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The effects of Perinatal Oxycodone 
exposure on Behavioral Outcome in 
a rodent Model
Thitinart Sithisarn1*, Sandra J. Legan2, Philip M. Westgate3, Melinda Wilson2, 
Kristen Wellmann4, Henrietta S. Bada1 and Susan Barron4

1 Division of Neonatology, Department of Pediatrics, College of Medicine, University of Kentucky, Lexington, KY, 
United States, 2 Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States, 
3 Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, KY, United States, 
4 Department of Psychology, University of Kentucky, Lexington, KY, United States

Opiate addiction is now a major public health problem. Perinatal insults and exposure 
to opiates such as morphine in  utero are well known to affect development of the  
hypothalamic–pituitary–adrenal axis of the offspring adversely and are associated with a 
higher risk of developing neurobehavioral problems. Oxycodone is now one of the most 
frequently abused pain killers during pregnancy; however, limited data are available 
regarding whether and how perinatal oxycodone exposure (POE) alters neurobehav-
ioral outcomes of the offspring. We demonstrated that exposure to 0.5  mg/kg/day 
oxycodone in utero was associated with hyperactivity in adult rats in an open field. No 
significant effects of POE were detected on isolation-induced ultrasonic vocalizations 
in the early postnatal period or on learning and memory in the water maze in adult 
offspring. Our findings are consistent with hyperactivity problems identified in children 
exposed to opiates in utero.

Keywords: prenatal opiate exposure, prenatal oxycodone exposure, behavior, hyperactivity, ultrasonic 
vocalization, learning and memory

inTrODUcTiOn

The prevalence of opiates and prescription opioid abuse among pregnant women is a major public 
health concern. Non-prescription opioids are the second most abused illicit substance and one of the 
most commonly abused opiate pain relievers is oxycodone (1). In 2015, an estimated 10.4% of the 
population over 12 years of age used oxycodone products. Importantly, substance use in pregnant 
women and subsequent fetal exposure to drugs have been linked to adverse health effects for the 
maternal–fetal dyad. Opiates can affect the developing fetus directly or indirectly through various 
mechanisms. Opiates can cross the placenta (2–4) and act directly on fetal opioid receptors. Opiates 
can also enhance maternal secretion of cortisol in the mother or stimulate the secretion of stress 
hormones in the fetus (5), which can pose long-term effects to the developing fetus (6) and the 
hypothalamic–pituitary–adrenal (HPA) axis of the offspring (7, 8). In addition, because the HPA 
axis has important roles in programming neurobehavioral development (9) and dysregulation of 
the HPA axis has been linked to several neuropsychiatric disorders, such as anxiety (10), depression 
(11, 12), ADHD (13), and learning/memory deficits (14, 15, 16), any opioid-induced changes in the 
HPA-axis may also be associated with short- and long-term behavioral problems.

Both human and animal studies have shown that exposure to opiates has deleterious effects on 
neurodevelopmental outcomes. However, most of them used other opiates, including morphine 
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and heroin, which are mu-opioid receptor agonists, rather than 
oxycodone, a semisynthetic putative kappa opioid receptor 
(KOR) and partial mu opioid receptor agonist. Because illegal 
oxycodone use during pregnancy continue to rise, and the effects 
of opiates on the HPA axis differ depending on the type of opiate 
(17, 18, 19), it is important to determine the effects of perinatal 
oxycodone exposure (POE) on the neurobehavioral outcome of 
the offspring.

The current study was designed to examine the potential 
effects of POE on three diverse behaviors; isolation induced 
ultrasonic vocalizations (USVs) in neonatal pups followed by 
activity levels in adolescent rats and spatial learning in young 
adult rats. Isolation-induced USVs are the responses of young 
rat pups when separated from their mothers (20, 21). USVs are 
considered an adaptive response of the pup and these USVs 
correlate directly with distress and/or anxiety in the rat pup 
(22). USVs elicit maternal behavior and play an important role 
in the interaction between the pup and the dam (21). USV cues 
may be comparable to the crying sounds of human infants (23), 
which have been used to identify infants at risk for poor neu-
robehavioral outcomes (23, 24). Although existing data on the 
effects of prenatal opiate exposure on isolation-induced USVs 
remain limited, neonatal exposure to alcohol (25) or other illicit 
drugs, such as cocaine, can alter many USV characteristics (26). 
Therefore, we hypothesized that rat pups prenatally exposed to 
oxycodone would have an increased latency to the first USV and 
decreased USV numbers per minute.

The second testing paradigm used was an open field test, 
which has been widely used to study hyperactivity, anxiety, and 
stress in animals (27, 28, 29, 30). Although prenatal exposure to 
morphine was not associated with increased locomotor activity 
in the open field in rats (31, 32), human studies have shown 
that children exposed to opiates in utero manifest hyperactivity, 
impulsivity, and attention problems, whether the mothers were 
in opiate maintenance therapy or were polysubstance users  
(33, 34). Therefore, we hypothesized that POE would be associ-
ated with hyperactivity in the open field in rat offspring.

Learning and memory were assessed in a water maze. 
Children prenatally exposed to opiates have learning problems 
and lower scores on neurodevelopmental tests (35, 36, 37). In 
rats, prenatal exposure to morphine is associated with learning 
and memory deficits (38, 39). Thus, we hypothesized that POE 
would impair learning and memory of the offspring. To the best 
of our knowledge, these studies are the first to look at the effects 
of POE on these behavioral measures.

MaTerials anD MeThODs

experimental Design: animals  
and Prenatal Treatments
The study protocol was approved by the University of Kentucky 
Institutional Animal Care and Use Committee. Virgin female 
Sprague Dawley rats (Harlan, Indianapolis, IN, USA) weighing 
194–223 g were individually housed at 22–25°C and maintained in 
a 14L:10D photoperiod (lights on at 0500 h) room with regulated 
30–70% humidity. Rat chow and water were provided ad libitum.

Once released from quarantine, the females were fitted with a 
right atrial cannula connected to a subcutaneous (S.C.) access port 
implanted between the shoulder blades. The rats were allowed to 
recover for 1 week. To determine estrous cycles, vaginal lavages 
were obtained daily. Each female was group housed with a proven 
breeder male for breeding 1 week after cannulation. Gestational 
day (GD) 0 was designated as the day that sperms were detected 
in the vaginal smear, and the females were individually housed 
thereafter. Foster dams were bred at the same time and remained 
untreated throughout their gestation.

The cannulae were flushed daily via the S.C. port with sterile 
heparinized saline (0.4 cc, 100 IU/ml) until GD 8. From GD 8–21, 
the experimental dams were divided into three treatment groups 
that received either oxycodone (Mallinckrodt, St. Louis, MO, 
USA) at a low (OXY-L, 0.5 mg/kg/day, n = 5) or high dose (OXY-
H, 2.0  mg/kg/day, n  =  12) or an equivalent volume of vehicle 
[control (CON), normal saline solution (NSS, 1.0  ml/kg/day), 
n = 12] from GD 8–21. These solutions were slowly injected i.v. 
over 10 min via the S.C. access port manually.

On postnatal day (PD) 1, the pups were counted and weighed. 
Oxycodone or NSS was also administered on PD 1, 3, and 5 to 
the dams because brain development during early postnatal life 
overlaps the human “third trimester” brain growth spurt and 
to prevent maternal withdrawal symptoms that might affect 
maternal nursing behavior. On PD 2 all litters were adjusted to 
contain 10–11 pups with equal numbers of male and female pups 
when possible. At 1700 h on PD 5, all pups in each litter were 
transferred to an untreated foster dam to minimize exposure 
to altered maternal rearing behavior that has been described in 
rat dams after exposure to opiates (40). To preclude potential 
litter effects, only one male and one female from each litter were 
included in the behavioral studies (41). The pups were weighed 
daily and weaned at PD 25, when they were separated by sex.

experimental Design: Behavioral Tests
Ultrasonic Vocalizations
Ultrasonic Vocalizations were determined according to published 
procedures (42). In brief, an ultrasonic bat detector (Ultra Sound 
Advice Model #S-25, UK—http://www.ultrasoundadvice.co.uk) 
set at 40 kHz with a condenser microphone (SM-1) set 21.5 cm 
above the test cage floor was used. The output was recorded on 
a SONY #WM-D8C Cassette Recorder using low noise cassette 
tapes. On PD 14, the pups in each litter were separated from 
the dams, remaining in their home cage and were brought to a 
neighboring test room one litter at a time. Their cages were placed 
halfway on a heating pad to provide warmth. During testing, 
the dam was placed in a new cage in the same test room. CON 
offspring (n = 6) and OXY-L (n = 4) and OXY-H (n = 8) rats 
underwent USV testing. The number of pups in the OXY-L group 
was smaller due to smaller numbers of dams in this group and 
limited numbers of pups available for all experiments that were 
performed. During USV testing, pups were isolated one at a time 
in a clean cage for 6 min during which USVs from the pup were 
recorded. A fan was used to provide white noise during testing. 
Upon completion of USV testing for the entire litter, the dam was 
returned to the home cage and the home cage was returned to 
their original animal room.

http://www.frontiersin.org/Pediatrics
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Assessment of USV: audio data for each 6-min test period 
were individually scored for latency to vocalization (seconds) 
and number of USVs per minute per test period. Scoring was 
performed independently by two experimenters who were blind 
to the treatment groups and used a stopwatch and clicker counter. 
Similarity of their scores was compared and indicated that the 
reliability between experimenters was greater than 90%.

Open Field Test
On PD 43, a group of offspring that had not undergone USV test-
ing were transferred to another building, where they were housed 
for at least 7 days prior to subsequent behavioral testing. This was 
an independent group of subjects, i.e., not the same offspring that 
had previous USV testing. The open field test was preceded by 
5 days of habituation to the new surroundings followed by 2 days 
of 3-min handling periods and weighing. CON offspring (n = 30, 
19 males, 11 females) and OXY-L (n = 8, 4 males, 4 females) and 
OXY-H (n = 32, 17 males, 15 females) rats underwent open field 
tests on PD 50–51. The number of pups in the OXY-L group was 
smaller due to limited numbers available after other experiments 
(not described herein) were performed. The open field appara-
tus was a circular chamber 36 cm height and 58 cm diameter.  
This circular chamber was used to prevent thigmotaxis or exces-
sive time in corners (43). In addition, the open field was divided 
into two zones, with the center zone representing 25% of the total 
area. All testing was conducted in a test room with white noise to 
reduce external distractions. On days 1 and 2 of testing, two rats 
were transferred in separate cages and brought into the test room 
for a 10 min habituation period. Each animal was then placed in 
a separate open field, and their activities were recorded with a 
Polytracker® (San Diego Instruments, San Diego, CA, USA) for 
30 min. The animals were then returned to their home cages in 
the colony room upon completion of testing.

Activity was recorded in 5 min blocks across the 30 min test 
period for each day. Total distance traveled (cm), distance trave-
led in the center zone, and the ratio of distance traveled in the 
center zone to total distance traveled or to distance in the outer 
zone were determined.

Water Maze
On PD 55–56, two groups of offspring, CON (n = 20, 11 males, 9 
females) and OXY-H (n = 20, 10 males, 10 females) were tested 
in the water maze. Rats from the OXY-L group were not tested 
due to the limited numbers of pups. This experiment was modi-
fied from a procedure previously described (43). The apparatus 
was a 130 cm × 90 cm × 40 cm black Plexiglas chamber, divided 
such that several divergent paths, each 18 cm wide, branched 
off from the central start area. The apparatus and methodology 
were modified from von Euler et al. (44). Water temperature 
was maintained at 76° ± 2°. In this test, rats must learn to swim 
and make three successive right/left choices to a platform that 
is submerged below the water level and invisible; the water was 
made black with the addition of non-toxic black tempera paint 
to obscure the submerged platform. A plastic sheet surrounded 
the maze, reducing extra-maze cues, including the experimenter.  
A major advantage of this maze is that control animals can 
learn the maze in a single day. Movement in the maze was 

recorded using a video tracking system (SMART program; 
Panlab, S.L.) (43).

On the first trial, the rat was placed in the maze and allowed to 
swim freely. If the animal did not reach the platform after 1 min, it 
was guided to the platform. After 5 s on the platform, the animal 
was transferred to a cage warmed by a heat lamp (25 W) for 30 s. 
Trials were repeated until the animal completed two consecutive 
trials without errors (wrong turns) or a total of three successful 
trials. The number of trials required to reach either criterion was 
recorded as the outcome measure. The next day the rats were 
tested identically for 24 h to determine retention.

statistical analyses
Statistical analyses were considered significant if p  <  0.05. 
Multilevel linear regression models or linear mixed effects mod-
els were used to analyze USVs, open field and water maze data. 
Such models accounted for potential litter effects and correlation 
among outcomes from the same pup over time. The models were 
fitted using restricted maximum likelihood to test for the impact 
of treatment group, gender, time, and any potential interactions 
these variables have on the mean values for the data. Due to 
skewness and outliers of the data, a natural log transformation 
was applied when appropriate. The Kenward and Roger (45) 
approximation was used to estimate standard error and degrees 
of freedom. Variables (trial days, sex, and treatment groups) 
were treated as categorical and backward elimination at the 5% 
significance level was utilized. Kruskal–Wallis tests were applied 
to compare litter sizes and number of males per litter between 
treatment groups. A linear mixed-effects model was applied to 
compare differences in body weight between groups with treat-
ment group, gender, PD, and the interaction of gender and PD 
included as predictors of weight. Tests were two-sided and were 
conducted in SAS version 9.4 (SAS Institute, Cary, NC, USA).

resUlTs

litter size and Body Weight
Perinatal oxycodone exposure did not affect litter size or number 
of males and females per litter (Table 1).

Although the average maternal weight gain during pregnancy 
was different between groups (p = 0.005), perinatal oxycodone 
treatment did not affect mean birth weight of male or female pups 
weighed within 24 h after birth (Table 1). Dams in the OXY-H 
group gained less weight than CON dams (p = 0.01) and OXY-L 
dams (p = 0.023) (Table 1). Oxycodone treatment did not affect 
weight gain of the pups; body weights up to PD 50 were not dif-
ferent between groups (p = 0.61). However, there was an interac-
tion between gender and postnatal age (p < 0.0001); males and 
females had different growth trajectories over time, as expected 
(Figure 1).

Body weights of both male and females were similar across 
treatment groups in the rats tested in the open field and water 
maze (p  =  0.43), the females weighing less than the males as 
expected (p <  0.0001) (Table  1). The body weight of the pups 
at the time of USV testing (PD14) (g ± SEM) were 30.9 ± 1.8 in 
male and 29.1 ± 1.6 in female CON group; 30.2 ± 1.9 in male and 

http://www.frontiersin.org/Pediatrics
http://www.frontiersin.org
http://www.frontiersin.org/Pediatrics/archive


FigUre 1 | Body weight of male and female offspring: left panel: body weight of male pups from birth through postnatal day (PD) 50 in control (CON, closed circles, 
n = 81), oxycodone low dose (OXY-L, open circles, n = 42) and oxycodone high dose (OXY-H, closed triangles, n = 76) groups. Right panel: body weight of female 
pups from birth through PD 50 in control (CON, closed circles, n = 65), OXY-L (open circles, n = 30) and OXY-H (closed triangles, n = 84) groups.

TaBle 1 | Litter size, the number of male and female rat pups per litter, maternal weight gain during pregnancy and birth weight of the pups and weight of the young 
adult offspring at the neurobehavioral tests (g ± SEM).

Variable (number of litter) cOn (N = 11) OXY-h (N = 13) OXY-l (N = 5) p-Value

Total number of pups per litter 13.3 (14) ± 2.9 12.3 (13) ± 4.4 14.4 (14) ± 1.5 n.s.
Number of females per litter 5.9 (6) ± 2.1 6.5 (7) ± 3.1 6.0 (6) ± 1.0 n.s.
Number of males per litter 7.4 (8) ± 3.0 5.8 (6) ± 2.5 8.4 (8) ± 0.5 n.s.
Maternal weight gain during pregnancy, mean ± SEM (g) 153 ± 7.3* 113.4 ± 10.0*# 156.1 ± 9.0# *p = 0.01, CON vs OXY-H, diff 39.7 g

#p = 0.023, OXY-H vs OXY-L, diff 42.8 g
Birth weight, mean ± SEM (g)
Male (M) M:6.4 ± 0.2 M: 6.2 ± 0.3 M: 6.1 ± 0.4 n.s.
Female (F) F: 6.0 ± 0.2 F: 5.8 ± 0.3 F: 5.6 ± 0.5 n.s.
Body weight during neurobehavioral tests (adult) M: 223 ± 6.7 M: 250 ± 1.5 M: 210 ± 8.0 n.s.

F: 169 ± 5.4 F: 177 ± 3.5 F: 175 ± 4.9

CON, control; OXY-H, oxycodone high dose; OXY-L, oxycodone low dose.
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28.1 ± 1.9 in female OXY-L group; and 30.1 ± 1.4 in male and 
28.7 ± 1.1 in female OXY-H group.

Ultrasonic Vocalizations
There were no significant sex differences so results were collapsed 
across sex for subsequent USV analyses. There was no significant 
difference in the latency to the first vocalization between treat-
ment groups; however, there was a trend for longer latencies in 
OXY-exposed rats, Figure 2A. Latency to the first USV as plotted 
in Kaplan–Meier Plots is shown in Figure  2B, a point on the 
plot denotes the estimated probability of having a first USV after 
the given time point. Although there was a trend for prenatal 
oxycodone-exposed pups to display longer latencies to their first 
USV after isolation, there were no significant differences between 
treatment groups (p  =  0.25), likely due to small sample sizes, 
Figure 2B.

Total USVs across time also did not differ among the three 
treatment groups (p =  0.85), Figure 2C. The number of USVs 
increased across time in all treatment groups (p = 0.0004); how-
ever, there was no significant effect of perinatal OXY exposure 
(p = 0.32), Figure 2D.

Open Field Test
Analysis of Total Distance Traveled in 30 Min
Analysis of the raw data indicated that there were no statistically 
significant differences in total distance traveled among rats in 
CON, OXY-L, or OXY-H groups (p = 0.26). There was also no 
effect of test day on the total distance traveled (p  =  0.48). No 
interactions were significant. Female rats traveled a greater total 
distance compared to males [traveled 1,654  cm further than 
males, 95% CI: (539, 2,768), p = 0.004]. After a natural log trans-
formation of the data, because of outliers and skewness, it was 
similarly determined that females traveled a greater total distance 
than males (p < 0.0001). In addition, this transformation of the 
data revealed that the OXY-L rats traveled farther than rats in 
both other treatment groups (vs OXY-H, p  =  0.011; vs CON, 
p = 0.0004, Figure 3). This difference was likely largely driven by 
OXY-L-treated males on day 2.

There was no main effect of perinatal treatment or test day 
(p =  0.10 and p =  0.07, respectively) on the total distance per 
5 min block. However, females travel 241 cm further than males 
in any given 5 min period (p = 0.003). The mean total per 5 min 
time block decreased over time (p < 0.0001), Figure 3.
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FigUre 2 | (a) Latency to the first vocalization of rat pups; (B) Kaplan–Meier plot of latency to the first ultrasonic vocalizations (USVs) in rat pups in control (CON, 
solid line), oxycodone low dose (OXY-L, long dashed line), and oxycodone high dose (OXY-H, dotted line) groups; (c) total number of vocalizations of rat pups 
during USV test in CON (white bar; n = 6), OXY-L (gray bar; n = 4), and OXY-H (black bar; n = 8) groups; and (D) number of USVs per minute across the testing 
period in CON (closed circles), OXY-L (open circles), and OXY-H (closed triangles) groups.
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Analysis of Total Distance Traveled in the Inner Zone, 
Outer Zone, and Mean Ratio of Distance Traveled in 
the Inner/Outer Zone
The Inner Zone
Rats exposed to OXY-L traveled more in the inner zone than rats 
in the other two treatment groups (OXY-L vs OXY-H, p = 0.011; 
vs CON, p = 0.003), likely due to the travel of the OXY-L-treated 
males on day 2, Figure 4. The distance traveled in the inner zone 
did not differ between days (p = 0.61), and no interactions were 
significant.

Oxycodone treatment did not affect the distance traveled in 
the inner zone per 5  min block, Figure  4. The large standard 
errors were likely due to the small sample size.

Outer Zone
There were no significant interactions. Neither oxycodone 
treatment nor testing day impacted the mean total outer zone 
distance (p  =  0.35 and p  =  0.29, respectively), Figure  5. After 
natural log transformation and removal of two outliers, there 
were main effects of gender (p <  0.0001) and treatment group 
(p = 0.005). Namely, males traveled to the outer zone less than 
females (p = 0.003) and OXY-L rats traveled more in the outer 
zone than the CON group (p = 0.002, Figure 5). There was no 
difference in outer zone distance traveled between either CON or 
OXY-L compared to OXY-H, Figure 5.

There were no interactions in outer zone distance per 5 min 
and no effect of oxycodone treatment (p = 0.15). Females travel 
194 cm further than males in the outer zone in any given 5 min 
period (p  =  0.01), Figure  5. In addition, rats tended to travel 
113 cm further on the first test day in any given 5 min time period 
(p  =  0.032), Figure  5. The mean total distance traveled in the 
outer zone per 5  min period decreased over time as expected 
(p < 0.0001), Figure 5.

The Ratio of the Distance Traveled in the Inner Zone 
to Outer Zone
The ratio of activity in the center zone vs outer zone of the 
field is a potential marker of motor impulsivity and/or anxiety 
(46). There were no differences in mean ratios across test days 
(p  =  0.18) but there was a treatment group  ×  sex interaction 
(p  =  0.003; sex  ×  treatment group interaction). Specifically, 
the estimated mean ratio of the distance traveled in the inner 
to outer zone of male OXY-L rats which was 0.245, was 0.095 
larger than that of the CON, p = 0.008, and 0.112 larger than for 
OXY-H, p = 0.002 (Table 2). This pattern differed across sex; no 
differences in the inner:outer ratio were observed in the females 
(estimated mean ± SEM for days 1 and 2 in CON: 0.13 ± 0.01, 
OXY-L: 0.10  ±  0.05, and OXY-H: 0.17  ±  0.02) (Table  2). The 
differences in the males persisted when the ratios of distance 
traveled in the inner to outer zone for each 5 min time block were 
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FigUre 3 | Total distance traveled in each 5 min time block in the open field on test day 1 (upper panel) and test day 2 (lower panel), by males (left panel) and 
females (right panel) in control (CON, closed circles; male n = 19, female n = 11), oxycodone low dose (OXY-L, open circles; male n = 4, female n = 4), and 
oxycodone high dose (OXY-H, closed triangles; male n = 17, female n = 15) groups.
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analyzed (OXY-L vs CON: p = 0.04; OXY-L vs OXY-H = 0.007), 
Figure 6.

Water Maze
Using a multivariate repeated measures Gaussian linear model 
to analyze the data with trial days, treatment groups and sex as 
predictor categories, there was no effect of oxycodone or sex on 
the mean values of the average number of trials until criterion 
performance was reached on both days (p = 0.62). The expected 
decrease in the mean values of the average number of trials on day 
2 was observed in all groups (p < 0.0001) (Figure 7).

DiscUssiOn

We explored the effects of POE on behavioral outcomes using 
three behavioral tests (USV, open field, and water maze) in juve-
nile, adolescent, and young adult rats. POE increased locomotion 
and preference for the center in the open field, consistent with 
hyperactivity. However, we did not find any effects of POE on 
USVs of rat pups when separated from their mothers or on learn-
ing and memory in the water maze.

Open Field Test
Oxycodone low dose rats were hyperactive and traveled more in 
the inner zone of the open field compared to CON and OXY-H 
rats, resulting in a higher mean ratio of inner:outer zone distance 
traveled by the OXY-L males. Thus, perinatal exposure to oxyco-
done was associated with hyperactivity behavior in adolescence. 
In addition, the increase in the ratio of inner zone:total distance 
traveled suggests that perinatal oxycodone reduced anxiety-like 
behavior and decreased normal species-typical thigmotaxic 
behavior in a new environment. Alternatively, these differences 
might reflect overall hyperactivity with a failure to inhibit entries 
to the center. It remains to be determined whether the increased 
travel in the center is due to deficits in hyperactivity, impulse 
control, or reduction in anxiety.

Our finding that perinatal exposure to oxycodone was 
associated with hyperactivity in the offspring is in agreement 
with human studies that identify hyperactivity, impulsivity, 
and attention problems in children exposed to opiates in utero  
(33, 34). In animal models, however, the results are more con-
flicting due to differences in studied drugs, which were mainly 
morphine, as well as in paradigms, ages, instruments, and end 
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FigUre 4 | Total distance traveled in inner zone in each 5 min time block in the open field on test day 1 (upper panel) and test day 2 (lower panel), in males (left 
panel) and females (right panel) in control (CON, closed circles), oxycodone low dose (OXY-L, open circles), and oxycodone high dose (OXY-H, closed triangles) 
groups.
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points. For example, in one study, postnatal handling but not 
prenatal morphine exposure increased locomotor activities in 
the open field in adult male and female rats (31). In contrast, 
others reported that postnatal stress but not prenatal exposure 
to morphine increased locomotor activity in the open field 
(32). Thus, morphine yields different results than oxycodone 
in the open field. However, it should be noted that the effects 
of morphine are contradictory among studies and differ among 
tests. Thus, prenatal exposure to morphine was associated with 
increased anxiety-like behavior in an elevated plus maze (EPM) 
and reduction in time spent in the lit side of a light/dark box 
(L/D box) (47). Others reported that rats prenatally exposed to 
morphine exhibited decreased anxiety-like behavior in the EPM 
and L/D box with no differences in distance traveled over 30 min 
in the open field (48). Another study reported no significant 
anxiogenic effect of prenatal morphine exposure determined in 
the EPM (49). Finally, prenatal exposure to several opiates, such 
as methadone, buprenorphine, and most effectively morphine, 
increased anxiety-like behaviors in the light–dark transition test, 
with no effect on locomotor activity in an open field (50).

A possible mechanism by which prenatal exposure to opiates 
could result in hyperactivity may involve changes in multiple 

neurotransmitter signaling pathways such as dopaminergic 
pathways and the HPA system. It is well described that opioids 
have a significant role in controlling the release of dopamine and 
acetylcholine in the key reward regions of the brain including 
the ventral tegmental area (VTA) and the nucleus accumbens 
(51, 52, 53, 54). Long-term exposure to opiates leads to both 
structural and biochemical changes in the mesolimbic dopa-
minergic system; for example, a reduction in the cell size of 
dopaminergic neurons in the VTA (55), and increased levels of 
tyrosine hydroxylase, which is the rate-limiting enzyme in the 
synthesis of dopamine in the VTA (56). In addition, convincing 
evidence suggests that the impairment of dopamine-mediated 
development and the monitoring of motivated behavior and 
reward-related memory formation might be associated with 
ADHD symptoms (57, 58). Thus, taken together, it is possible 
that perinatal exposure to opiates may disrupt the normal 
development of dopaminergic reward-related circuits leading to 
hyperactive behavior. However, this speculation remains to be 
further elucidated.

Changes in the HPA system have also been linked to ADHD 
symptoms. In children, both reduced basal cortisol secre-
tion and cortisol hyporeactivity have been associated with 
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FigUre 6 | The ratio of the distance traveled in the inner/outer zone in 
30 min in the open field (mean ± SEM) by male (left panel) and female (right 
panel) rats in control (CON, closed circles), oxycodone low dose (OXY-L, 
open circles), and oxycodone high dose (OXY-H, closed triangles) groups. 
Male OXY-L rats had overall higher ratios of distance traveled in the inner to 
outer zone for each 5 min time block across time compared to other 
treatment groups (OXY-L vs CON: p = 0.04; OXY-L vs OXY-H = 0.007).

TaBle 2 | The mean ratios of the distance traveled in the inner to outer zone in 
male and female rats in 30 min testing period.

Test day cOn (seM) OXY-l (seM) OXY-h (seM)

Male
1 0.13 (0.01) 0.19 (0.09) 0.13 (0.01)
2 0.15 (0.01) 0.27 (0.07) 0.13 (0.01)
Estimated mean day 
1 and 2

0.14 (0.01) 0.24 (0.07)* 0.12 (0.01)

Female
1 0.13 (0.01) 0.10 (0.04) 0.17 (0.03)
2 0.14 (0.02) 0.11 (0.04) 0.17 (0.02)
Estimated mean day 
1 and 2

0.13 (0.01) 0.10 (0.05) 0.17 (0.02)

*p < 0.05 {the estimated mean ratio of distance traveled in the inner to outer zone of 
male OXY-L rats which was 0.245, was estimated to be 0.095 larger than that of the 
CON [95% CI: (0.027, 0.162), p = 0.008], and 0.112 larger than for OXY-H [95% CI: 
(0.042, 0.1830, p = 0.002)]}.
CON, control; OXY-H, oxycodone high dose; OXY-L, oxycodone low dose.

FigUre 5 | Total distance traveled in outer zone in each 5 min time block in the open field on test day 1 (upper panel) and test day 2 (lower panel), by male (left 
panel) and female (right panel) rats in control (CON, closed circles), oxycodone low dose (OXY-L, open circles), and oxycodone high dose (OXY-H, closed triangles) 
groups.
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hyperactivity/impulsivity or a combined type ADHD (59). An 
abnormal diurnal rhythm and less effective negative feedback 
mechanisms after a dexamethasone suppression test were 
also identified more frequently in the children with ADHD 
that were severely hyperactive compared to those with milder 
symptoms (60). In agreement with many community-based 

studies, in which ADHD is more prevalent in males (61), in our 
study hyperactivity was more notable in the male OXY-L group. 
Interestingly, in adults with ADHD, although the basal salivary 
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FigUre 7 | The mean number of trials in the water maze in male (left panel) 
and female (right panel) rats in control (CON, white bars, n = 20, 11 males, 9 
females) and oxycodone high dose (OXY-H, black bars, n = 20, 10 males, 10 
females) group.
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cortisol levels were not different, cortisol levels 20-min after a 
mental cognitive stress test were higher than those in healthy 
adult controls (62). These findings are similar to our obser-
vations that POE is associated with increased CRH-induced 
ACTH release (8) and with increased corticosterone reactivity 
to restraint stress in adult female rats (unpublished). However, 
we did not measure corticosterone, the major circulating glu-
cocorticoid in rats, during the behavioral tests in the current 
studies. The discrepancy between hyperactivity in males and 
increased levels of corticosteroids in females could be due to 
the methods used to produce the stress in each study, relatively 
small sample sizes, and/or the gender of the participants. 
Referral biases and methodological difficulties were present in 
other human studies (63, 64). Thus, the relationship between 
POE, hyperactive behaviors, and abnormal HPA axis function 
that may interact with gender warrants further investigations, 
which should include the measurement of corticosterone 
during and after neurobehavioral testing. The abnormal HPA 
axis response to stress may be a promising candidate for use 
as a biomarker for early detection and treatment of ADHD in 
infants prenatally exposed to oxycodone/opiates.

Data from both animal and human studies suggest that early 
nutritional stress and malnourishment are associated with anxi-
ety, high impulsivity, and attention problems (65). Although the 
weight gain of the OXY-H dams was significantly lower than 
that in the other groups, the weight gain of the OXY-L dams was 
actually comparable to that in the CON group. In addition, birth 
weights of the pups were comparable in all groups. Therefore, 
the hyperactivity in the open field of the OXY-L group could not 
solely be explained by poor maternal nutritional status.

Ultrasonic Vocalizations
Although there was a trend toward increased latency to first 
vocalization, oxycodone treatment had no effect on this end 
point or on the number of vocalizations per minute. The lack 
of differences in these USVs parameters may be due in part 
to the relatively low sample size in the OXY-L group. To our 
knowledge, there are no reports thus far on the effects of peri-
natal oxycodone on USVs In contrast to our results, however, 

perinatal cocaine treatment decreased the number of USVs on 
PD 1 and on PD 21, but this effect was not observed on PD 14 
(66). Therefore, it is possible that the lack of an effect of oxyco-
done in our study occurred because testing was limited to PD 
14. In fact, there are other types of USVs based on frequency 
and duration that are elicited as the rat becomes more mature 
(67). These include a 22 kHz USV emitted by juvenile and adult 
rats in response to predators and pain indicating a negative 
affective state (68, 69), and a 50 kHz USV emitted in adult rats 
in response to rewarding stimuli, expressing a positive affective 
state (70, 71). So it is also possible that POE may affect these 
other types of USVs that were not tested at an older age.

Water Maze
We did not find any effects of POE on spatial learning and/or 
memory in the water maze test as hypothesized; this may have 
resulted from not including rats perinatally exposed to a lower 
dose of oxycodone in this experiment due to the small sample 
size of this group. Previous studies using prenatal morphine 
exposure models report conflicting results; memory and 
learning in rodents are either impaired or enhanced. Namely, 
juvenile rats prenatally exposed to morphine had impaired 
spatial memory in the Morris water maze or Y-maze test (38, 
72, 73), but aberrant memories such as morphine reward 
memory in the conditioned place preference or forced swim 
tests were enhanced (49, 74–76). In contrast to our study, 
Davis et  al. (39) found that prenatal exposure to oxycodone 
impaired spatial learning and memory in a battery of spatial 
tasks; in the Morris water maze, rats prenatally exposed to OXY 
had increased latency and greater distance traveled to find the 
platform when the intertrial interval was long, not short. Rats 
prenatally exposed to oxycodone also had a decreased use of 
spatial strategies and more use of non-spatial strategies such as 
wall-hugging. In addition, the retention of learning memory 
in the T-maze, assessed 5 days after acquisition of the training, 
was impaired. This finding is actually consistent with our report 
that although POE male rats were able to discriminate between 
the stress and non-stress cues during a classical conditioning 
paradigm on PD 40, they had impaired discrimination ability 
when retested on PD 75 (77). Moreover, rats prenatally exposed 
to oxycodone have more reference memory errors in the radial 
arm maze (39). These differences in results could be due to 
many reasons. In their study, the dose and route of adminis-
tration of OXY were different than those used in the current 
experiment with escalating doses of OXY (10 mg/kg/day up to 
15 mg/kg/day) via gavage for 28 days prior to breeding. In addi-
tion, the pups were reared by their biological mothers in their 
study, while surrogate fostering was used in the current study.  
A number of previous studies have shown that opiate administra-
tion negatively alters maternal rearing behavior toward the pups 
including measures such as cleaning of the pups, delay of mater-
nal behaviors, and maternal aversion to pup odor (78, 79, 80).  
Neonatal rearing condition and neonatal maternal interaction 
such as maternal separation had long-term effects on the stress 
response of the offspring including an increase in restraint stress-
induced norepinephrine release in the PVN in adult rats (81) and 
changes in the HPA axis at multiple levels that could be linked 
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to epigenetic modification (82). Variations in maternal care 
also influence learning and behaviors of the offspring (83, 84).  
The adverse effects of neonatal maternal separation on the HPA 
axis were lessened by fostering the litters (85). Thus, fostering 
the pups when the dams were exposed to opiates could alter 
the HPA axis and possibly the neurobehavioral outcomes of the 
offspring. In addition, even though signs of withdrawal in the 
dams were monitored in the study by Davis et al., body weights 
of the OXY pups were approximately 10% lower than those of 
the controls, indicating possible neonatal opiate withdrawal 
and poorer nutritional status that can also affect long-term 
outcomes. In contrast, the body weights of the pups in our study 
were comparable in all groups.

In humans, prenatal exposure to opiates results in impairments 
in cognitive function and learning. Bunikowski et al. also reported 
that when evaluated at 1 year of age, children prenatally exposed 
to opiates had a mild psychomotor developmental impairment 
compared to the control group; these included impairments in 
“hearing and speech” and “intellectual performance” subscales 
(36). Guo et  al. found that in utero opiate exposure was associ-
ated with impairments in the Auditory Rare Event Monitoring 
task and the Sternberg Memory task in children 7–12 years of age 
(35). More recently, Hunt et al. reported from their case–control 
study that infants prenatally exposed to opiates are more likely 
to experience neurodevelopmental impairments compared to 
healthy control infants, when assessed at 18 months and 3 years 
of age (37). The deleterious effects of prenatal opiate exposure on 
cognitive function persisted and did not decrease over time after 
controlling for permanent home placement and heroin use in the 
mother when children prenatally exposed to opiates were retested 
on the Wechsler Intelligence Scale for Children from 1 year old up 
to 8.5 years of age (86). These data suggest that prenatal exposure to 
opiates is associated with impaired cognitive functions. Therefore, 
although we did not detect any effects of POE on cognitive func-
tion, learning, and memory using a water maze as a paradigm, 
further investigation is warranted with different testing paradigms, 
testing at different ages, and with a lower dose of oxycodone.

Interestingly, we found that exposure to the lower dose of 
oxycodone of 0.5 mg/kg/day but not the higher dose of 2.0 mg/
kg/day was associated with hyperactivity in the offspring. This 
difference could be due to the development of tolerance to the 

higher dose of oxycodone. Opiate tolerance is characterized to 
be pharmacodynamic, time and dose-dependent, and opioid 
receptor specific (87). Tolerance can develop after exposure to 
a KOR agonist (88) even for as short as 5  days (17). Whether 
or not tolerance to the stimulatory effects on the HPA axis by 
KOR agonists is dose-dependent has not been well studied, but 
tolerance to MOR agonists was dose-related (89). It is possible 
that in our study, rat dams that were exposed to the higher dose of 
oxycodone (2 mg/kg/day) may have developed opioid tolerance 
leading to a decreased fetal CORT exposure, thus there were fewer 
effects on the developing HPA axis and the neurodevelopmental 
outcomes of the offspring.

In summary, POE was associated with hyperactivity in young 
adult rats. In these studies, perinatal oxycodone treatment had 
no effect on the responses of pups isolated from their dams, or 
in learning and memory deficits, which could be due to the small 
sample sizes, testing paradigms, or the doses of oxycodone tested. 
These issues remain to be resolved.
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