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ABSTRACT OF DISSERTATION

CLASSIFYING SOIL MOISTURE CONTENT USING REFLECTANCE-BASED

REMOTE SENSING

The ability to quantify soil moisture spatial variability and its temporal dynamics
over entire fields through direct soil observations using remote sensing will improve early
detection of water stress before crop physiological or economic damage has occurred, and
it will contribute to the identification of zones within a field in which soil water is depleted
faster than in other zones of a field.

The overarching objective of this research is to develop tools and methods for
remotely estimating soil moisture variability in agricultural crop production. Index-based
and machine learning methods were deployed for processing hyperspectral data collected
from moisture-controlled samples.

In the first of five studies described in this dissertation, the feasibility of using “low-
cost” index-based multispectral reflectance sensing for remotely delineating soil moisture
content from direct soil and crop residue measurements using down-sampled spectral data
were determined. The relative reflectance from soil and wheat stalk residue were measured
using visible and near-infrared spectrometers. The optimal pair of wavelengths was chosen
using a script to create an index for estimating soil and wheat stalk residue moisture levels.
Wavelengths were selected to maximize the slope of the linear index function (i.e.,
sensitivity to moisture) and either maximize the coefficient of determination (R?) or
minimize the root mean squared error (RMSE) of the index. Results showed that
wavelengths centered near 1300 nm and 1500 nm, within the range of 400 to 1700 nm,
produced the best index for individual samples; however, this index worked poorly on
estimating stalk residue moisture.

In the second of five studies, 20 machine learning algorithms were applied to full
spectral datasets for moisture prediction and comparing them to the index-based method
from the previous objective. Cubic support vector machine (SVM) and ensemble bagged
trees methods produced the highest composite prediction accuracies of 96% and 93% for



silt-loam soil samples, and 86% and 93% for wheat stalk residue samples, respectively.
Prediction accuracy using the index-based method was 86% for silt-loam soil and 30% for
wheat stalk residue.

In the third study, a spectral measurement platform capable of being deployed on a
UAS was developed for future use in quantifying and delineating moisture zones within
agricultural landscapes. A series of portable spectrometers covering ultraviolet (UV),
visible (VIS), and near-infrared (NIR) wavelengths were instrumented using a Raspberry
Pi embedded computer that was programmed to interface with the UAS autopilot for
autonomous reflectance data acquisition. A similar ground-based system was developed to
keep track of ambient light during reflectance target measurement. The systems were tested
under varying ambient light conditions during the 2017 Great American Eclipse.

In the fourth study, the data acquisition system from the third study was deployed
for recognizing different targets in the grayscale range using machine learning methods
and under ambient light conditions. In this study, a dynamic method was applied to update
integration time on spectrometers to optimize sensitivity of the instruments. It was found
that by adjusting the integration time on each spectrometer such that a maximum intensity
across all wavelengths was reached, the targets could be recognized simply based on the
reflectance measurements with no need of a separate ambient light measurement.

Finally, in the fifth study, the same data acquisition system and variable integration
time method were used for estimating soil moisture under ambient light condition. Among
22 machine learning algorithms, linear and quadratic discriminant analysis achieved the
maximum prediction accuracy.

A UAS-deployable hyperspectral data acquisition system containing three portable
spectrometers and an embedded computer was developed to classify moisture content from
spectral data. Partial least squares regression and machine learning algorithms were shown
to be effective to generate predictive models for classifying soil moisture.

KEYWORDS: Remote sensing, Spectroscopy, Soil moisture, Machine learning,

Unmanned aircraft system, Ambient light calibration.

Ali Hamidisepehr
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CHAPTER 1: INTRODUCTION

Agricultural irrigation management is increasingly becoming a vital factor to
supply enough food to a growing population. Irrigation — as the primary fresh water
consumer — has a large influence on water shortage issues (Gleick, 2003).The development
of irrigation and nutrient management practices for food production has resulted in
substantial increases in crop yield, accounting for over 80% of the gains in the global
supply of wheat, rice, and corn since the 1960s (Cassman, 1999). Nearly 23 million
hectares of land were irrigated in the U.S. during 2012, accounting for 31% of total U.S.
freshwater use (USDA, 2015).

Novel technologies, such as variable-rate irrigation, help to control water usage and
result in more efficient irrigation than traditional methods (O’Shaughnessy et al., 2015;
Yari et al., 2017). To spatially implement variable-rate irrigation, a prescription map
containing information about the actual water status of the field is needed (Buck et al.,
2016). Many of the smart irrigation systems available for scheduling water application rely
on either soil water holding capacity maps or low spatial resolution sub-soil sensor
networks (Yule et al., 2008). Both methods may not be optimized, particularly in instances
where the sensing technology is not spatially matched with the application technology.
Increasing the spatial resolution of intensive management practices requires the
optimization of inputs and can reduce the overall level of inputs required to produce the
same output (Raun et al., 2002). High spatial resolution methods (10 m grid or smaller) for
identifying water stress typically involve the use of remote sensing of a crop canopy using
combinations of visible and near-infrared (Pefiuelas et al., 1997) or thermal infrared

sensing (Carlson et al., 1981; Nemani & Running, 1989). Traditional deployments include



satellite, conventional aircrafts, and ground-based sensors but are limited in terms of cost,
temporal, and spatial resolution.

Remote sensing is useful for obtaining field-scale and site-specific information
about the drought status in a field and generating near real-time irrigation prescription
maps. Reflectance-based remote sensing is a potential method for quantifying soil moisture
and delineating moisture management zones. Several studies have focused on using visible,
multispectral, or hyperspectral cameras mounted on drones to evaluate crop/soil status at
high spatial resolutions. This technology has received much attention in the past few
decades for identifying the spatial variability (or behavior) ofwater stress in agricultural
applications (Atzberger, 2013; Bernardes et al., 2012; Carlson et al., 1981; Doraiswamy et
al., 2005; Nemani & Running, 1989; Pefiuelas et al., 1997; Thenkabail et al., 2014). In
many applications, the crop was the visual target for indirectly measuring soil or crop
parameters. However, there may still be useful information available from direct soil
reflectance measurements. The ability to quantify soil moisture variability and its temporal
dynamics over entire fields through direct soil observations using remote sensing will
improve early detection of water stress before crop physiological or economic damage has
occurred, and it will contribute to the identification of zones within a field where soil water
is depleted faster than in other zones.

A common way of applying remote sensing in a field is to select a couple of narrow-
band ranges of wavelengths with the potential to provide a sufficiently accurate estimation
of a field parameter based on reflectance values. Combinations of these narrow-band
ranges are used to compute indices that are correlated with crop and soil parameters. For

instance, the normalized difference vegetation index (NDVI), which is typically a



combination of red and near-infrared bands, is one of the most ubiquitous remote sensing
indexes in agriculture for predicting field parameters correlated to crop vigor. The
normalized difference water index (NDWI), which typically replaces one of the NDVI
bands with a water-absorption band in the near-infrared range, has been shown to be a
better performing index than NDV for estimating water stress (Gao, 1996; Gu et al., 2007).

A limited number of narrow-band wavelengths are used for index generation to
reduce sensor cost and complexity. However, by relying on only one or two wavelengths
for parameter estimation, information which can be extracted from other wavelengths are
ignored. On the processing end, building the model to extract information from
hyperspectral data is computationally intense, but it is not necessarily cost prohibitive and
it has little bearing on cost once the model for estimating a crop or soil parameter has been
developed.

In recent years, new approaches and algorithms (e.g. machine learning algorithms)
have been developed and are well suited for handling big datasets with many input
variables. Learning algorithms are regularly used in daily life, frequently without being
noticed. Learning algorithms try to mimic how the human brain learns by recognizing
patterns and rules in a dataset (Jensen et al., 1999). A computer is given a dataset containing
a large number of input variables and samples. The response variable value for each set of
variables and samples is also known. In this way, a learning algorithm tries to “understand”
how a set of inputs produces a specific output. By recognizing patterns in a training dataset,
an algorithm is trained and can be used to classify new samples. An advantage of this
method is that it enables computers to be trained by learning from experiences without

being explicitly programmed using an analytical model or simple empirical model. The



algorithm performance generally increases by experiencing more samples, assuming the
samples accurately represent the modeled process.

Machine learning is a widely-used technology, and in the last decade, it has been
applied to remotely sensed data in the agricultural domain. Specific examples include
drought assessment using MODIS and AVIRIS satellite data (Park et al., 2016; Trombetti
et al., 2008), forecasting vegetation health using MODIS satellite data (Nay, Burchfield, &
Gilliganc, 2016), estimating LAI index using MODIS and CYCLOPS (Verger et al., 2008)
and Landsat ETM+ satellite data (Walthall et al., 2004), weed detection using manual RGB
imagery (visible light imagery comprised of red, green, and blue pixels) on the ground
(Cho et al., 2002; Jafari et al., 2006) and multispectral and RGB imagery on a UAS (Koot,
2014), and plant classification using hyperspectral and RGB images (Moreno et al., 2014).

Traditional deployments of remote sensing include satellite and conventional
aircraft, but are limited in terms of cost, temporal resolution, and spatial resolution.
Unmanned aircraft systems (UAS), or drones, are relatively new tools for collecting remote
sensing data in agricultural applications (Chrétien et al., 2015; Padua et al., 2017). In one
study, traditional methods of remote sensing, including satellites and manned aircraft
systems, were compared to a UAS method. It was concluded that UAS were more cost-
effective in small fields and UAS were shown to have the potential to provide higher spatial
precision data (Matese et al., 2015).

Spectral reflectance data collected using UAS are increasingly used in research to
estimate different soil and crop parameters. Example applications of UAS-based remote
sensing in the agricultural domain include estimating soil fertility (Bajwa & Tian, 2005),

generating vegetation indices (Berni et al., 2009; Candiago et al., 2015), assessing tree



crowns for breeding applications (Diaz-Varela et al., 2015), yield estimation (Geipel et al.,
2014), plant classification (Hung et al., 2014), weed detection (Koot, 2014), and controlling
herbicide applications (Xiang & Tian, 2011).

Advances in spectrometer development have led to more portable systems, or
micro-spectrometers, that are particularly suitable for UAS deployment due their small size
and mass. One study showed that measurements from UAS-deployed micro-spectrometers
were highly correlated with parameters measured at ground level and concluded that the
UAS platform could provide a faster method for spectral data collection compared to
traditional remote sensing methods (Burkart et al., 2014). Nevertheless, calibrating these
sensors for various ambient light conditions and avoiding saturation are challenges needed
to be dealt with. Field spectrometers are mostly limited to data collection in a specific
period and ambient light condition (Damm et al., 2011; Gao et al., 2002, 2004; Guanter et
al., 2006). Using reference tarps is another common approach for compensating against
ambient light changes. A measurement from tarps needs to be taken for each measurement
from a land target to continuously keep track of ambient light changes (Shanahan et al.,
2001). But since it is practically difficult, especially for large field scales, only a few
measurements from tarps can be taken during the data collection process. An alternative
method is to use a second sensor for measuring ambient light spectra while measuring
reflectance (Burkart et al., 2014; Von Bueren et al., 2015).

In spite of all efforts have been made on this area, a low-cost hyperspectral system
for estimating soil moisture at different ambient light condition is desired. This system
should provide a highly accurate prediction model while the model is kept computationally

simple for a common processor. Hence, developing a hyperspectral data acquisition system



coupled with a data processing method for estimating soil moisture from a UAS platform
and under ambient light conditions will lead to more efficient field monitoring and

irrigation management.

1.1 PROJECT OBJECTIVES

The overarching objective of this research is to develop tools and methods for
remotely estimating soil moisture variability at a pilot scale in agricultural crop production.
The proposed study aims to integrate spectral data collected using a UAS-deployed
spectrometer with ground reference sampling to determine the ability to predict soil

moisture measurements. Specific objectives include to:

1. Determine the feasibility of using “low-cost” index-based multispectral reflectance
sensing for remotely delineating soil water content from direct soil and crop residue
measurements from down-sampled spectral data.

2. Apply machine learning algorithms to full spectral datasets for moisture estimation
and comparing to index-based method from previous objective.

3. Instrument a series of portable spectrometers and integrate into an unmanned
aircraft system for autonomous data collection.

4. Recognize different reflectance targets in the greyscale range by compensating
against ambient light changes using variable integration time during data collection
and machine learning for post processing.

5. Testing the capability of the data acquisition system and predictive models
generated by machine learning algorithms to estimate soil moisture under ambient

light condition.



1.2 ORGANIZATION OF THESIS
This dissertation is organized in seven chapters. Chapter 1 establishes a broad
background information and the general rationale of this research along with specific
research objectives. Chapter 2 describes the feasibility of using a customized index-based
multispectral reflectance sensing for remotely delineating soil and crop residue water
content. Chapter 3 provides a comparison between multiple machine learning methods and
an index-based estimation from the hyperspectral dataset collected under controlled-light
conditions. Chapter 4 describes the process of instrumenting a series of portable
spectrometers and integrating it into an unmanned aircraft system for autonomous data
collection. Also, the system evaluation during the 2017 Great American Eclipse is included
in this chapter. Chapter 5 describes a study for testing an approach with constant changing
of integration time of reflectance spectrometers for recognizing reflectance targets painted
with different colors in grayscale range. Also, it shows the optimal method for calibrating
reflectance measurements. Chapter 6 takes results from the previous study into account and
demonstrates the capability of the data acquisition system in estimating soil moisture under
ambient light conditions. Also, prediction accuracy of models generated using multiple
machine learning algorithms are evaluated. Chapter 7 concludes major findings from the
present research and discusses the future work.
The research presented in this dissertation is either published or submitted for
publication in peer-reviewed scientific journals:
1. Hamidisepehr, A., Sama, M. P., Turner, A. P., & Wendroth, O. O. (2017). A

Method for Reflectance Index Wavelength Selection from Moisture-Controlled



Soil and Crop Residue Samples. Transactions of the ASABE, 60(5), 1479-1487.
(Chapter 2)

Hamidisepehr, A., Sama, M. P. (2017). Moisture Content Classification of Soil and
Stalk Residue Samples from Spectral Data using Machine Learning. Transactions

of the ASABE, Under Review. (Chapter 3)



CHAPTER 2: OBJECTIVE 1: AMETHOD FOR REFLECTANCE INDEX
WAVELENGTH SELECTION FROM MOISTURE CONTROLLED SOIL AND

CROP RESIDUE SAMPLES

2.1 SUMMARY

Reflectance indices are a method for reducing the dimensionality of spectral
measurements used to quantify material properties. Choosing the optimal wavelengths for
developing an index based upon a given material and property of interest is made difficult
by the large number of wavelengths typically available to choose from and the lack of
homogeneity when remotely sensing agricultural materials. This study aimed to determine
the feasibility of using a low-cost method for sensing the water content of background
materials in traditional crop remote sensing. Moisture controlled soil and wheat stalk
residue samples were measured at varying heights using a reflectance probe connected to
visible and near-infrared spectrometers. A program was written that used reflectance data
to determine the optimal pair of narrowband wavelengths to calculate a normalized
difference water index (NDWI1). Wavelengths were selected to maximize the slope of the
linear index function (i.e. sensitivity to moisture) and either maximize the coefficient of
determination (R-squared) or minimize root mean squared error (RMSE) of the index.
Results showed that wavelengths centered near 1300 nm and 1500 nm, within the range of
400 nm to 1700 nm, produced the best index for individual samples. Probe height above
samples and moisture content were examined for statistical significance using the selected
wavelengths. The effect of moisture was significant for both bare soil and wheat stalks, but
probe height was only significant for wheat stalk samples. The index, when applied to all

samples, performed well for soil samples but poorly for wheat stalk residue samples. Index



calculations from soil reflectance measurements was highly linear (R2 > 0.95) and
exhibited small variability between samples at a given moisture content, regardless of
probe height. Index calculations from wheat stalk residue reflectance measurements were
highly variable, which limited the usefulness of the index for this material. Based on these
results, it is expected that crop residues, such as wheat stalk residue, will reduce the

accuracy of remotely sensed soil surface moisture measurements.

2.2 INTRODUCTION

The development of irrigation and nutrient management practices for food
production has resulted in substantial increases in crop yield, accounting for over 80% of
the gains in global supply of wheat, rice, and corn since the 1960’s (Cassman, 1999). While
this development has limited the expansion of agricultural land, it has also resulted in a
reduction in biodiversity (Cardinale et al., 2012) and placed a large burden on global water
resources (Hatfield, 2015). Nearly 23 million hectares of land were irrigated in the United
States during 2012, accounting for 31% of total U.S. freshwater use (USDA, 2015). Many
of the smart irrigation systems available for scheduling water application rely on either soil
water holding capacity maps or low spatial resolution sub-soil sensor networks (Yule et
al., 2008). Both methods may not be optimized — particularly in instances where the
sensing technology is not spatially matched with application technology. Increasing the
spatial-resolution of intensive management practices can help with optimizing inputs and
reducing the overall level of inputs required to produce the same output (Raun et al., 2002).

High spatial resolution methods (10 m grid or smaller) for identifying water stress
typically involve the use of remote sensing of a crop canopy using combinations of visible

and near-infrared light (Penuelas et al., 1997), or thermal infrared sensing (Carlson et al.,
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1981; Nemani & Running, 1989). Traditional deployments include satellite, conventional
aircraft, and ground-based sensors but are limited in terms of cost, temporal and spatial
resolution. Perhaps the most successful adoption of remote sensing technology in
production agriculture has been the use of the normalized difference vegetation index
(NDVI) to detect crop vigor, which is then correlated to a myriad of parameters in addition
to water stress. These include vegetation cover (Carlson & Ripley, 1997), crop nitrogen
status (Solari et al., 2008), crop yield (Benedetti & Rossini, 1993), and phenotype
(Svensgaard et al., 2014). An alternative to NDVI is the normalized difference water index
(NDWI), which typically uses longer wavelengths of light beyond the sensitivity of
silicone-based photodiodes (Gao, 1996) and is potentially better suited to identifying crop
water stress (Gu et al., 2007).

Two challenges for remotely sensing crop water stress using traditional methods
are the absorption light due to atmospheric moisture and the contribution of soil reflectance
on the overall vegetation reflectance spectra. Active ground-based sensors have been
shown to overcome atmospheric limitations in nitrogen sensing by providing a light source
(Holland et al., 2004; Mullen et al., 2003; Raun et al., 2002). The effect of soil type and
conditions on canopy reflectance indices has also been addressed through calibrated
indices, such as the soil adjusted vegetation index (SAVI) (Huete, 1988) or by removing
the soil contribution from the reflectance spectra (Huang et al., 2009). In all the
aforementioned applications, the crop was the visual target for indirectly measuring soil or
crop parameters. However, there may still be useful information available from direct soil
reflectance measurements. This work aims to study the reflectance spectra of bare soil and

crop residue to determine if they can contribute to crop water stress detection. The ability
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to quantify spatial soil moisture variability and its temporal dynamics over entire fields
through direct soil observations using remote sensing will improve early detection of water
stress before crop physiological or economic damage has occurred, and it will contribute
to the identification of zones within a field in which soil water is depleted faster than in
other zones of a field.

The main objective of this study was to determine the feasibility of developing a
low-cost reflectance sensor for remotely delineating soil water content from a ground or
low altitude UAS-deployed platform. Specific objectives include to:

1. Collect visible and near-infrared spectral response from moisture-controlled soil and
crop residue samples.

2. Identify the optimal wavelengths for a normalized index based upon user-defined
constraints.

3. Determine if the effect of height of the sensor above the sampled surface is statistically

significant.

2.3 MATERIALS AND METHODS

2.3.1 Sample preparation

In this study, soil samples with pre-determined water contents were prepared for
two materials: silt-loam soil and wheat residue stalks. These materials were chosen as they
represent potential background materials when observing row crops, such as corn or
soybean, at early growth stages. 120-mL plastic containers with air-tight removable lids
were used to contain the moisture-controlled samples. The soil was air dried, ground and
passed through a 2-mm sieve. The initial moisture content (wet basis) of the soil was

determined gravimetrically by drying a sample in a convection oven at 105°C for over 24
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h and measuring the resulting reduction in mass. The stalks were dried in a similar manner
to the soil samples to prevent decomposition. Each container was marked at a depth of 35
mL (for bare soil) and 120 mL (for stalks) and filled to the mark and lightly tapped to firm
up the soil/stalks. Seven moisture levels were chosen (air dry (Giada et al., 2003) or 0%
(stalks), 5%, 10%, 15%, 20%, 25%, and 30%). The mass of soil/stalks inside each sample
container was measured with the mass of the container removed and used to determine the
required mass of water to reach the target moisture content. Water was added to each
sample using a pipet with a volumetric precision of 0.01 ml and the final mass was
recorded. Then the lid of each container was closed, and the samples were equilibrated over
several days to let the water redistribute through the sample. Three replications were
prepared for each moisture level to minimize the effect of sample preparation error on the

result. In total, 21 soil samples and 21 stalk samples were prepared.

2.3.2 Instrumentation Hardware

Reflectance was measured using visible and near-infrared spectrometers (HR400-
7-VIS-NIR, NIRQuest512; Ocean Optics; Dunedin, FL) with a tungsten-halogen light
source (HL-2000-HP-FHSA; Ocean Optics; Dunedin, FL). A fiber optic reflectance probe
(QR200-12-MIXED: Ocean Optics; Dunedin, FL) was used to transmit source light to the
sample and reflected light to the spectrometers. The reflectance probe consisted of twelve
200 um diameter transmission fibers spaced concentrically around two 200 pum diameter
reflectance fibers and was 2 m in length. The spectrometers were calibrated to 0 and 100%
reflectance by blocking the light source for the background measurement and using a

Spectralon calibration target (WS-1-SL; Ocean Optics; Dunedin, FL) for the reference
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measurement, respectively. The effective spectral range was 400 to 1700 nm with an
overlap at 900 nm between the two spectrometers.

A consistent method was needed to position the reflectance probe above each
sample to minimize bias and reduce variability due to probe height. A reflectance test
fixture (Figure 2-1) was designed and fabricated to consistently position the spectrometer
reflectance probe above the sample surface. The fixture consisted of three main
components that were 3D printed from black ABS plastic: a sample holder for centering
the sample container underneath the probe, an outer probe mount that rested directly on top
of the sample surface, and an inner probe mount for setting the height of the probe above
the sample surface. The inner probe mount had stainless-steel dowel pins pressed into the
sidewall that slid down guides in the outer probe mount. The height of the probe was set
by rotating the inner probe mount inside the outer probe mount at one of five height index
points. The probe heights were evenly spaced between 0.64 to 5.76 cm in increments of
1.28 cm. The 24.8° field-of-view (FOV) of the reflectance probe resulted in a sampling
area of approximately 0.06 to 5 cm?. The sampling diameters and areas for all heights are
shown in Table 2-1. The maximum height was selected based on the reflectance probe
FOV and the sample size to limit the side walls of the outer probe mount from affecting

the reflectance measurement.
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Sample
Holder
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Container

Figure 2-1: Cut-view of the reflectance test fixture used to position the spectrometer

probe above a soil/stalk sample.

Table 2-1: Reflectance probe heights and resulting sampling diameters and areas

Probe  Sampling Sampling
Height Height Diameter Area

# (cm) (cm) (cm?)
H1l 0.64 0.28 0.06
H2 1.92 0.84 0.55
H3 3.20 1.40 1.54
H4 4.48 1.96 3.02
H5 5.76 2.52 4.99

2.3.3 Data Collection
OceanView (Version 1.4.1; Ocean Optics; Dunedin, FL) software was used to

configure the spectrometers and record the reflectance response. A graphical program was
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written that calculated reflectance from each spectrometer, combined the two results into a
single array, and graphed the results in real-time. The system was calibrated every time the
height of the probe was changed and whenever the spectrometers and light source were
powered on. The software was configured to record three measurements per sample. Given
that there were three samples for each moisture content, three replications for each sample,
and three measurements for each replication, there were 27 total reflectance responses for
every combination of moisture content and height. This replication structure was intended
to reduce the influence of variability in sample preparation, reflectance probe position, and
sensor noise on the resulting index calculation.

Reflection measurements were normalized between 0 and 1 (0 and 100%) by
subtracting the background measurement intensity from the raw measurement intensity and
reference target measurement intensity, and taking the ratio of the resulting differences
(Equation 1).

M; - C}

Ry =—2—2
G-CG

1)

Where:

R was the normalized reflectance measurement from a sample (%)

M was the raw measurement intensity from a sample (A/D counts)

C° was the background measurement intensity with the light source
obstructed (A/D counts)

C?! was the reference target measurement intensity (A/D counts)

A was the specific wavelength (nm)
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Each reflectance measurement was stored in a tab-delimited text file containing the
spectral response along with the spectrometer settings. A file naming scheme was used to
label each text file to better facilitate post-processing. Filenames included: a sample code
for identifying sensor height, replication and the sample container; a string corresponding
to the data type within OceanView; and a local timestamp (Figure 2-2). A MATLAB script
(R2015b; The Mathworks; Natick, MA) was written to access all text files from a single
folder and categorized them using the filename sample code. The script stored data as
columns in a single Excel spreadsheet with the corresponding sample codes as headers in

the first row of each column.

Sample Code Data Type Timestamp
A A A
- NS N A
HxRySz_ Reflection _h-m-s-ms.txt
x = height (1-5) h = hour (0-23)
v = replication (1-3) m = minute (0-59)
z =sample container (1-16) s = second (0-59)

ms = millisecond (0-999)

Figure 2-2: Filename format for output text files of the spectrometers. Fixed values

are shown in black and variables are shown in red.

2.3.4 Data Analysis

A second MATLAB script was written to perform data analysis. The script read in
the entire dataset, calculated normalized indices for all pairs of wavelengths, and identified
the “best” pair based upon user defined criteria (139). The normalized index was composed
of two distinct narrowband ranges identified by their center wavelengths and obtained for

every possible pair in ascending order over the 400 to 1700 nm range (Equation 2).
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Where:
I1, 22 = normalized index for wavelengths centered at A1 and A2 (-1 to 1)
R;4, Ry, = average reflectance at wavelengths centered at A1 and 12 (%)
A1l > A2 to reduce the number of computations by a factor of two
Selecting the “best” pair of wavelengths for calculating a reflectance index to
predict moisture content implied several assumptions and required constraints to simplify
the optimization process. It was assumed that the low-cost sensor would use either a silicon
or indium-gallium-arsenide (InGaAs) photodetector coupled with narrow-band filters to
detect specific wavelengths of visible and NIR light. For this study, the bandwidths were
set to £ 25 nm and assumed to be uniformly distributed about a center wavelength.
Preliminary reflectance index calculations using manually-selected wavelengths revealed
a linear relationship between sample moisture content and the normalized index. Moreover,
sensor height above the sample had little effect on index values. Therefore, a linear
regression model was used to estimate moisture content based on the average normalized
index measurement. Three optimization parameters were initially chosen: the coefficient
of determination (R-Squared) of the linear regression between moisture content and the
reflectance index; the root mean squared error (RMSE) between the actual and predicted
moisture content; and the slope of the linear regression, which represented sensitivity. The
pair of wavelengths with the highest slope, the lowest RMSE, and the highest R-Squared
were considered the optimal solution by maximizing sensitivity and minimizing error. The

optimization parameters were stored for each normalized index calculation and plotted in
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the form of slope versus R-Squared and slope versus RMSE to determine if local optima
or a global optimum existed.

A third script was written to determine the performance of the index for predicting
moisture (134). The “best” wavelengths resulting from the previous step were used as
inputs and the normalized index for all samples was computed. A statistical analysis was
conducted to determine if probe height above the sample was statistically significant. The
experiment was set up with a factorial design in moisture content and height (7x5) for bare
soil. The data were subjected to variance analysis and appropriate means separation was
conducted using statistical software (JMP 12; SAS; Cary, NC). The linear regression model
from the average normalized index and the individual index values were used to determine

a 95% prediction interval.

2.4 RESULTS AND DiscussION

2.4.1 Spectrometer Calibration

The purpose of the calibration was to remove non-uniformity in spectral response
due to the variability in the light source, optical fibers, and spectrometer detector with
respect to wavelength. Figure 2-3 illustrates the raw intensity reference response from the
spectrometers with the probe set to height H3 above the calibration target and the light
source adjusted to maximize intensity without saturation at any wavelength of either
spectrometer. The visible spectrometer always saturated before the NIR spectrometer and
thus determined the intensity of the light source. Heights H4 and H5 used the full light
source intensity and therefore did not use the full intensity range of either spectrometer.
The other three heights produced similar responses that were scaled along the intensity

axis. The intensity axis represented the raw analog-to-digital (A/D) converter result from
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the spectrometers’ photodetectors. The visible spectrometer was a 14-bit resolution (0-
16383) measurement and the NIR spectrometer was a 15-bit resolution (0-32767)
measurement.
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Figure 2-3: Intensity of reflected light versus wavelength for the reference

measurement at height H3 (3.2 cm).

Figure 2-4 illustrates the raw intensity background response from the spectrometers
when the light source was blocked. The small variations across wavelengths were due to
noise in the spectrometer detector. The NIR spectrometer had a large offset from zero as
compared to the visible spectrometer, which was due to operating in a high-gain mode. The
high-gain mode was necessary to obtain a sufficient signal from the NIR spectrometer

when using a single light source and reflectance probe.
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Figure 2-4: Intensity of reflected light versus wavelength for the background

measurement at height H3 (3.2 cm).

Figure 2-5 shows the results of the calibration process where non-uniformity had
been removed across all wavelengths when calculating background reflectance and the
reflectance from the reference target. Data from both spectrometers were spliced into a
single dataset by removing data from the visible spectrometer past 900 nm and combining
it with all data from the NIR spectrometer. Note that wavelengths less than 500 nm still
deviated from the desired 0 and 100% reflectance for the background and reference
measurements, respectively. This was due to low relative sensitivity of the visible
spectrometer below this wavelength and indicated that more noise should be expected

when using wavelengths in this range to calculate indices.
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Figure 2-5: Calibrated and combined reflectance response for a background and

reference measurement at height H3 (3.2 cm).

2.4.2 Bare Soil

Figure 2-6 shows the reflectance for varying water content of soil samples versus
wavelength. Each series is the average of all samples at a particular moisture content across
all heights. The general spectral response of the soil samples was an increase in relative
reflectance as wavelength increased. Drier samples typically reflected more light on
average, but there were instances where the average reflectance across all wavelengths was
not in order. For example, both the 25% and 30% moisture content samples measured at
height H3 reflected more light than the 20% moisture content sample. This phenomenon
was likely caused by small variations in the distance between the measured area and the
spectrometer probe. Despite efforts to control the exact distance with a reflectance probe
test fixture, uncontrolled variations in the soil surface shape (i.e., flat, convex, concave)

likely had a substantial impact on average reflectance. Given that the soil surface in the
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field could never be carefully controlled on the scale that was relevant to this experiment,
no further adjustments to the sample were made. The non-ordered progression of average
reflectance also illustrated why a two- or more-wavelength index was crucial for modeling
the relationship between reflectance and moisture content. No single wavelength will
produce a monotonic relationship with suitable sensitivity. However, it was observed that
the relative dip in reflectance between 1400 nm to 1500 nm, when compared to other
wavelengths for the same moisture content, exhibited a clear pattern. As moisture content
increased, the relative reflectance inside this range tended to decrease while the rest of the

spectral response followed a consistent profile.
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Figure 2-6: Average relative reflectance versus wavelength for varying nominal soil

moisture contents in bare soil.

The transition between the visible and near-infrared spectrometers at 900 nm

produced a noticeable artifact in the relative reflectance measurement. Increasing the
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number of spectrometer calibration points between 0% and 100% reflectance might have
mitigated this non-linearity but a simpler solution was to ensure that wavelengths near this
transition were not used when calculating an index.

As previously stated, the goal of the optimization process for selecting the “best”
pair of wavelengths used to calculate a moisture content prediction index was to select the
index that produced the largest slope while either maximizing the R-Squared or minimizing
the RMSE of the index function. Without knowing the relationship between the constraints,
it was difficult to prioritize one constraint over the other. Rather than arbitrarily weighting
each constraint, the resulting relationship between all pairs of wavelengths was plotted for

both slope versus R-Squared (Figure 2-7) and slope versus RMSE (Figure 2-8).
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Figure 2-7: The slope of linear regression of reflectance and moisture content vs.

R-Squared on bare soil
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Figure 2-8: The slope of linear regression of reflectance and moisture content vs.

RMSE on bare soil

The resulting shapes revealed if local or global optima existed and illustrated an
interesting trend between slope and either R-Squared or RMSE. Points tended to follow
deterministic paths as one wavelength was changed relative to another. The majority of
slopes were negative, which was a result of the index equation in conjunction with the
positive trend in relative reflectance. Longer wavelengths generally exhibited a larger
relative reflectance than shorter wavelengths, which produced a negative term in the index
numerator. The sign could be fixed positive by always assigning the higher relative
reflectance wavelength to A1. Figure 2-7 also reveal why R-Square and RMSE alone were
not adequate for selecting the appropriate index wavelengths. As RMSE decreased, so did
the slope of the index, which reduced the sensitivity of the index to moisture content.
Similarly, the wavelengths that resulted in the highest slope also had a RMSE very close

to zero (Figure 2-8).
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There was no global optimum when using RMSE but R-Squared did produce a
grouping of indices where both the slope and R-Squared were close to their respective
maxima. The two wavelengths that produced this relationship were centered near 1300 nm
and 1500 nm. When using RMSE, a peak occurred at a slope of approximately 0.0058
Index %MCand an RMSE of 0.013. The corresponding wavelengths for this index were
also centered near 1300 nm and 1500 nm.

The index values from 50 nm wide bands centered at 1300 nm and 1500 nm for all
samples are shown in Figure 2-9 along with the linear regression model and 95% prediction
interval. Variability in the calculated index among samples at a given moisture content
tended to increase as moisture content increased. Average index values varied from 0 to

0.15 for soil samples at 3.3% to 30% moisture content, respectively.
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Figure 2-9: Normalized index for bare soil using 50 nm bands centered at 1300 and

1500 nm along with the linear regression and 95% prediction interval.
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2.4.3 Wheat Stalk Residue

Wheat residue stalks produced a similar spectral response to bare soil, where the
reflectance generally increased with respect to wavelength and a dip occurred between
1400 and 1600 nm (Figure 2-10). Both the discontinuities between the two spectrometers
and the dip at the water absorption bands were more pronounced, while the average
difference in reflectance between moisture contents was smaller. Again, the discontinuities
could have been better addressed through a more complex calibration process but that was
deemed unnecessary for this experiment. The average reflectance was not well correlated
with moisture content and was likely driven by effective height of the stalk surface, which

was less carefully controlled than the soil surface due to the physical structure of the stalks.
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Figure 2-10: Average relative reflectance versus wavelength for varying nominal
moisture of wheat residue stalks along with the linear regression and 95% prediction

interval.
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Since similar patterns between reflectance and wavelengths existed between bare
soil and stalks, it was expected that the optimization process would provide a pair of “best”
wavelengths close to the results of bare soil. Plots between R-square (Figure 2-11) and
RMSE (Figure 2-12) versus slope revealed similar patterns as wavelengths were
incrementally changed but the overall shapes differed from the results of bare soil. In both
instances, optima occurred at smaller slopes and either lower R-squared or higher RMSE
values, indicating that the index would not likely perform as well as it did for bare soil.
However, the local optima still corresponded to the same pair of wavelengths near 1300
nm and 1500 nm, which indicated that the same sensor may function, albeit less accurately,
in areas that include both bare soil and wheat stalk residue. A single pair of wavelengths
across a variety of soil and crop material compositions would be advantageous for applying

a low-cost sensor across varying commodities and production practices.
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Figure 2-11: The slope of linear regression of reflectance and moisture content

versus R-squared on residue stalks
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Figure 2-12: The slope of linear regression of reflectance and moisture content

versus RMSE on residue stalks

The index values from 50 nm wide bands centered at 1300 nm and 1500 nm
wavelengths for all samples are shown in Figure 2-13 along with the linear regression
model and 95% prediction interval. Variability in index calculation among samples at a
given moisture content was large for all moisture contents, thus reducing the usefulness of
the index for stalk moisture content. Two possible explanations for why the index failed to
perform as well for stalks as it did for soil include: (1) the non-uniform height of the stalk
relative to the reflectance increased variability; and (2) the water absorbed by the stalks
was not uniformly distributed, i.e. the moisture at the stalk surface did not necessarily

represent the average moisture content.
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Figure 2-13: Normalized index for wheat stalk residue using 50 nm bands centered

at 1300 and 1500 nm.

2.4.4 Sensor Height

Average index values for individual sensor heights above surface and moisture
contents are shown in Table 2-2 for the bare soil and wheat stalk residue data. Results for
bare soil showed a strong direct relationship between moisture content and the index value,
while results for wheat stalk residue showed a weaker direct relationship. The sensor height
above the sample was observed to influence the average reflectance but the effect on the
index calculation was not known. Therefore, a multifactor analysis of variance (ANOVA)
(a = 0.05) was used to determine if sensor height and moisture content significantly
affected the index result (Table 2-3). The ANOVA revealed that moisture content was
significant while height was not for bare soil, and that both moisture and height were
significant for wheat stalk residue. This result indicates the difficulty that low-cost field

sensors may encounter when observing heterogeneous ground cover. Careful control of the
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height of the sensor, and perhaps classification of the ground cover, may be necessary for
remotely sensing soil surface moisture content.
Table 2-2: Average index measurements for bare soil and wheat stalk residue at

varying moisture contents and sensor heights.

Sample Moisture Index Value
Content (%) H1 H2 H3 H4 H5
3.33 -0.0006 0.0016 0.0011 0.0027 0.0006
5.0 0.0088 0.0111 0.0100 0.0122 0.0104
Bare Soil 10.0 0.0337 0.0335 0.0324 0.0316 0.0316
15.0 0.0532 0.0581 0.0561 0.0557 0.0555
20.0 0.0814 0.0936 0.0994 0.1001 0.1012
25.0 0.1217 0.1230 0.1219 0.1253 0.1267
30.0 0.1661 0.1716 0.1722 0.1615 0.1575
0.0 0.0101 0.0461 0.0201 0.0514 0.0497
5.0 0.0236 0.0404 0.0487 0.0423 0.0574
Wheat Stalk 10.0 0.0105 0.0668 0.0784 0.0822 0.0939
Residue 15.0 0.0422 0.0225 0.0551 0.0606 0.0599
20.0 0.0457 0.0704 0.1021 0.0831 0.0863
25.0 0.0705 0.0956 0.1330 0.1408 0.1362
30.0 0.1908 0.1597 0.2056 0.2113 0.1835

Table 2-3: Parameter estimates and significance testing of height and moisture on

the index.

Sample Parameter Estimate Std. Error tRatio Prob. > |t|
Height 0.0006356  0.000851 0.75 0.4604
Moisture  0.0061931  0.000129 48.04  <0.0001
Wheat Stalk Height 0.0108258 0.003532 3.07 0.0044

Residue Moisture  0.0045207  0.000499 9.05 <0.0001

Bare Soil

31



2.5 CONCLUSIONS

Moisture controlled soil and wheat stalk residue samples were prepared and
measured at varying heights using a reflectance probe connected to visible and near-
infrared spectrometers. A computer program was written that used reflectance data to
determine the optimal narrowband wavelengths when calculating a NDWI based upon
user-defined constraints and the statistical significance of height and moisture content were
determined for the “best” pair. Constraints for this study were configured to maximize the
slope of the index (i.e. sensitivity to moisture) and either maximizing the R-squared or
minimizing the RMSE of the index function. A linear model was chosen to represent the
index when fitting parameters. Results showed that wavelengths centered near 1300 nm
and 1500 nm, within the range of 400 nm to 1700 nm, produced the best index for
individual samples. An advantage of this pair of wavelengths is that they can be sensed
from a single type of sensor using narrowband optical filters. The 1500 nm band, when
measured from an active ground-based sensor, will provide spectral information not
available when using passive aerial or satellite based remote sensing methods due to
absorption from atmospheric moisture. The index, when applied to all samples, performed
well for the soil samples but poorly on the wheat stalk residue samples. Index calculations
from soil reflectance measurements were highly linear (R? > 0.95) and exhibited small
variability between samples at given moisture content, regardless of measurement height.
Index calculations from wheat stalk residue reflectance measurements were highly
variable, which limited the usefulness of the index for this type of material. Based on these
results, it is expected that crop residues, such as wheat stalk residue, will reduce the

accuracy of remotely sensed soil surface moisture measurements. Future work should
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include heterogeneous samples that include both soil and crop residue in varying
proportions to determine the composite response. As new low-cost sensors are developed,
the optimization parameters used to determine the “best” wavelengths should be refined

based on actual sensor response, rather than ideal assumptions.
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CHAPTER 3: OBJECTIVE 2: MOISTURE CONTENT CLASSIFICATION OF
SOIL AND STALK RESIDUE SAMPLES FROM SPECTRAL DATA USING

MACHINE LEARNING

3.1 SUMMARY

Remotely sensed spectral data are commonly used to quantify material properties
in agricultural applications. Typically, only a few distinct spectral bands are selected and
formulated into a reflectance index to avoid expensive computations while it causes more
prediction inaccuracies due to ignoring other useful wave bands. Machine learning presents
an alternative approach for quantifying material properties from spectral data due to the
ease at which it can be used to process large datasets. This study aimed to test several
commercially available machine learning algorithms using spectral data collected from
moisture-controlled silt-loam soil and wheat stalk residue samples. The spectral data used
in this analysis were previously used to develop a normalized difference water index
(NDWI) for remotely quantifying the moisture content of background materials by
selecting a pair of narrowband wavelengths. However, results showed mixed performance
for index-based processing. In this study, raw spectral data were preprocessed using partial
least squares (PLS) regression to optimize the number of input components. The
components were fed into 20 different machine learning algorithms available in MATLAB
and the best two performing methods were compared to the index-based method. Cubic
support vector machine (SVM) and ensemble bagged trees methods produced the highest
composite prediction accuracies of 96% and 93% for silt-loam soil samples, and 86% and

93% for wheat stalk residue samples, respectively. Prediction accuracy using the index-
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based method was 86% for silt-loam soil and 30% for wheat stalk residue. A potential
limitation of both machine learning methods was the discrete classification of moisture
content rather than the continuous output of the index-based method. However, the
substantial improvement of prediction accuracy of individual samples likely outweighs

concerns about limited precision.

3.2 INTRODUCTION

Agricultural irrigation management is increasingly becoming a vital factor to
supply enough food to a growing population. Irrigation — as the primary fresh water
consumer — has a large influence on water shortage issues (Gleick, 2003). Remote sensing
is useful for obtaining field-scale information about the drought status in a field and has
received much attention in the past few decades for identifying water stress in agricultural
applications (Atzberger, 2013; Bernardes et al., 2012; Carlson et al., 1981; Doraiswamy et
al., 2005; Nemani & Running, 1989; Pefiuelas et al., 1997; Thenkabail et al., 2014).

A common way of applying remote sensing in a field is to select a couple of narrow-
band ranges of wavelengths with the potential to provide a sufficiently accurate estimation
of a field parameter based on reflectance values. Combinations of these narrow-band
ranges are used to compute indices that are correlated with crop and soil parameters. For
instance, the normalized difference vegetation index (NDVI), which is typically a
combination of red and near-infrared bands, is one of the most ubiquitous remote sensing
indexes in agriculture for predicting field parameters correlated to crop vigor. The

normalized difference water index (NDWI), which typically replaces one of the NDVI
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bands with a water-absorption band in the near-infrared range, has been shown to be a
better performing index for estimating water stress (Gao, 1996; Gu et al., 2007).

A limited number of narrow-band wavelengths are used for index generation to
reduce sensor cost and complexity. However, by relying on only one or two wavelengths
for parameter estimation, information which can be extracted from other wavelengths are
ignored. On the processing end, building the model to extract information from
hyperspectral data is computationally intense, but it’s not necessarily cost prohibitive and
it has little bearing on cost once the model for estimating a crop or soil parameter has been
developed.

In recent years, new approaches and algorithms (e.g. machine learning algorithms)
have been developed and are well suited for handling big datasets with many input
variables. Learning algorithms are regularly used in daily life, frequently without being
noticed. For example, web search engines commonly use learning algorithms to rank web
pages. Learning algorithms try to mimic how the human brain learns by recognizing
patterns and rules in a dataset (Jensen et al., 1999). A computer is given a dataset containing
a large number of input variables and samples. The response variable value for each set of
variables and samples is also known. In this way, a learning algorithm tries to “understand”
how a set of inputs produces a specific output. By recognizing patterns in training dataset,
an algorithm is trained and can be used to classify new samples. An advantage of this
method is that it enables computers to be trained by learning from experiences without
being explicitly programmed using an analytical model or simple empirical model. The
algorithm performance generally increases by experiencing more samples, assuming the

samples accurately represent the modeled process.
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In general, there are two main classifications for machine learning algorithms:
unsupervised learning and supervised learning. Unsupervised learning allows users to
approach problems with little or no idea what the results should look like. The structure
can be derived from data, where the effect of the variables is not necessarily known.
Supervised learning applies when there are a large number of samples, where each sample
pairs a number of input and output values.

Machine learning is a widely-used technology, and in the last decade, it has been
applied to remotely sensed data in agricultural domain. Specific examples include drought
assessment using MODIS and AVIRIS satellite sensors (Park et al., 2016; Trombetti et al.,
2008), forecasting vegetation health using MODIS satellite sensors (Nay, Burchfield, &
Gilligan, 2016), estimating LAI index using MODIS and CYCLOPS (Verger et al., 2008)
and Landsat ETM+ satellite data (Walthall et al., 2004), weed detection using manual RGB
imagery on the ground (Cho et al., 2002; Jafari et al., 2006) and multispectral and RGB
imagery on a UAS (Koot, 2014), and plant classification using hyperspectral and RGB
images (Moreno et al., 2014).

Multiple learning algorithms have been specifically used in this study for estimating
soil moisture content. Among them, support vector machines (SVMs), artificial neural
networks, and Bayesian methods have resulted in more powerful models based upon
examples in the literature. Neural networks are considered as a traditional non-linear
machine learning method for estimating soil moisture. However, it is hypothesized that
simpler methods, in particular SVMs, may have the same performance or even outperform
neural networks for estimating soil moisture. In addition, SVMs provided more robustness

against noise in the training process (Ahmad et al., 2010; Pasolli et al., 2011; Wu et al.,
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2007). Bayesian methods are another prevalent machine learning method for estimating
soil moisture and were also shown to perform similarly to neural networks for estimating
soil moisture content (Notarnicola et al., 2008).

In a previous study by Hamidisepehr et al. (2017), visible and near-infrared
spectrometers with an effective measurement range between 400 nm and 1700 nm were
deployed to measure reflectance on moisture controlled soil and crop residue samples. In
that study, a brute force optimization method was developed to determine the optimal pair
of wavelengths used to create a moisture predicting index that maximized sensitivity of the
index to changes in moisture content while minimizing error. Results showed that
wavelengths centered around 1300 nm and 1500 nm produce the linear index model with
the highest sensitivity to moisture content (slope), highest coefficient of determination (R?)
of the linear regression between the index values and moisture content, and lowest root
mean squared error (RMSE) between predicted and actual moisture contents. The emphasis
for using two wavelengths, rather than the full spectrum, was towards the development of
a low-cost narrow-band sensor for field use. While results for soil samples appeared
promising in terms of the ability to model the index response to soil moisture content, crop
residue moisture content was difficult to accurately predict. Furthermore, prediction
accuracy for soil and crop residue moisture contents were 86% and 30%, respectively,
when index values from individual samples were used to classify moisture content. This
study aims to expand upon that work by applying machine learning algorithms to the full
spectral data to improve the prediction accuracy of moisture content in soil and crop residue

samples.
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The main objective of this study was to determine if machine learning could be
used to develop a prediction model using relative reflectance data collected from moisture-
controlled soil and crop residue samples. Specific objectives include:

1. Determine the appropriate number of spectral wavelengths to be used as input into a
machine learning algorithm.

2. Test pre-configured machine learning algorithms available in MATLAB to determine
which method produced the highest prediction accuracy.

3. Compare the results of the machine learning methods to a reflectance index-based

method.

3.3 MATERIALS AND METHODS

3.3.1 Sample Preparation and Data Collection

The spectral dataset from Hamidisepehr et al. (2017) contained three replications
of seven different moisture contents for separate silt-loam soil samples and wheat stalk
residue samples. Relative reflectance was measured nine times at five different probe
heights (0.64, 1.92, 3.20, 4.48, and 5.76 cm) above the sample surface — corresponding to
five different sampling areas (0.06, 0.55, 1.54, 3.02, and 4.99 cm?), given the 24.8° field-
of-view of the backscatter reflectance probe used. Probe height and the order of samples
within a given probe height were randomly selected to randomly distribute error resulting
from drift in the measurement system. The backscatter reflectance system used to collect
the spectral data was recalibrated against a white Spectralon calibration target every time

the probe height was changed. A more detailed description of the instrument setup can be
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found in Hamidisepehr et al. (2017). The sampling scheme resulted in 945 measurements

per material type across the range of established moisture contents.

3.3.2 Spectral Data Preprocessing

There were a total of 1024 distinct wavelengths measured in the spectral range of
400 to 1700 nm. While each wavelength could be considered an input variable to a machine
learning algorithm, many of the wavelengths do not contain unique information (i.e. they
were highly correlated to other wavelengths). Therefore, the raw spectral data were
compressed using a partial least squares (PLS) regression method using MATLAB
(R2015b; The Mathworks; Natick, MA) to reduce the number of input components and
speed up data processing. The MATLAB function plsregress was used to apply the PLS
regression method to the raw spectral data (141). The function returned two parameters
that were useful for determining the appropriate number of components to be used in the
machine learning process — estimated mean squared prediction error and the variance
explained in the output parameter (moisture content). In order to find the optimal number
of input components, estimated mean squared prediction error and variance explained in
moisture content were plotted against the number of input components. The number of
input components which provided a low prediction error and high variance explained in
moisture content was selected as the optimal number of input variables to the machine
learning algorithms. Each component was the combination of multiple correlated
wavelengths and, given the nature of the machine learning process, no information

regarding the actual wavelengths associated with a component was necessary.
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3.3.3 Machine Learning Method

Each preprocessed spectral measurement included an array of relative reflectance
data (input variables) that corresponded to a given moisture content (response variable).
The goal of the machine learning process was to develop an empirical model that could be
used to classify the moisture content of samples that were not used to train the model. In
this study, soil water content classification levels were set to 3.3%, 5%, 10%, 15%, 20%,
25%, and 30% for soil samples, and water content of 0%, 5%, 10%, 15%, 20%, 25%, and
30% for stalk residue samples. After training the model, the prediction accuracy was tested
by comparing the frequency of correct classifications across an independent testing dataset
to identify the algorithm(s) and resulting model(s) that best estimated moisture content
across both material types.

The entire dataset for each material type was randomly divided into three subsets:
a training dataset, a validation dataset, and a testing dataset. In this study, 70%, 15%, and
15% of a dataset was allocated to training, validation, and testing, respectively. In the
training dataset, the weights of all variables were automatically adjusted as the model was
trained. The validation dataset was used to minimize overfitting and verified that any
increase in accuracy over the training dataset yielded an increase in accuracy over a data
set that has not been previously shown to the machine. If the accuracy over the training
dataset increased, but the accuracy over the validation dataset remained the same or
decreased, then the model was overfitted and training should be stopped. Finally, the
testing dataset was used to assess the predictive accuracy of the model (Figure 3-1). The
entire training/validation/testing process was repeated ten times to investigate the

variability in classification performance for different machine learning algorithms.
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Figure 3-1: Learning process in a machine learning algorithm. Raw spectral data
are preprocessed and subdivided into independent training, validation, and test datasets.
The model is trained and validated until improvement in the model reaches a minimum

threshold, and then the model is tested to determine the accuracy of prediction.

There were 20 different predeveloped machine learning algorithms available using
the Classification Learner App in MATLAB at the time of this study. These algorithms
included, among others, decision trees, support vector machines (SVM), nearest neighbor
classifiers, ensemble classifiers, and a two-layer feed-forward neural network. The
preprocessed dataset was organized as a matrix with reflectance components in columns
and measurement samples in rows (Table 3-1). The last column contained the actual

moisture content value for each sample. The components generated from PLS regression,
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while generated from sets of wavelengths, are no longer in units of relative reflectance (i.e.,
0-100% of a reference white target). Combinations of wavelengths that were negatively
correlated produced negative component values. Each machine learning algorithm was fed
the same pre-processed dataset to determine which methods performed well for both soil

and wheat stalk residue samples.

Table 3-1: Format of preprocessed data used for evaluating machine learning
algorithms. A total of 20 components from each of 945 samples representing seven

moisture contents were used to train, validate, and test 20 different machine learning

algorithms.
Measurement Component Moisture
Number 1 2 20 Content (%)
1 20.03101544 -0.031569856 ... -0.008929973 3.33
2 -0.03105864 -0.031872024 ... -0.010776602 3.33
945 0.024192134 0.020611746 ... 0.070482093 30

3.3.4 Machine Learning vs. Index-Based Method Comparison

The normalized difference water index for estimating moisture content in silt-loam
soil and wheat stalk residue defined in Hamidisepehr et al. (2017) produced a continuous
value moisture content output. In order to make a more direct comparison between machine
learning and index-based methods, the index-based moisture estimations were classified
into the same levels used in the machine learning assessment by rounding to the nearest
classification level. The prediction accuracy for each known moisture level and the overall

prediction accuracy were determined by computing the percentage of correct predictions.
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An important difference in the analysis in contrast to the machine learning method was that
independent testing data were not used when classifying moisture levels from index values.
Rather, the same data used to fit the index model were used. Therefore, it is expected that
the prediction accuracy of the index-based method is overestimated as compared to what
would have occurred had separate datasets been used for building the index model and

testing.

3.4 RESULTS AND DIscussION

3.4.1 Spectral Data Preprocessing

Figure 3-2 illustrates estimated mean squared prediction error and percent variance
explained in moisture content for a varying number of components. The percent variance
explained in moisture content increased as number of components increased, which was
expected, although there were diminishing returns as the number of components increased.
Over 90% of the variance in moisture content was explained by four components and over
95% by 24 components. The estimated mean squared prediction error initially decreased
until reaching a minimum of 6.4% at 20 components, and then began to increase. By
generating a model with only 20 components, the lowest estimated mean squared
prediction error and 94.7% of the variance explained in moisture content were achieved.
Thus, 20 components were selected as the optimal number of components to preserve
accuracy while reducing computation time and overfitting. Any increase in the number of
components beyond 20 for this dataset would only result in a marginal increase in percent
variance explained in moisture content while also increasing the estimated mean squared

prediction error due to overfitting.
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Figure 3-2: Percent variance explained in moisture and estimated mean squared

prediction error for 1 to 60 components.

The dimensionality of the dataset was reduced significantly from 1024 wavelengths
to 20 components. Thus, the process of generating the model and estimating moisture was
substantially faster and the likelihood of overfitting was decreased by removing redundant
components. A typical reduction in training time of 50% was observed for most algorithms

after preprocessing raw spectral data.

3.4.2 Machine Learning Method

All 20 different pre-configured machine learning algorithms available in MATLAB
at the time of this study were tested to determine the prediction accuracy for both silt-loam
soil and wheat stalk residue samples. The prediction accuracy of the machine learning
algorithms is shown in Figure 3-3. In general, the moisture content of silt-loam soil samples
was more accurately predicted than wheat stalk residue samples. The cubic support vector
machine (SVM) and ensemble bagged trees methods stood out from the other methods due

to the relatively high prediction accuracy for both material types, which was desirable due
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to the likelihood of observing both materials in combination under field conditions. The
ensemble bagged tree method was also the global optimum when considering both material
types, having the highest combined prediction accuracy for both materials. An important
note was that, because the training, validation, and testing datasets were randomly
distributed, the results presented varied slightly with individual prediction accuracies
varying by a few percent each time the machine learning process was repeated. The
standard deviation in prediction accuracy is shown in Figure 3-3 as error bars and
represents the results of ten replications randomly distributing the full data between
training, validation, and testing datasets. Increasing the number of samples would likely

have reduced the variation in prediction accuracy between processing attempts.

Prediction Accuracy (%)

mSilt-Loam Soil ®Wheat Stalk Residue <&

Figure 3-3: Prediction accuracy for 20 machine learning algorithms applied to
relative reflectance data from moisture-controlled silt-loam soil and wheat stalk residue

samples.
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Figure 3-4 and Figure 3-5 illustrate the prediction accuracy by moisture content for
both materials when using the cubic SVM and ensemble bagged tree methods. The rows
represent predicted moisture content and columns represent actual moisture content. In this
matrix form, if the moisture is predicted correctly, the measurement would be placed on
the diagonal of the matrix. Elements not on the diagonal are the result of misclassification
for a given sample. The numbers displayed in each cell indicate the frequency of
occurrence as a percentage of predictions for a given moisture content and the relative
opacity of the cell corresponds to the same percentage. The overall accuracy of an
algorithm is represented by the ratio of the number of correct predictions and the total
number of predictions. The overall accuracy for silt-loam soil samples were 96% for cubic
SVM and 93% for ensemble bagged trees. The overall accuracies for wheat residue stalks
samples were 86% for cubic SVM and 93% for ensemble bagged trees. The most frequent
prediction inaccuracies in soil samples happened at lowest and highest moisture content
levels in both algorithms. For residue stalks samples, higher percentages of prediction
inaccuracies were scattered across all moisture content levels. As with the previously
described small variation in overall prediction accuracy each time the dataset was
processed, minor variations in individual moisture content prediction accuracies also

occurred.
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Figure 3-4: Machine learning classification results for silt-loam soil samples using

a) Cubic SVM; b) Ensemble Bagged Trees.
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Figure 3-5: Machine learning classification results for residue stalks samples using

a) Cubic SVM; b) Ensemble Bagged Trees.

3.4.3 Machine Learning vs. Index-Based Method Comparison
Figure 3-6 illustrates the prediction accuracy by moisture content of the index-

based method. The average prediction accuracies for both materials were substantially
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higher when using cubic SVM and ensemble bagged trees machine learning methods as
compared to what was obtained from the index-based method in the previous work,
especially for wheat stalk residue samples. Most if the improvement in soil moisture
classification was attributed to just one classification level, 3.3% MC, and the remainder
came from two additional classification levels, 15% MC and 20% MC. In fact, the
remaining moisture contents were better predicted using the index-based method than with
machine learning. However, the average prediction accuracy improved by 10% when using
the Cubic SVM method. The index-based method performed poorly at moisture content
levels where there were large overlaps in index values. Averaging multiple samples would
improve the performance of the index-based classification method.

a) b)
04528 |14 | 8 | 5
5 H 18129 | 18
10113 | 9 21.13 10| 2

20011 | 7 (16 | 30| 17 | 12| 7

Predicted Moisture
o
)
[#%)
)
@
n
=~
@
=
[~

Predicted Moisture

33 5 10 15 20 25 30 0 5 10 15 20 25 30
Actual Moisture Actual Moisture

Figure 3-6: Index-based method classification results for a) silt-loam soil samples

and b) wheat stalk residue samples.

There are several considerations when comparing the index-based and machine
learning methods for moisture content prediction. Reflectance indices produce a
continuous output whereas machine learning algorithms typically classify the sample into
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a predetermined bin. The relative improvement in prediction accuracy of the machine
learning algorithms shown in Table 3-2 are partly a result of only having seven
classification levels. If more moisture content treatments had been used, it is likely that the
overall performance of the machine learning algorithms would have degraded due to the
smaller thresholds for classifying a measurement. On the other hand, having a continuous
output may not be inherently more useful for irrigation management due to a limited
number of controllable output states. Machine learning as it was applied in this study
represents a less precise, but more accurate method for moisture content prediction.
Another key advantage to machine learning over index-based methods is the ability to
accurately predict the moisture content of a single sample, which is how the data were
compared in this study. The previous work by Hamidisepehr et al. (2017) showed that
moisture controlled sample replications produced a wide range of reflectance index values,
and when taken on average produced a highly linear relationship between silt-loam soil
moisture content and the index value (R? = 0.96) and a moderately linear relationship
between wheat stalk residue moisture content and the index value (R? = 0.45). At least in
case of the silt-loam soil samples, collecting multiple measurements and averaging them
rather than relying on just one would have a substantial impact on moisture content

prediction accuracy.
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Table 3-2: A comparison of overall prediction accuracy between index-based
method and two most accurate machine learning methods for silt-loam soil and wheat stalk

residue samples

Index-Based Machine Learning Methods

Material Method Cubic SVM Ensemble

Bagged Trees
Silt-Loam 86% 96% 93%
Soil
Wheat Stalk
Residue 30% 86% 93%

3.5 CONCLUSION

Relative reflectance spectral data from moisture-controlled silt-loam soil and wheat
stalk residue samples was used to test the ability of several machine learning algorithms to
predicted moisture content from the spectral data. This method was in contrast to an index-
based method used in a previous study of the same spectral data. Previous work has tended
to focus on a pair of wavelengths rather than the full spectrum. It was hypothesized that
the machine learning approach would yield better prediction accuracy because of utilizing
a larger number of components from the spectral data. The appropriate number of
components for this dataset was determined to be 20 using PLS regression. The
components were fed into 20 different machine learning algorithms, from which cubic
SVM and ensemble bagged trees produced the highest combined prediction accuracy for
silt-loam soil samples (over 93%) and wheat stalk residue samples (over 86%). This
represented a substantial improvement over the index-based method, where only two
wavelengths were used to develop a moisture prediction model. The high variability in

performance between machine learning methods demonstrates the importance of trying
51



multiple methods for a given dataset rather than simply selecting one based upon previous
work. Several machine learning methods resulted in unacceptable low moisture
classification performance, or a large deviation in classification performance between
multiple material types that are frequently observed together in nature.

The results of this study were from laboratory prepared samples of individual
material types measured under controlled conditions. Field application of this work will
require additional considerations including, among other factors, more complex
distributions of materials and variability in ambient light. Future work should include
testing of this process under field conditions to demonstrate the applicability as a high-

throughput method for remotely sensing moisture content of soils and crop residues.
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CHAPTER 4:0OBJECTIVE 3: INSTRUMENTING LOW-COST SPECTRAL
REMOTE SENSING ABOARD A SMALL UNMANNED AIRCRAFT SYSTEM

AND A METHOD FOR AMBIENT LIGHT COMPENSATION

4.1 SUMMARY

Small unmanned aircraft systems (UAS) are a relatively new tool for collecting
remote sensing data at dense spatial and temporal resolutions. This study aimed to develop
a spectral measurement platform capable of being deployed on a UAS for future use in
quantifying and delineating moisture zones within agricultural landscapes. A series of
portable spectrometers covering ultraviolet (UV), visible (VIS), and near-infrared (NIR)
wavelengths were instrumented using a Raspberry Pi embedded computer that was
programmed to interface with the UAS autopilot for autonomous reflectance data
acquisition. A second set of identical spectrometers were fitted with calibrated irradiance
lenses to measure ambient light energy during reflectance data acquisition. Data were
collected during the 2017 Great American Eclipse in Russellville, Kentucky while
observing a reflectance target to determine the ability to compensate for ambient light
conditions. A compensation routine was developed that scaled raw reflectance data by
sensor integration time and ambient light energy. Results indicated the potential for
mitigating the effect of ambient light when passively measuring reflectance on a portable

spectral measurement system.

4.2 INTRODUCTION
Efficient irrigation management is one of the most important issues producers face

in arid and semi-arid areas.(Kang et al., 2000; Perry, 2007) Novel technologies, such as
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variable-rate irrigation, help to control water usage and result in more efficient
irrigation.(O’Shaughnessy et al., 2015; Yari et al., 2017) To spatially implement variable-
rate irrigation, a prescription map containing information about the actual water status of
the field is needed.(Buck et al., 2016) Remote sensing is one possible method to obtain
water status at field-scales necessary for generating near real-time irrigation prescription
maps. Traditional deployments of remote sensing include satellite and conventional
aircraft, but are limited in terms of cost, temporal resolution, and spatial resolution.
Unmanned aircraft systems (UAS), or drones, are relatively new tools for collecting remote
sensing data in agricultural applications.(Chrétien et al., 2015; Padua et al., 2017) In one
study, traditional methods of remote sensing, including satellites and manned aircraft
systems, were compared to a UAS method. It was concluded that UAS were more cost-
effective in fields smaller than five hectares and UAS were shown to have the potential to
provide higher spatial precision data.(Matese et al., 2015)

Reflectance-based remote sensing is a potential method for quantifying soil
moisture and delineating moisture management zones. Several studies have focused on
using visible, multispectral, or hyperspectral cameras mounted on drones to evaluate
crop/soil status at high spatial resolutions. Spectral reflectance data collected using UAS
are extensively used in research to estimate different soil and crop parameters. Example
applications of UAS-based remote sensing in the agricultural domain include estimating
soil fertility(Bajwa & Tian, 2005), generating vegetation indices(Berni et al., 2009;
Candiago et al., 2015), assessing tree crowns for breeding applications(Diaz-Varela et al.,
2015), yield estimation(Geipel et al., 2014), plant classification(Hung et al., 2014), weed

detection(Koot, 2014), and controlling herbicide applications.(Xiang & Tian, 2011)
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Advances in spectrometer development have led to more portable systems, or
micro-spectrometers, that are particularly suitable for UAS deployment due to their small
size and mass. One study showed that measurements from UAS-deployed micro-
spectrometers were highly correlated with parameters measured at ground level and
concluded that the UAS platform could provide a faster method for spectral data collection
(Burkart et al., 2014). A subsequent study, where a visible micro-spectrometer was used to
measure reflectance, showed that the remote sensing estimations were highly correlated to
ground spectral measurements collected with a portable field spectrometer (\Von Bueren et
al., 2015). In another study, a spectrometer coupled with a camera was mounted on a UAS
to measure reflectance values from different targets. The same model spectrometer had
previously been used to collect data from a satellite in orbit, and when data collected from
these two platforms were compared, it was confirmed that the UAS provided an efficient
platform for collecting spectral data (Tsouvaltsidis et al., 2015).

Calibration of hyperspectral measurement systems is challenging due to the large
number of factors that can influence spectral response. For lab-based spectrometry,
measurements are taken under controlled light conditions, which cannot be applied with
UAS-deployed spectrometers under field condition with frequent changes in ambient light.
The empirical line method is one of the common approaches for calibrating hyperspectral
images against variable illumination. In this approach, tarps or panels with known relative
reflectance are placed in a field during the data collection. By finding the relationship
between known reflectance values and digital count output of the sensor, an equation is
obtained and then applied to all measurements to complete the calibration process (Burkart

et al., 2014; Von Bueren et al., 2015). The data collection period is limited since changing
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sun angle during data acquisition affect the reflectance (Bajwa & Tian, 2005). Transient
cloud cover can also substantially affect the amount of ambient light present over short
durations. Another shortfall is the practical limitation of having tarps or other reference
targets in all images, especially when high resolution data is desired or a large area is
covered (Zeng et al., 2017). Devising a method that can keep track of ambient light changes
while measuring the reflectance from a spectral target is desired. By automating this
measurement process through concurrent ambient light detection, a compensated
reflectance can be obtained for every single wavelength in the spectrum at a low cost and
under various ambient light conditions (Cocks et al., 1998; Eismann, 2012).

Previous work by Hamidisepehr et al. (2017) showed that relative reflectance in the
visible and near-infrared range could be used to optimally develop a normalized difference
water index (NDWI) that predicted soil moisture content from direct soil observations.
However, the experiment relied on a controlled light source, which is not practical for
UAS-based spectral measurements. In this study, the overall goal was to develop a spectral
sensing platform suitable for UAS deployment and to measure the reflectance from a
reference target to assist with the development of a calibration procedure that is functional
over a wide range of ambient light conditions. Specific objectives included:

1. Instrument a series of portable spectrometers and integrate into a UAS for autonomous
data collection.
2. Develop a method to compensate for ambient light conditions and sensor integration

time when collecting raw spectral reflectance measurements.
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4.3 MATERIALS AND METHODS

4.3.1 Sensor Instrumentation

Two spectral data acquisition systems were used in this study: an updward-facing
ambient light system to measure solar irradience at ground level, and a downward-facing
reflectance system to measure reflectance from a target located at ground level. Both
systems consist of three spectrometers (STS, Ocean Optics, Dunedin, FL) in the ultraviolet
(UV), visible (VIS), and near-infrared (NIR) ranges (Table 4-1). Ambient light and
reflectance raw spectral measurements were reported as 14-bit digital count values in
integer format. The ambient light spectrometers were fitted with optical diffusers and
factory calibrated in compliance with NIST practices. Calibration data were used to convert
raw spectral measurements at each wavelength from an integer count value to units of
energy. The reflectance spectrometers were fitted with collimating lenses to set the field-
of-view (FOV) and align the light entering the spectrometers.

Table 4-1 Model number and lens type for individual spectrometers in ambient light

and reflectance systems.

System Spectrometer Type Model Number Optics
uv STS-UV-L-25-400-SMA  CC-3-DA
Ambient light VIS STS-VIS-L-50-400-SMA  CC-3-DA
NIR STS-NIR-L-25-400-SMA CC-3-DA

uv STS-UV-L-100-400-SMA  74-DA

Reflectance VIS STS-VIS-L-100-400-SMA  74-DA

NIR STS-NIR-L-100-400-SMA  74-DA

4.3.2 Data Acquisition System
The target application for this measurement system was to automate the collection

of spectral reflectance data from a UAS platform while compensating for varying ambient
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light conditions. This meant data from multiple spectrometers would need to be remotely
recorded at defined locations or intervals. To accomplish this requirement, each system
was coupled with a Raspberry Pi 3 (RPi) (B V1.2, Raspberry Pi Foundation, Cambridge,
United Kingdom) as an embedded data acquisition system to control the measurement
process. The spectrometer manufacturer provided a software development kit (SDK) for
the RPi that was preinstalled on a Raspbian distribution of Linux (\Version 7; Raspberry Pi
Foundation, Cambridge, United Kingdom). The SDK configured the RPi as a web server,
facilitating wireless control of individual spectrometers via a WiFi connection to a PC.
Since WiFi control of the UAS-deployed system would not be practical in production
agricultural applications due to limited range, a pulse-width-modulation (PWM) to digital
converter was used to allow the UAS autopilot to trigger measurements using a digital
input on the RPi. The UAS was fitted with a commercial autopilot system (A3, DJI,
Nanshan District, Shenzhen, China) and configured to output a PWM signal corresponding
to the “shutter” command normally used to trigger the capture of imagery from an on-board
camera. As a result, triggering the spectrometer was identical to taking a picture from the
perspective of mission planning software. Figure 4-1 shows the major components used in

the reflectance and ambient light systems.
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Figure 4-1 Hardware block diagram schematic of the data acquisition system
including major components for (a) ambient light and (b) reflectance measurement

systems.

Components inside the autopilot included: a voltage regulator (A300P-PMU PRO,
DJI) to regulate input voltage to the autopilot, a GPS receiver (A300P-GPS COMPASS
PRO, DJI) to update the time and the location of the UAS, and a radio control (RC)
transmitter (GL858A, DJI) and receiver (R810A, DJI) to control the UAS manually and
also to monitor the flight via a live video feed.

Both ambient light and reflectance systems were equipped with similar supporting
components including: a voltage regulator (2858, Pololu, Las Vegas, NV) to set the RPi
input voltage at 5 V, a GPS receiver (BU-353S4, USGlobalSat, Chino, CA) with a USB

connection to synchrnoize the local time on the RPi to Universal Coordinated Time (UTC),
59



and three LEDs to indicate the system was on, if sensors were taking measurement, and to
show if the system was expecting an external signal to trigger a measurement or if sampling
was to proceed automatically on a pre-programmed interval. A PWM-to-digital converter
(2801, Pololu, Las Vegas, NV) was used in the reflectance system to allow the autopilot to
trigger functions on the RPi via a logic level on a digital input pin. For UAS operations,
the ambient light system was configured to collect data on a regular interval during UAS
deployment, rather than triggering remotely, to remove the need for a wireless trigger
between the UAS and ambient light system. For ground operations, both systems were
configured to collect data on a regular interval. Ambient light and reflectance spectral data
were interpolated to a synchronous time interval prior to compensating reflectance values
for ambient light.

Two Python scripts were written and configured to run immediately upon startup.
The first script continously polled digital input pins associated with pushbutton switches
and the PWM-to-digital converter. Upon receiving the appropriate signal, or in the event
the system was configured to take measurements at a predefined interval, the script would
generate a series of HTML function calls to the SDK web server causing the spectrometers
to take measurements and the RPi to record the data on the onboard SD card. Each
measurement produced a new file with a unique filename. Filenames consisted of the
spectrometer serial number and a local date/time stamp (144). The second script initiated
the GPSD Linux library that facilitated communication with the GPS receiver and regularly
updated the local date and time on the RPi to UTC. This was necessary because the RPi
does not have a real-time clock for keeping track of local time while powered down and is

normally configured to set the local time from a network time protocol (NTP) time server
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via the internet (142). Figure 4-2 and Figure 4-3 demonstrate the data collection process in
each set of spectrometers when operating at a regular interval and through a digital input
trigger, respectively. An on-off pushbutton switch mounted to each system was used to
determine which process was implemented so that identical programs resided on the

ambient light and reflectance systems.
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Figure 4-2 Embedded control and data acquisition software block diagram for the

ambient light system.
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Figure 4-3 Embedded control and data acquisition software block diagram for the

reflectance system.

Each path leaving the StartRPi block represents an individual Python script. In the
left path, the UTC timestamp is extracted from the most recent GPS data packet and used
to update the time on the RPi at a 5-second interval. The right path differ slightly depending
on whether the system is intended to be triggered on a regular interval based on a timer

(Figure 4-2) or by a change of state on a digital input corresponding to a signal from the
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PWM-to-digital converter when used with the autopilot (Figure 4-3). Regardless of the
trigger method, the RPi stored the current local time and recorded data from the
spectrometers into tab-delimited text files. Figure 4-4 shows a picture of the reflectance
system mounted on a multi-rotor UAS. More information on dimensions of the data

acquisition systems can be found in 173.

{ Reflectance system @ 3

TG A T .z AR 2

Figure 4-4 Reflectance system mounted on a DJI S1000+. Spectral data are
recorded at pre-defined GNSS waypoints by triggering the shutter command in the UAS

autopilot.

4.3.3 Reflectance Target and Test Stand

A reference target was fabricated and calibrated against a white standard. The
reflectance target consisted of a 30.5 cm % 30.5 cm x 1.9 cm piece of plywood with a 0.08
cm thick Teflon sheet glued to the surface. A threaded insert was mounted at the center of
the reference target to allow the reference target to be mounted to a standard surveying

tripod during field use. The reference target was calibrated using a backscatter reflectance
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system that consisted of: visible and near-infrared spectrometers (HR400-7-VIS-NIR,
NIRQuest512, Ocean Optics, Dunedin, Fla.), a tungsten-halogen light source (HL-2000-
HP-FHSA, Ocean Optics), a fiber optic backscatter reflectance probe (QR200-12-MIXED,
Ocean Optics), and a Spectralon calibration target (WS-1-SL, Ocean Optics). It was
assumed that the reflectance target had a constant spectral response at different
temperatures and atmospheric conditions.

A test stand was used to consistently position the target underneath the reflectance
system. The height of stand is adjustable for different areas of coverage and has a square
base for positioning the reflectance target. Spectrometers were located on the top of the
stand above the target and off-center to prevent the middle spectrometer from sampling the
threaded insert (Figure 4-5). The height of reflectance spectrometers was adjustable, and
the area sampled and overlap between individual spectrometers was a function of the height
of the reflectance spectrometers lenses above the reflectance target and the field of view

(FOV) (171).
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Ambient light system Buttons

Figure 4-5 Stand for mounting spectrometers and placing reference target

underneath sensors.

Table 4-2 and Figure 4-6 show the elliptical area covered at different heights above the
reflectance target. In this setup, ambient light spectrometers were co-located on the top of
reflectance spectrometers to mitigate variability in ambient light at the sensor location and

the reflectance target.
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Figure 4-6 Schematic of area covered by a STS spectrometer on the reflectance

target.

Table 4-2 Major (X) and minor (Y) axis dimensions of the FOV covered by the

STS spectrometers using 74-DA lenses at different sensor heights above the reflectance

target.

FOV Height Above Target (m)
Dimensions 1 075 05 0.25
Y (m) 0.04 0.03 0.02 0.01
X (m) 0.09 0.06 0.04 0.02

4.3.4 Integration Time

In addition to ambient light conditions, integration time of the reflectance
spectrometers was considered as an important parameter in reflectance measurements.
Integration time is effectively a form of gain on the input signal — if set too high, the

spectrometer will produce a saturated output, and if set too low, the output will lack
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sufficient detail for target classification. Doubling the integration time was assumed to have
a similar effect of doubling the ambient light intensity. In this study, integration time for
each reflectance spectrometer was manually adjusted to maximize the output signal without
saturation in any wavelength during maximum ambient light intensity and kept constant
during data collection. The integration times for the ambient light spectrometers were set
according to the manufacturer’s recommendations to use the factory solar irradiance
calibrations. Considering different integration times on each spectrometer, there were
different time intervals for consecutive measurements for the ambient light and reflectance
systems. Each spectral measurement reported was an average of 5 sequential measurements
and there are three replications for each measurement, totaling 15 measurements on each
spectrometer per measurement interval. Table 4-3 shows the integration time for each
spectrometer and measurement interval for each system.

Table 4-3 Integration time and measurement interval for ambient light and

reflectance spectrometers

Integration Time (ms) Measurement
Spectrometers Interval (s)
Uv VIS NIR
Ambient light 1000 180 1000 29
Reflectance 70 35 55 16

Ideally, each reflectance measurement should be paired with an ambient light
measurement taken at the same time. However, since integration times varied based on the
spectrometer type and function, measurements were not temporally synchronized. To
compensate for asynchrnonous sampling, ambient light measurements were interpolated

using two adjacent measurements and weighted according to the difference between the
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time of ambient light measurement and the time of reflectance measurement (ordinary

kriging method).

4.3.5 Compensation Equation

Ambient light and sensor integration time were assumed to have a linear
relationship with the raw measurement intensity from the reflectance system. Thus, the raw
measurement intensity for each reflectance spectrometer was divided by the ambient light
energy measured by the corresponding ambient light spectrometer and the integration time
of the reflectance spectrometer. Compensating for ambient light and sensor integration

time was accomplished using

_S/'IXti

1)

R;

where R were the compensated reflectance measurements from a sample (counts x

't x ms?), M were the raw measurement intensities from the reflectance spectrometer
(counts), S were the ambient light energies (uJ), ti was the integration time of the

reflectance spectrometer (ms), and A were the center points of each wavelength (nm).

4.3.6 Spectral Data Collection

Spectral data were collected during the 2017 Great American Eclipse at the
Russellville-Logan County Airport in Russellville, KY on August 21, 2017. The
spectrometer systems were mounted to the test frame and configured to record
automatically between approximately 1:15 pm and 4:00 pm EDT (Figure 4-7). Data
collection encompassed the entire eclipse, including totality. The stand was oriented such

that no shadows from components above the target would be cast on the target, which
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would have resulted in an offset between the ambient light system and the reflectance

system.

Figure 4-7 Data acquisition during the Great American Eclipse 2017

Data processing and analysis were performed in MATLAB. A script was written to
process data in four steps: 1) importing reflectance and ambient light data, 2) synchronizing
reflectance and ambient light data, 3) applying the solar irradiance calibration to the
ambient light data, and 4) compensating reflectance data with calibrated irradiance data

and sensor integration time (158).
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4.3.7 Weather Station Data Collection and Spectral Comparison

During this experiment, a weather station (HOBO U30, Onset Computer
Corporation, Bourne, MA) was deployed to collect atmospheric data including ambient
light, temperature, and humidity. Ambient light data from the weather station pyranometer
(S-LIB-M003, Onset Computer Corporation) was used to track the progress of the eclipse
and serve as a reference for the spectrometers in the event any anomalous data were
collected. The pyranometer measured solar power per unit area however, it did not provide
separate intensities for each wavelength. Instead, it computed a weighted average from the
spectrum ranging 300 to 1100 nm and output a single value from each measurement.
Weights for different wavelengths were provided in the user manual (HOBO_Datal.ogger)
and used to compare results between the pyranometer and the ambient light spectrometers.
Data from all three ambient light spectrometers were spliced together to form a single
spectrum encompassing the same range as the pyranometer prior to computing the
weighted average at each sample time.

Before applying weights to ambient light spectrums, units were converted from
digital count values at individual wavelengths to a single estimate of power in watts using
a few steps. First, calibration coefficients provided by the spectrometers manufacturer were
applied to ambient light measurements to change the units from counts to joules. Second,
by dividing the energy in joules by integration time for each ambient light spectrometer,
instantaneous power was obtained in watts. Measurements taken by weather station sensor
were in watts per square meter, which represented the amount of light energy absorbed by
the sensor in a second over a unit surface area; however, the area inside the spectrometers

that energy was received was not known. Therefore, a linear regression model was used to
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determine the relationship between power per unit surface area and instantaneous power —

effectively modeling the surface area of the spectrometers.

4.4 RESULTS AND DISCUSSION

4.4.1 Reference Target

To benchmark the reflectance target, spectral responses were compared to a
reference target which established 0% and 100% relative reflectance for the backscatter
reflectance system. Figure 4-8 shows that the relative reflectance of the reflectance target
fell between 60% and 82% of the reference target. While not critical for this experiment,
the reference target calibration would allow the data presented to subsequently be
benchmarked to a reference standard if needed. It also indicated that the reflectance target
did not uniformly reflect light across the wavelengths sampled during the experiment and

tended to absorb NIR light at a higher rate than VIS light.
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Figure 4-8 Reflectance target spectrum versus reference and background spectrums

71



4.4.2 Ambient Light and Reflectance Measurements

In Figure 4-9, the raw spectral data from the ambient light spectrometers can be
seen in uncalibrated units of 14-bit integer counts. Each line represents an individual
measurement and there were 413 measurements in total for each ambient light
spectrometer. The variability in intensity for most of the wavelengths was high as a result
of ambient light changes during the eclipse. Low-intensity responses represent the
measurements taken near totality. On the other hand, high intensity responses indicate the
measurements were taken near the beginning or end of the eclipse. While not immediately
apparent, a single “dead” pixel was identified at 876.2 nm in the NIR spectrometer (Figure

4-9¢), which became obvious when computing the compensated reflectance (Figure 4-12c).
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Figure 4-9 Raw ambient light measurements during the eclipse for (a) UV; (b) VIS;

(c) NIR spectrometers

Interpolating ambient light measurements to the reflectance measurement sampling
interval and applying calibration coefficients produced spectral responses in units of
microjoules (Figure 4-10). Applying the calibration coefficients removed much of the

spectral variability inherent in the ambient light systems that occurs near the upper and
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lower wavelengths. The resulting spectral responses closely match each other in areas
where the sampled wavelengths intersect with some minor variations. The relatively small
signal strength at the boundaries of each spectrometer are most likely responsible for

discontinuities between spectral energy values across spectrometers.
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Figure 4-10 Calibrated ambient light measurements during the eclipse for (a) UV;

(b) VIS; (c) NIR spectrometer

The raw reflectance data are shown in Figure 4-11 exhbiting similar responses as
the raw ambient light measurements with similar variability in intensity due to varying
ambient light intensity during the eclipse. Again, the lowest raw reflectance intensity
occurred during totality, and the high-intensities represented measurements at the
beginning or the end of the eclipse. The VIS reflectance spectrometer had a single “hot”
pixel at 787.4 nm (Figure 4-11b) that was ignored during subsequent analysis of the

compensated reflectance spectrum.
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Figure 4-11 Raw reflected light measurements from a constant target during the
eclipse for (a) UV; (b) VIS; (c) NIR spectrometers.

Calibrated ambient light and spectrometer integration times were combined with
the raw reflectance intensity measurements using Equation 1 (Figure 4-12). The intensity
unit changed accordingly to integer counts per microjoule of ambient light energy per
millisecond of spectrometer integration time. The result of the compensation was a large
reduction in variability centered around an average response with only a few outliers for
each spectrometer. This meant that if a spectral measurement was taken from the
reflectance target at a random ambient light condition, the compensated spectrum would

have a high probability of being located near the average response.
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Figure 4-12 Compensated reflected light measurements from a constant target
during the eclipse for (a) UV; (b) VIS; (c) NIR spectrometers
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4.4.3 Compensation Evaluation

Discrete probability density functions (PDFs) were used to visualize the reduction
in variability due to ambient light conditions. One wavelength was selected for each
spectrometer, which had the highest intensity variability in raw reflectance measurements.
Figure 4-13 shows how the compensation process improved the probability for classifying
the reflectance target when considering a single wavelength. It was desired to have
approximately the same relative intensity for different measurements taken regardless of
ambient light conditions. It can be observed that the intensity is highly scattered in raw
reflectance measurements; whereas, after compensation, the probability is high only at one
or two intensity groups. In other words, since the target is constant, the compensated
reflectance intensity varied little over a wide range of ambient light conditions. When
applied to all wavelengths, a unique signature for the target would be defined and it could

be recognized using this signature, regardless of ambient light conditions.
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Figure 4-13 Discrete PDFs of the reflectance intensity from the constant target at
the wavelength with the peak reflectance intensity: (a) UV, (b) VIS, and (c) NIR before

compensation; and (d) UV, (e) VIS, and (f) NIR after compensation.

4.4.4 Validation of Ambient Light Spectrometers using Weather Station Pyranometer

Data

A pyranometer mounted on a portable weather station was used as a benchmark for
tracking changes in the ambient light system measurements during the eclipse. A linear
regression model was used to determine the relationship between power per unit surface
area from the pyranometer and instantaneous power from ambient light spectrometers and
to model the cross-sectional area of the spectrometer at different times of measurement
(Figure 4-14). A high coefficient of determination revealed the relationship was highly
linear. (R-squared=0.97). Some hysteresis between the two sensors is evident as two

distinct groupings that trended apart before and after the eclipse.
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Figure 4-14 Linear regression between pyranometer radiance and ambient light
spectrometer power

The linear regression model was used to represent the cross-sectional area of the
spectrometers. Figure 4-15 illustrates how solar radiance varied during the eclipse using
both ambient light spectrometers and the pyranometer. As expected, a similar pattern was
observed between the two sensors with the largest deviations occurring at the beginning
and end of the eclipse. The directional change in the offset is a result of the hysteresis
exhibited in Figure 4-14. Momentary dips in solar radiance caused by transient clouds were
detected by both systems, confirming they were not anomalies. The lowest solar radiance

was measured around 14:30 EDTcorresponding to totality.
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weather station and ambient light spectrometers

45 CONCLUSION

In the first part of this study, a platform was developed to be deployed on a UAS to
measure the reflectance intensity from a target. Two sets of portable STS spectrometers in
three ranges of UV, VIS, and NIR were used along with a RPi to form a reflectance system
and an ambient light system. In the second part of this study, a method for compensating
for ambient light conditions and sensor integration time was developed and tested during
the 2017 Great American Eclipse. Results showed a large variability in reflected light
intensity due to significant changes in sun radiance. Reflectance values were compensated
using ambient light measurements and integration time. Compensated reflectance values
exhibited a consistent spectral signature for measurements taken at different ambient light
conditions. This method will be useful for future field work where ambient light conditions
cannot be controlled and the sensor integration time may need to be adjusted to optimize
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the sensitivity of the spectrometer. Future work should include testing the ability to classify
different targets at varying ambient light conditions and to automatically adjust the
integration time of each reflectance spectrometer based on previous measurements to

maximize sensitivity.
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CHAPTER 5: OBJECTIVE 4: CLASSIFYING REFLECTANCE TARGETS
FROM HYPERSPECTRAL DATA COLLECTED UNDER AMBIENT LIGHT

CONDITIONS USING A PASSIVE LOW-COST REMOTE SENSING SYSTEM

51 SUMMARY

The main objective of this study was to develop a spectral measurement
instrument for deployment on a small unmanned aircraft system (SUAS) and to test the
ability of the system to classify distinct targets across a wide range of ambient light
conditions. A series of portable spectrometers covering ultraviolet (UV), visible (VIS),
and near-infrared (NIR) wavelengths were instrumented using an embedded computer
and programmed to interface with the SUAS autopilot for autonomous data acquisition. A
second set of identical spectrometers were fitted with calibrated irradiance filters to
capture ambient light during data acquisition. This study aimed to determine the
feasibility of using this low-cost method for classifying six grayscale reflectance targets
under different ambient light conditions. Three compensation modes with variable
integration time were developed to update integration time on the reflectance system
based on ambient light conditions (M-1, M-2, and M-3). Sensor integration time was
automatically updated after each measurement to optimize the subsequent measurement.
Spectral data processing was conducted in two steps. First, raw spectral data were
preprocessed using a partial least squares (PLS) regression method to compress highly
correlated wavelengths and to avoid overfitting. Next, various machine learning

algorithms were trained, validated and tested to determine the overall prediction accuracy
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of each algorithm for differentiating reflectance targets. The resulting compensated
reflectance exhibited a consistent spectral profile and average intensity across a wide
range of ambient light conditions for each target. Results indicated the potential for
mitigating the effect of ambient light and optimizing integration time when passively
measuring reflectance on a portable spectral measurement system. Eventually, it was
observed that data collected with VIS spectrometer, with M-1 compensation mode, and

using quadratic discriminant method provided a perfect target recognition.

5.2 INTRODUCTION

In precision agriculture, it is aimed to recognize the variability in field parameters
using sensors before making decisions for applying agricultural inputs (Zhang & Kovacs,
2012). Remote sensing is currently among the most widely studied topics in precision
agriculture (Mulla, 2013). For instance, unmanned aerial systems (UASS) are relatively
new tools for being applied in remote sensing projects (Adao et al., 2017; Khanal et al.,
2017) and have become very popular for agricultural applications. UAS-based farm studies
have covered a wide range of applications including sensing biomass and nitrogen status
(Hunt et al., 2005), monitoring wheat (Lelong et al., 2008), and monitoring rangelands
(Rango et al., 2009). UASs provide a more versatile method for remote data collection with
a high resolution compared to satellite and ground-based methods (Rudd et al., 2017).

In UAS-based projects, multispectral, thermal, or RGB cameras are most
commonly deployed for monitoring a field and for estimating its parameters (Bendig et al.,

2014; Berni et al., 2009; Hamidisepehr et al., 2017; Kelcey & Lucieer, 2012; Paredes et
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al., 2017). Traditionally, a couple of narrow-band ranges, which potentially have a high
capability in estimating one or more field parameters, are selected (Candiago et al., 2015;
Kalisperakis et al., 2015) to create an index like normalized difference vegetation index
(NDVI). But in this way, the information that can be extracted from the other wavelength
ranges are either filtered out or ignored. Most of the commercially available sensors are
designed to work in one or two ranges of wavelengths to reduce sensor cost and data
processing complexity.

Portable spectrometers are relatively inexpensive tools which can derive a complete
spectrum from a broad spectral effective range and due to their small size they can be
mounted on a UAS platform (Burkart et al., 2014; VVon Bueren et al., 2015). In the both of
these studies, two STS spectrometers were deployed. One spectrometer was oriented
towards the ground and measured the reflectance from a reference white target. The other
was mounted on a UAS to measure reflectance from actual land targets. The ratio of actual
target reflectance and the reference target was considered as compensated reflectance from
the target. Obtained spectrums can be analyzed partially or entirely to estimate different
agricultural indices in a field such as NDVI, NDWI, and LAI. Nevertheless, calibrating
these sensors for various ambient light conditions and avoiding saturation are challenges
needed to be dealt with. Field spectrometers are mostly limited to data collection in a
specific period and ambient light condition (Damm et al., 2011; Gao et al., 2002, 2004;
Guanter et al., 2006). Using reference tarps is another common approach for compensating
against ambient light changes. To keep track of ambient light changes continuously, a

measurement from tarps needs to be taken for each measurement from a land target
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(Shanahan et al., 2001). However, since it is practically difficult especially for large field
scales, only a few measurements from tarps can typically be taken during the data
collection process.

Using machine learning algorithms is a data processing method which provides an
opportunity to process massive datasets like full spectra with a large number of input
variables and samples and make a prediction model for unseen samples. Different machine
learning algorithms have already been used for classification of hyperspectral images
(Melgani & Bruzzone, 2004), weed detection (Koot, 2014), plant disease detection (Rumpf
et al., 2010), biotic stress detection (Behmann et al., 2015), water quality monitoring (Kim
et al., 2014), human learning (Matveeva et al., 2016; Mousavi et al., 2016), and many other
applications. Several studies focused on developing algorithms and methods for feature
selection to reduce the dimensionality of very large datasets (Serpico & Bruzzone, 2001;
Serpico & Moser, 2007). By compressing the dataset, the other issue derived from large
spectral data can be addressed (Ye et al., 2017).

In this study, a data acquisition system for collecting hyperspectral data consisted
of two sets of STS spectrometers coupled with Raspberry Pi (RPi) embedded computers
were used (Hamidisepehr & Sama, 2018). This study aimed to expand upon previous work
by devising a method to compensate the portable spectrometers integration time
(measurement period) against varying ambient light conditions by updating integration
time for each measurement. Designing a dynamic compensation process on a UAS
platform would enable spectral data to be collected over a wide range of ambient light

conditions with limited impact on sensor sensitivity. Specific objectives included:
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1. Develop a variable integration time to automate compensating reflectance
measurements against ambient light on the spectral data acquisition system
from Chapter 4.

2. Test the system on multiple targets and assess classification accuracy on

multiple models generated by different machine learning algorithms.

5.3 MATERIALS AND METHODS

5.3.1 Hardware Setup

Two data acquisition systems were deployed for data collection process — an
updward-facing ambient light system for measuring ambient light intensity and a
downward-facing reflectance system for measuring reflectance from a target located
underneath sensors. Each system consisted of three STS spectrometers (STS, Ocean
Optics, Dunedin, FL) in the ultraviolet (UV), visible (VI1S), and near-infrared (NIR) ranges
as data collection devices and a Raspberry Pi 3 (RPi) (B V1.2, Raspberry Pi Foundation,
Cambridge, United Kingdom) as an embedded data acquisition system for controlling the
measurement process. A test stand was used to hold both systems and target consistently

relative to each other.

5.3.2 Reflectance Targets

Five 0.3 m square plywood targets painted in varying shades of gray, and one target
laminated with a 0.8 mm thick sheet of PTFE, were fabricated as reflectance targets to be
placed underneath the spectrometers. Each was painted with a different color in grayscale

range (Figure 5-1). The relative reflectance of each target was measured using visible and

84



near-infrared spectrometers (HR400-7-VIS-NIR, NIRQuest512; Ocean Optics; Dunedin,
FL) with a Spectralon calibration target (WS-1-SL; Ocean Optics; Dunedin, FL) serving
as the calibration reference target. Nine spectral measurements were taken at uniformly

spaced locations and averaged.

Cl1 C2 C3 C4 (O8] Cé6

Figure 5-1: Reflectance targets in the greyscale range

5.3.3 Data Collection

The data were collected at five days on September 14, 15, 18, 19, and 21 of 2017
on the roof of Charles E. Barnhart Building in Lexington, Kentucky. The test stand was
oriented so that shadows would not be made on the targets since it would change
reflectance spectrum. Data were collected periodically in ten-second intervals. Each
measurement interval included three individual measurements that were stored in a tab-
delimited text file. Each file includes the time of measurement and the serial number of the
spectrometer to facilitate tracking measurements with different time and with different

spectrometers.

85



5.3.4 Updating Integration Time

Integration time is the amount of time that a spectrometer sensor is exposed to light.
Increasing the integration time has a similar effect to applying a gain to the spectral signal,
making patterns or unique features more discernable. Increasing integration time by an
excessive amount, however, reduces sampling rate and will eventually cause saturation in
spectral data at one or more wavelengths. A saturated measurement is not useful for signal
classification. Hence, the optimal situation is for each measurement to be taken with the
maximum integration time that does not result in saturation.

Reflectance intensity varies when the ambient light condition changes e.g. due to
clouds and sun angle. A fixed target will produce varying spectral signatures using a
spectromter if integration time is set constant. In order to set an appropriate integration
time for each specific ambient light condition, a method to update integration time based
on the ambient light condition and the spectral response from the last measurement was
used. In other words, each measurement was considered as a feedback for the next
measurement. In this process it was assumed that subsequent measurements are observing
targets with similar spectral reflectance.

The process started with setting an initial integration time on each reflectance
spectrometer and recording a measurement. A continuously running Python script then
read in the most recent measurement. Outliers in the spectral data due to hot and dead pixels
at certain wavelengths were detected and removed. The maximum intensity of the spectrum

was determined and compared to the maximum possible intensity without saturation (2*4-
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1 = 16,383). The maximum intensity was set to 12,000 counts as a safe threshold. Thus,
the updated integration time for a given target was calculated from equation 5-1.

M -
ITk+1:M—k*ITk &1

max

where:

IT, ., was the integration time for the next spectral measurement from a
given target (ms)

M, was the maximum raw measurement intensity in the current spectrum
from a target (A/D counts)

M p,q, Was the maximum possible raw measurement intensity without
saturation (A/D counts)

IT;, was the integration time for the current spectral measurement intensity
from a given target (ms)

It was assumed that there is a linear relationship between integration time and
reflectance intensity. By updating the integration time based on the ambient light condition,
it is expected that the reflectance intensity spectrum ideally becomes the same for different
ambient light conditions if the same target is measured. Figure 5-2 shows hypothetically
how a spectrum changes by updating integration time. Hence, by any detectable change in

ambient light, the integration time would be updated for the next measurement.
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Figure 5-2: Schematic of updating integration time based on initial and maximum

reflectance intensity

On the other hand, integration times for ambient light spectrometers were kept
constant. These integration times were defined by the manufacturer and set to one second
on both UV and NIR spectrometers, and 180 milliseconds for VIS spectrometer to measure

solar irradiance.

5.3.5 Compensating for Ambient Light

Data from two sets of spectrometers for each target were collected over five days.
Since the integration time on ambient light and reflectance spectrometers were different,
the measurements were not temporally synchronized. Due to longer integration times on
ambient light spectrometers, fewer measurements were obtained compared to reflectance
measurements. The ambient light measurements were interpolated to the moments when

reflectance was measured. Ambient light measurements were calibrated using coefficients
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for different wavelength provided by the manufacturer. After applying coefficients ( counts
/ J), the intensity unit changed from counts to microjoules (1J) (Equation 5-2).

A4 (5-2)
Chr = coeff.,

Where:
CA was the calibrated ambient measurement intensity (J)
A was the raw ambient light measurement intensity (A/D counts)
A was the specific wavelength (nm)

Three compensation modes were considered for the calibrating reflectance
measurements and each mode was evaluated based on the predictive power of generated
models 164):

1. Raw reflectance (counts) as M-1

2. Dividing reflectance data by its corresponding integration time (counts/ms) as

M-2 (equation 5-3)

_hL (5-3)

Where:
R was the calibrated reflectance measurement intensity (counts/ms)
| was the raw reflectance measurement intensity (A/D counts)
IT was the integration time in the specific measurement (ms)

A was the specific wavelength (nm)
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3. Dividing reflectance data by ambient light measurement taken at the same
moment and the corresponding integration time of the reflectance spectrometer
(countsxpdtxms™) as M-3 (equation 5-4).

p 1500 (5-4)
AT CcAy +IT

Where:
R was the calibrated reflectance measurement intensity (countsxpJ-txms™)
| was the raw reflectance measurement intensity (A/D counts)
IT was the integration time in the specific measurement (ms)
CA was the calibrated ambient measurement intensity (juJ)

A was the specific wavelength (nm)

5.3.6 Preprocessing

Each spectrometer covered a range of several distinct wavelengths (UV between
184nm-667nm, VIS between 338nm-825nm, and NIR between 634nm-1124nm and with
0.5nm step) which each can be considered as an input variable in a predictive model. Since
many of the wavelengths are highly correlated, they can be combined to reduce the
dimensionality of the dataset. A preprocessing method, partial least square (PLS)
regression, was used to compress dataset, solve collinearity issues, speed up subsequent
processing. The optimal number of components after preprocessing was obtained using
two parameters, i.e. the estimated mean squared prediction error and the variance explained
in the output variable. The number in which a high variance in output was explained with

a low prediction error was considered as the optimal number of input components. The
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preprocessing step, including compressing the dataset and finding the optimal number of

components, was conducted using MATLAB (R2017a; The Mathworks; Natick, MA).

5.3.7 Machine Learning

Using the Classification Learner app in MATLAB (R2017a), 22 leaning
algorithms, including decision trees, discriminant analysis, support vector machines
(SVM), nearest neighbor classifiers, and ensemble classifiers, were used to train models
for identifying targets based on their spectral measurements. The data was fed into
individual algorithms as a matrix where columns represented wavelengths (predictors) and
rows represented instances of each measurement. The last column (response) was allocated
to target codes (C1 through C6). The dataset was divided to: 70% training dataset, 15%
validation dataset, and 15% for testing dataset. For each measurement in training dataset,
predictors or input variables were paired with response or actual output. It is necessary to
have the output of every row data for supervised learning. The validation dataset was used
to determine how well the model has been trained based on the predicting expected output.
Model properties, such as classification error and overfitting index are estimated during the
validation step. Finally, in the testing dataset, unseen data to the machine are applied, and
the prediction power of a model is estimated by comparing the correct output and the
predicted output. By doing these three steps for each learning algorithm, 22 models were
trained, and their prediction accuracies were obtained. Each treatment was run five times
with randomly distributed training, validation, and testing data to find the best algorithm
which has a higher accuracy in different combinations of spectrometer type and

compensation mode.
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5.3.8 Statistical Analysis

Three spectrometers and three compensation modes were considered in this
experiment. It was desired to see if there were any significant differences between various
types of spectrometers and the methods of compensation in terms of prediction accuracy
in target recognition. This test shows in which mode of compensation and with which
spectrometer type, the prediction accuracy is higher than others and also if the difference
between groups is significant. Then, the optimal algorithm was tested for each combination
of compensation mode and spectrometer type to check the significance of these two
parameters on the predictive power of the model. The experiment was set up with a factorial
design using spectrometer type and compensation mode (3%3). The data were subjected to
analysis of variance and a multiple comparisons test was conducted using MATLAB
(R2017a). At the end of this analysis, the spectrometer type and compensation mode which
provided higher overall accuracy were chosen as the optimal selection. The null hypothesis
was that there is no significant difference between spectrometer type and compensation

mode with the prediction accuracy of the optimal model.

5.4 RESULTS AND DISCUSSION

5.4.1 Benchmarking

Targets were benchmarked using the reference target so that the reference target
reflected nominally 100 percent at all wavelengths after laboratory spectrometer
calibration. Figure 5-3 shows how different grayscale targets reflected a constant light

versus the reference target and when the light source was blocked (background). Darker
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targets clearly reflected less compared to lighter targets. Targets C4 and C5 resulted in
relative reflectances in excess of 100%, indicating they were “brighter” than the calibration

standard over a range of wavelengths. A consistent trend across all targets was a decrease

in relative reflectance as wavelength increased.
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Figure 5-3: Spectrums of reflectance targets with lab spectrometers calibrated with

the Spectralon reference target

5.4.2 Ambient and Reflectance Measurements

In this section, spectrums obtained from each mode of compensation for the UV
spectrometer are shown. Due to the similarity of the process, the compensation process
only on one spectrometer type has been shown. Data from the other two spectrometer types
are located in 174. Figure 5-4 shows the raw ambient light spectra. It can be observed that

there was large variability in ambient light condition due to measurement at different
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ambient light conditions. This variability directly affects reflectance measurements, which

illustrates the necessity of compensating reflectance measurements against ambient light

conditions.
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Figure 5-4: Raw ambient light measurements from UV spectrometer collected
during reflectance measurement for six targets (a. darkest target, e. lightest target, f. white
PTFE target)

In the next part, raw reflectance data with variable integration time are shown (M-
1) (Figure 5-5). Reflectance spectra were filtered to skip saturated measurements and low-
intensity spectra. Saturation happened just a few times during the data collection at the
moments when the target was switched from a dark target to a brighter one. Since the
integration time is longer on darker targets, it takes one or more measurements to adjust

the integration time with a brighter target. Also, switching from a bright target to a darker
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one leads to low-intensity spectrums for first few measurements which causes lower
sensitivity in obtaining information. Since integration time is adjusted to compensate for

varying ambient light, all spectra exhibited similar average intensities between targets.
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Figure 5-5: Reflectance measurements with variable integration time with M-1

mode of compensation for six targets of: a. C1; b. C2; c. C3; d. C4; e. C5; f. C6.

By dividing each raw reflectance measurement by its corresponding integration
time (M-2), data are scattered. It was now easier to visually distinguish dark and light
targets, although, identifying light targets of C4, C5, and C6 was still difficult due to similar

spectra (Figure 5-6).
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Figure 5-6: Reflectance measurements with variable integration time with M-2

mode of compensation for six targets of: a. C1; b. C2; c. C3; d. C4; e. C5; f. C6.

Next, each raw reflectance measurement was divided by its corresponding
integration time and simultaneous ambient light measurement (M-3). According to Figure
5-7, darker targets were more easily distinguished while brighter targets have multiple
similar spectra like the previous step and with a noticeable overlap. Target C4 was now

more distinct from C5 and C6 than in the previous method.
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Figure 5-7: Reflectance measurements with variable integration time with M-3

mode of compensation for six targets of: a. C1; b. C2; c. C3; d. C4; e. C5; f. C6.

5.4.3 Preprocessing

Spectral data in different modes of compensation were modeled using machine
learning algorithms to evaluate how accurate an algorithm can estimate the target based on
existing training dataset. Before applying machine learning algorithms, estimated mean
squared prediction error and percent variance explained in the output were used as decision
criteria to find the optimal number of components for target recognition. As expected, there
were many highly correlated wavelengths that could be combined to compress the dataset
and make the subsequent data processing faster and to avoid overfitting. Based on Figure

5-8, a model with around 20 components would result in a low estimated mean squared
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prediction error and also about 90 percent of the variability in the output can be explained.
For components more than 20, amount of error increases due to overfitting. On the other
hand, increasing the number of components, increases the amount of variance explained in
general. For more than 20 components, however, there is only a slight increase in variance
explanation by adding many components. Our models were tested with a few more and
less components than 20 to make sure about the optimal number. Based on these
preliminary results, 20 was considered as the optimal number of components to feed into

learning algorithms.
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Figure 5-8: Estimated error and the variance explained in the output versus number

of components in a model

5.4.4 Machine Learning Algorithms
Twenty-two pre-configured machine learning algorithms were used to train models
for each combination of compensation mode and for each spectrometer type. Figure 5-9

shows the prediction accuracy of models generated from the UV spectrometer. It can be
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observed that Quadratic Discriminant, Linear Discriminant, Linear SVM, Quadratic SVM,
and Cubic SVM are all accurate models; however, Quadratic Discriminant is slightly more
accurate than others for all three compensation modes. Each model was generated ten times
with random selection of training and testing dataset and the average prediction accuracy

for each model was obtained.
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Figure 5-9: Prediction accuracy for 22 machine learning algorithms applied to
relative reflectance data collected by the UV spectrometer from reflectance targets and

for three compensation modes.

Figure 5-10 shows the models generated from data collected with VIS spectrometer
for three compensation modes and again Quadratic Discriminant provided the highest

accuracy with a slight difference for three compensation modes.

99



< o0 JHD T IO G
< 50 IR R R R NE R R B N 0} EfE}R
2 70 E-EiE R RN R RN R R NN D H RN
€ 50 EiE R R R R N N R N B NN N N |} EfE}R
3 g BN R R N N R N N N B NEN N N D EfE}R
< 20 BfE R R R R N R R R R R} 0N 0 0 0 EfE}R
s 3p EE N R N N R B N R R N N D H N RN
2 20 EiE R R R R R R R R R N 0 0 0 0 EfE}R
T EiE R R R R R R R R R N 0 0 0 0 EfE}R
(<]
= 0
a
S S S & o
& &@@ & \&&Q_{&Q 4@ cf@ %4@ %49 “94@ %QQ %é% § «%é% § %’@k § & \@@ &&\ § \@@
R Y R S R ORI PN NS ¥ o D
S SFFFFFLT LT EFTESIFTEE LSS E
P EFEFT IS E ST RS &S
QO Q\ kS > O @ qy ‘DQ @@ O & NS B P QO
S > AN QUG ¥ & P
\)\Q & Q\Q > & &S
Q'(b' @b Q) %0 S SS)
- &S

mVISM-1 mVISM-2 mVIS M-3

Figure 5-10: Prediction accuracy for 22 machine learning algorithms applied to
relative reflectance data collected by the VIS spectrometer from reflectance targets and for

three compensation modes.

The prediction accuracy of models generated from data collected by NIR
spectrometers is shown in Figure 5-11. The prediction accuracy was lower compared to
models from UV and VIS spectrometers data. Quadratic SVM had a slightly higher

performance in terms of prediction accuracy.
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Figure 5-11: Prediction accuracy for 22 machine learning algorithms applied to
relative reflectance data collected by the NIR spectrometer from reflectance targets and for

three compensation modes.

Table 5-1 contains the average of each model for different compensation modes and

spectrometer type. Each combination of spectrometer type and compensation mode was

repeated five times to provide replications.
Table 5-1: The prediction accuracy for 22 machine learning algorithms in target

recognition and for different compensation modes and spectrometer types
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M-1 M-2 M-3

Algorithm UV VIS NIR UV VIS NIR UV VIS NR
Complex tee 969 966 903 964 956 955 989 944 926
Medium tree 969 96.6 81.6 964 955 929 989 940 908
Simple tree 78.0 811 532 789 745 649 874 754 696
Linear discriminant 100 100 964 993 99.0 959 99.4 992 939
Quadratic discriminant 100 100 995 999 999 994 99.7 994 975
Linear SVM 99.9 100 990 996 99.8 985 997 99.4 97.2
Quadratic SVM 99.9 100 995 998 99.9 997 999 99.4 98.6
Cubic SVM 99.9 100 99.3 999 99.9 994 997 99.6 985
Fine Gaussian SVM 889 807 81.2 836 789 730 882 894 87.3

Medium Gaussian SVM 999 100 986 995 995 991 991 984 975
Coarse Gaussian SVM 100 100 90.9 98.7 979 948 993 995 935

Fine SVM 99.9 99.8 965 99.6 99.6 987 995 989 981
Medium KNN 99.6 987 921 988 96.7 938 974 971 9338
Coarse KNN 89.7 873 617 63.7 511 416 627 59.8 344
Cosine KNN 995 985 913 991 973 964 979 97.7 943
Cubic KNN 99.2 983 887 984 959 905 96.7 96.6 924
Weighted KNN 99.8 998 956 995 99.2 965 990 981 96.8

Ensemble boosted trees  98.2 86.8 925 979 976 978 210 965 952
Ensemble bagged trees 999 99.2 978 993 996 99.1 996 99.0 97.8
Subspace discriminant 100 100 86.9 988 988 910 982 988 927
Subspace KNN 99.9 100 98.1 99.7 99.6 99.2 99.7 99.0 985
RUSboosted trees 98.8 975 923 981 979 983 99.1 976 939

In the next step, a statistical analysis was conducted to see if the effect of different
compensation modes and the type of spectrometer had significant impact on overall
prediction accuracy. Based on Table 5-2, both of these two variables had a significant effect
on prediction accuracy and the null hypothesis was rejected because of the low p-value.
Also, the results of the multiple comparison test in MATLAB (Figure 5-12-a) showed that
the difference between M-3 with M-1 and M-2 was significant. But there was no significant
difference between M-1 and M-2; however, M-1 provided a slightly higher prediction
accuracy. The NIR spectrometer had a lower overall prediction accuracy on different

compensation modes and it can be observed from the multiple comparison test that there
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is a significant difference between NIR and both VIS and UV. No significant effect was
observed between UV and VIS spectrometers; however, VIS spectrometer data provided a

slightly more accurate models than UV for target recognition (Figure 5-12-b).

Table 5-2: Significance testing of compensation mode and spectrometer type on

overall accuracy of the predictive model

Source Sum of square df Mean square F Prob>F
Compensation mode 4.43 2 2.21 117.31  1.19e-24
Spectrometer type 8.068 2 4.03 213.44 5.13e-33
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Figure 5-12: Multi-comparison significance test between different a. compensation

modes b. spectrometer type

Based on the overall data analysis, the highest prediction accuracy was obtained
using data collected with the VIS spectrometer and applying M-1 compensation mode and

with a model generated using the Quadratic Discriminant algorithm.
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The confusion matrix in Figure 5-13 demonstrates more details about the predictive
power of the optimal model derived from reflectance measurements with M-1
compensation mode obtained by the VIS spectrometer and using Quadratic Discriminant
method. In this matrix, rows represent the actual target and columns represent the predicted
target. If a specific prediction was correct on a target, then it is placed on the diagonal of
the matrix. The cells not on the diagonal, however, show the inaccuracies in predictions.
The number on each cell indicates the percentile of the frequency of a specific prediction.
On the optimal model, no inaccuracy has found all predictions matched with the actual
target. It is worth noting that this experiment used idealized targets that were uniformly
distinct across a wide range of wavelengths. Identical performance should not be expected
with observing more “natural” targets. The optimal sensor type and modeling method may

also vary based upon the target.
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Figure 5-13: Confusion matrix for estimating reflectance target using Quadratic

Discriminant algorithm
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5.5 CONCLUSIONS

Six targets were provided with differences either in colors or material in the
grayscale range. Then, these targets were benchmarked using visible and near-infrared
spectrometers calibrated with a reference target. Two data acquisition systems (reflectance
and ambient light) were used for collecting spectral data at five days at different times of
day to cover a large portion of ambient light variability in the spectral dataset. A system
was designated for measuring ambient light, and sun radiance and the other series measured
the reflectance from targets. A mechanism was applied to update the integration time of
each reflectance spectrometer based on ambient light condition. Then, spectral data were
compensated for ambient light condition in three different modes; raw reflectance (M-1),
reflectance divided by the corresponding integration time (M-2), and reflectance divided
by the corresponding integration time and ambient light (M-3). Twenty-two learning
algorithms were used to generate models for recognizing reflectance targets for each
combination of spectrometer type and compensation mode. Most of the algorithms had a
prediction accuracy over 90%. The Quadratic SVM model generated from VIS
spectrometer data with M-1 compensation mode provided the maximum prediction
accuracy (100%). Based on a statistical analysis, it was found out that both spectrometer
type and compensation mode have a significant effect on the prediction accuracy of targets.
Also, the difference between NIR spectrometer with UV and VIS was significant unlike
the difference between VIS and UV. M-3 was significantly different from M-1 and M-2

while the M-1 and M-2 were not significantly different. It was concluded that by adjusting
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integration time based on ambient light conditions, machine learning models could provide

a sufficiently high accuracy for recognizing targets according to their spectral responses.
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CHAPTER 6: OBJECTIVE 5: MOISTURE CONTENT CLASSIFICATION OF
SOIL FROM SPECTRAL DATA COLLECTED UNDER AMBIENT LIGHT
CONDITIONS USING A PASSIVE LOW-COST REMOTE SENSING SYSTEM

AND MACHINE LEARNING

6.1 SUMMARY

Estimating soil/crop parameters such as soil water content using remote sensing
under ambient light condition is challenging and often involves a complicated calibration
process. The objective of this study is to use a novel hyperspectral data acquisition system,
including UV, VIS, and NIR spectrometers, developed from a previous study for estimating
the soil moisture level under ambient light condition. To automate compensating against
ambient light changes, a technique for updating integration time during data collection was
deployed. 21 moisture-controlled sample chosen from 7 moisture levels were measured at
different times over two days. The data collection on each sample was 20 minutes. To keep
track of effect of water content change during data collection, the data collection period
was divided to three periods of 5, 10, and 20 minutes. A preprocessing step was conducted
to compress the dataset using PLS regression method. Then, preprocessed data were fed
into 22 machine learning algorithms and prediction accuracy of each model with data
collected from each spectrometer and each data collection period was obtained. It was
found out that linear discriminant on the models generated with a 10-minute period of data

collection performed the best.
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6.2 INTRODUCTION

During last few decades, agricultural production has significantly increased while
the cropland extent has either remained the same or only increased by a small percentage
(Gleick, 2003; Ozdogan et al., 2010). Intensive agricultural production is the primary
consumer of fresh water (Rosegrant et al., 2008) and irrigation puts more pressure on water
resources in a specific area to meet water needs (Cai & Rosegrant, 2002). Instead of
applying water uniformly over a field, it is desirable to irrigate site-specifically if the field
soil is spatially variable. Variable rate irrigation is an effective method to optimize the
water usage during irrigation and applying water at the right amount and in the right place.
Hence, tracking soil moisture cross a field spatially and temporally at sufficient resolution
would be desired. Soil moisture is also associated with nutrient availability for plants and
overall field performance (Khanal et al., 2017). Generating prescription maps for entire
fields using spectral remote sensing data has been a popular approach in order to implement
variable rate irrigation. There are three main platforms for collecting spectral data:
satellites, conventional aircraft, and unmanned aircraft systems (UAS). Regardless of the
type of platform, soil moisture is a primary component that affects spectral response
(Lobell & Asner, 2002; Rossel et al., 2006). Each of these platforms was deployed in
several studies and experiments.

Satellite and conventional aircrafts provide data at a lower resolution for field
scales. There are also temporal and cost limitations for data collection from these two
platforms (Montes de Oca et al., 2018). On the other hand, UAS are a cost effective method

that are evolving rapidly and can provide data at high spatial and temporal resolutions
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(Hakala et al., 2018). UAS flight time is a major limitation on large scale fields — especially,
for heavy payloads (Gnyp et al., 2016).

Spectral remote sensing data are collected through either hyperspectral or
multispectral sensors. Multispectral sensors measure reflected light in a few certain
wavebands in a wide spectral range (Bokolonga et al., 2016; Rabatel et al., 2014) while
hyperspectral sensors or spectrometers collect data at many wavelengths in a broad spectral
range (Lee et al., 2010). Multispectral sensors are common since they create a smaller
dataset which facilitates the data processing compared to the larger datasets obtained from
spectrometers and very large datasets obtained from hyperspectral cameras. On the other
hand, hyperspectral data contain more information which can be used for monitoring
different field parameters simultaneously while multispectral data is limited to measure
few parameters and with lower spectral details. In a study by Gnyp et al. (2016), tractor-
based and UAS-based spectrometer data were compared, and it was concluded that both
systems have the potential for monitoring nitrogen status in a winter wheat field. Portable
spectrometers are suitable for UAS deployment at relatively low cost. STS spectrometers
mounted on a UAS were tested in multiple studies for hyperspectral measurements and
compared with conventional field spectrometers. Promising results were shown for further
experiments (Burkart et al., 2014; Tsouvaltsidis et al., 2015; Von Bueren et al., 2015). Ina
study by Zeng et al. (2017), spectral data from a portable spectrometer was fused with
multispectral camera images to provide expanded spectral information for at each pixel.

Multiple studies were conducted for estimating soil moisture based on the spectral

analysis in which a reference measurement before each reflectance was necessary for field
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condition unless ambient light is controlled in a lab condition (Hamidisepehr et al., 2017;
Kaleita et al., 2005). Ambient light changes during spectral data collection is a challenge
that must be addressed before using the data to make management decisions. Transient
clouds and changes in sun angle cause changes in measured spectra that do not correspond
to changes in the parameter of interest. Using calibration tarps in the field during data
collection as a reference is a possible solution for normalizing reflectance data; however,
these targets should be included in all measurements for an accurate ambient light tracking.

Recently, several machine learning methods are more commonly used in the
literature due to their capability for handling datasets with high dimensionality. Among
these algorithms, some of them have more popularity for remote sensing data on
agricultural applications. For instance, support vector machines (SVM) have been used for
predicting soil water content (Pasolli et al., 2011). It was shown by Wu et al. (2007) and
Ahmad et al. (2010) that SVM outperformed artificial neural networks (ANN) in estimating
soil water content. Linear discriminant analysis (LDA) and quadratic discriminant analysis
(QDA), both based on Bayesian discriminant theory, have been used for processing remote
sensing data for agricultural targets (Lee et al., 2010) including weed detection on radish
(Cho et al., 2002), sugar beet (Jafari et al., 2006), carrots (Piron et al., 2011), and also from
a UAS platform (Koot, 2014). Bayesian methods, besides ANN and SVM, are also a
prevalent approach for estimating soil moisture from remote sensing data (Ali et al., 2015;
Notarnicola et al., 2008; Paloscia et al., 2008). There are other learning algorithms which
have been used for drought monitoring such as decision trees (Im et al., 2016; Park et al.,

2016). Partial least squares (PLS) and principal component analysis (PCA) or even
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heuristic methods are also useful to reduce the dimensionality of the dataset by eliminating
redundancy and creating independent parameters for estimating a specific parameter
(Mulla, 2013; Ye et al., 2017).

Previously, a UAS-deployable spectral data acquisition system was developed with
a dynamic system to update integration time of spectrometers during varying ambient light
conditions. The system was shown to successfully recognize targets painted with different
grayscale targets (Hamidisepehr & Sama, 2018). The main objective of this study was to
apply the same method for estimating soil moisture content under varying ambient light
conditions. Specific objectives include:

1. Test the system on soil samples at different moisture contents under varying

ambient light conditions.
2. Assess prediction accuracy on multiple models generated by different machine

learning algorithms for classifying soil moisture content.

6.3 MATERIAL AND METHODS

6.3.1 Sample Preparation

In this study, samples with predetermined moisture level were prepared from silt
loam soil. Plastic containers (950 mL) volume with airtight removable lids were used to
hold samples with different moisture contents. The soil was air-dried before preparing
samples with various moisture levels passed through a 2 mm sieve to avoid disturbance
through larger mineral and organic particles. To determine the initial moisture

gravimetrically, a sample was put in a convection oven at 105 °C for over 24 hours. Mass
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of the sample before and after drying was compared to find out the initial soil moisture
content. It was intended to provide samples in seven moisture levels: air dry, 5%, 10%,
15%, 20%, 25%, and 30%. Each container was filled with 150 mL of soil, and the surface
was kept flat and uniform. The net mass of soil was measured by subtracting of container
tare from the entire weight of the sample. In the next step, the amount of water required for
each sample to reach a certain moisture content was determined. Water was sprayed onto
the soil surface as evenly as possible. The lid of each container was closed for several days
to allow the added moisture to redistribute through the sample. If moisture stayed on the
very top surface of the soil sample, the container was shaken to mix the top surface layer
with a lower level. Samples then were left to equilibrate for several more days to ensure
even moisture distribution through the sample. Three replications were prepared for each

moisture level for a total of 21 soil samples for this experiment.

6.3.2 Spectral Data Collection

Reflected light from each sample was measured using three portable spectrometers
(STS, Ocean Optics, Dunedin, FL) in the ultraviolet (UV), visible (VIS), and near-infrared
(NIR) ranges. These spectrometers were coupled with a Raspberry Pi 3 (RPi) (B V1.2,
Raspberry Pi Foundation, Cambridge, United Kingdom) to control the measurement
process. There were two python scripts running continuously on the RPi: the first one was
for communicating with a GPS receiver for updating time on the RPi, and the second script
enabled the system for periodic data collection and recording each measurement as a tab-

delimited text file with a time-formatted file naming schema. The serial number of the

112



respective spectrometer was recorded in each filename to facilitate tracking individual
measurements.

Data collection was implemented on May 10 and 11, 2018 between approximately
10 am and 4 pm on the roof of the Charles E. Barnhart Building in Lexington, KY. Samples
at different moisture contents were measured during different ambient light conditions in
the morning and in the afternoon. Each sample was placed in the measurement spot for
about 20 minutes and approximately 230 measurements were made during each
measurement period by each spectrometer. The length of each measurement process varied
based on the spectrometer type and ambient light automatically by updating integration
time, but was typically less than 10 s. There was a 10-second break after finishing each
measurement from all spectrometers before the next measurement was made. The
integration time of a spectrometer is an important parameter which needs to be set in a way
to provide maximum performance from sensors. If integration time was set too high on a
given spectrometer, the resulting spectrum would saturate at the maximum intensity. If
integration time was set too low, the resulting spectrum would either saturate at the
minimum intensity (dark current) or be insensitive to the parameter of interest. Changes in
ambient light cause different spectral responses from a constant target. In order to
compensate for the ambient light conditions, a dynamic approach for adjusting integration
time near real time was implemented. In this approach, a maximum intensity with no
saturation was considered as a threshold. The ratio of threshold intensity and the maximum
intensity from the last measurement was used as a gain to obtain the integration time for

the next measurement.
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During the 20-minute measurement period, the moisture content of each soil sample
decreased due to evaporation. Moisture content after the measurement period was
determined gravimetrically by putting each sample in an oven for over 24 hours at 105°C.
Given the change in moisture content during a measurement period, the entire measurement
period was subdivided into three different periods: the first 5 minutes, the first 10 minutes,
and the entire 20 minutes after starting to take measurements. Models were trained for all
three intervals and compared in terms of prediction accuracy on samples which had not

been shown to the learning algorithm during the training process.

6.3.3 Test Stand and Sample Holder

A test stand was deployed to locate a soil sample underneath the spectrometers. The
height of the reflectance spectrometers was set at 1 m; however, it can be adjusted for
further experiments. Initially, plastic sample containers were intended to use as sample
holder; however, it was observed that the edges of a container would cast a shadow on soil
surface during data collection. Therefore, a sample holder was designed with a hollowed
rectangular pocket in the center for placing the soil sample. The sample holder was milled
from a sheet of black Delrin plastic and the outer surface painted flat black to minimize
specular reflections from the sample holder surface. The dimensions of pocket were
selected based on the field of view of three adjacent spectrometers and the area that they
cover from a 1 m height. A drawing of the two data acquisitions systems and the sample is
shown in Figure 6-1. Dimensional information on different parts can be found in 172 and

173.
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Figure 6-1: CAD drawing of data acquisition systems and the sample holder

mounted on the test stand

6.3.4 Spectral Data Preprocessing
Raw reflectance was measured at 1024 distinct wavelengths for each type of
spectrometer individually. In order to avoid issues with multi-collinearity, highly

correlated wavelengths were combined to create a single independent parameter using
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partial least squares (PLS) regression method in MATLAB (R2017a; The Mathworks;
Natick, MA). Reducing the number of input variables also reduced the dimensionality of
the dataset — making subsequent model training faster. Two decision making criteria were
considered to find the optimal number of wavelengths for generating a prediction model:
estimated mean squared prediction error and variance explained in moisture content. The
optimal number of components has both a low estimated mean squared error and a high

variance explanation of the soil moisture content.

6.3.5 Ambient Light Measurements

A second data acquisition system similar to the reflectance system faced upward to
keep track of ambient light changes. The only difference between two sets is that ambient
light spectrometers were fitted with optical diffusers and reflectance spectrometers were
fitted with collimating lenses for setting the field-of-view. Ambient light spectrometers
were calibrated by the manufacturer in compliance with NIST practices. A calibration
coefficient was provided for each wavelength to calibrate the ambient light data, and the
intensity unit changed from count value to units of energy. Unlike reflectance
spectrometers, ambient light spectrometers were set to a constant integration time defined

by the manufacturer; 1 s on UV and NIR spectrometers and 180 ms on VIS spectrometer.

6.3.6 Machine Learning Methods
Cross-validation method was defined as the validation method. This method
protected the model against overfitting by partitioning the dataset into five folds (or

divisions). Each fold is a random selection of training/validation/testing data. For each fold,
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a model was trained using the out-of-fold observations, and then the model performance
was assessed using in-fold-data. Prediction accuracy on each fold was estimated, and the
average overall accuracy over all folds was calculated.

At the time of this study, there were 22 pre-developed learning algorithms available
in the Classification Learner App in MATLAB (R2017a) including decision trees, support
vector machines (SVM), nearest neighbor classifiers, ensemble classifiers, and
discriminant analysis (Bayesian method). The same validation method was deployed for
all learning algorithms.

At the end of the learning process, 22 models were generated for each spectrometer
and for each measurement period. The prediction accuracy of these models was compared
to find the optimal spectrometer for soil moisture estimation. The goal was to reduce the
number of sensors to minimize the size of the data acquisition system and reduce the data
processing complexity. Payload size and mass affect UAS performance. It would be ideal
to have only one spectrometer deployed on the data acquisition system if it could provide
a soil moisture classification model with sufficiently high prediction accuracy. The
learning algorithm and the spectrometer type which provided the highest prediction
accuracy compared to other models was chosen as the optimal model for estimating soil

moisture.

117



6.4 RESULTS AND DISCUSSION

6.4.1 Ambient light data

Ambient light data was collected alongside soil reflectance measurements to keep
track of the solar irradance. This allowed the range of solar radiance to be compared across
all soil samples to help ensure that solar irradance was well-distributed across all samples.
Figure 6-2 shows ambient light spectrums collected using NIR spectrometer at different
ambient light conditions. Each subfigure illustrates the ambient light condition when a

specific soil moisture was measured.
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Figure 6-2: Calibrated ambient light measurements simultaneously with soil
reflectance measurement with NIR spectrometer with soil moisture content of a. air dried;

b. 5%; c. 10%; d. 15%; e. 20%; f. 25%; g. 30%.

6.4.2 Spectral data from soil samples

Full spectra from three types of spectrometers and for seven soil moisture levels
were obtained during data collection. Each moisture level was replicated at three different
times of the day to include more variability in the ambient light during data collection.
Figure 6-3 shows spectra obtained with the NIR spectrometer on seven moisture levels.
Spectra obtained from UV and VIS spectrometers can be found in 183. As expected,
spectra from each moisture level are similar to each other with a peak intensity close to the

defined threshold intensity due to the variable integration time method.
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Figure 6-3: Compensated reflected light measurements with NIR spectrometer

from soil samples with soil moisture content of a. air dried; b. 5%; c. 10%; d. 15%; e. 20%;

f. 25%; g. 30%
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6.4.3 Spectral data preprocessing

The PLS regression preprocessing method helped to reduce the dimensionality of
the spectral dataset. Figure 6-4 shows the amount of estimated error and also variance
explanation in soil moisture at a different number of components. Number of components
ranging from seven to twenty were tested as a preliminary evaluation. Fifteen components
provided models with the lowest complexity and the highest prediction accuracy; however,
there were only slight differences in this range which might differ from one experiment to
the other. Fifteen components meet both criteria of high variance explanation and low
estimated error. The percent of variance explanation increases at a faster rate for lower
number of components, but the rate is gradually decreasing for a higher number of
components. On the other hand, the amount of estimated error decreases by increasing the
number of components for lower range while the error did not decrease noticeably after 15
components. Hence, 15 components were determined as the optimal number of
components for feeding to machine learning algorithms. The optimal number was about
the same for different types of spectrometers; although, they were not shown in the figure.
A few higher and lower number of components were tested as a preliminary work to make

sure 15 was the optimal number components.
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Figure 6-4: Percent variance explained in moisture, and estimated mean squared

prediction error for 1 to 60 components.

6.4.4 Machine learning method

Twenty-two models with 15 components were trained for each type of spectrometer
and three lengths of data collection periods. Seven models which had the highest accuracy
on average for all three types of spectrometers are shown in Figure 6-5. Among these
models, a linear discriminant analysis model provided the maximum prediction accuracy
for both VIS and NIR spectrometers and the 10-minute measurement period of data
collection. The same results were obtained for the first 5-minute measurement period of

data collection (182).
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Figure 6-5: Prediction accuracy for the 22 machine learning algorithms applied to
relative reflectance data with three types of spectrometers during a 10-minute measurement
period.

Linear discriminant analysis algorithm provided perfect prediction accuracies for
both VIS and NIR spectrometers. It should be noted that there was considerable overlap in
spectral ranges of VIS and NIR spectrometers, which provides some insight as to why they
exhibited similar results.

Figure 6-6 shows the prediction accuracy after a 20-minute data collection period
using the same learning methods. For the 20-minute data collection, the quadratic
discriminant analysis model provided a higher accuracy on average for all three
spectrometers while the linear discriminant analysis model had higher performance on the
VIS spectrometer data. Since the soil moisture was decreasing during the data collection
measurement period, the prediction accuracy during the 20-minute measurement period

was less than the 5-minute and 10-minute measurement periods. The amount of variability
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in soil moisture depends on initial moisture level of a given sample and the ambient air
conditions. This difference was generally larger for high moisture levels due to more free
water to evaporate. Also, it was observed that the top thin layer of soil, especially at higher
moisture levels, was brighter than deeper layers, which lost less moisture during data
collection. High overall accuracy in the 20-minute period was obtained from VIS
spectrometer compared to other spectrometers. It was expected to obtain lower accuracy in
UV spectrometer; however, lower accuracy for the NIR spectrometer observations was a
little unexpected. Figure 6-6 demonstrated that the spectral measurement is not limited to
the thin top layer and can obtain information about deeper layers. Light in shorter
wavelengths contains more energy which can help the light to penetrate more and collect
information from deeper layers. Wavelengths in the VIS spectrometer are shorter than the
ones in the NIR spectrometer and have the capability to extract information from deeper
layers of soil samples (Jackson & Huete, 1991), and it can be considered as a possible
explanation on better performance of VIS over NIR spectrometer on Linear Discriminant

method during the 20 minute measurement period.
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Figure 6-6: Prediction accuracy for the 22 machine learning algorithms applied to
relative reflectance data on three types of spectrometers during a 20-minute measurement
period.

The confusion matrix is an illustrative method to show the scattering of
inaccuracies in soil moisture estimation. Two confusion matrixes are shown in Figure 6-7
on data collected by NIR spectrometer. One came from the model generated with the data
collection in the 10-minute measurement period and using linear discriminant analysis
(Figure 6-7-a). The other one was from the model with data collection in the 20-minute
measurement period using quadratic discriminant analysis (Figure 6-7-b). The 10-minute
period of data collection generated a matrix with every sample properly classified. On the
other hand, for the 20-minute period, several inaccuracies were observed with no

discernable pattern. However, the overall prediction accuracy was still over 98%.
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Figure 6-7: Soil moisture classification results for models generated from data
collected with NIR spectrometer from a) the 10-minute data collection and using linear
discriminant analysis and b) the 20-minute data collection with quadratic discriminant

analysis.

6.5 CONCLUSIONS

Previously, a UAS-deployable spectral data acquisition system was developed with
a dynamic system to update the integration time of spectrometers during varying ambient
light conditions. The system was shown to successfully recognize varying grayscale
targets. In this study, this system was deployed to classify soil moisture content using
spectral data. The capability of the system for differentiating between different moisture
levels under varying ambient light conditions was tested. A broad spectrum was obtained
from each measurement with each spectrometer. The dataset was compressed using PLS
regression to eliminate redundant information (correlated wavelengths). After
preprocessing, 22 models were trained using data with three different spectrometers to find

out about the optimal model and sensor which provided the highest prediction accuracy.
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Three periods of data collection were considered post sample deployment (5, 10, and 20-
minute) to observe the effect of soil moisture content change during the data collection
period. The linear discriminant model combined with the VIS spectrometer and a period
up to 10 minutes resulted in 100% classification accuracy on seven soil moisture content

levels ranging from <5% to 30% moisture content.
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CHAPTER 7: SUMMARY AND CONCLUSIONS

The primary objective of this dissertation was to develop tools and methods for
remotely estimating soil water content. In the first study, moisture-controlled soil and
wheat stalk residue samples were prepared and measured at varying heights using a
reflectance probe connected to visible and near-infrared spectrometers. A computer
program was written that used reflectance data to determine the optimal narrowband
wavelengths based on user-defined constraints, and the statistical significance of sensor
height and moisture content was determined for the “best” pair. Constraints for this study
were configured to maximize the slope of the index (i.e., sensitivity to moisture) and either
to maximize the R2 or minimize the RMSE of the index function. Results showed that
wavelengths centered near 1300 nm and 1500 nm, within the range of 400 to 1700 nm,
produced the best index for individual samples. An advantage of this pair of wavelengths
is that they can be sensed with a single type of sensor using narrowband optical filters. The
1500 nm band, when measured with an active ground-based sensor, will provide spectral
information not available when using passive aerial or satellite-based remote sensing
methods due to absorption from atmospheric moisture. When applied to all samples, the
index performed well for the soil samples but poorly for the wheat stalk residue samples.
Based on these results, it is expected that crop residues, such as wheat stalks, will reduce
the accuracy of remotely sensed soil surface moisture measurements. Future work should
include heterogeneous surfaces that include both soil and crop residue in varying

proportions to determine the composite response.
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In the second study, the same spectral data from the first study was used but with a
different type of data processing. Relative reflectance spectral data from moisture-
controlled silt-loam soil and wheat stalk residue samples was used to test the ability of
several machine learning algorithms to classify moisture content from the spectral data.
This method contrasted with an index-based method used in a previous study of the same
spectral data. Previous work has tended to focus on a pair of wavelengths rather than the
full spectrum. It was hypothesized that the machine learning approach would yield better
prediction accuracy because of utilizing a larger number of components than index-based
method from the spectral data. The appropriate number of components for this dataset was
determined to be 20 using PLS regression. The components were fed into 20 different
machine learning algorithms, from which cubic SVM and ensemble bagged trees produced
the highest combined prediction accuracy for silt-loam soil samples (over 93%) and wheat
stalk residue samples (over 86%). This represented a substantial improvement over the
index-based method, where only two wavelengths were used to develop a moisture
prediction model.

Third study was aimed to develop a spectral sensing platform suitable for UAS
deployment and to measure the reflectance from a reference target to assist with the
development of a calibration procedure that is functional over a wide range of ambient light
conditions. This study included two parts. In the first part of this study, a platform was
developed to be deployed on a UAS to measure the reflectance intensity from a target. Two
sets of portable STS spectrometers in three ranges of UV, VIS, and NIR were used along

with a RPi to form a reflectance system and an ambient light system. In the second part of
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this study, a method for compensating for ambient light conditions and sensor integration
time was developed and tested during the 2017 Great American Eclipse. Results showed a
large variability in reflected light intensity due to significant changes in sun radiance.
Reflectance values were compensated using ambient light measurements and integration
time. Compensated reflectance values exhibited a consistent spectral signature for
measurements taken at different ambient light conditions. This method will be useful for
future field work where ambient light conditions cannot be controlled and the sensor
integration time may need to be adjusted to optimize the sensitivity of the spectrometer.
In the fourth study, the objective goal was to test the data acquisition system from
the last study to recognize reflectance targets under ambient light conditions. Six targets
were painted with different colors in the grayscale range. Then, these targets were
benchmarked using visible and near-infrared spectrometers calibrated with a reference
target. Two sets of spectrometers coupled with an embedded data acquisition system were
used for collecting spectral data at five days at different ambient light conditions. A set was
designated for measuring ambient light, and sun radiance and the other set measured the
reflectance from targets. A mechanism was applied to update the integration time of each
reflectance spectrometer based on ambient light condition. Then, spectral data were
calibrated against ambient light condition and integration time. Twenty-two learning
algorithms were used to generate models for recognizing reflectance targets from each
other. It was determined that most of the algorithms had a prediction accuracy over 90%.
The quadratic discriminant model provided the perfect prediction accuracy. It was

concluded that by calibrating the system against ambient light conditions, machine learning
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models could provide a sufficiently high accuracy for recognizing targets from their
spectral responses.

In the last study, the system developed in Chapter 4 and evaluated in Chapter 5
using simple targets was tested for classifying moisture contents of soil samples.
Integration time on individual spectrometers was adjusted according to the ambient light
condition. By compensating against ambient light changes, reflectance measurements
focus on other sample characteristics including soil moisture content. A preprocessing step
using PLS regression was implemented on spectral data to reduce the dimensionality of the
dataset and avoid overfitting. In the preprocessing step, the number of variables from 1024
wavelengths reduced to 15 independent parameters. Linear discriminant analysis method
on data collected from NIR and VIS spectrometers, among 22 learning algorithms,
generated a model with a perfect prediction accuracy based on a 10-minute data collection.
For longer periods of data collection, several more misclassifications occurred in all models
due to changes in soil moisture content during data collection. For a 20-minute data
collection, quadratic discriminant analysis resulted in a model with the highest
performance (98%) from data collected by NIR spectrometer. It can be concluded that the
hyperspectral data acquisition system introduced in this study along with the linear

discriminant analysis for processing can be used for soil moisture remote sensing.
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CHAPTER 8: FUTURE WORK

Future work based on results obtained in the first study should include
heterogeneous samples that include both soil and crop residue in varying proportions to
determine the composite response. As new low-cost sensors are developed, the
optimization parameters used to determine the “best” wavelengths should be refined based
on actual sensor response, rather than ideal assumptions. Also, as a future work for both
first and second study to test have similar experiments in field conditions. The results of
these two studies were from laboratory prepared samples of individual material types
measured under controlled conditions. Field application of this work will require additional
considerations including, among other factors, more complex distributions of materials and
variability in ambient light. Future work should include testing of this process under field
conditions to demonstrate the applicability as a high-throughput method for remotely
sensing moisture content of soils and crop residues.

Future work based on results obtained in the third study should include testing the
ability to classify different targets at varying ambient light conditions and to automatically
adjust the integration time of each reflectance spectrometer based on previous
measurements to maximize sensitivity which was conducted in the fourth study. Similarly,
testing the same system and method for classifying soil samples was considered as a future
work for third and fourth studies which have been successfully accomplished in the fifth
study.

The next step to continue this path would be to measure the soil or crops spectrally

from a UAS platform and estimate soil moisture based on the reflectance measurements.
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Different field parameter estimations should be tested for other common parameters which

can be classified based on spectral measurements.
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APPENDICES
A CODES

A.l.  Optimal Index Program

% Author: Ali Hamidisepehr (c) 2016 3%

% Function: This script reads in a reflectance data file and %
% calculates the performance of all possible indexes. %
990000000000000000000000000000000000000000000000009000000000000
O0OO0OO0OO0OOO0OOOOOOODODOODODOOODODOODODOOODODOODODOOODODOODODOOODODOOODODOODODOOODOOODOOOO™©

clc;close all;clear;

num_samples=21; % Number of samples in total excluding reference and
background data

num_same_ sample=3;% We might have samples with almost the same moisture
content. We specify the number of them here

num moisture levels=7;% number of different moisture levels

num replication=3; % Number of replications for each sample. (Different
from samples with almost the same moisture)

[x x txt raw]=xlsread('Dataset Overall stalks.xlsx');%Reading the
dataset including all measurements with full specturm

same HM=zeros (length(x), 1) ;b=zeros(length(x),1);r=zeros(length(x),1);%
initializing a matrix for putting samples with same moistureand height
together

wavelength=x(:,1);% the first column of the excel file produced
includes wavelength wvalues

VIS=0;NIR=0;% initialize two values for vision and NIR range
bandwidth=25;% bandwith or the width of wavelength range centered at
above values

% The codes or names correspond to different moisture. Notice that when
we

% have more than one sample with the same moisture we must put them
close

% together. Say the first three arrays in the matrix represent samples
with

% the same moisture

moist={'Sl ';

'S2 ';'S3';'s4';'s5';'S6';'s7'; 88,89 'S10';'S11"';'S12';'813";'S14";
'S15';'Sl6';'S17';'S18';'S19';'S20"';'S21"};

height=['H1';'H2';'H3'; 'H4'; 'H5']; % Defining different heights
moist2=[1l:num moisture levels*num same sample];% this matrix is
technically same as moist matrix. the only difference is this one
includes numerical values

Moist values=[0 5 10 15 20 25 30];% moisture levels used in soil
samples

average all=zeros (length(wavelength),1l);%this variables is for putting
averages of all moisture levels togther
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%$In this script we plot our data for each given height and all moisture
%$levels. The main loops changes height level
for h=l:length(height)
figure % for each height one figure plots all moisture levels
hold on
%$This loops take into account only samples with different moisture so
that
%we combine samples with the same moisture
for m=l:num same sample:length (moist)

% This loop goes through all columns one by one to detect columns with
the
% same height and moisture
for v=1:1length(x_txt)

k=m; % Variable k is used to take all the same moisture samples
into account through using a while loop

while k<num same sample+m

t=strfind(x_txt(v), (moist{k}));%For each column, check if there is
the desired moisture in the label of the column

p=strfind(x_txt(v),height(h,:));%For each column, check if there is
the desired height in the label of the column

if ~isempty(t{l}) && ~isempty(p{l})% If the column is the deired
one with desired moisture and height

same HM=[same HM x(:,v)]; % Put all the columns with same

moisture and height next to the each other

end
k=k+1;
end
end
same HM(:,1)=[];% Since we intialized with a column of zeros, we remove

that column from the last result

average=mean (same HM, 2) ;% Take an average between all samples and
replications with the same moisture and height

average all=[average all mean(same HM,2)];%combining heights and
putting "average" values next to each other

plot(x(:,1),average, 'DisplayName', ['Sample
numZ2str (moist2 (m:m+num_ same sample-1))])% plot the average data vs
wavelength
xlabel ('Wavelength (nm) ') ;ylabel ('$Reflectance');
same HM=zeros (length(x),1);%Reset the matrix same HM to the initialized
zeros again at the end of each iteration
end
for m=length(moist) :length(moist)+2 % for data related to background
and refrence we repeat what we did before in the loops

for v=1:length(x_ txt)

t=strfind(x_txt(v),'BACK');% For each column, check if there is
Background in the label of the column
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g=strfind(x_txt(v), 'REF');% For each column, check if there is
Reference in the label of the column
p=strfind(x_txt(v),height(h,:));%For each column, check if there is
the desired height in the label of the column
if ~isempty(t{l}) && ~isempty(p{l})% If the column is the deired
one (the result of strfind is a cell so that we should use its numerical
value by using {})
b=[b x(:,v)];% Put all the columns with 'Background' and the
same height next to the each other
elseif ~isempty(g{l}) && ~isempty(p{l})
r=[r x(:,v)]; % Put all the columns with 'Reference'
and the same height next to the each other
end

end
end
b(:,1)=[1;% Since we intialized with a column of zeros, we remove that
column from the last result
background=mean (b, 2) ;% Take an average between all samples with
'Background' and the same height
r(:,1)=[]1;% Since we intialized with a column of zeros, we remove that
column from the last result
reference=mean(r,2);% Take an average between all samples with
'Reference' and the same height
plot(x(:,1),background, 'DisplayName', 'Background ')
plot(x(:,1),reference, 'DisplayName', 'Reference ")

hold off
legend ('-DynamicLegend', 'Location', "Best"')
title(['Reflectance versus Wavelength for Varying Soil Moisture with

Height ',num2str(h)])
b=zeros (length(x),1);r=zeros (length(x),1l); %Reset matrixes 'b' and 'r'
to the initialized zeros again
end
Cc=1;
VIS(1)=[];NIR(
average all(:,
eliminated
3By this for loop we go through all pairs of wavelengths one by one to
%scheck which pair provides the best prediction for moisture content
based
%on measured Reflectance using Rsquare, RMSE and slope of the linear
%$regression of moisture and index value
for i=23:bandwidth:length (wavelength)

for j=1l:bandwidth:length (wavelength)

=01;
1)=11]

[1;%we initialized this with zero and now it should be

Q

if §>i % the second wavelength must be greater the first one to
avoid redundancy

VIS=0;NIR=0;

%set the values for wavelength 1 & 2

wave rangez=wavelength (j);

wave rangel=wavelength (i);

for zz=1l:length(Moist values) *length (height)
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Range VIS=average all ((wavelength>=(wave rangel-bandwidth) &
wavelength<=(wave rangel+bandwidth)),zz);% select the desired range of
first wavelength and Extract average reflectance values associated with
them in desired column

VIS=[VIS mean (Range VIS)];%put average values of the first
range of wavelength next to each other so that for each given moisture
and height

Range NIR=average all ((wavelength>=(wave rangeZ-bandwidth) &
wavelength<=(wave rangeZ+bandwidth)),zz);% select the desired range of
second wavelength and Extract average reflectance values associated
with them in desired column

NIR=[NIR mean (Range NIR)];%put average values of the second
range of wavelength next to each other so that for each given moisture

and height
end
$we initialized these with zero and now it should be eliminated
VIS(1)=I[1;
NIR(1)=[];

%in this loop we seperate differnt heights for Vision and NIR
$ranges and put them in rows
for gg=1l:length (height)
VIS Height (gg, :)=VIS(((gg-
1) *num moisture levels)+l:gg*num moisture levels);
NIR Height (gg, :)=NIR(((gg-
1) *num moisture levels)+l:gg*num moisture levels);

NDWI (gg, :)=(VIS_ Height (gg, :)-
NIR Height(gg,:))./ (VIS Height (gg, :)+NIR Height(gg,:));%caluculate the
Index elment wisely

end

$based on statistical analysis Height doesn't affect on the results
$significantly then we could combine heights

one _height NDWI=mean (NDWI) ;

%$fit a model so that dependant axis is moist values and independant
axis is

SNDWI

mdl=fitlm(Moist values,one height NDWI, 'linear', 'RobustOpts','on'");
rsquare=mdl.Rsquared.Ordinary; $obtain the Rsqure value for each index
rmse=mdl.RMSE; $obtain the RMSE value for each index
coefficients=mdl.Coefficients.Estimate;

slope=coefficients (2);%%obtain the slope for each index

%creating a row of matrix for each index including two wavelengths and
%$three decision criteria

index all(C,:)=[wavelength (i) wavelength(j) rsquare rmse slope];
C=C+1;

end
end
end
figure
scatter(index all(:,3),index all(:,5))
xlabel ('R Squared');ylabel ('Slope');
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figure
scatter(index all(:,4),index all(:,5))
xlabel ("RMSE") ;ylabel ('Slope') ;
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A.2.  Creating a Comprehensive Data File from All Text Files

o0 o) o) o) o0 o0 o) o) o) o) o0
C0000000000000000000000000000000000000000000000000000000000

% Title: Dataset Overall stalks.
% Author: Ali Hamidisepehr (c)

% Function: This script reads all reflectance data text files and %
% put them in one single Excel file. %

©900900000000000000000000000000000000000000000000000000

©000000000000000000000000000 o o o [
0000000000000 0000000000000000000000000000000000000000000T0D0

000000000 o

function Dataset Overall stalks()
clear;clc;close all;
folder = pwd;% get the directory

Listing = struct2cell (dir(folder)); % list all files in the current
directory
FileNames = Listing(1l,:)';% put all the file names in a column

h=zeros (2505,1);% intializing a variable that shows the number of
wavelengths

label="Wavelength';% intializing a variable that is going to used later

as label in an excel file
data lines=16;% while extracting text file into a table, actual data
will start from line 16 for data obtained with the spectrometer
% this for loop goes through all files in the current directory to
check if
% each one is reflection data of soil samples or not
for i=l:length(Listing)
z=[0]1;
k = strfind(char(FileNames (i)), 'Reflection'); %distinguish files
which contain reflection data and ignore irrelevant data
if isempty (k)
%do nothing
else
label=[label, (FileNames(i))];%put filenames including
reflection data next to eachother to be used as heading in the excel
file
[Data from]=Extract_txt([folder,'\',char(FileNames(i))]);
$Extract wavelength and Reflection data from text files

%$this for loop goes through all reflectnce data and put all
values for a specfic files into one column
for b=data lines:length (from)
z=[z;str2num (from{b})];
end
z(1)=[1;
h=lh,z];% this matrix creates a big matrix which includes all
data in all text files at the end of the loop
end

end

wavelength=[0];

%this for loop creates a single column for wavelength wvalues
for b=data lines:length (from)
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wavelength=[wavelength;str2num(Data{b})];

end
wavelength(l)=[];
h(:,1)=wavelength;%add wavelength values as the first column in the
table
delete('Dataset Overall stalks.xlsx');
xlswrite('Dataset Overall stalks.xlsx',6 label)3%writing the heading part
of the excel file
xlswrite ('Dataset Overall stalks.xlsx',h,1,'A2'")%writing all the data
of the excel file
end
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A.3. Finding Optimal Number of Components for a Prediction Model from Lab

% Author: Ali Hamidisepehr (c) 2016 %

% Title: Optimal num components.m

% Function: This script calculates the estimated error and variance
% explained for a model with a given number of components. %
990000000000000000000000000000000000000000000000009000000000000

[CRNe e Re e OO0OO0OO0OO0OOOOOODOOODODOODODOOODODOOODOOODODOODODOOODODOOODOOODODOOOOOODOOOO™©

clear all; clc; close all;
X=xlsread('mldata Stalks Residue Dataset.xlsx');%reflectance values for
different samples

y=xlsread('mloutputStalks Residue Dataset.xlsx');% moisture values
conrresponded to each sample

num_components=20;3the desired number of components after compression
%% Calculating Estimated Mean Squared Error

% Applying PLS method for reducing the dimensionality of dataset
[X1,Y1,Xs,Ys,beta,pctVar, PLSmsep] =

plsregress (X, y,num_components, 'CV',num components) ;

plot (0:num components, PLSmsep (2, :), 'b-0');

xlabel ('Number of components');

ylabel ('Estimated Mean Squared Prediction Error');

variables output StalkResidue ready ml=[Xs,y];% formatting dataset for
feeding into machine learning algorithms

%% Calculating Percent Variance Explained

[Xloadings, Yloadings,Xscores, Yscores, betaPLS10, PLSPctVar] =
plsregress (X, y,num_components) ;

plot (1:num components, cumsum(100*PLSPctVar(2,:)), " '-bo');
xlabel ('Number of PLS components');

ylabel ('Percent Variance Explained in Y');

ylim ([90 100]);

[X1,Y1,Xs,Ys,beta,pctVar,mse,stats] = plsregress (X,y,num _components) ;
plot(l:1length(stats.W),stats.W,"'=-");

xlabel ('Variable');

ylabel ('PLS Weight');

legend ({'lst Component' '2nd Component' '3rd

Component'}, 'location', 'NW') ;
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A.4.  RPi Program

A.4.1. Reading GPS Packets and Updating RPi Clock

FHHAFHH AR H AR A AR AR H A H AR H AR H AR AR H AR AR AR H AR A

# Title: RPi GPS.py %

# Author: Ali Hamidisepehr (c) 2017 %

# Function: This script receives time data continuously through
# GPS receiver and set the RPi clock every few seconds.

FHAFH AR AR F AR SRR F AR

import gps

import os

import time

import RPi.GPIO as gpio

from itertools import cycle

gpio.setmode (gpio.BCM)

gpio.setwarnings (False)
gpio.setup(21,gpio.0UT)

# Listen on port 2947 (gpsd) of localhost
session = gps.gps("localhost™, "2947")
session.stream(gps.WATCH ENABLE | gps.WATCH NEWSTYLE)
led flip=cycle (range(2))

i=0
while True:
try:

report = session.next()

# Wait for a 'TPV' report and display the current time
# To see all report data, uncomment the line below

# print report

if report['class'] == "TPV':

if hasattr(report, 'time'):
timestamp = report.time
print(timestamp)
if led flip.next():
gpio.output (21,False)
else:
gpio.output (21, True)

if 1 ==
GPStime = timestamp.split ("T") [1].split(".") [0]
GPSyear = timestamp.split("-")[0]
GPSmonth = timestamp.split("-")[1]
GPSdate = timestamp.split("-")[2].split("T") [0]
if GPSmonth == "01":
GPSmonthtext = "Jan"
elif GPSmonth == "02":
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GPSmonthtext = "Feb"

elif GPSmonth == "03":
GPSmonthtext = "Mar"

elif GPSmonth == "04":
GPSmonthtext = "Apr"

elif GPSmonth == "05":
GPSmonthtext = "May"

elif GPSmonth == "06":
GPSmonthtext = "Jun"

elif GPSmonth == "07":
GPSmonthtext = "Jul"

elif GPSmonth == "08":
GPSmonthtext = "Aug"

elif GPSmonth == "09":
GPSmonthtext = "Sep"

elif GPSmonth == "10":
GPSmonthtext = "Oct"

elif GPSmonth == "11":
GPSmonthtext = "Nov"

else:
GPSmonthtext = "Dec"

DateString = "sudo date -s '" + GPSmonthtext + " "+

GPSdate + " " 4+ GPStime + " UTC " 4+ GPSyear + "'"
print (DateString)
os.system(DateString)
i=1i4+1
if i > 5:
i=0
except KeyError:
pass
except KeyboardInterrupt:
quit()

except StopIteration:
session = None
print ("GPSD has terminated")
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A.4.2. Main Program

S
# Title: RPi main script.py %

# Author: Ali Hamidisepehr (c) 2017 %

# Function: This script controls individual spectrometers and
# adjust integration time based on ambient light automatically.

E R

import urllib.request #importing the library for opening the php files
corresponded to spectrometers settings

import time #importing the library for setting the time parameters like
delay

import re #importing the regular expression operations library for
finding a pattern in a string

import glob,os #Miscellaneous operating system interfaces library for
shutting down the system. glob will be used for fixing the file format.
from time import gmtime,strftime #importing time variables for reading
the time and date

import RPi.GPIO as gpio #importing GPIO library for using GPIO pins on
RPi

import numpy as np

gpio.setmode (gpio.BCM) # Define numbering mode on GPIO
gpio.setwarnings (False) # Disable warnings
gpio.setup(4,gpio.IN,gpio.PUD UP)# Defining pin 4 as an input and
pulled up switch (internally connected to 3.3V). PWM signal which was
already converted to a digital output will be used on this pin
gpio.setup(l2,gpio.IN,gpio.PUD UP)# Defining pin 12 as an input and
pulled up switch (internally connected to 3.3V). It will be used as a
push button on ground and UAS set

gpio.setup(25,gpio.IN,gpio.PUD UP) #Defining pin 25 as a switch to
differentiate between radiance (ground) set and reflectance (UAS) set.
gpio.setup(23,gpio.0UT) # using pin 23 as an output in LED to indicate
if the spectrometers are taking measurements

gpio.setup(l16,gpio.OUT) # using pin 16 as an output in LED to indicate
if the switch is set on for radiance or reflectance measurement
gpio.output (16,False)

gpio.output (23,False)

gpio.add event detect(12,gpio.FALLING) # Checks on pin 12 and detect
any falling signal received there. It checks if the momentary push
button connected to this pin is pressed

gpio.add event detect(4,gpio.FALLING) # Checks on pin 4 and detect any
falling signal received there. It checks if the converted signal from
PWM to Digital is High.

#gpio.add event detect (25,gpio.FALLING)
LocalAddress="http://127.0.0.1/cgi-bin/"’

FHEHE AR AR A A R R 4

with urllib.request.urlopen('http://127.0.0.1/cgi-
bin/getserial . .php?channel=0") as responselll:fopening the php file
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corresponded to getting the serial number of the spectrometer on
channel O

htmll1ll = responselll.read() f#reading information obtained
from the opening the previous php file
z=re.search('S..... ',str(htmll11l)) f#search for a serial

number format from the string created from the readings in the last
command

serialnum=z.group() #storing the serial number of the
spectrometer on channel 0

#### the same process for finding serial number on channels 1 & 2
with urllib.request.urlopen('http://127.0.0.1/cgi-
bin/getserial.php?channel=1") as response222:

html222 = response222.read()

z2=re.search('S..... ',str(html222))

serialnum2=z2.group ()

with urllib.request.urlopen('http://127.0.0.1/cgi-
bin/getserial.php?channel=2"') as response333:
html333 = response333.read()
z3=re.search('S..... ',str(html333))
serialnum3=z3.group ()
FHAH AR A R R R S
DataFolder='/home/ocean/Data'
## set the location for storing spectral data on three channels
with
urllib.request.urlopen (LocalAddress+'setsavelocation.php?location="+Dat
aFolder+'&channel=0") as responseb6:
html6 = responseb.read()

with
urllib.request.urlopen(LocalAddress+'setsavelocation.php?location="+Dat
aFolder+'&channel=1") as responsel6:

htmll6 = responsel6.read()

with
urllib.request.urlopen(LocalAddress+'setsavelocation.php?location="+Dat
aFolder+'&channel=2") as response22:

html22 = response22.read()

## Evaluating integration time, Boxcar, and the number of scans to be
averaged on each measurement for three channels

if serialnum=='504413"': #Ground UV for sun radiance
int time=1000000
boxcar=5
average=5
elif serialnum=='5S08285": #Ground VIS for sun radiance#It was

recommended by manufacturer to be 350000
int time=180000
boxcar=5
average=10
elif serialnum=='507821": #Ground NIR for sun radiance
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int time=1000000
boxcar=5
average=5
elif serialnum=='S07846"': #UAV NIR for reflectance
int time=80000
boxcar=5
average=5
elif serialnum=='S05821": #UAV VIS for reflectance
int time=35000
boxcar=5
average=5
elif serialnum=='S03927': #UAV UV for reflectance
int time=80000
boxcar=5
average=5
sequenceinterval=int ((int_ time*average/1000)+50)
#print (serialnum) ;print (sequenceinterval,int time, average)
if serialnum2=='504413"': #Ground UV for sun radiance
int time2=1000000
boxcar2=5
average2=5
elif serialnum2=='508285"': #Ground VIS for sun radiance
int time2=180000
boxcar2=5
average2=10
elif serialnum2=='507821"': #Ground NIR for sun radiance
int time2=1000000
boxcar2=5
average2=5
elif serialnum2=='507846"': #UAV NIR for reflectance
int time2=80000
boxcar2=5
average2=5
elif serialnum2=='505821"': #UAV VIS for reflectance
int time2=35000
boxcar2=5
average2=5
elif serialnum2=='503927': #UAV UV for reflectance
int time2=80000
boxcar2=5
average2=5
sequenceinterval2=int ((int time2*average2/1000)+50)
#print (serialnum?)
#print (serialnum?2) ;print (sequenceinterval2, int time2,average2)
if serialnum3=='5S04413"': #Ground UV for sun radiance
int time3=1000000
boxcar3=5
average3=5
elif serialnum3=='508285"': #Ground VIS for sun radiance
int time3=180000
boxcar3=5
average3=10
elif serialnum3=='507821"': #Ground NIR for sun radiance
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int time3=1000000
boxcar3=5
average3=4
elif serialnum3=='507846"': #UAV NIR for reflectance
int time3=80000
boxcar3=5
average3=5
elif serialnum3=='505821"': #UAV VIS for reflectance
int time3=35000
boxcar3=5
average3=5
elif serialnum3=='503927': #UAV UV for reflectance
int time3=80000
boxcar3=5
average3=5
sequenceinterval3=int ((int time3*average3/1000)+50)
num replic=3
if int time>100000:
coeff=1.1
else:
coeff=3
delay=int ((max (sequenceinterval,sequenceinterval?2,sequenceinterval3) * (n
um_replic)*coeff/1000)) #amount of delay in seconds based on the
longest measurement
x2=12000

## Adjustments on each spectrometer corresponded to each specific
channel
## Channel 0

with
urllib.request.urlopen(LocalAddress+'setintegration.php?time="+str(int_
time)+'&channel=0") as response: # setting integration time on channelO

html = response.read()

print (html)
with
urllib.request.urlopen(LocalAddress+'setaverage.php?scans="+str (average
)+'&channel=0"') as response2: #setting number of scans for each
measurement

html2 = response2.read()

with
urllib.request.urlopen(LocalAddress+'setboxcar.php?width="+str (boxcar)+
"&channel=0") as response3: ffsetting boxcar

html3 = response3.read()

with
urllib.request.urlopen(LocalAddress+'setmaxacquisitions.php?acquisition
s="+str(num replic)+'achannel=0"') as response5: #setting the maximum
number of acquistion in case taking a series of measurements

html5 = responseb5.read()
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with
urllib.request.urlopen (LocalAddress+'setsavemode.php?savemode=multi&cha
nnel=0"') as response7: # if spectral data is stored in one file or
multiple files

html7 = response7.read()

with
urllib.request.urlopen(LocalAddress+'setsequenceinterval .php?interval="
+str (sequenceinterval)+'&channel=0") as response8: #the interval
between each measurement in case taking a series of measurements

html8 = response8.read()

## Channel 1

with
urllib.request.urlopen(LocalAddress+'setintegration.php?time="+str(int_
time2)+'&channel=1") as responselO:

htmll1l0 = responsell.read()

with
urllib.request.urlopen (LocalAddress+'setaverage.php?scans="+str (average
2)+'&channel=1") as responsell:

htmlll = responsell.read()

with
urllib.request.urlopen (LocalAddress+'setboxcar.php?width="+str (boxcar?2)
+'&channel=1"') as responsel2:

htmll2 = responsel2.read()

with
urllib.request.urlopen(LocalAddress+'setmaxacquisitions.php?acquisition
s='+str(num replic)+'&channel=1") as responsel3:

htmll3 = responsel3.read()

with
urllib.request.urlopen (LocalAddress+'setsavemode.php?savemode=multi&cha
nnel=1") as responselid:

htmll4 = responseld.read()

with
urllib.request.urlopen(LocalAddress+'setsequenceinterval .php?interval="
+str (sequenceinterval?2)+'&channel=1") as responsel5:

htmll5 = responsel5.read()

print (htmll5)

## Channel 2
with
urllib.request.urlopen(LocalAddress+'setintegration.php?time="+str (int
time3)+'&channel=2") as responsel6:
htmll6 = responselb6.read()
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with
urllib.request.urlopen(LocalAddress+'setaverage.php?scans="+str (average
3)+'&channel=2") as responsel7:

htmll7 = responsel7.read()

with
urllib.request.urlopen(LocalAddress+'setboxcar.php?width="+str (boxcar3)
+'&channel=2") as responsel8:

htmll8 = responsel8.read()

with
urllib.request.urlopen(LocalAddress+'setmaxacquisitions.php?acquisition
s='+str(num replic)+'s&channel=2"') as responsel9:

htmll9 = responsel9.read()

with
urllib.request.urlopen(LocalAddress+'setsavemode.php?savemode=multischa
nnel=2") as response20:

html20 = response20.read()

with
urllib.request.urlopen(LocalAddress+'setsequenceinterval .php?interval="
+str (sequenceinterval3)+'&channel=2") as response2l:

html21 = response2l.read()

## The main While loop checks every few seconds to see if it is set for
radiance (Ground) measurement or reflectance (UAS) measurement. If it is
set on Radiance measurements, then it takes

##measurement every few seconds automatically and in a cycle. In this
mode when pin 4 is driven, the system shuts down. And if it is set on
Reflectance, then it waits for a high

## signal converted from autopilot on pin 4 or a push button on pin 12
to be pressed.

##

while True:
if gpio.input(25): # if switch connected to pin is on then we are
measuring the radiance and LED light connected to pin 16 will turn on
gpio.output (16, True)

while gpio.input(25)==1:

## Sutting down the system
station='Ground '
if gpio.event detected(4): # when the switch is set on
radiance and pin 4 is driven the system will shut down
os.system('sudo shutdown -h now'")
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## Using time in file naming scheme for all three channels
and spectrometers. Once the data from each spectrometer is collected a
LED on pin 23 will start blinking

number files before measurement=len(os.listdir(DataFolder))## This
value is used later to know if new files are being created

pretime=strftime ("3d%m%YSHEMES" ,time.localtime()) #Reading
the time and date from the RPi clock

txtfilename=DataFolder+'/'+station+' '+pretimet+serialnum+'ROL1".txt"'

b=Lo