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The P2X2 receptor is an ATP-gated ion channel, assembled by three subunits. Recently,
it has been found that heterozygous mutations of P2X2 V60L and G353R can cause
autosomal dominant nonsyndromic hearing loss. However, the underlying mechanism
remains unclear. The fact that heterozygous mutations cause deafness suggests that the
mutations may have dominant-negative effect (DNE) on wild-type (WT) P2X2 isoforms
and/or other partners leading to hearing loss. In this study, the effect of these dominant
deafness P2X2 mutations on WT P2X2 was investigated. We found that sole transfection
of both V60L and G353R deafness mutants could efficiently target to the plasma
membrane, like WT P2X2, but exhibit a significantly reduced response to ATP stimulation.
Both mutants reduced the channel conductance, but G353R mutation also altered the
voltage dependency. Co-expression with WT P2X2 could restore the response to ATP.
As the ratio of WT P2X2 vs. mutants increased, the response to ATP was also increased.
Computer modeling confirmed that both V60L and G353R dominant-deafness mutant
subunits do not have any negative effect on WT P2X2 subunit, when assembled as
a heterotrimer. Improper docking or defective gating is the more likely mechanism for
impaired channel function by these P2X2 deafness mutations. These results suggest that
P2X2 dominant deafness mutations do not have negative effects on WT P2X2 isoforms,
and that adding additional WT P2X2 could rescue the lost channel function caused by
the deafness mutations. These P2X2 dominant deafness mutations may have negative-
effects on other partners leading to hearing loss.

Keywords: P2X2 receptor, mutation, deafness, dominant negative effect, functional restoration, ATP

INTRODUCTION

ATP can act as an extracellular cell signaling molecule to influence cellular function in many
aspects through the activation of purinergic (P2) receptors, which comprise ATP-gated ionotropic
(P2X) and G protein-coupled metabotropic (P2Y) subgroups (Jacobson et al., 2002; North,
2002; Surprenant and North, 2009). A P2X receptor is a trimer, composed of three subunits
(North, 2002; Kawate et al., 2009; Saul et al., 2013). Each subunit contains two transmembrane

Frontiers in Molecular Neuroscience | www.frontiersin.org 1 November 2017 | Volume 10 | Article 371

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://www.frontiersin.org/journals/molecular-neuroscience#editorial-board
https://doi.org/10.3389/fnmol.2017.00371
http://crossmark.crossref.org/dialog/?doi=10.3389/fnmol.2017.00371&domain=pdf&date_stamp=2017-11-13
https://www.frontiersin.org/articles/10.3389/fnmol.2017.00371/full
https://www.frontiersin.org/articles/10.3389/fnmol.2017.00371/full
https://www.frontiersin.org/articles/10.3389/fnmol.2017.00371/full
https://www.frontiersin.org/articles/10.3389/fnmol.2017.00371/full
https://www.frontiersin.org/articles/10.3389/fnmol.2017.00371/full
http://loop.frontiersin.org/people/281432/overview
http://loop.frontiersin.org/people/492906/overview
http://loop.frontiersin.org/people/77544/overview
http://loop.frontiersin.org/people/158271/overview
https://creativecommons.org/licenses/by/4.0/
mailto:hzhao2@uky.edu
https://doi.org/10.3389/fnmol.2017.00371
https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Zhu et al. P2X2 Dominant Mutation Deafness Mechanisms

domains (TM), a large extracellular loop and intracellular N- and
C-termini (Figure 1A). The extracellular domain contains three
ATP-binding sites (Kawate et al., 2009; Hattori and Gouaux,
2012; Chataigneau et al., 2013). Upon ATP binding, motions
of the extracellular domains induce opening of the channel
transmembrane pore to allow K+ and Ca2+ influx.

ATP exists physiologically in the cochlear endolymph and
perilymph (Muñoz et al., 1995), mainly released from gap
junctional hemichannels (Zhao et al., 2005), in particular,
Panx1 channels (Chen et al., 2015). It has been found that ATP
in the cochlea can elevate intracellular Ca2+ concentration in
hair cells to modify sound transduction and neurotransmission
(Ashmore and Ohmori, 1990; Dulon et al., 1991; Sugasawa et al.,
1996; Housley et al., 1999, 2013), mediate hearing sensitivity,
extend the dynamic range of hearing (Housley et al., 1999;
Thorne et al., 2004; Telang et al., 2010), synchronize auditory
nerve activity during development (Tritsch et al., 2007; Tritsch
and Bergles, 2010), and activate type II auditory nerves (Liu
et al., 2015). In addition, ATP can activate P2X receptors to
mediate stimulation of parasensory cation absorption (Lee et al.,
2001). We also found that ATP can activate P2X receptors to
mediate outer hair cell (OHC) electromotility (Zhao et al., 2005;
Yu and Zhao, 2008), gap junctional coupling, K+-sinking and
recycling, and endocochlear potential (EP) generation (Zhu and
Zhao, 2010, 2012; Chen et al., 2015).

Recently, it has been found that heterozygous mutations
of V60L (c. 178G > T) and G353R (c. 1057G > C) in
P2X2 cause autosomal dominant nonsyndromic hearing loss
DFNA41 (Yan et al., 2013; Faletra et al., 2014), further indicating
that ATP-purinergic signaling has a critical role in hearing.
However, the underlying deafness mechanism remains unclear.
The fact that heterozygous mutations cause deafness suggests
that the mutation may have a dominant-negative effect (DNE)
on wild-type (WT) isoform and/or other partners. In this study,
the effect of these dominant deafness P2X2 mutations on WT
P2X2 was investigated. We found that both V60L and G353R
dominant deafness mutants nearly lost all responses to ATP but
had no DNE onWT P2X2. Based on their locations on the three-
dimensional (3D) structure of the P2X receptor, deficiency of
force-transferring from the ATP-binding site to the pore gating
or defective gating is the more likely mechanism underlying
impaired channel function.

MATERIALS AND METHODS

P2X2 and Mutant Expression Plasmid
Construction
Human P2X2-GFP plasmid and p.V60L-GFP plasmid were
purchased from Origene (Rockville, MD, USA). The human

FIGURE 1 | Membrane surface expression of P2X2 wild-type (WT), V60L and G353R. (A) Structure of the human P2X3 receptor solved in the presence of ATP
(indicated by spheres; PDB ID: 5SVK; Mansoor et al., 2016). A functional P2X receptor is assembled by three subunits; each subunit is composed of two
transmembrane domains (TM1 and TM2), an extracellular domain and two intracellular N- and C-termini. Locations of the corresponding human P2X2 deafness
mutations V60L (red spheres) and G353R (cyan spheres) are indicated. (B,C) Cell surface expression of P2X2 WT-GFP, V60L-GFP and G353R-GFP is assessed by
Western blot analyses of biotinylated receptors (data are mean ± SEM, n = 4 transfections). (B) shows representative Western blot analysis of cell-surface (top) and
total expression (bottom) of WT and mutant receptors. Arrows indicate positions of P2X2-GFP and β-actin monomers. (D–F) Confocal images of HEK293 cells
transfected with P2X2 WT-GFP, V60L-GFP and G353R-GFP. The surface expression on the plasma membrane is visible in both WT and mutants. Scale bar: 10 µm.
(G) Quantitative analyses of the surface expression of the plasma membrane. Fluorescent intensity at the plasma membrane was measured. Data were expressed as
mean ± SD.
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P2X2-GFP plasmid was constructed with human P2X2 cDNA
(NM_174873) cloned in pCMV6-AC-mGFP vectors. Themutant
in human P2X2 V60L (c. 178G > T) cDNA was engineered
using the Quikchange XLII site-directed mutagenesis kit
(Stratagene, CA, USA) according to manufacturer’s instructions
and cloned in pCMV6-AC-mGFP vectors. Human P2X2 G353R
(c.1057G > C)-GFP plasmid was made in-house by the same
materials and method. Presence of the desired mutations
and absence of other non-specific mutations were verified by
sequencing the entire gene.

HEK 293 Cell Culture and
P2X2 Transfection
HEK 293 cells were cultured in DMEM with 10% fetal bovine
serum and 100 U/ml penicillin at 37◦C in a 5% CO2 incubator.
Cells were trypsinized and HEK 293 cells were seeded at a
density of ∼100,000 cells per well on a 24-well plate and
incubated overnight. Then, the medium in the wells was replaced
with fresh DMEM plus 10% FBS and cells were transfected
with P2X2-GFP, V60L-GFP and G353R-GFP plasmids (10 µg)
using Lipofectamine 2000 (Invitrogen) following manufacturer’s
instructions. After 24–48 h, the successful transfectants were
identified under the fluorescent microscope and captured by a
Leica confocal microscope (Leica TCS SP2) equipped with 40×
and 100× apochromatic oil objectives with a fixed set of laser and
image collection parameters. All images were saved in the TIFF
format.

Quantitative Analysis of Cell Surface
Membrane Expression
The confocal images were quantitatively analyzed by NIH image
software (Bethesda, MD, USA). The fluorescent intensity at the
plasma membrane was measured by the profile plotting function
(Yu et al., 2006, 2008). For each cell, the place of non-apparent
cytoplasm-labeling was selected. A line perpendicular to the cell
surface was drawn cross the cell surface and the intensities of
pixels along the line were recorded by the profile plotting. The
mean of fluorescence intensity at the plasma membrane was
measured by Gaussian fitting [y = a ∗ log(−((x− x0)/b)2)].
Then, the measured intensities were averaged.

Cell surface expression of P2X2, V60L and G353R was also
verified by biotinylation-Western blotting assay. As previously
described (Jiang et al., 2010), a membrane-impermeant,
thiol-cleavable amino-reactive reagent, sulfosuccinimidyl-2-
(biotinamido)ethyl-1,3′-dithiopropionate (EZ-LinkTM Sulfo-
NHS-SS-Biotin, ThermoFisher Scientific, France), was used.
P2X2 WT or mutants (10 µg) were transfected into HEK-293
cells using calcium phosphate precipitation. After 24 h, cells were
solubilized in lysis buffer and the supernatant was incubated
with neutravidin-agarose beads (ThermoFisher Scientific,
France) overnight. After DTT cleavage, protein samples were
run on a 4%–15% SDS-PAGE in Tris/Glycine/SDS running
buffer (Bio-Rad, France). For total expression, 15 µl out of
200 µl of solubilized cells were loaded on the SDS-PAGE. After
electrophoresis, proteins were transferred to a nitro-cellulose
membrane. This membrane was blocked for 30 min with TPBS

(PBS supplemented with 1% non-fat dry milk, 0.5% bovine
serum albumin, and 0.05% Tween 20) and incubated in the
same buffer overnight at 4◦C with both anti-mGFP antibody,
diluted at 1:500 (OriGene, Germany) and anti-β-actin antibody
(Sigma-Aldrich, France), diluted at 1:5000. Then, the membrane
was incubated with peroxidase-conjugated sheep anti-mouse
antibody for 2 h at room temperature, diluted at 1:10,000
(GE Healthcare Life Sciences, France). Blots were developed
with the Amersham ECL Prime Western blotting detection
reagent (Dominique Dutscher, France). The image was captured
with Amersham Imager 600 and the intensity of the band
corresponding to surface expression was measured (Figure 1B).
The measured intensities were normalized to the intensity of
P2X2 WT and averaged (Figure 1C).

Patch-Clamp Recording
Patch clamp recording was performed as we previously reported
(Zhu and Zhao, 2010, 2012). The culture cells were rinsed
with normal extracellular solution (NES; 130 NaCl, 5.37 KCl,
1.47 MgCl2, 2 CaCl2, 25 Dextrose and 10 HEPES in mM;
300 mOsm and pH 7.2) three times. Then, the culture cells were
continually perfused with NES. A single, isolated cell with strong
fluorescence was selected and classical whole-cell recording was
performed using Axopatch 200B (Molecular Devices, CA, USA).
Patch pipettes were filled with a normal intracellular solution that
contained (in mM): 140 KCl, 5 EGTA, 2 MgCl2 and 10 HEPES,
pH 7.2 with initial resistance of 2.5–3.5 MΩ in the bath solution.
Data collection was performed with jClamp (SciSoft, NewHaven,
CT, USA). The signal was filtered by a 4-pole low-pass Bessel
filter with a cut-off frequency of 2 kHz and digitized utilizing a
Digidata 1322A A/D-D/A board (Molecular Devices, CA, USA).
The patch clamp recording was conducted at room temperature
(23◦C).

The cell was held at −80 mV. The holding current, cell
capacitance, and other recording parameters were continuously
recorded in jClamp as we previously reported (Zhu and Zhao,
2010, 2012). The current-trace for ATP stimulation was recorded
when the cell was held at −80 mV. In some cases, the current-
voltage (I-V) curve was measured at the max point in the trace
of ATP-evoked inward current by voltage-steps from −150 mV
to 70 mV for 100 ms in 10 mV increments. The I-V curve was
plotted by average values of the steady-state currents in last 20ms
of the voltage step stimulation. The conductance was calculated
by the current divided by the membrane potential (Vm), which
was corrected for pipette series resistance (Rs).

Chemicals and Chemical Application
All chemicals were purchased from Sigma-Aldrich (St. Louis).
ATP was applied by a Y-tube or a bath perfusion system (Yu and
Zhao, 2008; Zhu and Zhao, 2010, 2012).

Data Collection, Analysis and Display
All data were collected from at least three different experiments.
Data were plotted by SigmaPlot and statistically analyzed by
SPSS v18.0 (SPSS Inc. Chicago, IL, USA). Data were expressed
as mean± SEM other than indicated in text.
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RESULTS

Plasma Membrane Targeting of
P2X2 Deafness Mutations
The P2X2 receptor is a membrane protein and functions on
the cell surface. Figure 1 shows that even though P2X2 V60L
and G353R mutations had expression in the cytoplasm, they
could target to the plasma membrane and had good expression
on the cell surface similar to WT P2X2 (Figures 1D–G).
Quantitative analyses show that the measured fluorescent
intensities of P2X2 WT, V60L and G353R at the plasma
membrane were 167.8 ± 29.3 (n = 12), 168.0 ± 22.3 (n = 19),
and 163.3 ± 19.3 (n = 13), respectively. There was no significant
difference among P2X2 WT, V60L and G353R membrane
expression (Figure 1G, p = 0.41, one-way analysis of variance
(ANOVA)). Using cell-surface biotinylation Western blotting
assay, we further confirmed the cell-surface expression of V60L
and G353R mutants (Figures 1B,C), and that there was no
significant difference in the level of surface expression among
V60L, G353R and WT P2X2 (Figure 1C, p = 0.16, one-way
ANOVA).

Absence of ATP Responses in
P2X2 Mutants
These deafness mutants, however, lost responses to ATP
stimulation. Figure 2 shows that application of 36 µM ATP
could evoke a large inward current in WT P2X2 transfected cells.
However, there was almost no ATP-evoked inward current in
V60L or G353R transfected cells (Figures 2A,B). At −80 mV,
the ATP-evoked inward currents in P2X2 WT, V60L and G353R
transfected cells were −2.42 ± 0.43 (n = 12), −0.15 ± 0.05
(n = 14), and −0.07 ± 0.01 (n = 8) nA, respectively (Figure 2C).
In comparison with that in WT P2X2, the ATP-evoked inward
currents in V60L or G353R transfected cells were significantly

reduced (p < 0.001, one-way ANOVA with a Bonferroni
correction). At high ATP concentration (1 mM), the current
responses of WT P2X2 at −80 mV were −7.07 ± 1.48 nA
(n = 4). However, apparent responses to ATP stimulation were
still significantly reduced in the mutants V60L and G353R in
comparison with WT P2X2. The recorded currents of V60L and
G353R mutants at −80 mV were −0.18 ± 0.07 (n = 4), and
−0.11 ± 0.03 (n = 3) nA, respectively (p < 0.001, one-way
ANOVA with a Bonferroni correction).

Responses of ATP in Co-Transfection of
Mutants with WT P2X2
We further tested whether these dominant deafness mutations
have a negative effect on WT P2X2. Figure 3 shows the
membrane expression and ATP responses in co-transfection of
WT P2X2 and deafness mutations. As shown in V60L and G363R
sole-transfected cells (Figures 1E,F), good surface expression
was visible in co-transfection of WT P2X2 and these mutants
(Figure 3A). Also, there were apparent ATP-evoked inward
currents in these co-transfected cells (Figure 3B). With a 1:1
co-transfection ratio, ATP-evoked current in P2X2 WT and
V60L co-transfected cells was half the value of the current
recorded from P2X2 WT sole-transfected cells (Figure 3B).
In co-transfection of P2X2 WT and G353R, the ATP-evoked
inward current was even larger. At 36 µM ATP stimulation,
the evoked currents in P2X2 WT, WT+V60L and WT+G353R
transfected cells at −80 mV were −2.42 ± 0.43 nA (n = 12),
−1.26 ± 0.34 nA (n = 6), and −1.58 ± 0.23 nA (n = 5),
respectively. As the cell was hyperpolarized, the ATP-evoked
currents in co-transfection became large. At −150 mV, the
ATP-evoked inward currents in P2X2 WT, WT+V60L and
WT+G353R transfected cells were −6.63 ± 0.67 nA (n = 12),
−3.44 ± 0.94 nA (n = 6), and −6.46 ± 1.04 nA (n = 5),
respectively. The ATP-evoked inward current in WT+V60L

FIGURE 2 | P2X2 deafness mutations eliminate current responses to ATP stimulation. (A) An ATP-evoked inward current is visible in a P2X2 WT-transfected cell but
eliminated in mutant-transfected cells. Horizontal lines represent ATP (36 µM) perfusion. Cells were held at −80 mV. (B) ATP-evoked current traces across the
applied voltage range from −150 mV to 70 mV in P2X2 WT and mutant transfected cells. Little current responses are visible in V60L and G353R transfected cells.
(C) The current-voltage (I-V) relationships were plotted by average values of the steady-state currents in last 20 ms of 100 ms voltage stimulations.
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FIGURE 3 | Restoration of ATP-evoked current responses in P2X2 WT and mutant co-transfected cells. (A) Membrane surface expression is visible in the
co-transfection of V60L or G353R with P2X2 WT fused with GFP. Scale bar: 10 µm. (B) The ATP-evoked inward currents in co-transfection of WT P2X2 with V60L or
G353R mutations. The horizontal line bars represent perfusion of 1 mM ATP. The cells were held at −80 mV. (C) The I-V relationship of ATP-evoked responses in
co-transfection of V60L or G353R mutant with WT P2X2. The ATP-evoked inward currents are reduced but not completely abolished in WT and mutant
co-transfected cells.

co-transfected cells retained half the value of the current recorded
from P2X2 WT transfected cells. However, the ATP-evoked
inward current in WT+G353R co-transfected cells became as
large as the current recorded from P2X2 WT transfected cells
(Figure 3B).

Figure 4 shows that the ATP-evoked responses in
co-transfection of WT and deafness mutations were dependent
upon the co-transfection ratio of WT vs. mutant. In
comparison with sole deafness mutant, the responses to
ATP in the co-transfection dramatically increased. Also, as
the co-transfection ratio of WT vs. mutant was increased
(i.e., WT P2X2 was increased), the responses were increased,
demonstrating a ratio-dependent manner.

Gating and Voltage Dependence of
Deafness Mutations
We also analyzed conductance and voltage dependence of
P2X2 V60L and G353R mutations (Figure 5). Under 36
µM ATP stimulation, the conductance of WT P2X2, V60L
and G353R at −80 mV was 30.2 ± 5.43 nS (n = 12),
1.85 ± 0.57 nS (n = 14), and 0.93 ± 0.15 nS (n = 8),
respectively (Figure 5A). The conductance of V60L and
G353R was significantly reduced (p < 0.001, one-way ANOVA
with a Bonferroni correction). As cells were depolarized,
the conductance of both P2X2 WT and V60L was reduced.
However, the decrements in WT P2X2 and V60L were
almost parallel to each other, even though the conductance
of V60L mutation was dramatically reduced (Figure 5A). The
normalized conductance of V60L to the WT conductance
appeared flat and parallel to that in WT P2X2 in the
stimulus voltage range (Figure 5B, bottom), indicating that
mutation of V60L has similar voltage dependence to WT P2X2.
However, unlike V60L mutation, G353R mutation not only

FIGURE 4 | ATP-evoked responses in the co-transfection of WT and
P2X2 deafness mutation V60L and G353R are ratio-dependent. The
responses were recorded at ATP = 36 µM and Vh = −80 mV. In comparison
with the responses of sole-transfection of mutants, ATP responses in the
co-transfection dramatically increased as the co-transfection ratio was
increased.

reduced conductance but also altered the voltage dependence
(Figure 5). The normalized conductance of G353R was not
parallel to WT P2X2 and was reduced as cells were depolarized
(Figure 5B, bottom), indicating that G353R mutation not only
decreases channel conductance but also reduces the sensitivity to
voltage.

In the co-expression of P2X2 WT and mutations, the
conductance became larger than that of the sole-expression
of either mutant. With a 1:1 co-transfection ratio, the
conductance of P2X2 WT and V60L co-transfection at −80 and
−150 mV was 15.8 ± 4.22 and 22.9 ± 6.29 nS (n = 6),
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FIGURE 5 | Conductance and voltage dependence of P2X2 WT and deafness mutants. (A) Conductance of P2X2 WT and co-transfection with V60L and G353R
mutations. The lower graphic is the amplified plot of the conductance of the cells transfected with mutants alone. The conductance is calculated from current
responses evoked by ATP stimulations. (B) Normalized conductance to P2X2 WT conductance. The lower graphic is the amplified plot for transfected with mutants
alone.

respectively, at 36 µM ATP stimulation. They also had
a conductance half of that of WT P2X2 (Figures 5A,B).
The voltage dependence of co-transfection of P2X2 WT and
V60L was also similar to that of WT P2X2; the normalized
conductance of WT and V60L co-transfection was parallel
to WT P2X2 as well (Figure 5B). In the co-transfection of
G353R and WT P2X2, the conductance was also larger than
that in sole G353R transfection (Figure 5). However, unlike
co-transfection of P2X2 WT and V60L, the conductance in
the co-transfection of P2X2 WT and G353R was increased as
the cell was hyperpolarized. At −150 mV, the conductance
was almost as large as WT P2X2. The normalized conductance
of the co-transfection was also not parallel to WT P2X2
(Figure 5B).

Modeling Analysis of the Effect of
Dominant Deafness Mutations on WT P2X2
We further used computer modeling to assess the effect of
dominant deafness mutation on WT P2X2 (Figures 6, 7). A
P2X2 channel is a trimer and is assembled by three subunits
(Saul et al., 2013). In co-transfection, the WT (W) and mutant
(M) isoforms can form four types of channel configurations,
WWW, WWM, WMM, and MMM, for a trimeric channel. The
probability of each channel configuration can be described by the
binomial distribution (Colquhoun and Hawkes, 1981; Uteshev,
1993):

P(k, p) = C(n, k) ∗ pk ∗ (1− p)n−k

where, P is the probability that a channel has k WT subunits, p
is the probability of the WT channel from the pool of available
subunits (n), and (1-p) is corresponding probability of the
mutant channel. In the co-expression of WT and mutant, n is
determined by the ratio of WT vs. mutant. For example, n is 2 for
the ratio of WT:Mut = 1:1, 3 for the ratio of WT:Mut = 1:2, and
so on.

If the mutant has no negative effect on WT isoforms and
each subunit is functionally independent (Figure 6A), the
conductance of WWW, WWM, WMM and MMM channels
will be 1, 2/3, 1/3 and 0, respectively. However, if the
mutant has a negative effect on WT isoforms, with the
exception of WWW homomeric channels, all channels with
a mutant isoform will lose function (Figure 6A). Figure 6B
shows the conductance predicted by modeling at different
co-transfection ratios with or without DNE. The conductance
with the negative effect is much lower than that without
the negative effect. For example, at the co-expression ratio
of WT:Mut = 1:1 (indicated by a dashed vertical line in
Figure 6B), the conductance without the negative effect is
0.5, whereas the conductance with the negative effect is 0.125
(Figure 6B).

Figure 7 shows the comparison of predicted current responses
by modeling with or without the DNE with currents recorded
from P2X2 WT with co-transfection of mutant of V60L and
G353R. As shown by a dark green line in Figure 7, the prediction
by the modeling without the DNE perfectly matches the current
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FIGURE 6 | Modeling analysis of the dominant negative effect (DNE) and no
dominant negative effect (NDNE) in co-expression of P2X2 WT and mutation.
(A) Channel configuration and corresponding conductance in the
co-expression with DNE and NDNE. (B) The predicted conductance by
modeling with DNE and NDENE in co-transfection with different expression
ratios of WT vs. mutant.

responses recorded from the P2X2WT and V60L co-transfection
(red empty circles in Figure 7), while the prediction by the
modeling with the DNE (as shown by a green line in Figure 7)
is much smaller than the recorded currents.

This simple model does not include changes in voltage
dependence. The currents recorded from the co-transfection of
G353R and WT P2X2 did not perfectly match the prediction
by this model (blue empty triangles in Figure 7), due to
G353R mutation also altered the voltage dependence (Figure 5).
However, the currents recorded from the co-transfection of
P2X2 WT and G353R were larger than the modeling prediction
with the DNE (Figure 7), indicating that G353R mutation has no
DNE onWT P2X2, too.

DISCUSSION

In this study, we found that both P2X2 deafness mutations
V60L and G353R retained good surface expression on the
plasma membrane but nearly lost all responses to ATP
(Figures 1, 2). However, unlike V60L, G353R mutation also
altered voltage dependence, decreasing the sensitivity to voltage
as cells are depolarizing (Figure 5). Co-expression with WT
P2X2 could partially restore the impaired function caused by
the mutations (Figures 3, 4). Computer modeling analyses
reveal that both dominant deafness mutations have no negative

FIGURE 7 | NDNE of P2X2 dominant deafness mutations on WT P2X2. Solid
lines represent the current responses predicted from modeling with DNE and
NDNE at the ratio of W:M = 1:1. Red and blue empty symbols represent
ATP-evoked currents from co-transfection of P2X2 WT with V60L and G353R,
respectively, which are adapted from Figure 3B. The current responses from
the co-transfection of V60L with WT P2X2 perfectly match the model
prediction with NDNE. The currents of co-transfection of P2X2 WT and
G353R are also larger than the model prediction, indicating that there is no
negative effect on WT P2X2 function.

effect on WT P2X2 (Figures 6, 7). However, they may have
different underlying channel-gating mechanisms for the loss of
function.

As shown in Figure 1A, mutations V60L and G353R are
located at different positions on the 3D structure. Mutation
V60L localizes at the extracellular part of TM1, whereas
mutation G353R localizes at the TM2 pore site. Recently,
crystal structures of the zebrafish P2X4 (zfP2X4) and human
P2X3 (hP2X3) receptors solved in apo and ATP-bound states
revealed molecular motion of the extracellular domain following
agonist binding (Kawate et al., 2009; Hattori and Gouaux,
2012; Mansoor et al., 2016). ATP-binding causes motion
in the extracellular domains, which induces opening of the
channel pore at the transmembrane domain. From the hP2X3
X-ray structure, residue V42 (equivalent to V60 in human
P2X2) is located at last turn of the TM1, opposite to the
hydrophobic I319 residue from another subunit (Mansoor
et al., 2016). These two residues interact with each other
in the resting, closed state (Jiang et al., 2003). Mutation
V60L may form strong interactions with I333 (equivalent
to I319 in hP2X3), which lock these residues in place and
prevent channel gating. This will also impair the force transfer
from the ATP-binding site at the extracellular domain to
the channel pore at the transmembrane domain to open the
channel. However, the mutation does not directly impair the
function of the channel pore. Indeed, mutation of V60L only
reduced the channel conductance but conferred similar voltage
dependence to WT P2X2 receptors (Figure 5), supporting this
concept.
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Mutation G353R, however, not only reduced the channel
conductance but also altered voltage dependence (Figure 5).
The mutation of G353R localizes at the cytoplasmic vestibule
of the gate (Kawate et al., 2009; Caseley et al., 2014).
A recent study demonstrated that the flexibility of the
residue of rat G342 (equivalent to G353 in the human
P2X2 receptor) is important for gating (Habermacher et al.,
2016). It has been reported that the substitutions of G342C
and G342K in the rat P2X2 receptor can impair channel
gating resulting in small or absence of ATP-evoked currents
(Cao et al., 2009). Our results are consistent with these
previous reports. The mutation of G353R in the human
P2X2 receptor may share the same mechanism by impairing
channel gating which leads to the sharp decrease of the ATP
response.

Our data and computer modeling analysis also provide
important information about P2X2 channel activity. The
P2X2 receptor is a trimer, assembled by three subunits.
However, the action of each subunit in the trimer is less
understood. Our data show that docking with WT P2X2 can
compensate the defective effect of mutants to restore the
channel function, which matched the prediction by binomial
modeling (Figures 6, 7). This suggests that each subunit in
the P2X2 trimer can be individually functional. This is also
consistent with previous reports that T336C mutant did not
act in a dominant fashion (Stoop et al., 1999). It has been
reported that subunits in P2X receptors also have positive
cooperativity (Ding and Sachs, 1999, 2002). Indeed, we found
that unlike V60L, G353R mutation in co-transfection with
WT P2X2 demonstrated a nonlinear voltage-dependent current
response (Figures 3, 5), larger than the prediction by a simple
binomial model (Figures 6, 7). In particular, small portion
of WT co-expressed with G353R mutation could dramatically
increase the response to ATP (Figure 4). This may result
from the positively cooperative effect on gating activity among
subunits.

In the experiment, we found that co-transfection of deafness
mutations with WT P2X2 could restore the mutation-induced
deficiency in the response to ATP (Figures 3, 4). This may
also provide important information for developing therapeutic
strategies targeting this hearing loss. However, our present results
showed that both V60L and G353R co-expressed with WT
P2X2 could restore the lost channel function (Figures 3, 4),
inconsistent with a recent report that co-transfection of
P2X2 WT and V60L mutation has no response to ATP
stimulation (Mittal et al., 2016). In that study, they also claimed
that these P2X2 mutations could affect hydrolysis of ATP to
influence P2X2 channel activity and function (Mittal et al.,
2016), which is unreasonable. First, it is well-known that
ATP-induced opening of P2X receptors is due to a simple
binding process and does not require the hydrolysis of ATP
(Kawate et al., 2009; Hattori and Gouaux, 2012; Jiang et al.,
2012). Second, opening of P2X channels by ATP is very fast
within milliseconds following the binding of ATP (Figures 2,
3), whereas the reported hydrolysis is very slow, happening in
minutes to hours (Mittal et al., 2016). Finally, there was no
evidence that there are no other proteins, especially ATPases,

mixed in their ATP hydrolysis experiment to hydrolyze ATP.
In the present study, we further showed that the restoration of
the lost function by co-expression of V60L or G353R with WT
P2X2 is dose-dependent; the response to ATP was increased
as the ratio of co-expression with WT P2X2 was increased
(Figure 4). This further suggests that co-expression with WT
P2X2 could restore the lost channel function by not only G353R
but also V60L mutation.

P2X2 receptor mutations induced DFNA41 is autosomal
dominant deafness, which is caused by heterozygous mutants
(Yan et al., 2013; Faletra et al., 2014). This suggests that the
mutationsmay have the negative effect onWTP2X2 and/or other
partner(s), thereby leading to hearing loss. However, we found
that WT P2X2 co-transfected with V60L and G353R dominant-
deafness mutations still retained robust responses to ATP
stimulation (Figures 3, 4), i.e., dominant-deafness mutations did
not abolish WT P2X2 function. Computer modeling analyses
(Figures 6, 7) also confirmed that the mutations have no
negative effect on WT P2X2. Furthermore, it has been found
that P2X2-null mice have no hearing loss and demonstrate
normal hearing (Housley et al., 2013). Taken together, these
data suggest that P2X2 dominant deafness mutations V60L and
G353R have no DNEs on WT P2X2, and that hearing loss
caused by these P2X2 dominant-deafness mutations may be
unlikely to result from sole loss of P2X2 receptor function.
Other mechanisms, such as negative effect on other partners,
may play a critical role in hearing loss. It has been reported
that P2X receptors can cooperate with Panx1 channels to play
an important role in ATP release (Khakh and North, 2012).
Recently, we found that Panx1 knockout mice have hearing loss
(Chen et al., 2015; Zhao et al., 2015), resulting from the reduction
of ATP release in the cochlea and cochlear EP generation,
thereby reducing auditory receptor current/potential (Chen et al.,
2015). Panx1 mutation also caused hearing loss in humans
(Shao et al., 2016). The P2X2 dominant deafness mutations
may have a negative effect on Panx1 leading to hearing loss.
This hypothesized mechanism needs to be further studied in the
future.
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