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ABSTRACT OF DISSERTATION 
 

CHARACTERIZATION AND ENGINEERING OF HUMAN PROTEINS AS 
THERAPEUTIC CANDIDATES 

 
 
Protein engineering has been a useful tool in the fight against human diseases. 

Human insulin was the first recombinant DNA-derived therapeutic protein (Humulin®) 
approved by the US FDA in 1982. However, many of the early protein drugs were only 
recombinant versions of natural proteins with no modification of their primary amino 
acid sequence and most of them did not make optimal drug products mainly due to their 
short half-life or suboptimal affinity, leading to poor therapeutic efficacy. The difficulty 
in the large-scale production of some therapeutic proteins was another important issue. 
In the past three decades, different protein engineering platforms have been developed to 
overcome the obstacles seen in the first generations of these treatments. With the help of 
these new techniques, proteins have been purposefully modified to improve their clinical 
potential. The focus of my dissertation is the engineering of potential protein drugs to 
make them therapeutically useful and more valuable. Previously, our research group has 
developed cocaine hydrolases (CocHs) from human butyrylcholinesterase (BChE) for 
treatment of cocaine addiction and prevention of acute cocaine intoxication. In the first 
project, CocHs were further engineered to improve their performance, e.g., Fc-fused 
CocHs with an extended serum half-life. Then, I investigated the potential application of 
a long-lasting CocH for protection against the acute toxic and stimulant effects of cocaine. 
In the second project, I investigated the potential inhibition of CocH-mediated cocaine 
hydrolysis by heroin (3,6-diacetylmorphine) or its initial host metabolite, 6-
monoacetylmorphine (6-MAM). The investigation of this possible inhibition was 
important to determine the in vivo efficacy of CocHs, as heroin is one of the most 
commonly co-abused drugs by cocaine-dependent individuals, as well as a possible 
metabolite of CocHs. In the third project, I expressed and characterized the recombinant 
human UDP-glucuronosyltransferase 1A10 (UGT1A10) enzyme, which can inactivate 
many therapeutically valuable substances. In the fourth and final project, prostate 
apoptosis response-4 (Par-4), a tumor suppressor protein, was engineered to have a 
prolonged duration of action so that it may be more therapeutically valuable for cancer 
treatment.  
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Chapter Ⅰ. Introduction 
 

1.1 Protein therapeutics 

Multiple human proteins have been developed as therapeutic protein drugs since 

the introduction of recombinant human insulin in 1982.1 Therapeutic protein drugs have a 

critical advantage over small-molecule drugs that are currently more dominant in the 

pharmaceutical market.2-4 They perform highly specific and complex functions that are not 

easily mimicked by small molecules.5-6 For example, some human diseases that were 

previously not treatable or are characterized by congenital deficiency or acquired loss of a 

functional endogenous protein (e.g. diabetes,7 dwarfism,8-9 infertility,10 chronic renal 

failure,11 Gaucher disease,12-13 and certain cancer types14-17) can now be successfully 

managed by using protein therapeutics.18 Indeed, protein replacement therapy has been 

considered a suitable alternative to gene (replacement) therapy for the disease conditions 

where gene therapy is currently inapplicable to treatment.19-20 The development of new 

protein drugs has accelerated the changes in the treatment paradigm of many different 

diseases.  

 Natural human proteins were not originally evolved for therapeutic purposes. 

Therefore, most of them do not have the intrinsic activity, affinity, and/or stability sufficient 

to treat diseases within patients.5, 21-23 They usually have a short circulating half-life, low 

thermal stability at physiological temperature, or suboptimal affinity, which in turn results 

in limited therapeutic efficacy and frequent dosage.24 In addition to this, many of them are 

difficult to produce in large-scale,25-27 which usually leads to a greatly increased cost of 

pharmaceutical commercialization.27 In general, the use of these drugs is limited in routine 
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clinical practice due to the high cost.26 Because of these reasons, substantial improvements 

have been made in the stability, pharmacokinetics, pharmacodynamics, and production 

yield of multiple human proteins to make them become therapeutically and commercially  

viable.14, 28  

 

1.2 Improvement of activity 

Improved versions of human protein therapies can be developed by improving both 

functionality and efficiency.34-39 Our increasing understanding of the structural and 

functional relationship of multiple human proteins to their mechanisms of action enables 

us to more rationally re-design and engineer them to induce an improved activity or even 

novel functionality.29-30 A number of protein engineering strategies are currently in use for 

not only the optimization of existing therapeutic proteins, but for the introduction of novel 

protein drugs for specific clinical applications as well.29-32 Here, I will describe an example 

of rational modifications to a current protein drug, accomplished by protein engineering, 

that has resulted in both the development of the next generation of therapeutic proteins and 

the approval of novel therapeutic proteins for the treatment of other diseases. Human 

Interleukin 2 (IL-2) is an example of a protein has been genetically modified for clinical 

use. Proleukin® (Chiron Corporation) was the first recombinant human IL-2 variant 

produced in E. coli.33-35 This aglycosylated therapeutic protein differs from natural human 

IL-2 by a substitution of cysteine for serine at position 125 for increased stability and the 

removal of an N-terminal alanine residue for increased production yield in E. coli. The 

biological activity of Proleukin® was proven similar to that of the wild-type human IL-2,36 

and the drug has been approved by the FDA for treatment of metastatic melanoma and 
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metastatic renal cell carcinoma.33, 37 However, it has been reported that high doses of IL-2 

utilized for treatment of these types of cancer causes significant toxicity to humans due to 

its capability to activate natural killer (NK) cells.38-39 Therefore, in order to reduce toxicity 

and improve tumor suppressor activity, IL-2 has been further engineered to have an 

increased binding affinity for its receptor (known as CD25 ) observed on the cell surface 

of human T cells, but with no increased interaction with IL-2 receptors on NK cells. The 

discovered high-affinity IL-2 variant has proven considerably more potent in activating 

human T cells compared to that of the native human IL2.40-41 This may imply that enhanced 

T cell activation by the IL-2 analog would permit lower dosage in the clinic and therefore 

a reduced chance for adverse effects. In addition, fusion of IL-2 to a toxin (e.g. Aerolysin,42 

diphtheria toxin,43-44 Denileukin diftitox (Ontak®)45-46) has been developed for other 

clinical applications such as the treatment of cutaneous T-cell lymphoma expressing high 

levels of the CD25 component of the IL-2 receptor.47-48 In this case, IL-2 is used as a 

homing molecule to deliver a conjugated toxin to the target lymphoma.  

 

1.3 Fusion proteins for half-life extension of protein therapeutics 

The therapeutic efficacy of a therapeutic protein drug in the human body also can 

be greatly increased by improving its pharmacokinetic profile.28, 49-54 Market pressures for 

better patient compliance and treatment cost-effectiveness have created a great demand for 

a therapeutic protein drug whose therapeutic efficacy can be sustained even at long dosing 

intervals. Because of these reasons, multiple protein engineering platforms have been 

developed to extend the circulating half-life of a therapeutic protein. Examples of such 

platform technologies include protein PEGylation55 and protein fusion with the Fc region 
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of human IgG1 (IgG Fc)56-57 or human serum albumin (HSA).58 These strategies have been 

the most widely employed to prolong the duration of action of protein therapeutics. 

The endothelial cellular neonatal Fc receptor (FcRn) has a critical role in 

maintaining the high circulating levels of IgG and HSA.59-60 Indeed, immunoglobulin G 

has a prolonged circulating half-life of 21 days mainly due to FcRn-mediated recycling 

that protects against intracellular endocytic-lysosomal degradation.61-62 Intriguingly, this 

property is also shared with HSA. IgG Fc or HSA strongly interacts with FcRn in the acidic 

endosomal compartment (pH 6.0) after being internalized into endocytic vesicles.63 These 

receptor-bound proteins are then returned to the cell membrane for extracellular release, 

whereas other serum proteins in the vascular endothelium are eventually degraded by the 

endocytic-lysosomal system.64-65 Fusion to IgG Fc or HSA prolongs the circulating half-

life of a therapeutic protein by exploiting the FcRn-mediated recycling mechanism.66-68 

Interestingly, genetic conjugation to IgG Fc or HSA also provides additional 

benefits such as increasing both protein production and secretion,69-70 and enabling simple 

purification by affinity chromatography.57, 71-72 A number of Fc- and albumin-fused bio-

therapeutics have been approved by the FDA or are currently under development.73 A 

significant research effort on engineering the Fc region and HSA for improved 

pharmacokinetics has demonstrated that enhanced binding affinity at pH 6 for FcRn further 

extends the biological half-lives of the fusion proteins.74-77 For example, when a Fc variant 

with improved FcRn binding affinity was constructed in the context of bevacizumab 

(Avastin®, Genentech/Roche),78 a humanized anti-VEGF IgG1 antibody, the Fc 

engineered antibody showed an approximately three and five-fold extension of the naïve 

bevacizumab’s half-life in human FcRn transgenic mice and a non-primate model, 
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respectively.76, 79-81 Inspired by these promising pharmacokinetic bioengineering 

technologies, we have developed several novel therapeutic proteins with a prolonged 

duration of action for treatment of cocaine addiction or cancer. These novel therapeutic 

entities are expected to not only be more protective against elimination by cellular 

endolysosomal degradation, but also eventually provide greater dosing convenience for 

treatment. 

This thesis research consists of four different projects. The first project is described 

in Chapter ⅠⅠ. In the first project, cocaine hydrolases (CocHs) were engineered to have a 

prolonged duration of action in vivo. Then, I investigated the potential application of a 

long-lasting CocH for protection against the acute toxicity and stimulant effects of cocaine. 

In the second project included in Chapter III, I investigated the potential inhibition 

of CocH-catalyzed cocaine hydrolysis by heroin (3,6-diacetylmorphine) or its initial host 

metabolite, 6-monoacetylmorphine (6-MAM). Because heroin is one of the most 

commonly co-abused drugs by cocaine-dependent individuals, as well as a possible 

metabolite of CocHs, the investigation of this possible inhibition was important to 

determine the in vivo efficacy of CocHs.  

In the third project described in Chapter IV, I expressed and characterized 

extrahepatic human UDP-glucuronosyltransferase 1A10 (UGT1A10) enzyme, which can 

inactivate many therapeutically valuable substances including morphine.  

In the last project included in Chapter V of this dissertation, prostate apoptosis response-4 

(Par-4), a tumor suppressor protein, was genetically engineered to have a prolonged 

duration of action so that the protein may become more valuable for treatment of metastatic 

tumor.  
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Chapter Ⅱ. Development of a Long-acting Cocaine Hydrolase for Cocaine Abuse 
Treatment 

 

Cocaine, a highly pleasurable drug, is well-known for its high propensity to produce 

dependent behavior as well as physical harm to the users.82-83 Cocaine use causes two 

different, but closely related problems; addiction and overdose. Overall purpose of this 

study is to develop a long-lasting enzyme therapy for treatment of cocaine addiction as 

well as prevention of cocaine overdose. For this purpose, through a combination of 

computational and experimental approaches, we have previously developed highly active 

cocaine hydrolases (CocHs) by engineering butyrylcholinesterase (BChE). Especially, 

CocH3 is proven to hydrolyze cocaine into biologically and physiologically inactive forms 

with an approximately 2000-fold higher catalytic efficiency, compared to wild-type BChE. 

However, according to our pharmacokinetic study of recombinant BChE and CocHs 

prepared from mammalian expression systems, compared to natural BChE (11 days in 

human), these recombinant enzymes are estimated to have limited in vivo half-lives (2-3 

days in human),84 requiring twice weekly i.v. administration to retain its protective anti-

cocaine activity in the circulatory system of human.85 

To date, a number of commercially and clinically successful therapeutic proteins 

have been generated as a fusion of both protein and the Fc region of immunoglobulin or 

human serum albumin (HSA). Such fusions provide therapeutic proteins with the IgG or 

HSA-like property of a long biological half-life as well as several other benefits such as 

the increasing expression and secretion of the fusion protein and allowing simple 

purification by affinity chromatography (protein A and ALBUPURE® chromatography). In 

this study,86 we made the effort to improve the pharmacokinetic (PK) properties and 
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potency of CocH3 by generating fusion proteins of CocH3 and the Fc region of human 

IgG1 or HSA. It has been demonstrated that the fusion of CocH3 to our newly designed 

human Fc variants (Fc(3m), Fc(4m), and Fc(6m)) have a substantially higher binding 

affinity at pH 6 for human FcRn. These fusion CocHs had an increased half-life of more 

than 28-fold in rats, compared to unfused CocH3. In addition, it was observed that FcRn-

mediated improvement of the enzyme further extended the duration of anti-cocaine activity 

of CocH3 in the circulatory systems of rats and mice.87 These results might bridge the gap 

for enhanced patient dosing convenience with the clinical need of maintaining therapeutic 

efficacy of CocHs for cocaine addiction treatment. Moreover, the results of our protection 

experiment demonstrated that pretreatment of rats with 3 mg/kg CocH3-Fc(3m) (i.v.) 

before i.p. administration of a lethal dose (60 mg/kg) of cocaine completely blocked  

physiological effects of cocaine on the brain. The pretreatment of CocH3-Fc(3m) not only 

fully protected the animals from the hyperlocomotor activity induced by cocaine, but also 

completely prevented changes in the subcellular localization of dopamine transporter (DAT) 

from cytosol to the plasma membrane. 

 A manuscript for the results described in this chapter will be submitted for 

consideration of publication. Both animal behavior and pharmacokinetic studies described 

in this chapter were mainly performed by Ting Zhang and Xirong Zheng. Jing Deng 

prepared the rat brain samples for the DAT distribution assay. The molecular modeling 

study was performed by Drs. Yanyan Zhu and Yaxia Yuan. Dr. Zhenyu Jin helped me to 

prepare cocaine hydrolases. Dr. Jinling Zhang contributed to FcRn binding assay. I 

designed and performed all the rest experimental procedures described in this chapter. 
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2.1 Treatment for cocaine abuse 

2.1.1 Cocaine overdose and addiction 

Cocaine is one of the most harmful drugs in the world.82 According to the 2007 

National Survey on Drug Use and Health reports, about 36 million Americans aged above 

12 years have abused cocaine at least once in their lifetime. At present, cocaine is the most 

abused illicit drugs in America and was involved in 40.3% of illicit drug-related visits to 

hospital emergency departments (EDs) in 2011 within the US.  

Cocaine is well known for its euphoric high, physical harm, and high propensity to 

produce dependence to the users.83 The physical harm caused by cocaine abuse is primarily 

attributed to the strong cardiovascular effects of cocaine.88-93 Cocaine produces the feeling 

of euphoria by majorly inhibiting the reuptake of dopamine, but it can also act as a 

norepinephrine (noradrenaline) reuptake inhibitor (NRI).94-97 In the presence of cocaine, 

more norepinephrine molecules remain active in the synaptic cleft for a longer than normal 

duration. This leads to an exaggerated sympathetic nervous system response, imposing a 

severe strain on the cardiovascular system. Indeed, when the activities of the heart are 

intensified, a great cardiac need for oxygen and nutrients is created. However, the 

constriction of capillaries induced by cocaine restricts the flow of blood to the heat muscle. 

Consequently, the cardiovascular system becomes overburdened and, in the process, 

cocaine users may encounter life-threatening heart issues such as myocardial infarction 

(heart attack), and myocarditis (inflammatory cardiomyopathy). In fact, the continual use 

of cocaine drastically increases the risk for these mentioned conditions as well as several 

other cardiovascular issues within cocaine-addicted patients.98-99 

Cocaine is often abused for recreational purposes and can cause serious substance 



  
9 

 

 

addiction (AKA, substance use disorder).100-101 In general, substance addiction is defined 

as a relapsing and chronic brain disorder that is characterized by uncontrollable and 

compulsive seeking of a drug, despite the negative health and social consequences 

associated with their use. Powerful psychoactive molecules such as cocaine and heroin 

produce a two-part reaction in a user, the rush and high. The “rush” is an immensely intense 

feeling resulting from the initial and acute psychological effects of a drug, and the euphoric 

feeling following the rush is named as the “high” which often lasts over a period of several 

hours after the drug intake.83 In fact, the psychostimulant effect of a drug is largely 

dependent on not only its pharmacodynamic efficacy, but also how much of the drug enters 

into the brain over a short time span. This is why street drugs are usually formulated in 

ways allowing the users to smoke, snort, or intravenously inject them, and with these 

introduction methods, effects on the brain can take place within half a minute. The short-

term and intensive pleasurable effects of stimulants are closely connected with the high 

risk for abuse and dependence. Due to this connection, cocaine can induce powerful 

dependent behaviors within the users.102-103 

 

2.1.2 Physical and psychological dependence on cocaine 

In general, addiction encompasses both physical and psychological dependence on 

a substance. Physical reliance is characterized by the adaptive changes occurring within 

the body in response to the chronic use of a drug. These changes mainly involve increasing 

tolerance (i.e. a progressively increasing dose being required for the same effect).104-108 For 

instance, if a long-term or heavy user of cocaine either cuts down or quits taking the drug, 

physical reliance typically manifests through intense withdrawal reactions (e.g., depression, 
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diarrhea, tremors, sleeplessness, and sweating) and drug craving. These symptoms are 

often intolerable, and in the case of untreated or uncontrolled depression, are considered a 

danger associated with an increased risk of suicide for cocaine addicts admitted to 

treatment.109-111 Although there are currently no FDA-approved medications  specific for 

the treatment of cocaine withdrawal, some medications listed in the Table 2.1 have been 

used to alleviate the withdrawal symptoms, but only during the period of cocaine 

detoxication.112-114 In addition, some research also has shown that propranolol,115-118 

buprenorphine,119-120 and naltrexone121 might be beneficial for those suffering from cocaine 

withdrawal.  

 

Table 2.1 Treatment options for cocaine detox withdrawal symptoms 

Medicine Notes 

Gabapentin A medication prescribed for prevention of seizures. This drug helps to 
recover feelings of wellbeing by encouraging the release of the GABA. 

Modafinil 
A medication prescribed to alleviate the fatigue associated with cocaine 
withdrawal by helping healthy nighttime sleep and increasing dopamine 
production. 

Topiramate A medication prescribed to ease agitation by decreasing activity in the 
central nervous system. 

Vigabatrin This drug may alleviate cocaine cravings by encouraging production of 
GABA. 

Baclofen A medicine prescribed as a muscle relaxant. Baclofen may be utilized to 
induce the release of GABA in cocaine recovery. 

 

Treatment for psychological dependence on cocaine begins when physical reliance 

on the drug is addressed by the medically supervised process of cocaine detoxification, 

allowing the patient’s body to re-adjust to the absence of cocaine. Psychological reliance 
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on a drug is generally defined as a compulsive or perceived need for drug use and is 

characterized by continual use of a substance without increasing tolerance or the 

withdrawal symptoms resulting from physical dependence on a drug. In fact, in case of 

cocaine addition, the developed habitual is driven more by the psychological addiction on 

the drug than the physical withdrawal symptoms. Research from animal studies and human 

trials have shown that an intense psychological craving for cocaine is caused by the 

adaptive changes occurring within the brain due to the continuous presence of the drug.122 

It has been observed that cocaine affects multiple major neurotransmitter receptor systems 

in the central nervous system (CNS) including the dopaminergic neurotransmission system. 

 

Table 2.2 The reported neurochemical differences between cocaine addicts and healthy 

individuals 

Neurotransmitter 
system Component Difference compared to healthy 

individuals Ref. 

Dopaminergic 
neurotransmission 

Dopamine transporter Increased cell surface availability 123-126
 

D2 receptor Decreased availability on cell surface 127-129
 

VMAT2* Decreased availability  130-132
 

Serotonergic 
neurotransmission 

5-HT transporter Increased expression  133
 

Extracellular 5-HT Increased levels 134
 

5-HT18 receptor Decreased availability  135
 

Glutamatergic 
neurotransmission Glutamate/creatine ratio Decreased glutamate levels 136

 

GABA 
neurotransmission GABA Decreased baseline GABA levels 137

 

       

* VMAT2: Vesicular monoamine transporter type 2 

 

2.1.3 Effect of cocaine on dopaminergic neurotransmission 

Dopamine is a major neurotransmitter responsible for regulating pleasurable 
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feelings and the reward system in the brain.82, 138-141 Once cocaine molecules accumulate 

in the brain, they proceed to preserve high dopamine levels in the synapse and consequently 

induce more intense signaling.142 It is generally believed by scientists that this intensified 

dopaminergic neurotransmission is directly involved in the pleasurable feelings produced 

by cocaine. 

Importantly, it was demonstrated that there is a frightening trade-off associated with 

the artificially elevated levels of dopamine in the reward circuits of the brain. Artificially 

raising dopamine leads to significant changes in the expression of the genes related to 

dopaminergic neurotransmission, leading to a reduced sensitivity of the dopaminergic 

reward system to dopamine. Examples of such altered gene expression include the 

increased cell surface expression of dopamine transporter (DAT) which increases the flux 

of dopamine through the cell,143 and the downregulation of dopamine receptors.122 It was 

also observed that bringing the changed dopaminergic function back to pre-abuse levels is 

a very slow process, usually requiring at least a month.143 As cocaine wears off, fewer  

dopamine molecules than usual are available in the synapse for signaling due to the 

accelerated rate of dopamine re-uptake by the previously mentioned increase of cell surface 

DATs. This substantial reduction in dopamine levels quickly ends the euphoric state and 

results in craving and intense emotional stress. For example, when the euphoric state ends 

in drug users, they typically begin to feel empty and may suffer from anxiousness, 

restlessness, and agitation. This prompts them seek out cocaine to relax or re-achieve the 

euphoric state. However, this seeking of cocaine may prove fruitless, largely due to the 

decreased sensitivity of the dopaminergic system. 
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2.1.4 Relapse 

Relapse is considered the most refractory aspect of substance addiction.144 Relapse 

means that a drug-addicted individual makes a conscious decision to abandon his/her 

recovery plan and return to drug use. The National Institute on Drug Abuse (NIDA) has 

estimated that approximately 50% of recovering drug addicts undergo relapse. Relapse can 

occur unexpectedly, but it is typically brought on by triggers. Drug craving is regarded as 

the main trigger for relapse, which can be triggered by positive reinforcement (i.e., an 

increased desire to use drug due to its euphoric effects), negative reinforcement (i.e., an 

increased desire to use drug to alleviate withdrawal symptoms), or environment factors, 

such as being exposed to stress and drug-related stimuli.145 Therefore, the main goals of 

relapse prevention for the drug addicts are to understand the issue of relapse and to learn 

how to prevent or manage its occurrence during drug rehabilitation.146  

Technically, drug craving by cocaine-addicts is more attributed to their 

psychological addiction to the drug.83 Unfortunately, there are no currently FDA-approved 

drugs that can specifically treat or manage mental reliance on cocaine. Along with this 

scarcity of treatment options, the priming effect of cocaine makes it even more difficult to 

treat cocaine addiction. Exposure to a single dose of cocaine can greatly intensify drug 

craving behavior and eventually lead to full-blown relapse, no matter how many years of 

abstinence the patients have achieved.147-148 It was also observed that the re-use of cocaine 

after abstinence sharply increases the risk of cocaine overdose in the cocaine-addicted 

patients due to their reduced tolerance to the drug with duration of abstinence.149 

Considering that cocaine addicts admitted to treatment are still very vulnerable to the 

temptation to relapse, they should be safeguarded against any exposure to cocaine; not only 
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to prevent cocaine-primed relapse, but also to protect them against acute cocaine 

intoxication which potentially happens on their journey from addiction to recovery. 

 

2.1.5 Specific goals to be achieved for treatment of substance abuse disorder 

Technically speaking, there are specific goals to be achieved for treatment of 

substance abuse disorder.148 First, withdrawal symptoms should be properly addressed 

during detoxication process. Second, drug craving needs to be prevented and properly 

managed. Third, any physiological functions that are affected by drug use (e.g. the function 

of the brain’s communication system) must be nurtured back to a more normal state. Finally, 

and most importantly, the stimulant effects of a drug of abuse must be antagonized during 

addiction recovery process.  

However, in reality, it may be impractical to expect that all of these requirements 

for addiction treatment can be accomplished separately. Since cocaine addicts admitted to 

treatment are susceptible to the temptation to relapse, the lack of treatment options for drug 

craving may make it difficult to successfully complete a painful and time-consuming 

process of physiological re-adaptation to the absence of cocaine. As mentioned above, the 

repeated use of cocaine leads to the adaptive changes related to a state of abnormal 

physiological functioning in the user’s body and brain, which makes a major contribution 

to drug carving behavior. Therefore, to achieve a better outcome in the treatment of cocaine 

addiction, it seems necessary to first completely block the physiological effects of cocaine 

in the body so that the reinforcing action of the drug can be decreased for a sufficiently 

long period of time required to achieve long-term extinction of the drug-craving behavior. 

For the treatment of cocaine abuse, considerable research effort has been focused 
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on development of pharmacological agents which target the major neurotransmitter 

transporter/receptor systems affected by cocaine (e.g. dopaminergic, GABAergic, 

serotonergic, and glutamatergic systems).148, 150-151 

 

Table 2.3 Drugs in phase II clinical trials for cocaine addiction 

Neurotransmitter system Name Ref. 

Dopaminergic drugs 

Amphetamine 152-154
 

Modafinil 121, 155-160 
Ropinirole 161-163

 

Levodopa 155, 163 
Aripiprazole 164-167

 

Glutamate/GABA drugs 
Topiramate 167-174

 

Baclofen  175-176 

Noradrenergic drugs 
Doxazosin 177-179

 

Propranolol  180-183 
 

Although phase II clinical trials using the therapeutic compounds above have 

produced promising results, over the last three decades, the traditional pharmacological 

approaches for cocaine addiction treatment have not yet yielded a single treatment which 

is both safe in human use and effective for treatment. This difficulty is mainly due to several 

reasons as follows.149, 151, 184 First, the target-based, therapeutic small molecules are 

designed to act at the sites of action of cocaine to antagonize the effects of the drug. 

However, given that cocaine affects multiple neuromodulatory systems in the CNS, 

targeting just one or several neurotransmitter systems for treatment might not be enough 

for actual recovery from cocaine addiction. In addition, the current limited understanding 

of the neuropharmacological mechanisms influenced by the stimulant action of cocaine 
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makes it more difficult to antagonize the effects of the drug. Second, many therapeutic lead 

compounds for possible treatments of cocaine addiction have safety issues mainly due to 

their high abuse potential. Due to the mechanism of these drugs targeting neuro-

communication system, they generally risk the possibility of being abused. Third, many 

drug candidates in clinical trials have displayed inappropriate pharmacokinetic properties 

for human use although they have proven very effective in preclinical studies. 

 

2.1.6 Pharmacokinetic approach for cocaine abuse treatment 

In view of these difficulties, a new treatment strategy that directly targets and 

inactivates cocaine has received increasing clinical attention.82 This pharmacokinetic (PK) 

strategy aims to keep cocaine below its threshold concentration required to induce any 

physiological effect at its sites of action. Indeed, this anti-cocaine effect is expected to be 

beneficial in three clinical contexts. First, the chance of acute cocaine intoxication may be 

substantially decreased or completely prevented due to the altered distribution of cocaine 

and the acceleration of its clearance. Second, the cocaine-addicted patients on an effective 

anti-cocaine treatment may also be protected from experiencing the reinforcing effects of 

cocaine, which are required to reduce the chances of relapse primed by cocaine. 

Considering the long-term anti-cocaine effect, the patients would also have a better 

opportunity to naturally recover their damaged neuromodulatory systems. Third, long-term 

cocaine abstinence achieved by the PK strategy might also facilitate the physiological re-

adaptation to the absence of the drug by preventing cocaine actions in peripheral tissues. 

Pharmacokinetic approaches for cocaine addiction treatment can be achieved by 

either using a cocaine-specific antibody or through an efficient cocaine-hydrolyzing 
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enzyme. In general, these protein-based PK agents are not expected to result in the same 

side effects seen with therapeutic small molecules targeting the neurotransmitter 

transporter/receptor systems in the CNS. This is because they barely cross the BBB to reach 

the CNS. Both types of PK agents have proven effective for preventing the rapid 

distribution of cocaine molecules into the CNS after drug intake in both pre-clinical and 

clinical studies.185-189 However, using an efficient cocaine-hydrolyzing enzyme has a 

theoretical, but critical, advantage over antibody-based approaches (active and passive 

immunization) in that it would be very difficult for the cocaine-addicted patients to increase 

drug intake sufficient to overwhelm the therapeutic effect of efficient cocaine-hydrolyzing 

enzyme. This is in contrast to the therapeutic antibodies which could be possibly saturated 

by cocaine molecules allowing most of the drug to remain free and available for action.  

 

2.1.7 Enzyme-based therapy for cocaine abuse 

In our previous studies, we (our lab at the University of Kentucky) have designed 

and discovered high-activity butyrylcholinesterase (BChE) mutants, also known as cocaine 

hydrolases (CocHs), that can rapidly convert naturally occurring, biologically active (–)-

cocaine to physiologically inactive metabolites ecgonine methyl ester (EME) and benzoic 

acid. In particular, the first one of our designed CocHs (denoted as CocH1), i.e. the 

A199S/S287G/A328W/Y332G mutant, demonstrated a ~1000-fold improved catalytic 

efficiency against (–)-cocaine compared with the wild-type BChE (kcat = 4.1 min− 1 and KM 

= 4.5 µM)190-191 and an effectiveness as an enzyme or gene therapy for cocaine abuse 

treatment without significant adverse effects in animal experiments.192-195 
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Figure 2.1 Cocaine metabolic pathways in physiological condition.196-197 

 

Further, CocH1 truncated after amino acid 529 was fused with human serum 

albumin (HSA) to prolong the biological half-life without changing the catalytic activity 

of CocH1 against cocaine.198 The HSA-fused CocH1 (known as Albu-CocH, Albu-CocH1, 

AlbuBChE or TV-1380 in the literature) has been proven safe and promising for use in 

animals and humans in preclinical and clinical studies.84, 199 However, its actual therapeutic 

value for cocaine addiction treatment is limited by an insufficiently long biological half-

life (~8 h in rats 198 or 43-77 h in humans84). Recently, a Phase II clinical trial of TV-1380 

for cocaine addiction treatment did not show statistically significant efficacy with the once-
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weekly dosing schedule due to its relatively short biological half-life.85 Nevertheless, it has 

been concluded that “Although the continued development of TV-1380 appears unlikely, its 

promising clinical profile should embolden efforts to develop new enzyme products that are 

capable of delivering greater catabolic activity”85 in order to be effective with the desirable 

once-weekly dosing schedule for cocaine addiction treatment. Our most recently reported 

studies in various animal models of cocaine overdose treatment show that Albu-CocH1 (or 

TV-1380) itself would be more appropriate for cocaine overdose treatment.200-201 

 

2.2 The focuses of this research 

In order to meet the requirements to be an effective enzyme therapeutic for 

cocaine addiction, CocH1 has further engineered so that the next generation of CocHs 

have even higher catalytic activity compared to that of CocH1 and, more importantly, 

have a sufficiently long biological half-life for human cocaine addiction treatment. 

Indeed, a growing body of preclinical data including our animal study results have shown 

that the catalytic efficiency of a cocaine-metabolizing enzyme is a major factor 

determining the efficacy in protecting animals against acute cocaine intoxication and 

reinstatement (equivalent to relapse within humans) provoked by the cocaine priming 

effect. Therefore, to deliver greater catabolic activity to human body, our research group 

has made effort on development of the next generation of CocHs whose cocaine-

hydrolyzing activities are substantially higher than that of CocH1 (Table 2.4). At the same 

time, for the same reason, CocHs whose biological half-lives are sufficiently long for 

human cocaine addiction treatment are currently under development. In this chapter, I 

described our efforts to develop novel CocH entities with a prolonged duration of action. 



  
20 

 

 

 

Table 2.4 The new generation of CocHs with an improved catalytic efficiency against 

cocaine 

a Relative catalytic efficiency (kcat/KM).  

Enzyme 
kcat 

(min−1) 
KM 

(µM) 
RCEa Ref. 

BChE wt 4.1 4.5 1  

CocH1 (A199S/S287G/A328W/Y332G) 3060 3.1 1080 190
 

CocH2 (A199S/F227A/S287G/A328W/E441D) 1730 1.1 1800 202
 

CocH3 (A199S/F227A/S287G/A328W/Y332G) 5700 3.1 2020 203
 

CocH5 
(A199S/F227A/P285A/S287G/A328W/Y332G) 14600 3.7 4400 204

 

CocH6 
(A199S/F227S/P285Q/S287G/A328W/Y332G) 15500 3.1 5500 

US 
Patent # 
9365841 

 

2.3 Results & Discussion 

2.3.1 Insights from molecular modeling 

Molecular modeling studies were performed in our lab to study how neonatal Fc 

receptor (FcRn) binding with human IgG1 Fc variants205 and the corresponding fusion 

proteins. Through the modeling studies, the relative binding affinities of various fusion 

proteins with the FcRn at pH 6 were estimated. Based on the computationally estimated 

binding affinities, several Fc variants, including Fc(3m), Fc(4m), and Fc(6m) (as indicated 

below), were predicted to have significantly improved binding affinities with the FcRn. 

Hence, the experimental studies described below were focused on these Fc variants.  
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2.3.2 Characterization of CocH3-fused with human IgG1 Fc variants 

Altered binding to FcRn can lead to significant changes in the biological half-lives 

of therapeutic protein drugs (e.g. therapeutic antibodies, and HSA- or Fc-fused bio-

therapeutics) in both humans and animals. Therefore, it is interesting to characterize their 

binding affinities with FcRn from clinically relevant species (human, monkey, rat, and 

mouse). This in vitro analysis helps predict whether positive results obtained from the 

pharmacokinetic studies in animal models can be translated and applied when utilized in 

human clinical trials.  

In this study, we generated a comprehensive data set on the binding of Fc-fused 

CocH3 proteins with FcRn proteins from four different species (human, monkey, rat, and 

mouse) and these results can be utilized to predict whether the increased FcRn binding 

affinity of CocH3 translates to pharmacokinetic benefit in nonhuman primates or humans. 

 

2.3.2.1 Design and expression of FcRn as a single-chain like fusion protein 

The neonatal Fc receptor (FcRn) was first discovered as the receptor which is 

responsible for the transfer of maternal Immunoglobulin Gs (IgGs) from breast milk to 

babies across their intestinal epithelial cells. FcRn also enables maternal IgGs to cross the 

materno-fetal barrier during pregnancy.206 This cell surface protein consists of two protein 

subunits, a transmembrane alpha chain (denoted as heavy chain for convenience) and a 

beta 2 microglobulin (B2M), these subunits non-covalently interact with each other at a 

1:1 molar ratio. Currently, FcRn has received increased clinical attention because of its 

pivotal role in regulating the homeostasis of IgG and albumin in mammals through its 

distinctive pH-dependent physical interaction with specific serum proteins. Indeed, the Fc 
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region of IgG or albumin strongly interacts with FcRn at a slightly acidic condition, but the 

formed complex is easily dissociated at the physiological pH.207 With the help of this 

unique binding feature of FcRn, the IgG and albumin captured in endosomes can escape 

from cellular endolysosomal degradation and eventually be returned to the circulatory 

system for reuse.208-210 In functional FcRn-deficient (β2m -/-) mice, it was observed that 

both the serum half-life and endogenous level of IgG substantially decrease by a factor of 

about 6 and 10, respectively,211 and the lifespan of albumin also shortened significantly.212-

213 This clearly indicates the importance of FcRn for the long serum persistence of both 

IgG and albumin. Added to this, many studies have shown that this specific function of 

FcRn is well conserved across different species including human,214 monkey,215-217 rat,218 

mice,211, 219-220 and even chickens.221 

Currently, there is a large market pressure for a treatment that both improves  patient 

convenience and compliance via a less frequent dosing schedule of a therapeutic protein 

drug.77 Because enhanced binding affinity to FcRn at a certain range can greatly improve 

the pharmacokinetic profile and therapeutic efficacy of a protein drug,56-57 much of the 

research effort has been spent on the engineering of these protein drugs (e.g. therapeutic 

antibodies and HSA- or Fc-fused bio-therapeutics) to increase their FcRn binding affinities. 

However, these attempts were limited due to the difficulty of obtaining the required amount 

of functional FcRn proteins for use in the binding affinity assays. 

Many different methods have been employed for the large-scale production of 

soluble functional FcRn. In previous studies, two genes encoding each of the different 

subunits of FcRn, a C-terminal transmembrane domain truncated heavy chain variant and 

the wild-type B2M, were frequently co-expressed in mammalian or insect cells and the 
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resultant heterodimer complexes secreted into the culture medium were then purified.77, 214, 

220 This type of soluble FcRn protein was proven fully functional in binding to antibody or 

albumin, and have been widely used to improve our understanding of FcRn itself and its 

interaction with IgG or albumin. However, there is an unresolved issue in this approach. 

The heavy chain variant is not as strongly expressed in both insect and mammalian systems, 

whereas B2M is highly produced, which restricts the overall production yield of functional 

FcRn. As an alternative approach to the large-scale production of soluble FcRn, the 

receptor was also expressed in Pichia pastoris (a species of yeast),222 and E. coli.223 

However, against all expectations, the FcRn protein expressed in Pichia pastoris was not 

glycosylated and E. coli-derived FcRn proteins formed inclusion bodies in the 

cytoplasm.209, 224 

Recently, it was reported by Yang Feng et. al. that soluble, fully-functional human 

FcRn can be expressed in mammalian cells as a single fusion protein.206 The B2M was 

genetically conjugated to the N-terminus of the transmembrane domain truncated heavy 

chain variant through a short amino acid linker. The generated soluble single-chain FcRn 

(sFcRn) was not only highly expressed in mammalian cells, but also could be easily 

purified through simple affinity chromatography via its C-terminal hexa-histidine tag. In 

addition, the purified sFcRn proteins were also fully functional.  

Inspired by the design of the soluble human FcRn reported by Yang Feng et. al.,206 

multi-species FcRn proteins (human, monkey, rat, and mouse) were designed to be 

expressed as a soluble single-chain protein in the present study. The designed sFcRn genes 

were expressed and purified as described below. As shown in Fig. 2.2, the N-terminal 

sequence for the leader peptide of B2M was first replaced with the leader peptide sequence 
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of mouse Ig kappa-chain to facilitate the secretion of the fusion proteins from the cytosol 

to the extracellular space. Both the signal peptide and transmembrane domain of the 

corresponding heavy chain were excluded from the design of the new fusion genes. Then, 

a mature B2M sequence was genetically conjugated to the N-terminus of the mature 

sequence of its corresponding heavy chain via a flexible amino acid linker ((GGGGS)3). A 

hexa-histidine tag (Hisx6) was introduced at the C-terminal end of all the fusion gene when 

they were synthesized by GenScript to simplify the protein purification process. 

 

 

Figure 2.2 Schematic presentation of the soluble single-chain FcRn proteins of different 

species. 
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Each fusion gene was cloned into a mammalian expression vector, pCMV-MCS. 

The fusion proteins were expressed in 293 FreeStyle cells (293FS), an engineered HEK293 

cell-line, and then purified by immobilized metal ion affinity chromatography. 

 

2.3.2.2 Preparation of Fc-fused CocH3 proteins 

For the extension of biological half-life, CocH3 truncated after amino acid 529 was 

fused with either the wild-type Fc region of human IgG1 (i.e. CocH3-Fc) or the IgG1-Fc 

variants (i.e. CocH3-Fc(v)) that we designed. (Fig. 2.2) These proteins were expressed and 

purified as described below. 

 

Figure 2.3 Schematic presentation of the newly designed Fc-fused CocH3 proteins. 

 

2.3.2.3 Binding affinity of Fc-fused CocH3 toward different FcRn 

To identify the Fc-fused CocH3’s increased binding affinity toward human FcRn, 

and to examine whether the selected enzyme also shows increased binding affinity for FcRn 
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of other preclinical species (monkey, rat, and mouse), we investigated the interaction of 

different Fc-fused CocH3 proteins with these FcRn proteins. The FcRn binding was 

analyzed by ELISA. Results are summarized in Table 2.5. The determined KD value of 

CocH3-Fc toward human FcRn is in good agreement with the values determined by others 

for the binding of the wild-type human IgG1.75, 225  

As expected, the six amino acid substitutions 

(A1V/M38Y/S40T/T42E/D142E/L144M) introduced into the Fc portion of CocH3-Fc 

greatly increased the affinity of the fusion protein toward human and monkey FcRn at pH 

6.0, approximately 48- and 45-fold, respectively. However, the same increase in affinity was 

not seen toward mouse FcRn with only a 9-fold increase. It is likely that this difference is 

mainly attributed to the innate high affinity of human Fc to mouse FcRn. Interestingly, it was 

also observed that the affinities for the binding of Fc-fused CocH3 proteins to monkey FcRn 

are almost the same as with human FcRn, which strongly suggests that all the newly designed 

six residues interact with human and monkey FcRn at pH 6.0 in a very similar manner.  

In addition, we observed that none of the CocH3-Fc(v) proteins have higher binding 

affinity for rat FcRn than CocH3-Fc. However, CocH3-Fc(4m) and CocH3-Fc(6m) show 

significantly increased affinity for rat FcRn, compared with CocH3-Fc with 

A1V/D142E/L144M (i.e. CocH3-Fc(3m)). These results suggest that the introduction of 

A1V/D142E/L144M into the Fc portion negatively affects the binding of CocH3-Fc to rat 

FcRn at pH 6.0. Indeed, previous reports already show that rat FcRn has strong binding 

affinity at pH 6.0 for different subclasses of human IgG including IgG1 and IgG2 (KD =35 

and 20 nM, respectively)216, 226 and rat FcRn retains significant binding with human IgG1 

even at neutral pH (KD =1389 nM).226 
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Table 2.5 Summary of determined equilibrium dissociation constants (KD) of interaction of 

Fc-fused CocHs with FcRn (at pH 6.0, (nM)) 

Results are representative of three independent experiments and each experiment was 
performed as triplicate. The values are expressed as mean ± S.D.  
 

2.3.3 Determination of biological half-life in rats 

To examine whether enhanced binding affinity at pH 6 for FcRn improves the 

biological half-life of Fc-fused CocH3, a pharmacokinetic (PK) study was carried out in rats 

(Rattus norvegicus). The in vivo data were based on intravenous (i.v.) injection of the 

enzymes in the tested animal model. The generated PK data are depicted in Fig. 2.4 and the 

biological half-lives obtained are summarized in Table 2.6. The results clearly show that the 

fusion proteins of the truncated CocH3 (without the tetramerization domain) to the N-

terminus of the Fc portion of IgG1 have substantially longer biological half-lives (up to ~200 

h) than that (~7 h) of the full-length CocH3, denoted as CocH3 in Fig. 2.4. Among the Fc-

fused CocH3 proteins tested here, CocH3-Fc with A1V/M38Y/D142E/L144M (i.e. CocH3-

Fc(4m)) displays the longest biological half-life (∼200 h) in rats and the introduction of these 

Fc-fused 
CocH3 

Neonatal Fc receptor (FcRn) 

Human Monkey Rat Mouse 

CocH3-Fc(wt) ~ 2500 ~ 2500   37.46 ± 7.07   95.65 ± 13.22 

CocH3-Fc(3m) 991.6 ± 24.7 1004 ± 165 159.40 ± 6.40   50.73 ± 10.25 

CocH3-Fc(4m) 326.9 ± 14.6 325.2 ± 18.6   61.29 ± 6.90 11.96 ± 2.62 

CocH3-Fc(6m) 52.14 ± 3.54 56.65 ± 5.09   50.74 ± 4.89 10.06 ± 1.55 
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four mutations increases the biological half-life of CocH3-Fc more than 2-fold. CocH3-

Fc(6m) also has a long biological half-life comparable to that of CocH3-Fc(4m), but the 

A1V/D142E/L144M mutations of Fc(4m) extend the biological half-life of CocH3-Fc only 

by ∼23 h, suggesting that the M38Y on the Fc region plays a critical role in interaction with 

rat FcRn at pH 6.0.  

Intriguingly, it was also observed that CocH3-Fc does not show the longest biological 

half-life despite of its strongest rat FcRn binding affinity, which suggests that some other 

factors such as the delayed release of CocH3-Fc at neutral pH or its relatively low thermal 

stability might have negative effects on the serum persistence of CocH3-Fc in rats. Indeed, 

it was previously reported that extended serum persistence of human IgG due to the 

benefits of increased FcRn binding at pH 6.0 can be offset by increasing neutral pH FcRn 

affinity in rats.75 

Considering that CocH3-Fc(6m) rather than CocH3-Fc(4m) shows substantially 

higher binding affinity toward both human and monkey FcRn, there may be a good 

possibility that CocH3-Fc(6m) has a much longer biological half-life in a following animal 

study using monkeys and human clinical trials, compared to CocH3-Fc(4m).  
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Figure 2.4 Serum concentration (%) versus time profiles of Fc-fused CocH3 proteins in rats. 

All enzymes were administered via i.v. infusion at 0.06 mg/kg body weight and the serum 

concentrations of Fc-fused CocH3 were determined by a sensitive radiometric assay using 

[3H](−)-cocaine. Results are shown as mean ± standard error. Other lab members (Ting 

Zhang and Xirong Zheng et al.) kindly provided the data for this figure. 
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Table 2.6 The determined distribution and biological half-lives of Fc-fused CocH3 proteins 

in rats in comparison with the unfused CocH3 in rats. The parameters were obtained from 

fitting to the well-known double-exponential equation227 by GraphPad Prism 7.04: 

( tktk
t BeAeE 21][ −− += ) which accounts for both the enzyme distribution process (the fast 

phase, associated with k1) and elimination process (the slow phase, associated with k2). The 

half-life (t1/2) associated with the enzyme elimination rate constant k2 is known as the 

elimination half-life or biological half-life. 

Protein Distribution t1/2 (hr) Biological t1/2 (hr)  

   CocH3 0.2 7 

   CocH3-Fc(wt) 4.9 85 

   CocH3-Fc(3m) 6.4 107 

   CocH3-Fc(4m) 23 218 

   CocH3-Fc(6m) 35 222 
 

 

2.3.4 Effectiveness of CocH3-Fc(3m) in blocking the striatal dopamine transporter 

trafficking induced by cocaine 

Dopamine is a monoaminergic neurotransmitter which mediates a number of brain 

activities including reward, emotion, learning, and motivation.228 The dopamine transporter 

(DAT) is a key determinant of the level of synaptic dopamine. DAT pumps excess 

dopamine molecules from the synaptic cleft back into presynaptic neurons when it is 

expressed on their cell surface, and in turn terminates the signal of the neurotransmitter.229 

It has been demonstrated that different DAT substrates or inhibitors such as cocaine 

facilitate the translocation of DAT from cytosol to cell surface for an increased function. 
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The altered surface expression or malfunction of human DAT (hDAT) is well-known to be 

a major cause of psychiatric and neurological disorders such as clinical depression, bipolar 

disorder, and substance use disorder, also known as drug addiction,230-231 thus hDAT has 

been a clinically valuable target for the treatment of these serious brain diseases.232-234  

Cocaine is believed to produce the feeling of euphoria by primarily inhibiting DAT 

in the central nervous system. Many pre-clinical and clinical studies have shown how 

altered DAT function contributes to substance use disorder. For example, exposure of brain 

to a psychoactive stimulant like cocaine leads to a rapid increase in the extracellular fluid 

(ECF) levels of dopamine235-237 and in turn increases in the reuptake of dopamine.238-239 

These immediate effects of cocaine on the brain consequently cause the reduction of 

sensitivity of the brain to dopaminergic neurotransmission, which contributes to the drug 

craving. Indeed, the facilitated dopamine reuptake after exposure to cocaine is mainly 

attributed to the increasing cell surface expression of DAT and cocaine is proven to rapidly 

and strongly induce the trafficking of dopamine to cell surface in both DAT expressing 

cells and brain.128, 240-242 In addition, it has been observed that the changed dopaminergic 

neurotransmission especially in the specific brain regions related to the reward circuits (e.g. 

striatum and nucleus accumbens) is more closely associated with drug abuse potential.141, 

243-244 

To exam whether the pretreatment of rats with 3 mg/kg CocH3-Fc(3m) (i.v.) before 

the i.p. administration of cocaine efficiently protects rats from the physiological effects of 

the drug on the brain, we performed a DAT cell redistribution assay.  
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Figure 2.5 The schematic presentation of DAT cellular distribution assay. 

 

As shown in Fig. 2.6, most DAT proteins were observed in the non-biotinylated 

faction of the striatal synaptosomes prepared from both the saline controls and the enzyme 

control without the cocaine injection. Considering that synaptosomes are an isolated 

synaptic terminal from a neuron, these findings implicate that the majority of DAT is 

originally located within the intracellular space of synaptic neurons and the i.v. 

administration of 3 mg/kg CocH3-Fc(3m) lead to no significant change in the subcellular 

localization of the transporter. Importantly, it was also observed that the pretreatment of 

CocH3-Fc(3m) (3 mg/kg i.v.) 3 min prior to a lethal dose of cocaine (60 mg/kg i.p.) not 

only saves all the rats tested from acute cocaine intoxication, but also completely blocks 

the DAT trafficking-induced by the lethal cocaine dose. This may indicate that the 

accelerated cocaine clearance achieved by the enzyme is able to suppress cocaine below 

its threshold concentration in the body (0.22±0.07 µM) required to elicit physiological 

effects.245 
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Figure 2.6 The cell surface distribution of dopamine transporter (DAT) in the striatum of 

adult rats. Saline or 3 mg/kg CocH3-Fc(3m) was injected i.v. in rats (n = 4), 3 min before 

i.p. administration of a dose of cocaine (60 mg/kg). Representative blots for DAT 

distribution between biotinylated (Biotin; cell surface) and non-biotinylated (Non-biotin; 

intracellular) fractions in striatal synaptosomes from the rats. Na+/K+ ATPase and 

demethylated-phosphatase A (demethylated-PP2A-C) were used as a marker for membrane 

protein and cytosolic fraction, respectively. These markers were served to ascertain the 

biotinylation efficiency of surface proteins whereas β-actin was used as a loading control. 
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2.4 Experimental details 

2.4.1 Materials & Animals 

(−)-Cocaine was kindly provided by the National Institute on Drug Abuse (NIDA) 

Drug Supply Program (Bethesda, MD) and radioactive [3H](−)-Cocaine was obtained from 

PerkinElmer (Waltham, Massachusetts). All other chemicals were ordered from Sigma-

Aldrich (St. Louis, MO) and Thermo Fisher Scientific (Waltham, MA). Male Sprague-

Dawley rats (220–250 g) were purchased from Harlan (Harlan, Indianapolis, IN). All the 

animal experiments were performed in a same colony room in accordance with the Guide 

for the Care and Use of Laboratory Animals as adopted and promulgated by the National 

Institutes of Health. The animal protocol was approved by the IACUC (Institutional Animal 

Care and Use Committee) at the University of Kentucky. 

 

2.4.2 Construction of gene expression plasmids  

For recombinant lentiviral packaging to generate stable cell lines expressing the 

gene of interest, the C-terminal of truncated CocHs were first genetically fused to the N-

terminal of the Fc portion of wild-type human IgG, a Fc variant, or the wild-type HSA by 

overlapping extension PCR with Phusion DNA polymerase. Then, the PCR products were 

digested with restriction endonucleases Hind III and XbaI. The gel purified PCR products 

were then ligated to the pCSC lentiviral vector using T4 DNA ligase. The resulting DNA 

constructs were used for the following recombinant lentiviral packing experiment (2.4.3). 

 

2.4.3 A recombinant lentiviral packaging system for stable cell generation    

To package the recombinant lentivirus particles carrying the gene of Fc- or HSA-
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fused CocH3, 293FS cells were cultured and prepared in DMEM medium containing 10% 

Fetal Bovine Serum (FBS) (Life Technologies). When the cell reached 70% confluence, a 

lentivirus plasmid encoding the gene of interest was transfected into the cell with the two 

packaging vectors (pMDLg/pRRE and pRSV-Rev) and one envelope plasmid (pCMV-

VSV-G) by lipofection at a mass ratio of 10:6.5:2.5:3.5. For transfection of 293FS cells in 

a 10 cm dish, those DNA plasmids (approximately 22.5 µg in total) were first mixed with 

1 ml of Opti-MEM® (Life Technologies) without serum. 25 µl of the TransIT-PRO 

Transfection Kit (Mirus Bio LLC, Madison, WI) was then gently mixed with the medium 

followed by incubation at RT for 10 min. The transfection complex was carefully added to 

the cell in a dropwise manner and the cells were incubated at 3% CO2 at 37°C. 16 h after 

transfection, the culture medium with exchanged with a fresh complete medium. From this 

point, the culture medium was replaced with a fresh complete medium and collected every 

following 24 h for three days. The collected media were then filtered through a 0.45-µm 

cellulose acetate filter followed by ultra-centrifugation in Beckman SW28 rotor at 800,000 

× g for 1.5 h at 4°C to obtain the pellet of the recombinant lentiviral particles. The resulting 

pellet were then suspended in Hank’s balanced salt solution and freshly utilized for 

generation of stable CHO-S cells. The lentivirus titration was performed using 

QuickTiterTM lentivirus rapid quantitation kit (Cell Biolabs, San Diego, CA). 

 

2.4.4 Transient expression and purification of soluble single-chain FcRn (sFcRn) 

The DNA sequences of the beta 2 microglobulin chain (B2M) and heavy chain 

(AKA, Fc fragment of IgG receptor and transporter) of FcRn are based on the reported 

sequences in the GenBank database (National Center for Biotechnology Information) 



  
37 

 

 

(Table 2.4) and codons were optimized for expression in HEK293 cells. 

 

Table 2.7 The referred DNA sequences for FcRn expression 

Species (Binomial name) B2M heavy chain 

Human (homo sapiens)  NM_004048 NM_004107 

Monkey (Macaca fascicularis) NM_001284689 NM_001284551 

Rat (Rattus norvegicus) NM_012512 NM_033351 

Mouse (Mus musculus) NM_009735 NM_010189 

 

FcRn proteins from clinically relevant species (human, monkey, rat, mouse) were 

expressed as a single chain-like fusion protein. Briefly, the highly hydrophilic B2M was 

genetically inked to a transmembrane domain truncated variant of the heavy chain via a 

flexible amino acid linker as described in the Results and Discussion section (2.3.2.1). All 

the newly designed fusion genes were synthesized by GenScript to facilitate the 

purification of the proteins. Each fusion gene was cloned into a mammalian expression 

vector, pCMV-MCS. 293 FreeStyle cells (293FS) (Life Technologies), an engineered 

HEK293 cell-line, were incubated in (serum-free) FreeStyle 293 Expression Medium (Life 

Technologies) at 37°C in a humidified atmosphere with 8% CO2 and transfected with gene 

expression DNA constructs encoding the protein of interest using the TransIT-PRO 

Transfection Kit (Mirus Bio LLC, Madison, WI)) when the number of the cells reached 1.5 

× 106 cells/mL. The culture medium was harvested 6 days after transfection. The FcRn 

protein secreted into the culture medium was purified by Immobilized Cobalt Affinity 

Chromatography (ICAC). After removing cells by centrifugation, the cell-free culture 
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medium was mixed with rmp HisPur Cobalt Resin (Thermo Fisher Scientific) pre-

equilibrated with 20 mM Tris⋅HCl, pH 7.4, containing 200 mM NaCl and incubated for 

overnight at 6°C with occasional stirring. Then, the suspension was packed in a column 

and washed with 10 column volume (CV) of Washing buffer (20 mM Tris⋅HCl, pH 7.4, 

containing 20 mM imidazole and 200 mM NaCl) until an OD280 < 0.02 was achieved; then 

the resin-bound proteins were eluted by Elution buffer (20 mM Tris⋅HCl, pH 7.4, 

containing 200 mM imidazole and 200 mM NaCl). The eluate was then dialyzed in storage 

buffer (50 mM Hepes, 20% sorbitol, 1 M glycine, pH 7.4) by Millipore Centrifugal Filter 

Units. The entire purification process was conducted on ice and the purified FcRn proteins 

were stored at −20°C until use. Their purity was analyzed by SDS-PAGE on a 4−12% 

NuPAGE Novex Bis-Tris gel (Life Technologies). 

 

2.4.5 Large-scale protein expression and purification of Fc-fused CocHs 

For the scaled-up preparation of Fc-fused and HSA-fused CocHs, FreeStyle™ 

CHO-S cells (CHO-S) (Life Technologies) were first infected with recombinant lentivirus 

containing the gene of interest and then the transduced cells were resuspended and 

incubated in FreeStyle CHO Expression Medium (Life Technologies) with 8 mM l-

glutamine (Life Technologies) at 37°C in a humidified atmosphere with 8% CO2. The day 

before infection, the cells were seeded at a concentration of 0.5 × 105 viable cells/well in 

12-well plate and stabilized in freestyle CHO expression medium containing 1% FBS and 

8 mM L-glutamine and. In the presence of 1% FBS, CHO-S cells quickly attach to the 

tissue culture plate. For successful lentiviral transduction, the recombinant lentiviral 

particles harboring the gene of interest were incubated with the cells. Simultaneously, 
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positive charged Polybrene (Santa Cruz Biotechnology) (1 µl/ml) was added into the cell 

culture medium to improve the infection efficiency via neutralization of the electrical 

charge repulsion between the cell surface and lentiviral particles. 24 h after transduction, 

the medium was exchanged with a fresh medium and then incubated usually for 3 days for 

complete recovery of the cells from the infection. The transduced cells were then suspended 

by trypsinization and separated into two halves. One half was utilized for the next round 

of transduction with the expectation of improved target protein expression via increasing 

gene copy number of the protein of interest inside of the cells. The other half was used for 

protein yield determination. After each infection, efficiencies of the achieved stable cell 

pools were examined and the pool with the highest expression yield was chosen for scaled-

up production. For large-scale production, the selected cell pool was incubated in an 

agitated bioreactor BioFlo/CelliGen 115 (Eppendorf). The cells were amplified at 37 °C in 

shake flasks to the designated volume and density before they are transferred to a bioreactor. 

The cells were seeded in a bioreaction at a concentration of 0.8 × 106 viable cells/ml. The 

bioreactor was operated in a batch model and the temperature and pH of the cell culture 

medium were kept at 7.4 and at 32 °C. 10 days after cell seeding, the culture medium was 

harvested, and the enzymes were purified. 

The Fc-fused CocH3 proteins secreted into the culture medium was purified by 

protein A affinity chromatography. After removing cells by centrifugation, the cell-free 

culture medium was mixed with rmp Protein A Sepharose Fast Flow (GE Healthcare Life 

Sciences) pre-equilibrated with 20 mM Tris⋅HCl, pH 7.4, and incubated for overnight at 

6°C with continual shaking. Then, the mixture was packed in a column and washed with 5 

column volume (CV) of 20 mM Tris⋅HCl, pH 7.4, containing 200 mM NaCl until an OD280 
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< 0.02 was achieved; then the protein was eluted by 50 mM sodium acetate, pH 4.0, 

containing 200 mM NaCl. HSA-fused CocH1 was also expressed in the method described 

above. Using the AlbuPure matrix (Prometic Life Sciences Inc., Laval, Canada), CocH1-

HSA was purified where the cell-free culture medium was loaded onto packed bed pre-

equilibrated with 50 mM sodium acetate (pH 5.3), extensively washed with 8 CV of 

equilibration buffer. Then, the resin bound protein was eluted with 5 CV of 50 mM 

ammonium acetate, pH 7.4. For buffer exchange, the eluate was dialyzed in storage buffer 

(50 mM Hepes, 20% sorbitol, 1 M glycine, pH 7.4) by Millipore Centrifugal Filter Units. 

The entire purification process was performed in a cold room at 8°C and the purified 

proteins were stored at −80°C until use. 

 

2.4.6 Enzyme-linked immunosorbent assay (ELISA)  

Binding of Fc-fused CocH3 to different FcRn proteins 

400 ng of 6xHis-tagged schFcRn in 100 μl 0.05M PBS, pH 7.4, was immobilized 

in a 96 well flat-bottomed EIA plate (Corning) at 4 °C overnight (or 37 °C for 2 h). At the 

same time, corresponding empty wells without FcRn coating were left as a negative control. 

The liquid was dumped from the plates and the rest was drained on paper towel. Coated 

wells were blocked with blocking buffer (0.05M PBS, pH 6.0, containing 1 mg/ml casein) 

(250 μL/well) at RT for 1 h. After washing twice with washing buffer (0.05M PBS, pH 6.0) 

(250 μL/well), 100 μl of Fc fusion protein diluted in blocking buffer, pH 6.0 was added to 

each well at a range of concentrations. The plate was then covered with an adhesive plastic 

and incubated, with continual shaking, at RT for 1 h. After washing three times with 

washing buffer, the HRP-conjugated antibody (anti-human IgG-Fc Ab-HRP) (70 μl/well), 
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diluted with blocking buffer at a ratio of 1:20,000, was added into each well and incubated 

at RT for 30 min on a shaker. The wells were then washed three times with washing buffer 

(250 μl/well) before 250 μl TMB substrate was added to the wells. The ELISA plate was 

kept in the dark until the desired color develops. The reaction was stopped with 100µL of 

0.5M HCl. The absorbance (= the developed blue color) was measured at 450 nm using a 

microplate reader. All measurements were performed in triplicate or quadruplicate. 

 

2.4.7 Pharmacokinetic studies in rats 

Rats were injected with Fc-fused CocH3 proteins through the tail vein at a dose of 

0.06 mg/kg body weight for Albu-CocH1; and 0.06 mg/kg. Blood samples were then 

obtained by needle puncture of the saphenous vein. Approximately 100 µL of blood was 

collected into a heparin-treated capillary tube at differing time points after protein injection. 

The plasma was separated from the collected blood samples by centrifugation (15 min, at 

5,000 × g). The concentration of Fc-fused CocH3 in plasma was determined by a highly 

sensitive radiometric assay as described in our previous report.246 The obtained PK data 

(time dependent enzyme concentrations) ([E]t) were fitted to a double-exponential equation 

247 by GraphPad Prism 5.01 software: tktk
t BeAeE 21][ −− +=  , which explains both the 

distribution process (the fast phase, associated with k1) and the elimination process (the 

slow phase, associated with k2) of the Fc-fused CocH3 protein in animals. 

The t1/2 associated with the elimination rate constant k2 of the fusion protein is known as 

the biological t1/2 or elimination t1/2. 
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2.4.8 DAT cellular distribution assay 

All steps were performed on ice or at 4 °C. 

Preparation of synaptosomal pellets 

Striatum of one cocaine-treated and one vehicle-treated rat were homogenized in 

individual tissue homogenizers, containing 3 ml of sucrose solution (0.32 M sucrose and 5 

mM NaHCO3, pH 7.4). Synaptosomal suspensions were exposed to two centrifugation 

steps (2,000g, 10 min, 4 °C followed by 20,000g, 17 min, 4 °C). The resulting pellets were 

then resuspended in the sucrose solution. 

Biotinylation of cell surface protein 

Synaptosomal suspensions included about 250 µg protein for striatum.  

Suspensions were then incubated (at 4 °C for 1 hr on a shaking) in 500 µl of 1.5 mg/ml 

bifunctional cross-linker (sulfo-NHS biotin) in PBS/Ca/Mg buffer (2.7 mM KCl, 138 mM 

NaCl, 0.1 mM CaCl2, 1.5 mM KH2PO4, 9.6 mM Na2HPO4, 1 mM MgCl2, pH 7.4), which 

labels all the membrane proteins with biotin. Free sulfo-NHS biotin molecules were then 

removed by centrifugation (8000g, 4 min, 4 °C), followed by washing with 1 ml of 100 

mM glycine in PBS/Ca/Mg buffer. This washing step was repeated twice. Samples were 

then centrifuged (8000g, 5 min, 4 °C) and washed twice with 1 ml of PBS/Ca/Mg buffer 

with no glycine. The surface-biotinylated synaptosomes were then broken by sonication 

for 5 seconds followed by incubation (at 4 °C for 20 min on a shaker) in Triton X-100 

buffer (150 μl for striatal synaptosomes; 10 mM Tris, 150 mM NaCl, 1 mM EDTA, 1.0% 

Triton X-100, 250 μM phenylmethysulfonyl fluoride, 1 μg/ml leupeptin, 1 μg/ml aprotinin, 

1 μM pepstatin, pH 7.4). Lysates were then exposed to centrifugation (13,000g, 1 hr, 4 °C). 

The resulting supernatants represent the total protein fraction. 
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Isolation of biotinylated proteins 

To separate the biotinylated cell surface proteins from the non-biotinylated 

intracellular proteins, the supernatant was incubated with Avidin-coated beads at RT for 1 

hr on a shaker, and then centrifuged (13,000g, 2 min, 4 °C). The resulting supernatant 

represent the intracellular fraction. The Avidin-bound biotinylated proteins constituted the 

cell surface fraction. The precipitated Avidin beads were washed five times with 1% Triton-

X-100 buffer. Then, the beads were boiled for 10 min in SDS-loading buffer to separate 

the biotinylated cell surface proteins from the biotin- Avidin complex. Finally, the resulting 

cell surface and intracellular fractions were stored at -20 °C until use for western blot 

analysis.  

Western blotting 

Biotinylated and non-biotinylated fractions were subjected to gel electrophoresis. 

Blots were then incubated, with continuous shaking, for 1 hr at RT with primary antibody 

for DAT, followed by incubation with HRP-conjugated secondary antibody (30 min, RT). 

DAT protein (72 kDa) was detected using chemiluminescence. Na+/K+ ATPase (a plasma-

membrane enriched protein; 100 kDa) or demethylated PP2A-C (an intracellular protein; 

34 kDa) were also detected on blots and these molecular markers served to ascertain the 

efficiency of biotinylation of surface proteins. β-actin (a cytoskeletal protein; 42 kDa) was 

used as an internal loading control.  
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Chapter Ⅲ. Kinetic Characterization of Cholinesterases and a Therapeutically 
Valuable Cocaine Hydrolase for Their Catalytic Activities against Heroin and Its 

Metabolite 6-monoacetylmorphine 
 

As the most popularly abused one of opioids, heroin is actually a prodrug. In the 

body, heroin is hydrolyzed/activated to 6-monoacetylmorphine (6-MAM) first and then to 

morphine to produce its toxic and physiological effects. It has been known that heroin 

hydrolysis to 6-MAM and morphine is accelerated by cholinesterases, including 

acetylcholinesterase (AChE) and/or butyrylcholinesterase (BChE). However, there has 

been controversy over the specific catalytic activities and functional significance of the 

cholinesterases, which requires for the more careful kinetic characterization under the same 

experimental conditions. In this study,248 the kinetic characterization of AChE, BChE, and 

a therapeutically promising cocaine hydrolase (CocH1) for heroin and 6-MAM hydrolyses 

under the same experimental conditions. The research described in this chapter has been 

published in Chemico-Biological Interactions.249 It has been demonstrated that AChE and 

BChE have similar kcat values (2100 and 1840 min-1, respectively) against heroin, but with 

a large difference in KM (2170 and 120 µM, respectively). Both AChE and BChE can 

catalyze 6-MAM hydrolysis to morphine, with relatively lower catalytic efficiency 

compared to the heroin hydrolysis. CocH1 can also catalyze hydrolysis of heroin (kcat=2150 

min-1 and KM=245 µM) and 6-MAM (kcat=0.223 min-1 and KM=292 µM), with relatively 

larger KM values and lower catalytic efficiency compared to BChE. Notably, the KM values 

of CocH1 against both heroin and 6-MAM are all much larger than previously reported 

maximum serum heroin and 6-MAM concentrations observed in heroin users. We also 

found that (–)-cocaine degradation by CocH1 was not significantly changed in the presence 

of even an abnormally high concentration (100 µM) of heroin or 6-MAM. These findings 
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imply that the heroin use along with cocaine will not drastically affect the catalytic activity 

of CocH1 against cocaine in the CocH1-based enzyme therapy for cocaine abuse. 

Dr. Jianzhuang Yao performed molecular modeling study. Dr. Zhenyu Jin helped 

me to prepare cocaine hydrolases. I performed all the rest experiments described in this 

chapter. 

 

3.1 Heroin hydrolysis to morphine by human cholinesterase 

Heroin (3,6-diacetylmorphine) is one of the drugs most commonly co-abused by 

cocaine-dependent individuals.250-255 The concurrent use of cocaine and heroin has 

received increasing clinical attentions because it not only causes more serious morbid 

psychopathology256-257 and poor addiction treatment outcomes,258-259 but also considerably 

increases the risk of severe drug overdose which ends in death.260 

Considering the frequent use of cocaine in combination with heroin by addicts, a 

question is whether or not cocaine degradation by CocH1, the first one of our discovered 

high-activity mutants of human BChE, is significantly inhibited by heroin or its metabolites 

6-monoacetylmorphine (6-MAM) and morphine. In fact, heroin is quickly converted to 6-

MAM and then more slowly to morphine in the circulating system261-263 and two human 

cholinesterases, plasma BChE and erythrocyte acetylcholinesterase (AChE), are generally 

regarded as the principal enzymes involved in both the majority of 6-MAM formation and 

significant morphine production from heroin.  
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Figure 3.1 Schematic presentation of heroin hydrolysis to morphine. 

 

It has been demonstrated that 6-MAM is the primary metabolite responsible for 

heroin’s acute psychoactive effects (the rush) and intoxication, but the euphoria following 

the rush is more due to the stimulant effects of morphine produced from 6-MAM 

hydrolysis,264-267 indicating the importance of the rates of 6-MAM formation and 

degradation in the onset of heroin effects on the central nervous system. At heroin blood 

concentrations attainable in vivo ≤ 270 nM,261, 264, 268-269 ~80% of the total heroin hydrolysis 

in blood is accounted for plasma and erythrocyte cytosol where BChE and AChE are 

located, respectively.270-272 In vitro enzyme kinetic studies using purified native human 

cholinesterases further demonstrated that BChE, rather than AChE, is mainly responsible 

for degradation of heroin to 6-MAM with a higher catalytic efficiency under first-order 

kinetics.273 However, there has been controversy over the catalytic activity and functional 

significance of the cholinesterases (AChE and BChE) on the hydrolysis of 6-MAM to 

morphine,250, 273-274 which makes it difficult to interpret their actual roles in 6-MAM 

degradation. In addition, the reported values of the kinetic parameters (kcat and KM) for 

BChE against heroin ranged from 12.9 to 540 min-1 and from 0.11 to 3.5 mM, 

respectively,250, 273-274 requiring for the more careful kinetic characterization under the same 

experimental conditions. 
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Table 3.1 The reported kinetic parameters of human BChE for heroin hydrolysis 

 

 

3.2 The focuses of this research 

Here we kinetically compared CHO cell-expressed human recombinant AChE, 

BChE, and CocH1 with the aims to examine their catalytic efficiencies against heroin and 

6-MAM and to assess the possible interaction between cocaine and heroin or 6-MAM in 

their hydrolysis reactions catalyzed by CocH1 in comparison with human enzymes AChE 

and BChE. The complete catalytic parameters obtained for AChE, BChE, and CocH1 

against heroin and 6-MAM reveal how the abused drugs (cocaine and heroin) can possibly 

affect each other in terms of their hydrolysis reactions and detoxification under various 

conditions. The insights from the kinetic characterization will be valuable in guiding 

further development of novel enzyme therapies for the drug detoxification. In particular, 

concurrent use of heroin and cocaine is not expected to significantly affect the efficacy of 

CocH1 (or its fusion protein form TV-1380) in cocaine detoxification.  

3.3 Results & Discussion 

3.3.1 Identification of Fc variants with altered binding 

Two previously reported studies led to contradictory findings over the ability of 

BChE to catalyze hydrolysis of 6-MAM to morphine,250, 273-274 which limits the 

interpretation of the data concerning the actual contributions of the enzymes to the drug 

KM kcat

(µM) (min-1) Temp. pH Heroin conc. (mM) Buffer

Lockridge et al., 1980 Human plasma 110 500 25 oC 7.4 0.16 to 2 67 mM Sodium phosphate

Salmon et al., 1999 Human serum 110 540 37 oC 7.4 0.032 to 4 100 mM Sodium phosphate

Kamendulis et al., 1996 Human serum 3500 ± 400 12.9 ± 0.5 37 oC 7.5 0 to 12 50 mM Potassium phosphat

Human 
BChE

        

Protein  Reference Protein source
Incubation condition
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metabolism to morphine in blood. In 1999, Salmon and his colleagues reported that only 

AChE, but not BChE, further hydrolyzes 6-MAM to morphine from heroin,273 but these 

findings are opposite to the previous observations of Kamendulis et al. showing the 

capability of BChE to catalyze 6-MAM into morphine (kcat = 0.25 min-1 and KM = 8.6 

mM).250 Therefore, we first tested whether or not heroin is metabolized to 6-MAM and 

then eventually into morphine by recombinant human BChE or AChE. For each enzyme, 

1 mM heroin was incubated with 4 µM enzyme. As shown in Fig. 3.2, in the presence of 

either BChE or AChE, after 25 minutes of incubation, heroin has completely been 

converted to 6-MAM, and some 6-MAM has further been converted to morphine. Both 

BChE and AChE were highly active in metabolizing heroin to 6-MAM, but they were less 

active in further degrading 6-MAM to morphine. These results clearly show that like AChE, 

BChE is capable of hydrolyzing heroin to morphine eventually, which are in agreement 

with the findings of Kamendulis et al.,250 but unlike the observations of Salmon et al..273 

We also observed that AChE produced more morphine than BChE in the given reaction 

condition, implying the relatively lower catalytic efficiency of BChE against 6-MAM.  

 

Figure 3.2 Enzymatic activity of BChE and AChE on the hydrolysis of heroin. 
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Chromatograms for the deacetylation of heroin in the presence or absence of BChE or 

AChE. Peak 1 (morphine) with retention time 3.8 min, peak 2 (6-MAM) with retention 

time 4.9 min and peak 3 (heroin) with retention time 14 min. The enzyme (AChE or BChE) 

was incubated with 1 mM substrate concentration at 40 µM designated enzyme at 37oC for 

25 min. 

 

3.3.2 Hydrolysis of free 6-MAM to morphine by human recombinant BChE and 

AChE 

In a previous report by Salmon et al.,273 it was noted that AChE hydrolyzes 6-MAM 

only when 6-MAM is produced from heroin within its active site and free 6-MAM 

molecules only serve as an inhibitor for AChE.273 This led us to examine whether free 6-

MAM molecules can serve as a substrate for BChE or not. To address this question, the 

enzymatic activity of the enzyme (BChE or AChE) was studied using synthetic 6-MAM 

which we added to the reaction system. 1 mM 6-MAM was mixed and incubated with 

either 4 µM enzyme (BChE or AChE) under the incubation condition mentioned above. 

The results showed that direct incubation of 6-MAM with BChE produced the amount of 

morphine which is significantly larger than that in the control (without an enzyme), 

demonstrating that free 6-MAM molecules can serve as a substrate for BChE (Fig. 3.3). 

Interestingly, AChE also converted synthetic 6-MAM to morphine in a significant amount 

comparable to that of morphine produced from heroin by AChE (Fig. 3.2 & 3.3). Overall, 

these observations clearly indicate that both free heroin and 6-MAM molecules produced 

after heroin uptake in the circulatory system can be metabolized to morphine by both 

cholinesterases (AChE and BChE) in blood.  
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Figure 3.3 Enzymatic activity of BChE and AChE on the hydrolysis of 6-MAM. 

Chromatograms for the deacetylation of 6-MAM in the presence or absence of BChE or 

AChE. Peak 1 (morphine) with retention time 3.8 min and peak 2 (6-MAM) with retention 

time 4.9 min. The enzyme (AChE or BChE) was incubated with 1 mM substrate 

concentration at 40 µM designated enzyme at 37oC for 25 min. 

  

3.3.3 Kinetics of heroin hydrolysis by BChE, AChE, and CocH1 

As a potential anti-cocaine medication, CocH1 has a considerably improved 

catalytic efficiency (kcat = 3060 min-1, KM = 3.1 µM, and kcat/KM = 9.9 × 108 min− 1 · M− 1) 

compared to the wild-type BChE (kcat = 4.1 min-1, KM = 4.5 µM, and kcat/KM = 9.1 × 105 

min− 1 · M− 1) against (–)-cocaine. Thus, CocH1 may be used to effectively block the drug 

reward for a given dose of cocaine. Considering that CocH1 is developed from human 

BChE capable of metabolizing all of (–)-cocaine, heroin and its initial host metabolite 6-

MAM, (–)-cocaine degradation by CocH1 can be affected by the drug-drug interaction with 

heroin or 6-MAM. Specifically, if heroin or 6-MAM can also be hydrolyzed by CocH1, we 

would like to know the KM or the binding affinity (Kd) of the drug (heroin or 6-MAM) with 
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CocH1 in order to estimate how heroin or 6-MAM could competitively inhibit CocH1 for 

its catalytic activity against (–)-cocaine. In principle, for a competitive inhibition of an 

enzyme, the inhibitory constant (Ki) value is equal to the corresponding Kd value (Ki = Kd). 

However, the Kd value can be different from the corresponding KM value. Nevertheless, Kd 

≈ KM value under the well-known rapid equilibrium assumption275 which is usually true for 

enzyme-substrate binding. Hence, we may reasonably use an experimentally measured KM 

of CocH1 against heroin or 6-MAM to estimate the potential inhibitory activity of heroin 

or 6-MAM against CocH1-catalyzed hydrolysis of another substrate like (–)-cocaine when 

Ki ≈ KM. 

In order to know whether heroin or 6-MAM can significantly inhibit CocH1-

catalyzed hydrolysis of (–)-cocaine, we investigated kinetics of heroin degradation to 6-

MAM by CocH1, BChE, and AChE. Under the experimental conditions generating the 

kinetic data depicted in Fig. 3.4, we only observed the metabolite 6-MAM, and there were 

no detectable levels of morphine, indicating that the enzyme activity for converting 6-

MAM to morphine is much lower than that for converting heroin to 6-MAM.  
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Figure 3.4 Kinetic analysis of heroin hydrolysis by BChE, AChE, and CocH1. The 

hydrolysis of heroin to 6-MAM by BChE (A), AChE (B), and CocH1 (C) were determined 

at substrate concentrations of 0.015-1.25 mM (BChE and CocH1) or 0.015-7.5 mM 

(AChE). Kinetic parameters (kcat and KM) were determined by fitting the measured reaction 

rate data to the Michaelis-Menten kinetic equation using the Prism5.01 software. Each dot 

is the representative of the average of triplicates and its values are expressed as the mean 

± standard deviation. 

 

The obtained kinetic data are depicted in Fig. 3.4, and the kinetic parameters 

obtained are summarized in Table 3.2. As shown in Table 3.2, compared to BChE, CocH1 

has a higher KM value (245 µM compared to 120 µM) and a similar kcat value (2150 min− 1 

compared to 1840 min− 1). The determined KM of CocH1 against heroin is ~900-fold larger 

than the previously reported blood heroin concentrations attainable in vivo (≤ 0.27 µM),261, 

264, 268-269 and ~76-fold larger than its reported KM value against (–)-cocaine (3.1 µM).190-

191 Generally speaking, for a given inhibitor, when the Ki value is ~900-fold larger than the 

inhibitor concentration, the inhibitor can only decrease the enzyme activity by less than 

~0.1%, suggesting that the blood heroin levels usually achieved by the heroin users are not 

expected to significantly change the enzymatic hydrolysis of (–)-cocaine by CocH1. 

Moreover, as one can see from the kinetic data in Table 3.2, AChE has ~18-fold larger KM 

value (2170 µM) compared to that of BChE, but with a similar kcat value (2100 min− 1 

compared to 1840 min− 1), against heroin. These data indicate that the major difference 

between wild-type AChE and BChE in the catalytic efficiency against heroin (kcat/KM = 

1.53 × 107 min− 1 · M− 1 for BChE vs kcat/KM = 9.68 × 105 min− 1 · M− 1 for AChE) is mainly 
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attributed to their difference in the binding affinity with heroin. Our kinetic data strongly 

support the argument276 that plasma BChE is the prime enzyme responsible for the rapid 

enzymatic hydrolysis of the 3´-phenolic ester of heroin in the blood.  

 

Table 3.2 Kinetic parameters of BChE, AChE, and CocH1 against heroin 

 a Relative catalytic efficiency (kcat/KM) 

 

In this study, our experimental KM value of BChE against heroin (120 µM) is 

consistent with the earlier KM of 110 µM reported by Lockridge et al.250, 273-274 and cited 

by Salmon et al.,273 but quite different from the number of Kamendulis et al. (3.5 mM).250, 

273-274 The catalytic rate constant (kcat = 1840 min− 1) determined is also substantially higher 

than the wide range (from 12.9 to 540 min− 1) reported by those research groups.250, 273-274 

Moreover, the kinetic parameter values of AChE determined for the hydrolysis of heroin 

to 6-MAM (kcat = 2100 min− 1 and KM = 2170 µM) are higher than the values (kcat = 351 

min− 1 and KM = 620 µM) reported by Salmon et al..273 It is likely that the differences in 

the catalytic parameters determined for the same enzymatic reactions are largely dependent 

on how enzymes are prepared if all of the kinetic assays are all in readily controlled 

experimental conditions. Generally, natural protein sources, especially from human or 

animal tissues, have the difficulty to meet the requirements for higher retention of 

functional properties including their enzymatic activities, mainly due to the complicated 

Enzyme kcat 
(min− 1) 

KM 

(µM) 
kcat/KM 

(min− 1 · M− 1) 
RCEa  R2 

BChE 1840 ± 24   120 ± 5 1.53 × 107 1 0.991 
AChE 2100 ± 26 2170 ± 6 9.68 × 105 0.06 0.997 

CocH1 2150 ± 31   245 ± 9 8.78 × 106 0.57 0.994 
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collection, treatment, storage, and extraction processes. These processes may affect the 

protein structure accompanied with a change (usually a decrease) in its binding affinity and 

activity, and result in inactivation or overall diminished enzymatic activity. Whereas the 

kinetic studies of Lockridge et al.,250, 273-274 Salmon et al.,273 and Kamendulis et al.250, 273-

274 were found on the use of natural BChE or AChE extracted from human blood samples, 

all the kinetic analysis in the present study were performed using the freshly expressed and 

purified BChE and AChE for comparison. In addition, another external factor affecting the 

enzymatic reaction kinetics is the temperature. The kinetic studies of Salmon et al.273, and 

Kamendulis et al.250, 273-274 were performed at 37oC, but that of Lockridge et al.250, 273-274 

was accomplished at 25oC. In this study, the same enzymatic kinetic analysis was carried 

out at 37oC and the protein samples used this study are shown to have higher binding 

affinity and catalytic efficiency (reflected by the lower KM and higher kcat/KM, respectively). 

These observations strongly suggest that the kinetic parameters determined in the present 

study are more likely to reasonably reflect the actual enzymatic activity of human BChE 

and AChE against heroin. 

 

3.3.4 Kinetics of 6-MAM hydrolysis by BChE, AChE, and CocH1 

As mentioned above, 6-MAM may also potentially inhibit CocH1-catalyzed 

cocaine hydrolysis because 6-MAM can also serve as a substrate for wild-type BChE (Fig. 

3.2 & 3.3). To access this possibility, we examined the kinetics of 6-MAM degradation to 

morphine by CocH1 as well as wild-type BChE and AChE. The catalytic parameters kcat 

and KM were determined for BChE against 6-MAM, and then were compared with those 

of AChE and CocH1 (Fig. 3.5 and Table 3.3).  
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Figure 3.5 Kinetic analysis of 6-MAM hydrolysis by BChE, AChE, and CocH1. The 

hydrolysis of heroin to 6-MAM by BChE (A), AChE (B), and CocH1 (C) were determined 

at substrate concentrations of 5-2000 µM. Kinetic parameters (kcat and KM) were 

determined by fitting the generated reaction rate data to the Michaelis-Menten kinetic 

equation using the Prism5.01 software. Each dot is the representative of the average of 

triplicates and its values are expressed as the mean ± standard deviation. 

 

As seen in Table 3.3, the KM value of CocH1 against 6-MAM was determined to be 

292 µM which is ~94-fold-larger than the reported KM value (3.1 µM) of CocH1 against 

(–)-cocaine. Given that the maximum serum concentration (Cmax) of 6-MAM in humans 

has been reported to range from 5.2 to 17.5 µM after intravenous heroin administration, 

277-279 the KM (292 µM) of CocH1 against 6-MAM is still ~16-56-fold larger than the Cmax 

of 6-MAM achieved by heroin users. In comparison, the observed peak blood (–)-cocaine 

concentrations were ~3-fold higher than the KM of CocH1 against (–)-cocaine. Overall, 

these data suggest that when both 6-MAM and (–)-cocaine reach their corresponding peak 

concentrations in the blood, CocH1-catalyzed (–)-cocaine hydrolysis can only be inhibited 

by 6-MAM for ~0.45-1.5%. The lower the 6-MAM concentration, the less the inhibition. 

The potential inhibition by 6-MAM would not be significant. Hence, CocH1 can still 

efficiently degrade (–)-cocaine at the 6-MAM concentrations usually achieved by heroin 

users.  
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Table 3.3 Kinetic parameters of BChE, AChE, and CocH1 against 6-MAM 

a Relative catalytic efficiency (kcat/KM) 

 

According to the kinetic data in Table 3.3, the determined kcat/KM value (2.73× 104 

min− 1 · M− 1) of AChE against 6-MAM was approximately 10 times greater than that (2.71 

× 103 min− 1 · M− 1) of BChE against 6-MAM. Notably, these findings are in agreement 

with the findings of Kamendulis et al.250, 273-274 in that BChE catalyzes the hydrolysis of 6-

MAM into morphine. However, our experimental KM and kcat values are much different 

from the corresponding kinetic parameters reported by Kamendulis et al..250, 273-274 Our 

experimental KM of 24 µM is considerably smaller than their KM of 8.6 mM and our 

determined catalytic rate constant (kcat = 0.065 min-1) is also much different from the earlier 

kcat of 0.25 min-1. Accounting for all of the kinetic parameters, the catalytic efficiency 

(kcat/KM = 2.71 × 103 min-1 M-1) obtained for the same enzymatic hydrolysis in the present 

study is ~93-fold larger than that (kcat/KM = 2.91× 101 min-1 M-1) reported by Kamendulis 

et al..250, 273-274 As mentioned above, the differences in the catalytic parameters determined 

for the same enzymatic reaction seem to largely rely on how BChE is prepared for the 

kinetic assay. Compared to our kinetic analysis using the freshly expressed and purified 

BChE, the previous kinetic analysis by Kamendulis et al.250, 273-274 was based on the use of 

natural BChE extracted from human plasma samples.  

Overall, all of our experimental kinetic data strongly suggest that BChE and AChE 

Enzyme kcat 
(min− 1) 

KM 

(µM) 
kcat /KM 

(min− 1 · M− 1) 
RCEa R2 

BChE   0.065  ± 0.001        24  ±   1.4 2.71 × 103 1 0.990 
AChE   7.078  ± 0.141      259  ± 18 2.73 × 104 10.1 0.990 

CocH1   0.223  ± 0.005      292  ± 22 0.764 × 103 0.282 0.987 
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play distinct roles in heroin metabolism into morphine. BChE catalyzes hydrolysis of 

heroin to 6-MAM with a much higher catalytic efficiency than AChE. For the further 

degradation of 6-MAM to morphine, BChE has a relatively lower catalytic efficiency than 

AChE. 

Further, we tested whether (–)-cocaine degradation by CocH1 will be affected by 

the drug-drug interaction when heroin or 6-MAM is present in the reaction system. 

According to the results obtained (Fig. 3.6), (–)-cocaine degradation by CocH1 was not 

significantly changed in the presence of even an abnormally high concentration (100 µM) 

of heroin or 6-MAM.  
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Figure 3.6 (−)-Cocaine hydrolysis by CocH1. Both the enzyme (100 ng/ml) and (−)-

cocaine (100 µM) were incubated together with 100 µM opioid (heroin or 6-MAM). 

Presented are the residual concentrations of cocaine versus time (○, no enzyme control; ■, 

only enzyme control, without opioid; ●, enzyme plus heroin; ●, enzyme plus 6-MAM). 

Cocaine concentrations were determined by using sensitive radiometric assays using 

[3H](−)-cocaine. Results represent two independent experiments and the values are 

expressed as mean ± standard deviations. 

 

3.3.5 Insights from molecular modeling 

The reaction pathways of cholinesterase-catalyzed hydrolyses of heroin and 6-

MAM were studied in our previous computational studies280-281 through first-principles 

quantum mechanics and molecular mechanics-free energy (QM/MM-FE) simulations. The 

optimized reactant complexes (e.g. BChE complexed with heroin and 6-MAM, and AChE 
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complexed with 6-MAM) obtained from our previous QM/MM studies show a couple of 

important enzyme-substrate interaction features. One is the interaction between the acetyl 

groups of heroin and 6-MAM and the oxyanion hole consisting of Gly116, Gly117, and 

Ala199 in BChE (corresponding to Gly121, Gly122, and Ala204 in AChE). The other is 

the interaction between the positively charged amino-groups of heroin and 6-MAM and 

the sidechain of Trp82 in BChE (corresponding to Trp86 in AChE). Guided by the 

aforementioned interactions, the substrate (heroin or 6-MAM) was docked into the active 

site of the enzyme (AChE, BChE, or CocH1). The molecular docking enabled us to 

understand how heroin may bind with human AChE, BChE, and CocH11 compared to 6-

MAM binding with the corresponding enzymes. According to the enzyme-substrate 

binding structures obtained from molecular docking (as shown in Fig. 3.7), the binding 

mode for each enzyme (AChE, BChE, and CocH1) with heroin is similar to that with 6-

MAM in terms of the overall hydrogen bonding with the oxyanion hole, particularly for 

the crucial interactions between the carbonyl oxygen of the substrate and the oxyanion hole 

of the enzyme. In particular, there are always two hydrogen bonds between the carbonyl 

oxygen of the substrate and backbone amide groups of the oxyanion hole residues (Gly120 

and Gly121 of AChE corresponding to Gly116 and Gly117 of BChE and CocH11) no 

matter whether the substrate is heroin or 6-MAM. There are also two hydrogen bonds 

between the carbonyl oxygen of the substrate and the oxyanion hole of CocH1 (sidechain 

of Ser199 and backbone of Gly117), no matter whether the substrate is heroin or 6-MAM.  

The modelling results depicted in Fig. 3.7 reveal that, no matter whether the enzyme is 

AChE, BChE, or CocH1, the acetyl-group of heroin forms stronger hydrogen bonds in the 

oxyanion hole compared to 6-MAM with the same enzyme. Hence, all of the enzymes 
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concerned in the present study are expected to have a significantly better catalytic 

efficiency against heroin compared to 6-MAM. In particular, although a novel hydrogen 

bond from Ser199 of CocH1 is introduced to stabilize the acetyl-group of the substrate 

(heroin or 6-MAM), the hydrogen bond with Gly116 is lost compared to wild-type BChE. 

Therefore, CocH1 concerned in the present study is not expected to have a significantly 

improved catalytic efficiency against heroin or 6-MAM in comparison with BChE. The 

computational insight is supported by the measured kinetic parameters discussed above. 
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Figure 3.7 Modeled structures of the AChE, BChE, and CocH1 (E14-3) binding with 

heroin and 6-MAM. (A) Wild-type AChE binding with heroin; (B) Wild-type BChE 

binding with heroin; (C) CocH1 binding with heroin; (D) Wild-type AChE binding with 6-

MAM; (E) Wild-type BChE binding with 6-MAM; (F) CocH1 binding with 6-MAM. This 

figure was provided by Dr. Jianzhuang Yao in our lab. 
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3.3.6 Main outcomes of this research 

The catalytic activities of wild-type AChE, wild-type BChE, and CocH1 against 

heroin and 6-MAM have been characterized under the same experimental conditions for 

comparison. According to the determined kinetic parameters kcat and KM for all of these 

enzymatic reactions, wild-type AChE and BChE have similar kcat values (kcat = 2100 min-1 

for AChE and kcat = 1840 min-1 for BChE) against heroin. However, BChE has a ~16 fold-

higher catalytic efficiency than AChE (kcat/KM = 1.53 × 107 min− 1 · M− 1 for BChE vs 

kcat/KM = 9.67 × 105 min− 1 · M− 1 for AChE), mainly because BChE has a ~18-fold stronger 

binding affinity with heroin compared to AChE (Kd ≈ KM = 120 µM for BChE vs Kd ≈ KM 

= 2170 µM for AChE). Besides, both AChE and BChE can catalyze 6-MAM hydrolysis to 

morphine, with relatively lower catalytic efficiency compared to the corresponding enzyme 

catalyzing heroin hydrolysis.  

CocH1 can also catalyze hydrolysis of heroin (kcat = 2150 min-1 and KM = 245 µM) 

and 6-MAM (kcat = 0.223 min-1 and KM = 292 µM), with relatively larger KM values and 

relatively lower catalytic efficiency compared to wild-type BChE. Notably, the KM values 

of CocH1 against both heroin and 6-MAM are all much larger than previously reported 

maximum serum heroin and 6-MAM concentrations observed in heroin users, implying 

that the heroin use along with cocaine use will not significantly affect the catalytic activity 

of CocH1 against cocaine in the CocH1-based enzyme therapy for cocaine abuse.    
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3.4 Experimental details 

3.4.1 Materials 

Phusion DNA polymerases, restriction enzymes, and T4 DNA ligase were 

purchased from New England Biolabs. All oligonucleotides were purchased from Eurofins 

MWG Operon. Vector pCMV–MCS was obtained from Agilent Technologies. Chinese 

hamster ovary (CHO)–S cells and FreeStyleTM CHO Expression Medium, 

hypoxanthine/thymidine (HT) supplement, l-glutamine, 4–12% Tris-glycine Mini Protein 

Gel, and SimpleBlue SafeStain were purchased from Life Technologies (Carlsbad, CA). 

Reduction-modified protein (rmp) Protein A Sepharose Fast Flow was ordered from GE 

Healthcare Life Sciences (Pittsburgh, PA). Centrifugal filter units were ordered from 

Millipore (Burlington, MA). Heroin, 6-MAM, and morphine were provided by the National 

Institute on Drug Abuse (NIDA) Drug Supply Program. All other chemicals as well as the 

solvents used in high-performance liquid chromatography (HPLC), were of HPLC grade 

and purchased from Sigma-Aldrich (St. Louis, MO). 

 

3.4.2 Construction of mammalian expression plasmids 

CocH1 truncated after amino acid 529 was fused with human serum albumin (HSA) 

for the extension of biological half-life.282 For protein expression in mammalian cells, the 

cDNA for the CocH1 (the A199S/F227A/S287G/A328W mutant of human BChE) 

containing C-terminal HSA was generated and cloned in to pCMV-MCS in our previous 

studies.190-191, 283 Two expression plasmids, pCMV-BChE-Fc(WT), and  pCMV-AChE-

Fc(WT), were constructed as described previously.87 Briefly, the C-terminal of truncated 

human enzyme (BChE or AChE) was genetically fused to the N-terminal of the Fc portion 
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of wild-type human IgG (Fc(WT)) by overlapping extension PCR with Phusion DNA 

polymerase. Then, the PCR products were digested with restriction endonucleases Hind III 

and Bgl II. The gel purified PCR products were then ligated to the pCMV-MCS expression 

vector using T4 DNA ligase.  

 

3.4.3 Protein Expression and Purification 

CHO-S cells were incubated in FreeStyle CHO Expression Medium (Life 

Technologies) with 8 mM l-glutamine (Life Technologies) at 37°C in a humidified 

atmosphere with 8% CO2 and transfected with gene expression DNA constructs encoding 

the protein of interest using the TransIT-PRO Transfection Kit (Mirus Bio LLC, Madison, 

WI)) when the number of the cells reached 1.0 × 106 cells/mL. The culture medium was 

harvested 6 days after transfection. The Fc-fused protein (BChE or AChE) secreted into 

the culture medium was purified by protein A affinity chromatography. After removing 

cells by centrifugation, the cell-free culture medium was mixed with rmp Protein A 

Sepharose Fast Flow (GE Healthcare Life Sciences) pre-equilibrated with 20 mM Tris⋅HCl, 

pH 7.4, and incubated for overnight at 6°C with occasional stirring. Then, the suspension 

was packed in a column and washed with 5 column volume (CV) of 20 mM Tris⋅HCl, pH 

7.4, containing 200 mM NaCl until an OD280 < 0.02 was achieved; then the protein was 

eluted by adjustment of the pH and salt concentration. HSA-fused CocH1 was also 

expressed as described above. Using the AlbuPure matrix (Prometic Life Sciences Inc., 

Laval, Canada), CocH1-HSA was purified where the cell-free culture medium was loaded 

onto packed bed pre-equilibrated with 50 mM sodium acetate, pH 5.3, extensively washed 

with 8 CV of equilibration buffer. Then, the resin bound protein was eluted with 5 CV of 
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50 mM ammonium acetate, pH 7.4. For buffer exchange, the eluate was dialyzed in storage 

buffer (50 mM Hepes, 20% sorbitol, 1 M glycine, pH 7.4) by Millipore Centrifugal Filter 

Units. The entire purification process was performed in a cold room at 8°C and the purified 

proteins were stored at −80°C until the activity tests.  

 

3.4.4 Enzyme Activity Assays 

Enzymatic hydrolyses of heroin to 6-MAM and 6-MAM to morphine were tested 

under the following assay conditions. Incubations (50 µl final volume) contained purified 

enzyme and heroin or 6-monoacetylmorphine (6-MAM) in 0.1 M phosphate buffer, pH 7.4. 

All the activity assays were performed at 37°C. For heroin hydrolysis, 0.02 to 2.5 mM 

heroin was incubated with 35 nM designated enzyme. For 6-MAM hydrolysis, 0.002 to 2 

mM 6-MAM was incubated with 2 µM designated enzyme. The reaction time and 

concentration were adjusted such that no more than 10% of substrate was depleted during 

reaction. The reaction was terminated, and protein was precipitated by the addition of 100 

µl of iced 50% acetonitrile/0.5 M hydrochloric acid, followed by 5 min centrifugation at 

15,000 g. The resulting supernatants were subjected to reverse-phase HPLC (RP-HPLC) 

on a 5 µm C18 110 Å column (250 × 4.6 mm; Gemini) (Life Technologies) and RP-HPLC 

was performed using the mobile phase consisting of 20% acetonitrile in 0.1% TFA. The 

remaining substrate and resulting products were monitored by a fluorescence detector with 

an excitation wavelength of 230 nm and emission wavelength of 315 nm and by monitoring 

UV absorbance at 230 nm. The quantification was based on a standard curve prepared using 

an authentic standard compound. 
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3.4.5 Molecular modelling 

Heroin and 6-MAM binding with human AChE, BChE, and CocH1 were modelled 

by using our previously modelled structures of the same enzymes.280-281, 284-285 Our previous 

molecular dynamics (MD) simulations on the structures of enzyme-substrate complexes 

started from the X-Ray crystal structures deposited in the protein databank (PDB) (AChE: 

code 1B41; BChE: 2XQF and 1P0P). Molecular docking and subsequent optimization were 

carried out using a similar protocol described previously.280 Briefly, the acetyl group of the 

substrate (heroin or 6-MAM) was positioned in the oxyanion hole (consisting of Gly116, 

Gly117, and Ala199 in BChE, or Gly121, Gly122, and Ala204 in AChE, or Gly116, Gly117, 

and Ser199 in CocH1), and the positively charged amino-group of the substrate (heroin and 

6-MAM) was placed in the choline-binding site near Trp82 in BChE and CocH1 or Trp86 

in AChE. Finally, the binding models of heroin and 6-MAM in the corresponding enzyme-

substrate complexes were optimized by performing the energy minimization.  
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Chapter Ⅳ. Oligomerization and Catalytic Parameters of Human UDP-
glucuronosyltransferase 1A10 

 

Uridine 5'-diphospho-glucuronosyltransferase (UDP-glucuronosyltransferase, 

UGT), as an integral membrane protein localized in the endoplasmic reticulum, has the 

ability to detoxify potentially hazardous xenobiotic substances. Most UGTs are expressed 

in liver, but UGT1A10 has proven an extra-hepatic enzyme considerably expressed 

throughout the gastrointestinal track. Earlier studies indicated that different UGT isoforms 

could exist in higher-order homo-oligomers or at least dimers within the membrane, but 

the formation of intermolecular disulfide bridges between UGT molecules was not often 

observed. In this study,286 we expressed recombinant human UGT1A10 in HEK293 and 

CHO cells to examine its oligomeric states and characterize its enzymatic activities against 

two therapeutically interesting substrates, morphine and entacapone, including 

determination of the catalytic rate constant (kcat) values for the first time. The research 

described in this chapter has been published in to Drug Metabolism and Distribution.287 It 

was observed that majority of the UGT1A10 protein expressed in HEK293 cells existed in 

covalently cross-linked higher-order oligomers via formation of intermolecular disulfide 

bonds, whereas formation of the intermolecular disulfide bonds was not observed in the 

UGT1A10 protein expressed in CHO cells. Due to the formation of the covalently cross-

linked higher-order oligomers, the UGT1A10 protein expressed in HEK293 cells had much 

lower catalytic activities (particularly the catalytic rate constant kcat) against both morphine 

and entacapone, compared to the UGT1A10 protein form expressed in CHO cells against 

the corresponding substrates. 
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4.1 UDP-glucuronosyltransferase (UGT)  

UGTs are membrane-bound proteins localized in the endoplasmic reticulum (ER). 

These proteins catalyze the glucuronic acid transfer from UDP-glucuronic acids (UDP-GA) 

to small molecules (substrates). Human UGTs are divided into two gene families, UGT1 

and UGT2, based on evolutionary divergence288 and play a crucial role in detoxification 

and excretion of potentially hazardous xenobiotics as well as endogenous substances. 

However, it has been difficult to study the catalytic activity of an individual UGT in native 

tissues because many different UGTs are expressed in the same tissues such as liver and 

their substrate specificities have proven overlapped frequently. Therefore, it has become 

common in the field to use recombinant enzymes exogenously expressed in different cell 

lines, when testing whether a specific substrate of interest is converted by a UGT isomer 

into a glucuronide form and comparing the catalytic efficiencies of UGT isoforms against 

a specific substrate. Added to this, the absence of a suitable method to purify UGTs as 

sufficiently active and mono-dispersed proteins has limited the studies toward 

understanding the structure-function relationships of these proteins. 

Morphine remains the most valuable opioid analgesic for the management of 

moderate to severe pain.289 Morphine undergoes a considerable first-pass metabolism by 

UGTs in animals and humans after oral administration. The inactive morphine-3-

glucuronide (M3G) and analgesically potent morphine-6-glucuronide (M6G) are the major 

metabolites of morphine in the body and they are mainly excreted by the urinary system.290-

292 Although human liver still appears to be a prime organ responsible for the formation of 

morphine glucuronides,290 the respective contribution of the gastrointestinal tract and liver 

to the first-pass extraction of orally administrated morphine remains unclear.292 In 2003, a 
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systemic study of the recombinant human UGT isoforms related to morphine 

glucuronidation showed that UGT1A10, an extra-hepatic enzyme restrictively expressed 

in the digestive tract, catalyzes the conversion of morphine to M3G, not M6G, with a 

relatively higher rate, compared to the other UGT1A isoforms tested (UGT1A1, 1A3, 1A6, 

1A8, and 1A9).293 However, their report only compared the measured Vmax and KM values 

of UGT isomers for the M3G formation, and they were unable to determine their actual 

catalytic rate constant (kcat) values, which limits the interpretation of the kinetic data 

concerning the actual catalytic activities of individual UGTs. 

 

Table 4.1 Kinetic constants for morphine 3- and 6-glucuronide formation by human 

recombinant UDP-glucuronosyltransferases stably expressed in HEK293 cells.293 

Human UGTs Vmax 

(pmol/min/mg) 
KM 

(mM) 

UGT1A10 628.2 ± 92.4 12.6 ± 2.6 

UGT2B7 183.3 ± 15.4 58.3 ± 3.2 

UGT1A9 31.7 ± 3.1 37.4 ± 5.6 

UGT1A6 20.8 ± 2.6 18.0 ± 3.7 

UGT1A8 12.9 ± 1.0 2.6 ± 0.3 

UGT1A3 10.3 ± 0.6 3.2 ± 0.3 

UGT1A1 4.5 ± 0.2 18.7 ± 1.4 
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4.2 The focuses of this research 

In the present study, we first analyzed the expression of recombinant human 

UGT1A10 protein in HEK293 and CHO cells by western blotting. Then, we kinetically 

characterized its glucuronidating activities for two different substrates, morphine and 

entacapone, an inhibitor of catechol-O-methyltransferase (COMT) used in the treatment of 

Parkinson’s disease. The kinetic characterization has allowed us to determine the kcat values 

of UGT1A10 against morphine and entacapone for the first time. It has also been 

demonstrated that recombinant human UGT1A10 protein expressed in HEK293 cells 

forms oligomerized complexes that are covalently cross-linked by disulfide bonds, but that 

expressed in CHO cells barely forms cross-linked disulfide bonds. In addition, the 

complete catalytic parameters obtained for membrane-bound UGT1A10 against morphine 

and entacapone reveal that the catalytic activities of recombinant UGT1A10 proteins are 

remarkably different, depending on which type of cell line is used to express the protein. 

 

4.3 Results  

4.3.1 Overexpression of human UGT1A10 in CHO and HEK293 cells   

When expressed in CHO and HEK293 cells, recombinant human UGT1A10 

protein was detected majorly at ~65 kDa (monomeric size) by immunoblotting with an 

anti-UGT1A antiserum. After longer exposure UGT1A10 protein was also observed as 

unexpected bands at approximately ~130 kDa, and higher than ~130 kDa in both 

microsomes prepared from UGT1A10-6xHis-overexpressing stable CHO or HEK293 cells 

(three independent western blotting tests showed the same bands) (Fig. 4.1).  The bands 

with molecular weight higher than ~65 kDa are neither endogenous UGT1A nor UGT2B 
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isoforms as they were not detected in the microsomal proteins of native CHO and HEK293 

cells by immunoblotting with anti-UGT1A or UGT1B antiserum (data not shown), which 

indicates that the unexpected high molecular-weight bands were extremely stable homo-

oligomers of UGT1A10 or hetero-oligomeric complexes with another protein. 

 

Figure 4.1 Western blot analysis of UGT1A10 protein in microsomes prepared from 

UGT1A10-6xHis-overexpressing stable CHO and HEK293 cell lines. Microsomes were 

boiled at 95oC for 10 min in the presence of 100 mM dithiothreitol (DTT) prior to 

electrophoresis 

 

Previously, Matern et al.294 showed that a form of active rat UGT extracted from 

rat liver appears with an apparent molecular mass = 316 kDa and the subunit molecular 

weight was determined as ~54 kDa, suggesting that the formation of oligomeric UGT 

complexes occurred naturally or inadvertently after purification. In line with this, recent 

reports also support295-297 that the UGT proteins existed in the membrane tissue as higher-

order oligomers (at least dimers). These observations led us to test whether the majority of 
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recombinant human UGT1A10 enzyme in CHO and HEK293 cells are also highly 

organized within the membrane of ER and exist as homo-oligomeric complexes. For this 

purpose, UGT1A10 proteins in microsomes prepared from the stable cell lines indicated 

above were first exposed to different denaturating conditions then separated on SDS-PAGE 

followed by immunoblot detection with anti-UGT1A antibody as described in the material 

method section. We found that the majority of HEK293-expressed UGT1A10 

(UGT1A10HEK293) enzyme molecules formed the higher-order oligomers that were 

completely resolved to the monomeric size of UGT1A10 upon SDS-PAGE after treatment 

with dithiothreitol (DTT) and the minority migrate as a dimer after reduction. However, 

the covalently cross-linked higher-order oligomers were not observed in the CHO-

expressed UGT1A10 (UGT1A10CHO). Boiling the samples neither formed aggregates of 

UGT1A10 proteins nor made changes in the results (Fig. 4.2). To examine whether the 

oligomeric UGT1A10 complexes seen in the stable HEK293 cells are homeric or 

heteromeric, anti-UGT1A immunoprecipitation was performed. However, whereas 

UGT1A10CHO enzyme was efficiently precipitated, UGT1A10HEK293 enzyme was not in the 

same experimental condition. 
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Figure 4.2 Analysis of recombinant UGT1A10 expression. SDS-polyacrylamide gel 

electrophoresis of microsomes under different denaturating conditions, followed by 

immunoblot analysis. DTT, electrophoresis after reduction with 100 mM DTT; Boiling, 

electrophoresis after boiling; No treatment, No DTT and boiling before electrophoresis. 

 

4.3.2 Quantification of the levels of recombinant UGT1A10 in microsomes prepared 

from stable cells 

Considering that disulfide bridges considerably contribute to the interaction of 

UGT1A10 expressed in HEK293, but not in CHO cells, a question was whether the 

UGT1A10 enzyme activity may be altered by the formation of intermolecular crosslinks 

via disulfide bonds between UGT1A10 molecules. To address the question, the 

concentrations of UGT1A10 expressed using the two stable cell lines were first determined 
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and then their kinetic parameters (kcat and KM) values were evaluated and compared in 

subsequent kinetic assays. As shown in Fig. 4.3A, we purified UGT1A10 from microsome 

prepared from the UGT1A10-6xHis-overexpressing stable CHO cells and determined its 

concentration as noted in the Materials and Method section. Differing amounts of purified 

UGT1A10 were then loaded as indicated to obtain a single blot with densitometric readings 

on the linear part of the curve for membrane-bound UGT1A10 in microsomes (Fig 4.3B & 

C). The concentrations of membrane-bound UGT1A10 in microsomes prepared from the 

stable HEK293 and CHO cells were determined to be 6.69 and 3.02 ng/μg of microsomal 

proteins, respectively. 
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Figure 4.3 Quantification of the levels of UGT1A10 in microsomes. (A) SDS-PAGE 

analysis of pure UGT1A10-6xHis extracted from microsome prepared from UGT1A10-

6xHis-overexpressing stale CHO cells. The sizes of the molecular mass markers are 

indicated on the left in kDa. (B) Chemiluminescent blot of dilution series of purified 

UGT1A10-6xHis and two unknown amounts of membrane-bound UGT1A10-6xHis. (C) 

The linear dynamic range of film-based detection for UGT1A10-6xHis. The graph shows 

a quantitative level of UGT1A10-6xHis protein for the corresponding chemiluminescence 

signal intensity. Each dot represents the average of duplicates and its values are expressed 

as the mean ± standard deviation. 
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4.3.3 Kinetics of morphine glucuronidation by recombinant human UGT1A10 

To test whether HEK293- and CHO-expressed UGT1A10 proteins forms have a 

similar catalytic activity against morphine, we investigated the kinetics for the formation 

of morphine-3-glucuronide (M3G) catalyzed by UGT1A10. As shown in a representative 

of HPLC chromatograms depicting the peak for M3G (Fig. 4.4A), the glucuronidation 

activity was observed for both membrane-bound UGT1A10CHO or UGT1A10HEK293 

enzymes against morphine (Fig. 4.4, top and middle) and the peak (M3G) with a retention 

time of 5.4 min disappeared after β-glucuronidase was added to the reaction (Fig. 4.4, 

bottom).  
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Figure 4.4 Kinetic analysis of the formation of morphine-3-glucuronide (M3G) by 

UGT1A10. (A) High-performance liquid chromatography (HPLC) analysis of M3G 
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formation using microsomes prepared from UGT1A10-6xHis-overexpressing stable cell 

lines. Top, membrane-bound UGT1A10-6xHis expressed in CHO cells; middle, 

membrane-bound UGT1A10-6xHis expressed in HEK293 cells; bottom, membrane-bound 

UGT1A10-6xHis expressed in HEK293 cells with treatment with β-glucuronidase. (B) 

M3G formation by membrane-bound UGT1A10-6xHis enzymes in CHO cells (●) or in 

HEK293 cells (○), or by purified UGT1A10-6xHis protein (■) were determined at substrate 

concentrations of 0.1 to 20 mM. Kinetic parameters (kcat and KM) were determined by 

fitting the measured reaction rate data to the Michaelis-Menten kinetic equation using the 

Prism5.01 software. Each dot is the representative of the average of triplicates and its 

values are expressed as the mean ± standard deviation. 

 

The generated kinetic data are depicted in Fig. 4.4B, and the kinetic parameters 

obtained are summarized in Table 4.2. As shown in Table 4.2, compared to membrane-

bound UGT1A10HEK293, membrane-bound UGT1A10CHO had a higher kcat value (8.26 min− 

1 compared to 0.90 min− 1) and a slightly lower KM value (7.3 mM compared to 10.4 mM). 

These data indicate that the major difference between membrane-bound UGT1A10CHO and 

UGT1A10HEK293 in the catalytic efficiency against morphine (kcat/KM = 1.13 × 103 min− 

1 · M− 1 for UGT1A10CHO vs kcat/KM = 86.51min− 1 · M− 1 for UGT1A10HEK293) is largely 

attributed to their turnover numbers (kcat) for the M3G formation. However, 

glucuronidation of morphine by the purified UGT1A10 was not observed under the 

experimental conditions generating the kinetic data depicted in Fig. 4.4B.  
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Table 4.2 Kinetic parameters of human UGT1A10-6xHis against morphine  

a Relative catalytic efficiency (kcat/KM) 

 

 

4.3.4 Kinetics of entacapone glucuronidation by recombinant human UGT1A10 

Entacapone is an inhibitor of catechol-O-methyltransferase (COMT) used in the 

treatment of Parkinson’s disease. Entacapone is known to be metabolized into entacapone 

3-O-glucuronide by different UGTs. As shown in Fig. 4.5, the peak for entacapone 3-O-

glucuronide (retention time = 9.9 min) appeared in the presence of membrane-bound 

UGT1A10CHO or UGT1A10HEK293 (top and middle) enzyme, and the peak was no longer 

found if the reaction was further incubated with β-glucuronidase (bottom), indicating that 

entacapone was recognized by both the membrane-bound UGT1A10 enzyme forms as a 

substrate.  

 

UGT1A10-6xHis KM kcat kcat/KM RCEa R2 

 mM min − 1 min − 1 · M − 1   

      Membrane-bound_HEK293 10.4 ± 0.96 

 

0.90 ± 0.04 86.51  1 0.994 

       Membrane-bound_CHO 7.30 ± 0.81 8.26 ± 0.38 1.13 × 103 13.0 0.988 
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Figure 4.5 HPLC analysis of the formation of entacapone 3-O-glucuronide using 

microsomes prepared from UGT1A10-6xHis-overexpressing stable cell lines. Top, 

membrane-bound UGT1A10-6xHis expressed in CHO cells; middle, membrane-bound 

UGT1A10-6xHis expressed in HEK293 cells; bottom, membrane-bound UGT1A10-6xHis 

expressed in HEK293 cells with treatment with β-glucuronidase. 
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To assess whether the observed differences in the catalytic activity against 

morphine between membrane-bound UGT1A10CHO and UGT1A10HEK293 are also 

manifested against a different substrate, additional kinetic assay was performed against 

entacapone. The obtained kinetic data are depicted in Fig. 4.6A, and the kinetic parameters 

determined are summarized in Table 4.3.  

 

Figure 4.6 Kinetic analysis of entacapone 3-O-glucuronide formation by UGT1A10. (A) 

Formation of entacapone 3-O-glucuronide by membrane-bound UGT1A10-6xHis protein 
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in CHO cells (●), or in HEK293 cells (○) were determined at substrate concentrations of 3 

to 2000 μM. (B) Formation of entacapone 3-O-glucuronide by purified UGT1A10-6xHis 

protein was determined at substrate concentrations of 3 to 2000 μM in the presence (●) or 

absence (○) of 1 mg/ml of phosphatidylcholine type X-E. Kinetic parameters (kcat and KM) 

were determined by fitting the generated reaction rate data to the Michaelis-Menten kinetic 

equation using the Prism5.01 software. Each dot refers to the average of duplicate or 

triplicates and its values are expressed as the mean ± standard deviation. 

 

As shown in Table 4.3, the expected similar differences in glucuronidation kinetics 

for entacapone were also observed between membrane-bound UGT1A10CHO and 

UGT1A10HEK293. A substantially higher catalytic efficiency against entacapone was 

observed for membrane-bound UGT1A10CHO compared to UGT1A10HEK293 (5.53 × 105 

min− 1 · M− 1 compared to 7.71 × 104 min− 1 · M− 1) and this difference is mainly due to a 

substantially higher kcat value (25.3 min− 1 compared to 4.39 min− 1) and a slightly lower 

KM value (45.7 µM compared to 56.9 µM) of membrane-bound UGT1A10CHO compared 

to membrane-bound UGT1A10HEK293.  

Added to this, although the purified UGT1A10 showed a detectable enzymatic 

activity toward entacapone, the experimental KM and kcat values of membrane 

UGT1A10CHO were indeed increased by a factor of about 15 (45.7 µM compared to 703 

µM) and decreased by a factor of about 320 (25.3 min− 1 compared to 0.079 min− 1), 

respectively, during the purification process (Table 4.3). Moreover, it was observed that the 

rate constant of entacapone glucuronidation by the purified UGT1A10 was only slightly 

increased by the addition of phospholipid sonicated (Fig. 4.6B & Table 4.3).  
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Table 4.3 Kinetic parameters of human UGT1A10-6xHis against entacapone 

a Relative catalytic efficiency (kcat/KM) 

 

 

4.4 Discussion and Conclusion  

An extrahepatic human UGT1A10 was expressed as an active enzyme using 

lentivirus-infected HEK293 and CHO cells. Our recombinant UGT1A10 has a C-terminal 

hexa-histidine tag which allows for efficient single-step chromatographic purification 

using IMAC. Indeed, human recombinant UGTs containing a His tag at the C-terminus 

have been widely used for the enzymatic characterization, structure determination, and 

substrate screening studies of the UGTs.137, 298-301 Zhang et al.302 demonstrated that only 

mild increase in the KM values was observed in UGT1A9 and 2B7 containing the C-

terminal His-tag, but no differences in parameters such as the kinetic model. In consistent 

with the findings, we also found that CHO-expressed recombinant UGT1A10 proteins 

displayed a similar KM values for morphine (KM = 7.30 ± 0.81 mM for UGT1A10-6xHis 

vs KM = 6.60 ± 0.33 mM for UGT1A10), regardless of whether or not it had the addition 

of a His tag to its C-terminal end, which suggests that UGT1A10-6xHis is a good model 

for the functional studies.  

Previously, Kurkela et al.298 reported a good method to purify human UGT1A9 as 

 

UGT1A10-6xHis KM kcat kcat/KM RCEa R2 

 µM min − 1 min − 1 · M − 1   

Membrane-bound_HEK293 56.9 ± 4.1 4.39 ± 0.07 7.71 × 104 1 0.987 

 Membrane-bound_CHO 45.7 ± 4.5 25.3 ± 0.6 5.53 × 105 7.17 0.992 

 Purified_CHO w/o phospholipid 703 ± 116 0.079 ± 0.005 1.12 × 102 1.45 × 10-3 0.991 

 Purified_CHO  w/ phospholipid 554 ± 72 0.16 ± 0.01 2.88 × 102 3.74 × 10-3 0.995 
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an active form using Triton X-100. In this study, we demonstrated that their method also 

works for purification of active UGT1A10 which shares about 93.2% identical protein 

sequence with UGT1A9. However, the purification process caused an irreversible and 

considerable decrease in UGT1A10 enzymatic activity, which cannot be merely 

compensated by phospholipid addition. Actually, this observation is consistent with the 

findings of Kurkela et al..298 Compared to membrane-bound UGT1A10CHO, the KM and kcat 

values for entacapone were reduced ~15 and ~320 times, respectively, during the 

purification process.  

The oligomeric states of the UGTs have been studied for more than two decades. 

One of the main reasons for the attempts was to answer the question concerning whether 

or not the enzymatic activities of the UGTs are affected by their oligomeric states. The two 

previous studies studying pure UGT isoforms extracted from the native tissues showed that 

UGTs could be present as tetramers or even higher-order oligomers.294, 303 By nearest-

neighbor cross-linking and yeast two-hybrid analysis, Ghosh et al.295 also revealed that 

recombinant human UGT1A1 enzymes within microsomal membrane form homo-

oligomers. Added to this, a study using fluorescence resonance energy transfer as a tool to 

demonstrate oligomerization of UGT1A7 proteins reported296 that ~90% of UGT1A7 

proteins existed as homo-oligomeric complexes in live cells. In this study, we found that 

most of recombinant human UGT1A10 enzymes expressed in HEK293 cells formed the 

covalently cross-linked higher-order oligomers via intermolecular disulfide bonds (Fig. 

4.2). To the best of our knowledge, this is not only the first demonstration of the 

oligomerized UGT1A10 complexes, but also the first evidence to show the presence of 

complicated disulfide bridges to form higher-order UGT complexes bigger than a dimer. 
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Considering that the covalently cross-linked homo-oligomers are not frequently observed 

in recombinant human UGT1A1, 1A4, and 1A6 enzymes expressed in HEK293 cells, as 

reported by Fujiwara et al.,304 the observed multiple disulfide bonds formed in the 

oligomerized UGT1A10 complexes seem to be unique.  

Interestingly, we also found that CHO-expressed UGT1A10 was barely cross-

linked via disulfide bridges, unlike the HEK293-expressed UGT1A10 (Fig. 4.1 & 4,2). 

This finding led us to ask whether there is any difference in activity between these 

UGT1A10 enzyme forms. Our kinetic assays on the HEK- and CHO-expressed UGT1A10 

enzyme forms for their catalytic activities against morphine and entacapone revealed that 

HEK293-expressed UGT1A10 had a similar KM value, but a substantially decreased kcat 

value, compared to the CHO-expressed UGT1A10. These findings suggest that the 

intermolecular disulfide bonds in the HEK293-expressed UGT1A10 protein would 

substantially decrease the catalytic activities of the enzyme against both of the substrates 

(Tables 4.2 & 4.3). However, since the UGT1A10 enzyme forms in the microsomal 

fractions, not the purified enzyme forms, were utilized for our enzyme activity assays, we 

still cannot completely rule out alternative possibilities such as the presence of another key 

determinant of UGT1A10 enzyme activity. Indeed, we also tested whether an enzymatic 

activity of HEK293-expressed UGT1A10 can increase by disrupting the S-S bonds. It was 

observed that both membrane-bound UGT1A10HEK293 and UGT1A10CHO became inactive 

after incubated with 100 mM DTT for 1 hr, which strongly suggests that the intramolecular 

disulfide bonds of UGT1A10 enzyme are crucial for its activity or stability. Despite of the 

experimental limitation, our observations clearly indicate that the enzymatic activity and 

post-translational modification of UGT1A10 can be significantly affected by the cell line 
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used to express the protein. In addition, according to the modeled van der Waals surface of 

the UGT1A10 protein structure (Fig. 4.7),287 UGT1A10 has three cysteine residues (C72, 

C183, and C277) on the protein surface. C183 of one UGT1A10 molecule could form a 

disulfide bond with C72 or C277 of another UGT1A10 molecule, i.e. forming 

intermolecular disulfide bonds. Further, there are multiple asparagine residues (that are 

potential glycosylation sites) nearby C72 and C277 on the protein surface. Different glycan 

structures formed in different types of cells could have differential effects on formation of 

the intermolecular disulfide crosslinks, which helps us to understand the observed 

remarkable oligomerization difference between the two cell lines. 

 

 

Figure 4.7 The modeled van der Waals surface of the UGT1A10 protein structure, showing 

three solvent-accessible cysteine residues (C72, C183, and C277 in green color). Panels A 

and B show two sides of the protein, with C72 and C277 on one side and C183 on the 

opposite side. Indicated in red color are solvent-accessible asparagine residues (potential 

glycosylation sites). C72 and C277 are close to the entrance of the enzyme active-site 
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pocket. C72 or C277 of a UGT1A10 molecule may form a disulfide bond with C183 or 

C72 or C277 of another UGT1A10 molecule for crosslinking via intermolecular disulfide 

bonds. The crosslinking disulfide bonds involving C72 or C277 are expected to block the 

entrance of the enzyme active-site pocket and, thus, decrease the catalytic activity of the 

enzyme. The figure was provided by Drs. Kuo-Hao Lee and Yaxia Yuan.  

 

Considering that a non-hepatic UGT1A10 enzyme is substantially expressed in 

human small intestine and colon with UGT1A1, 2B7, 2B15, and 2B17,305-308 there still 

remains notable interest in the potential contributions of these enzymes to the first-pass 

metabolism of morphine in the gastrointestinal track after oral uptake. This is the first 

report of the complete kinetic parameters (kcat and KM) of UGT1A10 against morphine and 

entacapone. Extending the lines of this study using the UGTs mentioned above will help to 

enhance our understanding of their significant contributions to the first-pass extraction of 

orally administered drugs including morphine. 
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4.5 Experimental details 

4.5.1 Chemicals and Materials 

Phusion DNA polymerases, restriction enzymes, and T4 DNA ligase were 

purchased from New England Biolabs (Ipswich, MA). All oligonucleotides were purchased 

from Eurofins MWG Operon (Louisville, KY). Chinese hamster ovary (CHO)–S cells, 293 

human embryonic kidney–F (HEK293) cells, HEK-293FT, FreeStyleTM CHO Expression 

Medium, FreeStyle™ 293 Expression Medium, hypoxanthine/thymidine (HT) supplement, 

l-glutamine, 4–12% Tris-glycine Mini Protein Gel, and SimpleBlue SafeStain were 

purchased from Life Technologies (Carlsbad, CA). Morphine was provided by the National 

Institute on Drug Abuse (NIDA) Drug Supply Program. Morphine-3-glucuronide, 

entacapone, entacapone 3-O-glucuronide, UDP-GA, Triton X-100, saccharolactone, β-

glucuronidase, phospholipids (phosphatidylcholine type X-E) and the solvents used in 

high-performance liquid chromatography (HPLC) were purchased from Sigma-Aldrich (St. 

Louis, MO). HisPur™ Cobalt Resin was obtained from Thermo Fisher Scientific (Waltham, 

MA). Centrifugal filter units were ordered from Millipore (Burlington, MA). 

 

4.5.2 Generation of the stable cell line by lentivirus infection 

Cell lines stably overexpressing human UGT1A10 were generated using a 

lentivirus-based method described in our previous report.309 The human UGT1A10-6xHis 

gene was first synthesized by Genscript Corporation (Piscataway, NJ) based on the 

published sequence in GenBank (NM_019075.2) and inserted in the pCSC-SP-PW vector, 

lentivirus plasmid. In order to package the lentivirus particles carrying UGT1A10-6xHis 

gene, lentivirus was produced by co-transfecting pCSC-human UGT1A10-6xHis plasmid 
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with the two packaging vectors (pMDLg/pRRE and pRSV-Rev) and one envelope plasmid 

(pCMV-VSV-G) into HEK-293FT cells by lipofection. CHO-S and HEK293F cells were 

then transduced with the packaged lentivirus particles. The infected cells were recovered 

from the infection for 2 days or more and transferred to a shake flask for scaled-up culture. 

The obtained stable cell pools were kept frozen before use. 

 

4.5.3 Microsomal preparation 

Cells were washed with Tris-buffered saline (25 mM Tris base, pH 7.4, 138 mM 

NaCl, and 2.7 mM KCl) followed by a centrifugation at 2,000 × g for 5 min at 4oC. The 

cell homogenates were prepared through resuspending the cell pellets in 25 mM Tris-Cl, 

pH 7.4 and subjecting them to sonication. In order to remove cell debris or unbroken cells, 

the total cell homogenates were exposed to centrifugation at 10,000 × g for 20 min. 

Microsomes were prepared by ultracentrifugation of the supernatant at 100,000 × g for 1.5 

hr and resuspending the resulting microsomal fraction in in 25 mM Tris-Cl, pH 7.4.  

Microsomes (10 mg protein/ml) were stored at -70oC before use and their concentrations 

were determined using the Bradford assay from Thermo Fisher Scientific (Waltham, MA).  

 

4.5.4 Purification of UGT1A10 

The purification of recombinant human UGT1A10-6xHis protein followed a 

method described by Mika Kurkela,298 except that a HisPur™ Cobalt Resin from Thermo 

Fisher Scientific (Waltham, MA) was utilized rather than a nickel-charged His Hi-Trap 

column from GE Healthcare Life Sciences (Pittsburgh, PA). Briefly, microsomes were 

suspended in an extraction buffer (25 mM Tris, pH 7.4, 500 mM NaCl, and 1% Triton X-
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100) at 2 mg/ml of concentration followed by incubation for 10 min with shacking at 4oC. 

The suspension was centrifuged at 100,000 × g for 1 hr. The resultant supernatant was 

loaded onto a HisPur™ Cobalt Resin (Thermo Fisher Scientific) which has been pre-

equilibrated with a washing buffer (25 mM Tris, pH 7.4, 500 mM NaCl, 0.05% Triton X-

100, and 50 mM imidazole). After extensive washing with the washing buffer, bound His-

tagged proteins were eluted by a stepwise gradient elution with imidazole in the presence 

of 0.05% Triton X-100 and 150 mM NaCl. The eluents were analyzed by SDS-PAGE and 

western blot for UGT1A. The concentration of purified UGT1A10-6xHis protein was 

determined using the Bradford assay (Thermo Fisher Scientific). 

  

4.5.5 Enzyme Activity Assays 

Enzymatic glucuronidation of morphine or entacapone was tested under the 

following assay conditions. All enzyme assays (100 µl final volume) contained 0.1 M 

phosphate buffer, pH 7.4, 5 mM MgCl2, 5 mM saccharolactone, 5 mM UDPGA, and 100 

μg of microsomal protein or 50 ng of purified UGT1A10-6xHis. Phospholipid (1 mg/ml) 

was added to the assay mixtures containing the purified UGT1A10-6xhis. The 

concentrations of aglycone substrate ranged from 0.1 to 20 mM (for morphine) or from 3 

to 2000 μM (for entacapone). To initiate the reactions, UDPGA (5 mM in incubation) was 

added to give a 100 µl final volume and then the reactions were incubated at 37oC with 

shacking. The reaction time was adjusted such that no more than 10% of substrate was 

depleted during reaction. Blank incubations were performed in the same manner, but 

without UDPGA. The reaction was terminated with 100 µl glycine-HCl, pH 2, containing 

1% (v/v) Triton X-100. The stopped reactions were centrifuged to pellet precipitated 
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protein. The resulting supernatants were subjected to reverse-phase HPLC (RP-HPLC) on 

a 5 µm C18 110 Å column (250 × 4.6 mm; Gemini) (Life Technologies) and RP-HPLC 

was performed using the mobile phase consisting of 10% acetonitrile in 0.1% TFA and the 

remaining substrate and resulting products were monitored by monitoring UV absorbance 

at 230 nm (morphine and its glucuronide) or 315 nm (entacapone and its glucuronide). The 

quantification was based on a standard curve prepared using an authentic standard 

compound. All samples were prepared in duplicate or triplicate. GraphPad Prism 5.01 

software (San Diego, CA) was utilized to analyze the kinetic data. 

 

4.5.6 Hydrolysis by β-glucuronidase 

The reaction mixture was centrifuged at 13,000 × g for 10 min and the resultant 

supernatant was transferred to a new 1.5 ml microcentrifuge tube. β-Glucuronidase was 

added to the supernatant at final concentration of 4 U/ml. The sample was incubated at 

37°C for 2 hr before the reaction was terminated by 100 µl glycine-HCl, pH 2 containing 

1% (v/v) Triton X-100. 

 

4.5.7 Western blot assay 

The levels of membrane-bound UGT1A10 protein in microsomes prepared from 

human UGT1A10-6xHis overexpressing cell lines were measured by western blot analysis 

using mouse anti-human UGT1A IgG obtained from Santa Cruz Biotechnology (Dallas, 

Texas) (1:3000 dilution as described in the manufacturer’s instructions). HRP-conjugated 

goat anti-mouse IgG (Santa Cruz Biotechnology) was used at 1:4000 as a secondary 

antibody and UGT1A10 protein was finally detected by chemiluminescence using the 
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SuperSignal West Dura Extended Duration Substrate from Pierce Biotechnology (Waltham, 

MA). The levels of UGT1A10 were further quantified against a known amount of purified 

UGT1A10-6xHis protein by densitometric scanning of the blots using Quantity One 

software (Bio-Rad, Hercules, CA). 
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Chapter Ⅴ. Development of a New Par-4 Entity with a Prolonged Duration of Action 
 

Prostate apoptosis response-4 (Par-4) is one of tumor suppressors which protect 

against neoplastic transformation. Par-4 is capable of inducing apoptosis selectively in 

cancer cells through either the intrinsic or extrinsic pathway. Especially, extrinsic apoptosis 

can be triggered by binding of extracellular Par-4 to cell surface GRP78 detected in various 

tumor types. In this study, we found that recombinant Par-4 protein shows a limited serum 

persistence in mice which may diminish its antitumor activity in vivo. Therefore, to 

improve the performance of short-lived Par-4 protein, Par-4 was genetically conjugated to 

a fragment crystallizable (Fc) of human IgG1 and expressed using the E. coli expression 

system for large-scale production. The results of apoptosis assay demonstrated that E. coli-

derived novel Par-4 form (denoted as Fc(M1)-Par-4) retains significant proapoptotic 

activity. In addition, the pharmacokinetic study of Fc(M1)-Par-4 in mice revealed that Fc 

fusion leads to approximately 7-fold increase in the biological half-life of Par-4. We also 

demonstrated that a prolonged circulating half-life by Fc fusion improves the ability of Par-

4 protein to suppress metastatic tumor growth in vivo. 

 A manuscript for the results described in this chapter will be submitted for 

consideration of publication. Dr. Ziyuan Zhou and Xirong Zhang helped multiple blood 

sample collections for the pharmacokinetic studies of Par-4 proteins in mice. Cell-based 

anti-cancer activity assay and in vivo anti-tumor activity assay were performed by Dr. 

Nikhil Hebbar and Nathalia Vitoria Pereira Araujo in the lab of Dr. Vivek M. Rangnekar. 

 

5.1 The role of Par-4 as a tumor suppressor 

 Prostate apoptosis response-4 (Par-4) is a tumor suppressor protein expressed 
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ubiquitously in a number of tissues. In 1994, the Par-4 gene was first discovered as an early 

apoptotic gene in a rat prostate cancer cell line incubated with ionomycin for apoptotic cell 

death.310-311 It was demonstrated that overexpression of Par-4 is sufficient to elicit apoptotic 

cell death in most cancer cells.312 In line with this observation, the Par-4 gene has been 

reported to be often deleted or significantly down-regulated in many different types of 

cancer including gastric and pancreatic cancer,313 lymphoma,314 and neuroblastoma.306 

 The core domain of Par-4 (amino-acid residues 145-204 in human Par-4; and 137-

195 in rat Par-4), designated Selective for Apoptosis in Cancer cells (SAC), serves as the 

effector domain responsible for its pro-apoptotic activity.315 Notably, this domain is 100% 

conserved in mouse, rat, and human homologs, which implies that Par-4 plays a critical 

role in the surveillance against tumors.315 Indeed, mature Par-4 protein and its SAC domain 

both are capable to induce apoptotic cell death through both an intrinsic pathway (activated 

by intrinsic stimuli such as biochemical stress or DNA damage, and mainly modulated by 

Bcl-2 and Bax)316 and extrinsic pathway (activated in response to external stimuli such as 

Fas ligand).317 At first, it was believed that Par-4 protein localizes and acts only in both the 

cytoplasm and the nucleus for apoptosis induction,310, 318 but subsequent studies revealed 

that Par-4 protein can be secreted to the extracellular space for action.311 Extracellular Par-

4 protein can induce apoptosis via caspase-3 and 8 activation when interacting with the 

stress response protein, i.e. glucose regulated protein 78 (GRP78), expressed on the surface 

of cancer cells.311 It has been also demonstrated that exposure to purified recombinant Par-

4 protein not only induce apoptosis in multiple types of cancer cells, but also inhibit tumor 

growth in vivo.312, 320-324 Therefore, the current research of Par-4 related drug discovery has 

focused on development of small-molecule drugs that can facilitate Par-4 secretion from 
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normal cells for Par-4-dependent inhibition of tumor growth. Arylquin 1319 and chloroquine 

(CQ), an anti-malarial drug,320 have been discovered as a strong inducer of Par-4 secretion 

from normal or cancer cells.  

  

5.2 The focuses of this research 

However, the purpose of our study on Par-4 is different. In the present study, we 

have engineered Par-4 to improve its in vivo stability, and investigated the potential 

application of the engineered Par-4 protein as a novel protein therapeutic itself for cancer 

treatment.  We found that the tested recombinant Par-4 proteins stay in the circulatory 

system of mice only for a very short period of time, and especially 6xHis-Par-4 protein 

whose mass is below the threshold for glomerular filtration (≤ ~40 kD) undergoes much 

rapid clearance from the blood. These results suggest a possibility that the therapeutic 

efficacy of natural or recombinant Par-4 protein for cancer treatment increases with 

enhanced in vivo performance. To address this possibility, Fc-fused Par-4 protein was 

generated and produced using the E. coli expression system. It is demonstrated that Fc-

fusion enhances the performance of Par-4 in mice, which leads to increase in its potency to 

inhibit metastatic tumor growth in vivo. These results also strongly support that the tumor-

suppressing activity of secreted Par-4 is potentially diminished due to its limited serum 

persistence in vivo. In this study, we discovered a novel Par-4 entity which is more suitable 

for potentially promising Par-4-based protein or gene therapy, and developed a new method 

for large-scale production of this therapeutically more valuable Par-4 entity.  
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5.3 Results 

5.3.1 The short serum persistence in vivo of recombinant Par-4 (Par-4) 

In a previous report by Zhao et al.,321 it was demonstrated that the intravenous 

administration of recombinant TRX-Par-4 or TRX-SAC protein (prepared in E. coli) in 

immunocompetent C57/BL6 mice significantly suppressed lung metastasis of LLC1 

(Lewis lung carcinoma line 1) cells in mice,321 which implies that both extracellular Par-4 

and SAC proteins are capable of inhibiting metastatic tumor growth in vivo. Thioredoxin 

(TRX) fusion protein is a frequently used tool to increase the solubility and expression of 

mammalian proteins when they are expressed heterologously in E. coli.322 However, the 

pharmacokinetic profiles of both TRX-Par-4 and TRX-SAC proteins have not yet been 

studied despite of their considerable in vitro and in vivo anti-tumor activity against different 

cancer cells.311, 320-321 Therefore, we first determined how long TRX-Par-4 or unfused Par-

4 protein can stay in the circulatory system of mice. To address this question, Par-4 protein 

fused to the C-terminus of TRX or 6xHis-tag was prepared using the bacterial expression 

system (TRX-Par-4 and 6xHis-Par-4, respectively; see Fig. 5.1A), and each purified 

protein was then infused at the dose of 5 mg/kg in mice through tail vein injection. Blood 

samples were collected at varying time points after protein injection and analyzed by 

western blotting using anti-Par-4 antibody. The results revealed that both TRX-Par-4 (~50 

kD) and 6xHis-Par-4 (~35 kD) proteins are quickly removed from the circulatory system. 

(Fig. 5.1B & C) TRX-Par-4 concentration decreased in vivo at a relatively slower than that 

of 6xHis-Par-4, with the former able to be observed up to 90 min after i.v. injection, while 

6xHis-Par-4 could be detected at very low signal up to 30 min. These findings suggest the 

possibility that the in vivo anti-tumor activity of Par-4 protein is limited or underestimated 
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due to its short circulating half-life. Therefore, we decided to investigate the hypothesis 

that extended exposure due to improved biological half-life by Fc fusion enhances in vivo 

antitumor activity of Par-4 protein in a mouse model for tumor metastasis. 

 

 

Figure 5.1 The limited serum persistence of recombinant Par-4 proteins in mice. (A) SDS-

PAGE of the purified TRX-fused or hexa-histidine tagged Par-4 (TRX-Par-4 and 6xHis-

Par-4, respectively). Mice were injected intravenously with 5 mg/kg TRX-Par-4 or 6xHis-

Par-4. Relative serum concentrations of TRX-Par-4 (B) and 6xHis-Par-4 (C) were 

evaluated at periodic intervals by western blotting. The recombinant Par-4 proteins were 

detected with antibody against Par-4 and visualized by chemiluminescence. The light chain 

of mouse IgG1 was used as an internal loading control. The two panels are representative 

blots of two mice.  

 

 

5.3.2 Development of a method for large-scale production of Fc-fused Par-4 

We first designed a novel Par-4 entity with a prolonged duration of action. A great 
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effort was also made to obtain a sufficient amount of the protein material for in vivo 

characterization. Our protein engineering in this study started from rat Par-4, rather than 

human Par-4, because the engineered novel Par-4 entity would be tested in vivo using 

rodents (mice and rats). 

 

5.3.2.1 Design of a new Par-4 entity with a prolonged half-life 

The therapeutic efficacy of a therapeutic protein drug can be greatly increased by 

improving its pharmacokinetic profile.28, 49-54 Protein fusion with the Fc region of human 

IgG1 (IgG Fc) is one of the most commonly used strategies to prolong the duration of 

action of protein therapeutics.56-57 An A1Q/C6S/C12S/C15S/P24S human Fc variant  

(denoted as Fc(M1) for convenience) is a monomeric Fc variant and has been successfully 

utilized to improve the half-life time of abatacept, a therapeutic antibody drug.323 To extend 

the biological half-life of Par-4, the gene was first genetically fused to the C-terminus of 

Fc(M1). The leader peptide sequence of mouse Ig kappa-chain was then added to the N-

terminus of the fusion gene to facilitate its secretion from the cytosol to the extracellular 

space (Fig. 5.2). The resultant gene of Fc(M1)-Par-4 (~70 kD) was first prepared using the 

CHO expressing system to obtain the amount of protein sufficient for the in vivo 

characterization study of the protein. Purification of the E. coli-derived soluble Fc(M1)-

Par-4 protein was performed using protein A affinity chromatography (Fig. 5.4). 

 

 

Figure 5.2 The schematic presentation of the fusion protein of Par-4 to Fc(M1). ‘ss’ 

represents the leader peptide sequence of mouse IgG kappa-chain. 
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5.3.2.2 Passage number-related effects on stable CHO-S cells expressing Fc-fused Par-

4 

As described in the methods section, a lentiviral vector-mediated gene transfer 

method was employed to generate stable CHO lines for efficient production of recombinant 

Par-4 protein. However, contrary to our expectations, we found that the generated cell lines 

at high passage numbers underwent alterations in the efficiency of Fc(M1)-Par-4 

production, compared to lower passage cells. The expression levels of the recombinant Par-

4 protein rapidly and gradually decreased as the passage number increased (Fig. 5.3). In 

fact, for more rapid establishment of a stable cell line, our protocol for generation of stable 

CHO cells does not include any antibiotics selection process which is usually required for 

screening and selecting a more stable and productive clone from the cell population 

transduced with recombinant lentiviral particles. Considering that the growth rate of the 

resulting transduced pooled cell population was slightly decreased when compared to that 

of naïve CHO cell, the cell viability or proliferation activity of the transduced CHO cells 

in the pooled cell population might be more specifically and negatively affected by the 

combinational activity of extracellular and intracellular recombinant Par-4 protein. 
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Figure 5.3 The secretion levels of a recombinant Par-4 protein to the culture media. Each 

10 µl of culture medium was analyzed by western blot for Par-4. 

 

5.3.2.3 Expression of Fc(M1)-Par-4 protein by transient transfection 

We were able to obtain a sufficient amount of Fc(M1)-Par-4 protein for its 

pharmacokinetic study in mice by transient gene expression in CHO‐S cells using a 

commercially available transfection reagent (TransIT-PRO™), but the obtained quantity 

was still not sufficient for a planned in vivo antitumor activity study (Fig 5.4). In reality, 

transient gene expression using a commercially available transfection agent such as 

TransIT-PRO, Cellfectin, and Lipofectamine is not generally considered a suitable method 

for a large-scale protein production mainly due to the high cost of the reagents.  

Polyethylenimine (PEI) has been widely used as a transfection reagent largely due 

to its low cost, despite of its non-negligible cytotoxicity. PEI is a cationic polymer which 

can introduce nucleic acids such as DNA or RNA into mammalian cells with the 

polymer.324 PEI condenses DNA molecules into positively charged particles that interact 

favorably with the negatively charged phospholipid membrane of cell surface. 

Consequently, the complexes of DNA and PEI are internalized into cells by endocytosis 

and the DNA is then released into the cytosol.325 Indeed, a number of cell lines are proven 

to be efficiently transfected with PEI. Especially, CHO-S and HEK 293 cells have 

displayed a relatively higher recombinant protein expression than other cell lines.326 

Therefore, to test the possibility that PEI can be utilized for large-scale production of 

Fc(M1)-Par-4 protein, the gene was transiently expressed in CHO-S cells using either PEI 

or TransIT-PRO™ for comparison. As shown in Fig. 5.5, a substantially decreased 
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production of Fc(M1)-Par-4 protein was observed in the CHO cells transfected with PEI, 

compared to that of the CHO cell transfected with TransIT-PRO™. Interestingly, it was 

also observed that the CHO cells transfected with PEI or TransIT-PRO™ show a similar 

level of 6xHis-Par-4 expression. Given that Fc-fused Pat-4 protein might be exposed to a 

more complicated modification process than 6xHis-Par-4 protein in CHO cells because of 

its Fc part which requires for proper post-translational modification, the difference in a way 

of delivering DNA to cells between PEI or TransIT-PRO™ seems to specifically affect Fc-

fused-Par-4 expression in CHO cells, but not significantly affect the expression of 6xHis-

tagged one. Overall, these data indicate that it is not suitable to use PEI for Fc(M1)-Par-4 

expression, but it seems okay to use the reagent for 6xHis-Par-4 expression.  

 

 

Figure 5.4 SDS-PAGE of the purified Fc(M1)-Par-4. 
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Figure 5.5 Recombinant Par-4 protein is expressed at a scale of 100 ml using each of 

TransIT-PRO™ and PEI. Each bar represents the average of triplicates and the values are 

expressed as mean ± S.D. 

 

5.3.2.4 Expression of recombinant Par-4 proteins using a bacterial expression system 

  Fc(M1)-Par-4 (~70 kD) was then prepared using the E. coli expressing system to 

obtain the amount of protein sufficient for the in vivo characterization study of the protein. 

Purification of the E. coli-derived soluble Fc(M1)-Par-4 protein was performed using 

protein A affinity chromatography, followed by an additional ion-exchange 

chromatographic step to obtain the purity required for a following in vivo characterization 
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study. (Fig. 5.6B & C) 

 

 

Figure 5.6 Preparation of Fc(M1)-Par-4. (A) The schematic presentation of Fc(M1)-Par-4. 

(B)  Western blot analysis of Par-4 protein in bacterial extract transformed with pET-

22b(+)/6xhis-Par-4 and induced with IPTG. The soluble fraction (S) of the bacterial extract 

was separated from the insoluble fraction (I) by centrifugation before immunoblotting. (C) 

SDS-PAGE of the purified Fc(M1)-Par-4 protein. Soluble Fc(M1)-Par-4 protein was 

isolated by protein A chromatography (Protein A) followed by an additional ion-exchange 

chromatographic step (Ion exchanger) to achieve the purity required. 
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5.3.2.5 Practical protocols for production of high yields of Fc-fused Par-4 protein using 

the E. coli expression system 

 Although the established purification system yielded proteins of high purity, the 

yield after purification was still low (~1 mg/L bacterial culture for ~0.2 mg/L bacterial 

culture for Fc(M1)-Par-4). This low yield is mainly due to the formation of insoluble 

aggregates of Fc-fused Par-4 protein during high level expression in bacteria, and more 

complicated purification process. To obtain a higher quantity of Fc-fused Par-4 protein 

using the E. coli expression system, efforts have been focused on increasing production of 

the recombinant Par-4 protein.  

1) Codon optimization 

The efficiency of heterologous protein expression in bacteria can be attenuated by 

biased codon usage. The approaches typically used to overcome this issue are site-directed 

mutagenesis to replace rare codons with other synonymous codon frequently used in 

bacteria, or the use of specialized cell lines supplying rare codon tRNAs such as Rosetta 

(DE3)TM.327 Our in silico studies revealed that the open reading frame of Fc(M1)-Par-4 

mRNA contains six rare codons in E. coli that may decrease protein expression (Fig. 5.7). 

However, we found that Fc(M1)-Par-4 protein production was not increased in Rosetta 

(DE3)TM cell (Fig. 5.8), which suggests that these six rare codons are not rate-limiting for 

protein synthesis.  

In fact, the translation efficiency of mRNA is affected by a number of factors 

including codon adaptability (e.g. synonymous codon changes), the structure of mRNA, 

and different cis-acting elements involved in transcription and translation. With the help of 

a free online tool that takes these factors into consideration (built from Integrated DNA 
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Technologies), the full mRNA sequence of Fc(M1)-Par-4 was optimized for high yield 

production in E. coli and finally its expression was increased by a factor of about 3 after 

codon optimization (Fig. 5.9). 

 

Figure 5.7 Rare codons found in the coding region of Fc(M1)-Par4 gene. The rare codons 

are indicated by red arrow. 

 

 

Figure 5.8 SDS-PAGE analysis of Fc(M1)-Par-4 in the E. coli BL21 (DE3) and Rosetta 
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(DE3) transformed with pET-22b(+)/Fc(M1)-Par-4. Each 10 µg of soluble bacterial extract 

was loaded per lane. 

 

 

Figure 5.9 Effects of computational codon optimization of Fc(M1)-Par-4 gene on its 

bacterial expression. Each 10 µg of soluble bacterial extract was loaded per lane. 

 

2) High cell-density culture of E. coli 

Terrific Broth (TB) is a nutritionally enriched medium developed by TARTOFF and 

HOBBS (1987) to increase yields in recombinant strains of E. coli. TB consists of tryptone, 

yeast extract, glycerol, and potassium phosphate. Excess potassium phosphate molecules 

keep the pH of the cell culture medium in a favorable range for the growth of E. coli, which 

allows cells to be protected against cell death due to decrease in pH. In addition, more 

nutrition (380% more yeast extract and 20% more tryptone than LB) in TB supports the 
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high cell-density growth of E. coli which is generally related to the elevated yield of 

recombinant protein production. 

We have evaluated the process for Fc(M1)-Par-4 expression in the E. coli BL21 

(DE3) transformed with pET-22b(+)/Fc(M1)-Par-4 in TB medium. First, to obtain overall 

growth rate curves of the transformed E. coli for two temperatures (18°C or 37°C) and to 

determine the time until exponential growth is observed (Absorbance at 600 nm (Abs600, 

also known as OD600) = 0.7) at these temperatures in a given condition, the transformed 

cells were cultivated at either 18°C or 37°C and monitored by measuring Abs600 every 1 h. 

The results indicate that the transformed E. coli reached an OD600 of 0.7 in about 7.5 hours 

at 18°C while it took 4 h to reach a similar absorbance at 37°C. The cell growth reaches 

saturation phase within 11 h at 37°C, but it took almost 18 h to reach the same absorbance 

at 18°C (Fig. 5.10). 

Based on this information, we designed experiments to assess the effect of cell 

growth for induction (Absind) on cell growth and Fc(M1)-Par-4 protein expression in the E. 

coli BL21 (DE3) transformed with pET-22b(+)/Fc(M1)-Par-4. For this, the transformed E. 

coli was cultured at 18°C. Fc(M1)-Par-4 expression was induced at an Abs600 of 0.7 or 2.0 

by the addition of IPTG to a final concentration of 0.5 mM, followed by incubation for 10 

h. The results reveal that the non-induction control group yields higher cell concentrations 

than the other two IPTG induction groups, which suggests that expression of Fc(M1)-Par-

4 is toxic to the recombinant strain of E. coli. It was also observed that induction at 

Absind 2.0 leads to substantial increase in cell growth, compared to induction at Absind 0.7 

(Fig. 5.11). However, no noticeable difference was observed in recombinant protein 

expression when Absind 2.0 was compared with 0.7 (Fig. 5.12). These data indicate that 
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total Fc(M1)-Par-4 protein production can increase if IPTG induction is done at a higher 

absorbance in the exponential phase.  

 

 

Figure 5.10 Growth curves of the E. coli BL21 (DE3) transformed with pET-

22b(+)/Fc(M1)-Par-4. Cell growth at 37°C in LB at 220 rpm, or at 37°C or 18°C in TB at 

350 rpm. Each dot represents the average of duplicates and its values are expressed as the 

mean ± standard deviation. 

 

 

Figure 5.11 Comparison between IPTG-induced and uninduced growth of the transformed 
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E. coli BL21 (DE3) at 18°C in TB at 350 rpm. Each dot is the representative of the average 

of duplicates and its values are expressed as the mean ± standard deviation. 

 

 

Figure 5.12 Effects of the induction variables (OD600) on the expression of Fc(M1)-Par-

4 in the E. coli BL21 (DE3) transformed with the gene. 

 

5.3.3 E. coli-derived Par-4 proteins induce apoptosis in cancer cells 

Before in vivo characterization of the purified recombinant Par-4 proteins, we first 

determined whether Fc fusion to the N-terminus of Par-4 diminishes its proapoptotic 

activity or not. To address this question, E0771 (murine breast cancer cell line) cells were 

treated with either 100 nM 6xHis-Par-4 or Fc(M1)-Par-4 protein, followed by incubation 
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for 24 h. Storage buffer (50 mM Hepes, 20% sorbitol, 1 M glycine, pH 7.4) was used as a 

vehicle control. It was observed that Fc(M1)-Par-4 and 6xHis-Par-4 proteins induced a 

similar level of apoptosis in E0771 cells in a given treatment condition (Fig. 5.13), which 

supports that anti-cancer activity of Par-4 is not significantly altered by Fc fusion to its N-

terminus. This observation is very consistent with the findings of Zhao et al.321 using TRX- 

Par-4. 

 

 

Figure 5.13 Recombinant Par-4 elicits apoptosis in E0771 (murine breast cancer cell line) 

cells. (A) SDS-PAGE of the purified Fc(M1)-Par-4. (B) The cells were treated with vehicle 

(V), or purified 6xHis-Par-4 (6H) or Fc(M1)-Par-4 (Fc) (100 nM each). 24 h after treatment 

the cells were scored for apoptosis by immunocytochemistry (ICC) for caspase 3 activity. 

Results represent the average of triplicates and the values are expressed as mean ± S.D. 
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Asterisk (*) indicates the difference is statistically significant (p < 0.05) by Student’s t-test. 

Dr. Nikhil Hebbar in the lab of Dr. Vivek M. Rangnekar provided this figure.  

 

5.3.4 Characterization of the in vivo profiles of recombinant Par-4 

To examine whether the protein fusion to an IgG Fc region really prolongs the 

biological half-life of Par-4 protein, a pharmacokinetic study was carried out in mice. The in 

vivo data were based on intravenous (i.v.) injection of each protein in the tested mice. The 

generated PK data are depicted in Fig. 5.14, and the biological half-lives obtained are 

summarized in Table 5.1. The results revealed that both Fc(M1)-Par-4 proteins prepared from 

CHO and E. coli cells have a substantially longer biological half-lives (up to ~23.8 h) than 

that (~3 h) of 6xHis-Par-4 protein. Aglycosylated Fc(M1)-Par-4 protein displays a biological 

half-life (~20.3 h) which is comparable to that of CHO-cell derived Fc(M1)-Par-4 protein 

(~23.8 h). 
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Figure 5.14 Serum concentration (%) versus time profiles of recombinant Par-4 proteins 

in mice. CHO cell-derived Fc(M1)-Par-4 (□), E. coli-derived Fc(M1)-Par-4 (■) or E. coli-

derived 6xHis-Par-4 (●) was administered via i.v. infusion at 5 mg/kg and the serum Par-4 

protein concentrations were determined by ELISA. Results represent the average of 

triplicates per group and shown as mean ± standard error. 

 

Table 5.1 The determined biological half-lives of recombinant Par-4 proteins in mice 

Protein Prepared from t
1/2

 

6xHis-Par-4 E. coli ~3 hr 

Fc(M1)-Par-4  E. coli ~20.3 hr 

Fc(M1)-Par-4 CHO-S ~23.8 hr 
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5.3.5 In vivo characterization of recombinant Par-4 proteins for their potency in 

inhibiting metastatic tumor growth 

 To examine whether longer exposure due to half-life extension by Fc fusion 

improves in vivo antitumor activity of Par-4, we evaluated how efficiently Fc(M1)-Par-4 

and 6xHis-Par-4 proteins inhibit lung metastasis of E0771 breast cancer cells in 

immunocompetent C57/BL6 mice. To address this question, the cells (1.5 × 105 cells) were 

injected through tail vein and then 250 µg E. coli-derived 6xHis-Par-4 or Fc(M1)-Par-4 

was administered intravenously every other day for 12 days (total of 1500 µg of 

protein/mouse). It was observed that both Fc(M1)-Par-4 and 6xHis-Par-4 proteins 

significantly suppressed metastatic tumor growth in vivo compared to vehicle-treated 

control, but with no statistic difference between the two protein-treated groups in a given 

treatment condition (Fig. 5.15A). However, considering that the molecular weight of 

Fc(M1)-Par-4 protein (~70 kD) is approximately 1.7-fold higher than that of 6xHis-Par-4 

protein (~35 kD), the mice have not been treated with equivalent molar concentrations of 

recombinant Par-4 proteins. This may suggest that Fc(M1)-Par-4 protein than 6xHis-Par-4 

protein indeed would be more potent in inhibiting metastatic tumor growth in vivo, but the 

difference in their potency might become less evident at the high dose.  

Therefore, to address this question, we further determined if the in vivo anti-tumor 

activity of Fc(M1)-Par-4 protein is diminished as the dose decreases. According to the data 

obtained (Fig. 5.15B), a 70%-reduced dose of Fc(M1)-Par-4 protein (75 µg/injection) also 

induced substantial inhibition of lung metastasis in mice induced by E0771 breast cancer 

cells. Considering that lung metastasis by E0771 breast cancer cells was not significantly 

reduced at the low doses (≥ 250 µg/injection) of TRX-Par-4 in the previous studies,321 these 
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results indicate that Fc-fusion has improved the potency of Par-4 protein in inhibiting in 

metastatic tumor growth vivo.  

 

 

Figure 5.15 Recombinant Par-4 protein suppresses the metastatic growth of tumor (E0771). 
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The cells (1.5 × 105 cells) were administered into tail vein in B6C3H mice (n=5). (A) 5 h 

after administration, vehicle, or 250 µg purified 6xHis-Par-4 (His-Par) or Fc(M1)-Par-4 

(Fc-fuse-Par-4) was injected through tail vein every alternate day for 12 days (total of 

1500 µg of protein/mouse). (B) 5 h after administration, vehicle, or 150 or 75 µg purified 

Fc(M1)-Par-4 was injected through tail vein every alternate day for 12 days (total of 900 

and 450 µg of protein/mouse, respectively). Four weeks later, the mice were euthanized, 

and the number of the lung nodules were then counted. The data are expressed as the mean 

± SEM. The single and double asterisks indicate p < 0.05 and p < 0.01, respectively. 

 

 

5.4 Discussion 

In 2011, Zhao et al.321 showed that lung metastasis in immunocompetent mice 

induced by LLC1 lung cancer cells was substantially inhibited by the intravenous injection 

of 500 µg recombinant TRX-Par-4 or TRX-SAC protein. However, the quantity of Par-4 

protein used in the animal study seems substantially higher than usual because, assuming 

that the body weight of an adult mouse is 30 mg, the protein dose used can be calculated 

to be around 17 mg/kg (of body weight) which is comparable to a human dose of 

approximately 1000 mg per person for a typical body weight of 60 kg. Obviously, the 

protein dose of 1000 mg per person would be too high for practical clinical use. Both TRX-

Par-4 and TRX-SAC proteins have proven their reasonable (and probably therapeutically 

valuable) in vitro and in vivo anti-cancer activity,311, 320-321 but to my best knowledge their 

pharmacokinetic profiles have not yet been studied. This led us to examine whether TRX-

Par-4 or unfused Par-4 protein has a sufficiently long serum persistence required for proper 
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in vivo activity. Our results showed that both TRX-Par-4 and 6xHis-Par-4 proteins stay in 

the circulatory system only for very short periods of time (˂ 120 min for TRX-Par-4 and ˂ 

60 min for 6xHis-Par-4) (Fig. 5.1), which suggests the possibility that the anti-tumor 

efficacy in vivo of Par-4 protein has been underestimated due to its short circulating half-

life. In addition, considering that low-molecular-weight drugs whose mass are below the 

threshold for glomerular filtration (≤ ~40 kD) usually undergo rapid clearance from the 

blood,328-332 our data suggest that the relatively longer serum persistence of TRX-Par-4 

protein (~50 kD) than that of 6xHis-Par-4 protein (~35 kD) would be largely attributed to 

its higher molecular weight than the threshold, and that natural Par-4 protein  (~35 kD) 

released from cells to the blood stream might be short-lived due to its limited molecular 

size.  

Par-4 was engineered to improve its pharmacokinetic performance so that it shows 

enhanced therapeutic response in mice. For this reason, Par-4 protein was genetically 

conjugated to the C-terminus of Fc(M1), a human IgG Fc variant. Fusion to IgG Fc is a 

preferably used method to extend the biological half-life of therapeutically valuable protein 

by exploiting the FcRn-mediated recycling mechanism.66-68 The endothelial cellular 

neonatal Fc receptor (FcRn) has a critical role in maintaining the high circulating levels of 

IgG.59-60 Indeed, IgG has a prolonged circulating half-life of 21 days in human mainly due 

to FcRn-mediated recycling that protects against intracellular endocytic-lysosomal 

degradation.61-62 IgG Fc strongly interacts with FcRn in the acidic endosomal 

compartments after IgG is internalized into endocytic vesicles.63 The receptor-bound 

proteins are then returned to the cell membrane for extracellular release, whereas other 

serum proteins in the vascular endothelium are eventually degraded by the endocytic-
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lysosomal system.64-65 Like IgG, Fc-fusion proteins can take the advantage of the FcRn-

mediated recycling process for half-life extension.  

In the present study, our effort was also made to produce a sufficiently large amount 

of recombinant Par-4 proteins for animal studies. The bacterial expression system was 

employed for large-scale production of Fc(M1)-Par-4. The E. coli expression system is 

considered one of preferable choices for large-scale production of therapeutic protein drugs 

mainly because of greater cost-effectiveness and easier cultivation of bacteria, compared 

to the CHO or HEK293 expression system. However, the deficiency of mechanisms for 

protein post-translational modification in bacterial cells has limited the use of bacteria for 

production of therapeutic protein agents that require proper modification for functional 

activity or stability. Therefore, one question to be asked about this approach is: how E. coli-

derived Fc-fused Par-4 protein retains the functional activity and circulating half-life 

comparable to those of the fusion protein prepared from mammalian cells. However, there 

is a good possibility that aglycosylated Fc-fused Par-4 protein still can meet these 

requirements to be an effective therapeutic for cancer. First, previous studies have 

demonstrated that an aglycosylated IgG1 prepared from E. coli retains a sufficiently long 

in vivo half-life comparable to that of mammalian cell-derived immunoglobulins, and that 

aglycosylated and glycosylated antibodies show equivalent in vitro binding to FcRn.333-335 

These observations indicate that, in the case of immunoglobulin in vivo half-life, the motifs 

within the Fc portion responsible for the interaction with FcRn do not rely on post-

translational modification including glycosylation. Second, it was already demonstrated 

that Par-4 protein prepared from bacteria retains reasonable in vitro and in vivo anti-tumor 

activity,321 which implies that the post-translational modification of Par-4 is not critical for 
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its functional activity.  

Although only less than 20% of Fc(M1)-Par-4 protein was expressed in E. coli as a 

soluble and intact from (Fig. 5.6B), we were able to obtain the amount of the recombinant 

Par-4 protein sufficient for the required in vitro and in vivo studies using the E. coli 

expression system. We also found that the E. coli-derived Fc(M1)-Par-4 protein not only 

retains considerable in vitro anti-cancer activity after purification (Fig. 5.13), but also has 

approximately 7 times longer biological half-life than 6xHis-Par-4 (Fig. 5.14 & Table 5.1). 

These results suggests that Fc fusion extends the biological half-life of Par-4 by both 

increasing its size high enough to escape glomerular filtration (≤ ~40 kD) and implementing 

protection against cellular endolysosomal degradation. As the next step, it was further 

determined if Fc(M1)-Par-4 protein has improved antitumor activity in a mouse model for 

lung cancer metastasis induced by murine breast cancer cells. The results revealed that 

Fc(M1)-Par-4 protein is capable to substantially reduce lung metastatic growth in vivo at 

the low doses where TRX-Par-4 protein did not show significant in vivo anti-tumor activity 

in the same mouse model used in the previous studies321 (Fig. 5.15). These results strongly 

support that increased exposure to Par-4 due to half-life extension improves the therapeutic 

efficacy of Par-4 for cancer. Overall, our study also shows a good possibility that the E. 

coli expression system can be utilized for the production of a therapeutically valuable form 

of Par-4 protein. 
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5.5 Experimental details 

5.4.1 Cloning, expression and purification of 6xHis-Par-4 and Fc(M1)-Par-4 

The E. coli expression system 

  Bacterial expression constructs for TRX-Par-4, 6xHis-Par-4, and Fc(M1)-Par-4 

were produced by subcloning each gene into pET-22b(+) vector. The constructs TRX-Par-

4 was prepared by subcloning the rat Par-4 sequence in frame with thioredoxin cDNA 

(TRX) in vector pThio-His (Invitrogen Corporation, Carlsbad, CA)  as described in a 

previous reported by Burikhanov et al.311  E. coli BL21 (DE3) StarTM cells (Thermo Fisher 

Scientific, Waltham, MA) were transformed with each construct and induced with 0.5 mM 

IPTG (Sigma-Aldrich, St. Louis, MO). The cells were harvested 10 h after IPTG induction. 

The cells were then washed with Tris-buffered saline (25 mM Tris base, pH 7.4, 138 mM 

NaCl, and 2.7 mM KCl) followed by a centrifugation at 2,000 × g for 5 min at 4oC. The 

cell homogenates were prepared through resuspending the cell pellets in 25 mM Tris-Cl, 

pH 7.4 and subjecting them to sonication. In order to remove cell debris or unbroken cells, 

the total cell homogenates were exposed to centrifugation at 10,000 × g for 20 min.  

For purification of TRX-Par-4 or 6xHis-Par-4 protein, the resultant supernatant was 

loaded onto a HisPur™ Cobalt Resin (Thermo Fisher Scientific) which has been pre-

equilibrated with a washing buffer (25 mM Tris, pH 7.4, 500 mM NaCl, 0.05% Triton X-

100, and 50 mM imidazole). After extensive washing with the washing buffer, bound His-

tagged proteins were eluted by a stepwise gradient elution with imidazole in the presence 

of 150 mM NaCl.  

For purification of Fc(M1)-Par-4 protein, the resultant supernatant was loaded onto 

a rmp Protein A Sepharose Fast Flow (GE Healthcare Life Sciences) pre-equilibrated with 
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20 mM Tris⋅HCl (pH 7.4). Then, the mixture was packed in a column and washed with 5 

column volume (CV) of 20 mM Tris⋅HCl (pH 7.4) containing 200 mM NaCl until an OD280 

< 0.02 was achieved; then the protein was eluted by 50 mM sodium acetate, pH 4.0, 

containing 200 mM NaCl. For buffer exchange, the eluate was dialyzed in 20 mM Tris⋅HCl 

(pH 7.4) by Millipore Centrifugal Filter Units. The protein solution was then loaded onto 

a Q-Sepharose Fast Flow (GE Healthcare Life Sciences, Pittsburgh, PA) pre-equilibrated 

with 20 mM Tris⋅HCl, pH 7.4, for the second-round chromatographic separation. Fc(M1)-

Par-4 protein was eluted from the Q-Sepharose column with a stepwise gradient of NaCl 

(100–800 mM). For buffer exchange, the eluate was dialyzed in storage buffer (50 mM 

Hepes, 20% sorbitol, 1 M glycine, pH 7.4) by Millipore Centrifugal Filter Units. The entire 

purification process was performed in a cold room at 8°C and the purified proteins were 

stored at −80°C until the activity tests. Their purity was analyzed by SDS-PAGE on a 4−12% 

NuPAGE Novex Bis-Tris gel (Life Technologies).  

The CHO expression system 

Mammalian expression constructs for Fc(M1)-Par-4 were produced by subcloning 

each gene into pCMV-MCS vector. CHO-S cells were incubated in FreeStyle CHO 

Expression Medium (Life Technologies) with 8 mM l-glutamine (Life Technologies) at 

37°C in a humidified atmosphere with 8% CO2 and transfected with gene expression DNA 

constructs encoding the protein of interest using the TransIT-PRO Transfection Kit (Mirus 

Bio LLC, Madison, WI)) when the number of the cells reached 1.0 × 106 cells/mL. The 

culture medium was harvested 6 days after transfection. Fc(M1)-Par-4 protein secreted into 

the culture medium was purified by protein A affinity chromatography. After removing 

cells by centrifugation, the cell-free culture medium was mixed with rmp Protein A 
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Sepharose Fast Flow (GE Healthcare Life Sciences) pre-equilibrated with 20 mM Tris⋅HCl, 

pH 7.4, and incubated for overnight at 6°C with occasional stirring. Then, the suspension 

was packed in a column and washed with 5 column volume (CV) of 20 mM Tris⋅HCl, pH 

7.4, containing 200 mM NaCl until an OD280 < 0.02 was achieved; then the protein was 

eluted by adjustment of the pH and salt concentration. The eluate was then dialyzed in 

storage buffer (50 mM Hepes, 20% sorbitol, 1 M glycine, pH 7.4) by Millipore Centrifugal 

Filter Units. The entire purification process was conducted on ice and the purified Par-4 

proteins were stored at −20°C until use. Their purity was analyzed by SDS-PAGE on a 

4−12% NuPAGE Novex Bis-Tris gel (Life Technologies). 

 

5.4.2 Western blot  

Recombinant Par-4 proteins in bacterial extract transformed with pET-

22b(+)/6xhis-Par-4 or pET-22b(+)/Fc(M1)-Par-4 were analyzed by western blot using goat 

anti-rat Par-4 IgG obtained from Santa Cruz Biotechnology (Dallas, Texas) (1:3000 

dilution as described in the manufacturer’s instructions). Pre-adsorbed, HRP-conjugated 

anti-goat IgG (Santa Cruz Biotechnology) was used at 1:4000 as a secondary antibody and 

Par-4 protein was finally detected by chemiluminescence using the SuperSignal West Dura 

Extended Duration Substrate from Pierce Biotechnology (Waltham, MA). 

 

5.4.3 Immunocytochemistry and apoptosis analysis  

Cells in chamber slides were exposed to 100 nM purified Fc(M1)-Par-4 or 6xHis-

Par-4. 24 h after treatment the cells were subjected to immunocytochemistry (ICC) using 

the indicated anti-caspase 3 IgG and then stained with the appropriate secondary antibody 
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conjugated to Alexa Fluor-488 (green fluorescence) or Alexa Fluor-594 (red fluorescence) 

(Molecular Probes). Apoptotic nuclei were identified by TUNEL assay, caspase-3 

immunostaining, or 4, 6-diamidino-2-phenylindole (DAPI) staining. A total of three 

independent experiments were performed; and approximately 300 cells were scored in each 

experiment for apoptosis under a fluorescent microscope, as described previously.336 

 

5.4.4 Pharmacokinetics studies in mice 

ELISA for Par-4 

Mice (n=3) were injected with each recombinant Par-4 protein or saline through the 

tail vein at a dose of 5 mg/kg of body weight. Blood samples were then obtained by needle 

puncture of the saphenous vein. Approximately 15-30 µL of blood was collected into a 

heparin-treated capillary tube at differing time points after protein injection. The plasma 

was separated from the collected blood samples by centrifugation (15 min, at 5,000 × g). 

200 ng of plasma protein in 100 μl 0.05M PBS, pH 7.4, was immobilized in a 96 well flat-

bottomed EIA plate (Corning) at 4 °C overnight (or 37 °C for 2 h). The liquid was dumped 

from the plates and the rest was drained on paper towel. Coated wells were blocked with 

blocking buffer (0.05M PBS, pH 7.4, containing 1 mg/ml casein) (250 μL/well) at RT for 

30 min. After washing twice with washing buffer (0.05M PBS, pH 7.4) (250 μL/well), 100 

μl of goat anti-rat Par-4 IgG (Santa Cruz Biotechnology) in blocking buffer was added to 

each well at a range of concentrations. The plate was then covered with an adhesive plastic 

and incubated, with continual shaking, at RT for 1 h. After washing three times with 

washing buffer, pre-adsorbed, HRP-conjugated secondary antibody (anti-goat IgG-HRP) 

(70 μl/well), diluted with blocking buffer at a ratio of 1:30,000, was added into each well 
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and incubated at RT for 1 h on a shaker. The wells were then washed three times with 

washing buffer (250 μl/well) before 250 μl TMB substrate was added to the wells. The 

ELISA plate was kept in the dark until the desired color develops. The reaction was stopped 

with 100 µL of 0.5 M HCl. The absorbance (= the developed blue color) was measured at 

450 nm using a microplate reader. All measurements were performed in triplicate or 

quadruplicate. The obtained PK data (time dependent enzyme concentrations) ([E]t) were 

fitted to a double-exponential equation 247 by GraphPad Prism 5.01 software: 

tktk
t BeAeE 21][ −− +=  , which explains both the distribution process (the fast phase, 

associated with k1) and the elimination process (the slow phase, associated with k2) of the 

Fc-fused CocH3 protein in animals. The t1/2 associated with the elimination rate 

constant k2 of the fusion protein is known as the biological t1/2 or elimination t1/2. 

 

Western blot for Par-4 

 The plasma protein was analyzed by western blot for Par-4, as described above. 

 

5.4.5 Lung metastasis of E0771 cells 

The E0771 cells (1.5 × 105 cells) were administered into tail vein in 

immunodeficient B6C3H mice (n=5). 5 h after administration, 6xHis-Par-4 or Fc(M1)- Par-

4 was injected through tail vein every alternate day for 12 days (total of 1500 µg of 

protein/mouse). Four weeks later, the mice were euthanized, and the lungs were 

photographed. The number of the lung nodules were then counted. 
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5.4.6 Statistical analysis 

Statistical analyses were performed with the Statistical Analysis System Software 

Version 9.2 (SAS Institute, Cary, NC). Unless stated explicitly otherwise, one-way ANOVA 

with post hoc analysis was utilized for the statistical analysis. 
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Chapter ⅤI. Conclusions and Future Directions 
 

6.1 Cocaine abuse treatment 

The first of our designed CocHs, i.e. CocH1, has been proven safe and promising 

for use in animals and humans in preclinical and clinical studies.84, 199 However, a Phase II 

clinical trial of Albu-CocH1 for cocaine addiction treatment revealed that its actual 

therapeutic value for cocaine addiction treatment is still limited mainly due to its 

insufficiently long biological half-life which is 43-77 h in humans84 or ~8 h in rats.198  

The first part of my dissertation was focused on the development of a new CocH 

entity which is able to deliver a greater catabolic activity within the human body so that 

our CocH-based therapy for human cocaine addiction fits within the desirable once-weekly 

or longer dosing schedule. We found that Fc fusion greatly extended the serum persistence 

in vivo of CocH3 whose catalytic efficiency against cocaine is about 2-fold higher than that 

of CocH1. Enhanced FcRn binding by Fc engineering further improved its biological half-

life in rats. Our rodent studies also demonstrated that the new CocH entity efficiently 

protected animals from the physiological and psychostimulant effects of cocaine, and more 

importantly, the anti-cocaine effect delivered by the enzymes remained in the circulatory 

system for prolonged periods of time. As for the next step, the potential efficacy of long-

term administration of the enzyme as a treatment for cocaine addiction must be evaluated 

further. Given that many preclinical studies already have shown that therapies using a 

cocaine-metabolizing enzyme can significantly reduce cocaine-primed reinstatement and 

cocaine-self-administration,192-195 the use of our new CocH entity with a prolonged 

duration of action will allow us to determine if this catalytic treatment can decrease the 

reinforcing action of cocaine for a sufficient period required to achieve long-term 
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extinction of drug-craving behavior in animals and humans. 

Since heroin is one of the most frequently abused drugs with cocaine, in the second 

part of this dissertation we kinetically compared human recombinant AChE, BChE, and 

CocH1 with the aim to examine their catalytic efficiencies against heroin and 6-MAM. 

This allowed us to assess the interaction between cocaine and heroin or cocaine and 6-

MAM in their hydrolysis reactions catalyzed by CocH1 in comparison with human 

enzymes AChE and BChE. According to the results obtained, both AChE and BChE can 

catalyze 6-MAM hydrolysis to morphine, with relatively lower catalytic efficiency 

compared to the corresponding enzyme catalyzing heroin hydrolysis. The data also 

strongly suggests that plasma BChE, but not AChE, is the primary enzyme responsible for 

the rapid enzymatic hydrolysis of the 3´-phenolic ester of heroin within the blood, which 

has led us to exam whether an effective blocker for BChE can be used as a novel therapeutic 

strategy for prevention of heroin overdose. Considering that heroin is regarded a prodrug 

which acts through its host’s initial metabolites (6-MAM and morphine)264 and that humans 

lacking functional BChE appear healthy,337 there is a possibility that human BChE might 

be a potential target for prevention of cocaine intoxication, and our animal studies have 

produced promising results. In addition, the complete catalytic parameters obtained for 

CocH1 against heroin and 6-MAM revealed that concurrent use of heroin and cocaine is 

not expected to significantly affect the efficacy of CocH1 in cocaine detoxification.    

  

 

6.2 Oligomerization and catalytic parameters of human UGT1A10 

In the third part of this dissertation, the complete catalytic parameters obtained for 
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recombinant UGT1A10 against therapeutically valuable two drugs, morphine and 

entacapone, demonstrated that the catalytic activities of recombinant UGT1A10 proteins 

are remarkably different, depending on which type of cell line is used to express the protein. 

Added to this, it was observed that recombinant human UGT1A10 protein expressed in 

HEK293 cells forms oligomerized complexes that are covalently cross-linked by disulfide 

bonds, but that expressed in CHO cells barely forms cross-linked disulfide bonds. Indeed, 

these findings are very meaningful in that this is not only the first demonstration of the 

oligomerized UGT1A10 complexes, but also the first evidence to show the presence of 

complicated disulfide bridges to form higher-order UGT complexes bigger than a dimer. 

Given that the covalently cross-linked homo-oligomers are not frequently observed in 

hepatic UGT1A1, 1A4, and 1A6 enzymes expressed in HEK293 cells,304 the observed 

multiple disulfide bonds formed in the oligomerized complexes of extrahepatic UGT1A10 

seem to be unique, which may be the first evidence to show the original differences 

between hepatic and extrahepatic UGT enzymes.  

HEK293 is one of the most widely used cell lines for characterization of the 

enzymatic activity and oligomeric states of multiple human UGT isoforms. The use of the 

cell line has enabled us to compare our data with those reported by others. However, 

considering that UGT1A10 is an extrahepatic UGT isoform which is highly expressed in 

the large and small intestines, we might want to consider including intestinal epithelial cell 

lines for the gene expression in order to establish physiological relevance of our in vitro 

findings. 

6.3 Cancer treatment 

 The last part of this dissertation is focused on development of a new Par-4 entity 
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with a prolonged duration of action for cancer treatment. The results showed that Fc-fusion 

substantially prolonged the biological half-life of Par-4 protein. Aglycosylated Fc-fused 

Par-4 protein retained not only considerable in vitro and in vivo anti-cancer activity, but 

also increased serum persistence in mice, comparable to that of Fc-fused Par-4 protein 

prepared from mammalian cells. These data strongly suggest that the E. coli expression 

system is capable of producing a potentially therapeutically valuable form of Par-4 protein.   
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Chapter VII. Other Unpublished Works  

 

7.1 Development of potential antibody therapeutics for opioid use disorders 

7.1.1 The main purpose of this study 

 The main research goal of this project is to first develop the therapeutic antibody 

with high binding affinities for heroin and the psychoactive metabolites of heroin for heroin 

and morphine abuse treatment. Then, the discovered antibodies are going to be further 

engineered to have more broad specificity toward other opioids of abuse. In this study, I 

cloned and purified the protein used, and established the required binding affinity assays 

using isotope-labelled morphine ([3H]morphine). Dr. Chunhui Zhang has taken over this 

work and further developed the project.  

 

7.1.2 Introduction 

Substance use disorder 

Continual use of psychoactive drugs can develop addiction. Addiction is defined as 

a chronic and relapsing brain disorder which is characterized by uncontrollable drug use, 

despite negative consequences. It is regarded a brain disorder since a drug changes the 

brain and how it works. These drug-induced changes in the brain can last for a long period 

of time and result in dangerous and self-destructive behaviors. 

The journey to recovery from substance use disorder 

In general, acute withdrawal symptoms occur commonly hours after the last dose 

of a drug and diminish within weeks.112-114  Acute withdrawal symptoms are generally 

followed by a protracted abstinence syndrome, including insomnia, dysphoria, irritability, 
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and fatigue for months. Symptom severity is generally associated with the several factors, 

e.g. what kind of narcotic has been used, and how long and much the drug has been abused. 

However, patients can abandon their recovery programs and return to drug use at any time 

during abstinent periods due to multiple potential factors like the priming effect of a drug, 

stress, and drug-related stimuli. This phenomenon is called “relapse”. 

Specific goals for substance use disorder treatment 

Goals for the treatment of substance use disorder include addressing withdrawal 

symptoms and drug craving in a proper way, normalizing physiological function that is 

changed in response to continual drug use, and more important, preventing patients against 

any exposure to drug again. However, limited success in opioid addiction treatment has 

been achieved with current therapeutic options. Historical data show that approximately 

85% of patients undergo relapse within 2-years of intensive psychological interventions.338-

339 Maintenance treatment using opioid agonists (e.g. methadone or buprenorphine) has 

produced more promising results, but mean 1-year retention rates are still below 60%.340-

345 In addition, it has been observed in multiple clinical studies that patients on methadone 

maintenance with a history of heroin addiction remain vulnerable to the drug-related 

stimuli, such as images of morphine injection, which indicates a continuous vulnerability 

of patients on methadone maintenance treatment to relapse by drug-related stimuli through 

a day.346-348  

Current therapeutic options for illegal/prescription opioid use disorder 

- Opioid antagonist treatment: Naltrexone 

Naltrexone is an opioid antagonist approved by the FDA for opioid use disorder 

treatment. The hypothesis for the use of an opioid antagonist in the treatment is a means of 
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blocking a conditioned response to drug.349 Specifically, if the addicts cannot be successful 

in relieving the withdraw symptom- or craving-related negative state through opiate use 

because of competitive antagonism at the µ-opioid receptor, the behavior of turning to 

opioid in these situations would be considerably reduced. However, multiple clinical trials 

of Naltrexone for opioid addition treatment using either daily or thrice weekly schedule 

revealed that less than approximately 80% of patients returned to drug use within 6 

months.350-352  

- Opioid agonist maintenance treatment: Methadone & Buprenorphine 

The FDA has approved two opioid agonists for the long-tern treatment of opioid 

use disorder: methadone (a full opioid agonist), and buprenorphine (a partial opioid 

agonist). Methadone maintenance therapy (also denoted as “agonist-assisted relapse 

prevention treatments”) has produced better outcomes compared to any other intervention. 

Buprenorphine is more recently approved for narcotic addiction treatment and has proven 

to be as effective as methadone.353-354 It has been demonstrated that both methadone and 

buprenorphine considerably reduce both the negative and positive reinforcing effects of 

short-acting opioids or natural opiates, and subside craving subsided, enable the addicted 

patients to focus on non-drug-related activities.353-354 However, mean 1-year retention rate 

in the maintenance treatment is still below 60%.340-345 In addition, many clinical studies 

have shown that, at any given time, approximately 15% of patients on methadone 

maintenance treatment will have the ongoing use of opiate.355-358  

The contributions we would like to make to opioid use disorder problem 

In the present study, we have developed antibody therapeutic candidates for opioid 

use disorder treatment. An antibody therapeutic is expected to have a mechanism and 
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therapeutic utility which distinctly different from the traditional small-molecule 

approaches to treatment. It has been demonstrated that antibodies with high binding affinity 

for a target opioid are capable to sequestrate the drug in the bloodstream and block the 

entry of  the drug to the brain, markedly impairing any physiological effects of the drug.267, 

359-361 It is expected that the therapeutic antibody would have great potential to become 

available for complementing the existing pharmacologic treatment or for complementing 

the psychosocial tools needed for a transition to a medication-free and abstinent life.  

 

7.1.3 Results and discussion 

Based on the computational modeling and design, our most promising IgG1, 

denoted as MMBCmAb-H6M (Fig. 7.2) for convenience, with the overall highest binding 

affinities for the three heroin-related opioids, i.e. heroin (Ki = 11.8 nM), 6-MAM (Ki = 11.9 

nM), and morphine (Ki = 127 nM) as seen in Fig. 7.2 (panels B to D). Notably, compared 

to all of the mAbs reported so far (all with an affinity for 6-MAM at 150-300 nM),362-364 

MMBCmAb-H6M has the highest binding affinity for 6-MAM (the most toxic metabolite 

of heroin).  
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Figure 7.1 SDS-PAGE of the purified mAb MMBCmAb-H6M. The different amounts of 

the purified antibody were loaded on the gel and visualized by Coomassie blue staining to 

determine its purity before a subsequent binding affinity test.  
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Figure 7.2 The modeled structure and in vitro activities of mAb MMBCmAb-H6M: (A) 

mAb binding with heroin in which the distances are given in Å (the binding structures with 

6-MAM and morphine are very similar to this one); (B) mAb-[3H]morphine binding 

saturation data (with [3H]morphine concentration being 2 nM); (C) 6-MAM inhibiting the 

mAb-[3H]morphine binding; (D) heroin inhibiting the mAb-[3H]morphine binding. For the 

competing binding assays, the [3H]morphine concentration was 2 nM, and the mAb 

concentration was 60 nM. All of the error bars of the in vitro data are represented in the 

standard deviation (SD). 
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7.1.4 Materials and methods 

Protein preparation  

In our proof-of-principle studies, the mAb (MMBCmAb-H6M) genes were 

designed to carry both the heavy and light chains, with an Internal Ribosome Entry Site 

(IRES) inserted between them, so that both the heavy and light chains can be expressed at 

the same time. The genes were synthesized by GeneArt (Invitrogen), and were cloned into 

the pCMV-MCS vector (the same vector used to express many other proteins in our lab) 

between the BamHI and SalI sites. 

The same experimental procedure365-366 used in our accomplished studies to prepare 

various Fc-fusion protein variants was used to prepare MMBCmAb-H6M (and variants) in 

this investigation. Briefly, site-directed mutagenesis of the mAb cDNA (in the pCMV-MCS 

expression plasmid) was performed by using the QuikChange method.367 Each variant was 

expressed in Chinese hamster ovary (CHO) cells in free-style CHO expression medium. 

Cells were grown first to a density of ~1.0 × 106 cells/ml in a 2 L shake flask and transfected 

using TransIT-PRO Transfectio Kit. Cells were incubated at 37°C in a CO2 incubator for 5 

days before the culture medium was harvested. The mAb (MMBCmAb-H6M or variant) 

protein expressed in the medium was purified by using MabSelect Protein A resin (GE 

Healthcare)38, 40 and analyzed by SDS-PAGE.  

In vitro binding assays  

The binding of the mAb with [3H]morphine was determined by using liquid 

scintillation counting. Briefly, 2 nM [3H]morphine was incubated with a varying 

concentration of mAb at room temperature for 60 min, with the total volume of the mixture 

being 100 µL and the pH being 7.4. Then, it was filtered with EMD Millipore Amicon™ 
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Ultra-0.5 Centrifugal Filter (30 kD) and EMD Millipore Amicon™ Ultra 0.5 mL Vials. 50 

µL of the filtrate was added to 3 mL of 3a70BTM complete counting cocktail (RPI 

Research Products) for liquid scintillation counting. The obtained mAb concentration-

dependent data were analyzed by using the GraphPad Prism 7 software to determine the 

binding constant.   

For the binding affinity of the mAb with other ligands, we first determined IC50 for 

each ligand inhibiting the mAb-[3H]morphine binding through a competing binding assay. 

Briefly, 100 µL of mixture (pH 7.4) containing 2 nM [3H]morphine, 60 nM mAb (or an 

mAb concentration close to the Kd of the mAb-[3H]morphine binding), and a varying 

concentration of the ligand under testing was incubated at room temperature for 60 min. 

Then the mixture was filtered with EMD Millipore Amicon™ Ultra-0.5 Centrifugal Filter 

(30 kD) and EMD Millipore Amicon™ Ultra 0.5 mL Vials, and 50 µL of the filtrate was 

added to 3 mL of 3a70BTM complete counting cocktail (RPI Research Products) for liquid 

scintillation counting. The IC50 (calculated by using the GraphPad Prism 7 software) was 

converted to Ki (or Kd) by using the IC50-to-Ki Converter.368 
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7.2 Development of mPGES-1 specific inhibitor as an anticancer agent for multiple 

therapeutic areas 

7.2.1 The main purpose of this study 

A growing body of evidence strongly suggest that prostaglandin E2 (PGE2) plays a 

critical role in tumor development including proliferation in multiple types of cancer 

cells.369-372 In PGE2 biosynthesis, Cyclooxygenases (COX-1/COX-2) converts arachidonic 

acid arachidonic acid (AA) to prostaglandin H2 (PGH2),373 and microsomal PGE-synthase-

1 (mPGES-1) converts PGH2 to PGE2.374 DU145 (human prostate cancer cell line), LLC-

1 (murine lung cancer cell line), and A549 (human colon cancer cell line) express 

substantial amounts of MPGES-1 in a constitutive manner.369 In the present study, we 

wanted to examine the possibility that an mPEGS-1 inhibitor has an anti-tumor activity and 

can be utilized for cancer treatment in combination with the first-line therapeutics for lung, 

colon, and prostate cancer including Cisplatin, Erlotinib, and Paclitaxel (PTX). I tested one 

of the mPGES-1 inhibitors (denoted as BAR002) discovered in our lab. It turned out that 

this mPGES-1 inhibitor had only mild anti-proliferation activity, but no strong cytotoxicity 

to both DU-145 or A549 cells. In addition, BAR002 did not show a promising synergistic 

anti-cancer activity when used in combination with the tested first-line drug.  

 

7.2.2 Results and discussion 

Previously, our lab discovered a potent mPEGS-1 inhibitor, denoted as BAR002 

here for convenience, whose IC50 value is 33 nM against human mPEGS-1 and 157 nM 

against mouse mPGES-1.375-376 First, the cytotoxicity of BAR002, Cisplatin, Erlotinib, and 

PTX were determined using MTT assay. Experiments were performed in triplicates and the 
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mean half maximal inhibitory concentration (IC50) was utilized to compare cytotoxicity. 

The determined IC50 values of these drugs for DU-145 cell growth (after 48 h of exposure) 

were summarized in Table 7.1 and depicted in Fig. 7.3. The results show that the IC50 value 

of BAR002 for the cell viability was ~23.6 µM, which implies that mPGES-1 inhibition 

by BAR002 is unlikely to be very toxic to DU-145 cells.  

 

Figure 7.3 Dose-response curves of Cisplatin, Erlotinib, or PTX in DU-145 cells (48 h of 

exposure, n = 3, mean ± SD).  
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Table 7.1 IC50 values (μM) of BAR002, Cisplatin, Erlotinib, or PTX after 48 h of exposure 

(n = 3, mean ± SD) 

 BAR002 Cisplatin Erlotinib PTX 

DU-145 23.56 (±2.43) 4.81 (±0.12) 17.73 (±3.45) <0.01 

 

To evaluate the effect of combining BAR002 with the tested anti-cancer agents, 

DU-145 cells were exposed to a different concentration of Cisplatin, Erlotinib, or PTX in 

combination with 0.78 µM BAR002, followed by incubation for 48 h. Considering the low 

IC50 value of BAR002 for human mPEGS-1 (33 nM)375 and its IC50 value determined for 

the growth of DU-145 cells (~23.6 µM), it is highly expected that BAR002 treatment at 1 

µM concentration would strongly inhibit mPGES-1 activity of the cells, but not be 

significantly toxic to the cells. According to the results obtained (Fig. 7.4), BAR002 had 

subtle synergistic anti-cancer activity (about 10~20%) only with PTX, but not with 

Erlotinib or Cisplatin. 
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Figure 7.4 Combination assays of BAR002 and anticancer agents Cisplatin, Erlotinib, and 

PTX. DU-145 cells were exposed to a different concentration of an anticancer agent with 

0.78 µM BAR002. 
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 The cytotoxicity of BAR002, Cisplatin, Erlotinib, and PTX were also determined 

for A549 cells (colon cancer cell line). The determined IC50 values of these drugs for the 

cell growth (after 48 h of exposure) were summarized in Table 7.2 (and also Fig. 7.5). 

According to the results obtained, A549 than DU-145 cells displayed relatively higher 

resistance to apoptotic cell death by the compounds tested. Interestingly, it was also 

observed that A549 cells were not completely died even at 25 µM concentration of PTX. I 

do not know the reason why some of A549 clonal populations still had such strong 

resistance to the high dose of PTX, but this lead me to test whether BAR002 treatment 

makes A549 cells more vulnerable to apoptotic cells death by PTX or other anti-cancer 

reagents. For this, A549 cells were exposed to different concentrations of Cisplatin, 

Erlotinib, or PTX in combination with 0.78 µM BAR002, followed by incubation for 48 h. 

The results showed that BAR002 neither increased the sensitivity of A549 cells to cell-

death induced by PTX nor displayed significant synergistic anti-cancer activity with 

Erlotinib or Cisplatin (Fig. 7.6). 

 



  
144 

 

 

 

Figure 7.5 Dose-response curves of Cisplatin, Erlotinib, or PTX in A549 cells (48 h of 

exposure, n = 3, mean ± SD).  

 

Table 7.2 IC50 values (μM) of BAR002, Cisplatin, Erlotinib, or PTX after 48 h of exposure 

(n = 3, mean ± SD) 

 BAR002 Cisplatin Erlotinib PTX 

A549 71.97 (±12.31) 286.1 (±0.12) 49.80 (±9.28) Unknown 
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Figure 7.6 Combination assays of BAR002 and anticancer agents Cisplatin, Erlotinib, and 

PTX. A549 cells were exposed to different concentrations of an anticancer agent with 0.78 

µM BAR002. 
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We also determined whether BAR002 is capable of inhibiting the proliferation of 

DU-145 cells. DU-145 cells were treated with the BAR002 concentrations where the 

viability of DU-145 cells was not significantly affected. Viability was then measured over 

5 days after the cells were exposed to BAR002. According to the results obtained (Fig. 7.7), 

proliferation in DU-145 cells was significantly compromised 4 days after exposure to 

BAR002. The antiproliferative effect of BAR002 was also observed even at the low 

BAR002 concentrations and became more obvious over time, which implies that the onset 

of the antiproliferative effect of BAR002 was slow. It is expected that the long-term 

BAR002 treatment would produce a more promising tumor growth suppression by the 

compound. In the future, we may have to further determine how efficiently BAR002 

inhibits PEG2 production in DU-145 cells overtime in the given treatment conditions. The 

combined results of the long-term effects of BAR002 on proliferation and PEG2 production 

in DU-145 cells will let us know whether there is a positive correlation between those 

factors. 

  



  
147 

 

 

 

Figure 7.7 Viability was measured over 5 days by MTT reduction after DU-145 cells were 

exposed to different concentrations of BAR002 (closed squares) and or controls (closed 

circles). Controls consisted of DMSO at the same concentration as in the BAR002-

treatment experiments. Each experiment was performed in triplicates. Results are presented 

as the mean ± S.D. of two separate experiments. 
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7.2.3 Materials and methods 

Cell viability assay  

Cells were seed onto a 96 well plate. (5000 cells/well). 24hr after cell seeding, the 

cells were incubated with differing concentrations of a designated compound for 48hr. Dye 

reduction was then initiated by the addition of 20 μL of 5 mg/mL MTS to each well. After 

2 h, the developed signals were measured at absorbance at 570 in a micro plate reader. 

Cell proliferation assay  

Cells were seeded onto 96 well plate (5x103 cells/per) and incubated for 12 hr. The 

culture media was exchanged with fresh media right before incubation with different 

concentrations of an mPGES-1 inhibitor. The cell growth was measured over 3 days by 

MTS assay. 
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