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ABSTRACT 

Importance of light limitation, nutrient availability, and hydrology in controlling the abundance 

and composition of the phytoplankton community of Herrington Lake (KY) was investigated 

over a two-year period. Selected environmental parameters were measured every two weeks 

(April-October) at five sampling stations located along the longitudinal gradient of the reservoir. 

In addition, short-term (48hr) nutrient enrichment experiments were conducted to assess the 

spatial and temporal variations in nutrient limitation. Phytoplankton growth responses to the 

combined addition of nitrogen (N03) and phosphorus (P04) were greater than those resulting 

from the addition of either nutrient alone. These results indicate that phytoplankton production 

was closely co-limited by the availability of both N and P. The magnitude of the phytoplankton 

responses to nutrient additions was greatest at downstream stations and in late summer 

suggesting that those populations experience more severe nutrient limitation. Significant 

interannual variations in nutrient limitation and primary production were observed during this 

study period (1995-1996). In 1995, nutrient limitation was more severe than in 1996. Above 

average rainfall and discharge in 1996 coincided with increased productivity (mg C/rrr /hr) and 

minimal nutrient limitation. Phytoplankton community composition showed similar patterns of 

seasonal succession in both years. 

Focus Categories: NU, HYDROL, ECL 

Keywords: Herrington Lake, hydrology, nutrient limitation, phytoplankton production, 
nutrient addition experiments 

iii 





ACKNOWLEDGMENTS 

Research was supported by grants from the U.S. EPA Clean Lakes Program, and the Kentucky Water 
Resources Institute through the U.S. Department of the Interior. Additional support was provided by a 
grant from the Kentucky Institute for Environment and Sustainable Development. We are grateful to 
Rich Shultz and Steve Rier for their analysis of nutrient samples. Special thanks to Rob M'Candless and 
Don Metzmeier for their field assistance, Darryl Colebank and David Loy for their laboratory assistance, 
and Eric Jourdain for his statistical assistance. 

IV 





TABLE OF CONTENTS 

Introduction................................................................................................................................ I 
Purpose and scope................................................................................................................. 3 

Materials and methods............................................................................................................... 3 
Description of study area...................................................................................................... 3 
Temperature and light........................................................................................................... 4 
Chlorophyll a........................................................................................................................ 4 
Phytoplankton production..................................................................................................... 5 
Nutrient addition experiments.............................................................................................. 6 
Phytoplankton slide mounts and enumeration...................................................................... 7 

Results........................................................................................................................................ 8 
Hydrology............................................................................................................... 8 
Light availability and temperature.......................................................................... 9 
Nutrient chemistry............................................................................................................ 9 
Chlorophyll, primary productivity, and phytoplankton biomass.......................................... 10 
Phytoplankton community composition................................................................................ 11 
Enclosure experiments...................................................................................................... 12 

Discussion.................................................................................................................................. 14 
References.................................................................................................................................. 18 

r 

/ 

V 





TABLES 

Table Page 
l. Average soluble reactive phosphorus (SRP), and nitrate (N0J) concentrations (µg/L) 

during August-October 1995 and July and September 1996 enclosure experiments............. 20 

2. Percent contnbution of productivity (kg C growing season·') in assigned reservoir 
segments for the 1995 and 1996 growing seasons. Productivity was calculated for 
growing seasons of95 and 98 days (1995 and 1996, respectively)....................................... . 21 

VI 





ILLUSTRATIONS 

Figure Page 
I. Map of Herrington Lake showing location of sampling stations............................................... 22 
2. Monthly mean precipitation and cumulative discharge (Dix River) during February-October 

of 1995 and 1996. Precipitation data are from the U. of Kentucky Agricultural Weather 
Center station located at the Dix Darn. Discharge data provided by U.S. Geological Survey 
at the Dix River approximately 15 km upstream from lake sampling station "S I" .................. . 23 

3. (A) Average monthly PAR light extinction coefficients for station I (most upstream station) 
and station 5 (near darn). (B) Average monthly epilimnetic (0-6m) and bypolimnetic 
temperatures at station 5 ................................................................... ~....................................... 24 

4. Average monthly chlorophyll a concentrations (µg/L) at Herrington Lake during 1995 and 
1996 ......................................................................................................................................... . 

5. Photosynthetic-irradiance curves for monthly productivity data collected during 1996 .......... . 
6. (A) Depth-integrated estimates of epilimnetic productivity (mg C m·3 br"1

) from Oto 6 m. 
(+) represents each of the 5 stations. (A) represent the average primary production among 
all 5 stations in 1996. (B) Depth integrated estimates ofepilimnetic productivity 
(mg C m·3br·1

) ( +) represents monthly productivity experiments (June-Sept 1996) 
(A) represent average monthly primary production .................................................................. . 

7. Average monthly phytoplankton biomass ( µg C/L) for stations I, 3, and 5 during 1995 and 
1996 ......................................................................................................................................... . 

8. Canonical correspondence analysis (CCA) for 1995 and 1996 phytoplankton communities .... . 
9. Canonical correspondence analysis (CCA) for phytoplankton communities (A) 1995 

(B) 1996. (e) represent late spring (April-May); (A) represent early summer (June-July); 
and (II) represent late summer (August-September) .......................................... , ................... . 

10. Phytoplankton growth responses (% increase in chlorophyll) to nutrient addition over 48 
hours relative to enclosures receiving no nutrients. (A) phytoplankton growth responses to 
nitrogen addition and combined nitrogen and phosphorus addition ( 1995); 
(B) phytoplankton growth responses to phosphorus addition and nitrogen and phosphorus 
addition (1995); (C) same as (A) but for 1996; and (D) same as (B) but for 1996 .................. . 

11. Canonical analysis ordination and phytoplankton growth responses from the 1995 nutrient 
addition experiments. (A) Comparisons between the initials and controls for all stations 
(1, 3, 4). (B) Comparisons between the controls and +NP treatment for all stations (1, 3, 4), 
<•l represents station !; ('\") represents station 3; and (II) represents station 4 ....................... . 

vu 

25 
26 

27 

28 
29 

30 

31 

32 





INTRODUCTION 

Herrington Lake is a large, eutrophic reservoir located on the Dix River in north-central 

Kentucky. As is true of many waterbodies in the southeastern United States, the reservoir suffers from 

excessive nutrient loading resulting in the deterioration of water-quality conditions and producing 

problematic algal blooms (Dave Liest, personal commun.). Nutrient inputs derive from agricultural non­

point sources, municipal point sources, and shoreline development. The relative importance of these 

sources is unknown limiting the effectiveness of lake and watershed management decisions. Many 

resource management agencies concerned with developing nutrient control strategies rely strongly on 

dynamic water-quality models. Water-quality monitoring programs typically provide hydrological and 

cheEJ-ical data for model development and calibration but often neglect site-specific information on 

nutrient-algal dynamics. In these situations, literature estimates for various biological rate coefficients 

are incorporated into the model. These may not accurately depict the ecological processes and thus 

compromise the validity of the model predictions. A quantitative understanding of the interactions 

between algae and nutrients is important for the purposes of water-quality modeling. Algae play an 

important role in regulating nutrient uptake, water transparency, and hypolimnetic oxygen levels which 

consequently influence the nutrient status of lakes and reservoirs. Excessive nutrient loading can 

produce large standing crops of algae resulting in decreased water transparency. The algae subsequently 

settle out and decompose within the hypolimnion contributing directly to oxygen depletion. Evaluation 

of site-specific nutrient-algal relations should aid in the improvement of water-quality models thereby, 

promoting the effectiveness of lake and watershed management decisions. 

Algal dynamics in reservoirs, as in lakes, are largely controlled by light and nutrient availability. 

However, most reservoirs experience shorter residence times, higher concentrations of suspended solids, 

and hypolimnetic releases of water which influence nutrient inputs into the epilimnion resulting in 

different spatial and seasonal variation in reservoir phytoplankton production ( Soballe & Kimmel, 1987). 

In addition, the complex morphology of large reservoir basins can result in greater spatial variation 



(Knowlton & Jones, 1995). Understanding the relationships between nutrient availability. hydrology, 

and morphology is essential to understanding phytoplankton production in reservoirs (Kennedy & 

Walker, Kimmel et al. 1990). Light and nutrient availability are often emphasized as the two primary 

factors controlling phytoplankton productivity in reservoirs. A generalized reservoir model proposed by 

Kennedy and Walker ( 1990) suggests that nutrient availability decreases and light availability increases 

from upstream (riverine) to downstream (lacustrine) regions of the reservoir. According to the model, 

phytoplankton are presumed to be light-limited upstream and nutrient-limited downstream. Although 

light and nutrients are two important factors controlling productivity , the combination of hydrology and 

basin morphology are also important in the control of phytoplankton production. An advective flow 

regime in combination with a long, narrow basin morphology results in the establishment of a gradient 

(headwater to dam) in nutrient concentrations that ultimately impact phytoplankton production. In 

addition, advective forces, such as residence time, can influence phytoplankton production (Gloss et al. 

1980; Soballe & Kimmel 1987). Assuming flow rates exceed the phytoplankton production rate, the 

accumulation of biomass and phytoplankton productivity can be limited by advective losses (Dickman 

1969). However, Carmack et al. 1979 reported that advective losses can be important to reservoirs with 

· intermediate residence times if the phytoplankton production rate is not exceeded by advective losses. 

With increased flow, nutrient availability increases resulting in enhanced phytoplankton production. 

In recent years, small-scale, in situ, nutrient enrichment experiments have become a powerful 

tool for investigating spatial and temporal variations in phytoplankton to nutrient limitation. Several 

investigators have applied this approach to quantify temporal variation in the severity of nutrient 

limitation (Vanni & Temte 1990; Elser 1992). Other studies have examined longitudinal patterns of 

nutrient limitation in large lakes and reservoirs (Elser & Kimmel 1985; Aldridge et al. 1995). In this 

study, we measured phytoplankton growth responses (chlorophyll) during in-lake nutrient enrichment 

experiments to test the hypothesis that phytoplankton downstream would experience greater nutrient 

2 



limitation, particularly late in the growing season. We formulated this hypothesis in the context of the 

generalized reservoir productivity model described by Kennedy & Walker, 1990. 

The goals of this research were to examine the spatial and seasonal variations of nutrient 

availability supporting phytoplankton production and to identify specific macronutrients (N and/or P) 

limiting phytoplankton growth. Specific objectives included: (I) quantifying seasonal and spatial 

variation.in primary productivity (2) conducting in-lake enclosure experiments to assess patterns of 

nutrient limitation, and (3) taxonomic analyses of phytoplankton community composition in lake and 

enclosure samples. 

MATERIALS AND METHODS 

Study area 

Herrington Lake is eutrophic reservoir located in north-central Kentucky (fig. I). It has a surface 

area of 1190 ha, a length of 60 km, and mean and maximum depths of 24 m and 76 m, respectively. The 

reservoir's watershed (I 13,700 ha) is comprised of various land-use types including 71 % agricultural, 

26% silvicultural and 3% urban areas (Kentucky Division of Water, 1984a). The topography of the 

watershed is hilly in the south (headwaters), leading to gentle rolling hills in the north. The basin of 

Herrington Lake is a deep-narrow valley with the average retention time of 9.2 months.The major 

inflows include the Dix River and Clarks Run with contributions from other minor streams. The major 

outflow from Herrington Lake is the Dix River below the Dix River Dam. 

Five sampling stations were selected to characterize in the upstream (riverine), middle 

(transition), and downstream (lacustrine) sections of the reservoir. Stations I, 2, 3, and 5 were within the 

mainstem of the reservoir, whereas station 4 was located in a branch of the reservoir formed by the Cane 

Run Creek. Chlorophyll, light attenuation (PAR), temperature, and phytoplankton community 

composition were monitored at 1-2 week intervals from April to October 1995 and 1996 (fig. I). 
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Temperature and light 

Temperature and irradiance profiles were obtained for a11 5 stations. Temperature was measured 

at 1-m intervals (surface to 44-m or to the bottom at shallower sites) using a YSI Model S-C-T 

thermistor. Light attenuation (PAR) profiles were measured using a Protomatic photometer equipped 

with upward and downward spherical sensors. Light profiles were recorded between 1000 and 1400 h. 

Depth profiles of upwelling and downwelling light were taken at 0.5 meter intervals from the surface to 

the lower boundary of the photic zone (I% of subsurface irradiance), and used to estimate coefficients of 

light attenuation (Kd). The attenuation coefficient for downwelling irradiance (Kd) was calculated from 

a linear regression of the natural logarithm of downwelling irradiance against depth (Kirk 1983). Secchi 

I 

disc measurements were taken simultaneously with underwater photometer profiles. A detailed 

description of analytical procedures used for irradiance data is presented in Bukaveckas and Driscoll 

(1991). 

Chlorophy11 a 

Water samples for chlorophyll analysis were taken at 3 equally spaced depths between the 

surface and the I% light level using a 2.5 L Kemmerer water sampler. Samples were stored in IL 

polyethylene bottles on ice, and prqcessed within one to two hours of co11ection by filtration through 0.45 

mm Gelman A/E glass fiber filters. The filters were subsequently frozen and processed within 2-7 days. 

Filters were macerated in 10.0 ml of 90% buffered acetone (buffering agent: MgC0 3) and a11owed to 

extract for 12-16 hours at 4°C. Following centrifugation, the extracts were analyzed 

spectrophotometrica11y to deterrnine chlorophyll a and pheophytin a. Extracts were analyzed using a 
' 

Varian DMS 70 dual beam spectrophotometer equipped with Jong pathlength (4cm) cells and narrow 

(1nm) bandwidth. Optical densities were measured at 664 nm and 750 nm before acidification with O. JN 

HCL and at 750 nm and 665 nm after acidification. Chlorophyll a concentrations were corrected for 

pheophytin a using the Lorenzen equations as modified by Speziale et al. (1984). 
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Phytoplankton production 

Phytoplankton productivity was measured monthly using the isotope technique described by 

Vollenweider (1969). Samples were collected from 3 equally spaced depths approximating the 

epilimnetic region at all stations. Two light bottles and one dark bottle (60 ml BOD) from each of the 

three depths were inoculated with I µCi of [14C]-NaHCO3 (310.80 MBq-mmol) and incubated for 2 h 

(1200-1400). After incubation, all samples were filtered through 0.45 mm Millipore membrane filters. 

The filtration pressure applied did not exceed 300 mmHg (Pregnall 1991). Filters were dissolved in 

6.5 ml of Aqua-sol and radioactivity was determined using a Tri-Carb I 900 TR liquid scintillation 

analyzer: Quenching was corrected using an external unquenched 14C standard with known activity-

Dissolved inorganic carbon (DIC) samples were collected in 60 ml acid-wash.ed plastic syringes 

and stored on ice. Samples were analyzed within 1-2 days on an automated total carbon analyzer 

(Shimadzu Total Carbon Analyzer Model TOC-5050A) using the combustion/non-dispersive infrared gas 

analysis method (APHA 1992). 

Photosynthesis-irradiance curves were modeled using the following equation: 

P = P max tanh( uI / P m,J 

where P is the biomass specific rate of production (primary productivity per unit chlorophyll) at 

irradiance I (Jassby & Platt, 1976). Alpha (et) is the slope of the light-saturation curve which measures 

the efficiency of fixing inorganic carbon at low light levels. P max is the maximum photosynthetic rate at 

optimal illumination levels as described by the plateau of the line. We compared P-I models for data 

aggregated by site (all months) versus by month (all sites) and found that the monthly-aggregated data 

produced more accurate model predictions. These models were used to estimate productivity on 

sampling dates when only chlorophyll and light attenuation data were measured (N = 6). In addition, the 

models were used to derive growing season.(July-October) estimates of productivity based on daily solar 

radiation data (T. Priddy, written commun.) and combined with lake bathymetric data (G.L. Jarrett, 
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unpub. data) to calculate whole-reservoir production. Productivity estimates were calculated using July­

October data from 1995 and 1996. Early summer 1995 data was missing so therefore the period of July 

to October was chosen because of comparable sampling frequencies for both years. 

Nutrient enrichment experiments 

Nutrient enrichment experiments were conducted at 3 sta6ons (SI, S3, S4) representing the 

upstream, middle, and downstream sections of the reservoir. Experiments were performed on six 

occasions (August, September, and October 1995 and May, July, and September 1996) using 10 liter 

polyethylene containers. Water was pumped from 1-m below tbe surface, transferred through a 150 µm 

zooplankton net and collected in a large polyethylene mixing container (128 L). The experimental design 

included 3 replicates each of a control (no nutrient addition), nitrogen addition, phosphorus addition, and 

the combination of nitrogen and phosphorus. Inorganic nitrogen was added as K2NO3 (200 µg/L in 1995 

and 400 µg/L in 1996) and phosphorus was added as NaPO4 (40 µg/L). The containers were incubated 

for 48 hours at a depth of 1-m. Chlorophyll and nutrient concentrations were measured at the beginning 

and end of each experiment to quantify phytoplankton growth responses and rates of nutrient 

assimilation. Phytoplankton growth responses to nutrients were quantified using the following formula: 

nutrient response - (Chlorophyll a cinnn - Chlorophyll a kooiron 

Chlorophyll a (coottol) 

Where chlorophyll a umi is the mean chlorophyll concentration after 48 hours among 3 replicated 

receiving nutrient additions ( +N, +P, +NP). Chlorophyll a ,omrol is the mean chlorophyll concentration 

after 48 hours. among replicates receiving no nutrients. Nitrate concentrations were determined using the 

automated cadmium reduction method (APHA 1992) and performed on an autoanalyzer (Skalar San 

Plus). Phosphorus (soluble reactive) concentrations were analyzed on unfiltered samples using the 

manual ascorbic acid method (APHA I 992). 
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Results from the nutrient enrichment experiments were analyzed using one-way analysis of 

variance (ANOV A) for all stations and dates. Classifications of nutrient limitation were based on 

summations of comparisons among the 3 treatment groups ( +N, +P, +NP) with the controls (no nutrient 

addition) using p-values (p < 0.05). All statistical analyses were performed using SIGMASTAT (Ver. 

2.0, I 992-1995). 

Phytoplankton slide mounts and enumeration 

Phytoplankton samples were collected from depths corresponding to those for chlorophyll 

analyses. A single composite sample was placed in a 125 ml amber glass bottle and preserved with 2.25 

ml ofM3 fixative (APHA 1992). 

Phytoplankton sample processing included the preparation of permanent slide mounts mounted in 

EUPARAL (refractive index: 1:48). Samples were agitated and a subsample was filtered through 0.45 

mm Millipore membrane filters. Gluteraldehyde was applied to the filters and allowed to dry on a slide 

warmer until filters turned clear (5-15 minutes). 

Phytoplankton identifications were made using an Olympus BH-2 microscope at 500X and 

1250X. Observations were made under Nomarski differential interference contrast. Phytoplankton taxa 

identifications were determined from Prescott ( 1978), Whittford & Schumacher ( 1984), Smith (1978), 

Desikachary (1959), and Dillard (1989). 

Enumeration of phytoplankton species followed standard procedures (APHA 1992). Replicate 

slides was made from selected lake samples (stations I, 3, and 5). Control and NP-addition samples from 

the nutrient enrichment experiments were also counted. Only live diatoms mounted in EUPARAL were 

tallied. Ten to sixty fields were counted in vertical strips covering the entire diameter of the filter to 

yield a total of 500-600 cells. The number of fields counted per slide was density dependent. Five fields 

were counted per slide for a total of ten fields. If, after IO fields, the total number of cells counted was 

less than 500, then additional fields were counted to reach the total absolute cell count. Knowing the size 
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of area examined, the total area of the filter (A=pr2), and the volume of water filtered, the number of 

organisms per milliliter was calculated (Wetzel & Likens 1991). Cell measurements were made on 20 

randomly selected cells from species occurring in at least 80 % of the samples and volumes were 

approximated from simple geometric shapes. The volume of each measured cell was calculated to derive 

a mean cell volume. Mean cell volume was multiplied by cell population density to estimate biovolume. 

Biovolume was then converted to biomass assuming a specific gravity of I. Carbon biomass was 

converted from volume biomass using taxonomic-specific factors to describe the amount of carbon 

content per wet mass of organisms (Olrik et al. 1996). 

A multivariate procedure (canonical correspondence analysis) was used to explore the 

relationship between measured environmental variables and phytoplankton community composition 

based on relative biomass. All environmental variables (temperature, light, chlorophyll, dissolved 

oxygen, and specific conductance were log-transformed due their non-normal distributions with the 

exception of pH. Site scores were calculated from the linear combination of the six environmental 

variables that form the ordination axes (Ter Braak 1988). Station 5 (June 1996) was excluded from 

analysis because it was determined to be an outlier. 

RESULTS 

Hydrology 

The I 995 growing season (July-October) was characterized by low rainfall and discharge (fig. 2). 

Monthly data for 1995 indicate that highest precipitation and discharge occurred in May and that late 

summer (July-October) was characterized by low precipitation ( < 4 in/mo) and low discharge ( <300 

m
3
/s). In contrast, late summer and early fall of 1996 was characterized by more variable precipitation 

inputs (l-8 in/mo) and higher discharge (250-900 m3/s). Cumulative discharge for the period ofJuly­

October corresponded to 45% (1996) and 14% (1995) of lake volume (fig.2). 
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Light availability and temperature 

Marked longitudinal gradients in water column transparency were evident in both 1995 and 1996 

(fig. 3A). The highest light attenuation (lowest transparency) was measured at the upstream station in 

both years. Variations in light attenuation among the stations was attributed to differences in the 

scattering of light by suspended particulates (data not shown) and generally corresponded to periods of 

elevated discharge. Monthly averaged attenuation coefficients (Kd) ranged from 0.63 to 5.57 in 1995 

and 0.71 to 4.71 in 1996 during April-October. The depth of the photic zone (I% light level) ranged 

from 0.5 to 3 mat the upstream station to 5 to IO mat downstream stations during April-October. During 

the period April-October, the reservoir was thermally stratified at all stations. Mean monthly epilimnetic 

temperature regimes at station 5 ranged from 15 to 29 ° C and hypolimnetic temperatures ranged from 8 to 

18 ° C (fig. 3B). The average epilimnetic water temperatures during in April-October 1995 and 1996 

were 24 and 22 ° C , respectively. 

Nutrient Chemistry 

During late summer of 1995, epilimnetic soluble reactive phosphorus (SRP) concentrations 

decreased along the longitudinal gradient of the reservoir (table I). The mean SRP concentration at 

station I ( 16.6 µg/L SRP) was two-fold higher than that at station 4 (8.1 µg/L). SRP concentrations in 

1996 showed only a slight decrease between station I (50.2 µg/L) and station 4 (47.8 µg/L). Mean SRP 

concentrations were significantly different between the two sampling years 11.6 µg/L in 1995, 4 7. I µg/L 

in I 996; p-value = 0.004. 

Epilimnetic nitrate (N-NO_1) concentrations were consistently higher at the upstream station 

compared to the mid-lake and downstream stations (table I). Mean N-NO3 concentrations (1995) 

(89 µg/L) were significantly different from 1996 (366 µg/L) (p-value = 0.017). 
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Chlorophyll, primary productivity and phytoplankton biomass 

Monthly averages of chlorophyll concentrations ranged from 2 µg/L to 33 µg/L (fig. 4). At the 

upstream station, highest chlorophyll concentrations were observed in late-summer (July-October). At 

the mid-fake and downstream stations, highest concentrations occurred in April-May. A transitional 

period was evident in June when chlorophyll was uniform throughout the reservoir. This pattern was 

similar in both years, and average chlorophyll concentrations were not significantly different (p-value = 

0.386). 

Mathematical models relating primary productivity per unit chlorophyll and light were used to 

interpret seasonal and spatial variation in photosynthesis within the reservoir. Separate photosynthesis­

irradiance curves were derived for monthly-aggregated data to assess the model parameters sensitivity to 

changing seasonal conditions (fig. 5A-D). Data for all stations and depths were pooled to generate the 

monthly P-I curves. The models accounted for 79% to 92% of the variation in productivity. Estimates of 

light utilization efficiency ( o:) generally increased from June (0.05) to October (1.82). The maximum 

photosynthetic rate (Pmax) ranged from 1.51 (July) to 3.84 (October). 

Depth-integrated estimates of epilimnetic productivity were generally similar in June-July 

(57-67 mg C day-I) and decreased somewhat in late summer (37 mg C day-I) (fig. 6A). The decline in 

September productivity coincided with lower levels in chlorophyll during the same period. Epilimnetic 

productivity varied considerably among the stations. Productivity was notably higher at the farthest 

upstream station (73 mg C day-I) compared with stations 2, 3, and 5 downstream (fig. 6B). The 

embayment (station 4) showed the highest productivity (95 mg C day-I) within the reservoir. 

The proportion of whole-reservoir productivity occurring within segments of the reservoir 

delineated by the 5 sampling stations corresponded closely with the proportion of lake volume 

represented by each segment (table 2). The mid-lake segment (S2-S3) represents the largest fraction of 

lake volume (43%) and accounted for a similar proportion of lake productivity. The upstream segment 

(S I-S2) represents 22% of lake volume and accounted for 27% ( 1996) and 36% ( 1995) of productivity. 
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The downstream segment (S3-S5) represents 32% of lake volume and accounted for 28% (I 996) and 

18% ( 1995) of productivity. These analyses suggest that in 1995 a disproportionate fraction of lake 

productivity (relative to volume) occurred in the upstream segment. Although, the embayment exhibited 

the highest productivity, this segment accounted for a small proportion of the lake's volume (2%) and a 

correspondingly small fraction of whole-lake productivity. 

Phytoplankton biomass showed considerable variability during both years ranging from less than 

100 to >1000 µg/L (fig. 7). No consistent difference were observed between upstream, mid-lake, and 

downstream stations in either year. Phytoplankton biomass was notably higher during June of 1995, and 

as a result, mean biomass was higher in 1995 than in 1996 (348 and 169 µg/L, respectively). 

Phytoplankton community composition 

A multivariate analyses, based on a unimodal model of species response, using the relative 

biomass of the 56 major phytoplankton species was performed to identify environmental variables that 

best explain species distributions. We used canonical correspondence analysis (CCA) to maximize the 

dispersion of species along the ordination axes. Axes I and 2 were chosen based on relatively high 

eigenvalues (11. l = 0.55, 11.2 = 0.30) and high species-environmental correlation (0.90 for axis I, 0.79 for 

axis 2) which together accounted for 79% of the variance explained by the environmental variables. 

These results indicate a strong relationship between the distribution of species composition and the six 

environmental variables utilized in the ordination analysis. Environmental variables included 

temperature, dissolved oxygen, specific conductivity, pH, light attenuation, and chlorophyll. 

The canonical correspondence analysis performed on the 1995 and 1996 phytoplankton 

communities indicated general differences between the two sampling years (fig. 8). Communities present 

in 1996 were represented by negative scores on axis-I (I I of 11 samples), whereas the majority of 1995 

samples (6 of 11) were represented by positive scores. However, overlap did exist (upper left quadrant of 

fig. 8), suggesting some degree of similarity for both years. 
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Seasonal variability in species composition was evaluated using CCA. Distinctive seasonal 

patterns in species composition were evident for both years (fig. 9A-B) by division into 3 discrete 

seasons: April-May, June-July, and August-October. During 1995, general successional patterns in 

species composition progressed from an early summer assemblage dominated by centric diatoms 

(Cyclotella pseudostelligera), and two cyanophytes (Aphanocapsa delicatissima and Oscil/itoria 

limnetica) to a late summer assemblage dominated solely by cyanophytes (Dacty/ococcopsis irregularis, 

Merismopedia tennuissima, and Chroococcus minutus). Phytoplankton were not counted in lat~ spring 

of 1995 due to high turbidity within the reservoir which precluded accurate identification in slide mounts. 

In April and May of 1996, the phytoplankton community was dominated by Cyclotella pseudostelligera, 

Synedra tenera, and Aphanocapsa delicatissima. The succession of phytoplankton into the summer 

periods progressed to cyanophytes and cryptophytes (almost exclusively Oscillitoria limnetica and 

Rhodomonas minuta). 

Enclosure experiments 

A total of I 8 experiments (3 stations * 6 dates) were conducted during 1995 and 1996. Of the 18 

experiments, 61 % were classified as co-limited ( +NP), 6% were classified as N-limited, and 33% limited 

by some factor other than Nor P. In 1995, we observed that the magnitude of the response to the 

combined addition of +NP was consistently higher at the furthest downstream station (fig. lO A-B). At 

the upstream site, phytoplankton growth responses 'following nutrient enrichment were weaker ( <50% 

increase in chlorophyll) and were generally similar among the three treatments (+P,+N,+PN) (fig. IOA­

B). It is unclear whether nutrient limitation is an important factor regulating phytoplankton growth in the 

upper part of the reservoir. The 1996 experiments did not exhibit consistent spatial patterns in nutrient 

limitation and phytoplankton growth responses to nutrient addition were generally weaker (<100% 

chlorophyll increase) than in 1995 (fig. IOC-D). Phytoplankton exhibited stronger responses to either 

phosphorus or nitrogen alone than to the combined addition inferring single nutrient limitation. 
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However, only one experiment showed statistical significance to being limited by a single nutrient 

(nitrogen). 

Changes in phytoplankton community composition among the initial, control, and +NP treatment 

groups were analyze using correspondence analysis (CA) (fig. 1 lA-B). These data were subsequently 

compared with changes in phytoplankton growth responses(% chlorophyll). Four types of responses 

were expected: (]) minimal changes in both biomass and species composition; (2) shifts in species 

composition with minimal changes in biomass; (3) shifts in species composition accompanied by and 

increase in biomass, and ( 4) an increase in biomass without changes in species composition. 

Comparisons were made between the initials and controls at each station to assess enclosure effects on 

phytoplankton communities composition (fig. I !A). Of the 9 experiments of which both species and 

biomass data were available, 4 exhibited minimal change in biomass or species composition, 4 exhibited 

shifts in community composition with little change in chlorophyll, and l exhibited both an increase in 

biomass and changes in community composition. Species showing little response to confinement 

included: Dactylococcopsis irregularis, Eug/ena gracilus, Cylindrospermopsis philippinensis, and 

Melosira spp. The species composition (station 3) shifted from mainly cyanophytes to chlorophytes 

(Treubaria setigerum and Tetrastrum minimum). Station 4 also experienced a shift in species 

composition becoming dominated by a filamentous cyanophyte (Anabaenopsis circularis) and a 

chrysophyte (Peridenium umbotanum). In September, station 1 was dominated by a new species 

(Cryptomonas erosa). 

Differences in phytoplankton assemblages between the control and +NP treatment showed a 

distinct spatial pattern in community composition (fig. 11B). This result corresponds to the severity of 

nutrient limitation experienced by the phytoplankton along the longitudinal gradient of the reservoir 

(fig. JOA). Phytoplankton communities at the upstream station showed little response to nutrient 

addition and were dominated by Euglena graci/us and Cryptomonas erosa during late summer. The 

dominant phytoplankton in the embayment remained the same following a positive response to nutrient 
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addition (Sphaerocystis schroeteri, Tetrastrum minimum, and large centric diatom species. During 

August and September, the dominant phytoplankton ( Cylindrospermopsis philippinensis and 

Chrysophyte spp.) at station 3 showed little response to nutrient addition. However, there was a 

significant growth response by Melosira varians in mid-October. 

DISCUSSION 

Because of the advective influence of river impoundment, reservoirs ate often spatially 

heterogeneous environments that possess longitudinal gradients in environmental factors that control 

phytoplankton productivity (Gloss et al. 1980; Marzolf 1984; Kimmel et al. 1990). In this study, 

significant interannual differences among the major environmental parameters, e.g., light, nutrients, 

chlorophyll, and carbon fixation were observed along the longitudinal gradient of the reservoir. The 

relationship between these environmental parameters helped to provide insight into the controlling 

factors of nutrient-algal dynamics. The spatial gradients observed among the environmental parameters 

was consistent with the generalized model described by Kennedy & Walker (1990). According to the 

model, phytoplankton are presumed to be light-limited in the upstream regions and nutrient-limited in 

downstream regions. In this study, light penetration was lowest at upstream stations and increased with 

distance downstream. Light penetration was low upstream due to increased suspended solids while 

nutrient concentrations decreased downstream (toward the dam) because of increased phytoplankton 

production being supported by greater light penetration. Nutrient concentration (SRP and NO 3) gradients 

were in agreement with the generalized reservoir model. 

Hydrodynamics also played an important role in the control of nutrient-algal dynamics. In this 

study, discharge was a prominent controlling factor among both years. Discharge in the 1995 growing 

season (July-October) was below average due to low rainfall levels and preceding years of drought. This 

resulted in low productivity and severe nutrient limitation by phytoplankton. In comparison, above 

average rainfall levels and discharge in 1996 coincided with increased productivity and minimal nutrient 
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limitation. In addition, marked longitudinal gradients of chlorophyll, light attenuation, and nutrient 

concentrations developed from the combined influence of hydrodynamics and basin morphology. 

Chlorophyll levels remained relatively high in both years despite the significant differences in 

discharge and precipitation. This suggests that increased discharge, by itself, does not ensure low 

phytoplankton production, However, this does not eliminate the role discharge plays in phytoplankton 

dynamics. Seasonal changes in phytoplankton abundance were categorized into 3 periods based on 

longitudinal gradients observed in the reservoir. During high flows in April and May, chlorophyll 

concentrations were highest downstream, presumably because of high turbidity and advective losses 

upstream precluded phytoplankton community development. A transitional period of decreasing flow 

was evident in June when chlorophyll was uniform throughout the reservoir. During summer base flow 

(July-October), chlorophyll concentrations were consistently higher at the upstream station, possibly 

because of nutrient limitation in downstream regions. 

The results from the depth-integrated estimates of epilimnetic productivity in 1996 were 

consistent with the model described by Kennedy & Walker ( 1990) and Kimmel et al. ( 1990) which 

predicts spatial heterogeneity in phytoplankton production in relation to longitudinal gradients. 

Productivity was notably higher at the upstream station compared with stations 2, 3, and 5 downstream. 

In 1995, the close correspondence between the proportion of whole-reservoir productivity within the 

segments of the reservoir and with the proportion of lake volume suggests that a disproportionate fraction 

of lake productivity (relative to volume) occurred in the upstream segment. Staiion 4 (embayment) 

showed the highest productivity within the reservoir, but only accounted for a small proportion of the 

lakes volume (2%) and a correspondingly small fraction of whole-lake productivity .. The higher 

productivity at station 4 could possibly be the influence of extensive shoreline development. 

The depth-integrated estimates of epilimnetic productivity in 1996 showed that phytoplankton in 

late spring (June) experienced increased light intensities (clear-water period) indicating that cell growth 

was limited on the phytoplankton's ability to fix carbon. However, phytoplankton in September 
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experienced lower light levels, but had relatively higher photosynthetic efficiencies than June 

phytoplankton. This could possibly be due to a relatively higher pigment content within the 

phytoplankton, thus improving the capacity to absorb light. 

Results from the nutrient addition experiments showed distinct spatial and temporal patterns in 

the incidence of nutrient limitation by N and Pcombined (+NP). During 1995, co-limitation (+NP) was 

significant in 78% of all experiments. Although previous studies suggest that only one nutrient can limit 

phytoplankton production at any one time (Schindler 1977), more recent studies demonstrate co­

limitation of algal production by N and P from a variety of lakes and reservoirs (Vanni & Temte 1990; 

Elser & Kimmel 1985). In theory, a species cannot be simultaneously limited by more than one nutrient. 

However, co-limitation probably arises because several taxa are close to being limited by the 

"nonlimiting" nutrient (Vanni & Temte 1990). Thus, if a species experiencing P limitation receives an 

addition of P (no nitrogen) and fails to increase biomass, then the species is most likely to experience N 

limitation (Suttle & Harrison 1988). When both nutrients are added, neither nutrient is limiting and 

phytoplankton exhibit a positive growth response. 

The magnitude of the phytoplankton response was consistently higher at the downstream station 

which was consistent with our hypothesis of greater nutrient limitation downstream. It is unclear 

whether nutrient limitation is an important factor regulating phytoplankton production in upstream 

regions of the reservoir. Based on these observations, it is possible to hypothesize the downstream 

stations of the reservoir are the most sensitive to variations in external and internal nutrient loading. It 

should be noted that zooplankton removal from enclosures may increase the severity of nutrient 

limitation (Bukaveckas, oral commun.; Elser & Frees 1995.). Results of the 1996 experiments showed 

less apparent spatial patterns and exhibited weaker growth responses to nutrient additions. The effects of 

nutrient limitation on phytoplankton communities appeared to be most severe in late summer. The 

frequency of nutrient limitation in the reservoir during our study period coincided with significant 

changes in discharge. 
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The spatial patterns of nutrient limitation observed in the enclosure experiments help to explain 

the phytoplankton community stability. Comparisons among the initial, control, and +NP treatment 

groups indicated that enclosure confinement caused some alterations in the community structure while 

nutrient additions primarily caused significant biomass responses (increase in chlorophyll) with no shifts 

in species composition at each station. Diatom abundances were extremely low in the summer, after 

spring peaks. High cyanophyte and chlorophyte abundances were maintained throughout the summer, 

particularly the filamentous forms of cyanophytes in late summer. 

Seasonal succession in temperate lakes and reservoirs often progresses from spring doil)inance in 

diatoms, to chlorophyte dominance in early summer, eventually yielding to cyanophyte dominance in late 

summer (Wetzel 1983). Tilman et al. (1986) suggest that this sequence is related to interactive effects 

involving water temperature and nutrient concentrations. This succession of phytoplankton assemblages 

was generally observed throughout both sampling seasons using CCA ordination. In addition, 

cryptophytes were also abundant throughout the reservoir especially in mid- to late-summer. 

The effect of anthropogenic nutrient enrichment on primary productivity is a topical concern for 

many lakes and reservoirs. Therefore, many management strategies are developed using dynamic water­

quality models. However, accurate depictions of ecological processes is often neglected. In this study, 

we examined nutrient-algal interactions and the influences hydrology and morphology have on primary 

production for the purposes of water-quality modeling. The results suggest that phytoplankton growth 

downstream is more severely limited by N and P availability and therefore, may be more sensitive to 

changes in nutrient loading. Studies that focus on phytoplankton community responses to short-term 

nutrient enrichment experiments cannot be expected to reproduce all aspects of the actual environment to 

nutrient loading. However, enrichment experiments are valuable tools in understanding the ecological 

processes relevant to nutrient management strategies. 
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Table I. Average soluble reactive phoshorus (SRP), and nitrate concentrations (uglL) 
during August-October 1995 and July and September 1996. Samples were collected 
on dates corresponding to enclosure experiments. 

1995 1996 

STATION SRP NO3 SRP NO3 
ui>:/L ug/L ul!!!, ul!!!, 

I 16.6 174 50.2 524 
3 IO.I 41 43.1 287 
4 8.1 51 47.8 285 

AVERAGE 11.6 89 47.0 366 
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Table 2. Percent contribution of productivity (kg C growing season-I) in assigned reservoir segments 
for the 1995 and 1996 growing seasons. Productivity was calculated for growing seasons. Productivity 
was calculated for growing seasons of95 and 98 days (1995 and 1996, respectively). 

STATION 
PRODUCTIVITY S1-S2 S2-S3 S3-S5 S4-MC S5-DAM 

% contribution % contribution % contribution % contribution % contribution 

1995 35.6% 43.8% 18.1% 1.8% 0.6% 
1996 27.2% 41.8% 27.9% 2.2% 0.9% 

VOLUME(m3) 22.5% 43.3% 31.5% 1.7% 1.0% 
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