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ABSTRACT OF DISSERTATION 

 

 

AN OPTIMIZED SOLID-PHASE REDUCTION AND CAPTURE STRATEGY FOR 
THE STUDY OF REVERSIBLY-OXIDIZED CYSTEINES AND ITS APPLICATION 

TO METAL TOXICITY 
 

The reversible oxidation of cysteine by reactive oxygen species (ROS) is both a 
mechanism for cellular protein signaling as well as a cause of cellular injury and death 
through the generation of oxidative stress.  The study of cysteine oxidation is complicated 
by the methodology currently available to isolate and enrich oxidized-cysteine containing 
proteins.  We sought to simplify this process by reducing the time needed to process 
samples and reducing sample loss and contamination risk.   

We accomplished this by eliminating precipitation steps needed for the protocol 
by (a) introducing an in-solution NEM-quenching step prior to reduction and (b) 
replacing soluble dithiothreitol reductant with a series of newly-developed high-capacity 
polyacrylamide-based solid-phase reductants that could be easily separated from the 
lysate through centrifugation.  These modifications, collectively called resin-assisted 
reduction and capture (RARC), reduced the time needed to perform the RAC method 
from 2-3 days to 4-5 hours, while the overall quality and quantity of previously-oxidized 
cysteines captured was increased.   

In order to demonstrate the RARC method’s utility in studying complex cellular 
oxidants, the optimized methodology was used to study cysteine oxidation caused by the 
redox-active metals arsenic, cadmium, and chromium.  As(III), Cr(VI), and Cd(II) were 
all found to increase cysteine oxidation significantly, with As(III) and Cd(II) inducing 
more oxidation than Cr(VI) following a 24-hour exposure to cytotoxic concentrations.  
Label-free proteomic analysis and western blotting of RARC-isolated oxidized proteins 
found a high degree of commonality between the proteins oxidized by these metals, with 
cytoskeletal, translational, stress response, and metabolic proteins all being oxidized.  
Several previously-unreported redox-active cysteines were also identified.   

These results indicate that cysteine oxidation by As(III), Cr(VI), and Cd(II) may 
play a significant role in these metals’ cytotoxicity and demonstrates the utility of the 



RARC method as a strategy for studying reversible cysteine oxidation by oxidants in 
oxidative signaling and disease.  The RARC method is a simplification and improvement 
upon the current state of the art which decreases the barrier of entry to studying cysteine 
oxidation, allowing more researchers to study this modification.  We predict that the 
RARC methodology will be critical in expanding our understanding of reactive cysteines 
in cellular function and disease. 

 

KEYWORDS: Resin-Assisted Capture, Reversible Cysteine Oxidation, Immobilized 
Reductants, Cysteine Redox Proteomics, Heavy Metals 
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Chapter 1 : INTRODUCTION 
 

Reactive oxygen and nitrogen species are both a natural byproduct of cellular 

aerobic processes and toxic compounds that are implicit in cellular disease, 

carcinogenesis, and aging.  While the role of ROS and RNS in cellular signaling and 

disease has been well-documented, there is still significant debate as to what the initial 

targets for these species are upstream of any cellular signaling cascades.  There has been 

mounting evidence that protein thiols may be the link between ROS and RNS and cellular 

signaling cascades. 

However, the role of cysteines in ROS- and RNS-mediated signaling and disease 

is still poorly understood.  This is no accident, as cysteine oxidative status is difficult to 

interrogate experimentally both in vitro and in vivo.  Unlike phosphorylation, which is 

relatively stable post-lysis barring phosphatase activity, the simple act of lysis can 

introduce significant artefactual cysteine oxidation due to our oxidizing atmosphere. 

Despite these hurdles, several techniques have been developed to study cysteine 

oxidation.  These techniques are for the most part cumbersome and tedious, typically 

taking multiple days and requiring several precipitation and/or purification techniques.  

By requiring so many steps and sample handling, the risk of sample loss, modification 

loss, and contamination is greatly enhanced.  Additionally the long workup time and 

many steps involved relegates cysteine oxidation experiments towards the esoteric since 

they require both a significant devotion of time as well as significant researcher 

experience. 
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With that in mind, it was our goal to streamline the experimental workflow to 

address these issues, and then utilize these streamlined methods to study cysteine 

oxidative modifications induced by environmental and occupational metal toxins.  By 

decreasing the amount of handling and precipitation steps, the overall ease in studying 

cysteine oxidative modifications would be increased, pushing this post-translational 

modification into the experimental mainstream. 

 

Cysteine is one of the least common amino acids in the human proteome, 

comprising only an estimated 1.7% of the amino acid composition.  However the rate of 

cysteine incorporated into the proteome has increased over evolutionary history, 

coinciding both with a transition from a reducing to oxidizing environment as well as an 

increase in organismal complexity [1, 2].  This increase in cysteine incorporation over the 

course of evolution indicates the importance of cysteine for complex cellular functions.  

Cellular cysteines play significant roles in protein structure and function.  They provide 

covalent inter- and intrachain linkages, act as catalytic centers for cellular enzymes, and 

act as cellular antioxidants to prevent cellular oxidative damage. 

There has been an increased interest recently in examining the role of cysteine in 

cellular signaling networks.  Since the sulfhydryl in cysteine can undergo reversible 

redox in vivo, protein cysteines may act as cellular switches.  Under oxidative stress a 

switch cysteine would oxidize, altering protein structure or activity to induce a signaling 

cascade; cellular antioxidants could then reduce the cysteine to “turn off” the signaling 

cascade. 
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Protein Thiol Oxidation 

Characteristics of Cysteine 

Cysteine, chemical formula C3H7NO2S, is a non-essential amino acid.  Cysteine 

and methionine are the two sulfur-containing amino acids in the human proteome, with 

cysteine having a non-substituted thiol (-SH) in its side chain.   

Sulfur has several characteristics that make it particularly useful.  Due to its lower 

electronegativity, it is a better nucleophile than oxygen.  Sulfur’s electron configuration 

of 1s2,2s2,2p6,3s2,3p4 allows for 8 oxidation states (+2,+1,-1,-2,-3,-4,-5,-6) compared to 

oxygen’s four (2,1,-1,-2).  This increase in oxidation states allows for a wider range of 

reduction-oxidation reactions as well as an increase in binding partners for a sulfur 

center. 

The sulfur in cysteine is a thiol (RSH, S(II)) [3].  While is similar in most respects 

to a hydroxyl group, thiols generally act as better nucleophiles under cellular conditions.  

Therefore this allows for the cysteines to bind more, and more readily to, cellular targets.  

Additionally, due to its decreased electronegativity it is easier to reduce the cysteine thiol 

than a hydroxyl, such that cellular cysteines can readily undergo both oxidation and 

reduction under cellular conditions. 

While other amino acids can be oxidized in vivo, only the two sulfur-containing 

amino acids cysteine and methionine are readily reduced.  In the case of cysteine, this 

reversibility allows for cysteine to be act as a redox center for enzymatic catalysis, a 

target for cellular oxidants, and a malleable component of protein structure. 
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The propensity for the cysteine thiol to be oxidized is dependent upon pH.  

Cysteine is oxidized only in its thiolate state.  As discussed below, the thiol pKa is ~8.5; 

therefore at physiological conditions cysteine would exist primarily as a protonated thiol 

and be incapable of undergoing redox.  How, then, can cysteine exist as a thiolate under 

physiological conditions? 

The influence of nearby groups on thiol pKa has been clearly demonstrated 

through multiple studies, as summarized in Table 1.1.  The presence of positively-

charged groups in close proximity to the thiol will reduce the pKa, while the presence of 

negatively-charged groups will generally increase the pKa.  As seen in Table 1.1, the 

substitution of an alcohol group in β-mercaptoethanol to an amine group in β-

mercaptoethylamine decreases the thiol pKa from 9.72 to 8.35.  Thiol pKa increases as 

the distance between the thiol and an amine increases, as seen in the series from 2-

diethylaminoethanethiol to 2-diethylaminohexanethiol [4]. 

Cysteine contains three dissociable protons (those of the carboxylic acid, thiol, 

and ammonium), which would give three separate pKas.  While the pKa of the carboxyl 

group can be clearly identified, the pKas of the thiol and ammonium groups overlap and, 

as mentioned above, affect each other greatly.  Therefore determining the pKa of the 

cysteine side chain thiol has been the subject of many studies.  Through using 

spectrophotometric measurements Benesch and Benesch measured the cysteine thiol pKa 

as 8.53 [5].  Thurlkill et al. used potentiometric titration on peptide hexamers consisting 

of Ala-Ala-Cys-Ala-Ala-Ala to arrive at a thiol pKa of 8.55 [6]. 
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Table 1.1. The experimentally-determined pKSH of simple and physiological thiol-
containing compounds. 

Chemical Name Chemical Formula pKSH Reference 
Ethanethiol C2H5-SH 10.61  
β-mercaptoethanol HO-C2H4-SH 9.72  
β-mercaptoethylamine H2N-C2H4-SH 8.35  
2-diethylaminoethanethiol (C2H5)2-N-C2H4SH 7.8 [4] 
2-diethylaminopropanethiol (C2H5)2-N-C3H6SH 8.0 [4] 
2-diethylaminobutanethiol (C2H5)2-N-C4H8SH 10.10 [4] 
2-diethylaminohexanethiol (C2H5)2-N-C6H12SH 10.10 [4] 
l-cysteine HO2CCH(NH2)-CH2SH 8.53 [5] 
Glutathione Glu-Cys-Gly 9.20  

 

The influence of neighboring charged groups on cysteine thiol pKa means that 

protein cysteines may have measurable pKas that are far different than that of free 

cysteine.  Positively charged groups from adjacent or proximate amino acids such as 

arginine, histidine, and lysine could significantly shift the thiol pKa; furthermore the 

burying of cysteines within a protein may lead to a dehydration of the area surrounding 

the thiol, leading to a far different dielectric constant.  These different variables allow for 

large variability in reported protein cysteine values, ranging from 2.5 – 11.1, with a mean 

protein cysteine pKa of 6.8 ± 2.7 [7]. 

At a physiological pH of 7.4, free cysteine will be primarily in the protonated 

thiol (-SH) state; however a significant portion of cysteines will be in an unprotonated 

thiolate (-S-) state due both to the pKSH as well as conformationally-induced pK shifts.  

This is in sharp contrast to the cellular antioxidant tripeptide glutathione, which has a 

pKa of 9.2.  As thiolates are nucleophilic and readily undergo redox reactions, cysteines 

will be oxidized more readily and at a faster rate than glutathione under physiological 
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conditions [8].  Glutathione is present intracellular at millimolar concentrations, making 

it the predominant cellular thiol and a significant cellular antioxidant [9].  However the 

greater reactivity of cysteines towards oxidants, coupled with the critical roles that 

cysteines play in protein structure and activity means that cysteine oxidation could act as 

an early sensor of oxidative stress, affecting protein structure and function and mediating 

downstream signaling. 

Therefore it is important to understand the different forms of oxidized cysteine 

that may be encountered in the cell, as well as their characteristics.  Cysteine oxidation 

products can generally be categorized as reversible or irreversible, based upon the ease 

with which the oxidation product can be reduced back to a thiol under physiological 

conditions. 

Cysteine Modifications by Radical Species 

Oxidative Modifications 

Cysteine oxidative products are those that are generated by the radical attack of 

reactive oxygen species (ROS) on cysteine thiols.  These oxidative products have been 

classically organized into two groups: reversible and irreversible.  The reversible 

oxidative products are those that were perceived to be easily reversed under physiological 

conditions through a reduction-oxidation reaction by cellular antioxidants, such as 

glutathione, and antioxidant proteins, such as thioredoxin and peroxiredoxin.  The 

irreversible oxidative products were perceived to be biologically irreversible, although it 

is now understood that some modifications that were considered to be irreversible are in 

fact reversible in vivo under certain conditions [10, 11]. 
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Irreversible cysteine oxidation.  Irreversible cysteine oxidation to a sulfinic acid (-SO2H) 

or sulfonic acid (-SO3H) may result in inactivation of protein function.  For instance, 

hyperoxidation of the active-site cysteine of GAPDH to a sulfinic acid leads to an 

irreversible inactivation of enzymatic function [12, 13].  Likewise oxidant-mediated 

active-site selenocysteine hyperoxidation of glutathione peroxidase 1 (GPX) [14, 15] and 

active-site cysteine hyperoxidation of superoxide dismutase 1 (SOD1) and catalase [16] 

cause irreversible inactivation of key cellular antioxidant enzymes.  While sulfiredoxin is 

capable of reducing cysteine sulfinic acids to thiols, its substrate specificity of 2-Cys 

peroxiredoxins [10] means that cysteine and selenocysteine hyperoxidation of these 

enzymes is physiologically irreversible. 

However not all hyperoxidized proteins are necessarily inactivated by cysteine 

sulfinic and sulfonic acids.  An excellent example of hyperoxidation-mediated protein 

function is the cellular redox sensor DJ-1/PARK7.  DJ-1/PARK7 is a multifunctional 

protein which contains three cysteines: Cys46, Cys53, and Cys106.  Under oxidative 

stress Cys106 is irreversibly hyperoxidized to a sulfinic acid, leading to conformational 

changes and causing subcellular redistribution to the mitochondria [17] and nucleus.  

Hyperoxidized DJ-1/PARK7 acts as a pro-survival agent within cells undergoing 

oxidative stress, inhibiting apoptosis signaling kinase 1 activation by preventing ASK1-

Daxx interaction [18] and Trx1-ASK1 complex dissolution [19].  Hyperoxidized DJ-

1/PARK7 also inhibits apoptotic MEKK1-SEK1-JNK1 signaling [20], inhibits PTEN 

dephosphorylation of Akt/PKB [21], sequesters p53 from transcriptional activation [22], 

and increases antiapoptotic ERK1/2 signaling [22].  These activities, all triggered by DJ-
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1/PARK7 C106 sulfinylation, delay cellular apoptosis under oxidative stress to allow 

time for antioxidant recovery. 

Reversible cysteine oxidation and sulfenic acids.  Reversible oxidative modifications 

include sulfenic acids (-SOH), disulfides (-SS-), and nitrosothiols (-SNO).  Sulfenic acids 

are considered to be unstable intermediate oxidative products and generally will rapidly 

oxidize further to disulfides [23], sulfenamides [24], or sulfinic and sulfonic acids; this is 

due to the abstraction of oxygen by the electronegative oxygen to give a highly 

electrophilic sulfur which can undergo further nucleophilic attack.   

However some proteins have been demonstrated to form stable sulfenic acids 

through conformational restriction of further oxidation [25].  Oxidoreductase enzymes, 

such as NADH peroxidase and NADH oxidase, utilize a stabilized sulfenic acid in their 

catalytic centers.  Additionally stabilized sulfenic acids have been shown to form a rapid 

redox switch for cell signaling in transcription factors, antioxidant proteins, and cell 

survival and apoptotic proteins (reviewed in [26]).   

Sulfenic acids play a significant role in cellular response to oxidative stress.  The 

active-site cysteine Cys152 in glyceraldehyde-3-phosphate dehydrogenase is reversibly-

oxidized to a sulfenic acid when exposed to nitric oxide generators such as sodium 

nitroprusside [27], leading to an inhibition of glycolysis and redirection of 

glyceraldehyde-3-phosphate towards the pentose phosphate pathway to generate NADPH 

for antioxidant response [28]. Cysteine sulfenic acid oxidation on the antiapoptotic 

protein Bcl-2 by hydrogen peroxide prevents its interaction with and suppression of 

apoptotic ERK1/2 signaling [29].   
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Disulfides. A disulfide is a thioether formed either between two cysteines (Cys-S-S-Cys) 

in the case of a cysteine disulfides, or between a cysteine and a non-cysteine thiol species 

(ex. Cys-S-S-Glutathione) in the case of mixed disulfides.  Cysteine disulfides are a 

crucial structural element of proteins, contributing to secondary, tertiary, and quaternary 

structure [30].  Disulfides are a key non-primary structural motif due to the energetic 

favorability of disulfide formation.  Under oxidizing physiological conditions cysteines 

will readily undergo oxidation to form disulfides [31], although disulfide formation is in 

vivo is catalyzed and error-corrected in the endoplasmic reticulum by the oxidorectase 

protein disulfide isomerases [32, 33]. 

While protein cysteines will form disulfides spontaneously, incorrect and 

disulfide formation can cause severe perturbations to protein structure and cell function. 

Protein disulfide misfolding caused by protein disulfide isomerase disruption results in 

ER stress and has been linked to apoptosis [34], neurodegeneration [35], and diabetes 

[36]. 

In addition to structural elements and protein folding, disulfides have been shown 

to act as redox sensors.  Cysteine-cysteine disulfides and mixed glutathione-cysteine 

disulfides regulate Nrf2 stabilization ([37]), phosphatase and kinase activity, proteosomal 

function, and apoptosis (reviewed in [38]).  Beyond their role in unfolded protein 

response, PDIs have been proposed to be key oxidative stress regulatory hubs through 

disulfide formation, driving a variety of signaling cascades [39]. 

Nitrosothiols. Reactive nitrogen species such as nitric oxide can induce the formation of 

cysteine-S-nitrosothiols (Cys-SNO).  Nitric oxide is generated endogenously by the 
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constitutively-expressed family of nitric oxide synthases (NOSs), including eNOS, iNOS, 

and nNOS.   

As with the other reversible oxidative products discussed previously, S-

nitrosylation of cysteines has been shown to regulate protein cell signaling cascades.  

Cardiovascular regulation of vasodilation by nitric oxide is driven by S-nitrosylation [40].  

Nitric oxide has also been linked to inflammation [41], UPR signaling, diabetes [42], 

neurodegeneration [43], antiapoptotic signaling [44], autophagic resistance [45], and 

inhibition of cellular kinases [42]. 

Methods for Detecting Cysteine Oxidation 

Given the widespread impact of cysteine oxidative adducts on both homeostasis 

and cellular pathology, the presence of cysteine oxidative modifications and their 

contribution to protein structure and function has been a topic of research for the past 

century.  While early studies focused on the relationship between cysteine and cysteine, 

as well as cysteine’s role in urinary calculi, by the 1960s researchers had identified that 

cysteine played a significant role in protein stability and structure. 

Early studies into cysteine oxidation states relied upon several methods.  These methods 

included X-ray crystallography [46], amino acid analysis, nonreducing/reducing diagonal 

gel electrophoresis [47], and protein mass-shifts induced by cysteine alkylation by high-

molecular weight alkylating reagents [48].  While these methods used different 

approaches and arrived at different endpoints for their analyses, they were collectively 

slow, laborious, and were inefficient as methods to discover previously unidentified 

reversibly-oxidized cysteines. 



11 
 

In 2001 Jaffrey et al. first described the basic framework of the biotin-switch assay 

(BSA) [49].  The BSA used ascorbate to reduce nitrosothiols, leaving all other oxidative 

cellular modifications unperturbed.  In the BSA cellular thiols are blocked using the 

methyl methanethiosulfonate (MMTS), after which excess MMTS is removed, 

nitrosothiols are reduced with ascorbate, and the newly-reduced thiols are biotinylated 

using biotin-HPDP.  

The development of the biotin-switch assay was a significant advancement in the field of 

cysteine redox signaling.  Since the endpoint for the BSA was biotinylation of 

nitrosothiols, it allowed the enrichment and study of the nitrosothiol-containing fraction 

of the proteome.  The BSA was not without its drawbacks, however.  Ascorbate has been 

shown to be capable of reducing some cellular disulfides, reducing the overall specificity 

of the BSA [50, 51]; furthermore the biotinylation endpoint adds undue complexity to the 

assay since it requires the removal of excess biotinylation prior to streptavidin pulldown.   

In the decades following the first description of the BSA, researchers have 

developed modifications and improvements of the BSA to alleviate these issues and 

broaden its applicability.  Leichert and Jakob introduced a disulfide quench step 

consisting of direct lysis of samples in 10% trichloroacetic acid (TCA) prior to alkylation.  

The rapid decrease in pH and protein denaturation caused by the TCA was presumed to 

eliminate disulfide exchange, freezing the cellular thiol status [52].  The alkylation 

reagent used has changed from the haloalkanes iodoacetate (IAA) and iodoacetamide 

(IAM) to N-ethylmaleimide (NEM), which has the advantage of faster cysteine alkylation 

at neutral and slightly acidic pH (pH 6.5-7.5).  Reduction methods were expanded to 

probe for all manner of cysteine oxidation products, including protein disulfides.  Finally, 
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the most fundamental change in the BSA technique has been the transition away from 

biotin itself towards resin-assisted capture (RAC). 

In RAC the biotin-streptavidin capture is replaced by substituting an activated-

disulfide thiopyridine resin [53].  Following alkylation and reduction, the newly-reduced 

cysteines are bound covalently to the solid-phase resin through mixed disulfide bonds.  

The benefits of RAC are threefold.  Using RAC instead of biotin-streptavidin pulldown 

eliminates the need to remove any excess biotin from the sample.  Furthermore, since the 

capture is through a covalent bond the reaction can occur under highly denaturing 

conditions, and more stringent wash conditions can be used to eliminate any non-specific 

interactions.  Finally, since the cysteine is bound to the resin through a disulfide bond the 

protein can be gently eluted by the addition of a reducing agent. 
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Figure 1.1. The resin-assisted capture (RAC) methodology.  Cells are lysed in the 
presence of cysteine alkylating reagents such as N-ethylmaleimide (NEM), which 
alkylate reduced cysteine thiols, blocking them from being captured by activated thiol 
resins.  Reversibly-oxidized cysteines, including cysteine s-nitrosothiols and disulfides, 
are then reduced by reducing agents.  The newly-reduced cysteines then form mixed 
disulfides with an activated thiol resin, which allows the proteins containing previously-
oxidized cysteines to be captured and separated from non-oxidized proteins.  Captured 
proteins can be eluted from the resin with the simple addition of a cysteine reductant such 
as dithiothreitol (DTT) or tris(carboxylethy)phosphine (TCEP). 
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As a technique, RAC is dependent upon the reductant used to determine what 

kind of cysteine oxidative adducts it captures (Fig. 1).  The use of ascorbic or sinapinic 

[54, 55] acids will result in the reduction and capture of S-nitrosothiols, while using 

sodium arsenite will lead to the reduction and capture of sulfenic acids.  The use of a 

nonspecific thiol reductant like dithiothreitol (DTT) will reduce and capture all reversible 

cysteine oxidative adducts present. 

Unfortunately using RAC for studying total protein oxidation comes with 

significant drawbacks.  Since the reduction of nitrosothiols and sulfenic acids is specific 

for those species, reduction and capture can occur at the same time.  However since the 

dithiopyridyl capture resin is based on an activated disulfide, any attempt to reduce 

cellular disulfides at the same time as capture would result in at best the immediate 

cleavage of any newly-formed mixed disulfides, and at worst would neutralize the 

capturing resin entirely.  Therefore total protein oxidation studies require a two-step 

reduction and capture, wherein the proteins are reduced with DTT, after which the excess 

reductant must be removed by precipitation, ultrafiltration, or dialysis prior to capture. 

The necessary removal of the reductant prior to capture limits the throughput of the RAC 

when it comes to studying total protein oxidation.  As it stands this method requires, from 

start to finish, at least two days to finish using chloroform-methanol precipitation; using 

the more quantitative acetone precipitation would require at least three days to prepare a 

sample for capture and analysis.  Additionally each step requires significant user 

manipulation, risking sample contamination and/or loss. 
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Tangible improvements have been made in streamlining methodology for 

nitrosothiol RAC through thiosulfonate switching [56, 57].  However very little 

advancement has been done on its sister technique in this regard. An alternative approach 

to total protein oxidation RAC was developed by the Cross group [58] which eliminated 

the precipitation step between alkylation and reduction in order to reduce the time needed 

to perform the RAC technique.  However this method has not been adopted by the wider 

community, nor has it been compared to the classical RAC method in order to determine 

whether its modifications have conferred tangible improvements to the technique beyond 

processing time reduction. 

We therefore saw an opportunity to reevaluate total protein oxidation RAC and 

improve upon it.  Using the iterative improvements to date as a starting point, our goal 

was to reduce the time needed to process samples with the RAC technique to one that 

could be performed in a single workday, with a reduced need for precipitation and 

handling.  It was intended that optimization of the RAC technique would allow for lower 

sample variability and error, higher throughput, increased ease of use, and the potential of 

automation.  These benefits would decrease the barrier to entry for researchers interested 

in using RAC to study cysteine oxidation, increasing the body of knowledge surrounding 

cysteine oxidative signaling and redox modifications. 
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Chapter 2 : OPTIMIZATION OF INCUBATION CONDITIONS FOR RESIN-

ASSISTED CAPTURE OF TOTAL OXIDIZED CYSTEINES. 

 

Background 

There are two distinct workflows used for resin-assisted capture of reversibly-

oxidized cysteines: the Purification of Reversibly-Oxidized Proteins (PROP) method [58] 

and the Oxidized Resin-Assisted Capture (Ox-RAC) method [59, 60].  Both of these 

techniques follow the same basic structure, alkylation-reduction-capture, but they differ 

in a few key respects.  The Ox-RAC technique adheres closely to the BSA workflow; it 

uses an SDS-based lysis buffer, either NEM or IAM as an alkylating reagent, and most 

importantly uses a two-step alkylation/reduction where the alkylating reagent is first 

removed from the lysate by organic precipitation and washing, then the lysate is 

resuspended in reducing buffer. 

The PROP technique differs from the Ox-RAC technique in that it uses a 

guanidine-based lysis buffer, specifically identifies NEM as the preferred alkylating 

reagent, and uses a one-step alkylation/reduction buffer where following alkylation an 

overwhelming amount of DTT is added to the lysate to both quench the NEM and reduce 

cysteines.  The benefit of the PROP workflow is that by removing one precipitation/wash 

step, sample loss is reduced and the procedure is shortened by one day. 

Given the variations between the two methods, it was important that these 

differences were compared to determine the optimal conditions for analysis.  Additionally 

it highlighted several areas in which the Ox-RAC method could be improved upon to 

decrease handling steps, sample loss, and method time.  While these improvements 
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would naturally make the method shorter, it would also reduce or eliminate the use of 

hazardous organic solvents, decrease sample variability, and make the method more user-

friendly. 

Therefore we identified the key differences between the two methods and 

compared them.  These variables included the inclusion of an acid-quenching step, the 

denaturant and alkylating reagent used, and using either a one- or two-step 

alkylation/reduction.  We then altered the method further by using solid-phase reducing 

resins to eliminate the need for precipitation and buffer exchange. 

 

Materials and Methods 

Materials. The immortalized human bronchial epithelial cell line BEAS-2B was 

purchased from American Type Culture Collection (ATCC CRL-9609).  Cell culture 

medium (Gibco DMEM+GlutaMAX, Gibco 10569), HBSS pH 7.4 (Gibco 14025), PBS 

pH 7.4 (Gibco 10010), trichloroacetic acid (Fisher BP555, Lot# 165234), 5,5’-dithiobis-

(2-nitrobenzoic acid) (Thermo Scientific 22582, Lot# OG189149A), and screw cap 

microcentrifuge spin columns (Pierce 69705) were purchased from Thermo Fisher 

Scientific (Waltham, MA).  Sepharose 6B (Aldrich 6B100, Lot# MKCG3369), sodium 

borohydride (Aldrich 452882 Lot# SHBF1327V), ethyl 3-benzoylacrylate (Aldrich 

260614, Lot# STDB7349V), ethyl vinyl sulfone (Aldrich 282839, Lot# MKCB3364V), 

phenyl vinyl sulfone (Aldrich 241717, Lot# 0001451652), methyl propiolate (Aldrich 

171859, Lot# BCBT5514), ethyl propiolate (Aldrich E46607, Lot# STBG4123V), 3-

phenyl 2-propynenitrile (Aldrich 672645), methyl sulfonylbenzothiazole (Enamine 
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ENA069848532), and 1-(2-aminoethyl)maleimide (Aldrich 809322) were purchased 

from Millipore Sigma (St. Louis, MO).  Epichlorohydrin (Alfa Aesar A15823, Lot# 

Y13B038), sodium thiosulfate (Alfa Aesar A17629 Lot# 10205369), N-ethylmaleimide 

(Alfa Aesar 40526, Lot#P290042), acrylamide (Alfa Aesar J62100 Lot# P17C510), 

methyl acrylate (TCI FII01-RPGO), iodoacetamide (Amresco M216 Lot# 1835C142), 2-

mercaptoethylamine hydrochloride (Alfa Aesar A14377, Lot# 10173644), dithiothreitol 

(VWR 97061), and all other ancillary materials and consumables were purchased from 

VWR (Radnor, PA). 

Cell Culture. The human bronchial epithelial cell line BEAS-2B was grown at 37° C in a 

humidified incubator with a 5% CO2 atmosphere in DMEM+GlutaMAX, 10% FBS, 1% 

penicillin-streptomycin.  BEAS-2B was subcultured prior to confluence and plated at a 

density of 3,000-5,000 cells/cm2.  Following plating, the cells were grown to ~65-80% 

confluence for treatment, and only passages 60-90 were used for experiments. 

Synthesis of Epoxide Resins 

Epoxide Resin.  Epoxide resin was synthesized as described by Axen et al. [61] using the 

modifications provided by Matsumoto et al. [62]  Sepharose or sephadex resin was 

washed free from its storage buffer using deionized water under vacuum on a fritted glass 

filter, then allowed to dry under vacuum until no more water passed through the filter.  2g 

of the washed resin was added to 3 ml of 56% DMSO in deionized water, to which 1.3 ml 

of 2M sodium hydroxide and 0.3 ml of epichlorohydrin were added in order.  The 

suspension was incubated at 40°C for 2 hours with mixing, after which the resin was 
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washed with 50 ml of deionized water.  The epoxide resin was not stable enough to store 

long-term, so subsequent reactions were conducted immediately. 

S-Alkyl-Thiosulfate Resin.  2g of epoxide resin was washed with 0.5M sodium phosphate 

buffer, pH 6.3.  It was then resuspended in 4 ml of the same buffer, to which 2 ml of 2M 

sodium thiosulfate was added.  The suspension was incubated for 6 hours at RT with end-

over-end mixing.  The resin was then washed with deionized water and resuspended in 

phosphate buffered saline.  The resin was stored at 4° C in 20% ethanol/PBS. 

 Thiol Resin. 2g of S-alkyl-thiosulfate resin was washed with deionized water followed 

by methanol and allowed to dry on a fritted glass filter.  The resin was then resuspended 

in 10 ml of methanol in a peptide synthesis vessel.  700 mg of sodium borohydride (20 

mmol) was added to the suspension, and nitrogen was bubbled through the vessel.  The 

suspension was incubated for 1 hour at RT.  The resin was then dried under vacuum and 

washed with 50 ml of 0.1M acetic acid to neutralize any remaining borohydride.  The 

resin was stored short-term in 0.1M acetic acid at 4° C. 

Thiopropyl Resin. 2g of thiol resin was washed with 60% acetone/40% 0.05M sodium 

bicarbonate/1 mM EDTA.  It was then resuspended in 5 ml of the same solvent, to which 

0.3M of 2,2'-dipyridyl disulfide in the same solvent was added.  The suspension was 

incubated for 1 hour at RT in the dark with end-over-end mixing.  The resin was washed 

with 60% acetone, followed by 1 mM EDTA in water.  The resin was stored in 20% 

ethanol/PBS in the dark at 4° C or lyophilized [63] for long-term storage. 

Cell Lysis. BEAS-2B cells were plated onto 10-cm2 dishes and grown to 65-80% 

confluence.  Upon reaching the desired % confluency the cell culture medium was 
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replaced with culture medium containing treatment compounds or vehicle alone.  

Following treatment exposure the plates were washed 3x with HBSS, the cells were 

detached from the plate with a cell lifter, collected into 1.5ml tubes, pelleted, and lysed in 

400 μl of degassed lysis buffer (20 mM NaHPO4, 1 mM EDTA, 0.1% IGEPAL CA-630, 

2% SDS unless otherwise noted).  Lysate DNA was sheared by sonicating the samples 

using 10 30-second cycles in a BioRuptor Pico (Diagenode, Denville, NJ).  The 

supernatant was transferred to a clean tube and either used immediately in downstream 

assays or flash frozen and stored at -80°C. 

Thiol Measurement. Sample thiol content was measured using the 5,5’-dithiobis-(2-

nitrobenzoi acid) (DTNB) assay [64, 65].  Thiol-containing samples were solubilized in 

DTNB assay buffer (100 mM Tris, pH 7.8, 1 mM EDTA), then mixed with DTNB assay 

buffer containing 10 mM DTNB; for 96-well plates the volume ratio of sample:DTNB 

was 1:2.  The samples were mixed thoroughly and allowed to incubate at RT in the dark 

for 10 minutes, after which sample absorbance was measured at λ=405 nm on a BioTek 

EL800 spectrophotometer (BioTek Instruments, Winooski, VT).  An internal set of thiol 

standards consisting of known concentrations of mercaptoethylamine was included in 

each run to verify accuracy of the measurements. 

Trichloroacetic Acid Disulfide Quenching. Pelleted BEAS-2B cells were thoroughly 

resuspended in 1 ml of 4% trichloroacetic acid (TCA) by pipetting and incubated for 10 

minutes at room temperature.  Following incubation the proteins were pelleted by 

centrifugation at 16,000g for 5 minutes.  The pellet was washed 1x in 4% TCA, then 3x 

in cold methanol; the pellet was thoroughly resuspended for each wash by pipetting.  
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Following the final wash the pellet was allowed to dry briefly to remove residual 

methanol, then the pellet was resuspended in degassed lysis buffer. 

Prelysis Quenching. Following treatment the cell culture medium was exchanged with 

HBSS containing NEM (50 mM unless otherwise noted) and incubated briefly.  After 

incubation the HBSS + NEM was removed, the plates were washed 3x with HBSS, the 

cells were detached from the plate with a cell lifter, collected into 1.5ml tubes, pelleted, 

and resuspended in degassed lysis buffer. 

Lysate Alkylation and Reduction.  BEAS-2B cells were lysed in 400 μl of degassed lysis 

buffer containing 20 mM NEM in opaque 2-ml microcentrifuge tubes.  The samples were 

incubated for 2 hours at RT with gentle end-over-end mixing.  The samples were then 

precipitated by the addition of 4 volumes (1.6 ml) of prechilled acetone, vortexed, and 

precipitated overnight at -20°C.  The precipitated protein was collected by centrifugation 

at 4,000g for 5 minutes in a 4° C microcentrifuge.  The supernatant was removed and the 

protein pellet was washed 3x with cold 80% acetone.  The samples were then allowed to 

dry briefly to remove excess acetone, then resuspended by pipetting in 400 μl of lysis 

buffer containing 50 mM DTT.  After a one-hour incubation the samples were again 

precipitated with cold acetone, allowed to incubate overnight at -20°C, and washed 3x 

with cold 80% acetone before resuspension for RAC. 

Resin-Assisted Capture.  Alkylated and reduced sample pellets were resuspended by 

pipetting in 400 μl of capture buffer (20 mM CH3COONa pH 4.5, 2% SDS, 1 mM 

EDTA).  Sample concentration was measured by BCA assay [66], and equal 

concentrations of lysates were added to microcentrifuge spin columns containing 35 mg 
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of buffer-equilibrated thipropyl resin.  The columns were sealed and the slurry was 

incubated for one hour at RT with rotation.  Following incubation the columns were 

unsealed, placed into waste collection tubes, and centrifuged at 1,000g for 1 minute to 

remove all nonbound proteins.  The columns were washed with 5 column volumes of 

capture buffer, 5 column volumes of diH2O, and 1 column volume of Laemmli sample 

buffer.  After the final wash 100 μl of Lammli buffer containing 50 mM DTT was added 

to the columns, which were sealed and rotated at RT for 30 minutes.  The columns were 

then unsealed, placed in clean 1.5 ml microcentrifuge tubes, and centrifuged at 1,000g to 

collect the bound fraction. 

Gel Electrophoresis and Staining.  Equal volumes of sample bound fractions were loaded 

in adjacent wells of NuPAGE Bis-Tris gels. Equal concentrations of input fractions were 

loaded to verify equivalent loading of the spin columns between samples.  Gels were run 

in MOPS SDS-PAGE running buffer at 200V.  Following electrophoresis the gels were 

removed from the gel cassettes, cut, and placed directly into fixation solution (10% acetic 

acid, 50% methanol) and incubated with RT for 15 minutes at RT.  The fixation solution 

was decanted and replaced with staining solution (0.025% Coomassie G-250, 10% acetic 

acid), and the samples were incubated with rocking for 30 minutes at RT.  The staining 

solution was decanted and the gels were destained with two 30-minute incubations in 

10% acetic acid.  Following destain the gels were imaged using a ChemiDoc XRS (Bio-

Rad, Hercules, CA). 

Results and Discussion 

Use of Trichloroacetic Acid for Disulfide Quenching 
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The use of trichloroacetic acid (TCA) as an acid-quench step was first proposed 

by Leichert and Jakob [52].  By adding a denaturing amount of TCA to intact cells the 

cells would be lysed, proteins would be denatured, and the free cysteine thiols would be 

protonated; this would prevent disulfide exchange and giving a cellular “snapshot” of 

cysteine oxidation status.  Therefore TCA quenching has become an integral step in the 

BSA technique [60]. 

However the use of TCA quenching has been called into question.  Curbo et al. 

found that diamide, a potent thiol oxidant, was still able to oxidize protein thiols during 

TCA quenching [67].  Since cysteine oxidation post-lysis during the quench step would 

be stochastic, this would increase non-specific oxidative “noise” in subsequent steps of 

the assay. 

An additional concern regarding the use of TCA quenching which was of great 

concern to our research field was the possibility of generating more-reactive metal 

species during the acid quench.  It is well-known that some transition metals, such as 

chromate, are highly oxidative at low pH.  There was a concern that these metals could 

induce post-lysis oxidation of the samples during TCA quench.  We therefore wanted to 

determine whether acid-quenching in the presence of redox-active metals could cause 

post-lysis oxidation in a manner similar to that of diamide. 

BEAS-2B pellets were lysed in 4% TCA [68] either alone or in the presence of 

metals (As(III), Cd(II), or Cr(VI)) at concentrations commonly used for in vitro 

experiments for 10 minutes to demonstrate whether these metals were capable of 

inducing protein cysteine oxidation over a short exposure period at low pH. Fig. 2.1 
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shows the results of this experiment.  While arsenic caused no discernable increase in 

cysteine oxidation relative to the control, both cadmium and chromium caused post-lysis 

oxidation with Cr(VI)-induced oxidation being much higher than Cd(II)-induced 

oxidation (Fig. 2.1A).  Cr(VI) is known to be a highly oxidizing agent at low pH, so post-

lysis metal-induced oxidation was not unexpected.   

 

Figure 2.1. TCA disulfide quenching causes postlysis oxidation by reactive metals.  
BEAS-2B cells were quenched by the addition of trichloroacetic acid (TCA) to starvation 
medium (DMEM) to a final concentration of 4% TCA.  During quenching the cells 
remained untreated or were treated with NaAsO2, K2Cr2O7, or CdCl2 in the acidified 
medium for 10 minutes.  Following quench in the presence acidified metals, cells were 
collected, washed, and processed for resin-assisted capture (RAC) analysis as described 
in the Methods.  Input fractions are 5 μg of total lysate for each sample.  Pulldown 
fractions are equivalent volumes of resin-assisted capture eluate representing reversibly-
oxidized proteins for each sample.  (A) BEAS-2B cells were treated with 5-10 μM of 
As3+, Cr6+ or Cd2+ for 10 minute in the presence of 4% TCA.  Equivalent amounts of 
RAC-processed whole cell lysates as determined by bicinchoninic acid assay were loaded 
onto thiopropyl-sepharose columns to capture oxidized proteins, washed, and eluted 
(RAC pulldown).  The lanes on the left side of the figure were loaded with 5 μg of RAC-
processed whole cell lysate (INPUT), and the lanes on the right side of the figure were 
loaded with 20 μl of eluate (PULLDOWN) containing only oxidized proteins from each 
treatment. (B) BEAS-2B cells were pretreated with 20 mM N-ethylmaleimide (NEM) 
(lanes 3-5, 8-10) prior to TCA quenching and treatment with diH2O vehicle (Lanes 1, 3, 
6, 8) or 10 μM Cr(VI) (Lanes 2, 4, 7, 9) for 10 minutes as in part A.  Lanes 5 and 10 are 
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from BEAS-2B cells which were pretreated with NEM but not acid-quenched.  
Equivalent amounts of RAC-processed whole cell lysates were loaded into thiopropyl-
sepharose columns to capture oxidized proteins, washed, and eluted.  The lanes on the 
left side of the figure were loaded with 5 μg of RAC-processed whole cell lysate 
(INPUT), and the lanes on the right side of the figure were loaded with 20 μl of eluate 
(PULLDOWN) containing only oxidized proteins from each treatment. The gels were 
visualized after electrophoresis using Coomassie G-250. 

 

Cysteine oxidation by chromic acid during the TCA quench would only occur in 

the presence of free, reduced cysteines.  We wanted therefore to see whether alkylating 

free thiols prior to lysis and quench, thereby eliminating the pool of free thiols available 

for oxidation, would be an effective way to avoid chromic acid post-lysis oxidation.  We 

pretreated BEAS-2B cells with 20 mM N-ethylmaleimide prior to TCA quenching alone 

or in the presence of Cr(VI) (Fig. 2.1B).  Pre-lysis treatment with NEM significantly 

decreased post-lysis cysteine oxidation by chromic acid, reducing it to nearly that of 

control.   

Pre-Lysis Disulfide Quenching with N-Ethylmaleimide 

TCA quenching was originally conceived of as a way to prevent cysteine 

oxidation and disulfide exchange by the rapid denaturation of proteins in a low-pH 

solution.  Unfortunately as we have shown above, the presence of certain metals in the 

TCA solution, whether due to metal treatment or as trace contaminants, can induce post-

lysis oxidation upon acidification; this effect was greatly reduced by the pretreatment of 

cells with NEM prior to TCA quenching, since the membrane-permeable NEM would 

alkylate accessible cysteines in vitro prior to lysis, thereby greatly reducing the 

population of free thiols at risk of post-lysis oxidation. 
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 In addition to using NEM prior to TCA quenching, we also tested NEM treatment 

without TCA quenching (Fig. 2.1B, Lanes 5 and 10).  We found that NEM prelysis 

treatment reduced post-lysis cysteine oxidation to levels comparable to that obtained by 

TCA quenching (Fig. 2.1B, Lanes 1 and 6).  Due to this we reasoned that NEM prelysis 

quenching of accessible cysteines could potentially replace TCA disulfide quenching as a 

viable approach to reducing or eliminating postlysis cysteine oxidation and disulfide 

exchange.  The benefits of eliminating TCA from the workflow would be elimination of a 

precipitation and resuspension step at the start of the procedure, as well as avoiding the 

use of a potentially hazardous acid. 

This approach has been used in previous studies, although there is a lack of 

available data regarding both the efficiency of the pre-lysis blocking, as well as the 

optimization of conditions for the blocking step.  Therefore we sought to fill in these 

blanks to determine whether pre-lysis blocking was a viable alternative to TCA 

quenching.  We blocked BEAS-2B cells prior to lysis by exchanging their culture 

medium with HBSS containing NEM immediately prior to harvesting.  Figure 2.2 shows 

the results of the blocking experiments. 

As can be seen in Fig. 2.2A, significant cysteine blocking was achieved by all 

concentrations of NEM trialed.  A 15-minute incubation with 1 mM NEM at room 

temperature resulted in a decrease in available free thiol of over half, while increasing 

NEM concentrations resulted in even further decreases in the free thiol pool.  While this 

loss of free thiol increased with increasing NEM concentration, the alkylation 

demonstrably slowed as the concentration was increased from 25-100 mM; this is most 

likely due to the effective alkylation of surface-exposed cysteines, with the remaining 
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~25% of free thiols representing conformationally buried cysteines which are 

inaccessible to NEM in the proteins’ native configuration. 

Given the decreasing cost-benefit ratio of increasing NEM concentration for 

prelysis quench, we settled on 50 mM NEM as an optimal concentration of NEM to use 

in prelysis quench to both achieve maximal cysteine alkylation while preventing 

excessive waste of alkylant.   However we wanted to determine whether incubation time 

and/or temperature would have a significant effect on prelysis quenching.  Therefore we 

tested altering the incubation time (Fig. 2.2B), as well as altering the incubation 

temperature (Fig. 2.2C), would lead to increased alkylation with a sub-maximal NEM 

concentration of 25 mM. 

The prelysis quench was essentially finished at 5 minutes, with no substantive 

increase in alkylation being gained as the incubation was extended out to 30 minutes.  A 

slight but non-significant gain in alkylation occurred when the cells were quenched at 

37°C instead of RT.  Based on these results the optimal prelysis quench conditions were 

determined to be incubation with 50 mM NEM for 5 minutes at RT or 37°C, with further 

time or concentration increases being unnecessary.   
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Figure 2.2. N-ethylmaleimide (NEM) incubation of cell pre-lysis causes significant 
cysteine alkylation.  100 μl of the supernatant was pipetted into 3 replicate wells of a 96-
well plate.  To these wells 200 μl of 5,5’-dithio-bis-(2-nitrobenzoic acid) (DTNB) assay 
solution (100 mM NaH2PO4 pH 7.8, 1 mM EDTA, 10 mM DTNB) was added.  The 
plates were briefly shaken to mix and allowed to incubate for 10 minutes in the dark prior 
to reading at λ=405 nm.  All DTNB measurements were normalized to cell lysate protein 
concentrations, determined by BCA assay.  (A) BEAS-2B cells were incubated for 15 
minutes at RT in the dark with increasing concentrations of NEM. (B) BEAS-2B cells 
were incubated with 25 mM NEM at RT in the dark for various incubation times. (C) 
BEAS-2B cells were incubated with 25 mM for 5 minutes in the dark at varying 
temperatures.  HBSS media used was acclimated to the incubation temperature prior to 
addition to the BEAS-2B culture dish.  Bars and data points represent mean ± SD, n=3. 
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Investigation of Alternative Alkylating Reagents 

While maleimides are the most commonly-used class of cysteine alkylants in 

RAC, they are not without their drawbacks; as Michael acceptors maleimides can 

undergo a retro-Michael reaction in the presence of a base.  This retro-reaction means 

that maleimide-cysteine adducts are reversible in basic media or in the presence of a 

competing Michael donor.   

Due to this we wanted to investigate alternative cysteine alkylants from 

alternative classes of cysteine alkylants reported thus far (reviewed in [69]).  This 

includes halo-acetamides, alternative Michael donors, electron-deficient alkynes, and 

Julia-Kocienski-like reagents.  Since the intention of this comparison was to determine 

whether NEM was the best-available cysteine alkylant, we limited the compounds 

screened to only those compounds which were commercially-available at high purity 

(>99%) in reasonable quantity. 

We therefore compared the efficacy of NEM to that of the commonly-used halo-

acetamide iodoacetamide (IAM), the alkenes acrylamide (AAm) [70, 71], butyl acrylate 

(BA), methyl acetylacrylate (MAA), ethyl 3-benzoylacrylate [72], ethyl vinyl sulfone 

(EVS), and phenyl vinyl sulfone (PVS), the alkynes methyl propiolate (MP) [73, 74], 

ethyl propiolate (EP) [74], and 3-phenyl 2-propynenitrile (PPN) [75], the Julia-

Kocienski-like reagent methyl sulfonylbenzothiazole (MSBT) [76], and finally the self-

hydrolyzing maleimide 1-(2-aminoethyl)maleimide (NAEM) [77].  While this list of 

reagents is by no means comprehensive, each compound we tested has been shown to 

irreversibly alkylate cysteine and has either been proposed or used as an alternative to 
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NEM alkylation in prior studies, although the quality of alkylation was variable between 

the reagents used. 

 We expected some alkylating reagents, such as acrylamide, to be poor alkylating 

agents in comparison to NEM, since previous studies using acrylamide for cysteine 

alkylation prior to proteomic analysis used molar concentrations of acrylamide.  However 

we were hopeful that some of the more modern reagents, such as MSBT, PPN, and ethyl 

3-benzoylacrylate would prove to be effective replacements for NEM.  MSBT [76], PPN 

[75], and ethyl 3-benzoylacrylate [72] had been shown to be similarly effective as an 

equivalent concentration of NEM; Both MSBT and PPN had also been demonstrated to 

generate irreversible alkylation products with cysteine, while ethyl 3-benzoylacrylate 

alkylated cysteines at a faster rate than NEM but the alkylation product was known to be 

unstable and slowly decompose.  NEM-cysteine alkylation products likewise have been 

demonstrated to decompose due to NEM’s tendency, as with other Michael donors, to 

undergo anti-Michael additions at basic pH in the presence of competing thiols to 

regenerate free cysteine thiols [78]. 

This base-catalyzed reversibility of NEM-cysteine alkylation products was 

addressed in a prior study by the addition of a basic amino group to maleimide to 

generate 1-(2-aminoethyl)maleimide (NAEM) [77].  Maleimides can undergo hydrolysis 

at the imine, resulting in succinimide ring opening and resulting in a non-reactive 

succinimic acid [79-81].  When this hydrolysis occurs to a maleimide-cysteine alkylation 

product, it results in a non-reactive thiosuccinimic acid derivative which cannot undergo 

anti-Michael addition.  NAEM showed equivalent conjugation rates as NEM, but 
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underwent hydrolysis at a much faster rate, resulting in irreversible NAEM-cysteine 

alkylation products. 

Based off the success of these prior studies in developing alternatives to NEM as 

a cysteine alkylating reagent, we wanted to compare the alkylating reagents directly to 

determine their relative efficiencies at alkylating a simple monothiol, 

mercaptoethylamine, at both neutral and mildly acidic pHs; since N-ethylmaleimide has 

been shown to be an effective and specific cysteine alkylating reagent within the pH 

range of 6.5-7.5, we examined alkylating reagent efficacies at both pH 6.5 and pH 7.4. 

  The results of this comparison are shown in Fig. 2.3.  With the exception of the 

maleimides and methyl acetylacrylate, reaction rates were higher for alkylants at pH 7.4 

than at pH 6.5; this is to expected as more thiols would be deprotonated at pH 7.4, 

facilitating nucleophilic attack of the electrophilic alkylants.  NEM was by far the fastest 

thiol alkylant at both pH 7.4 and pH 6.5, with only NAEM and MAA showing similar 

reactivity.  However MAA-thiol adducts showed significant reversibility as the 

incubation timeframe was extended from 10 minutes to overnight (Fig. 2.3B).   Only 

NEM and the similar maleimide NAEM showed both the rapid reactivity and adduct 

stability required for RAC.  NAEM is more irreversible than NEM due to its self-

hydrolysis to maleimic acid.  However NAEM is also far more expensive than NEM and 

not available in bulk quantitites.  Therefore for routine RAC analysis NEM would 

seemingly be the preferable alkylant; however for any experiment which requires long-

term processing or storage NAEM could be easily substituted for NEM to avoid any 

adduct loss. 
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Given the potential risk for NEM-adduct reversibility at basic pH, conducting the 

RAC procedure at pH 6.5 instead of pH 7.4 would hopefully eliminate any retro-Michael 

reactions.  Using this pH for the RAC would have benefits beyond just eliminating NEM-

adduct reversibility, as previous studies have shown that restricting the reaction pH to 

below neutral also reduces non-specific NEM alkylation significantly [82].  By changing 

the pH of the alkylation reaction we can therefore both decrease NEM-adduct loss as well 

as improve any proteomic results downstream of the RAC technique. 

 

Figure 2.3. Comparison of commercially-available thiol alkylants.  (A) 100 μl of 1 mM 
alkylant solution in 20 mM NaHPO4 at either pH 6.5 or 7.4 was added to an equal 
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volume of 1 mM mercaptoethylamine in triplicate wells of a 96-well plate.  The plates 
were gently shaken for 10 minutes at RT in the dark.  Following incubation 200 μl of 
5,5’-dithio-nitro-bis-(2-nitrobenzoic acid) (DTNB) assay solution containing 10 mM 
DTNB was added to each well.  The plates were mixed, incubated in the dark at RT for 
10 minutes, and absorbance was read at λ = 405 nm. (B) Alkylants were incubated with 
mercaptoethylamine at pH 7.4 as in Fig. 1.7A, but allowed to incubate either for 10 
minutes or overnight prior to DTNB addition.  Alkylant abbreviations in the figure are 
NEM: N-ethylmaleimide, NAEM: 1-(2-aminoethyl)maleimide, IAM: iodoacetamide, 
MSBT: methylsulfonylbenzothiazole, MAA: methyl acetylacrylate, E3BA: ethyl 3-
benzoylacrylate, AAm: acrylamide, BA: butyl acrylate, EVS: ethyl vinyl sulfone, PVS: 
phenyl vinyl sulfone, PPN: 3-phenyl 2-propynenitrile, MP: methyl propiolate, EP: 
ethylpropiolate.  Bars represent mean ± SD, n=3. 

 

Choice of Denaturant for Alkylation 

For PROP, its authors argued that using guanidine hydrochloride as the denaturant 

instead of SDS or urea during lysis facilitated more rapid alkylation by NEM. However 

guanidine is incompatible with SDS-PAGE and more difficult to remove by organic 

precipitation.  The use of guanidine would not impact the oxidized cysteine fractions 

captured by RAC since the buffer could be easily exchanged on the columns, but it would 

impact any loading control used.  Since guanidine forms a precipitate with SDS, 

precipitation or buffer exchange of the loading fractions would be required prior to 

electrophoresis; this would necessarily alter the sample concentration between the 

loading control and the actual amount loaded onto the columns, introducing an avoidable 

source of sample error. For these reasons it was therefore important to see whether the 

increase in alkylation caused by the denaturant choice was significant enough to 

necessitate the use of guanidine despite its incompatibility with downstream processes. 

The three denaturants guanidine, urea, and sodium dodecyl sulfate (SDS) were 

compared to determine whether there was a difference in NEM-cysteine alkylation rates 
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caused by the denaturant used.  BEAS-2B cells were lysed in lysis buffers that were 

identical except for the included denaturant.  Denaturant concentrations were chosen 

based on literature values, settling on 6 M guanidine hydrochloride, 8 M urea, and 2% 

SDS. At these denaturant concentrations protein denaturation should be rapid, exposing 

all cysteines and eliminating conformational-dependent alterations in cysteine pKa.   

The results of this experiment are summarized in Fig. 2.4A. It is clear that 

denaturant choice has a significant effect upon the cysteine alkylation rate, with 

guanidine hydrochloride facilitating NEM alkylation far more than either SDS or urea; 

the alkylation rates were guanidine> urea > SDS.  The effect persisted at slightly acidic 

pH (Fig. 2.4B).  These results agree with the findings of Templeton et al. that denaturant 

choice has an effect on NEM alkylation rate. 

However, the above experiment was done in the absence of a prelysis quench 

step.  Since prelysis quenching would alkylate the majority of protein cysteines, the NEM 

added in the lysis buffer would be more effective due to the increased molar ratio 

between NEM and the remaining free thiols.  Therefore we wanted to see whether 

prelysis quenching could raise the effectiveness of SDS-denatured samples to that of 

guanidine-denatured samples, thereby permitting the use of the more-compatible 

denaturant in lieu of the more-effective one.   

As seen in Fig. 2.4C, prelysis quenching of the samples prior to lysis and 

alkylation increased the alkylation efficiency of all tested denaturants.  This is again most 

likely due to the increased molar ratio of NEM:cysteine in the samples since the only 

thiols left to alkylate by NEM were those which were conformationally obstructed from 
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prelysis alkylation.  This eliminated the difference in effectiveness between guanidine 

and SDS, permitting the use of SDS as a lysis buffer for RAC and avoiding any 

denaturant interference in either cysteine alkylation rate or downstream analysis by SDS-

PAGE. 
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Figure 2.4. Cysteine alkylation by N-ethylmaleimide (NEM) was measured under 
different denaturing lysis conditions.  BEAS-2B cells were washed with PBS, detached 
from plates, and lysed in degassed lysis buffers (20 mM MOPS, 0.1% NP-40, 150 mM 
NaCl, 1 mM EDTA) containing 25 mM NEM and one of three different denaturants (6M 
guanidine HCl (GnHCl), 8M urea, or 2% SDS) at (A) pH 7.2 or (B) pH 6.5.  The lysates 
were incubated for the indicated time points, then 100 μl of each lysate was pipetted into 
three replicate wells of a 96-well plate.  To these wells 200 μl of 5,5’-dithio-bis-(2-
nitrobenzoic acid) (DTNB) assay solution (100 mM NaH2PO4 pH 7.8, 1 mM EDTA, 10 
mM DTNB) was added.  The plates were briefly shaken to mix and allowed to incubate 
for 10 minutes in the dark prior to reading at λ=405 nm.  (C) BEAS-2B cells were treated 
with 50 mM NEM or HBSS vehicle (for zero time point controls) for 15 minutes, washed 
with PBS, detached from plates, pelleted, and lysed in g 25 mM NEM and one of three 
different denaturants (6M guanidine HCl (GnHCl), 8M urea, or 2% SDS) at pH 6.5 for 5 
minutes. All DTNB measurements were normalized to cell lysate protein concentrations, 
determined by bicinchoninic acid assay. Bars represent mean relative absorbance ± SD, 
n=3. 

 

One- vs. Two-Step Alkylation/Reduction 

Having determined that NEM alkylation at pH 6.5 using both prelysis quenching 

and SDS denaturation as optimal conditions for a streamlined RAC, we wanted to 

compare the one-step PROP method, which features a single precipitation step between 

reduction and capture, vs. two-step Ox-RAC method, which features two precipitation 

steps between the alkylation-reduction and reduction-capture steps.  By eliminating one 

of two precipitation steps one-step would significantly shorten processing time for RAC 

analysis; however combining NEM quenching and sample reduction into one step risks 

potential NEM alkylation of previously-oxidized cysteines if the NEM quenching is not 

rapid enough or insufficient. 

We therefore compared control and peroxide-treated samples processed using 

either one-step alkylation/reduction, where DTT is added directly to the NEM-containing 

sample to both quench and reduce, or the two-step which removes the NEM by 
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precipitation prior to reduction.  As seen in Fig. 2.5 the one-step procedure showed lower 

signal fidelity than the two-step procedure with the difference between control and 

treated samples being far lower for one-step.  This would indicate that one-step 

alkylation/reduction results in poor sample quality, likely due to insufficient quenching of 

NEM during reduction allowing NEM alkylation of newly-reduced cysteines.  However 

the decreased workflow required by one-step was a tantalizing goal, and as such we 

wanted to determine whether one-step could be modified in such a way as to both 

eliminate the need for NEM removal prior to reduction as well as preserve sample 

fidelity. 

 

Figure 2.5. Two-precipitation-step resin-assisted capture as exemplified by Ox-RAC 
yields higher capture of proteins following peroxide treatment than one-precipitation-step 
resin-assisted capture as exemplified by PROP.  BEAS-2B cells were treated with PBS or 
0.5 mM H2O2 for 1 hr in serum-free DMEM. Following treatment cells were prelysis 
quenched with 50 mM N-ethylmaleimide (NEM), pelleted, lysed in PNIES 1.5% lysis 
buffer (20 mM NaH2PO4 pH 7.0, 150 mM NaCl, 0.1% Igepal CA-630, 1 mM EDTA, 
1.5% SDS), and alkylated with 20 mM NEM as described.  Following alkylation 50 mM 
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dithiothreitol (DTT) was added directly to the NEM-containing buffer for the samples in 
lanes 1-2 (1-step) while the samples in lanes 3-4 (2-step) were precipitated with acetone, 
washed 3x with 80% acetone, and resuspended in PNIES lysis buffer containing 50 mM 
DTT.  Following reduction samples were precipitated with acetone, washed and 
processed for resin-assisted capture as described in the Methods.  Equivalent amounts of 
RAC-processed whole cell lysates as determined by bicinchoninic acid assay were loaded 
onto thiopropyl-sepharose columns to capture oxidized proteins, washed, and eluted 
(RAC pulldown).  The lanes on the left side of the figure were loaded with 5 μg of RAC-
processed whole cell lysate (INPUT), and the lanes on the right side of the figure were 
loaded with 20 μl of eluate (PULLDOWN) containing only oxidized proteins from each 
treatment. NC indicates samples which were alkylated with N-ethylmalemide but not 
reduced as a negative control for thiopropyl capture.  The gels were visualized after 
electrophoresis using Coomassie G-250. 

 

In order for a one-step alkylation/reduction to be feasible, the alkylating reagent 

must be completely quenched either before addition of the reductant, or by the reductant 

itself.  Without total quenching of NEM’s alkylating ability, any newly-reduced thiols 

exposed by the reductant will be immediately alkylated, decreasing detection.  Therefore 

we wanted to determine whether dithiothreitol (DTT), the reductant used in PROP, was 

suitable for a one-step procedure.  We incubated equimolar concentrations of four 

reductants with NEM.  The reductants chosen were two monothiols, l-cysteine and 2-

mercaptoethanol, as well as DTT and dithiobutylamine (DTBA) [83], a dithiol with a 

lower pKSH than DTT.   
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Figure 2.6. Four thiol-containing compounds were compared for their ability to quench 
an equimolar concentration of N-ethylmaleimide (NEM) over time.  50 μl of either l-
cysteine (2 mM), β-mercaptoethanol (2 mM), dithiothreitol (1 mM), or dithiobutylamine 
(1 mM) in 25 mM MOPS, pH 6.5 were added to 50 μl of 2 mM NEM in the same buffer 
in triplicate wells of a 96-well plate; for the zero-minute control each thiol compound was 
added to 50 μl of buffer alone.  After incubation for the indicated amounts of time, 150 μl 
of a 5 mM 5,5’-dithio-bis-(2-nitrobenzoic acid) solution (100 mM Tris, pH 8.0) was 
added to each well and allowed to incubate with mixing for 5 minutes.  Following 
incubation the wells were read at 405 nm on a BioTek EL800 spectrophotometer.  Bars 
represent mean relative absorbance ± SD, n=3. 

 

The results (Fig. 2.6) indicate that both DTT and DTBA were poor NEM 

quenchers, leaving 51% and 39%, respectively, of free NEM after a 5-minute incubation. 

Based on these results, if the PROP one-step approach is used a significant portion of 

NEM would still be available to alkylate the newly-reduced cysteines, reducing signal. 

However the two monothiol reductants were far better at quenching NEM, with l-cysteine 

leaving only 13% free NEM in solution after 5 minutes.  This shows that the idea of 

quenching NEM prior to reduction in a one-step approach may be viable using a low-
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pKSH monothiol such as cysteine as a quenching reagent prior to the addition of DTT as a 

reductant. 

We therefore tested this revised one-step method.  In lieu of l-cysteine, which is 

relatively difficult to solubilize at neutral pH, we used the simple monothiol 

mercaptoethylamine.  As seen in Table 1.1 mercaptoethylamine has a pKSH of 8.35, 

which is slightly lower than that of l-cysteine; therefore it should have similar quenching 

properties as l-cysteine.  Additionally mercaptoethylamine is readily soluble in neutral 

aqueous solutions and so can easily be prepared immediately prior to use.   

Using mercaptoethylamine as an NEM-quenching agent followed immediately by 

the addition of DTT as the reducing agent in a one-step approach resulted in a significant 

signal improvement over the traditional two-step methodology (Fig. 2.7).  Both the one-

step and two-step approaches showed an increase in cysteine oxidation with increasing 

peroxide concentration, although the increase was more pronounced for the one-step 

samples than the two-step.  Aside from the increased signal the samples were identical 

between one- and two-step; every band that was visible in the two-step sample lanes 

corresponded to a band visible in the one-step lanes.  The increase in signal fidelity for 

the revised one-step is likely due to decreased sample loss and processing time by 

eliminating the second precipitation step. 
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Figure 2.7. Oxidized cysteine yield by the optimized one-step resin-assisted capture is 
higher than with the two-step resin-assisted capture method.  Control and 0.1 mM or 0.5 
mM hydrogen peroxide-treated BEAS-2B samples were prelysis quenched, pelleted, 
lysed, and alkylated with 20 mM N-ethylmaleimide (NEM) as described in the Methods.  
Following alkylation 20 mM mercaptoethylamine was added directly to the NEM-
containing buffer and, after a 5 minute incubation, 50 mM dithiothreitol (DTT) was 
added for the samples in lanes 9-11 (1-step).  The samples in lanes 12-14 (2-step) were 
precipitated with acetone, washed 3x, and resuspended in reduction buffer containing 50 
mM DTT.  Following a one-hour reduction all samples were precipitated with acetone 
and processed for resin-assisted capture as described in the Methods.  Equivalent 
amounts of RAC-processed whole cell lysates as determined by bicinchoninic acid assay 
were loaded onto thiopropyl-sepharose columns to capture oxidized proteins, washed, 
and eluted (RAC pulldown).  The lanes on the left side of the figure were loaded with 5 
μg of RAC-processed whole cell lysate (INPUT), and the lanes on the right side of the 
figure were loaded with 20 μl of eluate (PULLDOWN) containing only oxidized proteins 
from each treatment. NC indicates samples which were alkylated with N-ethylmalemide 
but not reduced as a negative control for thiopropyl capture.  The gels were visualized 
after electrophoresis using Coomassie G-250. 
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Conclusions 

In comparing the characteristics which differentiated the two resin-assisted 

capture techniques, Ox-RAC and PROP, we arrived at an optimized workflow for RAC 

which improves upon its predecessors.  We determined that TCA quenching, which could 

introduce post-lysis oxidative artifacts by trace metals and other oxidants, could be 

eliminated by quenching surface-exposed thiols with NEM prior to lysis.  The 

incorporation of prelysis quenching into the workflow permitted the use of SDS as the 

lysis denaturant without a decrease in the alkylation efficiency as compared to GnHCl.  

The separation of the alkylant quenching and reduction steps in the one-step PROP 

workflow into two distinct steps, with mercaptoethylamine being added as a quenching 

agent prior to DTT addition, increased the quality and speed of the RAC procedure 

immensely as compared to the conventional two-step RAC method. 

These changes to the RAC workflow are inexpensive and easy to incorporate into 

existing protocols.  The optimized methodology we have developed will save time and 

decrease sample error caused by precipitation and handling.  This study has indicated that 

there are still iterative improvements upon the RAC methodology to be made in order to 

develop it into a mature experimental staple.  An obvious source for future improvement 

and streamlining based on our experience would be the elimination of the final 

precipitation step, thereby transforming RAC into a one-day, one-pot technique.  
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Chapter 3 :  SYNTHESIS AND APPLICATION OF HIGH-CAPACITY THIOL 

REDUCTANT-POLYACRYLAMIDE BEADS FOR SOLID-PHASE REDUCTION 

OF OXIDIZED CYSTEINES. 

 

Background 

The introduction of the two-step quench/reduction into the RAC method was 

effective in eliminating the organic precipitation step previously used between alkylation 

and reduction.  However if the downstream assay is for total cysteine oxidation it was 

still necessary to remove the reductant by organic precipitation followed by resuspension 

since any excess DTT in the solution would reduce the disulfide bonds formed between 

the cysteine thiols and solid-phase resin, thereby preventing capture.  We theorized that if 

we could remove the reductant without requiring organic precipitation then this could 

drastically improve the workflow since as mentioned before each precipitation step incurs 

sample loss and increased risk of contamination and user error. 

Therefore it was considered highly advantageous to determine some means of 

removing reductant without precipitation.  Unlike in the case of the alkylant, there was no 

easy way to quench or oxidize the reductant without also risking oxidation of the newly-

reduced cysteine thiols.  DTT’s reducing capacity could be drastically decreased by 

decreasing the pH of the sample solution, thereby protonating DTT’s thiols, but those 

thiols would still be available for capture by the solid-phase resin – in essence crowding 

out the cysteine thiols, preventing sample capture.  However if we instead conjugated the 

reductant to a neutral resin, thereby making a solid-phase reductant, we could remove the 
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reductant from the lysate by a simple centrifugation step in a spin column – in essence an 

inversion of the downstream resin-assisted capture. 

Solid-phase reductants have been previously applied to the reduction of samples 

prior to western blotting and protease digestion.  The utility of a solid-phase reductant 

was observed as far back as 1973, when Gorecki and Patchornik described the 

conjugation of dihydrolipoic acid to polymers [84].  Since that time commercially-

available reducing resins have become available.  Additionally Grazu et al. [85] 

demonstrated that an agarose resin that was highly-substituted with monothiols had act as 

a suitable reductant.   Therefore the incorporation of a solid-phase reductant into the RAC 

workflow was both reasonable and viable in principle. 

However the aforementioned solid-phase reductants were designed around 

reduction of samples prior to western blotting or protease digestion, and therefore do not 

contain the high reductant concentrations made necessary by the inherent limitations of 

the optimized RAC method.   In order to properly study cysteine oxidation caused by 

treatments a quantitative reduction of oxidized cysteines is necessary.  During RAC this 

is typically achieved by using 50 mM or higher concentrations of DTT; furthermore since 

RAC uses a microcentrifuge spin column the upper limit for the sample volume is fixed 

at ~600 μl which allows for ~200 μl of resin.   

While this is not difficult to achieve using concentrated stock solutions of soluble 

DTT, to achieve the same results using an immobilized reductant would require a highly-

substituted resin.  As both the sample and reductant resin would compete for the limited 

volume of the spin column, having a higher reductant substitution on the resin would 
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allow the use of a smaller volume of resin, thereby allowing for a much larger fraction of 

the column volume to be occupied by the sample.   

As an example, for a 600 μl sample being processed for RAC 30 μmol of DTT are 

added to arrive at a final concentration of ~50 mM DTT.  Therefore in order to achieve 

the same reductant concentration using a solid-phase reductant the resin would need to 

have a conjugated reductant amount of 30 μmol/200 μl resin, or 150 μl/ml resin.  

Unfortunately commercially-available reducing resins are low-substitution, with a 

quantity of reductant available of only 8-25 μmol/ml.  In order to utilize a solid-phase 

reductant for RAC it was necessary to synthesize a much higher-capacity reducing resin.  

Additionally it was hoped that the reducing resin could be synthesized in a manner which 

required no specialized equipment or techniques, as well as limiting the use of toxic or 

hazardous reagents. 

Choice of Solid-Phase Substrate 

With these requirements in mind a suitable insoluble substrate was needed to 

generate the immobilized reductant.  Agarose has been extensively used as an insoluble 

support for chemical conjugation [61, 86, 87] due to its low cost and the uncharged 

hydrophilic structure of the polysaccharide.  Agarose can be relatively easily substituted 

with thiols through an epoxidation of the polysaccharide backbone’s hydroxyl groups 

using epichlorohydrin, requiring only moderate heating.  While Grazu et al. [85] reported 

success in generating a high-capacity reducing resin of 1 mmol thiol/g resin (approx. 333 

μmol thiol/ml resin with 3 ml/g swell ratio), substitution ranges of 200-250 μmol/ml resin 

are more commonly observed [61, 62] using agarose. 
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Although less common, polyacrylamide (PAAm) resin has also been used 

successfully for small-molecule immobilization to the amide group of the PAAm 

backbone.  As a solid-phase support PAAm has several advantages over agarose.  Both 

PAAm and agarose are hydrophilic, but since agarose is derived from polysaccharides it 

has much lower chemical stability and durability than the polyethylene-derived PAAm; 

PAAm can be easily dried under vacuum for storage without damage, whereas agarose 

requires lyophilization with stabilizing additives to prevent structural damage [88].  

PAAm can achieve much higher theoretical substitution rates than agarose since the 

amide groups in PAAm repeat much more frequently than the hydroxyl groups on the 

agarose polysaccharide.  Additionally the amide group on PAAm allows for greater 

flexibility in its conjugation reactions, since the amide can be derivatized to an amine, 

carboxylic acid, or hydrazide [89].  Furthermore the different porosities available for 

PAAm resins allow for very narrow fractionation ranges, allowing the complete 

exclusion of the sample proteins from the interior of the beads. 

PAAm substitution rates of >2 mmol/g have been routinely reported [84, 89].  

PAAm resin swell rates depend upon the porosity of the PAAm beads and range from 3-

12 ml/g resin [90]; based on this, it was estimated that the substitution of PAAm resin 

would range from ~250-670 μmol/ml resin depending upon the chosen resin porosity.  As 

this substitution range was comparable to that of agarose, PAAm was chosen as the 

immobilization substrate due to its numerous other advantages. 

The selection of PAAm allowed for a wide latitude of strategies for thiolation, 

given the range of derivatives available.  However most of the derivation reactions 

required refluxing conditions and toxic chemicals, such as ethylenediamine or hydrazine 
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[89].  We therefore sought derivations that could be achieved using relatively mild 

conditions and/or reagents more likely to be encountered in a molecular biology lab.  

Accordingly we developed a strategy based on conjugation of a dialdehyde to PAAm to 

give an activated aldehyde-PAAm, which would allow for further conjugation to a 

variety of reducing groups (Fig. 3.1). 

Glutaraldehyde-Conjugation of PAAm 

Glutaraldehyde will rapidly react with amines and amides over a wide pH range 

(≥ pH 3) and will react with thiols in the presence of a primary amine [91].  While 

glutaraldehyde has been used to immobilize antigens to PAAm through crosslinking 

between the PAAm amide group and amines present on the antigen [92, 93], to date no 

one has utilized glutaraldehyde-PAAm reactivity and glutaraldehyde-amine or 

glutaraldehyde-thiol reactivity to generate an immobilized solid-phase reductant (Fig. 

3.1B.2-3).  If possible this synthetic reaction would be highly advantageous since it uses 

the aqueous, relatively non-toxic glutaraldehyde as its reactive group instead of the 

highly toxic and potentially carcinogenic compounds used in previous syntheses, such as 

epichlorohydrin [94-96] and ethylene diamine [97]. 

We further sought to utilize the versatile nature of PAAm-conjugated 

glutaraldehyde to conjugate cysteine reductants which contained neither an amine nor a 

thiol.  Using acid-catalyzed acetal formation we predicted that we could synthesize high-

capacity DTT-PAAm (Fig.3.1B.4) and non-thiol reductant 

tris(hydroxylpropyl)phosphine-PAAm (THP-PAAm) resins (Fig. 3.1B.5).  The non-thiol 

reductant tris(carboxyethyl)phosphine (TCEP) could additionally be conjugated via an 
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EDC-mediated amide linkage to amino-PAAm (Fig. 3.1C).  This range of synthetic 

reactions would allow us to generate a panel of immobilized thiol reductants. 
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Figure 3.1.  Synthetic routes and structures for polyacrylamide-based reducing resins.  
(A) Conjugation reaction between amide group of acrylamide and aldehyde group of 
glutaraldehyde. (B) Synthetic routes for aminopropyl-polyacrylamide (1), thiopropyl-
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polyacrylamide (2), mercaptoethylamine-polyacrylamide (3), 
tris(hydroxylpropyl)phosphine-polyacrylamide (4), dithiothreitol-polyacrylamide (5).  
For all structures “Resin” represents a polyacrylamide backbone.  For compounds 1-3 the 
reaction conditions were 0.1M NaPO4, pH 7.7, 25°C, 3 hr incubation.  For the acetal-
conjugated compounds 4-5, the reaction conditions were 10 mM HCl, pH 2.2, 25°C, ON.  
All reductant compounds were added in molar excess of available aldehyde groups on the 
polyacrylamide.  The imine formed by the addition of (1) to aldehyde was reduced with 
sodium borohydride.  Thiol containing compounds (2, 3, 5) were reduced with excess 
dithiol or phosphine reductants following conjugation.  (C) Synthesis of 
tris(carboxylethyl)phosphine-polyacrylamide (TCEP-PAAm) using carbodiimide amide 
formation.  TCEP and EDC were added in excess to pentaneamine-polyacrylamide.  The 
reaction conditions were 50 mM MES, pH 4.5, 25°C, 4hr. 

 

Materials and Methods 

Materials. The immortalized human bronchial epithelial cell line BEAS-2B was 

purchased from American Type Culture Collection (ATCC CRL-9609).  Cell culture 

medium (Gibco DMEM+GlutaMAX, Gibco 10569), HBSS pH 7.4 (Gibco 14025), PBS 

pH 7.4 (Gibco 10010), 5,5’-dithiobis-(2-nitrobenzoic acid) (Thermo Scientific 22582, 

Lot# OG189149A), thiopropyl-sepharose 6B resin (GE Healthcare 17042001) and screw 

cap microcentrifuge spin columns (Pierce 69705) were purchased from Thermo Fisher 

Scientific (Waltham, MA). Bio-Gel P6DG (Bio-Rad 150-0738 Lot# 64053706) was 

purchased from Bio-Rad (Hercules, CA).  Tris(carboxylethyl)phosphine (TCEP25 Lot# 

2801.042518A) was purchased from Gold Biotechnology (St. Louis, MO).  Cystamine 

dihydrochloride (Aldrich C121509 Lot# BCBQ0040V), tris(hydroxypropyl)phosphine 

(Aldrich 777854), trans-4,5-dihydroxy-1,2-dithiane (Aldrich D3511), and 

selenocystamine dihydrochloride (Sigma S0520 Lot# SLBS6606) were purchased from 

Millipore Sigma (St. Louis, MO). 50% glutaraldehyde solution (VWR 0875 Lot# 

0587C463), N-ethylmaleimide (Alfa Aesar 40526, Lot#P290042), dithiothreitol (VWR 
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97061), and sodium cyanoborohydride (TCI S0396 Lot# MMQED-MC) was purchased 

from VWR (Radnor, PA). 

Cell Culture. The immortalized human bronchial epithelial cell line BEAS-2B (ATCC 

CRL-9609) was cultured in DMEM with 10% FBS, 1% Pen-Strep at 37°C, 5% CO2 in a 

humidified incubator.  Cells were subcultured prior to confluence and seeded at 3000 

cells/cm2. For experiments the cells were treated at 60-80% confluence, and treated with 

the concentrations of metals described in the figures or deionized water as a vehicle 

control. 

Synthesis of Activated Carbonyl Resins 

Activated Carbonyl PAAm Resin.  Activated-carbonyl resin was synthesized as described 

by Weston and Avrameas [92] with modifications.  1g of polyacrylamide resin (Bio-Gel 

P6DG) was rehydrated with deionized water for 4 hours.  Following rehydration the resin 

was washed with 0.5M sodium phosphate buffer, pH 8.  It was then resuspended in 9 ml 

of the same buffer, and 6 ml of 50% glutaraldehyde (final 20% v/v) was added to the 

resin.  The suspension was incubated at 40°C for 4 hours with end-over-end rotation.  

Following incubation the resin slurry was transferred to a fritted-glass filter and washed 

4x with PBS under vacuum.  The resin was allowed to dry until no more water passed 

through the filter, then it was resuspended in the specified downstream reaction buffer(s) 

and used immediately for downstream syntheses.  Alternatively if the resin was to be 

stored at this point it was resuspended in PBS containing 10% EtOH and stored at 4°C. 

Thiopropyl-PAAm Resin. 1g of activated-carbonyl resin was resuspended in 40 ml of 

0.1M sodium phosphate buffer, pH 7.7.  1.58g of sodium thiosulfate was dissolved in 10 
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ml of 0.125M Tris-HCl buffer, pH 7.7, and this solution added to this suspension to make 

a final concentration of 0.2M sodium thiosulfate, 25 mM Tris-HCl.  The suspension was 

incubated at 25°C overnight with end-over-end rotation.   Following incubation the resin 

was washed 4x with diH2O and 4x with ethanol. Following the final wash the resin was 

dried overnight under vacuum in a desiccator. 

Mercaptoethylamine-PAAm Resin. 1g of activated-carbonyl resin was resuspended in 40 

ml of 0.1M sodium phosphate buffer, pH 7.7.  2.85g of cystamine dihydrochloride was 

dissolved in 10 ml of diH2O, and this solution added to this suspension to make a final 

concentration of 0.25M.  An equimolar amount of NaBH3CN was added to the 

suspension.  The slurry was incubated at 25°C for 3 hours with end-over-end rotation.   

Following incubation the resin was washed 4x with 0.1M acetic acid, 4x with deionized 

water, and 4x with ethanol. Following the final wash the resin was dried overnight under 

vacuum in a desiccator. 

Aminopropyl-PAAm Resin. 1g of activated-carbonyl resin was resuspended in 7 ml of 

0.1M sodium phosphate buffer, pH 7.7.  1.19g of ammonium bicarbonate was dissolved 

in 5 ml of diH2O, and this solution added to this suspension to make a final concentration 

of 1M.  A molar equivalent of NaBH3CN was added to the solution.  The suspension was 

incubated at RT for 3 hours with end-over-end rotation.   Following incubation the resin 

was washed 4x with 0.1M acetic acid, 4x with deionized water, and 4x with ethanol 

before drying overnight in a vacuum dessicator. 

Tris(carboxylethyl)phosphine-PAAm Resin. 1g of aminopropyl-PAAm was resuspended 

in 10 ml of 0.1M MES buffer, pH 4.5.  5 ml of a 0.5M tris(carboxyethyl)phosphine 
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(TCEP) stock solution, pH 4.5, was added to bring the final concentration of TCEP to 

167 mM.  480 mg of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride 

(EDC) was added to the suspension.  The suspension was sharply inverted end-over-end 

several times to dissolve and mix the EDC thoroughly, then incubated at 25°C for 4 hours 

with end-over-end rotation.   Following incubation the resin was washed 4x with diH2O 

and 4x with ethanol. Following the final wash the resin was dried overnight under 

vacuum in a desiccator. 

Tris(hydroxylpropyl)phosphine-PAAm Resin. 1g of activated-carbonyl resin was 

resuspended in 7 ml of 10 mM HCl, pH 2.2.  1.832 ml Tris(hydroxylpropyl)phosphine 

(THPP) was diluted in diH2O, pH-adjusted to pH 2.2 with HCl, and brought to 10 ml to 

give a 1M THPP stock solution.  3 ml of this THPP stock solution added to the 

suspension to make a THPP quantity of 3 mmol.  The slurry was incubated at 25°C 

overnight wrapped in foil with end-over-end rotation.   Following incubation the resin 

was washed 4x with 0.1M acetic acid, 4x with deionized water, and 4x with ethanol. 

Following the final wash the resin was dried overnight under vacuum in a desiccator. 

Dithiothreitol-PAAm Resin. 1g of activated-carbonyl resin was resuspended in 7 ml of 10 

mM HCl, pH 2.2.  456.72 mg of trans-4,5-dihydroxy-1,2-dithiane (3 mmol) was 

dissolved in 3 ml of 10 mM HCl, and this solution added to this suspension. The slurry 

was incubated at 25°C overnight with end-over-end rotation.   Following incubation the 

resin was washed 4x with 0.1M acetic acid, 4x with deionized water, and 4x with ethanol. 

Following the final wash the resin was dried overnight under vacuum in a desiccator. 
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 Reduction of thiol-containing resins. 1g of thiol-containing PAAm resin was rehydrated 

in 10 ml of PBS.  Following rehydration the beads were centrifuged down and the 

supernatant removed.  PBS was added to bring the total volume to 10 ml, then 5 ml of a 

0.5M TCEP, pH 7.0 stock solution was added to bring the final TCEP concentration to 

0.15M.  The suspension was incubated at 25°C for 1 hour with end-over-end rotation. 

Following incubation the resin was washed with diH2O until the flowthrough did not 

react with DTNB, indicating complete removal of TCEP (~25x). The resin was then 

washed 4x with ethanol and dried overnight under vacuum in a desiccator. 

Measurement of PAAm Substitution. Substitution was measured using the DTNB assay 

[64] with modifications.  1 mg of resin was placed in a 2 ml microcentrifuge tube.  1 ml 

of a 10mM DTNB solution (100 mM sodium phosphate, pH 7.8, 1 mM EDTA) was 

added to the tube.  The sample was vortexed and incubated with rotation at 25°C for 30 

minutes in the dark.  Following incubation the resin was pelleted by centrifuging at 

16,000x g for 5 minutes.  100 μl of the supernatant was placed into a 96-well plate.  The 

plate was read at λ=405 nm using a BioTek EL800 spectrophotometer.  The absorbance 

values for the sample were compared against a mercaptoethylamine standard curve 

incubated under identical conditions. 

Prelysis Quenching. Following treatment the cell culture medium was exchanged with 

HBSS containing NEM (50 mM unless otherwise noted) and incubated briefly.  After 

incubation the HBSS + NEM was removed, the plates were washed 3x with HBSS, the 

cells were detached from the plate with a cell lifter, collected into 1.5ml tubes, pelleted, 

and resuspended in degassed lysis buffer. 
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Lysate Alkylation and Reduction.  BEAS-2B cells were lysed in 400 μl of degassed lysis 

buffer containing 20 mM NEM in opaque 2-ml microcentrifuge tubes.  The samples were 

incubated for 2 hours at RT with gentle end-over-end mixing.  20 mM 

mercaptoethylamine was then added to the samples to quench the NEM.  After quenching 

for 5 minutes 50 mM DTT was added to reduce oxidized cysteines.  After a one-hour 

incubation the samples were again precipitated with cold acetone, allowed to incubate 

overnight at -20°C, and washed 3x with cold 80% acetone before resuspension for RAC. 

Resin-Assisted Reduction.  Sample pellets were lysed, alkylated, and quenched as 

described above.  Following quenching the samples were loaded into spin columns 

containing 50 mg of buffer-equilibrated solid-phase reductant resin.  The columns were 

sealed and rotated end-over-end for one hour in the dark at RT.  After incubation the 

columns were unsealed, placed into clean microcentrifuge tubes, and centrifuged at 

16,000xG for 5 minutes to remove the sample from the reductant.  Samples were then 

loaded into thiopropyl-resin spin columns for RAC. 

Resin-Assisted Capture (RAC).  Alkylated and reduced sample pellets were resuspended 

by pipetting in 400 μl of capture buffer (20 mM CH3COONa pH 4.5, 2% SDS, 1 mM 

EDTA).  Sample concentration was measured by BCA assay [66], and equal 

concentrations of lysates were added to microcentrifuge spin columns containing 35 mg 

of buffer-equilibrated thipropyl resin.  The columns were sealed and the slurry was 

incubated for one hour at RT with rotation.  Following incubation the columns were 

unsealed, placed into waste collection tubes, and centrifuged at 1,000xG for 1 minute to 

remove all nonbound proteins.  The columns were washed with 5 column volumes of 

capture buffer, 5 column volumes of diH2O, and 1 column volume of Laemmli sample 
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buffer.  After the final wash 100 μl of Lammli buffer containing 50 mM DTT was added 

to the columns, which were sealed and rotated at RT for 30 minutes.  The columns were 

then unsealed, placed in clean 1.5 ml microcentrifuge tubes, and centrifuged at 1,000xG 

to collect the bound fraction. 

Gel Electrophoresis and Staining.  Equal volumes of sample bound fractions were loaded 

in adjacent wells of NuPAGE bis-tris gels. Equal concentrations of input fractions were 

loaded to verify equivalent loading of the spin columns between samples.  Gels were run 

in MOPS SDS-PAGE running buffer at 200V.  Following electrophoresis the gels were 

removed from the gel cassettes, cut, and placed directly into fixation solution (10% acetic 

acid, 50% methanol) and incubated with RT for 15 minutes at RT.  The fixation solution 

was decanted and replaced with staining solution (0.025% Coomassie G-250, 10% acetic 

acid), and the samples were incubated with rocking for 30 minutes at RT.  The staining 

solution was decanted and the gels were destained with two 30-minute incubations in 

10% acetic acid.  Following destain the gels were imaged using a ChemiDoc XRS (Bio-

Rad, Hercules, CA). 

 

Results and Discussion 

Determination of optimum activation pH. While Weston and Avrameas had previously 

described experimentally-determined condition optima for PAAm activation, their 

experimental conditions and endpoints are significantly far enough away from the current 

study that we felt it necessary to re-determine the optimal pH and time for the 

glutaraldehyde-PAAm incubation.  The previous studies had been focused on protein 
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conjugation to polyacrylamide resins and therefore used highly-porous, low-crosslinked 

polyacrylamide resins (Bio-Gels P60-P300) to allow large proteins to entire into the bead 

macrostructure.  For our purposes we wanted to restrict lysate proteins exclusively to the 

void volume to prevent protein retention by the resin, which necessitated using highly-

crosslinked resins instead.  How the difference in macroporosity between our chosen 

resin and the resins previously used would affect the ideal activation conditions needed to 

be determined.  

To find the optimum activation pH, polyacrylamide beads were incubated at 40°C 

with glutaraldehyde for 2 hours at various pH values [92] using a pH-adjusted Britton-

Robinson universal buffer system.  Following this activation the glutaraldehyde-PAAm 

beads were incubated with sodium thiosulfate and then reduced to allow quantitation of 

thiol substitution of PAAm.  Activation levels increased as the pH became slightly 

alkaline, with the thiol substitution of the resin being roughly equivalent from pH 8-9 

(Fig. 3.2).  Activation at pH 10 resulted in the beads forming large aggregates that 

required breaking up prior to downstream processing.  The samples activated at pH 10 

showed far lower thiol substitution than those activated at pH 9.  It was also noted that 

the samples activated at pH 10 had a significantly smaller sample bead volume and were 

a dull yellow color as opposed to the off-white color of both the original resin and all 

other pH groups. 
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Figure 3.2. Thiol substitution of PAAm beads incubated at different pH.  Bio-Gel P6 
beads were incubated for two hours at 40 °C in the presence of 20% glutaraldehyde and 
0.5M Britton-Robinson buffer at varying pH.  After incubation the resin was washed 
extensively with PBS, then incubated with 2M Na2S2O3 overnight.  Thiolated resins were 
reduced with 0.5M tris(carboxylethyl)phosphine, then washed extensively.  1 mg of resin 
was added to 1 ml of 5,5’-dithio-bis-(2-nitrobenzoic acid) assay solution, allowed to 
equilibrate for 30 minutes, then measured at λ=405 nm to determine thiol content.  Bars 
represent mean thiol content ± SD, n=3. 

 

Since a large portion of the fractionation characteristics of PAAm resin can be 

attributed to their macrostructure, it was important to determine whether the activation 

had affected the bead diameter and overall structure.  As can be seen in Figure 3.3 the 

macroscale structure of the PAAm beads does not change significantly from pH 6-8.  At 

pH 9 there an increase in bead wall thickness, although the overall diameter of the beads 

did not change as compared to non-activated BioGel P6; this increase in thickness is most 

likely due to poly-glutaraldehyde formation.  As expected the beads incubated at pH 10 

had a much smaller diameter than the other groups.  Additionally a significant portion of 

the beads showed a deformed and “rippled” exterior in sharp contrast to the smooth 
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exterior of both the control groups as well as those incubated at other pHs, due most 

likely again to poly-glutaraldehyde crosslinking altering the bead structure. 

 

Figure 3.3. Polyacrylamide activation with glutaraldehyde at high pH causes significant 
alterations to bead structure. Optical microscopy images of thiolated-polyacrylamide 
beads activated at different pH. (A) control Bio-Gel P6. (B) pH 6, (C) pH 7, (D) pH 8, 
(E) pH 9, (F) pH 10.  Images were captured using a Zeiss AxioObserver A.1 inverted 
microscope with an AxioCam MRc 5. 

 

Determination of optimum activation incubation time.  To find the optimal incubation 

time, PAAm beads were activated at pH 7-9, 40°C for 1-12 hours.  Following this 

activation the beads were incubated with sodium thiosulfonate, reduced, and quantitated.  

For both pH 7 and pH 8 activation levels increased with increasing incubation time in a 

roughly linear fashion, with activation rates at each time point being higher for pH 8 than 

pH 7.  Activation at pH 9 peaked at 1 hour, after which the thiol substitution decreased 

rapidly (Fig. 3.4). 
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Figure 3.4. Activated aldehyde conjugation to polyacrylamide resin increases with 
increasing incubation time. Bio-Gel P6 beads were incubated for the indicated times at 
40°C in the presence of 20% glutaraldehyde and 0.5M Britton-Robinson buffer at pH 7, 
8, and 9.  After incubation the resin was washed extensively with PBS, then incubated 
with 2M Na2S2O3 overnight.  Thiolated resins were reduced with 0.5M 
tris(carboxylethyl)phosphine, then washed extensively.  1 mg of resin was added to 1 ml 
of 5,5’-dithio-bis-(2-nitrobenzoic acid) assay solution, allowed to equilibrate for 30 
minutes, then measured at λ=405 nm to determine thiol content.  Bars represent mean 
thiol content ± SD, n=3.  

 

The macroscale structure of the beads was relatively unchanged from the non-

activated control beads for both pH 7 and pH 8 over 1-2 hour activation (Fig. 3.5, B-C 

and E-F). As observed in the prior experiment the macroscale structure of the beads 

activated at pH 9 changed significantly, with a pronounced thickening of the bead wall in 

as little as 1 hour of activation (Fig. 3.5D).  This thickening, again due to 

polyglutaraldehyde formation, would explain the rapid loss of activation with increased 

incubation times – as the activation continued, an increasing amount of free 

glutaraldehyde was polymerizing with the bound amide-bound glutaraldehyde and 

thickening the bead wall without contributing any further active aldehyde groups to the 

resin. 
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Figure 3.5. Polyacrylamide activation with glutaraldehyde at for increasing time at pH 8-
9 causes bead diameter decrease and bead wall thickness increase.  Optical microscopy 
images of thiolated-PAAm beads activated for different times at (B,E) pH 7, (C,F) pH 8, 
(D,G) pH 9. (A) control Bio-Gel P6. (B-D) 1-hour incubation. (E-G) 2-hour incubation.  
Images were captured using a Zeiss AxioObserver A.1 inverted microscope with an 
AxioCam MRc 5. 

 

We observe this bead wall thickening in the pH 8-activated samples as well as the 

activation time is increased past 2 hours (Fig. 3.6C,E,G), however the thickening induced 

at pH 8 doesn’t appear to coincide with decreased thiolation rates as seen in pH 9-

activated samples.  It is possible that the thickness increase observed in these beads is due 

to increased amide-glutaraldehyde loading instead of glutaraldehyde polymerization, or 

that the glutaraldehyde polymers formed at pH 8 are structurally distinct from those 
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formed at higher pHs and retain more activated aldehydes.  The beads incubated at pH 7 

showed minimal signs of bead wall thickening even as the activation time increased to 12 

hours (Fig. 3.6F). 

 

 

Figure 3.6. Polyacrylamide activation with glutaraldehyde for 4+ hours at pH 8 but not 
pH 7 causes bead diameter decrease and bead wall thickness increase.  Optical 
microscopy images of thiolated-polyacrylamide beads activated for different times at 
(B,D,F) pH 7, (C,E,G) pH 8. (A) control Bio-Gel P6. (B,C) 4-hour incubation. (D,E) 8-
hour incubation. (F,G) 12-hour incubation.  Images were captured using a Zeiss 
AxioObserver A.1 inverted microscope with an AxioCam MRc 5. 

 

Weston had described optimal reaction conditions for PAAm activation as 

incubating for 17 hours at pH 6.8, 40°C.  Based off our own pH and time-course 
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experiments it was clear that the previously-described conditions were far from 

maximizing glutaraldehyde loading.  Due to this discrepancy between the previously-

reported conditions and our own observations we wanted to investigate whether the 

activation rate or macroscale changes observed would be altered significantly if the 

activation reaction was conducted at room temperature instead of at 40°C (Fig. 3.7).  As 

can be seen, the activation rate of beads incubated at pH 8 was significantly reduced at 

room temperature as compared to 40°C (Fig. 3.7A).  However, when we activated beads 

at pH 9 at room temperature instead of 40°C the aforementioned decrease in activation 

due to polymerization was absent (Fig. 3.7B); with all other conditions equivalent, the 

beads activated at pH 9, RT showed an increasing activation level for the entire 6 hour-

duration of incubation. 
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Figure 3.7. Activated aldehyde conjugation to polyacrylamide resin increases with 
increasing incubation temperature. Bio-Gel P6 beads were incubated for the indicated 
times in the presence of 20% glutaraldehyde and 0.5M Britton-Robinson buffer, at pH 8 
(A) or pH 9 (B) at either room temperature or 40°C.  After incubation the resin was 
washed extensively with PBS, then incubated with 2M Na2S2O3 overnight.  Thiolated 
resins were reduced with 0.5M tris(carboxylethyl)phosphine, then washed extensively.  1 
mg of resin was added to 1 ml of 5,5’-dithio-bis-(2-nitrobenzoic acid) assay solution, 
allowed to equilibrate for 30 minutes, then measured at λ=405 nm to determine thiol 
content.  Bars represent mean thiol content ± SD, n=3. 

  

These results indicated that the activation conditions could be tailored depending 

upon the desired endpoint.  Within the efficacious pH range (7-9) activation would, in a 

time-dependent manner, result in an increase in bead wall thickness.  This increase was 

both pH-dependent, with thickening occurring faster at more alkaline pH, and time-

dependent.  Additionally carrying out the reaction at elevated temperature resulted in 

increased activation for pH 7-8, while it caused very rapid activation and, eventually, 

inactivation at pH 9.   

These results indicated that the activation conditions which caused the least 

alterations to bead macrostructure was determined to be long-duration incubations (12 

hours or more) at neutral pH.  However for our reductant resins we chose instead to 

activate for 4-hours at pH 8/37° C.  The reasoning behind this decision was that these 

incubation conditions were the best compromise between activation time, glutaraldehyde 

loading, and macroscale alterations; the use of these conditions meant that all synthesis 

steps for a reducing resin could be conducted in a single workday with the resin ready to 

use the following day. 

The activated polyacrylamide was used to synthesize a panel of different 

reductant resins, the structures of which are reviewed in Fig. 3.1.  These resins included 
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thiopropyl-polyacrylamide (SH-PAAm), dithiothreitol-polyacrylamide (DTT-PAAm), 

tris(hydroxypropyl)phosphine-polyacrylamide (THPP-PAAm), 

tris(carboxyethyl)phosphine-polyacrylamide (TCEP-PAAm), and mercaptoethylamine-

polyacrylamide (MEA-PAAm).  As shown in Table 2.1, the conjugation rate for the 

monothiol SH-PAAm was far higher than that of the dithiol DTT-PAAm or either of the 

two phosphine-based resins.  Some of the discrepancy observed in conjugation rates 

between the monothiol and other resins could be due to reaction issues, as both DTT and 

THPP conjugation rates were likely lowered in part due to acid-catalyzed acetal 

hydrolysis.  Additionally the reductant molecules could potentially bind to two aldehydes 

(forming hemiacetals for DTT and THPP, and large crosslink structures for TCEP).  

Despite this difference in conjugation the reducing ability of the resins would be similar, 

as twice the molar concentration of thiol groups would be needed as DTT or phosphine 

groups.  We therefore expected similar reduction rates between the different resins. 

Having developed a panel of different high-capacity reductant resins, we wanted 

to test whether the substitution of a solid-phase reductant for DTT in RAC was viable.  

The optimized RAC protocol developed previously was used to investigate total 

reversible cysteine oxidation in peroxide-exposed BEAS-2B; the protocol was either 

carried out as described previously with MEA quenching followed by DTT reduction and 

precipitation, or with the MEA-quenched sample loaded into spin columns containing 

solid-phase reductant resins.  Following reduction the lysate was eluted from the spin 

columns with centrifugation and immediately loaded into spin columns containing 

thiopropyl capture resin without intermediate precipitation. 
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As can be seen in Fig. 3.8, some but not all of the solid-phase reductants were 

effective replacements for DTT use in RAC.  SH-PAAm showed no significant reduction 

of cysteine thiols.  DTT-PAAm showed a similar reduction amount as soluble DTT, 

while THPP-PAAm caused much higher cysteine reduction that DTT.  Interestingly the 

other phosphine-based reductant used, TCEP-PAAm, was less effective than either DTT 

or THPP-PAAm in reducing cysteines. 

  

Table 3.1. Synthesized Polyacrylamide-Conjugated Reductant Capacities as 
Determined by DTNB Assay. 

Resin Conjugated Reductant Amount (mmol/g resin) 
PAAM-SH 1.944 ± 0.034 

PAAM-DTT 0.702 ± 0.005 
PAAM-THPP 0.634 ± 0.004 
PAAM-TCEP 0.58 ± 0.004 

 

 

Figure 3.8. Solid-phase reductants are effective replacements for soluble dithiothreitol in 
resin-assisted capture of oxidized cysteines.  BEAS-2B lysates treated with vehicle or 0.5 
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mM H2O2 were processed via the optimized resin-assisted capture (RAC) protocol as 
described in the Methods.  Lanes 1-9 were reduced by the corresponding polyacrylamide 
reductant resins, while lanes 10-12 were reduced using dithiothreitol in a conventional 
optimized RAC using a precipitation step to remove the reductant post-reduction.  
Equivalent amounts of reduced whole cell lysates as determined by bicinchoninic acid 
assay were loaded onto thiopropyl-sepharose columns to capture oxidized proteins, 
washed, and eluted (RAC pulldown).  The lanes on the left side of the figure were loaded 
with 5 μg of reduced whole cell lysate (INPUT), and the lanes on the right side of the 
figure were loaded with 20 μl of eluate (PULLDOWN) containing only oxidized proteins 
from each treatment.  NC indicates samples which were alkylated with N-ethylmalemide 
but not reduced as a negative control for thiopropyl capture.  The gels were visualized 
after electrophoresis using Coomassie G-250.  SH-PAAm: thiopropyl-polyacrylamide.  
DTT-PAAm: dithiothreitol-polyacrylamide.  THPP-PAAm: 
tris(hydroxypropyl)phosphine-polyacrylamide.  TCEP-PAAm: 
tris(carboxyethyl)phosphine-polyacrylamide. 

 

The difference between the resins were not entirely unexpected, although the 

intensity of the differences were interesting.  Since the reducing group in SH-PAAm is 

mercaptopropylamide, the pKSH of the thiol would be ~ 10.10 (Table 1.1), meaning that it 

was predicted to be a poor reductant at the reaction pH of 6.5.  However the dramatic 

differences between the two phosphines was unexpected although easily explained.  

Since TCEP is conjugated to the polyacrylamide via an amide linkage it could be 

conjugated with up to three separate acrylamide molecules (Fig. 3.9A-C), thereby 

inducing structural impediments to easy cysteine access.  Since THPP is instead 

conjugated via an acetal (Fig. 3.9D) it would not have the same conformational issues; if 

the THPP molecule bound to two or more acrylamides it would form unstable 

hemiacetals instead (Fig. 3.9E-F), which would be hydrolyzed in solution. 

The increased reactivity of the THPP resin is likely due to its higher efficiency as 

a reductant at low pH than DTT [98].  This is most likely the case as the difference in 

cysteine oxidation between control and peroxide-treated resins was similar for both DTT-
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PAAm and THPP-PAAm.  However the increased cysteine reduction for THPP-PAAm 

may also been caused by phosphine-induced anti-Michael reactions with maleimide, as 

trialkylphosphines have been previously shown to act as Michael acceptors and undergo 

maleimide conjugation via Michael reaction [99].  Because of this potential side reaction 

we sought to develop a thiol-based reductant resin with an efficiency similar to THPP-

PAAm which would reduce the risk of anti-Michael reactions at acidic pH. 

 

Figure 3.9. Possible conjugation arrangements for phosphine-conjugated polyacrylamide 
resins.  (A-C) TCEP-acrylamide conjugation arrangements.  R1 = 
CH2CONHC5H10NHCOCH2-PAAm.  (D-F) THPP-acrylamide conjugation 
arrangements.  R2 = C4H8NHCOCH2-PAAm. 
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As discussed previously the highly-substituted monothiol resin SH-PAAm was an 

ineffective thiol reducing resin.  However previous studies utilizing monothiol-agarose 

were able to achieve effective cysteine reduction [85, 100], indicating that a highly-

substituted monothiol-polyacrylamide could be a viable reducing agent.  Since thiol-

based reductants need to have a high percentage of unprotonated thiolates at a given 

reaction pH in order to be effective reductants, we hypothesized that by decreasing the 

pKSH of the monothiol-polyacrylamide we might be able to arrive at an effective 

monothiol reductant resin for our system.   

We therefore took advantage of aldehyde-amine reactivity to generate 

mercaptoethylamine-conjugated resins (MEA-PAAm) (Fig. 3.1.3).  We compared SH-

PAAm’s and MEA-PAAm’s effectiveness in reducing oxidized cysteines.  In parallel we 

added a small molar percentage of selenocysteamine (SeCys) to each reaction to see 

whether adding a selenol electron-relay catalyst might improve the reducing efficiencies 

of the monothiol resins by permitting easier access to reductant monothiols buried within 

the macroporous polyacrylamide resin [101]; as the polyacrylamide resin excludes 

molecules larger than 6,000 MW this means that any reductant monothiols in the interior 

of the polyacrylamide beads are inaccessible to proteins but not small molecules. 
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Figure 3.10. Comparison of SH-PAAm and MEA-PAAm as solid-phase reductants.  
BEAS-2B lysates treated with vehicle or 0.5 mM H2O2 were processed using the 
modified solid-phase reductant RAC technique previously described.  Identical fractions 
of the same control and peroxide-treated samples were reduced with either thiopropyl-
polyacrylamide (SH-PAAm) or mercaptoethylamine-polyacrylamide (MEA-PAAm) with 
or without selenocystamine (SeCys) addition.  Lanes 1-2 (input) were loaded with 5 μg of 
RARC-processed whole-cell lysate from the indicated treatments, reflecting the total 
amount of each protein in the lysate.  Lane 3 was loaded with 5 μg of whole-cell lysate 
which had been blocked with N-ethylmaleimide but not reduced, representing a negative 
control for thiopropyl-sepharose capture.  Lanes 4-11 (pulldown) are eluate obtained 
from loading the SH-PAAm- and MEA-PAAm-reduced whole-cell lysates onto 
thiopropyl-sepharose to capture oxidized-cysteine containing proteins, reflecting only the 
amount of each protein containing reversibly-oxidized cysteines.  NC indicates samples 
which were alkylated with N-ethylmalemide but not reduced as a negative control for 
thiopropyl capture.   After elution from thiopropyl resin the samples were loaded onto 
12% Bolt gels, electrophoresed using Bis-Tris, and visualized after electrophoresis using 
Coomassie G-250. 

 

As predicted MEA-PAAm was far more effective than SH-PAAm as a reducing 

agent in all scenarios tested (Fig. 3.10).  Whereas SH-PAAm caused little to no reduction 

of oxidized cysteines in our system, MEA-PAAm exhibited reduction capacities similar 

to that seen with THPP-PAAm.  Interestingly though the addition of SeCys to the system 
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decreased the amount of reduced cysteine for MEA-PAAm, although it did preserve the 

difference between control and peroxide-treated samples.  This could be due to SeCys not 

acting as a relay catalyst between monothiol reductants within the interior of the reducing 

resin, but instead competing with oxidized protein cysteines for reduction. 

 

Conclusions 

 The major limitation to a precipitation-free RAC technique is the need to remove 

the reductant from the system following cysteine reduction.  Any remaining reductant, 

whether thiol or phosphine, would interfere with the downstream capture of previously-

oxidized cysteines by thiopropyl-sepharose.  This could be avoided by the use of a solid-

phase reductant instead, as the sample could be separated from the reducing agent by 

simply removing the supernatant from the resin through centrifugation.  Replacement of 

DTT as the reducing agent in the RAC technique with a solid-phase reductant would 

simplify and speed up the technique by avoiding time-consuming, user-intensive, and 

potential risky reductant removal. 

 Unfortunately due to the limitations of the RAC technique a viable solid-phase 

reductant resin did not previously exist.  While there are commercially-available reducing 

resins, the capacity of these resins is far lower than what is needed for spin-column 

reduction of RAC samples.  Highly-substituted monothiol-agarose as a reducing agent 

was possible, but the described substitution rates needed for the agarose are difficult to 

achieve through the epoxide-based synthesis route. 
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 We therefore sought to develop polyacrylamide-based reducing resins, since 

PAAm provided both the conjugation rate necessary as well as versatility in the 

conjugated resin desired through PAAm-glutaraldehyde conjugation.  After determining 

the optimal reaction conditions for PAAm-glutaraldehyde conjugation, we developed a 

range of solid-phase reductant resins based on this activated-aldehyde resin.  Several of 

these resins worked as well as if not better than DTT when substituted into the RAC 

workflow; DTT-PAAm showed cysteine reduction levels similar to soluble DTT, while 

both THPP-PAAm and MEA-PAAm showed higher cysteine reduction that DTT. 

 The use of these resins in a Resin-Assisted Reduction and Capture (RARC) 

technique allowed the streamlining of the procedure by avoiding the aforementioned 

precipitation steps.  Therefore we were able to accomplish the entire RARC processing 

from sample lysis through to electrophoresis and staining in a single 8-hour workday.  

This is a significant reduction in the processing time needed as compared to the 

conventional RAC technique, with no perceivable loss in signal fidelity.  Additionally the 

synthesis of all required compounds to accomplish RARC can be easily carried out in a 

conventional biology lab setting, since the resin uses only commonly-available materials 

and equipment.  We therefore anticipate that RARC will become a useful technique for 

the study of reversible cysteine oxidation in signaling and disease in the future.  
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Chapter 4 : APPLICATION OF THE OPTIMIZED RESIN-ASSISTED 

REDUCTION AND CAPTURE METHOD FOR THE STUDY OF METAL-

INDUCED CYSTEINE OXIDATION. 

 

Background 

Heavy Metal Induced Oxidative Stress 

Oxidative stress is a disease state caused an imbalance between reactive oxygen 

species (ROS) or reactive nitrogen species (RNS) and antioxidants within the cell.  This 

can be caused either by an increase in production of ROS and RNS, or by a decrease in 

the amount or activity of antioxidant compounds or enzymes.   ROS and RNS production 

in the cell occurs naturally due to cell processes, such as metabolism, innate immunity, 

and cell signaling.  In order to prevent these ROS and RNS from damaging the cell, 

cellular antioxidants are present to react with and detoxify these reactive species.  In the 

absence of cellular antioxidants, however, ROS and RNS can react with cellular proteins, 

lipids, and nucleotides, inducing oxidative damage.  This damage can include lipid 

peroxidation, protein oxidation, and DNA oxidative damage and mutation. 

The transition metals arsenic, cadmium, and chromium have been shown to 

induce cellular oxidative stress.  The mechanisms for metal-induced oxidative stress can 

be categorized as either redox-active or redox-inactive.  Redox-active mechanisms 

involve the generation of ROS directly through metal-catalyzed reactions, whereas redox-

inactive mechanisms involve the inhibition or inactivation of cellular antioxidants. 
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Haber-Weiss-like reactions are two-step reactions which generate hydroxyl 

radical from superoxide and hydrogen peroxide.  In the first step, a metal Mn is reduced 

by superoxide [Eq. 1].  This reduced metal Mn-1 is then oxidized by hydrogen peroxide to 

generate a hydroxide ion and hydroxyl radical, as well as regenerating the original metal 

valence in a Fenton-like reaction [Eq. 2].  The net reaction from these two steps is the 

generation of hydroxide ion and hydroxyl radical from superoxide and hydrogen peroxide 

through a catalytic metal redox-shuttling [Eq. 3]. 

[1] 𝑀𝑀𝑛𝑛 + · 𝑂𝑂2−  →  𝑀𝑀𝑛𝑛−1 +  𝑂𝑂2 

[2]  𝑀𝑀𝑛𝑛−1 + 𝐻𝐻2𝑂𝑂2  → · 𝑂𝑂𝐻𝐻 + 𝑂𝑂𝐻𝐻− 

[3]  · 𝑂𝑂2− + 𝐻𝐻2𝑂𝑂2 → · 𝑂𝑂𝐻𝐻 + 𝑂𝑂𝐻𝐻− + 𝑂𝑂2 

The requirement for a metal to be a Haber-Weiss-like catalyst is the existence of multiple 

stable non-zero valence states for that metal.  Thus chromium, which has the valence 

states (II), (III), (IV), (V), and (VI), is an excellent Haber-Weiss-like catalyst [102].  

Additionally arsenic, which has the stable valence states (III) and (V), can also generate 

hydroxyl radicals through a Haber-Weiss-like reaction. 

In addition to the Haber-Weiss-like reaction, metals which only have one stable 

non-zero valence state such as cadmium can generate radicals through a non-Fenton-like 

disproportionation reaction [103].  In this multistep reaction an H2O molecule in the 

metal-aqua complex is substituted for H2O2 [Eq. 4], the coordinated H2O2 undergoes 

protolysis to generate a hydronium ion [Eq. 5], a second H2O2 substitution [Eq. 6], and 

peroxide bond cleavage [Eq. 7], followed by rehydration of the complex [Eq. 8-9].  The 
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net reaction from these steps is to generate a hydroxyl and peroxyl radical from hydrogen 

peroxide [Eq. 10]. 

[4]  [𝑀𝑀(𝐻𝐻2𝑂𝑂)𝑛𝑛]2+ + 𝐻𝐻2𝑂𝑂2
−𝐻𝐻2𝑂𝑂�⎯⎯�  [𝑀𝑀(𝐻𝐻2𝑂𝑂)𝑛𝑛−1(𝐻𝐻2𝑂𝑂2)]2+ 

[5] [𝑀𝑀(𝐻𝐻2𝑂𝑂)𝑛𝑛−1(𝐻𝐻2𝑂𝑂2)]2+ +  𝐻𝐻2𝑂𝑂 
−𝐻𝐻3𝑂𝑂+�⎯⎯⎯� [𝑀𝑀(𝐻𝐻2𝑂𝑂)𝑛𝑛−1(𝑂𝑂𝑂𝑂𝐻𝐻)]+ 

[6] [𝑀𝑀(𝐻𝐻2𝑂𝑂)𝑛𝑛−1(𝑂𝑂𝑂𝑂𝐻𝐻)]+ + 𝐻𝐻2𝑂𝑂2
−(𝑚𝑚−1)𝐻𝐻2𝑂𝑂�⎯⎯⎯⎯⎯⎯⎯�  [𝑀𝑀(𝐻𝐻2𝑂𝑂)(𝑛𝑛−𝑚𝑚)(𝐻𝐻2𝑂𝑂2)(𝑂𝑂𝑂𝑂𝐻𝐻)]+ 

[7] [𝑀𝑀(𝐻𝐻2𝑂𝑂)(𝑛𝑛−𝑚𝑚)(𝐻𝐻2𝑂𝑂2)(𝑂𝑂𝑂𝑂𝐻𝐻)]+ → [𝑀𝑀(𝐻𝐻2𝑂𝑂)(𝑛𝑛−𝑚𝑚)(𝑂𝑂𝐻𝐻)(· 𝑂𝑂𝑂𝑂𝐻𝐻)]+ + · 𝑂𝑂𝐻𝐻 

[8] [𝑀𝑀(𝐻𝐻2𝑂𝑂)(𝑛𝑛−𝑚𝑚)(𝑂𝑂𝐻𝐻)(· 𝑂𝑂𝑂𝑂𝐻𝐻)]+ → [𝑀𝑀(𝐻𝐻2𝑂𝑂)(𝑛𝑛−𝑚𝑚)(𝑂𝑂𝐻𝐻)]+ + · 𝑂𝑂𝑂𝑂𝐻𝐻 

[9] [𝑀𝑀(𝐻𝐻2𝑂𝑂)(𝑛𝑛−𝑚𝑚)(𝑂𝑂𝐻𝐻)]+ +  𝐻𝐻3𝑂𝑂+ + (𝑚𝑚− 2)𝐻𝐻2𝑂𝑂 → [𝑀𝑀(𝐻𝐻2𝑂𝑂)𝑛𝑛]2+  

[10] [𝑀𝑀(𝐻𝐻2𝑂𝑂)𝑛𝑛]2+ + 2𝐻𝐻2𝑂𝑂2 →  [𝑀𝑀(𝐻𝐻2𝑂𝑂)𝑛𝑛]2+ + · 𝑂𝑂𝐻𝐻 + · 𝑂𝑂𝑂𝑂𝐻𝐻 

In addition to these redox-active mechanisms, arsenic, cadmium, and chromium 

also have redox-inactive mechanisms for inducing oxidative stress.  These metals induce 

the generation of ROS indirectly by stimulating NADPH oxidase (NOX) activity.  NOXs 

are a primary source of endogenous ROS; As their name suggests they oxidize NAPDH 

to generate superoxide radicals, which undergo dismutation to form hydrogen peroxide.  

As(III), Cr(VI), and Cd(II) have all been shown to upregulate both NOX expression and 

activity, leading to an increase in NOX-catalyzed ROS production [104-108]. 

Metal-induced cysteine oxidation can also occur through non-ROS-mediated 

pathways.  All three metals have also been shown to directly interact with cysteine thiols 

through the formation of metal-thiolate complexes. As(III) and Cd(II) have both been 
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shown to preferentially displace zinc from zinc-binding motifs such as ZNF domains due 

to the increased affinity these metals have for thiolates [109].  Under physiological 

conditions Cd(II) interacts with cysteine at a 1:1 or 1:2 Cd(II):Cys molar ratio, although 

higher molar ratios have been observed at high cysteine:Cd(II) ratios and alkaline pH 

[110-113].  As(III) can bind to cysteine at up to a 1:3 molar ratio, giving a potential range 

of thiolate complexes from As(SCys) to As(SCys)3 [114].  Cr(VI) forms Cr(VI)-thioester 

groups with cysteine [115] alone or in concert with adjacent carboxylic acids [116].  

Additionally trivalent chromium (Cr(III)) generated through chromate reduction in vitro 

has been shown to form Cr(III)-Cys-DNA adducts [117-119]. 

In addition to metal-thiolate complex formation, these heavy metals can also 

induce cysteine oxidation directly through metal-cysteine binding.  Both arsenic and 

cadmium form disulfide bonds between vicinal thiols, which has been used 

experimentally to block enzyme active-site cysteines [120, 121]. 

Metal-Thiol Interactions 

Given the significant interaction between As(III), Cr(VI), and Cd(II) and thiols by 

both ROS-mediated oxidation and direct metal-thiol binding, it would stand to reason that 

cysteine oxidation plays a role in cellular toxicity induced by these metals. 

Arsenic 

As mentioned previously arsenite binds to vicinal dithiols to form either a thiolate 

complex or a disulfide through a redox reaction.  Studies using the immobilized arsenite-

containing resin p-aminophenylarsine oxide-sepharose to isolate proteins which bind to 

arsenic via metal thiolate formation found that calcineurin (CAN), heat shock protein 27 
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(HSP27), galectin-1 (GAL1), triose phosphate isomerase (TPI), thioredoxin (Trx), protein 

phosphatase 2A (PP2A), and glutathione s-transferase P1 (GSTP1) all bound to arsenite 

[120-123].  Additionally in vitro studies found that arsenic either bound directly to or 

oxidized multiple proteins, including metabolic proteins like pyruvate kinase M2 

(PKM2), DNA repair proteins like PARP1, heat shock factors like heat shock 70 kDa 

protein 9 (HSPA9), and translation machinery including 60S acidic ribosomal protein P0 

[124-126].  

Chromium 

Chromium has been shown to oxidize several antioxidant proteins in vitro.  These 

include peroxiredoxins (PRXs), thioredoxins (TRXs), and the thioredoxin-reducing 

enzyme thioredoxin reductase (TxR) [127-129].  As mentioned previously Cr(VI) has 

been shown to generate Cr(VI)-Cys-DNA complexes. 

Cadmium 

 Cadmium has been shown to oxidize TRXs in vitro [130].  Redoxomic studies of 

both cytotoxic and noncytotoxic cadmium concentrations using isotope-coded affinity 

tagging (ICAT) experiments have shown that cadmium has several protein cysteine 

oxidative targets both in vivo and in vitro.  These targets include metabolic proteins, 

primarily those involved in amino acid and lipid metabolism [131], as well as proteins 

involved in translation, stress response, and the actin cytoskeleton [132]. 

 Despite this evidence for cysteine oxidation by As(III), Cr(VI), and Cd(II), to date 

no studies have compared the three metals to determine similarities and differences 

between their oxidative targets.  Given the significant overlap in protein interaction for 
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these metals, we would expect that all three metals would share a common pool of 

cysteine oxidative targets with some possible variability between them due to differences 

in ROS generation and direct thiol conjugation.  As such we felt that investigating metal-

induced cysteine oxidation in vitro would be an excellent test of the resin-assisted 

reduction and capture method’s ability to study complex cysteine oxidants in a cellular 

environment. 

 

Materials and Methods 

Materials. Cell culture medium (Gibco DMEM+GlutaMAX, Gibco 10569), HBSS pH 

7.4 (Gibco 14025), PBS pH 7.4 (Gibco 10010), screw cap microcentrifuge spin columns 

(Pierce 69705), and Hypersep C18 micropipettes (Thermo Scientific 60109-209) were 

purchased from Thermo Fisher Scientific (Waltham, MA).  Trypsin Gold was from 

Promega (Madison, WI).  Thiopropyl-sepharose 6B, mercaptoethylamine-

polyacrylamide, and tris(hydroxypropyl)phosphine-polyacrylamide resins were 

synthesized as described previously using sepharose 6B (Aldrich 6B100, Lot# 

MKCG3369 ) (Millipore Sigma, St. Louis, MO) and Bio-Gel P6DG (Bio-Rad 150-0738 

Lot# 64053706) (Bio-Rad, Hercules, CA).  0.1M sodium arsenite solution (RICCA 

714232 Lot# 4603949) and cadmium chloride (Aldrich 202908 Lot# 11026JH) were 

purchased from Millipore Sigma (St. Louis, MO).  DMPO (5,5-dimethyl-1-pyrroline n-

oxide, TCI D2362 Lot# YPZIA-CG), MTT (VWR 0793 Lot# 0646C193), and N-

ethylmaleimide (Alfa Aesar 40526 Lot# P290042), and sodium chromate (Alfa Aesar 

A10547 Lot# 10161596) were from VWR (Radnor, PA).   
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The following antibodies used were from Santa Cruz Biotechnology (Santa Cruz, CA): 

mouse anti-eEF2 (C-9), mouse anti-SOD1 (G-11), mouse anti-NNMT (G-4), mouse anti-

vimentin (V-9), and mouse anti-PRDX5 (H-5).  The following antibodies used were from 

Cell Signaling Technology (Danvers, MA): rabbit anti-GAPDH (D16H11), rabbit anti-

PKM1/2 (C103A3).  Rabbit anti-DJ1/PARK7 (EP2815Y) was from Abcam (Cambridge, 

MA). Mouse anti-β-actin (AC-15) was from Millipore Sigma.  Anti-mouse and anti-

rabbit near-IR secondary antibodies were from Azure Biosystems (Dublin, CA). 

Cell Culture. The immortalized human bronchial epithelial cell line BEAS-2B (ATCC 

CRL-9609) was cultured in DMEM with 10% FBS, 1% Pen-Strep at 37°C, 5% CO2 in a 

humidified incubator.  Cells were subcultured prior to confluence and seeded at 3000 

cells/cm2. For experiments the cells were treated at 60-80% confluence, and treated with 

the concentrations of metals described in the figures or deionized water as a vehicle 

control. 

Electron Spin Resonance.  BEAS-2B cells were trypsinized, pelleted, washed with 

charcoal-stripped PBS twice, and resuspended into 0.5 ml CS-PBS at a concentration of 

2x106
 cells/ml in a microcentrifuge tube.  200 mM DMPO and treatment metals (or PBS 

as vehicle) were added to the cell suspension, which was then sealed and incubated at 

37℃ for 10 minutes.  Following incubation the cell suspension was transferred to a flat 

cell and placed in the chamber of an EMXplus (Bruker, MA).  Instrument settings were: 

40 mW power, 1G modulation amplitude, 6.32·104 gain, 40.96s conversion time, 9.76 

GHz frequency, 100G scan width, 3505G static field, 100 kHz modulation frequency, 42s 

scan time, scan number of 9. 
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Cell Viability Assay. BEAS-2B cells were trypsinized, counted, and plated into 96-well 

plates at 8·103 cells/well in 100 μl cell culture medium and allowed to attach overnight.  

The medium was aspirated and replaced with DMEM containing the indicated 

concentrations of FBS; DMEM was added to an additional triplicate set of wells without 

cells to determine background values.  Metals were added to triplicate wells at the 

indicated concentrations, with PBS used as the vehicle, for a final well volume of 100 µl.  

The plates were incubated at 37°C, 5% CO2 for 24-hours, after which 10 µl of MTT 

solution (5 mg/ml in PBS) was added to each well.  The plates were incubated for 2 

hours, after which 100 µl solubilization solution (40% DMF, 16% SDS, 2% acetic acid) 

was added to each well.  The plate was mixed by rotational agitation on a plate shaker 

until formazan crystals were fully dissolved.  Absorbance was measured at 570 nm using 

a BioTek EX800 spectrophotometer. 

Prelysis Quenching. Following treatment the cell culture medium was exchanged with 

HBSS containing NEM (50 mM unless otherwise noted) and incubated briefly.  After 

incubation the HBSS + NEM was removed, the plates were washed 3x with HBSS, the 

cells were detached from the plate with a cell lifter, collected into 1.5ml tubes, pelleted, 

and resuspended in degassed lysis buffer. 

Lysate Alkylation and Reduction.  BEAS-2B cells were lysed in 400 μl of degassed lysis 

buffer containing 20 mM NEM in opaque 2-ml microcentrifuge tubes.  The samples were 

incubated for 2 hours at RT with gentle end-over-end mixing.  20 mM 

mercaptoethylamine was then added to the samples to quench the NEM.  After quenching 

for 5 minutes 50 mM DTT was added to reduce oxidized cysteines.  After a one-hour 
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incubation the samples were again precipitated with cold acetone, allowed to incubate 

overnight at -20°C, and washed 3x with cold 80% acetone before resuspension for RAC. 

Resin-Assisted Reduction and Capture (RARC). Sample pellets were lysed, alkylated, and 

quenched for 5 minutes with an equimolar amount of mercaptoethylamine (MEA).  

Following quenching the samples were loaded into spin columns containing 35 mg of 

buffer-equilibrated MEA-PAAm resin.  The columns were sealed and rotated end-over-

end for one hour in the dark at RT.  After incubation the columns were unsealed, placed 

into clean microcentrifuge tubes, and centrifuged at 13,200xg for 5 minutes to remove the 

sample from the reductant.  Samples were then loaded into thiopropyl-resin spin columns 

for resin-assisted capture. 

On-Resin Digestion and Sample Cleanup. Following protein capture onto thiopropyl-

sepharose, columns were unsealed, placed into receiving tubes, and the nonbound fraction 

was eluted by centrifugation at 1,500g for 30s and discarded.  The columns were then 

washed by 3x5 column volumes (CV) of 1% SDS, then 7x5 CV of PBS, 5x5 CV of 30% 

acetonitrile (ACN), 0.1% TFA, and 5x5 CV of 30% ACN, 50 mM NaHCO3; the columns 

were centrifuged at 1,500g for 30s for each wash and the eluate was discarded.  After the 

last wash the bottom plugs were replaced and 150 µl of 30% ACN, 50 mM NaHCO3 

containing 5 ug of trypsin gold (Promega, Madison, WI) was added to each column.  The 

columns were sealed and allowed to digest overnight at 37℃ with end-over-end digestion.  

After digestion the columns were unsealed, placed into receiving tubes, and nonbound 

peptides and trypsin were eluted and discarded.  Columns were washed following the above 

sequence.  Following the last wash 100 µl of elution buffer (25 mM DTT, 50 mM NaHCO3) 

was added to each column.  The columns were resealed and incubated for 30 minutes at 
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RT with rotational agitation, after which the columns were unsealed, placed into methanol-

cleaned microcentrifuge tubes, and centrifuged to capture the eluate.  This elution 

procedure was repeated 3x for a final eluate volume of 400 µl.  A sufficient volume of IAM 

was added to each eluate tube to bring the final concentration of IAM to 60 mM.  The 

samples were incubated for 1 hr in the dark at RT to alkylate any free thiols.  The eluate 

was then evaporated by rotary evaporation on a SpeedVac (Savant/Thermo Fisher 

Scientific, Carlsbad, CA) and the peptide pellet was resuspended in 30 ul of 0.5% formic 

acid.  Peptide samples were cleaned up by Hypersep C18 pipette tips (Thermo Fisher 

Scientific, Carlsbad, CA) following manufacturer guidelines.  Cleaned-up peptide samples 

were again evaporated using rotary evaporation and resuspended in 10 µl of 0.5% formic 

acid for LC-ESI-MS/MS injection. 

Liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-

MS/MS) Analysis.  All mass spectra reported in this study were acquired by the University 

of Kentucky Proteomics Core Facility. The tryptic peptides were subjected to shot-gun 

proteomics analysis as previously described in Yang et al. [133]. LC-MS/MS analysis was 

performed using an LTQ-Orbitrap mass spectrometer (Thermo Fisher Scientific, Waltham, 

MA) coupled with an Eksigent Nanoflex cHiPLC™ system (Eksigent , Dublin, CA) 

through a nano-electrospray ionization source. The peptide samples were separated with a 

reversed phase cHiPLC column (75 μm x 150 mm) at a flow rate of 300 nL/min. Mobile 

phase A was water with 0.1% (v/v) formic acid while B was acetonitrile with 0.1% (v/v) 

formic acid. A 50 min gradient condition was applied: initial 3% mobile phase B was 

increased linearly to 40% in 24 min and further to 85% and 95% for 5 min each before it 

was decreased to 3% and re-equilibrated. The mass analysis method consisted of one 
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segment with eight scan events. The 1st scan event was an Orbitrap MS scan (300-1800 

m/z) with 60,000 resolution for parent ions followed by data dependent MS/MS for 

fragmentation of the 7 most intense multiple charged ions with collision induced 

dissociation (CID) method.  

MS/MS Protein Identification. The LC-MS/MS data were submitted to a local mascot 

server for MS/MS protein identification via Proteome Discoverer (version 1.3, Thermo 

Fisher Scientific, Waltham, MA) against a custom database of Homo sapiens (Human) 

proteins downloaded from Uniprot (number of sequences after taxonomy: 20218). Typical 

parameters used in the MASCOT MS/MS ion search were: trypsin digestion with a 

maximum of two miscleavages, cysteine carbamidomethylation, cysteine N-

Ethylmaleimide (NEM) modification, cysteine oxidations, methionine oxidation, 10 ppm 

precursor ion and 0.8 Da fragment ion mass tolerances. A decoy database was built and 

searched. Filter settings that determine false discovery rates (FDR) are used to distribute 

the confidence indicators for the peptide matches. Peptide matches that pass the filter 

associated with the FDR rate of 1% and 5% are assigned as high and medium confident 

peptides, respectively. 

SDS-PAGE.  Following metal treatment cell cultures were processed by RARC as 

described above.  Captured samples were eluted in 1x LDS sample buffer (Life 

Technologies, CA) + 50 mM TCEP, pH 7.0.  Eluted pulldown samples and input fractions 

were loaded onto a Bolt Bis-Tris SDS-PAGE gel (Life Technologies, CA) and 

electrophoresed in MOPS running buffer at 200V.  Once the dye front reached the bottom 

of the gel cassette the run was stopped. 
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Western Blotting.  Electrophoresed gels were removed from their gel cassette and 

assembled into a transfer sandwich with 0.45 µm nitrocellulose (Bio-Rad, CA).  The 

transfer sandwiches were rolled out to remove bubbles and loaded into a Hoefer TE-22 

tank transfer apparatus (Hoefer) containing Towbin transfer buffer (25 mM Tris, 192 mM 

glycine, 10% ethanol).  The gels were transferred for 1 hour at 400 mA with regenerative 

cooling.  Following transfer the membranes were removed and washed briefly with 

deionized water, then dried for at least one hour.  Membranes were then rehydrated in 

deionized water, blocked for 1 hour with 5% milk-PBS, washed 3x with PBS+0.1% NP-

40 (PBSN), and incubated for 3 hours at RT with primary antibodies in 5% milk-PBSN.  

The membranes were then washed 3x with PBSN for 5 minutes each, then incubated for 

1hour in the dark at RT with NIR-fluorophore secondary antibodies.  The membranes were 

washed 3x with PBSN for 5 minutes each, then washed 3x with PBS.  Membranes were 

imaged at 680 nm and 790 nm using an Azure Biosystems C600 imager.  Blot images were 

converted from multichannel to grayscale using AzureSpot software. 

 

Results and Discussion 

Our lab and others have previously demonstrated ROS generation by As(III), 

Cr(VI), and Cd(II) using ESR in both cell-free and in vitro systems.  Most EPR 

measurements for these metals have been conducted using relatively high concentrations 

of metals (0.1-1 mM), which would far exceed the concentration used for biological 

studies; these doses would easily overwhelm biological antioxidant systems, and 

therefore are not necessarily indicative of the metals’ capacity to generate ROS in a 

biologically-relevant system.  Therefore we wanted to confirm that measureable ROS 
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production was observed under lower, biologically-relevant concentrations of metals used 

in 24-hour toxicity studies. 

We measured ROS generation in vitro using BEAS-2B cells which had been 

treated with As(III), Cr(VI), or Cd(II)  using electron spin resonance (ESR) spin trapping.  

This method involves the addition-type reaction of a short-lived radical such as hydroxyl 

radical with a non-paramagnetic compound (spin trap) to form a relative long-lived 

resonance-stabilized paramagnetic product (spin adduct) which can be studied using 

ESR.  For our analysis we used the spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO).  

DMPO is a nitrone-containing compound which reacts with hydroxyl radical to form a 

resonance-stabilized product DMPO-·OH.  While DMPO is non-paramagnetic, DMPO-

·OH is a paramagnetic compound which is detectable via ESR; therefore measurement of 

DMPO-·OH by ESR can be used to measure relative hydroxyl radical levels in the 

sample. 

We treated BEAS-2B cells with As(III), Cr(VI), and Cd(II) for 10 minutes in the 

presence of DMPO, then measured the resulting levels of the DMPO-·OH spin adduct 

using ESR.  The results of this experiment are in Fig. 4.1.  Arsenic did not generate 

detectable levels of hydroxyl radical after a 10-minute incubation.  Cadmium caused a 

small increase in hydroxyl radical as compared to BEAS-2B.  Chromium generated 

significantly more hydroxyl radical, an approximate doubling of the DMPO-⸱OH signal 

as compared to BEAS-2B.   
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Figure 4.1. Cr(VI) and Cd(II) generate hydroxyl radicals in BEAS-2B cells as measured 
by electron spin resonance (ESR).  BEAS-2 cells were trypsinized, counted, and pelleted, 
and 1·106 cells were resuspended into 0.5 ml of charcoal-stripped PBS in microcentrifuge 
tubes.  The indicated concentrations of NaAsO2, K2Cr2O7, and CdCl2 (or PBS as vehicle) 
and 200 mM 5,5-dimethyl-1-pyrroline N-oxide (DMPO) spin trap were added to the 
BEAS-2B suspensions and incubated for 10 min at 37° C.  DMPO reacted with hydroxyl 
radicals in the suspension to form the resonance-stabilized paramagnetic product DMPO-
·OH.  The cell suspensions were then transferred to a quartz flat cell and ESR spectra was 
measured using a Bruker EMXplus.  Instrument settings were: 40 mW power, 1G 
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modulation amplitude, 6.32·104 gain, 40.96s conversion time, 9.76 GHz frequency, 100G 
scan width, 3505G static field, 100 kHz modulation frequency, 42s scan time, scan 
number of 9. 

 

Metal LD50 Determination in FBS-Containing Culture Medium.  Most previous studies 

have used similar concentrations of both arsenite and chromate in 24-hour acute-toxicity 

studies with 20 μM As(III) and 20 μM Cr(VI) being commonly used as the LD50 for these 

metals.  However the concentrations of cadmium used have varied widely between 

different research studies, with anywhere from 10-50 μM Cd(II) being used as an LD50 in 

24-hour exposure studies [134, 135].  This discrepancy between reported in vitro LD50 

can be partly explained by different studied cell lines and varying media compositions.  

As such it was important to reconfirm or determine the dose-dependent response to these 

metals in the BEAS-2B immortalized human bronchial epithelial cell line.   

Additionally the prior studies had utilized serum-starvation conditions during 

metal treatment.   Serum-starvation is known to generate oxidative stress [136].  Since 

starvation-induced oxidative stress could raise background cysteine oxidation levels, we 

wanted to avoid this by treating BEAS-2B cultures under normal culture conditions to 

avoid exogenous stressors.  As such we conducted a viability assay to determine the 24-

hour LD50 for As(III), Cr(VI), and Cd(II) under differing medium serum compositions. 

The results of this experiment are in Fig. 4.2.  Both arsenic and chromium showed 

a fairly consistent toxicity profile independent of the presence of serum in the medium, 

with As(III) and Cr(VI) LD50s of 25.8 μM and 20 μM respectively.  However cadmium 

toxicity was highly dependent upon medium serum concentration, with the LD50 for 

Cd(II) ranging from ~24.5 μM in serum-free DMEM to 53.9 μM in 10% FBS-DMEM.  
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Since cadmium uptake intracellularly has been previously found to be serum-dependent 

in in vitro cell cultures [137-139], we would expect some variance in cadmium-induced 

cell toxicity due to the presence of serum components since albumins and 

metallothioneins contained in FBS may be binding to and preventing Cd(II) uptake by 

BEAS-2B cells. 

However both 5% FBS and 10% FBS showed similar toxicity profiles indicating 

that this difference is not solely due to serum protein binding or chelation of cadmium, as 

presumably the increased concentration of serum proteins at 10% FBS would cause a 

further decrease in cadmium concentration available for cellular uptake.  Since this 

inhibitory effect is not solely due to serum protein concentrations, it is most likely due to 

a combination of the presence of Cd(II)-binding serum proteins and to serum-induced cell 

signaling effects influencing cellular uptake of Cd(II). 

Given the 24-hour viability results, we chose to use 5% FBS-DMEM for all 

following treatments.  This would, as mentioned previously, reduce or eliminate 

exogenous stressor-induced oxidative stress.  Additionally it would prevent cadmium-

induced toxicity caused by serum-starvation induced cell signaling pathway disruptions. 
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Figure 4.2. 24-hour cell viability measurement for dose-course exposures to As(III), 
Cr(VI), and Cd(II).  BEAS-2B cells in triplicate wells were treated with the indicated 
concentrations of NaAsO2 (A), K2Cr2O7 (B), CdCl2 (C) or PBS vehicle with or without 
the indicated concentrations of FBS and incubated for 24 hrs.  Cell viability following 
treatment was determined using the MTT assay as described above.  Relative cell 
viability was determined by dividing the average OD562 for each treatment concentration 
by the OD562 of the corresponding non-treated vehicle controls.   Statistical analysis was 
performed using Microsoft Excel.  Data points represent average relative viability, n=3. 
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Measurement of Reversible Cysteine Oxidation Caused by Metal Exposure.  Having 

determined both the generation of ROS by As(III), Cr(VI), and Cd(II), as well as their  

LD50s for BEAS-2B in serum-containing medium, we wanted to determine whether these 

metals could induce significant reversible cysteine oxidation in vitro.  Furthermore we 

wanted to investigate the RARC methodology’s utility in detecting cysteine oxidation 

caused by complex oxidants in an experimental setting.   

We treated BEAS-2B cultures with metals for 24 hrs and used the RARC method 

to measure the resulting levels of reversible cysteine oxidation.  The results of this 

experiment are in Fig. 4.3.  Reversible cysteine oxidation increased in a dose-dependent 

manner for all three metals.  Since arsenic and cadmium generated lower levels of 

hydroxyl radical than chromium in our EPR measurements, we would expect that 

cysteine oxidation would be higher for chromium than either of the other two metals were 

cysteine oxidation be primarily ROS-driven.  However the observed increase was more 

pronounced for both arsenic and cadmium than chromium.   

Since both arsenic and cadmium can form metal-catalyzed disulfide bridges, this 

would be consistent with the observed increases caused by these metals.  Therefore the 

cysteine oxidation caused by these metals occurs through at least two distinct paths: a 

hydroxyl-mediated cysteine oxidation favored by chromium, and a metal-catalyzed 

disulfide formation favored by arsenic and cadmium. 
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Figure 4.3. The heavy metals As(III), Cr(VI), and Cd(II) induce cysteine oxidation after 
24hr treatment.  BEAS-2B cultures were treated with sublethal and lethal doses of 
NaAsO2 (5 or 20 µM), K2Cr2O7 (2.5 or 10 µM), or CdCl2 (40 or 60 µM) for 24 hrs in 5% 
FBS-DMEM at 37 ℃, 5% CO2.  Following treatment the cultures were prelysis quenched 
and processed for RARC as described in the Methods section.  Equivalent amounts of 
reduced whole cell lysates as determined by bicinchoninic acid assay were loaded onto 
thiopropyl-sepharose columns to capture oxidized proteins, washed, and eluted (RAC 
pulldown).  The lanes on the left side of the figure were loaded with 5 μg of reduced 
whole cell lysate (INPUT), and the lanes on the right side of the figure were loaded with 
20 μl of eluate (PULLDOWN) containing only oxidized proteins from each treatment. N 
indicates samples which were alkylated with N-ethylmalemide but not reduced as a 
negative control for thiopropyl capture.  Both input and pulldown fractions were loaded 
onto a 12% Bolt bis-tris gel and electrophoresed using MOPS buffer.  The gels were 
fixed in 10% acetic acid, 50% methanol for 10 minutes, then stained with 0.01% 
Coomassie G-250 in 10% acetic acid for 30 minutes.  Following extensive destaining 
with deionized water, the gels were imaged using an Azure C600. 
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Proteomic Analysis of Metal-Induced Reversible Cysteine Oxidation.  

While this experiment further reinforced the utility of the RARC method in measuring 

cysteine oxidation, it did not elucidate what fraction of observed oxidation was caused by 

ROS or metal catalyzed oxidation.  Additionally the identity of the proteins oxidized by 

these metals was still unknown.  Fortunately the RARC method could be adapted to a 

proteomic workflow by utilizing on-resin trypsin digestion prior to sample elution and 

cleanup from capture resin; proteomic analysis of the resulting cysteine-containing 

peptides would tell not only the protein identity, but the exact cysteines oxidized on each 

protein. 

 Quadruplicate sets of metal-treated BEAS-2B lysates were processed via RARC 

and digested on-resin, washed, and eluted for cleanup and proteomic analysis using label-

free proteomics.  The resulting peptide lists were cleaned up using a peptide ion score 

cutoff of ≥ 25.  These protein lists were collated across the quadruplicate sets, and only 

proteins which were detected in at least three of the four sets were retained.  From this 

collated set a list of proteins which were present in metal-treated samples but not the 

vehicle control samples was generated (Table 3.1), along with the cysteines oxidized on 

the proteins by each metal. 

 Consistent with the results observed in Fig. 4.3, more proteins were oxidized by 

arsenic and cadmium than chromium.  Two sets of proteins were observed between the 

groups: proteins oxidized by all three metals, and proteins oxidized by arsenic, cadmium, 

or a combination of these two metals.  No proteins were observed to be oxidized by 
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chromium but neither of the other two metals consistent with the decreased cysteine 

oxidation by Cr(VI) compared to As(III) and Cd(II). 

 Metabolic, protein synthesis, and antioxidant proteins were significantly enriched 

in the metal-oxidized groups.  Several of the cysteines identified were known to be ROS-

sensitive, as with GAPDH, vimentin, and peroxiredoxins, or metal-binding cysteines, 

such as metallothionien-2; furthermore several of the identified cysteines are in 

enzymatic active sites, which would indicate that these metals may be inhibiting 

enzymatic function through cysteine oxidation.  These results indicate that cysteine 

oxidation may play a role in metal-induced toxicity for As(III), Cr(VI), and Cd(II). 
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Table 4.1. List of Reversibly-Oxidized Proteins and Specific Cysteines Oxidized by 
As(III), Cr(VI), Cd(II) by Triplicate Inclusion Criteria 

Protein Name GN Oxidized Cysteines* 
  Arsenic Chromium Cadmium 

Glyceraldehyde-3-Phosphate 
Dehydrogenase GAPDH 

C152 
C156 
C247 

C152 
C156 
C247 

C152 
C156 
C247 

 Elongation Factor 2 EEF2 
C41 

C466 
C728 

C41 
C466 
C728 

C466 
C728 

Peroxiredoxin-5, Mitochondrial PRDX5 C204 C204 
C100 

C204 
C100 

60S Ribosomal Protein L30 RPL30 C52 
C92 

C52 
 

C52 
C92 

Vimentin VIM C328 C328 C328 
Cation-independent mannose-6-

phosphate receptor IGF2R C134  C134 

Peptidyl-prolyl cis-trans 
isomerase A PPIA/CyPA C161 

C62  
C161 
C62 

C115 

Heat Shock 70 kDa Protein 6 HSPA6 C624 
C605  

C308 
C605 
C624 

Metallothionein-2 MT2A 

C33 
C34 
C36 
C37 
C41 
C44 
C48 
C50 

 

C33 
C34 
C36 
C37 
C41 
C44 
C48 
C50 

Filamin-A FLNA C205 
C1018  C2543 

C1018 
Superoxide Dismutase [Cu-Zn] SOD1 C147  C147 

Cell Surface Glycoprotein 
MUC18 MCAM C161 

C499  C161 

Heat Shock Protein 105 kDa HSPH1 C34 
C167   

ADP-Dependent Glucokinase ADPGK C415   
60 kDa Heat Shock Protein, 

Mitochondrial HSPD1 C442   

Lysosomal Alpha-Mannosidase MAN2B1 C472   
Complement Component 1 Q 

Subcomponent-Binding Protein, 
Mitochondrial 

C1QBP C186   

60S Ribosomal Protein L18 RPL18 C134   

Protein Disulfide-Isomerase A3 PDIA3 C85 
C92   

Leucine-Rich Repeat-
Containing Protein 59 LRRC59 C277   

Thioredoxin-Domain Containing 
Protein 5 TXNDC5   C247 

C121 
*Specific Cysteines Identified in Fewer Than 3 Replicate Proteomic Runs are Indicated by Italicized 
Font. 
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Loosening the inclusion criteria to include all proteins that were identified in duplicate 

sets understandably altered the list of proteins oxidized by metals (Table 3.2).  While 

loosening the criteria would be assumed to just increase the number of proteins identified 

across the board, the result was more nuanced.  The proteins identified did increase from 

21 to 30 in total, but several proteins moved from categories or were omitted under the 

revised criteria.  PPIA/CyPA and FLNA were reidentified as oxidized by all three metals, 

while HSPH1 was oxidized by both As(III) and Cd(II).  Several proteins, including 

IGF2R, MT2A, SOD1, and ADPGK were excluded from the list of oxidized proteins due 

to their identification in two of the four control sets. 

 For proteins like GAPDH, EEF2, and VIM which were included in the oxidized 

set under both criteria, this further reinforced that they should be significantly oxidized 

by metals.  This is because these proteins showed up in at least 3 of the 4 metal-treated 

sets, and yet did not show up in 2 of the control sets.  Additionally conditionally-

excluded proteins should not be discounted entirely due to their appearance in the control 

sets, since the data suggests that they are more likely to be oxidized due to metal 

treatment. 
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Table 4.2. List of Reversibly-Oxidized Proteins Identified by Both Triplicate- and 
Duplicate-Inclusion Criteria. 

Protein Name GN Protein Name GN 
Triplicate Duplicate 

Common to All Metals 
Glyceraldehyde-3-

Phosphate 
Dehydrogenase 

GAPDH 
Glyceraldehyde-3-

Phosphate 
Dehydrogenase 

GAPDH 

 Elongation Factor 2 EEF2 Elongation Factor 2 EEF2 
Peroxiredoxin-5, 

Mitochondrial PRDX5 Peroxiredoxin-5, 
Mitochondrial PRDX5 

60S Ribosomal Protein 
L30 RPL30 60S Ribosomal Protein 

L30 RPL30 

Vimentin VIM Vimentin VIM 

  Peptidyl-prolyl cis-trans 
isomerase A PPIA/CyPA 

  Calnexin CANX 
  Filamin-A FLNA 

Common to As/Cd 
Cation-independent 

mannose-6-phosphate 
receptor 

IGF2R   

Peptidyl-prolyl cis-trans 
isomerase A PPIA/CyPA   

Heat Shock 70 kDa 
Protein 6 HSPA6 Heat Shock 70 kDa 

Protein 6 HSPA6 

Metallothionein-2 MT2A   
Filamin-A FLNA   

Superoxide Dismutase 
[Cu-Zn] SOD1   

Cell Surface 
Glycoprotein MUC18 MCAM Cell Surface 

Glycoprotein MUC18 MCAM 

  Heat Shock Protein 105 
kDa HSPH1 

  Heat Shock Protein 70 
kDa 1A HSPA1A 

As Only 
Heat Shock Protein 105 

kDa HSPH1   

ADP-Dependent 
Glucokinase ADPGK   

60 kDa Heat Shock 
Protein, Mitochondrial HSPD1 60 kDa Heat Shock 

Protein, Mitochondrial HSPD1 

Lysosomal Alpha-
Mannosidase MAN2B1   

Complement 
Component 1 Q 

Subcomponent-Binding 
Protein, Mitochondrial 

C1QBP   

60S Ribosomal Protein 
L18 RPL18 60S Ribosomal Protein 

L18 RPL18 

Protein Disulfide-
Isomerase A3 PDIA3 Protein Disulfide-

Isomerase A3 PDIA3 
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Leucine-Rich Repeat-
Containing Protein 59 LRRC59 Leucine-Rich Repeat-

Containing Protein 59 LRRC59 

Cd Only 
Thioredoxin-Domain 
Containing Protein 5 TXNDC5   

  Putative Heat Shock 70 
kDa Protein 7 HSPA7 

  Torsin-1A-Interacting 
Protein 1 TOR1AIP1 

  Myosin-9 MYH9 
  Thrombospondin-1 THBS1 

 

We compared the proteomic results for proteins that were identified in both the triplicate 

and duplicate analyses to both the UniProt Knowledgebase (UniProtKB) and RedoxDB 

databases, as well as the literature, to determine whether the identified cysteines were 

known oxidative targets (Table 3.3).  We found that many of the cysteines we identified 

as being oxidized by metals have been previously reported to be oxidized by ROS, 

further validating our results.  We additionally identified several cysteines, including 

eukaryotic elongation factor 2 (eEF2) C466, 60S ribosomal protein L30 (RPL30) C52 

and C92, peptidyl prolyl cis-trans isomerase A (PPIA/CyPA) C161, heat shock 70 kDa 

protein 6 (HSPA6) C605 and C624, and leucine-rich repeat-containing protein 59 

(LRRC59) C277, which have not been previously identified as reactive. 

 For the known cysteines, several of them have been shown to be involved in 

ROS-mediated cell signaling or oxidative stress.  GAPDH C152 is the active-site thiolate, 

while mutational studies have shown that C156 facilitates C152 oxidation by ROS 

through a proton relay; C156S mutants are significantly more resistant to ROS than 

wildtype [140].  Vimentin C328 acts as an oxidant sensor, reorganizing vimentin 

cytoskeletal networks in response to oxidative stress [141].  C41 of eukaryotic elongation 

factor has been previously shown to be hypersensitive to a variety of oxidants [142-144]. 
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Table 4.3. List of oxidized cysteines identified by both triplicate- and duplicate-
inclusion analysis and references for known reactive cysteines. 

Protein Name GN Oxidized Cysteines* Known Cysteines and References 
Glyceraldehyde-3-

Phosphate 
Dehydrogenase 

GAPDH C152 
C156 C152, C156: [140] 

 Elongation Factor 2 EEF2 C41 
C466 C41: [142-145] 

Peroxiredoxin-5, 
Mitochondrial PRDX5 C204 [146, 147] 

60S Ribosomal Protein 
L30 RPL30 C52 

C92  

Vimentin VIM C328 [141] 
Peptidyl-prolyl cis-trans 

isomerase A PPIA/CyPA C161  

Heat Shock 70 kDa 
Protein 6 HSPA6 

C308 
C624 
C605 

C308: [145] 

Cell Surface 
Glycoprotein MUC18 MCAM C161 UniProt Manual Curation 

60 kDa Heat Shock 
Protein, Mitochondrial HSPD1 C442 [148] 

60S Ribosomal Protein 
L18 RPL18 C134 [145] 

Protein Disulfide-
Isomerase A3 PDIA3 C85 

C92 [149] (Disulfide) 

Leucine-Rich Repeat-
Containing Protein 59 LRRC59 C277  

 

Western Blot Validation of Proteomic Results.  We selected several of the proteins 

identified to validate the proteomic results (Fig. 3.4A-D).  Consistent with the proteomic 

results GAPDH, PRDX5, EEF2, and VIM were all increased in metal-treated groups.  

PRDX5 oxidation was relatively similar between all three metals (Fig. 3.4A).  EEF2 was 

more oxidized by As(III) and Cd(II) than Cr(VI) (Fig. 3.4B), while GAPDH was more 

oxidized by Cr(VI) than either of the other two metals (Fig. 3.4C).  Vimentin was 

oxidized at low levels by As(III) and Cr(VI) but was strongly oxidized by Cd(II) (Fig. 

3.4D). 
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Figure 4.4. Western blot analysis of metal-induced protein cysteine oxidation.  BEAS-2B 
cells were treated with 20 µM NaAsO2, 10 µM K2Cr2O7, or 60 µM CdCl2 for 24 hrs, then 
quenched, captured via RARC, and immunoblotted as described in the methods. 
Equivalent amounts of reduced whole cell lysates as determined by bicinchoninic acid 
assay were loaded onto thiopropyl-sepharose columns to capture oxidized proteins, 
washed, and eluted (RAC pulldown).  The lanes on the left side of the figure were loaded 
with 5 μg of reduced whole cell lysate (INPUT), and the lanes on the right side of the 
figure were loaded with 20 μl of eluate (PULLDOWN) containing only oxidized proteins 
from each treatment. N indicates samples which were alkylated with N-ethylmalemide 
but not reduced as a negative control for thiopropyl capture.  Following SDS-PAGE 
electrophoresis the gels were transferred to nitrocellulose, blocked with nonfat milk, and 
probed with antibodies.  Near-IR secondary antibodies were used for detection on an 
Azure C600 using fluorescence.  The experiment was done in triplicate. 
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 In addition to the proteins determined to be consistently oxidized by As(III), 

Cr(VI), and Cd(II), we wanted to probe against some other identified targets that were 

excluded from the final proteomic results for a variety of reasons.  Pyruvate kinase M has 

been previously shown to be oxidized by arsenite [124].  PKM was identified by our 

proteomic analysis, but it was present in both control and treatment groups.  As seen in 

Fig. 3.4E, PKM is significantly oxidized by all three metals.  Likewise β-actin was 

significantly oxidized by all three metals (Fig. 3.4F); in this case β-actin was identified as 

being oxidized by the proteomic analysis, but was excluded because the identified 

peptide was not unique to an individual actin. 

As mentioned previously, SOD1 was identified as being oxidized by As(III) and 

Cd(II) using triplicate-inclusion criteria (Table 3.1) but when duplicate-inclusion criteria 

was used it was omitted from the list of metal-oxidized proteins(Table 3.2).  We therefore 

wanted to see whether SOD1 was in fact oxidized by As(III) and Cd(II).  SOD1 was 

found to be oxidized in both control and treatment groups, with some increase caused by 

As(III) (Fig. 3.4H).  SOD1 oxidation in the control sample is most likely due to the 

presence of intramolecular disulfide bridges; this would explain why SOD1 was excluded 

from the proteomic results once the stringency of analysis was loosened. 

 Additionally DJ-1/PARK7, a known oxidant-response protein, and nicotinamide 

n-methyltransferase were identified in a single proteomic run per metal.  As seen in Fig. 

3.4G and Fig. 3.4I, both proteins were oxidized by As(III), Cr(VI), and Cd(II).  Since 

proteomic analysis by LC-MS/MS has a higher lower limit for detection than western 

blotting, it is understandable that western blotting can detect lower levels of protein 
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enrichment than proteomic analysis, at the cost of more time and resources spent probing 

against single targets. 

 

Conclusions 

As(III), Cr(VI), and Cd(II) are cytotoxic heavy metals which cause oxidative 

stress in vitro and in vivo.  

We used the resin-assisted reduction and capture (RARC) to determine whether 

metals induced whole-proteome cysteine oxidation in vitro, and to identify the proteins 

oxidized.  We found that arsenic, chromium, and cadmium all induced cysteine oxidation 

with arsenic and cadmium increasing cysteine oxidation more than chromium.  Label-free 

proteomic analysis was used with on-resin digestion to isolate peptides containing 

reversibly-oxidized cysteines, allowing us to identify both the proteins and specific 

cysteines involved.  Proteomic results, confirmed by western blotting, showed that the 

metals oxidized oxidoreductase proteins involved in oxidative stress, cellular metabolism, 

and protein folding and translation. 

These results both confirm that RARC can be used to identify reversibly-oxidized 

cysteines as well as directions for further improvements and future research directions.  A 

label-free proteomic approach was selected for its accessibility, with a simple inclusion-

exclusion screen used to identify proteins that were oxidized at a high enough level to be 

detected reliably in metal-treated samples but not control samples.  This approach did not 

require comparative analysis of peptide levels between treatment groups, which 



102 
 

simplified data reduction by naturally excluding samples which were present in both 

control and treatment groups at different concentrations.   

Unfortunately the relatively high lower limit for LC-MS/MS peptide detection 

resulted in several oxidized proteins not being reliably identified via proteomic analysis.  

The lack of sample complexity for the proteomic input resulted in single peptides being 

identified for several proteins, as would be expected for proteins with a single oxidized 

cysteine.  For some proteins, such as β-actin, this resulted in the identified peptide being 

flagged as non-unique since the sequence was shared between ACTB and ACTG1. 

Based on these results, RARC has been demonstrated to be useful technique for 

isolating and enriching proteins containing reversibly-oxidized cysteines in a rapid and 

reproducible manner.  Coupling RARC with western blotting allows for comparative 

analysis of protein oxidation caused by treatments for known targets, while coupling 

RARC to label-free or labeled proteomic analysis allows for the discovery of new 

oxidative targets.  Future improvements to the method would include developing a spike-

in standard methodology that was compatible with RARC and on-resin digestion to 

facilitate quantitative proteomics for peptides detected in both control and treatment sets, 

and utilizing more sensitive proteomic techniques like MudPIT [150] to decrease the 

threshold for proteomic detection of oxidized peptides towards that of western blotting. 

 Despite this room for improvement, this project has both established the utility of 

the RARC method for discovering cysteine modifications and analyzing qualitative 

differences in cysteine oxidation between treatments.  By utilizing RARC we have been 

able to confirm cysteine oxidation on several proteins previously reported to be oxidized 
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by As(III) and Cd(II), such as vimentin, β-actin, and pyruvate kinase.  Additionally we 

have identified several oxidized proteins which were previously not known to be oxidized 

by metals, as well as several novel reactive cysteines.  While the relative oxidation levels 

caused by As(III), Cr(VI), and Cd(II) varied depending on the protein, the overall trend is 

that these three metals share similar oxidative targets.  These results will allow us to 

further understand the role that cysteine oxidation plays in metal-induced oxidative stress 

and cytotoxicity. 
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Chapter 5 : DISCUSSION 

The role of cysteine oxidation in cellular signaling pathways and oxidative stress 

is an emerging field of interest in cell biology.  Cysteine oxidation as a post-translational 

modification is difficult to detect using molecular biology methods, a problem only 

exacerbated by the tendency of cysteines to auto-oxidize upon lysis.  This hampers 

discovery of oxidized cysteines by high-throughput proteomic methods.   

Approaches to studying reversibly cysteine oxidation have improved in the past 

two decades but are still laborious.  The current state of the art for isolating and enriching 

proteins containing reversibly-oxidized cysteines, the resin-assisted capture (RAC) 

method, still requires several protein precipitation and transfer steps, each of which 

increases user handling and risks sample contamination or loss; sample losses due to 

precipitation and resuspension could exceed 30% of the original lysate, while either 

incomplete drying or overdrying the protein pellet following precipitation could result in 

the complete insolubility of the pellet.  The losses incurred to these steps are not only 

frustrating but also result in a lysate composition at the end of the alkylation and 

reduction steps which may no longer resemble the initial starting lysate, muddying the 

real-world conclusions which could be drawn from these experiments. 

Additionally the complicated nature of this methodology poses a high barrier of 

entry for investigators wishing to study reversible cysteine oxidation in cell signaling and 

cellular functions.  Given the key role that cysteine plays in enzymatic function, oxidative 

cell signaling, and stress response it is critical that a reliable, simple method exists for the 

study of reversible cysteine oxidation caused by cellular oxidants. 
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We sought to improve upon the current RAC methodology with a focus on 

eliminating the precipitation steps required, thus both reducing the time required to 

isolate reversibly-oxidized fractions for downstream analysis and decreasing loss and 

variability between samples.  The three precipitation steps were at the initial point of lysis 

by trichloroacetic acid-mediated disulfide exchange quenching and precipitation, as well 

as two organic solvent precipitation steps between alkylation-reduction and reduction-

capture steps using ice-cold acetone. 

Trichloroacetic acid-mediated disulfide exchange had been questioned before we 

undertook our examination, as prior studies had indicated that it may not be sufficient to 

stop cysteine oxidation by the oxidant diamide.  Since our lab studies ROS-generating 

heavy metals, we were concerned that not only would these metals be insufficiently 

quenched by trichloroacetic acid, but more powerful oxidizing species such as chromic 

acid could be formed by protonation of the metals at low pH; therefore even trace 

amounts of these metals, whether residual amounts left after washing a metal-treated cell 

culture or trace contamination of PBS or other wash buffers, could cause artefactual 

oxidation of protein cysteines during the disulfide exchange step. 

We found that trichloroacetic acid did cause chromate oxidation of protein 

cysteines through chromic acid production.  However treatment of the cell culture with 

the cysteine alkylant N-ethylmaleimide (NEM) prior to lysis and disulfide quenching 

significantly reduced cysteine oxidation by chromic acid.  Furthermore we found that by 

optimizing our NEM pre-lysis alkylation of protein cysteines we could omit the need for 

trichloroacetic acid disulfide quenching and replace it with a simple 5 minute pre-lysis 

incubation with NEM.  This eliminated a time-consuming precipitation step as well as 
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any acid-induced post-lysis metal oxidation of protein cysteines, although these benefits 

extend beyond just metal contamination.  The elimination of free protein cysteine thiols 

through NEM alkylation prior to lysis means that post-lysis cysteine oxidation caused by 

residual amounts of treatment oxidants would be severely reduced, increasing confidence 

that the oxidative modifications detected were caused by specific cysteine oxidation and 

not just stochastic lysis- and denaturation-induced oxidation caused by contaminants. 

When it came to investigating the organic solvent protein precipitation between 

alkylation and reduction, our starting point was a comparison between the standard RAC 

method and a variant known as purification of reversibly-oxidized proteins (PROP).  The 

PROP method had omitted the precipitation step between the alkylation and reduction 

phases, instead adding an 2.5-fold molar excess of dithiothreitol (DTT) to the NEM-

containing lysate with the intention that the DTT would be alkylated by any free NEM, 

thereby removing inactivating residual NEM, while simultaneously reducing oxidized 

cysteines.  To our knowledge no studies had compared the standard RAC protocol to the 

PROP protocol to see whether the PROP modifications affected the quality of cysteine 

reduction and capture. 

We found that PROP as originally designed resulted in decreased changes in 

protein oxidation detected between control and peroxide-treated BEAS-2B cells when 

compared to the conventional RAC method.  Dithiol compounds like DTT were found to 

be poor NEM quenching reagents, while monothiol compounds like β-mercaptoethanol, 

l-cysteine, and mercaptoethylamine were efficient NEM quenching reagents.  We 

separated NEM-quenching and reduction into two distinct steps, first adding an 

equimolar concentration of mercaptoethylamine to our NEM-containing lysates to 
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eliminate free NEM prior to the addition of thiol reductant, facilitating cysteine reduction 

without fear of NEM alkylating the newly-reduced cysteines. 

These simple modifications, NEM pre-lysis treatment and NEM quenching, 

allowed us to detect protein oxidation changes induced by hydrogen peroxide at 

efficacies rivaling that of RAC-processed samples.  Furthermore our optimized RAC 

method reduced the time needed to complete the RAC method by a day through the 

elimination of two precipitation steps, while it also eliminated post-lysis acid-induced 

cysteine oxidation caused by trace metal contaminants through the elimination of 

trichloroacetic acid quenching and reduced protein loss and contamination risk by 

eliminating an organic solvent precipitation step.  These modifications are extremely 

simple to incorporate into a RAC workflow, with the only additional reagent needed 

being the inexpensive monothiol mercaptoethylamine. 

Beyond our analysis of total protein cysteine oxidation, our modified, optimized 

method can also be used for the study of specific reversible cysteine oxidants such as 

nitrosothiols and sulfenic acids.  An RAC workflow for the capture of nitrosothiols or 

sulfenic acids relies on alkylation of free cysteine thiols with NEM, followed by 

precipitation and resuspension into a buffer containing species specific reductants such as 

sinapinic acid for nitrosothiols or sodium arsenite for sulfenic acids.  Neither of these 

reductants are capable of reducing disulfide bridges, allowing simultaneous reduction and 

capture of proteins.  The incorporation of an NEM-quenching step would eliminate the 

need for precipitation, allowing the lysates to be directly added into a thiopropyl-

sepharose capture column for reduction and capture.  
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The elimination of the precipitation step between reduction and capture proved a 

greater challenge, since the second precipitation was intended to remove any excess 

reductant from the samples prior to cysteine capture.  Failure to properly remove the 

reductant would decrease or altogether eliminate cysteine capture.  In order to address 

this we wanted to avoid the need to precipitate samples by incorporating an immobilized 

reducing resin; following reduction the samples could be eluted from the immobilized 

reductant by centrifugation, allowing the immediate capture of the newly-reduced lysates 

without needing a precipitation step. 

 However commercially-available immobilized reductant resins were 

incompatible with our method, being low-capacity and based on highly macroporous 

sepharose beads.  We addressed this by developing a class of high-capacity reducing 

resins based on aldehyde-activation of polyacrylamide desalting resins.  We used this 

activated aldehyde to generate both solid-phase thiol- and non-thiol reductants and 

utilized these reducing resins in place of soluble reductants for the reduction of 

reversibly-oxidized cysteines.   

This modified RAC technique, resin-assisted reduction and capture (RARC), 

achieved cysteine capture fidelity similar to or greater than that of RAC.  At the same 

time a total RARC workflow, from cell lysis to electrophoresis and transfer, could easily 

be performed in a single workday.  Additionally because RARC did not require 

trichloroacetic acid or organic solvent precipitation, RARC-processed samples did not 

have precipitation-induced sample loss or acid-induced artefactual oxidation and greatly 

decreased risk of contamination.  The use of immobilized reductants which were 

effective at acidic pH, such as mercaptoethylamine-polyacrylamide and the phosphine 



109 
 

reagent tris(hydroxypropyl)phosphine-polyacrylamide, allowed us to conduct the entire 

processing at mildly acidic pH.   Decreasing pH causes the protonation of protein 

thiolates, helping to further reduce disulfide exchange prior to and during NEM 

alkylation, as well as preventing anti-Michael addition of alkylated NEM; however since 

DTT is only marginally effective below pH 7, prior RAC workflows have been limited to 

using alkylation and reduction buffers at neutral or basic pH.  The incorporation of our 

high-capacity reducing resins eliminates this need to accommodate DTT’s reducing 

capacity when selecting buffer pH, resulting in capture efficacies for oxidized cysteines 

at pH 6.5 which are higher than a conventional RAC conducted at pH 7.2. 

We used RARC to study cysteine oxidation caused by the thiol-reactive and ROS-

generating metals trivalent arsenic (As(III)), hexavalent chromium (Cr(VI)), and divalent 

cadmium (Cd(II)).  We found that all three metals caused cysteine oxidation.  We used 

label-free LC-MS/MS proteomic analysis downstream of RARC processing to identify 

proteins oxidized by these metals, as well as the specific cysteines oxidized.  Proteomic 

analysis found that all three metals caused oxidation of several proteins, including the 

translation enzyme eukaryotic elongation factor 2, the cytoskeletal protein vimentin, the 

antioxidant oxidoreductase peroxiredoxin 5, and the glycolytic enzyme glyceraldehyde 3-

phosphate dehydrogenase, results which were confirmed by western blot analysis.  We 

also found that the glycolytic enzyme pyruvate kinase M1/2, the cytoskeletal protein β-

actin, the redox sensor DJ-1/PARK7, and the xenobiotic metabolism enzyme 

nicotinamide N-methyltransferase were oxidized by all three metals.  

While these results are interesting in themselves, they also allow us to identify 

targets for future research into metal-induced protein oxidation and its inactivation or 
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activation of downstream signaling.  Having identified oxidized cysteines on these 

proteins, we can now use site-directed mutagenesis to determine whether these cysteines 

are both necessary for protein function as well as how oxidation of these cysteines 

contributes to metal-induced toxicity.  We can also use the RARC method to identify and 

track time- and dose-dependent changes in metal-induced protein oxidation; label free 

proteomic analysis of RARC-processed lysates from different time points and metal 

concentrations will allow us to determine differential oxidative products caused by 

differing exposures to reactive metals. 

This project has demonstrated the utility of RARC.  However, as with its 

immediate predecessor, RAC, improvements can and should still be made to the RARC 

workflow.  The stable of immobilized reductants needs to be expanded.  For example, the 

steric hindrance of the immobilized TCEP-PAAm from being an effective reductant can 

be addressed through the use of uronium compounds such as HATU or HBTU for amide 

synthesis instead of the carbodiimide EDC.  Since TCEP is a commonly-used laboratory 

reductant, developing an easily synthesized and effective TCEP-based resin would allow 

for easier adoption of the RARC method. 

Additional improvements to the solid-phase portions of the technique could 

further reduce the time needed to perform RARC by combining the reduction and capture 

phases; since both reduction and capture are accomplished via immobilized resins, 

physically separating the reducing and capturing components within a single column and 

allowing lysate to move freely between them would allow immediate capture of newly-

reduced cysteine thiols.  This could be accomplished by synthesizing a bimodal resin 

which features both reducing and capturing derivitizations physically separated from each 
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other, say with the reducing components on the exterior of the resin beads and the 

capturing components on the interior.  Alternatively a mixed-resin bed combining both 

immobilized reductant-polyacrylamide and thiopropyl-sepharose could be examined.  

This would further streamline and improve the RARC methodology. 

The development of a protocol for spike-in incorporation into cysteine redox 

proteomics, whether via RAC and RARC, is also sorely needed.  The necessity of using 

inclusion/exclusion criteria for our proteomic analysis of metal-induced cysteine 

oxidation was caused by not having an effective means for quantitating relative amounts 

of the LC-MS/MS-detected proteins between samples.  Spike-in standards have been 

commonly used for quantitative proteomics before, providing a known amount of a 

standard which can be used to quantitate the amounts of protein peptides detected via LC-

MS/MS.  However no studies have addressed the incorporation of spike-in standards for 

redox proteomics, specifically the what, when, and where or spiking in.  Since cysteine 

redox proteomics refines and simplifies the proteome based on cysteine capture and 

elution, spiking in a non-cysteine-containing standard at the beginning of an experiment, 

or even during capture, would mean that all of that standard would be washed out prior to 

elution.  However, spiking in a standard following elution and during peptide cleanup 

may not provide an accurate relative quantitation of the samples since the spiked standard 

has not undergone the some processing steps as the rest of the sample. 

Therefore it is critical to address this need, determining what spike-in standards 

are useful for RARC-mediated cysteine redox proteomics as well as when and where to 

add the standard into the lysates.  If properly addressed, label-free cysteine redox 

proteomics would be able to reliably determine more subtle changes in cysteine oxidation 
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between proteins which were identified in both control and treatment samples, something 

which we had to rely upon western blotting to accomplish. 

Additionally new and more effective alkylants are always needed within the field.  

While we determined that NEM was the most efficient alkylant for our method to date, 

NEM is, as mentioned previously, not without its drawbacks.  While NEM is highly 

specific for cysteine, NEM can still cause trace misalkylation of amino acids other than 

cysteine.  NEM can also undergo retro-Michael addition, potentially regenerating free 

thiols from NEM-alkylated cysteines.  While both of these concerns can be and have 

been ameliorated by reducing reaction pH to below neutral, these only highlight the need 

for better, more specific and irreversible cysteine alkylants in addition to optimized 

reaction conditions. 

Despite this room for improvement, the RARC technique is a simple and highly 

effective modification to the existing RAC methodology.  The high-capacity resins 

developed can be synthesized inexpensively using common lab equipment, lowering the 

barrier to entry for researchers interested in studying cysteine oxidation caused by 

cellular oxidants and ROS-generating toxicants.  Additionally RARC allows for a single-

day experiment to probe for cysteine oxidation, while both capturing more oxidized 

proteins and eliminating size exclusion- or precipitation-induced sample loss and 

contamination.  Since RARC is based on sample separation from an immobilized resin, it 

could be easily adapted from our spin-column format to a vacuum manifold system to 

speed up washes, or a spin-plate to allow high-throughput processing and potentially 

automation of cysteine oxidation analysis. 
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Given the increased speed and efficiency of RARC versus the older RAC 

technique, we see RARC as a useful new addition to the quiver of available methods to 

study reversible cysteine oxidation.  RARC can be used to identify cysteine oxidation 

caused by oxidants in a rapid, medium-to-high throughput.  This will enable the 

discovery of new cysteine oxidative targets for oxidants, as well as antioxidant and drug 

discovery, allow the routine analysis of cysteine redox signaling pathways during normal 

cell function or cell pathology, and enhance our understanding of the role that cysteines 

play within the proteome, metabolome, and beyond. 
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APPENDICES 
 

Appendix I. 

PROTOCOL FOR RESIN-ASSISTED REDUCTION AND CAPTURE (RARC) OF 

REVERSIBLY-OXIDIZED PROTEINS 

Treatment and Prelysis Quenching of Protein Samples 

1. Culture adherent cells to 60-90% confluency in complete culture medium in 10 

cm2 cell culture dishes. 

2. Remove culture medium and replace with medium containing either vehicle or 

treatment compound.  Incubate for desired exposure time. 

3. Remove the treatment medium, wash once with PBS, then replace the medium 

with serum-free medium containing 50 mM NEM.  Incubate the cells at 37°C for 

15 minutes. 

4. Remove quenching medium, then wash the cells carefully with PBS.  Aspirate.  

Repeat this step once. 

5. Detach the cells from the plate using a cell lifter into 1 ml of PBS.  Collect the 

cells in a 1.5-ml microcentrifuge tube and centrifuge the tube at 200g at 4°C for 5 

min.  Aspirate the PBS from the cell pellet. 

PAUSE/STORAGE: Cell pellets may be stored overnight at -80°C. 

Alkylation of Free Thiols 



115 
 

6. Pipette 600 μl of degassed cell lysis buffer containing 20 mM NEM into each 

tube.  Incubate the samples in the dark at RT for 2 hours with end-over-end or 

rotational mixing. 

7. Transfer the samples to TPX tubes for DNA shearing.  Working in six-sample 

batches, place the samples into the carousel of a precooled BioRuptor Pico 

(Diagenode, Denville, NJ).  Sonicate for 10 cycles of 30s/30s at 4°C. 

NOTE: Samples can be collected, lysed, and alkylated in TPX tubes in order to 

avoid sample transfer.  If so, handle the tubes carefully since TPX is a brittle 

plastic and may be prone to cracking. 

NOTE: Alternative DNA shearing techniques may be used.  This protocol has 

successfully used microtip sonication with no discernable changes in sample 

quality.  Due to the risks of sample foaming and aspiration using a Bioruptor or 

other bath-type sonicator is preferred. 

NOTE: SDS in the lysis buffer may precipitate during the shearing incubation.  If 

this occurs the SDS will redissolve as the samples are brought back to RT. 

8. Centrifuge the samples at 16,000g for 5 minutes to pellet cellular debris.  Measure 

protein concentration using the BCA assay. 

Preparation of Reduction and Capture Resins 

9. Weigh 35 mg each of MEA-polyacrylamide and thiopropyl Sepharose-6B for 

each sample to be enriched.  Place the resins in 15-ml tubes. 

NOTE: It may be helpful to weigh out an additional sample’s-worth of resins to 

avoid running out of rehydrated resin due to pipette retention. 
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10. Add deionized water to each tube to rehydrate the resins and incubate for 15 

minutes at RT.  A good final volume to aim for is 500 μl of water + rehydrated 

resin slurry per sample (ex. 5 samples would be 2.5 ml of slurry). 

11. Cut the end of a 1-ml pipette tip off at an angle to make a large-bore tip.  Use this 

large-bore tip to resuspend the resin, and transfer 500 μl of the slurry into spin 

column(s). 

12. Place the spin column into a 2-ml receiving tube and centrifuge the tube at 1,000g 

for 30s at RT.  Remove the eluted water from the receiving tube, pipette 500 μl of 

water to the resin, and centrifuge.  Repeat this wash twice with cell lysis buffer. 

13. Place the bottom plug and top cap on the column following the last wash, and 

store the tubes at 4°C in the dark until use. 

Alkylant Quench and Sample Reduction 

14. Add mercaptoethylamine to the samples to a final concentration of 20 mM.  

Incubate for 5 minutes with mixing at RT to quench any free NEM. 

15. Transfer the samples to the spin columns containing prepared MEA-

polyacrylamide resins, pipetting briefly up and down to break up and mix the 

resin into a slurry.  After making sure that the bottom plug and top cap are sealed 

properly, incubate the samples for 1 hour in the dark at RT with end-over-end 

mixing. 

16. Remove the bottom plug, loosen the top cap, and place the column into a clean 2-

ml microcentrifuge tube.  Centrifuge the columns at 3,000g for 5 min at RT to 

elute the reduced lysate. 
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Enrichment of Previously-Oxidized Proteins 

17. Transfer equal amounts of protein (~350 ug) from each sample into spin columns 

containing prepared thiopropyl Sepharose-6B.  After sealing both bottom plug 

and top cap, incubate the samples for 30 minutes in the dark at RT with rotational 

agitation at 800 rpm. 

18. Remove the bottom plug, loosen the top cap, and place the column into a 2-ml 

microcentrifuge tube.  Centrifuge the columns at 1,000g for 30s at RT to remove 

all nonbound proteins.  Remove the top cap. 

19. Wash the resin 3 times with 1% SDS, 7 times with diH2O, 5 times with 30% 

acetonitrile/0.1% trifluoroacetic acid, and 5 times with 30% acetonitrile, 50 mM 

NaHCO3.  Use 5 column volumes (500 μl) for each wash for a total of 100 CVs of 

wash.  After the last wash replace the bottom plug. 

NOTE: If total protein eluate is desired for downstream applications (ex. western 

blotting), skip on-resin digestion and proceed to Step 23. 

On-Resin Digestion 

20. Add 150 μl of digestion buffer (30% acetonitrile, 50 mM NaHCO3) containing 5 

μg of MS-grade modified trypsin.  Replace the top cap and incubate the columns 

overnight at 37 °C with end-over-end mixing. 

21. Remove the bottom plug, loosen the top cap, and place the column into a clean 

microcentrifuge tube.  Centrifuge the columns at 1,000g for 30s at RT to remove 

the non-oxidized-cysteine containing fraction. 
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NOTE: This fraction can be saved and used for confirmation of the proteomic 

results from the oxidized fraction if desired. 

22. Remove the top cap and wash the columns 5 times with diH2O, 5 times with 30% 

acetonitrile/0.1% TFA, and 5 times with 50 NaHCO3 for a total of 75 CVs.  After 

the last wash replace the bottom plug. 

Elution 

23. Add 120 μl of elution buffer (50 mM NaHCO3, 25 mM IAM) to the columns.  

Replace the top cap and incubate columns for 30 min at RT with rotational 

agitation. 

NOTE: If the intended application is western blotting, replace the elution buffer 

with 1X Laemmli sample buffer containing 25 mM TCEP. 

24. Remove the bottom plug, loosen the top cap, and place the column into a clean 

microcentrifuge tube.  Centrifuge the columns at 1,000g for 30s at RT to elute the 

oxidized-cysteine containing peptides.  After centrifugation remove the column 

from the receiving tube and replace the bottom plug. 

NOTE: If the intended application is western blotting, one round of elution is 

enough to elute ~90% of captured proteins.  Repeat elutions can be conducted, but 

sample concentration will decrease with each repeat.  Eluate can be directly used 

at this step for SDS-PAGE. 

25. Repeat steps 23 and 24 3 times, placing the column into the same microcentrifuge 

tube after each incubation.  The receiving sample tubes will contain 480 μl of 

eluate at this point. 
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26. Add 30 μl of 1M iodoacetamide (IAM) to each microcentrifuge tube to bring the 

final IAM concentration to ~60 mM.  Incubate the tubes for 1 hr at RT in the 

dark. 

27. Open the tubes and place them in a rotary evaporator.  Dry the tubes.  Resuspend 

the peptide pellets in 30 μl 0.5% formic acid. 

28. Clean up the peptide samples with C18 pipette tips.  Condition the tips following 

manufacturer instructions.  Load the samples by 10-50 cycles of sample aspiration 

and dispensing.  Wash the samples 5 times with 5% acetonitrile, 0.1% formic 

disposing of the wash each time.  Elute samples with 10 μl 80% acetonitrile, 0.1% 

formic acid.  Repeat elution step 2 times for a total of 30 μl eluate.  Dry down the 

cleaned samples using a rotary evaporator and resuspend in 10 μl of 0.1% formic 

acid.  Samples are now ready for LC-MS/MS analysis. 
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