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ABSTRACT OF THESIS 

 

 

 

 

ELUCIDATING THE ROLE OF NIDOGEN  

IN THE FUSION OF THE CHOROID FISSURE 

 

 

In the developing embryo, the timely fusion of opposing epithelial sheets into one 

uniform layer denotes the completion of several developmental events. Failure of this 

epithelial sheet fusion event (ESF) within the choroid fissure (CF) is associated with the 

congenital disorder Ocular Coloboma, and is one of the leading causes of pediatric 

blindness. A requirement for a highly coordinated dismantling of the basement membrane 

(BM) to allow for fusion to occur is undoubted, however the underlying mechanisms of 

this process are poorly understood. Due to its BM crosslinking capabilities, I have 

hypothesized that the regulation of nidogen plays a crucial role in the disassembly of the 

BM prior to ESF. Whole mount in situ hybridization for all four BM components has 

revealed that expression of nidogen decreases prior to that of other BM components. 

Additionally, preliminary IHC data has revealed nidogen and collagenIV deposition 

within the CF. Further, knock-down of nidogen1a and 1b, or the expression of dominant 

negative nidogen1b resulted in gross morphological, as well as BM organization defects 

in developing eyes. Together, these data suggest that nidogen plays a role in regulating 

the integrity of the BM of the eye and may play a role in its disassembly prior to ESF. 

 

KEYWORDS: nidogen, choroid fissure, epithelial fusion, basement membrane, ocular 

coloboma 
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CHAPTER ONE 

INTROUCTION AND BACKGROUND 

Introduction 

  

Organogenesis of the vertebrate eye is a highly complex and remarkably 

conserved developmental event. Perhaps the most important organ for sensory 

perception, the development, physiology, and neural circuitry of the eye have been 

extensively studied over the course of the last century. However, owing to the intricacy of 

the genetic and molecular mechanisms that govern eye development, along with the 

significant clinical implications of aberrations within these processes, vision research 

remains an expanding field. My thesis work has focused on aberrations of epithelial sheet 

fusion (ESF) of the choroid fissure (CF) which when fails is associated with the 

congenital blinding disorder ocular coloboma, one of the leading causes of pediatric 

blindness (Hatton, 2007 and Owochei et al. 2000).  

Ocular coloboma is sometimes associated with multi-syndromic disorders that are 

also, in part, due to the failure ESF during normal development. These disorders often 

display, Coloboma, Heart defects, Atresia of the choanae, Retardation of Growth and 

development, and Ear abnormalities and are referred to as CHARGE syndrome (Guercio, 

2007). Although the phenotypic consequences of failed ESF are readily observable in 

developed tissue, and are clinically detrimental, the molecular mechanisms underpinning 

ESF remain elusive. To expand the etiological purview of coloboma, and thereby 

increase our understanding of the molecular mechanisms that govern ESF in other 

tissues, I have devoted my graduate training to studying the development of the visual 

system. More specifically, I have endeavored to elucidate the mechanisms responsible for 

requisite basement membrane (BM) remodeling prior to ESF using the eye as a model.  

  

 

Vertebrate Eye Development  

 

The vertebrate eye is derived from three major populations of cells, the 

neuroepithelium, the surface ectoderm, and neural crest, each giving rise to specific 
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ocular structures of the mature eye (Fuhrmann et al. 2010). The initiation of vertebrate 

eye development begins with the specification of presumptive eye tissue at the anterior 

neural plate deemed the eye field. There has been multiple described eye field 

transcription factors (EFTFs) whose overlapping patterning and self-regulating feedback 

mechanisms are necessary for the patterning and maintenance of this specified tissue. 

Work conducted in Xenopus suggests the expression of the transcription factor ET, a 

member of the Tbx2 subfamily of transcription factors, is responsible for inducing the 

expression of Rx (retinal homeobox gene) ultimately leading to the upregulation of a suite 

of EFTFs including a master regulator of eye development Pax6, as well as Six3, Lhx2, tll 

and Optx2 (Zuber et al. 2003).  

Studies in zebrafish have shown the expression of the transcription factor Rx3 in 

the anterior forebrain biases cells from a telencephalic fate toward eye field identities 

(Stigloher et al. 2006). Further, Rx3 has been shown to negatively regulate canonical 

WNT signaling, a major regulator of anterior-posterior patterning, thereby suppressing 

posterior fates at the anterior neural plate (Yin et. al 2014).  Therefore, it is not surprising 

that homozygous zebrafish mutants for Rx3 lack eyes albeit they do develop a lens of 

reduced size (Loosli et al. 2003).  

Following the specification of the eye field, this singular domain of tissue then 

splits bi-laterally partitioning tissue that will later give rise to two optic vesicles. The 

critical signaling mechanism responsible for this bilateral split occurs as a result of Sonic 

Hedgehog (Shh) signaling repressing Pax6 expression in the center of the eye field. 

Targeted knockout of Shh in mice results in cyclopia as a result of the failure of eye field 

separation (Chiang et al. 1996). Furthermore, using the zebrafish model, it has been 

shown that Shh is the direct target of the homeobox transcription factor Six3 acting 

immediately upstream and promoting the expression of Shh (Geng et al. 2008). As such, 

Shh and Six3 are both essential factors in the separation of the eye field ultimately 

leading to the development of two optic vesicles.  

The first observable morphogenetic indication of eye development occurs after 

the splitting of the eye field as a bi-lateral evagination of optic vesicle from the 

embryonic ventral forebrain toward the overlying surface ectoderm. This evagination 

event is concurrent with the expression of Rax/Rx which is thought to, in part, mediate 
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the elongation and polarization of retinal progenitor cells located laterally within the eye 

field toward the midline (Rembold, 2006). In medaka (Oryzias latipes), these elongated 

and polarized lateral retinal progenitor cells will migrate toward the midline and 

ultimately reverse course migrating again laterally toward the forming optic vesicle 

(Rembold, 2006). In Rx3 knockout zebrafish, these cellular movements are inhibited and 

the eye fails to evaginate ultimately leading to anophthalmia (Loosli et al. 2003 and 

Mathers et. al 1997) suggesting Rx gene expression and lateral cellular migration are key 

drivers of the evagination of the optic vesicle. In addition to changes in cellular 

morphology and migration, evagination of the optic vesicle is marked by the deposition 

of a laminin rich BM encasing the eye field (Ivanovitch et al. 2013 and K.K Svoboda et 

al. 1987).  

Following evagination, the optic vesicle will continue to move laterally from the 

midline until it contacts the overlying surface ectoderm (Zheng et al. 2000). It is at this 

point, the optic vesicle will both invaginate to become the bi-layered optic cup and 

induce the overlying surface ectoderm to begin to form the lens (as reviewed by Fuhrman 

2010 and Graw, 2010). The induction of the lens from the surface ectoderm requires an 

intricate crosstalk between two types of tissues. The process of lens induction by the 

optic vesicle is a highly complex and well-studied developmental event and has been 

condensed for the purposes of this review (Fig.1). 

 As the optic vesicle contacts and flattens along the surface of the competent 

presumptive lens ectoderm, it will release inductive signals instructing the creation of the 

lens. Signaling factors secreted by the optic vesicle include, Delta2, Bmp4 and Fgf8. 

Following their release these signaling factors trigger the expression of both lens 

specification and differentiation genes such as Pax6, L-maf, and FoxE3 (Ogino et al. 

2012). Reciprocally, in mice, it has been determined that Fgfs emanating from the surface 

ectoderm instruct cells of the distal optic vesicle to assume a neuronal fate via the 

promotion of Vsx2 (formerly Chx10) and subsequent down regulation of MITF (Horsford 

et al. 2004, Hyer et al. 1998, Nguyen and Arnhieter 2000).  

The newly formed bi-layered optic cup can be classified into two distinct 

populations of progenitor cells separated by the optic lumen. Cells of the proximal layer, 

under the instruction of MITF, will flatten into squamous epithelium and give rise to the 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5742352/#B30


 4 

retinal pigmented epithelium (RPE) (Burmeister et al. 1996).  The distal layer, 

responding to the expression of Vsx2, will remain columnar, thicken, and later 

differentiate into the cell types that populate neural retina (NR) (Li et al. 2000 and 

Nguyen et al. 2000). As the optic cup is formed, the presumptive RPE layer will decrease 

in overall size and the presumptive NR will enlarge as a result of migratory rim 

involution and proliferation of presumptive RPE cells at the ventral margin of the optic 

cup to populate the NR (Li et al. 2000). 

Cells within the distal layer of the optic cup will later differentiate and stratify 

into the six types of retinal neurons giving rise to the light sensing tissue at the back of 

the eye. These include, the retinal ganglion cells, amacrine cells, horizontal cells, bipolar 

cells, and rod and cone photoreceptors. In addition to the six neuronal cell types, the 

retina also houses Müller glial cells. Retinal progenitor cells will differentiate in a 

stepwise manner into each retinal cell type generating a mature laminated retina (Schmitt 

et al. 1999, Cepko et al. 1996, and Prada et al. 1991). The mature neural retina is 

comprised of three distinct layers of neurons, the outer nuclear layer, the inner nuclear 

layer, and the ganglion cell layer. The outer nuclear layer houses the light sensing rod and 

cone photoreceptors. Bipolar cells, within the inner nuclear layer, integrate and propagate 

signals from the photoreceptor cells, along with amacrine and horizontal cells, to the 

ganglion cells. Ganglion cell’s axonal projections, bundled within the optic nerve 

(previously the optic stalk) synapse with neurons within the optic tectum and ultimately 

visual processing occurs (Masland, 2012 and Graw, 2010).  

Although the retinal machinery is responsible for detecting and propagating 

signals provided by light, it is not the only structure of the eye responsible for visual 

acuity. The morphogenesis of anterior structures of the eye play an integral role in the 

structure and function of the visual system via focusing light onto the back of the retina. 

These structures include the cornea, lens, iris, ciliary body, and the iridocorneal angle 

(Soules and Link, 2005). These structures are thought to arise from a population of highly 

migratory neural crest cells termed the periocular mesenchyme (POM) (Creuzet et al. 

2005 and Gage et al. 2005). These neural crest derivatives express POM specific 

transcription factors such as, Foxc1b, Foxd3, Pitx2, Lmxb1 and the neural crest marker 

Sox10 and all have been indicated to play roles in the migration to, and development of 
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the anterior segment (Seo et al. 2017, Dutton et al. 2001, Bohnsack et a. 2012 and 

McMahon et a. 2009).  

The optic stalk, located ventrally in the retina, connecting the optic cup to the 

forebrain will later house the axons of the retinal ganglion cells to become the optic 

nerve. Differentiation of the optic stalk from the RPE and NR is accomplished by the 

mutual antagonizing effects of Pax2 and Pax6 which have been determined to demarcate 

the boundary between tissues of the optic stalk and the optic cup (Schwarz et al. 200). By 

driving the ectopic expression of Pax6 using a Pax2 promoter in the developing mouse 

embryo, Schwarz and colleagues observed an infringement of optic cup tissue into the 

optic stalk. In homozygous Pax6 mutant mice they detected an expanded expression area 

for Pax2 and in the reciprocal experiment, they detected the opposite.  

The choroid fissure is a naturally occurring transient gap separating the two 

epithelial lobes of the optic cup spanning the length of the optic stalk (Schmitt and 

Dowling 1994) (Fig. 2). The fissure allows for the migration of vasculature precursors to 

enter into the eye through and subsequently generate the transient hyaloid vasculature 

network (Hartsock et al. 2014 and Saint-Geniez and D’amore, 2004). Ultimately, to 

complete the generation of the eye’s spheroid anatomy and a fully functional optic stalk 

requires complete closure of the CF via epithelial sheet fusion (ESF).  

 

 

Fusion of the Choroid Fissure  

 

 The cellular mechanisms of ESF of the choroid fissure have begun to be described 

using the zebrafish model by Andrea James and colleagues (James et al. 2017). Using 

confocal microscopy and live imaging, James et al. were able to determine several 

important hallmarks of ESF of the zebrafish choroid fissure. On a morphological level, 

ESF of the choroid fissure consists of three major steps (Fig. 3). First, the lobes of the eye 

destined to fuse align in juxtaposition separated by the basement membrane surrounding 

each epithelial sheet within the interstitial space. Second, the basement membrane is 

remodeled and displaced to allow direct cell contact of the two epithelia. Finally, cell 

contact is made and the fusion of two sheets into one continuous cellular layer occurs.  
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Experimentally, by using a laminin-111 antibody, it was determined that the 

breakdown of BM precedes tissue fusion and initiates around 34hpf. James reported that 

the breakdown of BM components occurs in a bidirectional manner beginning centrally 

in the eye and proceeding both distally (towards the lens) and proximally (toward the 

forebrain). James reports that the basement membrane becomes mostly undetectable 

within the choroid fissure at 48hpf.  

To examine at what point tissue fusion occurs, James and colleagues utilized both 

GFP tagged cellular membranes for a live analysis and immunohistochemistry targeting 

-catenin as a proxy for adheren junctions. Notably, like BM breakdown, James et al, 

suggest that tissue fusion progresses in a bidirectional manner beginning in the center of 

the CF and moving outward however this does not occur until several hours after the BM 

is removed. Ultimately these findings provide morphological evidence, that basement 

membrane removal is completed prior to tissue fusion and therefore a necessary step in 

ESF of the choroid fissure.  

Several projects over the last two decades have generated data describing both 

transcription and signaling factors required for proper closure of the choroid fissure. Of 

the genes discovered to play a role in ESF of the choroid fissure Pax2 is perhaps one of 

the most well studied (Sanyanusin et. al 1995, Torres et al. 1996, and Bower et al. 2012). 

Not surprisingly, in both the murine and zebrafish model Pax2 is expressed in the ventral 

half of the optic cup, the region in which the choroid fissure is located (Nornes et al. 1999 

and Krauss et al. 1991). In humans, mice and zebrafish, null mutations in the Pax2 gene 

result in coloboma of the eye, as a result of improper choroid fissure closure, as well as 

defects in the brain, eye, and kidney suggesting Pax2 function is conserved across 

vertebrates (Favor et. al 1996). Using the zebrafish model, it was determined that the 

upstream regulator of Pax2 is Shh which is a known ventralizing signal of neuro-

ectodermal tissue (Lupo et a. 2016 and Ekker et al. 1995).  

In the zebrafish, retinoic acid (RA) has also been shown to play a role in the 

patterning of the ventral region of the eye, promoting Pax2 expression, and instructing 

the development of the optic stalk (Hyatt et al. 1996). In fact, when Hyatt and colleagues 

ectopically exposed dorsal regions of the developing zebrafish retina to high levels of 

RA, they were able to induce the expression of Pax2 ultimately generating ventral 
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features such as an in-folding tissue resembling the choroid fissure. Examined together, 

these data suggest that proper development and fusion of the choroid fissure, at least in 

part, relies on both the correct dorsal-ventral patterning of the optic cup as well as 

expression of Pax2. 

In addition to Pax2, the interplay between Shh signaling and both Vax1 and Vax2 

transcription factors have been indicated to be required for ESF in the choroid fissure 

(Take-uchi et al. 2003 and Barbieri et al. 2002). Both Vax1 and Vax2 gene expression 

occurs in overlapping domains encompassing both the area of the optic stalk and ventral 

retinal tissue. Like in Pax2 mutants, abrogation of Vax1, Vax2 or a combination of both 

leads to failed ESF of the choroid fissure and coloboma (Take-uchi et al. 2003). Also like 

Pax2, the ventralizing signaling of Shh has been shown to upregulate the expression of 

both Vax1 and Vax2 (Take-uchi et al. 2003). Together, these studies suggest both the 

ventralizing signals of RA and Shh and the transcription factors Pax2 and Vax1/2 are, in 

some way, responsible for the generation, maintenance, and proper development of the 

optic stalk and ESF of the choroid fissure.  

Moreover, in addition to RA and Shh signaling, recent studies in both mice and 

zebrafish indicate the antagonizing effects of TGF2 induced gene expression on Bmp 

(bone morphogenetic protein)  signaling in part supports the development and subsequent 

closure of the choroid fissure (Knickmeyer et al. 2018). TGF2 mutant mice have been 

shown to display failed choroid fissure fusion and coloboma (Knickmeyer et al. 2018, 

and Rahaal et a. 2009). Knickermeyer and colleagues determined that in TGF2 

knockout mice the expression of two Bmp antagonists at the choroid fissure margins, 

gremlin and follistatin was reduced. In both Xenopus and the murine model it has been 

determined that Bmp4 is involved in the dorsal patterning of the optic cup (Behesti et al. 

2006 and Sasagawa et al. 2004). Therefore, it is likely that TGF2 is involved in 

maintaining proper dorsal-ventral polarity thereby supporting the proper closure of the 

choroid fissure via the upregulation of Bmp inhibitors in the ventral eye. 

Owing to the genetic complexity of ESF of the choroid fissure, there are several 

other transcription factors and signaling pathways that have been shown play important 

roles in this event. In addition to those discussed, CHD7 (Hurd et. al 2007), Sox11 and 

Sox4 (Pillai-Kastoori et al., 2014 and Wen et al. 2015), YAP1 (Williamson et al. 2014) 
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and several other, have also been indicated to regulate choroid fissure closure. However 

broad the scope of genetic and signaling data known to date describing ESF of the 

choroid fissure, the actual molecular framework and mechanisms required to carry out 

this process remain elusive.  

 

 

Coloboma 

 

In the event that ESF of the choroid fissure fails to occur, the resulting clinical 

phenotype, ocular coloboma arises. As one of the leading causes of pediatric blindness, it 

has been estimated that 3-11% of blind children worldwide have ocular coloboma 

(Owochei et al. 2000, Stoll et al. 1992 and MacDonald 1965). According to the NIH, 

coloboma occurs in 1/10,000 births however as a result of its range of phenotypic 

severity, likely often goes undiagnosed (nih.gov/condition/coloboma).  Although 

significant advancements have been made in the elucidation of the genetic etiology of 

coloboma, roughly +80% of patients with the disease have an unidentified causative 

genetic mutation (Chang et al. 2006, Fitzpatrick and van Heyningen, 2005 and Gregory-

Evans et al. 2004). Therefore, it is paramount to increase our understanding of the 

molecular mechanisms underpinning this ESF event due to the likelihood that deviations 

within these processes are responsible for the development of coloboma in a potentially 

large pool of patients.  

 

 

Epithelial Sheet Fusion 

 

In the developing embryo, the timely fusion of two opposing epithelial sheets into 

one uniform layer denotes the completion of several developmental events. In addition to 

the choroid fissure, ESF occurs in the developing palate, heart, neural tube, urethra, 

eyelids, diaphragm, and uterine ligaments. Although the molecular basis of epithelial 

fusion events in different organs have some tissue specific mechanisms, many seem to be 

conserved. These include, the upregulation of adhesion molecules, apoptosis, epithelial 
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mesenchymal transition, cellular migration, cell signaling, and the use of actin based 

cellular protrusions (Ray and Niswander, 2012).  

A major hallmark of epithelial sheet fusion is the mechanical movement of 

opposing epithelia into juxtaposition. This migratory behavior is, at least in part, the 

result of actin based cellular protrusions resembling lamellipodia and filopodia which are 

the first processes to make contact across tissues during ESF (Pai et al. 2012). Cellular 

protrusions have been indicated in several epithelial fusion events across species 

including, dorsal closure in Drosophila, and both neural tube and palatal closure in mice 

(Millard et al. 2008, Taya et al. 1999, Millicovsky and Johnston 1981, and Geelan et al. 

1976). It is likely that these protrusions play a role in facilitating the biomechanical force 

necessary to bridge the anatomical gap separating fusing tissues, and to ‘hold’ tissues in 

place to allow for subsequent membrane remodeling. It is likely the eye, as other fusing 

tissues, employs actin based protrusions to complete the fusion process however, it has 

yet to be determined.  

Although the patterns of signaling pathways employed by differing tissue types 

for ESF are often unique, there are notable overlaps that warrant mentioning. For 

example, ESF of the palate, neural tube, and heart all have been shown to require ephrin 

mediated signaling (Stephen et al. 2007, Holmberg et al. 2000, and Orioli et al. 1996,). 

Both ephrin receptors and ephrin ligands are membrane linked receptor tyrosine kinases 

and when activated induce intracellular responses as a result of both forward and reverse 

signaling (Murai et al. 2003). It is also worth noting that ephrins, unlike other receptor 

tyrosine kinases, do not appear to primarily target the nucleus but have been shown to 

dramatically alter the cytoskeleton of the cell and regulate cellular shape and movement 

(Murai et al. 2003). Moreover, rearrangements in cytoskeletal networks have been shown 

to play significant roles in both epithelial fusion of developing tissues and in the context 

of wound healing (Woolner et al. 2005 and Jacinto et al. 2001).  

In all fusing tissues, adhesion of epithelial sheets following contact is paramount 

to successfully completing ESF. Studies in mice suggest the transcription factors 

Grainyhead-like 2 and Grainyhead-like 3 (Grhl2 and Grhl3) may regulate ESF via the 

transcriptional regulation of adhesion molecules (Pyrgaki et al. 2011, Werth et al. 2010 

and Rifat et al. 2010). Knockout Grhl2 mice display multiple ESF defects across tissues, 
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including the neural tube, the body wall, the palate and even in the choroid fissure 

(Pyrgaki et al. 2011). Upon further analysis of Grhl2 mutant mice via microarray it was 

determined that there were marked changes in E-cadherin expression as well as several 

genes involved in cell adhesion such as, claudin 4, 6, and 7, epithelial cell adhesion 

molecule and desmoplakin . Cadherins are a family of cell receptors, who align in a 

zipper-like fashion and have been shown to play roles in cell adhesion, polarity, and 

tissue morphology (Shapiro et al. 1995 and Takeichi, 1991). Examined together, it is 

likely that the timely regulation of adhesion molecules including cadherins, play a key 

role in facilitating and completing ESF across tissues.  

Perhaps one of the most understudied aspects of ESF is the requirement for BM 

remodeling and removal to allow for cell-cell contact and subsequent adhesion. Although 

BM removal to allow for tissue fusion is undeniable, the cellular mechanisms regulating 

this process are still largely unknown. Studies in mice and zebrafish posit BM 

degradation corresponds with the migration of vasculature precursor neural crest cells 

through the choroid fissure (Hero et al. 1990 and James et al. 2016). Though this 

correlation exists, and speculations can be made regarding the mechanisms of these 

interactions, BM degradation in ESF remains a largely unknown process. Developing a 

better understanding of how BM remodeling occurs to allow for subsequent fusion will 

provide valuable insight into the mechanistic etiology of coloboma.  

 

 

Basement Membrane Structure and Function 

 

BMs are extracellular sheet-like matrices comprised of four major components, 

laminin, collagenIV, perlecan, and nidogen. These four components self-assemble into 

supramolecular lattices that serve both structural and physiological purposes for the 

epithelia that they support (Yurchenco et al. 1990). Emerging roughly 500-700 million 

years ago along with the evolution of metazoan species, BM components are 

evolutionarily the oldest extracellular matrix proteins. Relative to their intracellular 

protein counterparts however, BM proteins are evolutionarily young (Hynes 2012). 

Genomic comparisons conducted across numerous species have determined remarkable 
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conservation of all four major basement membrane proteins even in distantly related 

phyla (Hutter et al. 2000, and Hynes and Zhao, 200). Located at the basal side of every 

epithelium, basement membranes play important roles in establishing and maintaining 

tissue boarders, cell signaling, and providing biomechanical strength to physiologically 

active tissues.  

Basement membrane architecture is organized along two orders of assembly. 

First, the molecular structure of each individual component, and second, the 

supramolecular architecture that results from the interactions of each component. The 

interactions among individual components are both highly specific and occur with both 

weak and strong affinities. Basement membranes are not stagnant entities, and it has been 

determined that both the stoichiometry of their components and biomechanical properties 

can change over time and during the development of specific tissues (Candiello et al. 

2007, Thomas and Dziadek 1994, and Fata et al. 2003). It is important to note, that during 

the process of ESF the proteins constituting the BM must be targeted and removed 

efficiently to allow for cell contact to occur. It is therefore crucial to understand how BM 

components interact with each other and themselves to speculate how remodeling occurs.  

Of all the basement membrane components, laminin and collagenIV account for 

the greatest mass and generate the bulk of the scaffolding network responsible for BM 

structure. Laminin is a heterotrimeric cross-shaped protein comprised of , , and 𝛾 

chains (~400kDa-800kDa) that plays roles in both BM structure and cell binding via 

integrins (Tryggvason, 1993). Genetic analyses have suggested that laminin provides the 

primary structural framework required for the recruitment and organization of other 

major BM components (Li et al. 2003). The terminal domain of laminin’s long arm is 

responsible for both cell adhesion and self-assembly into polymers while the ends of 

laminin’s short arms ( and 𝛾) are required for the formation of dimers and oligomers.  

The second most abundant protein in the BM, collagenIV, is derived from the 

three polypeptide domains a1, a2 and a globular domain NC1 at the COOH terminus 

(~550kDa). CollagenIV’s NH2 interacts with three other collagenIV proteins resulting in 

collagenIV’s characteristic chicken wire shaped quaternary assemblage. This uniquely 

shaped arrangement increases the elasticity of the matrix and ultimately its biomechanical 

strength. Notably, collagenIV and laminin do not interact independently and therefore 
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rely on binding to nidogen in order to establish a structural bridge thereby physically 

linking the two networks. 

Perlecan, the most prominent proteoglycan, consists of a 400-500kDa (80nm) 

core protein attached to three heparan sulfate and/or chondroitin sulfate chains (70kDa-

100kDa each) (Paulsson et al. 1987 and Timpl, 1993). It has been indicated as a key 

regulator of BM signaling. Through its heparan sulfate additions, perlecan has been 

observed to sequester FGF-2 and mediate binding and delivery to FGF receptors (Smith 

et al. 2007). In this system, perlecan has been shown to mediate the distribution and 

bioavailability of cell signaling ligands directly influencing cellular responses as a result 

of RTK activation. Like both laminin and collagenIV, perlecan has been shown to bind 

nidogen via the C-terminus of its fifth domain. This interaction is likely involved in the 

incorporation of perlecan into the BM and thereby maintaining the stability of the BM.  

Nidogen is a relatively small BM protein (~150Kd) comprised of three globular 

domains separated by two spacer regions (Fig. 4). Nidogen’s largest -barrel shaped 

domain G2 has the ability to bind to both collagenIV and perlecan, while is G3 domain 

binds to the  chain of laminin. Early biochemical analyses discovered laminin void of 

nidogen, as well as a variety of proteolysed laminin fragments, were unable to bind to 

collagenIV. However, upon its interaction with nidogen, laminin was shown via electron 

microscopy to bind 8nm away from the C-terminus of the collagenIV triple helix. 

Furthermore, unlike laminin, dissociated nidogen still maintains its binding affinity for 

collagenIV (Aumailley et al. 1989). Nidogen is therefore an important crosslinking 

molecule whose function is to act as a structural bridge between the laminin and 

collagenIV networks to increase BM stability (Fig. 5).  

The importance of nidogen’s role in the BM stability has been observed in studies 

of nidogen null mice. Mice deficient for both nidogen1 and 2 displayed perinatal lethality 

as a result of BM defects in the heart, lung and kidney (Bader et al. 2005). Further, loss of 

nidogen has resulted in disrupted basement membrane integrity of the developing mouse 

apical ectodermal ridge resulting in subsequent defects in limb development (Bose et al. 

2006). Additionally, mice deficient for nidogen1 or nidogen2 displayed impaired wound 

healing suggesting even in adult tissue, impaired BM stability via the deletion of nidogen 

has an effect on ESF (Baranowsky et al. 2010). Taken together, data generated from these 
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studies suggest nidogen function is vital to the stability and integrity of both embryonic 

and adult BMs.  

 

Hypothesis  

 

Nidogen’s well characterized crosslinking capabilities, and therefore innate 

architectural importance, render it a critical link in the structure of the BM; it’s removal 

may serve as an efficient and rapid method for BM remodeling prior to ESF in the 

choroid fissure. Moreover, early work examining the proteolytic vulnerability of BM 

proteins has discovered nidogen to be the most soluble and most proteolytically 

susceptible BM component, especially in embryonic tissue (Mayer et al. 1993/1994, Sires 

et al. 1993). Considering nidogen’s key features, I have proposed the following 

hypothesis: The removal of nidogen from the BM results in the immediate 

disassembly of laminin, collagenIV, and perlecan allowing for efficient BM 

remodeling prior to ESF. To test this hypothesis, I have employed the zebrafish embryo 

model system. 

 

 

Using Danio rerio as a model to Study BM Biology  

  

The advantages of using the zebrafish as model for eye development and 

extracellular matrix biology are abundant. Zebrafish routinely produce large clutches of 

rapidly developing embryos allowing for large sample sizes. A testament to its rapid 

development time, the zebrafish embryo has a fully functional eye and can begin tracking 

movement as early as 72hpf (Easter and Nicola, 1995). Moreover, all development occurs 

outside the body of the mother within a transparent chorion and embryos are initially 

unpigmented allowing for one to monitor developmental processes unobstructed. 

Additionally, the housing of a large stock of zebrafish requires relatively little 

maintenance and a limited number of reagents which in turn produces a cost effective and 

space efficient model.  
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Perhaps most importantly, the developmental processes surrounding ocular 

development closely mirror that which are found in humans. In fact, the anatomy, 

histology, circuitry and biochemistry of the eye have been found to be highly conserved 

among most classes of vertebrates. The morphogenesis of the eye and lens in the 

developing zebrafish as well as the expression of transcription factors show high levels of 

conservation with other vertebrates (Fadool and Dowling 2008). Because of this high 

conservation, zebrafish have become an increasingly important model for studying 

human diseases including those effecting the eye and visual system (Morris, 2011, 

Bibliowicz et al. 2011, and Amsterdam and Hopkins 2006).  

Finally, the zebrafish model is becoming an increasingly important tool in 

studying extracellular matrix biology (Feitosa et al. 2011, Wyatt et al. 2009, and Parsons 

et al. 2002). Owing to the high conservation of BM components across vertebrates 

coupled with the relative ease for imaging and genetic manipulation, the zebrafish is a 

uniquely fitted model to study the extracellular matrix.  
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Figure 1. Major factors contributing the lens induction and patterning 

of the early optic vesicle 

The evaginating optic vesicle will induce the overlying surface ectoderm 

to form a lens by releasing the signaling molecules Delta2, Fgf8, and 

Bmp4. This will induce the transcription of lens specification genes 

within the surface ectoderm including Pax6, L-maf and FoxE3. 

Reciprocally, the overlying surface ectoderm will release the signaling 

factors Fgf1 and Fgf2 inducing Vsx2 in the distal optic vesicle which will 

ultimately lead cells within this region to adopt a neuronal fate. Mitf, will 

be inhibited in the distal optic vesicle and will instruct cells more 

proximally to become the RPE.  
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Figure 2. Location of the choroid fissure   

The choroid fissure is located ventrally in the developing eye and is located at 

the optic cup and spans the length of the optic stalk. The choroid fissure will 

undergo ESF and the optic stalk will constrict to form the optic nerve. The 

resulting morphology will resemble a continuous spheroid eye connected to the 

optic nerve.  
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Figure 3. Epithelial sheet fusion as it occurs in the developing vertebrate eye  

A) A cross sectional schematic of the developing vertebrate eye. As the eye 

develops from the flat optic vesicle, it will undergo a series of morphogenetic 

movements ultimately resulting in a hollow tube-like structure. In order the fuse 

into one continuous layer of cells, the basement membrane (blue) must be 

dismantled to allow for cell to cell contact to occur and a fusion of the tissue. B) 

IHC staining of laminin111 during early development of the zebrafish eye 

undergoing epithelial sheet fusion of the choroid fissure. Laminin (red), a proxy for 

the basement membrane, is actively removed to allow for cell fusion to occur. This 

process is completed at approximately 72hpf where laminin even in the most distal 

region of the eye is undetectable in the choroid fissure.  

 

 

A 
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Figure 4. A structural schematic of nidogen 

Nidogen protein structure is distinctly dumbbell shaped and is the smallest of 

the four major basement membrane components (150kD). Nidogens 3 

globular domains and 2 spacer regions are important for the function of the 

protein. Nidogen’s globular G2 domain is responsible for binding both 

Perlecan and CollagenIV network while the G3 domain binds to the laminin 

network. Sites particularly susceptible to proteolytic cleavage are found 

within the spacer region between nidogen’s G1 and G2 domains (denoted by 

arrow and green bar). The region most resistant to proteolytic cleavage lies in 

the spacer region between nidogen’s G2 and G3 domain primarily due to 

disulfide bridges (red S-S).  
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Figure 5. The binding capabilities of nidogen in the Basement membrane. 

The basic components of all BMs consist of laminin, perlecan, collagen IV, and 

nidogen. Nidogen’s globular domain G3 binds to the 1 chain of the heterotrimeric 

protein laminin while its G2 domain binds perlecan and collagen IV. Laminin does 

not contain a binding site for collagen IV or perlecan. Laminin therefore relies on 

binding to nidogen in order to establish a structural bridge between itself and other 

components of the basement membrane. 
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CHAPTER TWO 

MATERIALS and METHODS 

 

Generation of digoxigenin labeled riboprobes 

  

To generate riboprobes for whole mount in situ hybridization, riboprobe templates 

were generated using PCR from pools of 24hpf total cDNA generated via reverse 

transcription using the Maxima H-minus First Strand cDNA synthesis kit (Thermo) from 

total RNA extracted using the RNAqueous phenol-free total RNA isolation kit (Ambion) 

from 24hpf embryos. Primers used are outlined in Table 1 and have T7 RNA binding 

sites added to the reverse primer for subsequent transcription. in vitro transcription was 

conducted using T7 RNA polymerase along with DIG labelling mix. Probes were 

purified via exclusion column (Sigma) and were stored at -80ºC. WISH probes were 

diluted 1/200 in 1ml aliquots of hybridization buffer (50% formamide, 20X saline sodium 

citrate buffer (SSC), 50 mg/ml heparin sulfate, 1M citric acid, 20% Tween-20 and sterile 

water) for later use. 

 

 

Whole mount in situ hybridization (WISH)  

 

Embryos were manually dechorionated and fixed with 4% paraformaldehyde 

(PFA) for a minimum of 2 hours at room temperature or overnight at 4ºC. After fixation 

embryos were washed in phosphate buffer solution with tween (PBS and 0.1% Tween-

20) 4 times for 5 minutes. Embryos were then permeabilized with 10mg/ml proteinase K 

in PBST at room temperature for 6min-30min depending on the age of the embryo. After 

permeabilization embryos were incubated twice in PBST for 5 minutes and placed in pre-

hybridization solution (50% formamide, 20X saline sodium citrate buffer (SSC), 50 

mg/ml heparin sulfate, 1M citric acid, 20% Tween-20, tRNA and sterile water) for a 

minimum of 2 h at 65ºC. following pre-hybridization riboprobes were hybridized 

overnight at 65ºC. Embryos were then washed through a series of graded SSC washes at 

65ºC (66% hyb/33% 2XSSC, 33% hyb/66% 2XSSC, 0.2 SSC/0.1% Tween, 0.1% 
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SSC/0.1% Tween) and then through a series of graded PBST washes (66%0.2SSC/ 33% 

PBST, 33%0.2 SSC/66% PBST, PBST) at room temperature. Embryos were then 

blocked using 2% sheep serum and 2mg/ml bovine serum albumin (BSA) in PBST for a 

minimum of 1 hour at room temperature. Following the block embryos were incubated 

with a 1/5000 dilution of anti-digoxigenin antibody in blocking solution overnight at 4ºC. 

The following day embryos were washed with PBST 4 times for 10 minutes and then 4 

times in coloration buffer (1M tris-HCL pH 9.5, 1M MgCl2, 5M NaCl, 20% tween-20, 

and sterile H2O) for 5 minutes. Embryos were then incubated in coloration buffer with 4-

nitro blue tetrazolium (NBT) and 5-bromo-4-chloro-3- indolyl-phosphate, 4-toluidine salt 

(BCIP) at room temperature or at 37 ºC to enhance reaction speed. Coloration was halted 

by washing in stop solution (PBST pH 5.5) and embryos were imaged using a dissection 

scope and/or eyes were manually removed, mounted on slides in glycerol and imaged 

using differential interference contrast (DIC) microscopy at 20x.  

 

 

Genotyping and WISH analysis of nidogen2a mutants  

  

Nidogen2a heterozygous mutants were purchased from ZIRC and were genotyped 

via an RFLP analysis. To do this, adult zebrafish containing a potential mutation in the 

nidogen2a gene were placed into water treated with Tricaine (3-amino benzoic 

acidethylester) until they were no longer swimming and were sufficiently anesthetized. 

Adult fish were placed on a petri dish lid and a scalpel sterilized with ethanol was used to 

remove the distal tip of the tail. Genomic DNA was isolated by placing fin tissue in PCR 

tubes with 100ul of NaOH and incubating for 5 minutes at 96ºC. After incubation tubes 

were vortexed for 20 seconds and incubated again for 10 minutes at 96ºC. Tubes with 

dissolved tissue were placed on ice for 2 minutes and 10ul of 1M tris pH 8.0 was added. 

gDNA was stored at -20 until further use.  

The RFLP analysis was conducted by amplifying the region of gDNA with the 

nidogen2a mutation using the forward primer: 5’-TGATCCTATTACTCGAC 

AGATAATAAAG3-’and the reverse: 5’-CGTTTGGCAGGCAGTGGCGGC-3’. The 

resultant 460bp amplicon was digested with ApeKI (NEB) which would recognize and 
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digest the mutated allele sequence but not the WT allele. Digested bands were visualized 

using gel electrophoresis.  Confirmed heterozygous fish were in-crossed to generate 

homozygous mutants. Homozygous mutants were confirmed via RFLP analysis 

conducted as before and were imaged at 24hpf to observe any phenotypic aberrations. 

WISH analysis was conducted on nidogen2a homozygous mutant fish at both 24 and 

48hpf and eyes were dissected off embryos for further expression analysis using the 

methods previously described.  

 

 

Morpholino Injections  

  

Translation blocking Morpholinos were obtained from Gene Tools, LLC and used 

to knock down the expression of nidogen1a and nidogen1b. The following morpholinos 

were used in this study: Control MO: 5’-CCTCTTACCTCAGTTACAATTTATA-3’, 

nidogen1a: 5’-GTGCCGACCCATATCCAGTCCCAAA-3’, and nidogen1b: 5’-

CGGCATCTTCCCCAGGTAGTCAGAC-3’. Morpholino sequences were chosen using 

ensemble targeting the transcriptional start sites of both nidogen1a and 1b.  

Precipitated oligos were suspended in sterile water to a concentration of 20ng/ul. 

Morpholinos for each gene were injected into fertilized one cell stage WT (AB) and 

nid2a-/- embryos prior to the second cell division. Morpholino concentrations for ABs 

were 1ng and 2ng of nid1a and 1b independently, and 1ng and 2ng of nid1a/1b. 

Morpholino concentrations injected into nid2a-/- embryos were nid1a/1b at .5ng, .75ng 

and 1ng. After injection, all embryos were transferred to fresh embryo media (1.75% 

NaCl, 0.075% KCl, 0.29% CaCl-2H2O, 0.041% KH2PO4), .0142% MgSO4-7H2O in 1L of 

H2O) and grown in an incubator at 28 ºC until fixation.  

 

 

Morphant phenotype analysis  

  

Morphant embryos were manually dechorionated and fixed in 4%PFA overnight 

24 and 48 hours after subsequent injection. At 24hpf morphant embryos were 
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categorized, imaged using a dissection microscope, separated based on gross phenotypic 

response, and stored in PBST for laminin immunohistochemistry. Morphants were 

organized into four categories WT, mild, severe, and lethal. WT embryos were 

undistinguishable from uninjected or control morphant embryos. Mild embryos had a 

slight curvature of the tail, a slightly elongated eye (nasal/temporal axis), and mild 

cloudiness in regions of the brain. Severe embryos had a robust curvature of the tail, a 

markedly smaller eye, and readily observable cloudiness and indistinguishable brain 

features. Lethal embryos were categorized as any phenotypic response more robust than 

severe. Of 48hpf nidogen morphant embryos those displaying a gross morphological 

phenotype exhibited cloudiness in the areas of the brain, a flattened head and misshapen 

eye compared to controls. 48hpf fish were categorized into two groups, those displaying a 

gross phenotypic response and those indistinguishable from WT.  

Following image capture, ImageJ software was used to quantify parameters of the 

morphant embryo eyes at 24hpf and 48hpf. To obtain a measurement of eye size, the area 

of the eye, measured in pixels (px) was divided by the length of the embryo (px) (from 

the distal tip of the head to the end of the tail) to normalize for variable embryo size. To 

obtain a measurement of eye shape, the embryos were positioned laterally, and the length 

of the nasal/temporal (NT) axis was measured (px) as well as the dorsal/ventral (DV) axis 

was measured (px) and the ratio of the two (NT/DV) was calculated and recorded. 

Statistical analysis was conducted using Microsoft Excel Data Package. Student T-tests 

were conducted between all treatment groups for each parameter measured. The 

significance cutoff was P<.005 and graphical depictions were generated to illustrate 

results.  

 

 

Live imaging analysis  

  

Live imaging of nidogen1a/1b morphant embryos was conducted using a Nikon 

C2+ confocal microscope. 2ng of nidogen1a and 1b morpholino were injected into 1 cell 

stage of RX3:GFP positive embryos so the tissues of the developing eye were observable 

over the course of imaging. 18hpf Embryos were imbedded in 1% low gelling agarose in 
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1-inch glass bottomed Flourodish cell culture dishes (World Precision Instruments) and 

covered in embryo media, 3-amino benzoic acidethylester (tricaine) to anaesthetize the 

embryos and 1-phenyl 2-thiourea (PTU) to inhibit pigmentation. Embryos were imaged 

over the course of 18 hours from 18hpf to 36hpf during which time the temperature was 

monitored and on average remained between 28-30 ºC to not cause developmental delay. 

325 z-stacks at approximately 3um were taken every five minutes encompassing the 

entire developing eye throughout the time course. Arevis 4D software was used to 

analyze the movie. 

  

 

Whole mount immunohistochemistry (IHC)  

  

For IHC embryos were manually dechorionated and fixed in fresh 4% PFA for 1 

to 2 hours at room temperature. Embryos were then washed sequentially in PBST and 

permeabilized with proteinase K (30ug/mL in PBST) for 5-15 minutes at room 

temperature. following permeabilization embryos were again washed in PBST and 

blocked (10% goat serum, 1%BSA, 0.8% Triton X-100, in 1XPBS) for 1-3 days at 4ºC. 

following the block, embryos were incubated in primary antibody (1/25 for nidogen, 1/50 

for laminin) in incubation buffer (1% goat serum, 0.8% Triton X-100, 1% BSA, in 

1XPBS) for 1-3 days at 4ºC. embryos were then thoroughly washed in PBST 5 times for 

15 minutes. Then embryos were incubated in secondary antibody conjugated to 

fluorophores diluted 1/1000 and DAPI in incubation buffer for a minimum of 2 hours in 

the dark. Secondary Abs were washed off using PBST, 5x for 15min. For confocal 

imaging (Nikon C2+), embryos were imbedded in 1.2% low gelling agarose in 1-inch 

glass bottomed Flourodish cell culture dishes. Images of eyes were captured in 3µm 

stacks spanning from the distal tip of the lens to the back of the eye. Embryos were 

imaged using a Nikon C2+ confocal microscope.  
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Generation of dominant negative constructs  

  

Dominant negative mRNA constructs were generated by conducting PCR on 

pooled cDNA of 24hpf zebrafish embryos using primers found in Table 1. I have 

designed truncated versions of both nidogen1a and nidogen1b, devoid of their respective 

G3 domains, which disrupts their ability to link laminin and collagenIV, ultimately 

destabilizing the structure of the BM. Restriction enzyme sites were added to the cDNA 

primers used for both constructs for directional cloning (SgsI and Xho1 for nidogen2a 

and EcoR1 and Xho1 for nidogen1b). After amplification, cDNA templates were ligated 

into pGEM T-easy plasmids (Promega) and subsequently liberated using restriction 

enzyme digest. After liberation fragments were then directionally cloned into linearized 

pCS2+8 plasmids (Addgene) and transformed into chemically component E. coli cells 

(NEB). Cultures were grown overnight and mini-prepped to isolate plasmid. Plasmids 

were confirmed using both restriction fragment length polymorphism assays (RFLP) and 

sequencing (eurofins genomics).  

 mRNA was generated from confirmed plasmids first by linearization with Not1 

and then using the Invitrogen mMessage mMachine transcription kit (Sp6). The 

concentration and purity of mRNA was determined by measuring the optical density and 

aliquots were stored at -80 ºC until injection.  

  

 

Dominant Negative mRNA injection  

  

Dominant negative mRNA was diluted in RNAse free H2O to the following 

concentrations: 200pg, 300pg, and 350pg. Aliquots of mRNA were stored on ice 

throughout the duration of the procedure to inhibit degradation. Dominant negative 

mRNA was injected into zebrafish embryos using RNAse free glass capillary needles at 

the 1-cell stage with the above stated concentrations. Following injection embryos were 

transferred directly to embryo media and placed in a 28 ºC incubator to develop.  
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Generation of Dominant Negative Nidogen Tol2 Constructs  

 

 Nidogen1b dominant negative heatshock transgenic zebrafish were generated 

using the Tol2 kit v1.2 (Kwan et al. 2016) and Invitrogen’s Multisite Gateway© Three 

Fragment Vector Construction Kit. PCR was conducted utilizing a previously constructed 

pGEM-T easy vector (Promega) containing nidogen1b sequence using attb flanked 

nidogen1b dominant negative primers. Once the PCR product was amplified it was 

combined with pD221 donor plasmid, BP clonase enzyme, BP reaction buffer and TE pH 

8.0 for 1 hour at room temperature for recombination. Ligated nidogen1b dominant 

negative entry clones were transformed into chemically competent E. coli (NEB) cells 

and plated on kanamycin plates and grown overnight at 37 ºC. The next day colonies 

were picked and grown overnight in 2ml of Luria broth (LB) media + kanamycin. 

Plasmids were isolated via mini-preps (E.N.Z.A plasmid mini kit, Omega) and confirmed 

via RFLP using ClaI restriction enzyme.  

 To generate an expression construct, the dominant negative nidogen1b donor 

plasmid was combined with the 5’ entry clone p5E-hsp70 (heatshock promotor) and 3’ 

entry clone p3E-polyA (poly A signal) along with the pDestTol2Cred destination vector 

and LR clonase to generate the expression vector via recombination as follows 

[heatshock promoter][dominant negative nidogen1b][polyA]. In addition to the fragments 

above, the destination vector was also equipped with a cmlc promoter driving the 

expression of mCherry. This allowed for the easy identification of transgenic embryos via 

the observation of a red fluorescent heart. Expression vectors were transformed into 

chemically competent E. coli cells (NEB) and plated on kanamycin plates and grown 

overnight at 37 ºC. Plasmid transformation was confirmed via colony PCR and colonies 

containing the correct expression construct were grown overnight in 2ml of LB media 

overnight and mini-prepped the following day for isolation.  

 To test the construct both AB and Attb embryos were co-injected with dominant 

negative nidogen1b destination vector and Tol2 enzyme prior to the one cell stage. After 

injection, embryos were raised to 24hpf and embryos with red hearts were subsequently 

heatshocked for 30min at 38 ºC to induce expression of dominant negative nidogen1b. To 

test whether dominant negative nidogen1b gene expression was induced via heatshock, 
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WISH was performed for nidogen1b at 24hpf on 25 embryos that displayed red hearts. 

After mosaic expression was observed, the remaining embryos displaying red hearts were 

further grown and will be subsequently outcrossed to AB embryos and genotyped to 

establish a transgenic line.  
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Table 1. A complete list of PCR Primers used in this study. 
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CHAPTER THREE 

RESULTS  

 

Expression and Deposition analysis of nidogen and interacting components  

 

To elucidate the expression dynamics of nidogen and its interacting BM 

components prior to and during ESF within the choroid fissure, we employed whole 

mount in situ hybridization (WISH). By examining a multitude of zebrafish BM 

component orthologues at several time points we were not only able to determine which 

specific zebrafish BM orthologues are expressed in the CF, but how their expression is 

regulated throughout ESF. Although regulation of nidogen as a means of dismantling the 

BM to allow for ESF is likely primarily controlled on a protein level, it is possible that 

duration of each components’ expression plays a role in BM structural dynamics. For 

example, if the expression of nidogen within the choroid fissure ceases prior to the 

expression of laminin, collagenIV, and perlecan this could lead to a stoichiometric 

imbalance of nidogen within the BM which may ultimately lead to impeded component 

integration and subsequently decrease BM integrity. To determine whether this is a viable 

model, we generated a complete chronological expression profile for all BM components 

prior to and during ESF. 

 

Whole mount in situ hybridization for nidogen  

 

Zebrafish possess four orthologues of the nidogen gene, nidogen1a, nidogen1b, 

nidogen2a and nidogen2b (Table 2). To generate an expression profile for all 4 nidogen 

orthologues whole mount in situ hybridization was analyzed in whole embryos and 

dissected eyes from 24-65hpf (Fig. 6, and Fig. 7). At 24hpf, the expression of nidogen1a 

(Fig. 6, a1) is most prominent in the developing somites and can also be observed 

surrounding the developing eye and lens including the choroid fissure. Dorsally, 

nidogen1a expression was observed in the olfactory placode and outlining the midbrain 

regions (Fig.6, a2). In contrast to nidogen1a at 24hpf, nidogen1b expression is most 

prominent in the tissue marking the mid-hindbrain region and at the distal epithelium 
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surrounding the tail (Fig. 6, b1). Additionally, like nidogen1a at 24hpf, nidogen1b 

expression can be observed surrounding the tissue of the developing eye and lens 

including the choroid fissure. Nidogen2a expression at 24hpf is most prominently 

observed in the anterior region of the embryo outlining the boundaries of the forebrain 

and hindbrain and at the tip of the developing tail (Fig. 6, c1). Dorsally, at 24hpf 

nidogen2a expression is prominent in the developing olfactory lobes, and like nidogen1a 

and 1b can be observed in tissues surrounding the eye, lens, and choroid fissure (Fig. 6, 

c2). Nidogen2b expression at 24hpf was observed in the tissues surrounding the 

developing hind-brain regions (Fig. 6, d1). Dorsally, nidogen2b expression is located 

directly in the tissue at the midline spanning the fore and midbrain and in throughout the 

hindbrain ventricle (Fig. 6, d2). Interestingly, nidogen2b was not expressed in the choroid 

fissure. 

 At 36hpf, the spatial expression of nidogen1a, 1b, and 2a remains relatively 

unchanged from 24hpf. Notably, the expression of all three of these orthologues is easily 

observed within the developing choroid fissure (Fig. 6, a3, b3, and c3, and Fig. 7, a3, b3, 

and e3). Additionally, at 36hpf, the expression of nidogen1a and 2a was observed in the 

developing gill arches and fin buds (Fig. 6 a4 and c4). At 36hpf, the expression of 

nidogen2b was no longer detectable (Fig. 6, d3 and d4) however, its expression becomes 

detectable later at 48hpf in the developing otic vesicle (Fig. 6, d5).  

 At 48hpf the expression of nidogen1a is no longer detectable in the head of the 

embryo (Fig. 6, a5 and a6). The expression of nidogen1b persists outlining the mid-

hindbrain boundary and developing brain as well as within the choroid fissure (Fig. 6, b5 

and b6). Nidogen2a expression at 48hpf is observed strongly in the developing fin buds 

as well as in the developing gill arches (Fig. 6, c5) and faintly within the developing 

choroid fissure (Fig. 6, c5).  

At 56hpf nidogen1b is the only detectable orthologue expressed within the 

choroid fissure (Fig. 6, b7 and Fig. 7, b5). At 56hpf nidogen1b was also detected in the 

areas outlining the brain at the mid-hind brain boundary (Fig. 6, b8). The expression of 

nidogen1a and 2a were most prominently observed in the developing fin buds (Fig. 6, a8 

and c7). At 65hpf no nidogen orthologues were observed to be expressed in the choroid 
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fissure (Fig. 6 a9-c9 and Fig. 7 a6-d6). However, at 65hpf, nidogen1a, 1b, and 2a 

expression was detected at the developing fins (Fig. 6 a10-c10).  

 To generate a clearer view of nidogen expression as it pertains to the developing 

retina, embryonic eyes from WISH treated embryos, were dissected, mounted onto slides 

and imaged using DIC microscopy (Fig. 7). The expression of nidogen1a, 1b and 2a were 

all observed within the developing choroid fissure while nidogen2b expression was not 

detectable in the eye. The expression of nidogen1a within the choroid fissure was last 

detectable at 36hpf (Fig. 7, a3) and was not detected in eye tissue at later time points (Fig. 

7, a4-a6). Nidogen1b was expressed the longest within the choroid fissure up to 56hpf 

(Fig. 7, b5). Expression of nidogen2a was last detected within the choroid fissure at 

48hpf in tissues near the lens (Fig. 7, c4). Although expressed within other developing 

tissues, the expression of nidogen1b was not detected in tissues of the eye (Fig. 7, d1-d6). 

 Together, these data suggest that each nidogen orthologue is expressed in both 

different and overlapping tissues, but that nidogen1a, 1b, and 2a are expressed within the 

choroid fissure. Likely, it is an interplay between nidogen1a, 1b, and 2a that together 

integrate into the BM of the CF and subsequently provide the necessary crosslinking of 

the laminin and collagenIV networks.  Additionally, the expression of nidogen1a and 2a 

cease to be expressed and subsequently deposited into the BM of the CF by 48hpf and 

56hpf respectively and nidogen1b by 65hpf. To compare the spatial and temporal 

characteristics of nidogen expression to that of their interacting components, we next 

completed an expression analysis for collagenIV, laminin, and perlecan.  

 

 

Whole mount in situ hybridization for collagenIV 

  

 To elucidate which specific collagenIV orthologues are integrated into the BM of 

the CF, expression profiles were examined for 6 collagenIV zebrafish orthologues: 

collagen4a1, collagen4a2, collagen4a3, collagen4a4, collagen4a5 and collagen4a6 at 

24hpf (Fig. 8). From this data it was determined that collagen4a1 and collagen4a2 were 

expressed within the choroid fissure (Fig. 8, d1 and d2) and these two genes were further 

examined (Fig 9.).  
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From 24-65hpf, the expression of both collagen4a1 and a2 was observed in the 

head of the embryo, the tissue surrounding the developing eye and at the anterior and 

posterior boundaries of the midbrain (Fig. 8 a1-a5 and d1-d5). Expression of both 

collagens was also observed in the developing gill arches from 24-56hpf (Fig. 8 a1-a5 

and d1-d5). Additionally, at later time points (56hpf and 65hpf) collagen4a1 and a2 

expression was detected in the developing fin buds (b4-b5, and e4-e5).  

Eyes dissected from collagenIV WISH embryos showed the expression of both 

orthologues within the choroid fissure from 24hpf to 65hpf (c1-c5 and f1-f5). Contrary to 

nidogen expression which becomes undetectable at 56hpf for nidogen1b, the expression 

of both collagen4a1 and a2 persists throughout ESF of the choroid fissure from 24-65hpf. 

This suggests that at 65hpf, as more collagenIV is deposited into the BM, no additional 

nidogen is added. This may in turn, reduce the ability of collagenIV to subsequently bind 

the laminin network thereby decreasing BM stability allowing for ESF.  

 

 

Whole mount in situ hybridization for laminin  

 

 Expression profiles were examined for laminin a1, a4, b1b, b2, b4, c1, c2, and c3 

(Fig. 10). From these data, it was determined laminin a1, a4, and c1 were expressed 

within the choroid fissure (Fig. 10, top row, bottom row) and were further examined at 

later time points (Fig. 11). At 24hpf laminin a1 expression was observed in anterior 

regions of the developing embryo outlining the midbrain and the diencephalon (Fig. 11, 

a1 and a5). Additionally, expression of laminin a1 was observed in the anterior of the 

developing embryo outlining the mid-hindbrain boundary, mesencephalon, and 

diencephalon from 48-65hpf (Fig. 11, a2-a4 and a6-a8). Laminin a1 expression was also 

visible in the otic vesicle from 48-65hpf (Fig. 11a2-a4) and in the developing fin buds 

(Fig. 11, a5-a7). In the developing eye, laminin a1 expression was observable in the 

developing choroid fissure from 24-56hpf however it was no longer detectable at 65hpf 

(Fig. 11, a9-a12).  

Laminin a4 24hpf is expressed primarily in the ventral tissues surrounding the 

yolk, at the mid-hindbrain boundary, and surrounding the eye and choroid fissure (Fig. 
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11, b1, b5 and b7). Expression of laminin a4 was also observed in the gill arches and 

limb buds from 24-56hpf (Fig. 11 b1-b7). Expression of laminin a4 was no longer 

detectable within the choroid fissure at 56hpf (Fig. 11, b11). Notably, the expression of 

laminin a4 in all anterior regions of the developing embryo ceases by 65hpf and no 

detectable expression was observed (Fig. 11, b4, b8, and b12).  

The expression of laminin c1 was observably similar to that of laminin a1 and 

was detected outlining areas of the mid-hindbrain boundary, the mesencephalon, the gill 

arches, the otic vesicle and developing fin buds from 24-65hpf (Fig. 11, c1-c8). 

Expression of laminin c1, like that of the other laminin orthologues, was no longer 

detectable within the choroid fissure at 65hpf (Fig. 11, c12).  

In summary, the expression of all three laminin genes within the CF (laminin a1, 

a4, and c1) are detectable at 56hpf but not at 65hpf. In contrast, only one nidogen 

orthologue, nidogen1b, is still detectable at 56hpf. Together, these data suggest that while 

three laminin genes continue to be expressed and likely deposited into the BM of the CF, 

these newly introduced laminin molecules may not be as efficiently incorporated into the 

matrix as a result of reduced nidogen expression.  

 

 

Whole mount in situ hybridization for Perlecan  

 

  WISH for the one zebrafish orthologue of perlecan revealed expression in the 

anterior regions of the developing embryo including the eye from 24-65hpf (Fig. 12). At 

24hpf perlecan expression was observed surrounding regions of the brain including the 

mesencephalon, the midbrain and the hindbrain and was also observed in both the 

choroid fissure and the lens (Fig. 11, a, e, and i). From 48-65hpf perlecan expression 

continued to be expressed in areas outlining the mesencephalon and at the mid-hindbrain 

boundary (Fig. 11, j-l). Additionally, expression was also observed in the developing fin 

buds (Fig. 11, k-l). In the eye, expression of perlecan was observed both within the 

choroid fissure and the lens from 24-65hpf (Fig.11 a-d). Parallel to collagen4a1 and a2 

the expression of perlecan persists throughout the processes of ESF. Like both laminin 

and collagenIV, perlecan interacts with nidogen via the C-terminus of its V domain likely 
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playing a role in its integration into the BM (Brown et al. 1997). It is therefore possible, 

that in conditions with reduced nidogen expression, as have been observed in late ESF, 

the ability of newly expressed perlecan to interact and integrate within the BM of the 

choroid fissure is likely impeded.  

 

 

Basement membrane component expression comparison within the choroid fissure 

 

A comparative table illustrating the expression profile of all BM genes expressed 

in the choroid fissure was generated using WISH results (Table 3). Of all the BM genes 

discovered to be expressed within the choroid fissure, the nidogens lose detectability 

prior to the collagens, laminins, and perlecan. Specifically, the expression of nidogen1a 

ceases the earliest of all BM components (at 48hpf), followed by the other two nidogen 

genes expressed in the eye nidogen1b and 2a (56hpf and 48hpf respectively) (the 

expression of nidogen2b was not detected in the eye). While the expression of only one 

of the nidogen orthologues could be detected at 56hpf (nidogen1b), the expression of 

laminina1, a4, and c1, collagen4a1 and a2, and perlecan is still detectable within the 

fissure at this time. Further, the expression collagen4a1, a2 and perlecan can be detected 

in the choroid fissure as late at 65 hpf at which point the fusion of the majority of the 

choroid fissure has completed (James et al. 2016).  

The temporal characteristics of the expression of all BM genes examined, 

specifically, the discovery that nidogen gene expression ceases prior to that of its 

interacting components within the CF may result in biomechanical consequences of the 

BM. For example, expression of BM components within the choroid fissure during a time 

where BM disassembly is eminent may be perceived as counterproductive however, if 

these components fail to integrate into the BM as a result of a nidogen deficit, efficient 

breakdown of the BM is still wholly possible.  
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Nidogen and CollagenIV are deposited in the BM of the developing eye including 

the choroid fissure   

 

As suggested earlier, the breakdown of the BM to allow for ESF is likely an 

interplay between both expression dynamics, and protein stability regulation via 

remodeling enzymes. To understand how different BM components behave on a protein 

level during BM breakdown, we have begun to examine the deposition of both 

collagenIV and nidogen within the CF. It is the ultimate goal of these experiments to, 

akin to the previous expression analysis, create a complete spatiotemporal protein 

stability profile of all BM components and generate a chronology of their breakdown. 

The following work is currently in processes and is yet to be completed.  

 IHC was conducted using -rabbit antibodies against collagenIV and nidogen in 

the developing eye at 24 and 48hpf (Fig. 13 and Fig. 14). Nidogen deposition was 

detected using a mixture of -rabbit nidogen1 and 2 antibodies at both 24 and 48hpf in 

the BM surrounding the lobes of the eyes as shown in figure 13. Nidogen deposition was 

also observed in the BMs outlining the somites in the developing tail at 24hpf (Fig. 13, 

right column). Detection of nidogen deposition at later time points failed possibly as a 

result of failed antigen retrieval.  

 Moreover, IHC for collagen4 was conducted using -rabbit collagenIV antibodies 

(Fig. 14). CollagenIV deposition was detected both in the BM surrounding the lobes of 

the developing eye and within the BM surrounding the lens at both 24 and 48hpf. Like 

nidogen, the detection of collagenIV at later time points failed and needs to be worked 

repeated. Although much remains to be discovered about the dynamic breakdown of 

different BM components prior to ESF, I hypothesize that the initial targeting of nidogen 

for degradation results in the most efficient and rapid mechanism for BM disassembly.  

 

 

Functional analysis of nidogen via morpholinos and dominant negative constructs 

  

 To generate a clearer understanding of morphological consequences as a result of 

weakened BMs by reducing  nidogen function, I have taken three approaches. I have 
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examined a nidogen2a mutant, I have used translation blocking nidogen morpholinos, 

and I have generated and employed dominant negative nidogen1b constructs. Previous 

work examining nidogen loss of function in the mouse model has shown that lack of 

nidogen1 and 2 results in BM defects in multiple tissues including, the heart and the 

lungs ultimately resulting in perinatal lethality (Bader et al. 2005). Additionally, loss of 

nidogen function in the mouse model has been shown to result in impaired limb 

development as a result of irregular BM composition at the apical ectodermal ridge 

(AER) (Bose et al. 2006). Therefore, we thought it likely, that deterring nidogen function 

in the zebrafish model would impede BM development and provide similar results.  

 

 

Analysis of a nidogen2a mutant reveals no changes in development 

  

A nidogen2a mutant was obtained from the Zebrafish International Resource 

Center (ZIRC) in which the mutant allele possessed a C>T mutation resulting in a 

premature stop codon. The resultant mutant protein is severely truncated (mutant: 473 

amino acids, WT: 1351 amino acids) and void of both its G2 and G3 domains and is 

therefore nonfunctional. The morphology of homozygous nidogen2a mutants showed no 

phenotypic aberrations compared to WT embryos at 24 or 48hpf (Fig. 21 a, e, d, and h). 

A WISH analysis for nidogen2a in nidogen2a mutants showed a marked decrease in 

nidogen2a transcript abundance which is likely a result of nonsense mediated decay of 

the faulty transcript at both 24 and 48hpf in the eye. Previously recorded results 

examining knockout of murine nidogen1 and nidogen2 have shown genetic compensation 

occurs between the nidogens (Bader et al. 2005). Additionally, given that zebrafish 

possess not two, but four nidogen genes which likely have overlapping function and 

ability to compensate for one another makes it not surprising that no phenotype was 

observed in nidogen2a mutant embryos.  
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Nidogen morphants display gross morphological phenotypes 

  

To determine if knocking down the function of nidogen in the developing embryo 

had an effect on overall development we took advantage of morpholinos. Translation 

blocking morpholinos were used to knock down the expression of nidogen1a and 

nidogen1b in both WT and nidogen2a -/- embryos. Nidogen1a and nidogen1b 

morpholinos were injected into AB embryos independently at 1ng and 2ng or in 

combination. Nidogen2a-/- embryos were injected with a combination of nidogen1a and 

1b morpholinos but at reduced concentrations (.5ng, .75ng, 1ng). Nidogen morphant 

embryos displayed gross morphological aberrations and were categorized based on 

robustness of phenotype outlined in Figure 15 A. Nidogen morphants displayed an array 

of phenotypes that were  organized into four increasingly robust categories: WT, mild, 

severe, and lethal. WT classified embryos were undistinguishable from uninjected or 

control morphant embryos. Mild classified embryos had a slight curvature of the tail, a 

slightly elongated eye (nasal/temporal axis), and mild cloudiness in regions of the brain. 

Severe classified embryos had a robust curvature of the tail, a markedly smaller eye, and 

readily observable cloudiness and indistinguishable brain features. Lethal embryos were 

categorized as any phenotypic response to morpholino more robust than severe. 

 Injecting a control MO into WT embryos at a concentration of 2ng resulted in 

97% of embryos that were indistinguishable from WT with only 3% displaying mild 

phenotypes at 24hpf (Fig. 15, B.). Knockdown of nidogen1a and 1b independently in WT 

embryos resulted in a dose dependent phenotypic response at 24hpf. Using 1ng of 

morpholino to knock down both nidogen genes independently resulted in gross 

morphological phenotypes in 37% of nidogen1a morphants (34% moderate and 3% 

severe) and 49% of nidogen1b morphants (39% moderate and 10% severe) at 24hpf. 

When the concentration for each independent injection was increased to 2ng, the percent 

of embryos that displayed morphological phenotypes rose to 57% in nidogen1a 

morphants (31% moderate, 52% severe, and 2% lethal) and 83% in nidogen1b morphants 

(54% moderate, 17% severe, and 12% lethal) in a dose dependent manner.  

To determine whether nidogen1a and nidogen1b have synergistic function, we 

then targeted both transcripts simultaneously for knockdown. Knockdown of 



 38 

nidogen1a/1b in combination resulted in 95% of embryos displaying morphological 

phenotypes (5% WT, 40% mild, 49% severe, and 6% lethal) even at the lower 

concentration of 1ng at 24hpf. When the concentration of nidogen1a/1b morpholinos was 

increased to 2ng each this resulted in 85% of embryos displaying a phenotypic response 

(15% WT, 19% mild, 53% severe, and 13% lethal phenotypes), but a greater percent of 

embryos displayed lethal phenotypes (13% in 2ng treatment to 6% in 1ng treatment). 

This suggests that nidogen1a and nidogen1b have synergistic functionality and when 

knocked down in unison result in a very high percentage of embryos which display robust 

phenotypes.  

To observe whether these phenotypes persisted later in development morphant 

embryos were also examined at 48hpf and categorized into those displaying 

morphological phenotypes and those indistinguishable from WT (Fig. 17, A-B). 

Morphants displaying phenotypes displayed flattened head, misshapen eyes, heart edema, 

and cloudiness of the head. Nidogen1a 48hpf morphants displayed a dose response from 

1ng to 2ng with 33% and 67% showing gross morphological phenotypes respectively 

(1ng n=18, 2ng n=15). Similarly, nidogen1b morphants displayed 28% and 68% gross 

phenotypic response at 1ng and 2ng respectively (1ng n=29, 2ng n=25). Nidogen1a/1b 

morphants at 48hpf displayed gross morphological phenotypes in 45% and 59% of 

embryos examined at 1ng and 2ngs (1ng n=27, 2ng n=34).. 

Nidogen2a-/- embryos were injected with nidogen1a/b morpholinos in an attempt 

to inhibit function of the 3 nidogen orthologues expressed in the fissure. Reducing the 

function of three nidogen orthologues resulted in phenotypic characteristics not unlike 

those described in nidogen1a and 1b morphants (however in much higher numbers) and 

as such were categorized into the groupings previously described (Fig. 15, C.). Knocking 

down nidogen1a/1b in nidogen2a-/- embryos at a concentration of .5ng resulted in an 

overwhelming percentage of embryos that displayed morphological phenotypes at 24hpf 

(95% in total). Knocking down nidogen1a/1b at concentrations of .75ng and 1ng also 

resulted in an extremely robust phenotypic response (100% and 99% respectively). The 

intense morphological response as a result of reduced nidogen1a, 1b and 2a function is 

likely due most embryonic tissues expressing one or more of these orthologues. As such, 
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knockdown of nidogen1a, 1b and 2a likely results in BM defects of multiple developing 

organ systems and subsequent perturbed gross morphological development.  

 

Nidogen morphants display changes in eye size and shape  

 

To determine whether the eye size and shape of nidogen morphant fish were 

significantly altered compared to controls at 24hpf, measurements were taken of both 

features (Fig. 16 A-E). At 24hpf nidogen1a morphant embryos displayed no significant 

difference in eye size at 1ng, however they displayed 16.07% smaller eyes with the 2ng 

treatment compared to controls (p=.0086). Nidogen1b morphant embryos displayed 

significantly smaller eyes at both 1ng and 2ng compared to control embryos (21% 

smaller, p=.0001 and 17% smaller, p=.0034 respectively). Finally, knock down of both 

nidogen1a and 1b at 1ng and 2ng resulted in a significant, 14% and 25% decrease in eye 

size respectively, compared to controls (p=.0034 and p=.0001).  

 In addition to significantly smaller eyes, nidogen morphants displayed misshapen 

eyes compared to controls at 24hpf. Nidogen1a morphants at the 1ng concentration did 

not have a significantly misshapen eye compared to controls however, Nidogen1a 

morphant embryos at the 2ng treatment displayed a significant 15% elongation of the 

nasal/temporal axis of the eye (p=.0001). Nidogen1b morphants at 1ng displayed a 

significant 12% increase in the nasal-temporal length of the eye (p=.0042) however at the 

2ng concentration the elongation was insignificant. Lastly, knockdown of nidogen1a and 

1b resulted in significantly elongated eyes at both 1ng and 2ng (18% elongation of the 

nasal temporal axis, p=.0004 and 24% elongation, p=.0001 respectively).  

 Preliminary measurements of eye size and shape were taken for nidogen 

morphants at 48hpf which yielded significantly smaller and elongated eyes compared to 

control morpholino in some treatment groups (Fig. 18). As shown in Figure 18 A, 48hpf 

nidogen morphant eyes are misshapen and less symmetrical compared to controls. 

Morpholinos treatments that resulted in significantly elongated eyes at 48hpf include 

nidogen1a 2ng (p=.0138, n=9), nidogen1b 1ng (p=.0176, n=15), and nidogen1a and 1b at 

2ng (p=.0017, n=8). Nidogen morphant embryos also displayed smaller eyes at 48hpf 

compared to controls including 1ng nidogen1b (p=.0011, n=15) and nidogen1a/1b at 1 
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and 2ng (p=.0001 n=12 and p=.0001 n=8 for 1ng and 2ng respectively). These 

experiments need to be repeated to confirm these results.  

 

Live imaging of nidogen morphant eyes reveals changes in eye development in real 

time  

 

To capture the observed deviations of nidogen morphant eye development in real 

time, we conducted live imaging of nidogen1/1b morphants. Live imaging of 

nidogen1a/1b 2ng morphants from 18hpf to 36hpf revealed significant morphological 

alterations in eye development (Fig. 19). 2ng of nidogen1a/1b morpholinos were injected 

into RX3: GFP transgenic zebrafish embryos to visualize cells of the developing eye. 

Eyes of nidogen morphants at 18hpf were significantly smaller and elongated compared 

to WT controls and remained elongated throughout development until 36hpf. In addition 

to the elongated morphology of nidogen1a/1b morphant eyes, some RX3 expressing cells 

of morphant eyes lose contact and subsequently detach from the eye starting at 18hpf 

continuing to 36hpf (indicated by arrows). It is possible that decreased BM integrity as a 

result of reduced nidogen function, can cause cells of the eye to lose contact with the BM 

and ultimately become displaced. Following their displacement these cells will likely 

undergo anoikis and die and as a result be a factor in the micropthalmic phenotype 

observed in nidogen morphants.  

 

 

Laminin deposition and basement membrane morphology is altered in nidogen 

morphants 

  

Because knockdown of nidogen function resulted in readily observable gross 

morphological and eye phenotypes, we then wanted to directly examine the structure and 

the integrity of the BM of the eye. To do this, we observed the deposition of the 

ubiquitous BM component laminin as a proxy for the BM. IHC for laminin in nidogen 

morphant embryos revealed BM defects in the developing eye (Fig. 20). Specifically, 

laminin deposition in nidogen morphant eyes was less uniform and irregularly distributed 
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in the tissues of the developing eye compared to controls. Embryos with more severe 

gross morphological phenotypes (indicated by colored box representing category of gross 

morphological phenotype in Fig. 15) displayed more robust laminin deposition defects 

compared to WT and mildly effected morphants. It is likely that the absence of nidogens, 

which enable crosslinking laminin and collagenIV networks, results in reduced BM 

integrity and the displacement of its components. It may also be the case that the 

reduction of BM biomechanical strength in nidogen morphants results in the inability of 

the BM to properly provide the structural framework of the developing eye resulting in 

the observed elongated morphology.  

 

 

Eye patterning gene expression is altered in nidogen morphants 

 

After observing that reducing nidogen function leads to smaller and elongated 

eyes, likely as a result of BM defects, we then wanted to determine whether these 

morphological changes alter expression of genes involved in retinal patterning. Aside 

from playing a structural role, BMs have been shown to utilize multiple signaling 

pathways and mechanisms to relay vital information to the cells in which they support 

both in development and pathogenic scenarios (Harburger and Calderwood 2009, Smith 

et al. 2007, Maranti and Brugge 2002). Because of this, we believed it wholly possible 

that disruption BM integrity via the knockdown of nidogen may lead to changes in the 

expression of genes involved in the early patterning of the eye.  

To examine how disruption of BM integrity through loss of nidogen effects retinal 

patterning, we conducted whole mount in situ hybridization for genes whose expression 

domains are confined to specific areas of the developing eye in both nid1a/1b morphants 

and WT embryos (Fig. 21). Specifically, we have examined the expression profiles of 

dorsal, ventral, temporal, and nasal patterning regulators, Aldh1a2, Vax2, Foxg1a and 

FoxD1 at 24hpf respectively (Fig. 21, B). Notably, the expression pattern of the dorsal 

regulator Aldh1a2 shifts toward the nasal axis in nid1a/1b morphants (Fig. 21 a7-a8 and 

c7-c8). Moroever, the ventral regulator Vax2’s expression increases and is located 

ectopically of the developing retina in nid1a/1b morphants (Fig. 21 a6-a6 and c5-c6). 
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The instance of Vax2 overexpression may be explained by previously observed 

downregulation of BM mediated BMP signaling in nidogen mutants (Bose et al. 2006). 

Specifically, it has been shown that BMP4 suppresses Vax2 expression in the developing 

eye (Hasagawa et al. 2016). Together, these data suggest that downregulated BMP 

signaling in the eye as a result of nidogen removal and subsequent disrupted BM integrity 

may lead to an increase in Vax2 expression.  

 

Reducing nidogen function with a dominant negative construct 

 

To reduce the function of endogenous nidogen and confirm our morpholino 

results, we generated a dominant negative nidogen1b construct. mRNA generated for this 

construct contained sequence for nidogen1b devoid of its G3 domain. Ultimately, when 

expressed, this dominant negative version of nidogen would bind to laminin, however it 

would not have the ability to bind to collagenIV. We predict that this nidogen variant will 

saturate laminin’s endogenous nidogen binding sites therefore decreasing endogenous 

nidogen’s ability to link the collagenIV and laminin networks. 

To introduce the dominant negative nidogen1b we injected embryos with mRNA 

and performed laminin IHC to examine BM characteristics (Fig. 22). Embryos were 

injected with 200pg, 300pg, and 350pg of dominant negative nidogen1b mRNA and 

embryos displaying disrupted eye development at 24hpf were recorded. The number of 

embryos displaying morphological phenotypes as a result of dominant negative 

nidogen1b mRNA injection occurred in a dose dependent manner. At 200pg, 21% of 

embryos displayed defects in eye shape (Fig. 22 B and C). At 300pg and 350pg 60% and 

77% of dominant negative nidogen1b embryos displayed misshapen eyes at 24hpf. IHC 

for laminin showed laminin deposition was comparable to controls in eyes of embryos 

injected with dominant negative nidogen1b mRNA (Fig. 22, B). This may indicate that 

reduction of nidogen1b function by introducing dominant negative nidogen is less 

impactful than the use of nidogen morpholinos. However, the resulting aberrations of 

retinal morphology suggest dominant negative nidogen does in some way alter BM 

integrity and subsequent eye development in a similar fashion to nidogen morpholinos.  
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Generating a Nidogen1b dominant negative conditional mutant to target ESF 

 

 To target and assess nidogen’s contribution to the stability of the BM in the CF 

specifically, we have designed and implemented Tol2 Transgenesis. (Kwan et al. 2007) 

We have designed constructs to drive the expression of dominant negative nidogen1b via 

the hsp70 heatshock promoter which can be turned on during key ESF events.  We have 

generated preliminary results showing the dominant negative nidogen1b construct 

responds to heatshock to produce mRNA in vivo. WISH was conducted for nidogen1b in 

24hpf injected embryos following heat shock (Fig. 23). The resulting mosaic pattern of 

gene expression is indicative of production of dominant negative nidogen1b mRNA. 

Injected embryos are currently being raised to generate transgenic lines.  

 It is the goal of this experiment to, by driving the expression of dominant negative 

nidogen, determine if we can directly affect ESF in the choroid fissure. For example, by 

driving the expression of dominant negative nidogen prior to BM breakdown within the 

choroid fissure, it may be possible to prematurely reduce BM integrity. It would be 

interesting to observe that if reducing BM strength in turn provides the physical ques to 

trigger ESF. If this is the case, it may be possible to ‘jumpstart’ ESF within the choroid 

fissure prior to its proper timing by simply altering nidogen function. These data may 

provide more evidence that nidogen’s relationship to BM structure is a key component of 

BM remodeling prior to ESF.  
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Table 2. Nidogen amino acid and nucleotide percent identity matrices.  

A 

B 

Identity matrices were generated using Clustal Omega’s multiple sequence online 

alignment tool. A) Amino acid identity matrix for all four nidogen orthologues. 

Nidogen1a and nidogen1b share the highest sequence identity at 58.74%. Nidogen2a 

and nidogen2b are the second highest sequence identity at 51.39%. B) nucleotide 

identity matrix for all four nidogen orthologues. Nidogen1a and nidogen1b share the 

highest sequence identity at 63.99% and nidogen2a and nidogen2b share the second 

highest at 61.64%.  
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Table 3. A summary of the expression of all major BM components detected 

in the choroid fissure of the developing eye. 

Green boxes indicate that there is observable expression within the choroid fissure 

while red boxes indicate no detectable expression. The expression of nidogen 1a is 

the first gene to become undetectable within the choroid fissure at 48hpf. The 

expression of nidogen1b is last detected at 56hpf and the expression of nidogen2a 

is last detected at 48hpf. Of the three laminin genes examined laminina1 and 

lamininc1 become are last detected at 56hpf and are expressed longer than both 

nidogen1a and nidogen2a. Interestingly, the expression of the collagens (4a1 and 

4a2) and perlecan, remains detectable within the choroid fissure even at 65hpf and 

are detectable for the longest duration. Of the 10 genes examined two of the three 

nidogen genes expressed within the choroid fissure become undetectable earlier 

than perlecan, both collagen4s, and two of the three laminins.  
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Figure 6. WISH for all four nidogen orthologues from 24-65hpf 
WISH analysis for all four zebrafish nidogen orthologues has revealed both overlapping and unique areas of expression from 24-65hpf across orthologues. All 

are representative images. At 24hpf, the expression of nidogen1a is most prominent in the developing somites (a1) and dorsally can be observed within the 

olfactory placode (OP), outlining the midbrain regions (MHB), and within the tissues surrounding the eyes including the choroid fissure (a2). At 36hpf the 

expression of nidogen1a remains consistent and can now be prominently observed in the choroid fissure and developing gill arches (GA) (a3 and a4). At 48hpf 

expression of nidogen1a decreases dramatically in the head but can still be observed in the developing fin bud (FB)(a6). At 56hpf and 65hpf nidogen1a is 

expressed in the lens (a7 and a9), and prominently in the fin buds (a8 and a10). At 24hpf nidogen1b expression was observed in the tissues outlining the tail (b1), 

and like nidogen1a, outlining the midbrain regions (MHB), and within the tissues surrounding the eyes (b2). In addition to the tissues described at 24hpf, at 

36hpf nidogen1b expression was observed in tissues outlining the otic vesicle (OV) (b3). From 48hpf to 65hpf nidogen1b expression was observed in tissues 

outlining the mesencephalon (M), the eye including the choroid fissure (until 56hpf), and fin buds (b6-b10). Nidogen2a expression at 24hpf is most prominent at 

the distal tip of the tail (c1), strongly in the head (c1 and c2) and within the lens (c2). From 36hpf to 65hpf like nidogen1a, nidogen2a expression can be seen in 

the developing gill arches, and the developing fin buds (c3-c10). Expression of nidogen2a was observed in the eye until 48hpf (c5). Unlike its counterparts, at 

24hpf expression of nidogen2b is not observed in the tail (d1) but is observed in the head specifically down the midline spanning the fore and midbrain and in 

throughout the hindbrain ventricle (d2). Expression of nidogen2b at 36hpf is virtually nonexistent but is later expressed in the otic vesicle at 48hpf (d5 and d6).  
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Figure 7. WISH for all four nidogen orthologues from 24-65hpf- dissected eyes  

Representative images of WISH analysis on dissected eyes conducted for all four 

nidogen orthologues. WISH showed nidogen1a, 1b, and 2a to be expressed in the 

developing eye specifically within the region of the choroid fissure while 

nidogen2b was not detected (a2, b2, c2 and d1-d6). The expression of nidogen1a 

is last detected within the choroid fissure at 36hpf (a3). Nidogen1b’s expression 

within the choroid fissure is observable until 56hpf (b5). The expression of 

nidogen2a is observable within the choroid fissure until 48hpf (c4). There was no 

detectable expression of any nidogen orthologues within the choroid fissure at 

65hpf (a6-d6).  
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Figure 8. WISH for all collagen4 genes examined at 24hpf 

The expression patterns of six collagenIV genes were analyzed in zebrafish embryos at 

24hpf to determine which orthologues were expressed in the choroid fissure. From the 

data above, it was determined that collagen4a1 and collagen4a2 would be examined at 

later time points because of their expression within the choroid fissure (d1 and d2).    
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Figure 9. WISH for collagen4a1 and collagen4a2 from 24-65hpf 

The expression of both collagen4a1 and collagen4a2 was observed in the choroid fissure from 24-65hpf (c1-c5 and f1-f5). 

Laterally, collagen4a1 was observed at the mid-hindbrain at 24-48hpf (a1-a2). At 56 and 65hpf, collagen4a1 expression was 

observed both at the mid-hindbrain boundary and at the boundary of the forebrain and the midbrain (a4-a5). Similarly, the 

expression of collagen4a2 was observed at the mid-hindbrain boundary at 24-48hpf (d1-d3) and later also in the tissues separating 

the fore and midbrain (d4-d5). Expression of both collagens was also observed in the developing gill arches from 24-56hpf (a1-a5 

and d1-d5). Additionally, at later time points (56hpf and 65hpf) collagen4a1 and a2 expression was detected in the developing fin 

buds (b4-b5, and e4-e5). 
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Figure 10. WISH analysis for all laminin genes examined  

Lateral and dorsal expression profiles were examined for eight zebrafish 

laminin genes. From these data it was determined the expression of laminin a1, 

laminin a2 and laminin c1 were expressed within the choroid fissure (top row 

and bottom row first panel) and a more complete expression profile was 

generated for these genes (Fig. 11)  
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Figure 11. WISH for laminin a1, laminin a4 and laminin c1 from 24-65hpf 

WISH analysis was conducted from 24hpf to 65hpf for laminin a1, laminin a4 and laminin c1 all of which were determined to be 

expressed within the choroid fissure. All are representative images. Laminin a1 is expressed in the head of the embryo from 

24hpf-65hpf outlining the mesencephalon, the metencephalon the diencephalic ventricle, the otic vesicle, and the developing fin 

buds (a1-a8). In the eye, laminin a1 expression was observed in the choroid fissure until 56hpf (a9-a11). Laminin a4 expression 

was observed from 24hpf to 56hpf in the head of the embryo surrounding the developing eye, the gill arches, and the developing 

limb buds. In the eye, laminin a4 expression was last detected within the choroid fissure at 48hpf (b9-b12). Laminin a4 

expression was not observed in any tissues at 65hpf (b4, b8 and b12). Laminin c1 expression is similar to that of laminin a1 from 

24hpf-65hpf. Laminin c1 was detected outlining the mesencephalon, the metencephalon the diencephalic ventricle, the otic 

vesicle, the developing fin buds, and the gill arches (c1-c8). In the eye laminin c1 expression was last detected at 56hpf (c9-c12). 
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Figure 12. WISH for perlecan from 24-65hpf 

Wish for perlecan revealed perlecan expression in the developing choroid fissure from 

24 to 65hpf (a-d). Additionally, perlecan expression was observed in tissues 

surrounding and of the developing lens from 24-65hpf (a-d). At 24hpf perlecan 

expression was observed surrounding regions of the brain including the 

mesencephalon, the midbrain and the hindbrain (i) and was observed surrounding the 

tissues of the brain at later time points (j-l). Laterally, perlecan expression was 

observed at the mid-hindbrain boundary from 24hpf-65 hpf (e-g). Additionally, 

perlecan expression was observed in the developing fin buds at 56hpf and 65hpf (k 

and l).  
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Figure 13. IHC for nidogen in the zebrafish eye at 24 and 48hpf. 

A whole mount IHC analysis, utilizing rabbit -nidogen1/2  confirmed the 

deposition of nidogen to the basement membrane of the developing zebrafish 

eye (green). At both 24hpf and 48hpf nidogen was observed to be deposited in 

the basement membrane surrounding the lobes of the developing eye (white box 

and inset). Additionally, nidogen signal was observed in the basement 

membrane surrounding the developing somites at 24hpf.  
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Figure 14. IHC for collagenIV in the developing zebrafish eye at 24 and 48hpf 

Anti-rabbit collagenIV was used to observe the deposition in the of collagenIV in the 

developing zebrafish eye (b and f) (red). Green indicates RX3:GFP expression 

indicating cells of the developing eye (a and e). CollagenIV deposition was observed 

surrounding the tissues of the eye (b and f) and in the tissues surrounding the lobes of 

the eye (c and g) at 24 and 48hpf. 
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Figure 15. Nonsense mediated decay detected in nidogen2a mutants  

A) A schematic representation of WT and nidogen2a mutant transcripts. The 

mutant nidogen2a transcript has a C>T mutation resulting in a severely truncated 

and non-function protein. B) WISH conducted for nid2a transcripts in nidogen2a 

null mutants shows little to no signal. Expression of nid2a in WT embryos (a-b) 

shows specific expression in both the choroid fissure at 24 and48hpf (c and d) 

and at the tip of the tail at 24hpf (a/ arrow). In confirmed nidogen2a homozygous 

mutants no expression was detected in the developing eye (g and h) or at the tip 

of the developing tail (e/ arrow).  

a 
a 

b c 

e 
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Figure 16. Nidogen morpholino analysis at 24hpf- gross morphology 

A) Representative images of phenotypic categorizations of nidogen morphants from 

WT to lethal each with a corresponding color for identification in graphs B and C. 

Morphants categorized as WT (green) were undistinguishable from uninjected or 

control morphant embryos. Embryos categorized as mild (yellow) had a slight 

curvature of the tail, a slightly elongated eye (nasal/temporal axis), and mild cloudiness 

in regions of the brain. Severe morphant embryos (red) had a robust curvature of the 

tail, a markedly smaller eye, and readily observable cloudiness and indistinguishable 

brain features. Lethal morphant embryos were categorized as any phenotypic response 

more robust than severe. B) Percentage of embryos displaying each phenotypic 

categorization for each morpholino treatment injected into AB embryos. Nidogen1a 

and nidogen1b morpholinos were injected independently and together at 1ng and 2ng 

concentrations. C) Percentage of embryos displaying each phenotypic categorization 

for each morpholino treatment injected into nidogen2a homozygous mutants.  
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Figure 17. Nidogen morpholino analysis at 24hpf- eye size and eye shape  

Nidogen morphant embryos display smaller and elongated eyes compared to WT 

controls following a dose response at 24hpf. A) Nidogen1a MO at 2ng resulted in 

significantly smaller eyes (16.6%, p=.0086) compared to controls (n=21). Both 

nidogen1b treatments (1ng, n=21 and 2ng, n=18) resulted in significantly smaller 

eyes compared to controls at 24hpf (20.7%, p=.0001 and 16.7%, p=.0034 

respectively). Injections of nidogen1a and 1b MO together produced significantly 

smaller eyes at both 1ng (13.34%, p=.0034, n=43) and 2ng (24.48%, p=.0001, n=28) 

concentrations. B-D is a schematic representation of how measurements of eye sizes 

were taken. B and C show outlines of embryonic eyes at 24hpf for WT and 

nidogen1a/1b respectively. The area (px) of these eyes were analyzed as a factor of 

the length (px) of the embryo from tip to tail (D). In addition to smaller eyes, eyes of 

nidogen morphant embryos displayed an elongation of the nasal temporal axis. E) 

Elongation of the nasal-temporal axis of the eye followed a dose dependent response 

in both single and double morphant fish at 24hpf. Eye shape was determined as in 

panel F by measuring the nasal-temporal axis (px) in a ratio with the dorsal temporal 

axis (px). Nidogen1a MO treatments at 1ng did not result in significant changes in 

eye shape (p=.3279), but at 2ng produced significantly elongated eyes, (15%, 

p=.0001, n=17). Injection of nidogen1b MO at 1ng resulted in a significant 12% 

elongation (p=.0042, n=22) however at 2ng did not produce significant results 

(p=.3364). Injection of both MOs resulted in significantly elongated eyes at both 1ng 

(17.7%, p=.0004, n=43) and 2ng (26%, p=.0001, n=28).  

 



 58 
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B 
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Figure 18. Nidogen morpholino analysis at 48hpf 

A) representative images of 48hpf embryos from both control morpholino and 

nidogen1a/1b morpholino treatments. B) percentages of embryos from each 

treatment group displaying aberrant gross morphological phenotypes such as 

those depicted in A. Notably, embryos displaying gross morphological 

phenotypes followed a dose response for both nidogen1a and nidogen1b 

morpholinos independently and together. C) Measurements of eye size and 

shape were determined as in figure 17. Some treatment groups displayed 

significantly elongated eyes at 48hpf including nidogen1a 2ng (p=.0138, n=9), 

nidogen1b 1ng (p=.0176, n=15), and nidogen1a and 1b at 2ng (p=.0017, n=8). 

Nidogen morphant embryos also displayed smaller eyes at 48hpf compared to 

controls. These include 1ng nidogen1b (p=.0011, n=15) and nidogen1a/1b at 1 

and 2ng (p=.0001 n=12 and p=.0001 n=8 for 1ng and 2ng respectively).  
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Figure 19. Live imaging of nid1a/1b double morphants from 18hpf to 36hpf 

 Live imaging of nidogen1a/1b double morphants shows morphological abnormalities in the developing eye from 18hpf to 36hpf. 

Arrows depict cells detached from the basement membrane.  

 

18hpf 36hpf 
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Figure 20. IHC analysis of laminin deposition in nidogen morphant embryos 

Immunohistochemical analysis of laminin (red) in nidogen morphant eyes show deposition abnormalities. Colored boxes indicate 

representative images of eyes from gross morphological categorizations previously described and depicted in Fig. 16. Green indicates 

RX3:GFP expression and thereby cells of the developing eye. The overall eye laminin distribution in nidogen morphants is disrupted 

and not as uniform compared to controls. Elongation of the developing eye is also easily observable in severe nidogen morphant 

phenotypes. Nid1a morphants show irregular laminin deposition specifically in the region of the choroid fissure (arrows).  
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Figure 21. Whole mount in situ hybridization in 

nidogen1a/1b morphants and WT embryos of 

genes involved in eye patterning  

A) WISH Gene expression profiles for genes 

involved in eye patterning in both control MO 

and nid1a/1b 2ng MO embryos. Dissected eyes 

from both control and morphant embryos and 

imaged for analysis (e1-e8). Vax2 gene 

expression in nidogen1a/1b morphant embryos 

increases (n=12/19) (a5 and a6, c5 and c6) 

Aldh1a2 expression shifts from the most dorsal 

part of the eye temporally(n=12/17) (a7 and a8, 

e7 and e8). B) a schematic representation of 

genes involved in the patterning of the zebrafish 

eye at 24hpf (NTDV depicts nasal, temporal, 

dorsal, ventral). These data suggest that nidogen 

removal from the basement membrane can alter 

the expression of patterning genes within the 

developing eye.  
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Figure 22. Dominant Negative Nidogen1b Phenotypes 

A) a schematic representation of dominant negative nidogen1b protein 

structure. The transgenic nidogen protein still has the G1 and G2 domain, 

but lacks the G3 domain. This results in the protein having the ability to 

interact with laminin but not collagenIV thereby disrupting BM architecture. 

B) Dominant negative nidogen expressing embryos displayed irregular 

morphology of the developing eye, specifically in the region of the CF at 24 

hpf at all three concentrations injected (b2-b4). C) ratios of morphological 

observed followed a dose response from 200pg to 350pg with increasing 

concentrations of injected DN mRNA.  
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Figure 23. WISH for nidogen1b in transgenic dominant negative nidogen1b 

embryos after heat shock.  

A) a schematic of the Tol2 dominant negative nidogen1b construct. B) WISH 

was performed for nidogen1b in Tol2 dominant negative nidogen1b embryos 

after heat shock at 24hpf. The resulting mosaic expression pattern is indicative 

of transgene insertion into the embryonic genome.  

A 

B 
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CHAPTER FOUR 

DISCUSSION 

 

The remodeling and removal of the BM within the CF prior to ESF is undoubted, 

however the underlying mechanisms governing this process remain unknown. It is likely 

the case that a dynamic interplay exists between gene expression of BM components and 

protein level protease interactions that ultimately result in the disassembly and removal of 

the BM within the CF. The data presented in this thesis provides evidence that regulation 

of nidogen may play a key role in compromising BM integrity ultimately leading to its 

removal to allow for subsequent ESF.  

In concurrence with my hypothesis, I have shown that nidogen is required for BM 

integrity. Specifically, limiting nidogen deposition in the zebrafish embryonic model via 

the use of morpholinos has resulted in compromised BM structure via the disruption of 

ternary complexes and phenotypes similar to those observed in the murine model. 

Nidogen1a and 1b knockout mice have been shown to display BM defects in the heart, 

lung, and limbs resulting in perinatal lethality (Bader et al. 2005 and Bose et al. 2006). 

These defects were observed to be a direct result of weakened BM integrity due to a 

decrease in the deposition of laminin, perlecan, and collagenIV. Additionally, knockout 

of nidogen 1 in mice has been reported to decrease the deposition of laminin y1 resulting 

in a more punctate and less uniform BM compared to controls (Baranowsky et al. 2010). 

Examined together, these studies and the experiments performed in this thesis suggest 

nidogen plays an integral role in BM stability and therefore may be a key element in its 

disassembly.  

 

 

Laminin zebrafish mutants display similar phenotypes to nidogen morphants 

 

In addition to studies of nidogen mutants, there have been reports showing the 

ablation of other basement membrane components resulting in adverse effects on ocular 

development with similar phenotypes to those observed in nidogen morphant embryos. 

For example, loss of laminina1 has been observed to effect zebrafish vertebrate optic cup 
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morphogenesis (Bryan et al. 2016). The authors were able to determine multiple 

structural abnormalities in zebrafish embryos lacking laminin a1 including defects in 

focal adhesion, invagination, and optic stalk constriction. On a macroscopic level they 

observed morphogenic phenotypes similar to nidogen morphants including a misshapen 

lens, and smaller eyes (Fig. 17). The authors also noted patches of dying cells they 

hypothesized could be a result of cells losing contact with the basement membrane and 

entering into apoptosis via anoikis. Similarly, in my live imaging study of nidogen 

morphants, I observed cells which had seemingly lost contact with the basement 

membrane and were subsequently detached from the eye (Fig. 19). 

 An additional study observing mutants for both laminin 1 and laminin1 

showed basement membrane defects effecting both the developing eye and notochord of 

zebrafish (Parsons et al. 2002). Both mutants showed smaller eyes and lens abnormalities 

similar to those observed in nidogen morphants and dominant negative nidogen embryos 

(Fig. 17 and Fig.22 ). Furthermore, these embryos also displayed shortened body axis 

comparable to nidogen morphant embryos. Together these studies suggest BM integrity is 

essential to proper embryonic development and that loss of even one component can 

robustly alter morphogenesis.  

 

 

How nidogen removal can alter basement membrane dynamics prior to ESF 

 

Although limiting or removing nidogen results in destabilized BM structure the 

question remains however how nidogen removal may initiate disruption of BM integrity 

ultimately leading to BM removal and subsequent ESF. I hypothesize that there are two 

potential modes in which the structural disassembly of the BM through the removal of 

nidogen is necessary for ESF to occur. The first predicts that the removal of nidogen from 

the BM results in the exposure of proteolytic sites in the core BM components of laminin, 

collagenIV or perlecan. Specifically, nidogens removal leads to a disrupted basement 

membrane architecture allowing for the subsequent liberation of newly exposed epitopes 

in other basement membrane components. In this model, matrix metalloproteases which 

recognize these newly exposed epitopes now have the ability to efficiently remodel 
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basement membrane components leading to the efficient breakdown of the BM allowing 

subsequent ESF.  

The second mode predicts that in the absence of nidogen, BM integrity is 

compromised allowing for the extension of cellular protrusions required for ESF. 

Ultimately, reducing the biomechanical strength of the BM allows for the necessary 

positioning of epithelial sheets. It is not only possible, but likely, that these two proposed 

modes work in concert to enable fusion. In my thesis I have provided evidence that the 

regulation of nidogen within the choroid fissure may be a result of both expression 

dynamics and potentially targeted nidogen removal. 

 

 

Regulation of nidogen and subsequent BM remodeling as a result of expression 

dynamics 

 

Comparative gene expression analysis of all major BM components in the CF 

prior to and during ESF indicates that nidogen is first to be down regulated. Specifically, 

of the 10 genes examined to be expressed within the choroid fissure, nidogen1a and 2a 

mRNA becomes undetectable earlier than perlecan, both collagenIVs (4a1 and 4a2), and 

two of the three laminins (a1 and c1) (Table. 3) (Figs. 8-12). The question remains 

however, if the differential expression of BM components results in structural 

consequences that may ultimately prime the BM for remodeling.  

An examination of other BM remodeling events provides evidence that gene 

expression does have the ability to play consequential roles in altering BM structure. 

During heart failure for example, the myocardial BM is significantly remodeled which 

has been hypothesized to alter cellular shape and function ultimately resulting in 

decreased performance (Kim et al. 2016). A study examining the variance of gene 

expression of ischemic failing and non-failing hearts in human tissue suggests that the 

differential expression of BM components, including the down-regulation of nidogen and 

laminin, do indeed effect BM morphology (Kim et al. 2016). Transmission electron 

microscopy revealed, amorphous disrupted BMs in failing hearts with lower levels of 

nidogen and laminin gene expression. Our results suggest, that the integrity of the BM of 
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the CF may decrease via a similar developmental mechanism in which the expression of 

nidogen is purposely reduced.  

 In addition to pathogenic instances, the genetic regulation of nidogen and laminin 

during development has also been shown to play a role in BM morphology. In the 

developing mouse lung, the differential spatial expression of laminin and its interaction 

with nidogen is thought to alter BM structure which ultimately facilitates branching 

morphogenesis (Thomas and Dziadek 1993). In this system, nidogen is expressed evenly 

throughout the developing lung tissue however laminin expression is spatially confined to 

the tips and base of the developing lobules. Laminin-nidogen complexes at the distal 

lobules and base of the branching lung thereby generate highly stabilized BM and regions 

between are thought to be discontinuous and thin. They hypothesize that lack of these 

complexes and subsequent weakening of the BM in the proliferating intermediate regions 

allows for the outgrowth and branching of the developing lung. Likewise, our data 

suggests that in the CF the expression of both laminin and nidogen decrease prior to that 

of collagenIV and perlecan which may ultimately effect BM architecture. This reduction 

of newly synthesized laminin-nidogen complexes, like in the developing mouse lung, 

may lead to thinner, more discontinuous BMs which can be more efficiently remodeled.  

 

 

Protein level regulation of nidogen and subsequent BM remodeling  

  

Although genetic regulation of nidogen and its interacting components likely play 

a role in the destabilization of the BM, direct targeting nidogen for removal from the BM 

on a protein level likely also affects BM stability. The morpholino analysis conducted in 

this study, knocking down the expression of nidogen1a and 1b, resulted in observable 

alterations in BM integrity and robust morphological consequences (Figs. 16, 17, 18, and 

19). Specifically, the morphology of nidogen morphant eyes were both significantly 

smaller and more elongated compared to controls. These changes in eye shape and size 

may be a result of a reduction of the biomechanical strength of BMs deficient for nidogen 

and subsequent failure of the BM to support the developing eye tissue.  
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It is important to note that since the completion of this study there has been an 

update of splice variants of the nidogen1b transcript in the zebrafish transcriptome. As 

reported by the Zebrafish Information Network (ZFIN) and Ensemble there are now 5 

described splice variants of the nidogen1b gene. In this study, targeted silencing was 

conducted for the transcript variant nid1b-202 (ENSDARG00000103129) which codes 

for a protein 87 amino acids smaller than the largest variant (nid1b-201). Although the 

nidogen1b morpholino utilized in this study technically only targets the nid1b-202 splice 

variant, we are confident that there was a disruption of nidogen1b gene function which 

was responsible for the results observed. For example, phenotypic responses to 

nidogen1a and 1b morpholinos independently were highly similar and when used 

together resulted in more robust aberrations (Fig. 16). Furthermore, inhibiting nidogen1b 

function via the use of dominant negative constructs phenocopied the morpholino 

associated gross morphological alterations in development strengthening our previous 

results.  

The functional studies conducted in this thesis suggest BMs lacking nidogen are 

mechanically less stable and result in the impaired development of epithelial tissues. As 

such, endogenous targeting and removal of nidogen in the CF via endogenous proteases 

provides a likely route for dismantling the BM. Further, as the most proteolytically 

sensitive BM component, nidogen (Mayer et al. 1993/1994, Sires et al. 1993) is uniquely 

capable of acting as a lynchpin whereas its removal would directly result in the BM 

phenotypes observed in this study.  

Further, it is predicted that the remodeling of the BM prior to fusion requires an 

assemblage of proteases capable of degrading matrix components found within this 

interstitial space. To date, several BM remodeling protease families have been discovered 

and characterized including, MMPs (Matrix metalloproteinases), ADAMs (a disintegrin 

and metalloproteinases), ADAMTSs (ADAMs with a thrombospondin motif), Meprins, 

and Cathepsins (Bonnans et al. 2014). Appropriate regulation of proteases has been 

shown to moderate BM remodeling and dysregulation has been observed to induce or 

accelerate numerous pathologies (Bondenson et al. 2008 and Daley et al. 2013).  

One particular family of interest are the MMPs which are considered to be the 

primary enzymes involved in BM degradation, and collectively have the ability to target 
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all major BM components (Bonnans et al. 2014). To this point, MMPs have been 

implicated in BM remodeling during mammary epithelial branching and have been show 

to play a key role in remodeling of intestinal BM (Zhang et al. 2013, and Fujimoto et al. 

2007). Additionally, although broad in their targeting abilities, both in vivo and in vitro 

studies have provided evidence some MMPs specifically target nidogen (Tonge et al. 

2013, Titz et al. 2004 and Alexander et al. 1996cw). Examined together, these data 

suggest MMPs may play a critical role in targeting nidogen for remodeling the BM of the 

CF and should be further examined.  

 

 

Nidogen as a potential regulator of the biomechanical strength of basement 

membranes and epithelial fusion  

 

One major hallmark of epithelial sheet fusion is the mechanical movement of 

opposing epithelia into juxtaposition. This migratory behavior is, at least in part, the 

result of actin based cellular protrusions called lamellipodia and filopodia. Cellular 

protrusions have been indicated in several epithelial fusion events across species 

including, dorsal closure in Drosophila, and neural tube closure in mice (Millard et al. 

2008, Geelan et al. 1976). However cellular movement is achieved, it is clear that the 

persistence of an impassible BM would hinder or even halt migration leading to a failure 

of fusion. To overcome this, the embryo must remodel or eliminate this structural barrier 

possibly through the removal of nidogen to decrease tension and allow for movement.  

Previous work has shown that altering the stoichiometry of BM components, 

specifically laminin-nidogen complexes results in weakening of the BM allowing for 

epithelial protrusion in the form of branching in the developing mouse lung (Thomas and 

Dziadek 1993). Additionally, interfering with laminin and nidogen interaction has also 

been shown to inhibit proper branching morphology of the submandibular gland in mice 

(Kadoya et al 1997). Examined together, these data suggest that BM integrity and 

strength may play a central role in epithelia movement and malleability. The data 

provided in this thesis suggests that inhibiting integration of nidogen results in a less 

uniform and more irregular deposition of BMs. Thereby, nidogen’s removal may be a key 
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factor in reducing BM strength and allowing for the projection of epithelial protrusions 

and subsequent ESF in the CF.   

 

 

Future Directions 

 

 I have provided evidence in this thesis that suggests that nidogen may be a 

potential regulator of BM disassembly prior to ESF however much remains to be 

discovered in relation to this hypothesis. Perhaps the most insightful experiment to be 

conducted is to establish a timeline of breakdown of all major BM components in the 

choroid fissure via IHC. Preliminary data generated in this thesis has identified the 

deposition of both nidogen and collagenIV in the choroid fissure at 24 and 48hpf. By 

expanding this data set to include both laminin and perlecan deposition throughout the 

entirety of the fusion processes a complete chronology of the breakdown of all 

components can be generated. If the hypothesis that nidogen acts as lynchpin for 

basement membrane disassembly proves correct, I would expect that nidogen’s protein 

levels within the CF would diminish prior to that of its interacting components. This 

would support the premise that removal of nidogen may act a catalyst for BM breakdown 

via nidogen specific proteolytic targeting.  

 Further, future experiments conducted using dominant negative nidogen1b 

transgenic embryos will shed light on nidogens role in BM integrity and ESF in a more 

targeted context. The functional studies conducted in this thesis have examined the 

consequences of ubiquitous nidogen knockdown or introduction of dominant negative 

nidogen beginning at the one cell stage. Although both experiments resulted in basement 

membrane defects which lead to subsequent eye abnormalities, these experimental 

approaches are notably imperfect due to their ubiquitous nature. Because of this, it is 

impossible to determine if the observed eye phenotypes are a consequence of the loss of 

nidogen specifically in the eye. In fact, it likely that phenotypes observed in the eyes of 

nidogen morphants are a result of earlier developmental mechanisms reliant on nidogen 

deposition. Using the heatshock promoter to drive the expression of dominant negative 

nidogen1b later in development will circumvent some of these issues. For example, by 
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inhibiting nidogen’s function prior to BM breakdown in the CF it may be possible to 

observe a premature dismantling of BM as a result of weakened ternary structure. This 

experiment would allow for the observation of impaired nidogen function in an embryo 

with no prior nidogen knockdown.  

 Additionally, it would be interesting to examine the biomechanical dynamics of 

the BM in the choroid fissure in both WT and nidogen morphants. Although elimination 

of nidogen from the BM in both mice and zebrafish has resulted in disrupted BMs, a 

direct measurement of the BM strength of tissues undergoing naturally remodeling has 

never been attempted. Likewise, a measurement of the strength of BMs lacking nidogen 

has yet to be acquired. Measurements of BM strength can be conducted utilizing atomic 

force microscopy (AFM). In fact, AFM has proven to be a useful tool for providing 

insight into the structural specifications and macromolecular organization of BMs in 

multiple studies (Chen and Handsma 2000, Last et al. 2009, and Mestres et al. 2014). 

Analyzing the biomechanical strength in BMs lacking nidogen may provide evidence that 

nidogen is a key regulator of BM integrity. Additionally, measuring the biomechanics of 

the BM of the choroid fissure throughout the process of fusion, together with the data 

generated in this study, may provide evidence that nidogen expression and deposition is a 

key regulator of BM strength. If true, these data would further support the hypothesis that 

the regulation of nidogen is necessary for the dismantling of the BM and subsequent 

fusion.  

 

 

Conclusion  

 

 Ultimately the data generated from this study provides evidence that nidogen’s 

crosslinking ability plays a key role in the stability of the BM of the CF and therefore 

may regulate its disassembly prior to ESF. An expression analysis of nidogen suggests 

it’s downregulation precedes that of its interacting components in the CF thereby 

potentially priming the BM for removal. Additionally, a functional analysis of nidogen 

via morpholino mediated knockdown and dominant negative interference results in BM 

abnormalities, significant changes in eye size and shape, and altered gene expression of 
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eye patterning genes confirming its architectural importance. Together, these data provide 

the basis for a developmental mechanism in which nidogen acts as a lynchpin for BM 

stability and is thereby removed in anticipation of ESF.  

Notably, the mechanisms of epithelial sheet fusion are thought to be conserved in 

many developing tissues. Therefore, it is also likely that the regulation of nidogen may 

play a key role in the BM remodeling mechanisms of other fusing tissues in both 

developing and adult tissues. Thus, the data presented in this thesis will provide valuable 

insight into other critical fusion events and ultimately into fusion derived diseases such as 

those described in CHARGE syndrome.  
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