection data and ignore irrelevant data 
    if isempty(k) 
        %do nothing 
    else 
        label=[label, (FileNames(i))];%put filenames including 

reflection data next to eachother to be used as heading in the excel 

file 
        [Data from]=Extract_txt([folder,'\',char(FileNames(i))]); 

%Extract wavelength and Reflection data from text files 

        
        %this for loop goes through all reflectnce data and put all 

values for a specfic files into one column  
        for b=data_lines:length(from) 
        z=[z;str2num(from{b})]; 
       end 
       z(1)=[]; 
       h=[h,z];% this matrix creates a big matrix which includes all 

data in all text files at the end of the loop 
     end 

     
end 
wavelength=[0]; 
%this for loop creates a single column for wavelength values 
for b=data_lines:length(from) 
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 wavelength=[wavelength;str2num(Data{b})]; 
 end 
wavelength(1)=[]; 
h(:,1)=wavelength;%add wavelength values as the first column in the 

table 
delete('Dataset_Overall_stalks.xlsx'); 
xlswrite('Dataset_Overall_stalks.xlsx',label)%writing the heading part 

of the excel file  
xlswrite('Dataset_Overall_stalks.xlsx',h,1,'A2')%writing all the data 

of the excel file 
end 
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A.3.  Finding Optimal Number of Components for a Prediction Model from Lab 

Data 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Title: Optimal_num_components.m % Author: Ali Hamidisepehr (c) 2016 % 
% Function: This script calculates the estimated error and variance 
% explained for a model with a given number of components. % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear all; clc; close all; 
X=xlsread('mldata_Stalks_Residue_Dataset.xlsx');%reflectance values for 

different samples 
y=xlsread('mloutputStalks_Residue_Dataset.xlsx');% moisture values 

conrresponded to each sample 
num_components=20;%the desired number of components after compression 
%% Calculating Estimated Mean Squared Error 
% Applying PLS method for reducing the dimensionality of dataset 
[Xl,Yl,Xs,Ys,beta,pctVar,PLSmsep] = 

plsregress(X,y,num_components,'CV',num_components); 
plot(0:num_components,PLSmsep(2,:),'b-o'); 
xlabel('Number of components'); 
ylabel('Estimated Mean Squared Prediction Error'); 
variables_output_StalkResidue_ready_ml=[Xs,y];% formatting dataset for 

feeding into machine learning algorithms 

  
%% Calculating Percent Variance Explained 
[Xloadings,Yloadings,Xscores,Yscores,betaPLS10,PLSPctVar] = 

plsregress(X,y,num_components); 
plot(1:num_components,cumsum(100*PLSPctVar(2,:)),'-bo'); 
xlabel('Number of PLS components'); 
ylabel('Percent Variance Explained in Y'); 
ylim([90 100]); 
[Xl,Yl,Xs,Ys,beta,pctVar,mse,stats] = plsregress(X,y,num_components); 
plot(1:length(stats.W),stats.W,'-'); 
xlabel('Variable'); 
ylabel('PLS Weight'); 
legend({'1st Component' '2nd Component' '3rd 

Component'},'location','NW'); 
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A.4. RPi Program 

A.4.1. Reading GPS Packets and Updating RPi Clock 

 

############################################################# 
# Title: RPi_GPS.py % 
# Author: Ali Hamidisepehr (c) 2017 % 
# Function: This script receives time data continuously through  

# GPS receiver and set the RPi clock every few seconds. 

############################################################# 

 
import gps 

import os 

import time 

import RPi.GPIO as gpio 

from itertools import cycle 

gpio.setmode(gpio.BCM) 

gpio.setwarnings(False) 

gpio.setup(21,gpio.OUT) 

# Listen on port 2947 (gpsd) of localhost 

session = gps.gps("localhost", "2947") 

session.stream(gps.WATCH_ENABLE | gps.WATCH_NEWSTYLE) 

led_flip=cycle(range(2)) 

i = 0 

while True: 

    try: 

        report = session.next() 

        # Wait for a 'TPV' report and display the current time 

        # To see all report data, uncomment the line below 

        # print report 

        if report['class'] == 'TPV': 

             

            if hasattr(report, 'time'): 

                timestamp = report.time 

                print(timestamp) 

                if led_flip.next(): 

                        gpio.output(21,False) 

                else: 

                        gpio.output(21,True) 

 

                     

                 

                if i == 0: 

                    GPStime = timestamp.split("T")[1].split(".")[0] 

                    GPSyear = timestamp.split("-")[0] 

                    GPSmonth = timestamp.split("-")[1] 

                    GPSdate = timestamp.split("-")[2].split("T")[0] 

                    if GPSmonth == "01": 

                        GPSmonthtext = "Jan" 

                    elif GPSmonth == "02": 
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                        GPSmonthtext = "Feb" 

                    elif GPSmonth == "03": 

                        GPSmonthtext = "Mar" 

                    elif GPSmonth == "04": 

                        GPSmonthtext = "Apr" 

                    elif GPSmonth == "05": 

                        GPSmonthtext = "May" 

                    elif GPSmonth == "06": 

                        GPSmonthtext = "Jun" 

                    elif GPSmonth == "07": 

                        GPSmonthtext = "Jul" 

                    elif GPSmonth == "08": 

                        GPSmonthtext = "Aug" 

                    elif GPSmonth == "09": 

                        GPSmonthtext = "Sep" 

                    elif GPSmonth == "10": 

                        GPSmonthtext = "Oct" 

                    elif GPSmonth == "11": 

                        GPSmonthtext = "Nov" 

                    else: 

                        GPSmonthtext = "Dec" 

                    DateString = "sudo date -s '" + GPSmonthtext + " "+ 

GPSdate + " " + GPStime + " UTC " + GPSyear + "'" 

                    print(DateString) 

                    os.system(DateString) 

                i = i + 1 

                if i > 5: 

                    i = 0 

    except KeyError: 

        pass 

    except KeyboardInterrupt: 

        quit() 

    except StopIteration: 

        session = None 

        print("GPSD has terminated") 
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A.4.2. Main Program 

  
############################################################# 
# Title: RPi_main_script.py % 
# Author: Ali Hamidisepehr (c) 2017 % 
# Function: This script controls individual spectrometers and  

# adjust integration time based on ambient light automatically. 

############################################################# 
 

 

import urllib.request #importing the library for opening the php files 

corresponded to spectrometers settings 

import time #importing the library for setting the time parameters like 

delay 

import re #importing the regular expression operations library for 

finding a pattern in a string 

import glob,os #Miscellaneous operating system interfaces library for 

shutting down the system. glob will be used for fixing the file format.  

from time import gmtime,strftime #importing time variables for reading 

the time and date 

import RPi.GPIO as gpio #importing GPIO library for using GPIO pins on 

RPi 

import numpy as np 

gpio.setmode(gpio.BCM) # Define numbering mode on GPIO 

gpio.setwarnings(False) # Disable warnings  

gpio.setup(4,gpio.IN,gpio.PUD_UP)# Defining pin 4 as an input and 

pulled up switch (internally connected to 3.3V). PWM signal which was 

already converted to a digital output will be used on this pin 

gpio.setup(12,gpio.IN,gpio.PUD_UP)# Defining pin 12 as an input and 

pulled up switch (internally connected to 3.3V). It will be used as a 

push button on ground and UAS set 

gpio.setup(25,gpio.IN,gpio.PUD_UP) #Defining pin 25 as a switch to 

differentiate between radiance(ground) set and reflectance(UAS) set. 

gpio.setup(23,gpio.OUT) # using pin 23 as an output in LED to indicate 

if the spectrometers are taking measurements 

gpio.setup(16,gpio.OUT) # using pin 16 as an output in LED to indicate 

if the switch is set on for radiance or reflectance measurement 

gpio.output(16,False) 

gpio.output(23,False) 

gpio.add_event_detect(12,gpio.FALLING) # Checks on pin 12 and detect 

any falling signal received there. It checks if the momentary push 

button connected to this pin is pressed    

gpio.add_event_detect(4,gpio.FALLING) # Checks on pin 4 and detect any 

falling signal received there. It checks if the converted signal from 

PWM to Digital is High. 

#gpio.add_event_detect(25,gpio.FALLING)  

LocalAddress='http://127.0.0.1/cgi-bin/' 

 

################################################################### 

with urllib.request.urlopen('http://127.0.0.1/cgi-

bin/getserial.php?channel=0') as response111:#opening the php file 
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corresponded to getting the serial number of the spectrometer on 

channel 0 

            html111 = response111.read() #reading information obtained 

from the opening the previous php file 

            z=re.search('S.....',str(html111)) #search for a serial 

number format from the string created from the readings in the last 

command 

            serialnum=z.group() #storing the serial number of the 

spectrometer on channel 0 

 

#### the same process for finding serial number on channels 1 & 2 

with urllib.request.urlopen('http://127.0.0.1/cgi-

bin/getserial.php?channel=1') as response222: 

            html222 = response222.read() 

            z2=re.search('S.....',str(html222)) 

            serialnum2=z2.group() 

 

with urllib.request.urlopen('http://127.0.0.1/cgi-

bin/getserial.php?channel=2') as response333: 

            html333 = response333.read() 

            z3=re.search('S.....',str(html333)) 

            serialnum3=z3.group() 

################################################################### 

DataFolder='/home/ocean/Data' 

## set the location for storing spectral data on three channels             

with 

urllib.request.urlopen(LocalAddress+'setsavelocation.php?location='+Dat

aFolder+'&channel=0') as response6: 

            html6 = response6.read() 

 

with 

urllib.request.urlopen(LocalAddress+'setsavelocation.php?location='+Dat

aFolder+'&channel=1') as response16: 

            html16 = response16.read() 

 

with 

urllib.request.urlopen(LocalAddress+'setsavelocation.php?location='+Dat

aFolder+'&channel=2') as response22: 

            html22 = response22.read() 

 

 

## Evaluating integration time, Boxcar, and the number of scans to be 

averaged on each measurement for three channels 

if serialnum=='S04413': #Ground UV for sun radiance 

    int_time=1000000 

    boxcar=5 

    average=5 

elif serialnum=='S08285': #Ground VIS for sun radiance#It was 

recommended by manufacturer to be 350000 

    int_time=180000 

    boxcar=5 

    average=10 

elif serialnum=='S07821': #Ground NIR for sun radiance 
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    int_time=1000000 

    boxcar=5 

    average=5 

elif serialnum=='S07846': #UAV NIR for reflectance 

    int_time=80000 

    boxcar=5 

    average=5 

elif serialnum=='S05821': #UAV VIS for reflectance 

    int_time=35000 

    boxcar=5 

    average=5 

elif serialnum=='S03927': #UAV UV for reflectance 

    int_time=80000 

    boxcar=5 

    average=5 

sequenceinterval=int((int_time*average/1000)+50) 

#print(serialnum);print(sequenceinterval,int_time,average) 

if serialnum2=='S04413': #Ground UV for sun radiance 

    int_time2=1000000 

    boxcar2=5 

    average2=5 

elif serialnum2=='S08285': #Ground VIS for sun radiance 

    int_time2=180000 

    boxcar2=5 

    average2=10 

elif serialnum2=='S07821': #Ground NIR for sun radiance 

    int_time2=1000000 

    boxcar2=5 

    average2=5 

elif serialnum2=='S07846': #UAV NIR for reflectance 

    int_time2=80000 

    boxcar2=5 

    average2=5 

elif serialnum2=='S05821': #UAV VIS for reflectance 

    int_time2=35000 

    boxcar2=5 

    average2=5 

elif serialnum2=='S03927': #UAV UV for reflectance 

    int_time2=80000 

    boxcar2=5 

    average2=5 

sequenceinterval2=int((int_time2*average2/1000)+50) 

#print(serialnum2) 

#print(serialnum2);print(sequenceinterval2,int_time2,average2) 

if serialnum3=='S04413': #Ground UV for sun radiance 

    int_time3=1000000 

    boxcar3=5 

    average3=5 

elif serialnum3=='S08285': #Ground VIS for sun radiance 

    int_time3=180000 

    boxcar3=5 

    average3=10 

elif serialnum3=='S07821': #Ground NIR for sun radiance 
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    int_time3=1000000 

    boxcar3=5 

    average3=4 

elif serialnum3=='S07846': #UAV NIR for reflectance 

    int_time3=80000 

    boxcar3=5 

    average3=5 

elif serialnum3=='S05821': #UAV VIS for reflectance 

    int_time3=35000 

    boxcar3=5 

    average3=5 

elif serialnum3=='S03927': #UAV UV for reflectance 

    int_time3=80000 

    boxcar3=5 

    average3=5 

sequenceinterval3=int((int_time3*average3/1000)+50) 

num_replic=3 

if int_time>100000: 

    coeff=1.1 

else: 

    coeff=3 

delay=int((max(sequenceinterval,sequenceinterval2,sequenceinterval3)*(n

um_replic)*coeff/1000)) #amount of delay in seconds based on the 

longest measurement 

x2=12000 

 

## Adjustments on each spectrometer corresponded to each specific 

channel 

    ## Channel 0         

with 

urllib.request.urlopen(LocalAddress+'setintegration.php?time='+str(int_

time)+'&channel=0') as response: # setting integration time on channel0 

        html = response.read() 

        print(html) 

with 

urllib.request.urlopen(LocalAddress+'setaverage.php?scans='+str(average

)+'&channel=0') as response2: #setting number of scans for each 

measurement 

        html2 = response2.read() 

         

with 

urllib.request.urlopen(LocalAddress+'setboxcar.php?width='+str(boxcar)+

'&channel=0') as response3: #setting boxcar 

        html3 = response3.read() 

         

with 

urllib.request.urlopen(LocalAddress+'setmaxacquisitions.php?acquisition

s='+str(num_replic)+'&channel=0') as response5: #setting the maximum 

number of acquistion in case taking a series of measurements 

        html5 = response5.read() 
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with 

urllib.request.urlopen(LocalAddress+'setsavemode.php?savemode=multi&cha

nnel=0') as response7: # if spectral data is stored in one file or 

multiple files 

        html7 = response7.read() 

         

with 

urllib.request.urlopen(LocalAddress+'setsequenceinterval.php?interval='

+str(sequenceinterval)+'&channel=0') as response8: #the interval 

between each measurement in case taking a series of measurements 

        html8 = response8.read() 

 

 

    ## Channel 1 

 

with 

urllib.request.urlopen(LocalAddress+'setintegration.php?time='+str(int_

time2)+'&channel=1') as response10: 

        html10 = response10.read() 

         

with 

urllib.request.urlopen(LocalAddress+'setaverage.php?scans='+str(average

2)+'&channel=1') as response11: 

        html11 = response11.read() 

         

with 

urllib.request.urlopen(LocalAddress+'setboxcar.php?width='+str(boxcar2)

+'&channel=1') as response12: 

        html12 = response12.read() 

         

with 

urllib.request.urlopen(LocalAddress+'setmaxacquisitions.php?acquisition

s='+str(num_replic)+'&channel=1') as response13: 

        html13 = response13.read() 

         

 

with 

urllib.request.urlopen(LocalAddress+'setsavemode.php?savemode=multi&cha

nnel=1') as response14: 

        html14 = response14.read() 

         

with 

urllib.request.urlopen(LocalAddress+'setsequenceinterval.php?interval='

+str(sequenceinterval2)+'&channel=1') as response15: 

        html15 = response15.read() 

        print(html15) 

 

 

    ## Channel 2 

with 

urllib.request.urlopen(LocalAddress+'setintegration.php?time='+str(int_

time3)+'&channel=2') as response16: 

        html16 = response16.read() 
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with 

urllib.request.urlopen(LocalAddress+'setaverage.php?scans='+str(average

3)+'&channel=2') as response17: 

        html17 = response17.read() 

         

with 

urllib.request.urlopen(LocalAddress+'setboxcar.php?width='+str(boxcar3)

+'&channel=2') as response18: 

        html18 = response18.read() 

         

with 

urllib.request.urlopen(LocalAddress+'setmaxacquisitions.php?acquisition

s='+str(num_replic)+'&channel=2') as response19: 

        html19 = response19.read() 

         

 

with 

urllib.request.urlopen(LocalAddress+'setsavemode.php?savemode=multi&cha

nnel=2') as response20: 

        html20 = response20.read() 

         

with 

urllib.request.urlopen(LocalAddress+'setsequenceinterval.php?interval='

+str(sequenceinterval3)+'&channel=2') as response21: 

        html21 = response21.read() 

 

 

 

## The main While loop checks every few seconds to see if it is set for 

radiance(Ground) measurement or reflectance (UAS) measurement. If it is 

set on Radiance measurements, then it takes 

##measurement every few seconds automatically  and in a cycle. In this 

mode when pin 4 is driven, the system shuts down. And if it is set on 

Reflectance, then it waits for a high  

## signal converted from autopilot on pin 4 or a push button on pin 12 

to be pressed.  

##  

 

while True: 

    if gpio.input(25): # if switch connected to pin is on then we are 

measuring the radiance and LED light connected to pin 16 will turn on 

        gpio.output(16,True) 

 

    while gpio.input(25)==1: 

         

            ## Sutting down the system 

            station='Ground_' 

            if gpio.event_detected(4): # when the switch is set on 

radiance and pin 4 is driven the system will shut down 

                os.system('sudo shutdown -h now') 
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            ## Using time in file naming scheme for all three channels 

and spectrometers. Once the data from each spectrometer is collected a 

LED on pin 23 will start blinking     

                  

            

number_files_before_measurement=len(os.listdir(DataFolder))## This 

value is used later to know if new files are being created  

 

 

            pretime=strftime("%d%m%Y%H%M%S",time.localtime()) #Reading 

the time and date from the RPi clock 

            

txtfilename=DataFolder+'/'+station+'_'+pretime+serialnum+'R01".txt"' 

            

b=LocalAddress+'setprefix.php?prefix='+station+'_'+pretime+serialnum+'R

&channel=0' # using time in filenaming 

 

            with urllib.request.urlopen(b) as response30: 

                html30 = response30.read() 

                 

        

 

 

 

            with 

urllib.request.urlopen(LocalAddress+'startsequence.php?channel=0') as 

response31: # Start taking measurement 

                html31 = response31.read() 

                gpio.output(23,True) 

                time.sleep(1) ## it takes about 1 second for RPi to 

create new files since starting measurement. By excluding this delay 

the number of files before and after measurement will be the same 

 

               

            if gpio.event_detected(4): # when the switch is set on 

radiance and pin 4 is driven the system will shut down 

                os.system('sudo shutdown -h now') 

 

             

            

#number_files_before_measurement=len(os.listdir(DataFolder)) 

            pretime=strftime("%d%m%Y%H%M%S",time.localtime()) 

            

txtfilename2=DataFolder+'/'+station+'_'+pretime+serialnum2+'R01".txt"' 

            

b2=LocalAddress+'setprefix.php?prefix='+station+'_'+pretime+serialnum2+

'R&channel=1' 

            with urllib.request.urlopen(b2) as response32: 

                html32 = response32.read() 
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            with 

urllib.request.urlopen(LocalAddress+'startsequence.php?channel=1') as 

response33: 

                html33 = response33.read() 

                 

                time.sleep(1) 

                 

            if gpio.event_detected(4): # when the switch is set on 

radiance and pin 4 is driven the system will shut down 

                os.system('sudo shutdown -h now') 

 

            pretime=strftime("%d%m%Y%H%M%S",time.localtime()) 

            

txtfilename3=DataFolder+'/'+station+'_'+pretime+serialnum3+'R01".txt"' 

            

b3=LocalAddress+'setprefix.php?prefix='+station+'_'+pretime+serialnum3+

'R&channel=2' 

            with urllib.request.urlopen(b3) as response34: 

                html34 = response34.read() 

                 

            with 

urllib.request.urlopen(LocalAddress+'startsequence.php?channel=2') as 

response35: 

                html35 = response35.read() 

                time.sleep(1)                 

 

            if gpio.event_detected(4): # when the switch is set on 

radiance and pin 4 is driven the system will shut down 

                os.system('sudo shutdown -h now') 

 

            ## In this for loop file extensions will be fixed. The SDK 

creates text files with extra "" that before and after txt. 

            ## Files with this goofy form cannot be transfered to a USB 

drive. The file extensions will be fixed in this for loop. 

            number_files_after_measurement=len(os.listdir(DataFolder)) 

            while not 

number_files_after_measurement==number_files_before_measurement+9: 

                time.sleep(1) 

                

number_files_after_measurement=len(os.listdir(DataFolder)) 

            number_files_after_measurement=len(os.listdir(DataFolder)) 

            print(str(number_files_before_measurement)+'before') 

            print(str(number_files_after_measurement)+'after') 

 

            ## Reading the last measurement from reflectance and put 

values in anew list 

            if serialnum=='S07846' or serialnum=='S05821' or 

serialnum=='S03927': 

                mylist=[] 

                n=0 

                with open(txtfilename,'r') as f: 

                    for line in f: 

                        try: 
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                                mylist.append(float(line.split('\t')[-

1])) 

                        except: 

                                print('Skipping line %s...'%n) 

                        n +=1 

 

 

                filtered=[e for e in mylist if (np.mean(mylist)-

2*np.std(mylist)<e<np.mean(mylist)+2*np.std(mylist))] #Removing 

outliers 

 

                peak1=max(filtered)#Finding the maximum intensity 

                                    

                int_time=int(int_time*x2/peak1)#Calculating the new int 

time based on last measurement 

                ##Setting the maximum integration time threshhold 

                if int_time>10000000: 

                    int_time=10000000 

                with 

urllib.request.urlopen(LocalAddress+'setintegration.php?time='+str(int_

time)+'&channel=0') as responsec0: # setting integration time on 

channel0 

                    htmlg = responsec0.read() 

                sequenceinterval=int((int_time*average/1000)+50)     

                with 

urllib.request.urlopen(LocalAddress+'setsequenceinterval.php?interval='

+str(sequenceinterval)+'&channel=0') as response8: #the interval 

between each measurement in case taking a series of measurements 

                    html8 = response8.read() 

                print(int_time) 

 

 

                mylist=[] 

                n=0 

                with open(txtfilename2,'r') as f: 

                    for line in f: 

                        try: 

                                mylist.append(float(line.split('\t')[-

1])) 

                        except: 

                                print('Skipping line %s...'%n) 

                        n +=1 

 

 

                filtered=[e for e in mylist if (np.mean(mylist)-

2*np.std(mylist)<e<np.mean(mylist)+2*np.std(mylist))] 

                peak2=max(filtered) 

                int_time2=int(int_time2*x2/peak2) 

                if int_time2>10000000: 

                    int_time2=10000000 

 

                with 

urllib.request.urlopen(LocalAddress+'setintegration.php?time='+str(int_
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time2)+'&channel=1') as responsec1: # setting integration time on 

channel0 

                    htmlg2 = responsec1.read() 

                sequenceinterval2=int((int_time2*average2/1000)+50) 

                with 

urllib.request.urlopen(LocalAddress+'setsequenceinterval.php?interval='

+str(sequenceinterval2)+'&channel=1') as response15: 

                    html15 = response15.read() 

 

                print(int_time2) 

                mylist=[] 

                n=0 

                with open(txtfilename3,'r') as f: 

                    for line in f: 

                        try: 

                                mylist.append(float(line.split('\t')[-

1])) 

                        except: 

                                print('Skipping line %s...'%n) 

                        n +=1 

     

                filtered=[e for e in mylist if (np.mean(mylist)-

2*np.std(mylist)<e<np.mean(mylist)+2*np.std(mylist))] 

 

                peak3=max(filtered) 

                int_time3=int(int_time3*x2/peak3) 

                if int_time3>10000000: 

                    int_time3=10000000 

 

                with 

urllib.request.urlopen(LocalAddress+'setintegration.php?time='+str(int_

time3)+'&channel=2') as response: # setting integration time on 

channel0 

                    htmlg3 = response.read() 

                sequenceinterval3=int((int_time3*average3/1000)+50) 

                with 

urllib.request.urlopen(LocalAddress+'setsequenceinterval.php?interval='

+str(sequenceinterval3)+'&channel=2') as response21: 

                    html21 = response21.read() 

                print(int_time3) 

            gpio.output(23,False) 

            time.sleep(10) 

            for filename in glob.iglob(os.path.join(DataFolder, 

'*".txt"')): 

                    os.rename(filename, filename[:-6]+'.txt') 

 

             

             

    ## When the switch is set on, reflectance measurement waits for 

pulses which come from PWM to Digital converter or a manual push 

button.  

    while gpio.input(25)==0: # The LED connected to pin 25 will be 

turned off when the switch is set on Reflectance measurement 
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        gpio.output(16,False) 

 

 

                         

        station='UAS_' 

        if gpio.event_detected(12) or gpio.event_detected(4): ##Waiting 

for pulses on pin 4 for push button or 12 comes from PWM to Digital 

converter 

                gpio.remove_event_detect(4) #after detecting a pulse on 

the pins once, block further noise pulses comes from push button after 

pressing the button just for once 

 

                

number_files_before_measurement=len(os.listdir(DataFolder))## This 

value is used later to know if new files are being created  

                ## Using time in file naming scheme for all three 

channels and spectrometers. Once the data from each spectrometer is 

collected a LED on pin 23 will start blinking 

                pretime=strftime("%d%m%Y%H%M%S",time.localtime()) 

#Reading the time and date from the RPi clock 

                

txtfilename=DataFolder+'/'+station+'_'+pretime+serialnum+'R01".txt"' 

                

b4=LocalAddress+'setprefix.php?prefix='+station+'_'+pretime+serialnum+'

R&channel=0' 

                with urllib.request.urlopen(b4) as response300: 

                    html300 = response300.read() 

                         

                with 

urllib.request.urlopen(LocalAddress+'startsequence.php?channel=0') as 

response310: 

                    html310 = response310.read() 

                    gpio.output(23,True) 

                    time.sleep(1)                 

                    print("spectrometer on channel 1 is done taking 

measurement") 

 

 

                pretime=strftime("%d%m%Y%H%M%S",time.localtime()) 

                

txtfilename2=DataFolder+'/'+station+'_'+pretime+serialnum2+'R01".txt"' 

                

b5=LocalAddress+'setprefix.php?prefix='+station+'_'+pretime+serialnum2+

'R&channel=1' 

                with urllib.request.urlopen(b5) as response320: 

                    html320 = response320.read() 

             

                with 

urllib.request.urlopen(LocalAddress+'startsequence.php?channel=1') as 

response330: 

                    html330 = response330.read() 

 

                    time.sleep(1)                 
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                    print("spectrometer on channel 2 is done taking 

measurement") 

 

                

#number_files_before_measurement=len(os.listdir(DataFolder))## This 

value is used later to know if new files are being created  

                pretime=strftime("%d%m%Y%H%M%S",time.localtime()) 

                

txtfilename3=DataFolder+'/'+station+'_'+pretime+serialnum3+'R01".txt"' 

                

b6=LocalAddress+'setprefix.php?prefix='+station+'_'+pretime+serialnum3+

'R&channel=2' 

                with urllib.request.urlopen(b6) as response340: 

                    html340 = response340.read() 

             

                with 

urllib.request.urlopen(LocalAddress+'startsequence.php?channel=2') as 

response350: 

                    html350 = response350.read() 

 

                    time.sleep(1)                 

                    print("spectrometer on channel 3 is done taking 

measurement") 

                

number_files_after_measurement=len(os.listdir(DataFolder)) 

 

                ## In this for loop file extensions will be fixed. The 

SDK creates text files with extra "" that before and after txt. 

                ## Files with this goofy form cannot be transfered to a 

USB drive. The file extensions will be fixed in this for loop. 

 

 

                while not 

number_files_after_measurement==number_files_before_measurement+9: 

                    time.sleep(1) 

                    

number_files_after_measurement=len(os.listdir(DataFolder)) 

                

number_files_after_measurement=len(os.listdir(DataFolder)) 

                print(str(number_files_before_measurement)+'before') 

                print(str(number_files_after_measurement)+'after') 

 

             

 

                if serialnum=='S07846' or serialnum=='S05821' or 

serialnum=='S03927': 

                    mylist=[] 

                    n=0 

                    with open(txtfilename,'r') as f: 

                        for line in f: 

                            try: 

                                    

mylist.append(float(line.split('\t')[-1])) 
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                            except: 

                                    print('Skipping line %s...'%n) 

                            n +=1 

 

 

                    filtered=[e for e in mylist if (np.mean(mylist)-

2*np.std(mylist)<e<np.mean(mylist)+2*np.std(mylist))] 

 

                    peak1=max(filtered) 

             

                    int_time=int(int_time*x2/peak1) 

                    if int_time>10000000: 

                        int_time=10000000 

 

                    with 

urllib.request.urlopen(LocalAddress+'setintegration.php?time='+str(int_

time)+'&channel=0') as responsec0: # resetting integration time on 

channel0 

                        htmlg = responsec0.read() 

                    sequenceinterval=int((int_time*average/1000)+50)     

                    with 

urllib.request.urlopen(LocalAddress+'setsequenceinterval.php?interval='

+str(sequenceinterval)+'&channel=0') as response8: #the interval 

between each measurement in case taking a series of measurements 

                        html8 = response8.read() 

                    print(int_time) 

 

 

                    mylist=[] 

                    n=0 

                    with open(txtfilename2,'r') as f: 

                        for line in f: 

                            try: 

                                    

mylist.append(float(line.split('\t')[-1])) 

                            except: 

                                    print('Skipping line %s...'%n) 

                            n +=1 

 

 

                    filtered=[e for e in mylist if (np.mean(mylist)-

2*np.std(mylist)<e<np.mean(mylist)+2*np.std(mylist))] 

                    peak2=max(filtered) 

                    int_time2=int(int_time2*x2/peak2) 

                    if int_time2>10000000: 

                        int_time2=10000000 

 

                    with 

urllib.request.urlopen(LocalAddress+'setintegration.php?time='+str(int_

time2)+'&channel=1') as responsec1: # setting integration time on 

channel0 

                        htmlg2 = responsec1.read() 

                    sequenceinterval2=int((int_time2*average2/1000)+50) 
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                    with 

urllib.request.urlopen(LocalAddress+'setsequenceinterval.php?interval='

+str(sequenceinterval2)+'&channel=1') as response15: 

                        html15 = response15.read() 

 

                    print(int_time2) 

                    mylist=[] 

                    n=0 

                    with open(txtfilename3,'r') as f: 

                        for line in f: 

                            try: 

                                    

mylist.append(float(line.split('\t')[-1])) 

                            except: 

                                    print('Skipping line %s...'%n) 

                            n +=1 

     

                    filtered=[e for e in mylist if (np.mean(mylist)-

2*np.std(mylist)<e<np.mean(mylist)+2*np.std(mylist))] 

 

                    peak3=max(filtered) 

                    int_time3=int(int_time3*x2/peak3) 

                    if int_time3>10000000: 

                        int_time3=10000000 

 

                    with 

urllib.request.urlopen(LocalAddress+'setintegration.php?time='+str(int_

time3)+'&channel=2') as response: # setting integration time on 

channel0 

                        htmlg3 = response.read() 

                    sequenceinterval3=int((int_time3*average3/1000)+50) 

                    with 

urllib.request.urlopen(LocalAddress+'setsequenceinterval.php?interval='

+str(sequenceinterval3)+'&channel=2') as response21: 

                        html21 = response21.read() 

                    print(int_time3) 

 

                #Checking file names to fix errors 

                for filename in glob.iglob(os.path.join(DataFolder, 

'*".txt"')): 

                        os.rename(filename, filename[:-6]+'.txt') 

                gpio.output(23,False)     

                         

                gpio.add_event_detect(4,gpio.FALLING) # Redefine an 

event to detect a falling edge on pin 4 for push button 

                                 

gpio.cleanup() 
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A.5. Eclipse Data Processing  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Title: Eclipse_Calibration.m % Author: Ali Hamidisepehr (c) 2016 % 
% Function: This script organizes ambient light and reflectance data 
% during eclipse and includes the system calibration process. % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear;clc;close all; 
folder = pwd;% get the directory 
Listing = struct2cell(dir(folder)); % list all files in the current 

directory 
FileNames = Listing(1,:)';% put all the file names in a column 
x=1; 
%Reflectance_VIS='S05821';%Radiance_VIS='S08285'; 
%Reflectance_NIR='S07846';%Radiance_NIR='S07821'; 
%Reflectance_UV='S03927';%Radiance_UV='S04413'; 
%IT=55; 
spectrometer_code=input('1.UV 2.VIS 3.NIR'); 
%Applying calibration coefficients for ambient light spectrometers 
load calibration_files.mat;  
gains4413=S04413(:,2); 
gains7821=S07821(:,2); 
gains8285=S08285(:,2); 
if spectrometer_code==1 
    Gain=gains4413; 
    figpath=([folder '\Figures for paper\UV\']); 
    Rad_spec='S04413'; 
    Ref_spec='S03927'; 
    IT=70; 
elseif spectrometer_code==2 
    Gain=gains8285*(1000/180); 
    figpath=([folder '\Figures for paper\VIS\']); 
    Rad_spec='S08285'; 
    Ref_spec='S05821'; 
    IT=35; 
elseif spectrometer_code==3 
    Gain=gains7821; 
   figpath=([folder '\Figures for paper\NIR\']); 
    Rad_spec='S07821'; 
    Ref_spec='S07846'; 
    IT=55; 
else 
    fprintf('wrong code'); 
end 

  
%this loop creates a table of measurements sorted temporally for 

ambient 
%light measurements 
for p=1:length(Listing) 
        k = strfind(char(FileNames(p)),Rad_spec); %distinguish files 

which contain reflection data and ignore irrelevant data 
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            if isempty(k) 
            %do nothing 
            else 

             
            code=1; 
            filename=char(FileNames(p)); 
            timestamp=filename(9:end-13); 
            

formtime=datetime(timestamp,'InputFormat','ddMMyyyyHHmmss'); 
            

formtimeweather(x,1)=datetime(timestamp,'InputFormat','ddMMyyyyHHmmss')

; 
            

hours=hour(formtime);minutes=minute(formtime);seconds=second(formtime); 
            totaltime=(hours*3600)+(minutes*60)+seconds; 
            comptab(x,:)={filename totaltime code}; 
            x=x+1; 

             
            end 
end 
rep=unique([comptab{:,2}])';%finding unique times of measurement 
init=calibrationimport(char(comptab(1,1))); 
unique_time_weather=unique(formtimeweather); 
%Extracting ambient light data from text files and averaging 

measurements 
%taken at the same time 
for indmeasurement=1:size(rep,1) 
    data=zeros(length(init),1); 
for n=1:length(comptab) 
   if comptab{n,2}==rep(indmeasurement) 
   filename=comptab(n,1); 
   raw=calibrationimport(char(comptab(n,1))); 
   data=[data raw(:,2)]; 

       
   end 
end 
wavelengths=raw(:,1); 
data(:,1)=[]; 
data_ave=mean(data,2); 
comptabrep(indmeasurement,:)={filename rep(indmeasurement) code}; 
comptabrep1(indmeasurement,:)={filename rep(indmeasurement) code};  
final_data(:,indmeasurement)=data_ave; 
end 

  
%this loop creates a table of measurements sorted temporally for 
%reflectance measurements 
y=1; 
for p=1:length(Listing) 
        k = strfind(char(FileNames(p)),Ref_spec); %distinguish files 

which contain reflection data and ignore irrelevant data 

         
            if isempty(k) 
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            %do nothing 
            else 

             
            code=2; 
            filename=char(FileNames(p)); 
            timestamp=filename(9:end-13); 
            

formtime=datetime(timestamp,'InputFormat','ddMMyyyyHHmmss'); 
            

hours=hour(formtime);minutes=minute(formtime);seconds=second(formtime); 
            totaltime=(hours*3600)+(minutes*60)+seconds; 
            comptab(x,:)={filename totaltime code}; 
            comptab2(y,:)={filename totaltime code}; 
            x=x+1; 
            y=y+1; 
            end 
end 
rep2=unique([comptab2{:,2}])'; 
%Extracting reflectance data from text files and averaging measurements 
%taken at the same time 
for indmeasurement2=1:size(rep2,1) 
    data=zeros(length(init),1); 
for n=1:length(comptab2) 
   if comptab2{n,2}==rep2(indmeasurement2) 
   %else 
   filename=comptab2(n,1); 
   raw=calibrationimport(char(comptab2(n,1))); 
   data=[data raw(:,2)]; 
   end 
end 
data(:,1)=[]; 
data_ave=mean(data,2); 
%filename=comptab(n,1); 
comptabrep(indmeasurement2+indmeasurement,:)={filename 

rep2(indmeasurement2) code}; 
comptabrep2(indmeasurement2,:)={filename rep2(indmeasurement2) code}; 
final_data2(:,indmeasurement2)=data_ave; 
end 

  

  
[values idx]=sort([comptab{:,2}],'ascend'); 
comptab=comptab(idx,:); 
[values_rep idx_rep]=sort([comptabrep{:,2}],'ascend'); 
comptabrep=comptabrep(idx_rep,:); 
% interpolating reflectance data at times there is an ambient light 
% measurement but not a reflectance measurement 
for j=1:length(comptabrep2) 
    for i=1:length(comptabrep1)-1 
    if comptabrep2{j,2}==comptabrep1{i,2} 
        inter_rad(:,j)=final_data(:,i); 
    elseif comptabrep2{j,2}>comptabrep1{i,2} && 

comptabrep2{j,2}<comptabrep1{i+1,2} 
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        diff1=comptabrep2{j,2}-comptabrep1{i,2}; 
        diff2=comptabrep1{i+1,2}-comptabrep2{j,2}; 
        

inter_rad(:,j)=(final_data(:,i)*(diff1/(diff1+diff2)))+(final_data(:,i+

1)*(diff2/(diff1+diff2))); 
    elseif comptabrep2{j,2}<=comptabrep1{1,2} 
        inter_rad(:,j)=final_data(:,1); 
    elseif comptabrep2{j,2}>=comptabrep1{end,2} 
        inter_rad(:,j)=final_data(:,end); 
    end 
    end 
end 
Figure_Paper_Format; 
%figure 
hold on 
%% Raw Radiance Figure 
for p=1:size(final_data,2) 
    plot(wavelengths,final_data(:,p)) 
end 
xlabel('Wavelength(nm)');ylabel('Intensity (cnts.)'); 
ylim([0 15000]) 
ax=gca; 
ax.YAxis.Exponent=3; 
export_fig([figpath 'Radiance Before Calibration'],'-png', '-r300') 

%Exporting the paper format figure 

  
%figure 
%% Interpolated radiance data to make synchronization with reflectance 

data 
Figure_Paper_Format; 
hold on 
for p=1:size(final_data2,2) 
    plot(wavelengths,inter_rad(:,p)) 
end 
xlabel('Wavelength(nm)');ylabel('Intensity (cnts.)'); 
%figure 
%% calibrated radiance data using calibration coefficients provided by 

the manufacturer 
Figure_Paper_Format; 
hold on 
for u=1:size(inter_rad,2) 
    corrected_rad(:,u)=(inter_rad(:,u).*Gain); 
    plot(wavelengths,corrected_rad(:,u)) 
end 
xlabel('Wavelength(nm)');ylabel('Intensity (µJ)'); 
ylim([0 50]) 
export_fig([figpath 'Radiance After Calibration'],'-png', '-r300') 

%Exporting the paper format figure 
%% calculating calibrated reflectance based on integration time and 

calibrated radiance 
paired_spectrums=final_data2./(corrected_rad*IT);%*IT 
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%% Raw reflectance figure 
%figure 
Figure_Paper_Format; 
hold on 
for p=1:size(final_data2,2) 
    plot(wavelengths,final_data2(:,p)) 
end 
xlabel('Wavelength(nm)');ylabel('Intensity (cnts.)'); 
ylim([0 20000]) 
ax=gca; 
ax.YAxis.Exponent=3; 
export_fig([figpath 'Reflectance Beofre Calibration'],'-png', '-

r300','-nocrop') %Exporting the paper format figure 
%% Calibrated reflectance figure 
%figure 
Figure_Paper_Format; 
hold on 
for p=1:size(final_data2,2) 
    plot(wavelengths,paired_spectrums(:,p)) 
end 
xlabel('Wavelength(nm)');ylabel('Intensity (cnts.×µJ^{-1}×ms^{-1})'); 
ylim([0 30]) 
export_fig([figpath 'Reflectance After Calibration'],'-png', '-r300') 

%Exporting the paper format figure 
std_noncalib=std(final_data2,0,2); 
std_calib=std(paired_spectrums,0,2); 

  
%finding the wavelength with maximum variability in reflectance 

intensity 
%on each spectrometer before calibration and having histograms to 

compare 
%this variability before and after calibration 
bb=final_data2(417,:);%VIS 417;UV number 746;NIR number 71 
cc=paired_spectrums(417,:); 
%figure 
Figure_Paper_Format; 
h=histogram(bb,10); 
h.Normalization='probability'; 
%title('Wavelength: 675nm') 
xlabel('Intensity (cnts.)');ylabel('Probability'); 
ylim([0 1]) 
xlim([1000 16000]) 
export_fig([figpath 'Histogram Before'],'-png', '-r300') %Exporting the 

paper format figure 
%figure 
Figure_Paper_Format; 
h2=histogram(cc,10); 
h2.Normalization='probability'; 
xlabel('Intensity (cnts.×µJ^{-1}×ms^{-1})');ylabel('Probability'); 
ylim([0 1]) 
xlim([2 27])%xlim([1 20])%NIR%xlim([1 12])%UV %xlim([2 27])%VIS 
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export_fig([figpath 'Histogram After'],'-png', '-r300') %Exporting the 

paper format figure 
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A.6. Target Recognition Program 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Title: Target_Recognition.m % Author: Ali Hamidisepehr (c) 2017 % 
% Function: This script organizes ambient light and reflectance data 
% and prepare dataset for feeding into machine learning algorithms in 

order 
% to recognize targets. % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear;clc;close all; 
folder = pwd;% get the directory 
Listing = struct2cell(dir(folder)); % list all files in the current 

directory 
FileNames = Listing(1,:)';% put all the file names in a column 
x=1; 
ns=1; 
s=1; 
Target_number=0; 
%Reflectance_VIS='S05821';%Radiance_VIS='S08285'; 
%Reflectance_NIR='S07846';%Radiance_NIR='S07821'; 
%Reflectance_UV='S03927';%Radiance_UV='S04413'; 
%IT=55; 

  
%Applying calibration coefficients to raw radiance data 
spectrometer_code=input('1.UV 2.VIS 3.NIR'); 
%Applying calibration coefficients for ambient light spectrometers 
load calibration_files.mat; 
gains4413=S04413(:,2); 
gains7821=S07821(:,2); 
gains8285=S08285(:,2); 

  

  
if spectrometer_code==1 
    Gain=gains4413; 
    figpath=([folder '\Figures for paper\UV\']); 
    Rad_spec='S04413'; 
    Ref_spec='S03927'; 

     
elseif spectrometer_code==2 
    Gain=gains8285*(1000/180); 
    figpath=([folder '\Figures for paper\VIS\']); 
    Rad_spec='S08285'; 
    Ref_spec='S05821'; 

     
elseif spectrometer_code==3 
    Gain=gains7821; 
   figpath=([folder '\Figures for paper\NIR\']); 
    Rad_spec='S07821'; 
    Ref_spec='S07846'; 

     
else 
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    fprintf('wrong code'); 
end 

  
%this loop creates a table of measurements sorted temporally for 

ambient 
%light measurements 
for p=1:length(Listing) 
        k = strfind(char(FileNames(p)),Rad_spec); %distinguish files 

which contain reflection data and ignore irrelevant data 

         
            if isempty(k) 
            %do nothing 
            else 
            code=1; 
            filename=char(FileNames(p));%turn fule name to character  
            timestamp=filename(9:end-13);%seperate the timestamp part 

of the file name  
            

formtime=datetime(timestamp,'InputFormat','ddMMyyyyHHmmss');%define the 

timestamp format 
            

hours=hour(formtime);minutes=minute(formtime);seconds=second(formtime);

% 
            totaltime=(hours*3600)+(minutes*60)+seconds;%combining 

hours, minutes, and seconds to seconds 
            comptab(x,:)={filename totaltime code};%Create a table each 

row include file name, timestamp and the spectrometer station code 
            x=x+1; 

             
            end 
end 
rep=unique([comptab{:,2}])';% find just the unique timestamps. it is 

because each measurement has three replication 
init=calibrationimport(char(comptab(1,1)));%importing calibration 

coeffecients and integration time 

  
%Extracting ambient light data from text files and averaging 

measurements 
%taken at the same time 
for indmeasurement=1:size(rep,1) 
    data=zeros(length(init),1); 
for n=1:length(comptab) 
   if comptab{n,2}==rep(indmeasurement) 
   %else 
   filename=comptab(n,1); 
   raw=calibrationimport(char(comptab(n,1))); 
   data=[data raw(:,2)]; 
   end 
end 
wavelengths=raw(:,1); 
data(:,1)=[]; 
data_ave=mean(data,2); 
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comptabrep(indmeasurement,:)={filename rep(indmeasurement) code}; 
comptabrep1(indmeasurement,:)={filename rep(indmeasurement) code};  
final_data(:,indmeasurement)=data_ave; %final data include all the 

measurements for radiance data 
end 

  
%this loop creates a table of measurements sorted temporally for 
%reflectance measurements 
y=1; 
for p=1:length(Listing) 
        k = strfind(char(FileNames(p)),Ref_spec); %distinguish files 

which contain reflection data and ignore irrelevant data 

         
            if isempty(k) 
            %do nothing 
            else 
            % x=x+1; 
            code=2; 
            filename=char(FileNames(p)); 
            timestamp=filename(9:end-13); 
            

formtime=datetime(timestamp,'InputFormat','ddMMyyyyHHmmss'); 
            

hours=hour(formtime);minutes=minute(formtime);seconds=second(formtime); 
            totaltime=(hours*3600)+(minutes*60)+seconds; 
            comptab(x,:)={filename totaltime code}; 
            comptab2(y,:)={filename totaltime code}; 
            x=x+1; 
            y=y+1; 
            end 
end 
rep2=unique([comptab2{:,2}])'; 
%Extracting reflectance data from text files and averaging measurements 
%taken at the same time 
check_saturation=zeros(length(wavelengths),1); 
for indmeasurement2=1:size(rep2,1) 
    data=zeros(length(init),1); 
for n=1:length(comptab2) 
   if comptab2{n,2}==rep2(indmeasurement2) 
   %else 
   filename=comptab2(n,1); 
   raw=calibrationimport(char(comptab2(n,1))); 
   

%IT(indmeasurement2)=(importIntegrationtime(char(comptab2(n,1))))/1000; 
   data=[data raw(:,2)]; 
   end 
end 

  
data(:,1)=[]; 
data_ave=mean(data,2); 
comptabrep(indmeasurement2+indmeasurement,:)={filename 

rep2(indmeasurement2) code}; 
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comptabrep2(indmeasurement2,:)={filename rep2(indmeasurement2) code}; 
final_data2(:,indmeasurement2)=data_ave;% including all the reflectance 

data 

  

  
%removing the outliers 
if max(isoutlier(final_data2(:,indmeasurement2),'movmean',15))==1; 
       [val 

ind]=max(isoutlier(final_data2(:,indmeasurement2),'movmean',15)); 
       

final_data2(ind,indmeasurement2)=final_data2(ind+1,indmeasurement2); 

        
end 
%filtering saturated data and also low-intensity data 
if max(final_data2(:,indmeasurement2))<14000 &&  

max(final_data2(:,indmeasurement2))>11000 
    check_saturation=[check_saturation final_data2(:,indmeasurement2)]; 
    non_saturated_table(ns,:)={filename rep2(indmeasurement2) code}; 
    

IT(ns)=(importIntegrationtime(char(non_saturated_table{ns,1})))/1000; 
    ns=ns+1; 
else 
    saturated_table(s,:)={filename rep2(indmeasurement2) code};     
    s=s+1; 
end 
end 
check_saturation(:,1)=[]; 

  
[values idx]=sort([comptab{:,2}],'ascend'); 
comptab=comptab(idx,:); 
[values_rep idx_rep]=sort([comptabrep{:,2}],'ascend'); 
comptabrep=comptabrep(idx_rep,:); 

  
%Synchronizing the radiance and reflectance data by interpolating 

missing 
%ambient light data 
for j=1:length(non_saturated_table) 
    for i=1:length(comptabrep1)-1 
    if non_saturated_table{j,2}==comptabrep1{i,2} 
        inter_rad(:,j)=final_data(:,i); 
    elseif non_saturated_table{j,2}>comptabrep1{i,2} && 

non_saturated_table{j,2}<comptabrep1{i+1,2} 

         
        diff1=non_saturated_table{j,2}-comptabrep1{i,2}; 
        diff2=comptabrep1{i+1,2}-non_saturated_table{j,2}; 
        

inter_rad(:,j)=(final_data(:,i)*(diff1/(diff1+diff2)))+(final_data(:,i+

1)*(diff2/(diff1+diff2))); 
    elseif non_saturated_table{j,2}<=comptabrep1{1,2} 
        inter_rad(:,j)=final_data(:,1); 
    elseif non_saturated_table{j,2}>=comptabrep1{end,2} 
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        inter_rad(:,j)=final_data(:,end); 
    end 
    end 
end 

  
Figure_Paper_Format(spectrometer_code) 
%figure 
hold on 
%% Raw Radiance Figure 
for p=1:size(final_data,2) 
    plot(wavelengths,final_data(:,p)) 
end 
xlabel('Wavelength(nm)');ylabel('Intensity (cnts.)'); 
ylim([0 12000]) 
ax=gca; 
ax.YAxis.Exponent=3; 
export_fig([figpath 'Radiance Before Calibration'],'-png', '-r300') 

%Exporting the paper format figure 
Figure_Paper_Format(spectrometer_code) 
%figure 
hold on 
%% Interpolated radiance data to make synchronization with reflectance 

data 
for p=1:size(inter_rad,2) 
    plot(wavelengths,inter_rad(:,p)) 
end 
xlabel('Wavelength(nm)');ylabel('Intensity (cnts.)'); 

  
Figure_Paper_Format(spectrometer_code) 
%figure 
hold on 
%% calibrated radiance data using calibration coefficients provided by 

the manufacturer 
for u=1:size(inter_rad,2) 
    corrected_rad(:,u)=(inter_rad(:,u).*Gain); 
    plot(wavelengths,corrected_rad(:,u)) 
end 
xlabel('Wavelength(nm)');ylabel('Intensity (µJ)'); 
export_fig([figpath 'Radiance After Calibration'],'-png', '-r300') 

%Exporting the paper format figure 
%ylim([0 50]) 
IT_matrix=ones(1024,1)*IT; 
%paired_spectrums=final_data2./(corrected_rad.*IT_matrix);%.*IT_matrix 
paired_spectrums=(check_saturation-

1500)./(corrected_rad.*IT_matrix);%.*IT_matrix 
%paired_spectrums=check_saturation./(corrected_rad.*IT_matrix);%.*IT_ma

trix 
Figure_Paper_Format(spectrometer_code) 
%figure 
hold on 
%% Raw reflectance figure 
for p=1:size(final_data2,2) 
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    plot(wavelengths,final_data2(:,p)) 
end 
xlabel('Wavelength(nm)');ylabel('Intensity (cnts.)'); 

  
Figure_Paper_Format(spectrometer_code) 
%figure 
hold on 
%% Removing saturated data from reflectance measurements 
for p=1:size(check_saturation,2) 
    plot(wavelengths,check_saturation(:,p)) 
end 
xlabel('Wavelength(nm)');ylabel('Intensity (cnts.)'); 
ylim([0 15000]) 
ax=gca; 
ax.YAxis.Exponent=3; 
export_fig([figpath 'Reflectance Before Calibration'],'-png', '-r300') 

%Exporting the paper format figure 
Figure_Paper_Format(spectrometer_code) 
%figure 
hold on 
%% Calibrated reflectance figure 
for p=1:size(paired_spectrums,2) 
    plot(wavelengths,paired_spectrums(:,p)) 
end 
xlabel('Wavelength(nm)');ylabel('Intensity (cnts.×µJ^{-1}×ms^{-1})'); 
ylim([0 22]); 
export_fig([figpath 'Reflectance After Calibration'],'-png', '-r300') 

%Exporting the paper format figure 
std_noncalib=std(final_data2,0,2); 
std_calib=std(paired_spectrums,0,2); 
%% Different calibration methods are considered and for each the 
% corresponding dataset is formatted for feeding into machine learning 
% algorithms 

  
% Calibration with ambient light data and integration time 
Machine_learning_input=(paired_spectrums)'; 
Machine_learning_output=ones(size(Machine_learning_input,1),1)*Target_n

umber; 
Machine_learning_table=[Machine_learning_input 

Machine_learning_output]; 

  
% No extra Calibration  
Machine_learning_input_raw=(check_saturation)'; 
Machine_learning_output_raw=ones(size(Machine_learning_input_raw,1),1)*

Target_number; 
Machine_learning_table_raw=[Machine_learning_input_raw 

Machine_learning_output_raw]; 

  
% Calibration with ambient light data 
paired_spectrums_NoIT=(check_saturation)./(corrected_rad); 
Machine_learning_input_NoIT=(paired_spectrums_NoIT)'; 



 

170 

 

 

Machine_learning_output_NoIT=ones(size(Machine_learning_input_NoIT,1),1

)*Target_number; 
Machine_learning_table_NoIT=[Machine_learning_input_NoIT 

Machine_learning_output_NoIT]; 

  
% Calibration with integration time 
paired_spectrums_IT=(check_saturation)./(IT_matrix);%.*IT_matrix 
Machine_learning_input_IT=(paired_spectrums_IT)'; 
Machine_learning_output_IT=ones(size(Machine_learning_input_IT,1),1)*Ta

rget_number; 
Machine_learning_table_IT=[Machine_learning_input_IT 

Machine_learning_output_IT]; 
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B. DRAWINGS 

B.1. Test stand and T-slotted framing (units in inches) 
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B.2. Sample holder CAD drawing (units in inches) 
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B.3. 3-D printed enclosure and the mounting pattern for mounting the system on 

the stand (units in inches) 

 

  

Mounting pattern 
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C. FIGURES 

C.1. VIS and NIR data for target recognition 

C.1.1. Raw ambient light measurements from VIS spectrometer  
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C.1.2. Reflectance measurements from VIS spectrometer with M-1 mode of 

compensation  

   

   

 

  



 

176 

 

 

 

C.1.3. Reflectance measurements from VIS spectrometer with M-2 mode of 

compensation  
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C.1.4. Reflectance measurements from VIS spectrometer with M-3 mode of 

compensation. 
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C.1.5. Raw ambient light measurements from NIR spectrometer  
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C.1.6. Reflectance measurements from NIR spectrometer with M-1 mode of 

compensation  
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C.1.7. Reflectance measurements from VIS spectrometer with M-2 mode of 

compensation  
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C.1.8. Reflectance measurements from VIS spectrometer with M-3 mode of 

compensation  
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C.2. Prediction accuracy for machine learning algorithms applied to data on three 

types of spectrometers during a 5-minute measurement period 
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C.3.  UV and VIS spectrometers data on soil samples 

C.3.1. Calibrated ambient light measurements from UV spectrometer  
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C.3.2. Reflectance measurements from UV spectrometer from soil samples  
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C.3.3. Calibrated ambient light measurements from VIS spectrometer. 
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C.3.4. Reflectance measurements from VIS spectrometer from soil samples   
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