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New Easy-Plane CPN − 1 Fixed Points

Jonathan D’Emidio and Ribhu K. Kaul
Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506-0055, USA

(Received 24 October 2016; published 3 May 2017)

We study fixed points of the easy-plane CPN−1 field theory by combining quantum Monte Carlo
simulations of lattice models of easy-plane SUðNÞ superfluids with field theoretic renormalization group
calculations, by using ideas of deconfined criticality. From our simulations, we present evidence that at small
N our lattice model has a first-order phase transition which progressively weakens asN increases, eventually
becoming continuous for large values ofN. Renormalization group calculations in 4 − ϵ dimensions provide
an explanation of these results as arising due to the existence of anNep that separates the fate of the flows with
easy-plane anisotropy. When N < Nep, the renormalization group flows to a discontinuity fixed point, and

hence a first-order transition arises. On the other hand, forN > Nep, the flows are to a new easy-planeCPN−1

fixed point that describes the quantum criticality in the lattice model at largeN. Our lattice model at its critical
point, thus, gives efficient numerical access to a new strongly coupled gauge-matter field theory.

DOI: 10.1103/PhysRevLett.118.187202

The emergence of gauge theories in quantum spin
Hamiltonians has played an important role in theoretical
descriptions of novel magnetic phenomena over the past
few decades. Recently, by exploiting advances in simu-
lation algorithms for quantum antiferromagnets [1], the
connections between magnetism and gauge theories have
facilitated controlled numerical access to otherwise poorly
understood strongly coupled gauge theories; the most
prominent example is the study of N-component scalar
electrodynamics (also called CPN−1) that emerges right at
the direct continuous transitions between magnetic and
translational-symmetry-breaking “valence bond solid”
(VBS) states in SUðNÞ magnets, a phenomenon popularly
called “deconfined critical points” (DCPs) [2].
Two prominent physical systems where the ideas of DCPs

apply are lattice superfluids and antiferromagnets, each
giving rise to its own variant of the CPN−1 theory. In the
context of superfluids (SFs), the appropriate description is a
“easy-plane” CP1 field theory [2,3] which applies to the
superfluid SF-VBS critical point in S ¼ 1=2 XY models [4].
The easy-plane case was studied intensely initially, since a
self-duality suggested that this could be the best candidate for
a DCP [5]. Subsequent numerical work has concluded,
however, that this transition is first order, both in direct
discretizations of the field theory [6,7] as well as in
simulations of the quantum antiferromagnet [8]. The easy-
plane case is in sharp contrast to the case of antiferromagnets
with SUðNÞ symmetry, where a striking quantitative agree-
ment between detailed field theoretic calculations [9–12] and
numerical simulations has been demonstrated [13–15].
The persistent first-order behavior in the XY-like models

and its striking difference from the continuous transitions
found in the SUðNÞ symmetric case has been unexplained
so far, despite the central role of both systems in our
understanding of the DCP phenomenon. In this work, we

address this issue by formulating an extension of the easy-
plane XY symmetry of SU(2) to general SUðNÞ. Our
approach allows for a study of the first-order transition
for arbitrary N using both lattice simulations of an easy-
plane-SUðNÞ [ep-SUðNÞ] model as well as renormalization
group (RG) calculations on a proposed easy-plane-CPN−1

[ep-CPN−1] field theory: We find that the first-order
transition in the ep-SUðNÞ models found for N ¼ 2 in
previous work persists for larger N. A careful analysis,
however, shows that the first-order jump quantitatively
weakens as N increases. RG ϵ-expansion calculations find
that the field theory hosts a new ep-CPN−1 fixed point only
for N > Nep, suggesting that the transition can eventually
become continuous. Consistent with this result, we find that
the transition in our lattice model turns continuous around
N ≈ 20. For N ¼ 21, we provide a detailed scaling analysis
of our numerical data that confirms a continuous transition
in a new universality class. Our work clarifies and signifi-
cantly extends the discussion of the DCP phenomenon in
easy-plane magnets and its relation to the symmetric case.
Easy-plane model and field theory.—We introduce a

family of bipartite ep-SUðNÞ spin models that are exten-
sions of the quantum XY model to larger N akin to those
studied by us recently [8]. They are written in terms of the
Ta
i , the fundamental generators of SUðNÞ on site i:

Hep ¼ −
J1⊥
N

X
a;hiji

0Ta
i T

a�
j −

J2⊥
N

X
a;⟪ij⟫

0Ta
i T

a
j : ð1Þ

The
P0

denotes that the sum on a is restricted to the
N2 − N off-diagonal generators [a sum on all a would give
the SUðNÞ model]. The hiji (⟪ij⟫) indicates nearest (next-
nearest) neighbors on the square lattice which are on
opposite (the same) sublattices and in conjugate (the same)
representations. Hep is an easy-plane deformation of the
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SUðNÞ J1-J2 model [13]; it has a global Uð1ÞN−1 × SN [we
call this ep-SUðNÞ] in addition to time reversal and lattice
symmetries. As we shall show, the model harbors in its
phase diagram the SF-VBS transition for all N > 5. Hep is
Marshall positive for J1⊥, J2⊥ > 0 [16]; we simulate it with
the stochastic series expansion quantum Monte Carlo
algorithm on an L × L lattice at an inverse temperature
β [21].
To obtain the effective field theory (Lep) for Eq. (1), we

start with the CPN−1 model (Ls) proposed to describe DCP
in antiferromagnets with SUðNÞ symmetry [2,3] and
deform it using an anisotropy operator (Lv), so that Lep ¼
Ls þ Lv with

Ls ¼
X
α

jð∂μ − ieAμÞzαj2 þ
1

2
ð ~∇ × ~AÞ2

þ r
X
α

jzαj2 þ
u
2

�X
α
jzαj2

�
2

;

Lv ¼
v
2

X
α

jzαj4; ð2Þ
where the zα are N complex fields coupled to a U(1) gauge
field, Aμ. The term v breaks the SUðNÞ symmetry of Ls to
the same ep-SUðNÞ symmetry found above for Eq. (1). It is
known from the large-N expansion that, for N larger than
some finite Ns, in d ¼ 3 the CPN−1 field theory Ls has a
finite coupling fixed point (FP) [22,23]. Below, we will
address the fate of these FPs for Lep.
Weakening first-order transition.—We begin with a

numerical study of Eq. (1). We have shown [8] that the
ep-SUðNÞ models map to a certain loop model. We can
hence calculate two useful quantities to probe the magnetic
ordering: the average of the square of the spatial winding
number of the loops hW2i and a normalized magnetic order
parameter m2⊥ ¼ N=½ðN − 1ÞL4�Pa

0P
i;j
~Ta
i
~Ta
j [where the

sum on a is on the off-diagonal generators, i and j are
summed on the entire lattice, and ~T ¼ TðT�Þ on the AðBÞ
sublattice], which although off diagonal in the jαi basis can
be estimated by measuring a particular statistical property
of the loops [16]. We have normalized m2⊥ so that the
maximum value it can take is 1 for all N, allowing for a
meaningful comparison across different N.
Previously, we found that the SF-VBS transition is first

order for N ≤ 5 [8]. In Fig. 1 we present data that show the
first-order behavior persists as N is increased up toN ¼ 10.
A hitherto unanswered but important question is whether the
first-order jump weakens as N increases. We find evidence
in favor of this assertion, since the histogrampeaks get closer
as N is increased. Beyond N ≈ 16, we have found no
evidence for double-peaked histograms. To carry out a more
quantitative analysis, which has been popular in the study of
the DCPs [6], we turn to hW2i (which is related to the spin
stiffness as βρs). At a first-order transition, one expects a
linear divergence of hW2i as one approaches the phase
transition, since ρs stays finite. Any sublinear behavior

indicates that the transition is continuous, since ρs vanishes
in the thermodynamic limit [24]. In Fig. 2,we present a study
of the crossing of hW2i. We find clear evidence for the
expected linear behavior at moderate values of N. As N is
increased beyond aboutN ≈ 16, we find a very slow growth
of hW2i inconsistent with linear behavior but consistentwith
what has been found in SUðNÞmodels, where the transition
is believed to be continuous [24,25]. This study provides
clear evidence that the first-order jump decreases as N
increases, possibly becoming continuous.
RG analysis.—The weakening of the first-order SF-VBS

transitions at larger N raises important questions: Is the
transition first order for all N, or does it become continuous
beyond some finite Nep? If the transition becomes con-
tinuous, is it a new universality class of an ep-CPN−1, or is
the anisotropy irrelevant resulting in CPN−1 criticality for
the easy-plane models?
To answer these questions, we compute the RG flows of

Eq. (2) in 4 − ϵ dimensions. We will work in the critical
plane where r ¼ 0, the r operator being strongly relevant at
the tree level will continue to be relevant in the ϵ expansion.
To leading order [assuming u, v, and e2 are OðϵÞ], we find
the following RG equations:

de2

d ln s
¼ ϵe2 −

N
3
e4;

du
d ln s

¼ ϵu − ðN þ 4Þu2 − 4uv − 6e4 þ 6e2u;

dv
d ln s

¼ ϵv − 5v2 − 6uvþ 6e2v; ð3Þ
which for v ¼ 0 reduce to the well-known RG equations for
the CPN−1 model [22,26]. Given the relevance of r, a

FIG. 1. First-order transitions for moderate values of N. The
upper panels shows Monte Carlo histories (arbitrary units) of the
estimator for m2⊥ for N ¼ 6 and 10. The bottom panel shows
histograms of m2⊥ taken at L ¼ 50 for J2=J1 ≡ g ¼ 0.250, 0.876,
1.58 for N ¼ 6, 8, 10, respectively, clearly showing double-
peaked behavior. The double-peaked behavior persists in the
T ¼ 0 and thermodynamic limit [16].
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generic critical point of ep-CPN−1 would be a fixed point of
Eq. (3) with all three eigendirections in e2-u-v space
irrelevant. The FP structure and flows of Eq. (3) (shown
in Fig. 3) change at two values of N: Ns and Nep with
Ns < Nep. For N < Ns [not shown], there are no FPs with
e2 ≠ 0, and a generic flow runs away to a first-order
transition. For N > Ns, a v ¼ 0 FP “s” appears, which
describes the SUðNÞ DCP phenomenon, but at which v is
always relevant. There are two distinct fates of the flowwith
v ≠ 0: For Ns < N < Nep [see Fig. 3(a)], v causes a run-
away flow to a discontinuity FP; i.e., the phase transition
turns first order. On the other hand, for N > Nep [see
Fig. 3(b)], a new fixed point “ep” appears. At this FP, all
eigendirections in the e2-u-v space are irrelevant, and hence
r is the only relevant perturbation. ep hence describes a
generic continuous deconfined SF-VBS transition inmodels
of the formof Eq. (1). In the leading order of the ϵ expansion,
we have Ns ≈ 183 [22] and Nep ≈ 5363 (independent of ϵ).
From previous work on the symmetric case, it is well known
that these leading-order estimates are unreliable in d ¼ 3:

(a)

(c)

(b)

FIG. 2. Scaling of the spatial winding number square hW2i.
(a) Crossing for N ¼ 6. (b) Crossing for N ¼ 21. (c) Value at the
L and L=2 crossing of hW2i for a range of N normalized to the
crossing value at L ¼ 20 for each N. For the smaller N, a clear
linear divergence is seen as expected for a first-order transition
(ergodicity issues limit the system sizes here). For larger N, a
slow growth is observed very similar to what has been studied in
detail for the SU(2) case and interpreted as evidence for a
continuous transition with two length scales [25], like we have
here. The data were taken at β ¼ 6L, which is in the T ¼ 0
regime [16].

(a) (b)

FIG. 3. RG flows of the ep-CPN−1 model for (a)Ns < N < Nep
and (b) N > Nep at leading order in 4 − ϵ dimensions obtained by
numerical integration of Eq. (3). Fixed points are shown as bold
dots; we have labeled only those significant to our discussion.
The flows in the v ¼ 0 plane have been obtained previously [22]
and include the “s” fixed point that describes DCP in SUðNÞ
models (red dot). While the flows have many FPs [16], a DCP of
the ep-SUðNÞ spin model must have all three eigendirections in
the e2-u-v irrelevant. For N < Nep there are no such FPs; there is
hence a runaway flow to a first-order transition. For N > Nep two
FPs emerge: “m” is multicritical and “ep” is the new ep-DCP that
describes the SF-VBS transition (yellow dot). The Gaussian fixed
point at the origin has been labeled “g” for clarity. See [16] for
further details.

(a)

(b)

FIG. 4. Correlation ratios close to the phase transition for
N ¼ 21. (a) The SF order parameter ratio Rm2⊥ shows good
evidence for a continuous transition with a nicely convergent
crossing point of g ¼ 6.505ð5Þ. (b) RVBS shows a crossing point
that converges to the same value of the critical coupling. We note,
however, that the crossing converges much more slowly (see the
text). The inset shows the convergence of the crossings points of
L and L=2 of SF and VBS ratios. Note their convergence to a
common critical coupling indicating a direct transition. The data
shown in Figs. 4 and 5 were taken at β ¼ 6L, which is in the
T ¼ 0 regime [16].

PRL 118, 187202 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending
5 MAY 2017

187202-3



Indeed, in the next-to-leading order, Ns becomes negative
for ϵ ¼ 1 [27,28]. Ultimately, the values of Ns;ep must be
obtained from numerical simulations. Nonetheless, it is
expected that the basic structure of fixed points and flows
obtained here using the ϵ expansion are reliable. Based on
our study, we make the following conclusions: Even in a
regimewhere there is a symmetric fixed point (N > Ns), for
Ns < N < Nep, easy-plane anisotropy will drive the DCP
first order. For N > Nep, a new FP emerges. Easy-plane
anisotropy then results in a continuous SF-VBS transition in
a new ep-CPN−1 universality class.
Study of a fixed point.—Having presented evidence from

the ϵ expansion that with increasing N the transition should
turn continuous and in a new universality class, it is of
interest to study the scaling behavior at large N. We will
focus on N ¼ 21, where we have found no evidence for
first-order behavior on the largest system sizes that we have
access to. We construct dimensionless ratios Rm2⊥ and
RVBS which go to 1(0) in their respective ordered (dis-
ordered) phases. Figure 4 shows our data for N ¼ 21. The

large correction to scaling observed in the VBS data is
expected: According to the DCP theory, the VBS anoma-
lous dimension ηVBS ∝ N, which causes the leading VBS
correlation functions to decay very rapidly at this large
value of N. This makes it hard to separate the leading and
subleading behavior on the available system sizes. Since
the SF data show a good crossing, we carry out a full
scaling analysis in Fig. 5. The data for both m2⊥ and Rm2⊥
collapse nicely without the inclusion of corrections to
scaling [29,30]. They lead to consistent values of critical
couplings and scaling dimensions, lending support for a
continuous transition ep-CPN−1 fixed point emerging at
large N.
In conclusion, we have studied new lattice models for

deconfined criticality with easy-plane SUðNÞ symmetry.
We find persistent first-order behavior in these lattice
models at small to intermediate N, in sharp contrast to
the continuous transitions found in the symmetric models
for the same range of N. As N increases, the first-order
easy-plane transition weakens and eventually becomes
continuous. Our RG flows provide a way to understand
both the first-order and shift to continuous transitions: The
easy-plane anisotropy is always relevant at the symmetric
CPN−1 fixed point; for N < Nep, there is no easy-plane
fixed point, and hence the anisotropy drives the transition
first order. For N > Nep, a new fixed point emerges,
resulting in a continuous transition in a new easy-plane-
CPN−1 universality class, which is an example of a strongly
coupled gauge-matter field theory. Our lattice model
provides a sign-free discretization of this field theory that
is amenable to efficient numerical simulations. We leave for
future work the determination of a precise value of Nep,
comparisons of the universal quantities with easy-plane
large-N expansions, and a comparative study of the scaling
corrections between the easy-plane and symmetric cases. It
would be of interest to complement our work with studies
of field theories such as Eq. (2) using the conformal
bootstrap [31].
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DMR-150037.
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