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ABSTRACT OF DISSERTATION

High Dimensional Multivariate Inference Under General Conditions

In this dissertation, we investigate four distinct and interrelated problems for
high-dimensional inference of mean vectors in multi-groups.

The first problem concerned is the profile analysis of high dimensional repeated
measures. We introduce new test statistics and derive its asymptotic distribution
under normality for equal as well as unequal covariance cases. Our derivations of
the asymptotic distributions mimic that of Central Limit Theorem with some im-
portant peculiarities addressed with sufficient rigor. We also derive consistent and
unbiased estimators of the asymptotic variances for equal and unequal covariance
cases respectively.

The second problem considered is the accurate inference for high-dimensional
repeated measures in factorial designs as well as any comparisons among the cell
means. We derive asymptotic expansion for the null distributions and the quantiles
of a suitable test statistic under normality. We also derive the estimator of parameters
contained in the approximate distribution with second-order consistency. The most
important contribution is high accuracy of the methods, in the sense that p-values
are accurate up to the second order in sample size as well as in dimension.

The third problem pertains to the high-dimensional inference under non-normality.
We relax the commonly imposed dependence conditions which has become a standard
assumption in high dimensional inference. With the relaxed conditions, the scope of
applicability of the results broadens.

The fourth problem investigated pertains to a fully nonparametric rank-based
comparison of high-dimensional populations. To develop the theory in this context,
we prove a novel result for studying the asymptotic behavior of quadratic forms in
ranks.



The simulation studies provide evidence that our methods perform reasonably
well in the high-dimensional situation. Real data from Electroencephalograph (EEG)
study of alcoholic and control subjects is analyzed to illustrate the application of the
results.

KEYWORDS: Profile analysis, MANOVA, High-dimension, Repeated measure, Non-

parametric, Rank transforms.
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Chapter 1 Introduction

Nowadays, more and more big data arise in various research areas due to the invention

of high-throughput data collection technologies. To cope with the growth of data

volume, there is an increasing demand for efficiently (computationally as well as

statistically) analyzing the high-dimensional data. Throughout the dissertation, by

high dimension is meant that both the sample size and dimension are large but one

could be substantially larger relative to the other.

Existing high-dimensional multivariate methods for comparing groups (treatments

or populations) formulate hypothesis in terms of mean or location vectors. Some of

these results assume multivariate normality (Dempster, 1958, 1960; Fujikoshi et al.,

2004; Schott, 2007a; Srivastava and Du, 2008; Yamada and Srivastava, 2012; Dong

et al., 2017), while others assume existence of higher moments and pseudo-independence

in the sense that higher-order mixed moments can be factored into the product of the

corresponding univariate moments (Bai and Saranadasa, 1996; Chen and Qin, 2010;

Srivastava and Kubokawa, 2013; Hu et al., 2017). A few others require a different

form of weaker dependence but they are still parametric methods (Cai et al., 2014;

Cai and Xia, 2014; Feng et al., 2015; Gregory et al., 2015). The nonparametric meth-

ods (Wang et al., 2015; Ghosh and Biswas, 2016) are also essentially mean based and

assume (generalized) elliptically symmetric populations.

This dissertation aims to solve four distinct but interrelated problems. Two of

them pertain to high-dimensional inference about mean profiles, namely parallelism,

flatness and coincidence of the mean vectors; under high dimensional asymptotic

framework but assume multivariate normality. The other two problems consider

high-dimensional group comparisons, but do not need normality assumption. One of

them is designed for metric type data and the other one is rank-based, and hence,

can be used for non-metric data such as ordered categorical data.

The dissertation is organized in six chapters. In Chapter 2, test statistics for high-

dimensional profile analysis in multi-group are introduced and the asymptotic null

1



distributions are derived. Here, multivariate normality is assumed but the covariance

matrices can be unequal and unstructured.

The subject of Chapter 3 is high-dimensional asymptotic expansions for the test

statistics derived in Chapter 2. Here, our approach treats factorial designs in a

unified and succinct manner, especially allowing multiple between-subject and within-

subject factors, which may be crossed or nested. The most important contribution

is the high accuracy of the methods, in the sense that second-order accuracy in

sample size as well as in dimension is achieved by obtaining asymptotic expansion

of the distribution of the test statistics, and the estimation of the parameters of the

approximate distribution with second-order consistency.

Chapter 4 is concerned with high-dimensional inference about equality of mean

vectors under non-normality. As mentioned above, recent results for comparison of

the high-dimensional mean vectors under non-normality make strong assumptions

that require the dependence between the variables to be rather too weak (see Bai and

Saranadasa, 1996; Chen and Qin, 2010; Srivastava and Kubokawa, 2013; Hu et al.,

2017). We relax these commonly imposed dependence conditions and broaden the

scope of applicability of the results. The theory is worked out in detail for the two-

group case and, later, extended to the multi-group situation. The extension of the

results for testing hypotheses in profile analysis and factorial mean structures are

formally illustrated.

A nontrivial application of the theory developed in Chapter 4 is provided in Chap-

ter 5. More precisely, we investigate rank-based method for comparing groups (treat-

ments or populations) in the high-dimensional asymptotic setting. As pointed out

above, existing high-dimensional nonparametric methods are essentially mean-based

and they assume (generalized) elliptically symmetric populations (see Wang et al.,

2015; Ghosh and Biswas, 2016). The rank-based test we construct is a fully non-

parametric method. No assumption is made on the distribution except that the

dependences between the variables are required to satisfy some mild conditions. The

method is applicable for ordered categorical, skewed and heavy tailed variables or a

mixture of them. To develop the theory, we prove a novel result for studying the

2



asymptotic behavior of quadratic forms in ranks.

Appendices containing the proofs and other technical details are included at the

end of each Chapters 2 to 5. Also included in these chapters are simulation stud-

ies to evaluate the numerical performance of the methods; analyses of data from an

Electroencephalogram (EEG) experiment to illustrate the application of the meth-

ods; and possible directions for future research. The findings of the dissertation are

summarized in Chapter 6.

Copyright c© Xiaoli Kong, 2018.
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Chapter 2 Multivariate Analysis for Repeated Measures in

High-Dimensions with Unequal Covariance Matrices

2.1 Introduction

Consider b measurements taken from n subjects which are classified into a groups.

The a groups may represent naturally existing groups such as gender, geographical

regions or ethnicity. They may also represent between-subject treatment groups as

commonly done in clinical trials. The b repeated measurements could be measure-

ments from b within-subject treatment conditions as in crossover design or from b

different tissues of the body or may simply be repeated measurements over time as

typically arises in time course studies. For the sake of brevity, in the remainder of

this Chapter we will refer to the a groups as the levels of a between-subject factor

(A) and to the b repeated measurements as arising from b levels of a within-subject

factor (B). Research questions (hypotheses) that are typically tested with this type

of data are (i) whether there is interaction effect between the between-subject and

within-subject factors (ii) whether there is a between-subject factor effect and (iii)

whether there is a within-subject factor effect.

Analysis addressing these research questions are also referred to as Profile Analy-

ses in multivariate statistics. Consider a independent b-dimensional normal popula-

tions with mean vectors µ1, . . ., µa and covariance matrices Σ1, . . . ,Σa, respectively.

Graphically, the profile of the mean µi = (µi1, . . . , µib)
> of population Nb(µi,Σi) can

be plotted as a line graph connecting the points (1, µi1), . . ., (b, µib). Profile analysis

is the study of the relationship between these lines. In Figure 2.1 below, the three

hypotheses of interest are shown graphically. In the terminology of profile analyses

the hypotheses (i), (ii) and (iii) are refereed to as parallelism, level and flatness (see,

for example, Rencher and Christensen, 2012; Johnson and Wichern, 2007). The level

hypothesis is, alternatively, referred to as coincidence hypothesis. The level and flat-

ness hypothesis are typically tested if the parallelism hypothesis holds. This scenario

4



is clearly illustrated in the alternative hypotheses in Figure 2.1.

Figure 2.1: Graphical display of null and alternative hypotheses in profile. Each line
plot corresponds to mean vector of one group.
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For i = 1, . . . , a, consider ni independent b-dimensional observations are available

from population Nb(µi,Σi) denoted by Xi1, . . . ,Xini and assume that the a samples

are mutually independent. The total sample size is n =
∑a

i=1 ni. The aim of this

Chapter is to derive tests for the three hypothesis in the repeated measures analysis

(profile analysis) when both the groups sample sizes ni and number of repeated mea-

surements b tend to infinity. The approach followed in this Chapter is multivariate in

the sense that no structure on the covariance matrices are made other than requiring

them to be symmetric positive definite.

Although first analysis of such data dates back to as early as several decades ago,

the methods developed so far assume either fixed and bounded number of repeated

measures or specialized covariance matrices. From mathematical stand point, tests in

profile analysis were first tackled from likelihood ratio point view by Srivastava (1987).

Asymptotic expansions for null distributions of the test statistics in profile analyses

were derived by Okamoto et al. (2006) under elliptical populations and by Maruyama

(2007) under more general populations but both these works focused on the two-group

5



case. Harrar and Xu (2014) considered asymptotic expansion for the null distributions

of the likelihood-ratio tests in Srivastava (1987) for several sample situation. On

the other hand, Harrar (2009) and Bathke et al. (2010) derived tests for repeated

measures analysis for the case when a is large but ni and b are bounded. Recall

that the hypotheses regarding the within-subject and between-subject treatments are

considered under the parameter space constrained by the no-interaction (parallelism)

hypothesis. Without this constraint, the problem of testing for between-subject factor

level effects is the same as in one-way MANOVA. Harrar and Xu (2014) derived

likelihood ratio tests for the hypothesis of no within-subject factor level effects under

the full parameter space.

In the high-dimensional framework with b/n → c ∈ (0, 1), likelihood ratio test

statistics together with null distributions derived for MANOVA, e.g., Tonda and Fu-

jikoshi (2004), can be used to get valid tests for the interaction hypothesis. Since the

exact distribution of the likelihood ratio test for within subject and between subject

factor level effects are known, the same distribution will hold under high-dimensional

case as long as the degrees of freedom for the within-covariance estimator is larger than

the dimension. For the high-dimensional situation where b ≥ n − a, the likelihood-

ratio tests are not well defined because they involve the determinants or inverses of

the estimate of the within covariance matrix which will be singular. This problem

has been tackled by many authors in the MANOVA context. Among others, Schott

(2007a) and Yamada and Srivastava (2012) developed tests under normality whereas

Bai and Saranadasa (1996); Chen and Qin (2010), and Srivastava and Kubokawa

(2013) derived tests under non-normality. In repeated measures or profile analysis

context, Pauly et al. (2015) consider high-dimensional repeated measures analysis for

one sample situation but with the possibility of several within subject factors. The

two-sample situation was considered by Takahashi and Shutoh (2016) assuming equal

covariance matrices for the two populations. Wang and Akritas (2010a) and Wang

and Akritas (2010b) are also high-dimensional asymptotic results applicable for re-

peated measures but assume that the repeated measurements are inherently ordered

and the dependence between the measurements decays as the separation between

6



them increases. The present manuscript provides a complete solution to the analysis

of high-dimensional repeated measures design by allowing for several samples as well

as unequal and unstructured covariance matrices. Furthermore, no assumption is

made about ordering of the observations. It bears some similarity with Pauly et al.

(2015) and Takahashi and Shutoh (2016) in the way the tests are constructed.

This Chapter is organized as follows. Section 2.2 introduces the statistical model,

hypotheses and notations used in the remainder of the Chapter. Tests for interac-

tion and main effects under equal covariance matrices assumption are the subject

of Section 2.3. These tests are again studied in Section 2.4 without assuming equal

covariance matrices. Numerical accuracy of the asymptotic results in Section 2.3 and

2.4 is investigated in Section 2.5 for various choices for the parameters of the model.

Also in Section 2.5, the power of the tests proposed in this Chapter will be compared

against an existing method. The application of the results will be illustrated in Sec-

tion 2.6 with data from an electroencephalograph (EEG) experiment. Section 2.7

contains discussions and conclusions. All proofs and preliminary results are placed

in the Appendix.

2.2 Model and Hypotheses

Let

X = (X>11, . . . ,X
>
1n1
,X>21, . . . ,X

>
2n2
, . . . ,X>a1, . . . ,X

>
ana)

>,

where Xik = (Xi1k, . . . , Xibk)
>. Further let

X = (X11, . . . , X1b, . . . , Xa1, . . . , Xab)
>,

andX i = (X i1, . . . , X ib)
>, where X ij = n−1i

∑ni
k=1Xijk. We assumeXik

iid∼ Nb(µi,Σi)

for k = 1, . . . , ni and the a samples Xi1, . . . ,Xini for i = 1, . . . , a are mutually

independent. The usual setting gives the interpretation that Xijk is the responses

from the kth subject treated with the ith level of factor A and the jth level of factor

B. The interaction effect will be denoted by AB. In this model Xijk and Xi′j′k′ are

assumed to be independent only if i 6= i′ or k 6= k′ . Otherwise the dependence is

completely unspecified.

7



Throughout this Chapter, 0 will denote a matrix of all zeros where the dimension

will be clear from the context, and 1k denotes an k-dimensional vector (1, ..., 1)>

consisting of ones. The matrix Ik is the identity matrix, whereas Jk and Pk are

defined as Jk = 1k1
>
k and Pk = Ik − k−1Jk, respectively. We will use extensively the

Kronecker (or direct) productA⊗B of matrices and the direct sumA⊕B of matrices.

The symbol
D−→ stands as an abbreviation for “converges in distribution to”,

P−→ for

“converges in probability to” and acronym CMT for “Continuous Mapping Theorem”.

In estimating a sequence of parameters θb = O(1) by a sequence of estimators Tn,b,

consistency is meant in the sense of E(Tn,b − θb)2 → 0 as (n, b) go to infinity.

Note that from the distributional assumption made above

E[Xik] = µi = (µi1, . . . , µib)
>

and Var(Xik) = Σi where Σi is a b× b positive definite matrix. Let

µ = (µ11, . . . , µ1b, . . . , µa1, . . . , µab)
>

and Σ̃ =
⊕a

i=1 Σi/ni. Then we have E[X] = µ and Var(X) = Σ̃.

The three hypotheses of interest can be expressed as

Hφ
0 : Kφµ = 0,

for φ ∈ {AB,B,A} with

KAB = Pa ⊗ Pb, KB = Ja ⊗ Pb and KA = Da ⊗ b−1Jb,

where Da = diag{n1, . . . , na} − n−1nn>, n = (n1, . . . , na)
> and n = n1 + n2 + · · ·+

na. These null hypotheses correspond to no-interaction effects of levels of factor A

with levels of factor B, no-main effects of factor B, and no-main effects of factor

A, respectively. To see that the hypothesis of no interaction is equivalent to HAB,

notice that no interaction means

C1(µ1 − µa) = · · · = C1(µa−1 − µa) = 0

⇐⇒ C1MC>2 = 0(b−1)×(a−1) ⇐⇒ (C2 ⊗C1)µ = 0,
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where C1 = (Ib−1,−1b−1), C2 = (Ia−1,−1a−1) and M = (µ1, . . . ,µa). The matrix

C = C2⊗C1 is a contrast matrix and is full row rank. Clearly, the hypothesisCµ = 0

is equivalent to C>(CC>)−1Cµ = (Pa ⊗ Pb)µ = 0. The other two hypotheses for

the main effects can also be expressed similarly.

Define,

Si =
1

ni − 1

ni∑
k=1

(Xik −X i)(Xik −X i)
> and S =

1

n− a

a∑
k=1

(ni − 1)Si.

In this Chapter, we introduce test statistics for multi-group high-dimensional repeated

measures analysis. Unlike likelihood ratio tests, our tests do not involve the inverse

of the pooled sample covariance matrix S−1. In the high-dimensional case, more

precisely when b > n− a , the sample covariance matrix S is not invertible, making

the likelihood ratio tests inapplicable. Furthermore, S may not even converge to Σ,

the population covariance matrix (see, for example, Chen and Qin, 2010).

We derive the asymptotic distributions of our test statistics for equal covariance

matrices as well as unequal covariance matrices. It should be noted that the results

for the unequal covariance case do not necessarily reduce to the corresponding results

for the equal covariance case by simply setting Σ1 = · · · = Σa = Σ. There are some

subtleties which warrant separate treatment of the two cases. First, the results for

the equal covariance case are nice and clean. Instructively, it would make the results

accessible if presented from the simpler to the more complex ones. Second, the proofs

for the unequal covariance results build upon those for equal covariance. Third, the

assumptions for the equal covariance case somewhat differ from those needed for the

unequal covariance case. One assumption A3′ , given in Section 2.4 on page 14, which

requires proportional divergence of individual sample sizes with the dimension is not

needed for the equal covariance case. The equal covariance case only requires the total

sample sizes to grow with the dimension. Fourth, the constant c′ (see Theorem 2.4.1)

which contains unknown parameters in the unequal covariance case, will reduce to a

known quantity c (see Theorem 2.3.1) in the equal covariance case. Estimation of c′

is needed whereas no estimation of the analogous constant c, in the equal covariance

case, is needed. In addition, the bounds for c′ given in Theorem 2.4.1 do not quite
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reduce to those for c given in Theorem 2.3.1. The simplicity of the equal covariance

situation affords us a more precise lower bound for c.

2.3 Tests under Equal Covariance Matrices

In this section, we assume that the covariance matrices Σi are equal and denote the

common covariance matrix by Σ. We will construct testing procedures under the

following high-dimensional asymptotic frameworks:

A1: cj := tr{(PbΣ)j}/b = O(1) as b→∞ for j = 1, 2, 3, 4.

A2: n→∞ and b→∞.

Note that βjmax = O(1) for j = 1, 2, 3, 4 is sufficient for assumption A1 to hold where

βmax = max{β1, . . . , βb} and β1, . . . , βb are the eigenvalues of PbΣ. To elaborate on

the significance of assumption A1, consider Σ = (1− ρ)Ib + ρJb for −1/(b− 1) < ρ <

1. This covariance structure is known, in multivariate statistics, as equi-correlation

structure. For this covariance matrix, A1 holds because tr{(PbΣ)j} = (b− 1)(1− ρ)j

for j = 1, 2, 3, 4. On the other hand, we can write Pb = Q>diag{1, . . . , 1, 0}Q

where Q is an orthogonal matrix whose columns are the orthonormal eigenvectors

of Pb. The covariance matrix Σ = Q>diag{1, . . . , b}Q doesn’t satisfy A1 because

tr(PbΣ) = b(b− 1)/2.

2.3.1 Test for interaction effect AB

We note that KABµ = 0 if and only if µ>K>ABKABµ = µ>KABµ = 0, since KAB

is symmetric and idempotent matrix. Thus, the hypotheses for interaction effect AB

is equivalent to

HAB
0 : µ>KABµ = 0 VS HAB

1 : µ>KABµ > 0.

Consider a reasonable estimator of µ>KABµ given by H(AB) = X
>
KABX. In The-

orem 2.3.1 below asymptotic sampling distribution of a scaled and centered version

of H(AB) is given.

10



Theorem 2.3.1. If the null hypothesis HAB
0 holds, then

UAB :=
1√
b


(

1− 1

a

)−1( a∑
i=1

1

ni

)−1
H(AB) − tr(PbΣ)

 D−→ N (0, 2cc2),

under the high-dimensional asymptotic frameworks A1 and A2, where

c =
a(a− 2)

(a− 1)2

a∑
i=1

1

n2
i

/(
a∑
i=1

1

ni

)2

+
1

(a− 1)2
∈
[

1

a− 1
, 1

]
.

The bounds given for c in Theorem 2.3.1, besides establishing that c = O(1) as

b, n→∞, provide insight into the influence of the value of a on the variance of UAB.

For example, a = 2 gives the largest possible variance. The variance could potentially

decrease when a gets large. This is somewhat apparent in the simulation study Table

2.1.

The result of Theorem 2.3.1 depends on bc1 = tr(PbΣ) and c2 which are unknown

quantities. For practical applications we need unbiased and consistent estimators of

them. Define

ĉ1 =
tr(PbS)

b
and ĉ2 =

(n− a)2

b(n− a− 1)(n− a+ 2)

{
tr{(PbS)2} − 1

n− a
{tr(PbS)}2

}
.

The next Theorem proves the unbiasedness and consistency of ĉi for i = 1, 2.

Theorem 2.3.2. For i = 1, 2, ĉi is an unbiased and consistent estimator of ci under

the high-dimensional asymptotic frameworks A1 and A2. Moreover, we have
√
b(ĉ1−

c1)
P−→ 0.

Using the results of Theorems 2.3.1 and 2.3.2, we propose a test statistic, namely

T̂AB, for testing HAB
0 and give its asymptotic null distribution in Corollary 2.3.3.

Corollary 2.3.3. If the null hypothesis HAB
0 holds, then

T̂AB :=
1√

2bcĉ2


(

1− 1

a

)−1( a∑
i=1

1

ni

)−1
H(AB) − bĉ1

 D−→ N (0, 1),

under the high-dimensional asymptotic frameworks A1 and A2.
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For a = 2 the test statistic and results in Corollary 2.3.3 reduce to those of

Theorem 2.1 of Takahashi and Shutoh (2016).

We close this section by mentioning that the proofs we provided do not require any

relation in the rates of divergences of n and b. Please note that Var(ĉ2) goes to zero as

long as both b and n tend to infinity even at a differing rate. We must acknowledge,

though, that such an assumption is inevitable for the unequal covariance case.

2.3.2 Test for the main effect of factor B

We note that KBµ = 0 if and only if µ>K>BKBµ = µ>KBµ = 0 since KB is

symmetric and idempotent matrix. The hypotheses for main effect of factor B are

equivalent to

HB
0 : µ>KBµ = 0 VS HB

1 : µ>KBµ > 0.

Here also, a reasonable estimator of µ>KBµ is H(B) = X
>
KBX.

Theorem 2.3.4. If the null hypothesis HB
0 holds, then

UB :=
1√
b


(

a∑
i=1

1

ni

)−1
H(B) − tr(PbΣ)

 D−→ N (0, 2c2),

under the high-dimensional asymptotic frameworks A1 and A2.

Comparing the results in Theorems 2.3.1 and 2.3.4, the quantity UAB is less vari-

able than UB.

A consistent estimator of c1 and c2 are given in Theorem 2.3.2. Corollary 2.3.5

proposes a test for the main effect of factor B and presents the asymptotic null

distribution of the test statistic under the same asymptotic framework as in Corollary

2.3.3.

Corollary 2.3.5. If the null hypothesis HB
0 holds, then

T̂B :=
1√
2bĉ2


(

a∑
i=1

1

ni

)−1
H(B) − bĉ1

 D−→ N (0, 1),

under the high-dimensional asymptotic frameworks A1 and A2.
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The testing problem in this subsection for a = 1 is covered by Pauly et al. (2015)

when the contrast matrix is chosen to be Pb, i.e., when C (in their notation) is replaced

with Pb. However, they use different consistent estimators for bc1 and bc2 but in the

end our limiting distributions agree for the case tr{(PbΣ)4}/tr2{(PbΣ)2} → 0 as b→

∞. It should be noted that assumption A1 implies that tr{(PbΣ)4}/tr2{(PbΣ)2} → 0.

When a = 2, the test for no effect of levels of factor B in Takahashi and Shutoh (2016)

were formulated in terms of the weighted group mean vectors where the weights are

the sample sizes of the groups. Our hypothesis is formulated in terms of the simple

average of the group means as a result of which, as one would naturally expect, the

hypothesis does not depend on sample sizes. This difference resulted in different tests

and asymptotic results.

2.3.3 Test for the main effect of factor A

We begin by establishing the equivalence of the hypotheses for the main effects of

factor A expressed in a linear and quadratic forms.

Proposition 2.3.6. The condition KAµ = 0 is equivalent to µ>KAµ = 0.

According to Proposition 2.3.6, the hypothesis for the main effect of factor A is

equivalent to

HA
0 : µ>KAµ = 0 VS HA

1 : µ>KAµ > 0.

It should also be noted that for any x = (x1, . . . , xa)
> ∈ Ra,

x>Dax =
a∑
i=1

nix
2
i − n−1(

a∑
i=1

nixi)
2 =

a∑
i=1

ni(xi − x)2 ≥ 0,

where x = n−1
∑a

i=1 nixi. Thus, KA = Da ⊗ Jb/b is positive semidefinite.

Once again we will build our test from a reasonable estimator of µ>KAµ, namely

X
>
KAX. It may seem that the hypothesisHA

0 depends on the sample sizes n1, . . . , na.

Nevertheless, one can easily check that the hypothesis of no main effect of factor A is

equivalent to 1>b µ1 = · · · = 1>b µa. This shows that the hypothesis HA
0 does not de-

pend on the sample sizes. Furthermore, it is reasonable to use the between group sum
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of squares for the transformed random variables Yij = 1>b Xij to test this hypothesis.

As it turns out H(A) = X
>
KAX is the between group sum of squares.

It is easy to show that H(A)/b is distributed as d1χ
2
a−1 under the null hypothesis,

where d1 = tr(JbΣ)/b2. Also one can see that (n − a)d̂1 = (n − a)tr(JbS)/b2 is

distributed as d1χ
2
n−a and that H(A) is independent of d̂1. The latter follows because

X is independent of S. Thus, an exact test for HA
0 is

T̂A =
H(A)/b(a− 1)

d̂1
,

which has an exact Fa−1,n−a distribution under the null hypothesis.

For a = 2, Da = (1/n1 + 1/n2)
−1(1,−1)>(1,−1) and

bH(A) = vec(X1,X2)
>(Da ⊗ Jb)vec(X1,X2)

= vec(X1,X2)
>(Da ⊗ 1b)(Ia ⊗ 1>b )vec(X1,X2).

Applying the identity vec(ABC) = (C> ⊗A)vec(B), we get

H(A) =
1

b

(
1

n1

+
1

n2

)−1
[(X1 −X2)

>1b]
2.

Therefore, our test statistic and that of Takahashi and Shutoh (2016) are equivalent.

2.4 Tests under Unequal Covariance Matrices

In this section, we do not assume that the a populations have equal covariances

matrices. Relaxing the equal covariance matrices assumption necessitates adjustment

of the asymptotic conditions. We will need the following assumptions to construct

testing procedures under unequal covariance matrices.

A1′: c′j := (
∑a

i=1 1/ni)
−j

tr{(KBΣ̃)j}/b = O(1) as b→∞ for j = 1, 2, 3.

A2′: d′1 := tr(KAΣ̃)/b = O(1) as b→∞.

A3′: ni →∞, b→∞ and b/ni → ξi ∈ (0,∞) for i = 1, . . . , a.

A4′: c′′3 := (
∑a

i=1 1/ni)
−3

tr{(KABΣ̃)3}/b = O(1) as b→∞.

A5′: tr(PbΣi)
4/b = O(1) as b→∞ for i = 1, . . . , a.
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While assumptionA3′ require proportional divergence of the sample sizes n1, . . . , na

and the dimension b, assumptions A1′, A2′, A4′ and A5′ require regularity conditions

on the covariance matrices. Some remarks are in order.

(i) Stronger but simpler assumptions which together with A3′ are sufficient for A1′

and A4′ are tr(PbΣi)/b = O(1), tr(PbΣiPbΣj)/b = O(1) and

tr(PbΣiPbΣjPbΣk)/b = O(1)

as b→∞ for all i, j, k ∈ {1, . . . , a}.

(ii) It can be seen that

c′1 =
1

b

(
n∑
i=1

1

ni

)−1 a∑
i=1

tr

(
PbΣi

ni

)
=

1

b

(
n∑
i=1

ξi

)−1 a∑
i=1

ξitr(PbΣi).

Therefore, since tr(PbΣi) ≥ 0 and ξi > 0 for i = 1, . . . , a, the condition c′1 =

O(1) and assumption A3′ are sufficient for tr(PbΣi)/b = O(1) for i = 1, . . . , a.

Similarly,

c′2 =

(
a∑
i=1

ξi

)−2 [
1

b

a∑
i=1

ξ2i tr
{

(PbΣi)
2
}

+
1

b

a∑
i 6=j

ξiξjtr(PbΣiPbΣj)

]
.

Since ξi > 0 and tr(PbΣiPbΣj) = tr
{

(Σ
1/2
j PbΣ

1/2
i )(Σ

1/2
j PbΣ

1/2
i )′

}
≥ 0, it

follows that c′2 = O(1) and A3′ imply tr {(PbΣi)
2} /b = O(1) for i = 1, . . . , a.

The manipulations for c′1 and c′2 above make it clear that the proportional-

divergence assumption A3′ can be replaced with

A3′′ : ni →∞, b→∞ and ni/n→ ξ̃i ∈ (0, 1) for i = 1, . . . , a

without affecting the validity of the results.

(iii) As one can imagine, the assumptions needed for unequal covariance case are

much more involved compared to the equal covariance case. For example, one

can easily verify that

tr
{

(KBΣ̃)j
}

=tr


(

a∑
i=1

PbΣi

ni

)j
 ,
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for j = 1, 2, 3. With this simplification if the covariance matrices are equal, i.e.,

Σ1 = · · · = Σa = Σ, then c′j = cj for j = 1, 2. Furthermore, the assumptions

A1′, A4′ and A4 reduce to A1. On the other hand, proportional divergence of

individual sample sizes with the dimension (assumption A3′) is not needed for

the equal covariance. It is adequate if the total sample size diverges with the

dimension (see assumption A2).

To put the assumptions A1′, A2′, A4′ and A5′ in perspective, the covariance matri-

ces Σi = (1− ρi)Ib + ρiJb, for i = 1, . . . , a and any −1/(b− 1) < ρi < 1, satisfy these

assumptions because tr(PbΣi) = (b−1)(1−ρi), tr(PbΣiPbΣj) = (b−1)(1−ρi)(1−ρj),

tr(PbΣiPbΣjPbΣk) = (b− 1)(1− ρi)(1− ρj)(1− ρk), tr{(PbΣi)
4} = (b− 1)(1− ρi)4,

for all i, j, k ∈ {1, . . . , a}, and tr(KAΣ̃) =
∑a

i=1(1−ni/n)(1 + (b− 1)ρi). On the con-

trary, Σi = ρiQ
>diag{1, . . . , b}Q fail to satisfy the assumptions, where the columns

of matrix Q are the orthonormal eigenvectors of Pb as equal case.

2.4.1 Test for interaction effect AB

Here also we start by presenting the asymptotic sampling distribution of a centered

and scaled version of H(AB) when the covariance matrices are not necessarily equal.

Theorem 2.4.1. If the null hypothesis HAB
0 holds, then

U ′AB :=
1√
b

(
a∑
i=1

1

ni

)−1{(
1− 1

a

)−1
H(AB) −

a∑
i=1

tr(PbΣi)

ni

}
D−→ N (0, 2c′c′2),

under the high-dimensional asymptotic frameworks A1′, A3′ and A4′ where

c′ =
a(a− 2)

(a− 1)2

a∑
i=1

tr ((PbΣi)
2)

n2
i

/
tr


(

a∑
i=1

PbΣi

ni

)2
 +

1

(a− 1)2
∈
[

1

(a− 1)2
, 1

]
.

Notice, here also, that the bounds for c′, besides establishing that c′ = O(1) under

the asymptotic framework A1′ and A3′, give insight into how the variance of U ′AB is

influenced by the value of a.

In what follows, unbiased and consistent estimators of the unknown quantities in

the asymptotic sampling distribution in Theorem 2.4.1 will be given. To that end,
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let

c1i =
tr(PbΣi)

b
, c2i =

tr{(PbΣi)
2}

b
and c2ii′ =

tr(PbΣiPbΣi′)

b
for i 6= i′.

Then we can see that

c′1 =

(
a∑
i=1

1

ni

)−1
tr(KBΣ̃)

b
=

(
a∑
i=1

1

ni

)−1 a∑
i=1

c1i
ni

and

c′2 =

(
a∑
i=1

1

ni

)−2
tr{(KBΣ̃)2}

b
=

(
a∑
i=1

1

ni

)−2 a∑
i=1

c2i
n2
i

+

(
a∑
i=1

1

ni

)−2∑
i 6=i′

c2ii′

nini′
.

In view of assumption A3′, it suffices to find unbiased and consistent estimators of

c1i, c2i and c2ii′ . Denote

ĉ1i =
tr(PbSi)

b
,

ĉ2i =
(ni − 1)2

b(ni + 1)(ni − 2)

{
tr{(PbSi)2} −

1

ni − 1
{tr(PbSi)}2

}
and

ĉ2ii′ =
tr(PbSiPbSi′)

b
for i 6= i′,

and define

ĉ′1 =

(
a∑
i=1

1

ni

)−1 a∑
i=1

ĉ1i
ni
,

ĉ′2 =

(
a∑
i=1

1

ni

)−2 a∑
i=1

ĉ2i
n2
i

+

(
a∑
i=1

1

ni

)−2∑
i 6=i′

ĉ2ii′

nini′
and

ĉ′ =
a(a− 2)

(a− 1)2

(
a∑
i=1

1

ni

)−2 a∑
i=1

ĉ2i
n2
i ĉ
′
2

+
1

(a− 1)2
.

Unbiased and consistent estimators of c′i for i = 1, 2 are given in Theorem 2.4.2 below.

Theorem 2.4.2. ĉ′1, ĉ
′
2 and ĉ′ · ĉ′2 are unbiased and consistent estimators of c′1, c′2

and c′ · c′2, respectively, under the high-dimensional asymptotic frameworks A1′, A3′

and A5′. Moreover, we have
√
b(ĉ′1 − c′1)

P−→ 0.

Asymptotic test forHAB under unequal covariance assumption is devised in Corol-

lary 2.4.3. The proof is analogous to that of Corollary 2.3.3.
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Corollary 2.4.3. If the null hypothesis HAB
0 holds, then

T̂ ′AB :=
1√

2b ĉ′ĉ′2


(

1− 1

a

)−1( a∑
i=1

1

ni

)−1
H(AB) − bĉ′1

 D−→ N (0, 1),

under the high-dimensional asymptotic frameworks A1′, A3′, A4′ and A5′.

It is well known in the low-dimensional MANOVA that the effect of unequal covari-

ance on tests that assume equal covariance is more pronounced when the sample sizes

are different. In particular, the effect gets worse if smaller sample sizes are associated

with large covariance matrices (large in the sense of the eigenvalues). Comparison of

Corollaries 2.3.3 and 2.4.3 reveals that the same phenomena appears to exist in the

high-dimensional tests of this Chapter.

2.4.2 Test for the main effect of factor B

As in the equal covariance case, here also the results for H(B) follow in a manner

analogous to those of H(AB).

Theorem 2.4.4. If the null hypothesis HB
0 holds, then

U ′B :=
1√
b

(
a∑
i=1

1

ni

)−1{
H(B) −

a∑
i=1

tr(PbΣi)

ni

}
D−→ N (0, 2c′2),

under the high-dimensional asymptotic frameworks A1′ and A3′.

Therefore, an asymptotic test for the main effects of factor B under unequal

covariance matrices is as provided in Corollary 2.4.5.

Corollary 2.4.5. If the null hypothesis HB
0 holds, then

T̂ ′B :=
1√
2bĉ′2


(

a∑
i=1

1

ni

)−1
H(B) − bĉ′1

 D−→ N (0, 1),

under the high-dimensional asymptotic frameworks A1′, A3′ and A5′.
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2.4.3 Test for the main effect of factor A

Notice that the rank of KA is at most a − 1. That is, it does not grow with b and,

hence, it does not make sense to consider large-(b, ni) asymptotic. Instead we consider

an approximation based on matching moments that is known to work well in other

situations (e.g., Brunner et al., 1997). Notice that E
[
H(A)

]
= bd′1. An unbiased

estimator of d′1 is

d̂′1 =
a∑
i=1

(
1− ni

n

)
d̂1i,

where d̂1i = tr(JbSi)/b
2. Then a reasonable test statistic is

T̂ ′A =
H(A)

bd̂′1
.

To get an approximate distribution of T̂ ′A, we propose to approximate the distributions

of H(A) and bd̂′1 by constant multiples of chi-square distributions. More precisely, we

assume approximately

H(A) ∼ gχ2
f and bd̂′1 ∼ g0χ

2
f0

where (g, f) and (g0, f0) are found by matching the first two moments. After some

algebra, we get

f =
2{E[H(A)]}2

Var(H(A))
=

a∑
i=1

(
1− ni

n

)2
d21i +

∑
i 6=i′

(
1− ni

n

) (
1− ni′

n

)
d1id1i′

a∑
i=1

(
1− ni

n

)2
d21i +

∑
i 6=i′

nini′
n2 d1id1i′

,

f0 =
2{E[bd′1]}2

Var(bd′1)
=

a∑
i=1

(
1− ni

n

)2
d21i +

∑
i 6=i′

(
1− ni

n

) (
1− ni′

n

)
d1id1i′

a∑
i=1

(
1− ni

n

)2 d21i
ni−1

,

and f0g0/fg = 1, where d1i = tr(JbΣi)/b
2.

Now, we approximate the distributions of T̂ ′A as

T̂ ′A =
H(A)/fg

bd̂′1/f0g0
∼ Ff,f0 ,

under the null hypothesis HA
0 . For practical application of the approximate degrees

of freedoms, we need unbiased and consistent estimators of the quantity d1i and its

square d21i .
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Theorem 2.4.6. Under the asymptotic framework A2′ and A3′, for i = 1, . . . , a,

unbiased and consistent estimators of d1i and d21i are

d̂1i =
tr(JbS)

b2
and d̂21i =

ni − 1

ni + 1
(d̂1i)

2.

Although the estimators f̂ and f̂0 of f and f0, respectively, obtained by plugging-

in the unbiased estimators of d1i and d21i are not unbiased themselves, they will still

be consistent and our numerical studies have shown that using such estimators give

much improved accuracies.

2.5 Simulation Study

2.5.1 Size of the Tests

We generate 10,000 replications of data from Xik ∼ Nb(µ1b,Σi) for µ ∈ R. Under

this model, all the three null hypotheses HAB
0 , HB

0 and HA
0 hold. Since all the three

tests are invariant to the choice of µ, the particular value of µ used is immaterial. For

covariance, we consider the structures Σi = (1− ρi)Ib + ρiJb and Σi which has ones

for its diagonals and ρi|j − j′|−1/4 for the (j, j′) off-diagonal element. It should be

noted that a covariance matrix Σi = (1− ρi)Ib + ρiJb will be positive definite if and

only if −1/(b − 1) < ρi < 1. We consider a range of values for ρi. We also consider

random Σi. Let Σi = Q>i ΛiQi, where Λi is a diagonal matrix with diagonal entries

taken from Unif(0, 1) and Qi is a orthogonal matrix. Indeed, Qi can be defined from

the QR decomposition of a random matrix Zi = (Zi,jj′) where Zi,jj′ are iid random

variables. Here, we consider three distributions for Zi,jj′ , namely Zi,jj′ = 1{j=j′} with

probability 1, Zi,jj′ ∼ Exp(1) and Zi,jj′ ∼ N (0, 1).

Although the assumed asymptotic frameworks stipulate ni’s to grow proportion-

ally with b in the unequal covariance case, in reality the actual ratio varies from

application to application. To investigate the effect of the various proportionality

of growth, we look at values of several combinations of b, a and ni’s and take the

desired (nominal) type I error rate α = 0.05. For practical reasons, we also consider

small b and large n1, . . . , na (and vice-versa) combinations with balanced as well as

unbalanced designs. As far as the number of groups, we will consider a = 2, 3, 4, 6.
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Tables 2.1 and 2.2 present actual type I error rates (test sizes) for the covariance

structure Σi = ρiIb+(1−ρi)Jb for equal and unequal group covariance cases, respec-

tively. The empty cells in Table 1 and Table 3 correspond to the cases where b and ρ

combinations do not yield positive definite covariance matrix. In the equal covariance

case, since the test for the main effect of A is exact, it was not necessary to carry our

simulation for this test. From Table 2.1 we see that, as n and b grow together, the

performance of the tests in controlling type one error rates improve consistently for

most of the cases. Table 2.2 seems to exhibit similar patterns in terms of the effects

of the sizes of n and b. More noticeable is the test for the main effect of A appears

to significantly improve as a gets larger. For the other covariance structure (Table

2.3 and 2.4) and the random covariance matrices (Tables 2.5 and 2.6), again similar

patterns are observed with respect to n, b and a.
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Table 2.1: Achieved Type I error rate (×100%) for testing interaction effect AB and main effect B when sampling fromNb(µ,Σ),
where Σ = (1− ρ)Ib + ρJb.

Pr(T̂AB > zα) Pr(T̂B > zα)
under HAB0 under HB0

a b,n′ ρ = −0.01 ρ = 0 ρ = 0.2 ρ = 0.5 ρ = −0.01 ρ = 0 ρ = 0.2 ρ = 0.5

2 100,(26,26) 5.55 6.16 5.46 5.71 6.00 6.18 5.96 5.86
2 200,(51,51) 5.59 5.91 5.55 5.83 5.51 5.58
2 400,(51,51) 5.81 5.18 5.21 5.79 5.9 5.16
2 400,(101,101) 5.54 5.38 5.12 5.54 5.55 4.90
2 100,(12,25) 6.31 5.87 5.98 6.24 6.02 5.82 6.00 6.33
2 200,(25,50) 5.91 5.30 5.63 5.74 5.37 5.63
2 200,(50,100) 5.83 5.51 5.51 5.41 5.61 5.96
2 25,(50,100) 5.88 6.40 6.25 5.90 6.69 6.06 6.54 6.56
2 50,(50,100) 6.05 5.95 6.26 6.08 6.21 5.64 6.24 5.97
2 50,(100,100) 6.19 6.33 5.91 6.23 5.37 6.15 6.23 5.96

3 100,(18,18,17) 5.82 5.93 5.90 6.08 6.02 5.73 6.02 5.86
3 200,(35,34,34) 5.75 5.79 5.47 5.87 5.76 5.59
3 100,(12,13,25) 5.73 5.82 5.88 5.95 5.78 6.09 6.12 5.78
3 200,(25,25,50) 5.66 5.98 5.60 5.74 5.72 5.86
3 25,(50,100,100) 6.28 6.20 6.14 6.06 6.24 6.40 6.36 6.25
3 50,(50,100,100) 6.20 6.18 6.07 5.98 6.19 5.78 5.87 6.00
3 50,(100,100,100) 6.13 5.83 5.73 5.67 6.06 5.65 6.08 5.46

4 100,(14,14,13,13) 6.08 6.21 5.82 5.94 5.66 6.08 5.49 5.93
4 200,(26,26,26,26) 5.51 5.83 5.89 5.58 5.60 5.68
4 100,(12,13,25,25) 5.85 5.97 5.79 5.72 5.73 6.03 6.20 5.69
4 200,(25,25,50,50) 5.63 5.66 5.24 5.40 5.65 5.46
4 25,(50,50,100,100) 5.67 5.68 5.79 6.19 6.38 6.69 5.98 6.36
4 12,(100,100,100,100) 5.93 6.39 6.22 5.68 6.68 6.73 6.11 6.84
4 50,(100,100,100,100) 6.01 5.75 5.53 5.77 5.98 5.91 6.11 5.92

6 100,(10,10,9,9,9,9) 6.27 6.67 6.25 6.54 6.21 5.98 6.20 6.02
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Table 2.2: Achieved Type I error rate (×100%) for testing interaction effect AB and main effect B when sampling from
Nb(µ,Σi), where Σi = (1− ρi)Ib + ρiJb.

a b,n′ ρ Pr(T̂ ′
AB > zα) Pr(T̂ ′

B > zα) Pr(T̂ ′
A > fα)

under HAB0 under HB0 under HA0
2 100,(26,26) (0,0.5) 5.85 5.61 4.89
2 200,(51,51) (0,0.5) 5.37 5.53 5.21
2 400,(51,51) (0,0.5) 5.29 5.64 4.76
2 400,(101,101) (0,0.5) 5.39 5.53 4.97
2 100,(12,25) (0,0.5) 6.11 6.18 4.92
2 200,(25,50) (0,0.5) 6.23 5.72 4.62
2 200,(50,100) (0,0.5) 5.98 6.12 4.97
2 25,(50,100) (0,0.5) 6.81 6.33 5.11
2 50,(50,100) (0,0.5) 6.01 6.04 4.71
2 50,(100,100) (0,0.5) 6.09 5.95 5.07

3 100,(18,18,17) (0,0.5,0.9) 5.68 6.57 4.60
3 200,(35,34,34) (0,0.5,0.9) 5.44 5.98 4.99
3 100,(12,13,25) (0,0.5,0.9) 6.79 6.61 4.31
3 200,(25,25,50) (0,0.5,0.9) 5.52 5.60 4.81
3 25,(50,100,100) (0,0.5,0.9) 6.69 6.40 4.80
3 50,(50,100,100) (0,0.5,0.9) 6.30 6.22 4.58
3 50,(100,100,100) (0,0.5,0.9) 5.94 6.00 4.38

4 100,(14,14,13,13) (0,0.3,0.6,0.9) 6.55 5.73 5.30
4 200,(26,26,26,26) (0,0.3,0.6,0.9) 5.70 5.81 4.62
4 100,(12,13,25,25) (0,0.3,0.6,0.9) 6.36 6.44 4.25
4 200,(25,25,50,50) (0,0.3,0.6,0.9) 5.96 5.82 5.01
4 25,(50,50,100,100) (0,0.3,0.6,0.9) 6.24 6.27 4.94
4 12,(100,100,100,100) (0,0.3,0.6,0.9) 6.27 6.63 4.85
4 50,(100,100,100,100) (0,0.3,0.6,0.9) 5.63 5.83 5.00

6 100,(10,10,9,9,9,9) (-0.01,0,0.2,0.4,0.6,0.8) 6.60 6.28 5.25
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Table 2.3: Achieved Type I error rate (×100%) for testing interaction effect AB and main effect B when sampling fromNb(µ,Σ),
where Σ = (σjj′), σjj = 1 and σjj′ = ρ/|j − j′|1/4 for j 6= j′.

Pr(T̂AB > zα) Pr(T̂B > zα)
under HAB0 under HB0

a b,n′ ρ = −0.01 ρ = 0 ρ = 0.2 ρ = 0.5 ρ = −0.01 ρ = 0 ρ = 0.2 ρ = 0.5

2 100,(26,26) 5.83 6.24 5.56 6.07 5.62 6.05 6.03 6.23
2 200,(51,51) 5.68 5.67 6.09 6.19 5.61 5.56 5.57 6.25
2 400,(51,51) 5.83 5.95 6.21 5.44 5.34 6.10
2 400,(101,101) 5.75 5.14 6.47 5.56 5.58 6.64
2 100,(12,25) 6.10 6.29 6.19 6.63 5.95 6.10 6.07 6.78
2 200,(25,50) 5.75 5.81 5.84 6.48 5.43 5.71 5.86 6.71
2 200,(50,100) 5.49 5.86 6.14 5.74 5.49 6.37
2 25,(50,100) 6.22 6.29 6.08 6.53 6.42 6.25 6.39 6.39
2 50,(50,100) 6.13 5.94 6.05 6.52 6.11 6.40 6.34 6.21
2 50,(100,100) 5.87 6.17 6.04 6.48 6.22 5.95 5.98 6.50

3 100,(18,18,17) 6.17 6.07 6.47 6.22 6.06 6.15 6.22 6.82
3 200,(35,34,34) 5.29 5.71 6.26 6.07 6.09 6.65
3 100,(12,13,25) 6.05 5.82 5.70 7.19 6.27 6.37 6.20 6.96
3 200,(25,25,50) 6.00 5.81 6.07 6.17 5.57 5.51 5.75 6.84
3 25,(50,100,100) 6.69 6.12 6.13 6.31 6.17 6.87 6.50 6.28
3 50,(50,100,100) 5.79 6.51 6.20 6.29 6.41 6.43 6.38 6.84
3 50,(100,100,100) 5.89 5.67 5.68 6.50 5.82 6.31 6.07 6.15

4 100,(14,14,13,13) 5.64 6.05 5.94 6.47 6.34 6.02 6.28 7.00
4 200,(26,26,26,26) 5.30 5.76 5.45 6.01 5.62 5.87 5.65 6.36
4 100,(12,13,25,25) 5.88 6.09 5.92 6.57 5.61 5.53 5.70 6.36
4 200,(25,25,50,50) 5.54 5.86 5.85 5.85 5.74 5.53 5.85 6.08
4 25,(50,50,100,100) 5.79 6.02 6.29 6.28 6.38 6.30 6.78 6.66
4 12,(100,100,100,100) 6.45 5.91 6.07 5.92 6.25 6.55 6.76 7.29
4 50,(100,100,100,100) 5.64 5.50 5.63 6.26 6.09 5.66 6.11 6.44

6 100,(10,10,9,9,9,9) 6.51 6.17 6.81 6.85 5.97 6.23 6.14 6.39
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Table 2.4: Achieved Type I error rate (×100%) for testing interaction effect AB and main effect B when sampling fromNb(µ,Σi)
where Σi = (σi,jj′), σi,jj = 1 and σi,jj′ = ρi/|j − j′|1/4 for j 6= j′.

a b,n′ ρ Pr(T̂ ′
AB > zα) Pr(T̂ ′

B > zα) Pr(T̂ ′
A > fα)

under HAB0 under HB0 under HA0
2 100,(26,26) (0,0.5) 6.49 6.17 5.22
2 200,(51,51) (0,0.5) 6.02 6.11 4.78
2 400,(51,51) (0,0.5) 5.93 6.00 5.29
2 400,(101,101) (0,0.5) 5.71 5.54 5.03
2 100,(12,25) (0,0.5) 6.60 6.58 4.79
2 200,(25,50) (0,0.5) 6.19 5.80 4.60
2 200,(50,100) (0,0.5) 5.57 5.93 5.23
2 25,(50,100) (0,0.5) 7.00 6.55 4.57
2 50,(50,100) (0,0.5) 6.25 6.19 5.04
2 50,(100,100) (0,0.5) 5.99 5.91 5.27

3 100,(18,18,17) (0,0.5,0.9) 6.39 6.19 4.68
3 200,(35,34,34) (0,0.5,0.9) 6.45 6.32 4.78
3 100,(12,13,25) (0,0.5,0.9) 6.69 6.18 4.41
3 200,(25,25,50) (0,0.5,0.9) 6.18 5.87 4.97
3 25,(50,100,100) (0,0.5,0.9) 6.28 6.39 4.80
3 50,(50,100,100) (0,0.5,0.9) 6.03 6.29 4.97
3 50,(100,100,100) (0,0.5,0.9) 5.74 6.26 4.81

4 100,(14,14,13,13) (0,0.3,0.6,0.9) 6.80 6.77 5.14
4 200,(26,26,26,26) (0,0.3,0.6,0.9) 6.42 6.37 5.04
4 100,(12,13,25,25) (0,0.3,0.6,0.9) 6.68 5.66 5.04
4 200,(25,25,50,50) (0,0.3,0.6,0.9) 6.11 6.40 5.04
4 25,(50,50,100,100) (0,0.3,0.6,0.9) 6.20 6.15 4.99
4 12,(100,100,100,100) (0,0.3,0.6,0.9) 6.71 7.14 4.80
4 50,(100,100,100,100) (0,0.3,0.6,0.9) 6.17 6.03 4.89

6 100,(10,10,9,9,9,9) (-0.01,0,0.2,0.4,0.6,0.8) 7.02 6.08 4.78
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Table 2.5: Achieved Type I error rate (×100%) for testing interaction effect AB and main effect B when sampling from Nb(µ,Σ)
where Σ = Q>ΛQ, Q is defined from the QR decomposition of the random matrix Z = (Zjj′) and Λ is a diagonal matrix
whose diagonal entries are drawn from Unif(0, 1).

Pr(T̂AB > zα) Pr(T̂B > zα)
under HAB0 under HB0

a b,n′ Zjj′ Zjj′

1{j=j′} Exp(1) N (0, 1) 1{j=j′} Exp(1) N (0, 1)

2 100,(26,26) 6.06 6.22 6.59 5.96 6.21 6.57
2 200,(51,51) 5.70 5.60 5.66 5.95 5.74 5.72
2 400,(51,51) 5.71 5.60 5.59 5.50 5.61 5.89
2 400,(101,101) 5.09 5.80 5.77 5.58 5.45 5.47
2 100,(12,25) 6.85 6.44 6.45 6.31 6.26 6.38
2 200,(25,50) 5.55 5.91 5.70 5.87 5.64 5.87
2 25,(50,100) 6.65 6.53 6.77 6.75 6.47 7.14

3 100,(12,13,25) 6.83 6.43 6.66 6.25 6.19 6.12
3 200,(25,25,50) 5.69 5.71 5.61 5.53 5.43 5.50
3 25,(50,100,100) 6.53 6.16 6.36 6.57 6.21 6.67
3 50,(50,100,100) 5.62 5.90 6.23 6.53 6.15 5.86

4 100,(14,14,13,13) 6.27 6.67 6.45 5.95 6.43 6.19
4 200,(26,26,26,26) 5.20 5.92 5.79 5.72 6.02 5.69
4 100,(12,13,25,25) 5.84 6.40 6.28 5.99 5.78 6.33
4 200,(25,25,50,50) 5.73 5.52 5.65 5.64 6.15 5.95
4 25,(50,50,100,100) 6.23 6.43 5.87 6.25 6.24 6.60
4 12,(100,100,100,100) 6.07 6.14 6.58 7.17 7.12 6.75
4 50,(100,100,100,100) 5.52 6.17 6.31 6.16 6.60 6.08

6 100,(10,10,9,9,9,9) 6.30 6.38 6.24 6.43 5.61 6.11
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Table 2.6: Achieved Type I error rate (×100%) for testing interaction effect AB and main effect B when sampling fromNb(µ,Σi)
where Σi = Q>i ΛiQi, Qi is defined from the QR decomposition of the random matrix Zi = (Zi,jj′) and Λi is a diagonal matrix
whose diagonal entries are drawn from Unif(0, 1).

Pr(T̂ ′
AB > zα) Pr(T̂ ′

B > zα) Pr(T̂ ′
A > fα)

under HAB0 under HB0 under HB0
a b,n′ Zjj′ Zjj′ Zjj′

1{j=j′} Exp(1) N (0, 1) 1{j=j′} Exp(1) N (0, 1) 1{j=j′} Exp(1) N (0, 1)

2 100,(26,26) 6.43 6.07 6.00 6.15 6.23 6.07 4.91 4.75 4.97
2 200,(51,51) 5.68 6.79 5.71 6.02 6.09 5.85 4.57 5.04 5.03
2 400,(51,51) 5.67 5.40 5.54 5.20 5.54 5.73 4.89 5.06 5.02
2 400,(101,101) 5.69 5.39 5.33 5.26 5.73 5.73 4.97 4.81 5.15
2 100,(12,25) 6.50 6.59 6.12 6.38 6.49 6.52 4.55 5.02 5.46
2 200,(25,50) 5.66 5.68 5.74 6.11 6.17 6.05 4.78 4.77 4.57
2 25,(50,100) 6.62 6.23 6.42 6.74 6.47 6.62 4.91 5.20 4.61

3 100,(12,13,25) 6.58 7.10 6.26 6.42 6.15 6.11 4.58 4.98 4.72
3 200,(25,25,50) 5.84 5.96 6.01 6.05 5.79 5.91 4.82 4.71 4.74
3 25,(50,100,100) 6.35 6.51 6.52 6.44 6.24 6.46 5.09 5.12 4.97
3 50,(50,100,100) 6.11 6.26 6.13 6.28 6.25 5.97 4.53 5.19 5.08

4 100,(14,14,13,13) 6.43 6.46 6.22 6.64 6.26 6.04 5.07 4.71 4.93
4 200,(26,26,26,26) 5.97 5.51 5.95 5.55 5.55 5.54 4.96 4.75 4.96
4 100,(12,13,25,25) 6.51 5.80 6.16 6.37 5.94 6.02 5.34 5.11 4.80
4 200,(25,25,50,50) 5.71 6.06 5.78 5.77 5.29 5.47 4.98 4.99 5.44
4 25,(50,50,100,100) 6.04 6.15 6.15 6.23 6.11 6.36 5.28 4.89 5.21
4 12,(100,100,100,100) 6.35 6.59 6.74 6.58 6.61 6.79 5.43 4.62 5.12
4 50,(100,100,100,100) 5.83 5.65 5.67 6.41 6.29 5.99 5.01 5.11 5.14

6 100,(10,10,9,9,9,9) 6.49 6.53 6.67 5.93 5.79 6.01 4.92 4.73 5.08
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For the covariance structure used in Table 2.1 the assumptions are satisfied uni-

formly in ρ because ci = (1 − ρ)i(1 − 1/b). Furthermore, as ρ → 1, the sampling

variability of TAB goes to 0 which could lead to better control of size. On the other

hand, for the covariance structure in Table 2,

c′j ={
a∑
i=1

(1− ρi)/ni}j(
a∑
i=1

1/ni)
−j(1− 1/b) for j = 1, 2, 3

c′′3 =

(
a∑
i=1

1/ni

)−3 {(a− 1

a

)3 a∑
i=1

(1− ρi)3

n3
i

+
6(a− 1)

a3

∑
i<j

(1− ρi)2(1− ρj)
n2
inj

− 36

a3

∑
i<j<k

(1− ρi)(1− ρj)(1− ρk)
ninjnk

}
(1− 1/b)

which are all O(1). What is more, c′2 → 0 as ρi → 1. So does the variance of T ′AB and

T ′B. On the contrary, our numerical calculations of the ratio of the traces to dimen-

sions for the covariances used in the Table 2.3 show that c3 and c4 diverge as b→∞.

For example, we obtained the sequence (c3, c4) = (.333, .310), (0.649, 0.942), (1.295,

3.045), (2.729, 10.700), (6.001, 39.616), (13.589, 151.361) for b = 12, 25, 50, 100, 200, 400,

respectively. Similar pattern should exist for the covariances in Table 2.4 as well. Re-

gardless, it is reassuring to see that the effect of the divergence is negligible on the

quality of approximation of our results. As a result of this one may conjecture to drop

these assumptions. There is also another supporting evidence of this phenomena in

Tables 2.5 and 2.6 where random covariance matrices is used. So this again shows

that the choice of the covariance matrix seems to have no effect.

2.5.2 Power Comparison

An approximate yet popular method for repeated measures analysis when the co-

variances are unequal and unstructured is Huynh (1978), later corrected by Lecoutre

(1991). This method performs well when ni are all large. In this section, we com-

pare the power of this method with the methods proposed in this Chapter. For

both methods, the respective approximate null distributions are used to determine

the critical values.
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To keep the comparison manageable, we fix a = 3, b ∈ {10, 100, 200} and Σi =

(1−ρi)Ib+ρiJb where ρ1 = 0.2, ρ2 = 0.5 and ρ3 = 0.9. In regards to sample sizes and

dimension, we use the combinations (b;n1, n2, n3) = (10; 50, 100, 100), (100; 25, 12, 13)

and (200; 50, 25, 25). For the alternative hypotheses, we take µ2 = µ3 = 0 and

consider two structures for µ1, namely µ1i = (1 + δ) for i odd, µ1i = (1 − δ) for i

even, and µ1 = (1+δ,1>b−1)
> as δ varies from 0 to 1. It should be noted that the later

structure represents a departure that approaches to the null hypothesis at a rate of

b−1/2. More precisely, the scaled departure from the null ||µ1−1b||/(tr(Σ))1/2 are |δ|

and |δ|/
√
b, respectively.

Figure 2.2: Power comparison of the proposed methods and the methods by Huynh
(1978), later corrected by Lecoutre (1991). Data is generated from Nb(µi,Σi). In
the plots, a = 3, Σi = (1− ρi)Ib + ρiJb, ρ1 = 0.2, ρ2 = 0.5 and ρ3 = 0.9 are used. In
both panels, µ2 = µ3 = 0. In the left panel µ1i = (1 + δ) for i odd, µ1i = (1− δ) for
i even, and in the right panel µ1 = (1 + δ,1>b−1)
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Figure 2.2 shows results for testing the interaction effect. The results for the main

effect of B are similar. The power curves clearly demonstrates that as the dimension

b gets large, the methods proposed in this Chapter show unequivocal superiority over

those of Huynh (1978). The superiority clearly holds when the departure from the null

is very mild. However, for small b and large sample sizes (n1, n2, n3), Huynh (1978)

methods have clear edge which fade away as b gets larger. It is interesting to observe
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Figure 2.3: Power comparison of the test for main effect of factor B (Test for Flatness)
in Section 2.3 and the test by Takahashi and Shutoh (2016) for a = 2. Data is
generated from Nb(µi,Σ). In the plots, Σ = 0.8Ib + 0.2Jb is used. In the left panel,
µ1 = δ1b/2 ⊗ (1,−1)> and in the right panel µ1 = δ(1, 0, . . . , 0)>. In both panels,
µ2 = µ1 + 1b.
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that Hynuh’s (Huynh, 1978) methods are very conservative when the dimension is

large. Also the power of our method tends to get bigger as b gets larger even when

the scaled departure from the null does not change with b.

As discussed in Section 2.2, when a = 2 and the covariance matrices are equal, the

tests for interaction effect and main effects of A in the current manuscript and those

in Takahashi and Shutoh (2016) agree. However, the tests for main effects of B are

different. In the remainder of this section, we present simulation results to compare

the powers of these two test.

First, we consider the case where the parameter space is constrained by parallelism

hypothesis. We look at two forms of departure from the null hypothesis (flatness),

namely µ1 = δ1b/2 ⊗ (1,−1)> and µ1 = δ(1, 0, . . . , 0)> for values of δ between 0 and

1. In both cases, µ2 = µ1 + 1b. For dimension and sample size combinations, we use

(b;n1, n2) = (10; 50, 100), (100; 12, 25) and (200; 25, 50). For simplicity, we keep the

covariance matrix Σ = 0.8Ip + 0.2Jp. From the power curves in Figure 2.3, the test

of Takahashi and Shutoh (2016) seems to have a slight edge over ours.
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Figure 2.4: Power comparison of the test for main effect of factor B (Test for Flatness)
in Section 2.3 and the test by Takahashi and Shutoh (2016) for a = 2. Data is
generated from Nb(µi,Σ). In the plots, Σ = 0.8Ib + 0.2Jb is used. In the left panel,
µ1 = δ1b/2 ⊗ (1,−1)> + 1b and in the right panel µ1 = δ(1, 0, . . . , 0)> + 1b. In both
panels, µ2 = 0.
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Another common departure from flatness in two group clinical trials is when

the control group maintains flat mean profile but the treatment group may have

fluctuating mean profile. Under this alternative, parallelism is obviously violated

but the researcher may be interested in testing average flatness versus non flatness.

One can make the argument that the test statistic for flatness presented in this

Chapter and that of Takahashi and Shutoh (2016) can be used to detect lack of

average flatness when parallelism is not known a priori. To investigate the powers

of our test and that of Takahashi and Shutoh (2016) for this type of alternative, we

consider two forms of departure from flatness, namely µ1 = δ1b/2⊗ (1,−1)>+ 1b and

µ1 = δ(1, 0, . . . , 0)> + 1b for values of δ between 0 and 1. In both cases, µ2 = 0.

We keep the the other parameters of the simulation parameters the same as in the

previous paragraph. From Figure 2.4, our test has clear edge over that of Takahashi

and Shutoh (2016).
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2.6 Real Data Analysis

We analyze a publicly available data obtained from the University of California-

Irvine Machine Learning Repository.1 The data arose from a large study to exam-

ine Electroencephalograph (EEG) correlates of genetic predisposition to alcoholism.

Measurements from 64 electrodes placed on subject’s scalps recorded 256 times for

1 second. The study involved two groups of subjects: alcoholic and control. Each

subject was exposed to either a single stimulus (S1) or to two stimuli (S1 and S2)

which were pictures of objects chosen from a picture set. In this section, we analyze

the data only for the single stimulus (S1) exposure. The outcome measurements are

Event-Related Potentials (ERP) indicating the level of electrical activity (in volts) in

the region of the brain where each of the electrodes is placed.

We analyze the data from each electrode (location of the brain) separately and

adjust the resulting p-values for multiplicity so that False Discovery Rate (FDR), the

expected proportion of false rejections, is controlled (Benjamini and Hochberg, 1995).

In the notations of this Chapter, this data set has a = 2, b = 256 , n1 = 77, n2 = 45

and n = 122. Factor A is the group factor and factor B (the within-subject factor)

is the time.

Indeed, the main hypotheses of interest are whether ERP profiles are similar

between the alcoholic and control groups. If different, to identify for which electrode

(which part of the brain) dissimilarity occurs. In other words, interest lies in knowing

at which electrodes do time and alcoholism interact on ERP outcome. Table 2.7

shows FDR adjusted p-values for testing group-by-time interaction for each of the

64 channels (at FDR = 0.05). The columns in the table contain channel names

(Ch), p-values based on analysis assuming equal covariance (E) and p-values without

assuming equal covariance (U).

Each channel (electrode) has names identifying the location of the electrode on

the scalp. The names are made up of a letter identifying the anatomical location of

the placement of the electrode (F-frontal lobe, T-temporal lobe, P-parietal lobe and

1web address: https://archive.ics.uci.edu/ml/datasets/EEG+Database
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O-occipital lobe) and a number identifying the hemisphere of the brain (odd number–

the left hemisphere and even number – the right hemisphere and letter z (zero) is

used for the mid-line) . The name A and Fp identify the earlobe and frontal polar

sites, respectively, whereas C identifies the central location between the frontal and

parietal lobes). Combinations of two letters indicates intermediate locations, e.g.,

FC: in between frontal and central electrode locations (see Figure 2.5 for details).

Table 2.7: False Discovery Rate (FDR) adjusted p-values for testing time×group in-
teraction for Electroencephalograph (EEG) experiment involving Alcoholic and Con-
trol subjects. In the table, the columns are channel label (Ch), p-value based on equal
covariance assumption (E) and p-value based on unequal covariance assumption (U).

Ch E U Ch E U Ch E U Ch E U

AF1 0.054 0.086 CP6 0.000 0.000 FC6 0.129 0.236 P5 0.000 0.000
AF2 0.058 0.098 CPZ 0.000 0.000 FCZ 0.000 0.000 P6 0.000 0.000
AF7 0.716 0.737 CZ 0.595 0.641 FP1 0.668 0.701 P7 0.000 0.000
AF8 0.716 0.741 F1 0.000 0.000 FP2 0.716 0.744 P8 0.000 0.000
AFZ 0.007 0.016 F2 0.000 0.001 FPZ 0.716 0.737 PO1 0.000 0.000
C1 0.157 0.147 F3 0.003 0.005 FT7 0.595 0.689 PO2 0.000 0.000
C2 0.013 0.007 F4 0.120 0.212 FT8 0.034 0.095 PO7 0.000 0.000
C3 0.000 0.000 F5 0.356 0.429 FZ 0.000 0.000 PO8 0.000 0.000
C4 0.000 0.000 F6 0.469 0.544 nd 0.001 0.002 POZ 0.000 0.000
C5 0.000 0.000 F7 0.595 0.641 O1 0.000 0.000 PZ 0.000 0.000
C6 0.000 0.000 F8 0.716 0.744 O2 0.000 0.000 T7 0.000 0.000

CP1 0.000 0.000 FC1 0.001 0.002 OZ 0.000 0.000 T8 0.000 0.000
CP2 0.000 0.000 FC2 0.079 0.048 P1 0.000 0.000 TP7 0.000 0.000
CP3 0.000 0.000 FC3 0.286 0.410 P2 0.000 0.000 TP8 0.000 0.000
CP4 0.000 0.000 FC4 0.716 0.769 P3 0.000 0.000 X 0.716 0.744
CP5 0.000 0.000 FC5 0.536 0.640 P4 0.000 0.000 Y 0.046 0.034

The channel-by-channel decisions based on our method and that of Huynh (1978)

are displayed in Figure 2.5. The figure depicts the scalp of a human being viewed from

the top, the triangle marking the nose. The locations of the electrodes are indicated

by bubbles. The color of the bubbles indicates whether the brain activity pattern for

that channel is significantly dissimilar (red) or not significantly dissimilar (green).

It is clear from the table that there are no evidence in the data to show difference

in the electrical activity patterns between the two groups in the frontal regions of the

brain. Most of the significant differences occur in the central, parietal and occipital

regions. More precisely, there is similarity in the activity patterns for the alcoholic
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Figure 2.5: Channel-by-Channel results for EEG data analysis on testing the similar-
ity in brain activity between alcoholic and control subjects. Left panel contains results
based on our method and right panel contains results from the methods by Huynh
(1978). Red means brain activity patterns are significantly dissimilar at α = 0.05.
Green means that the similarity hypothesis cannot be rejected.
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(a) New Method (b) Huynh (1978) Method

and control groups in the all of frontal electrodes with the exception of FC1, FCZ, FZ,

F1, F2, F3, FC2 and AFZ. On the other hand, all the other data from all the other

electrodes in the non-frontal with the exception of C1 and CZ. The results distinctly

demarcate contagious similar and non-similar activity regions. In particular, FC1,

FCZ, FZ, F1, F2, F3 and AFZ form a isolated region dissimilarity with the frontal

region of the brain (see Figure 2.5). Our method has found two more significant

channels (AFZ, FC2, and Y) than the method by Huynh (1978).

2.7 Discussion and Conclusion

Tests for repeated measures design are introduced when both sample size and the

dimension are large. The tests allow the covariance to be equal or unequal but

otherwise unstructured. To the best of our knowledge, tests for high-dimensional

repeated measures with unequal group covariance matrices did not exist prior to the

current manuscript.
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The equal covariance case has seen some recent advancement in the one-group

(Pauly et al., 2015) and two-group (Takahashi and Shutoh, 2016) cases. The test

statistic in Pauly et al. (2015) essentially differ from ours in the way the asymptotic

variance of UB is estimated. We make efficient use of all observations which resulted

in the additional assumptions tr{(PbΣ)4}/b = O(1). Our results for a = 2, however,

corroborate with those of Takahashi and Shutoh (2016) for testing the interaction

(parallelism hypothesis) and the group effect or effect of factor A (coincidence hy-

pothesis). Nevertheless, our tests for the within subject factor or effect of factor B

(flatness hypothesis) differ.

In practical application, one needs to know whether covariances are equal or not

to choose which test to use. This choice could be informed by testing equality of

covariance matrices. Tests for equality of covariance matrix in high dimensional

framework are given, among others, by Schott (2007b) and Srivastava and Yanagihara

(2010). Heuristically, one can also conduct the tests in this Chapter with and without

the assumption of equality of the covariance matrices. If the decisions agree, the

burden of testing equality of variance is removed altogether. Otherwise, caution has

to be exercises to decide which results to use. Cursory inspection of the empirical

covariance matrices could also be a useful guide in some cases. It should, however, be

stressed that the consequence of the assumption of equal variance could be substantial

when the group sample sizes differ largely.

The simulation results suggest that the approximations work only when b is very

large. This may not be practical in some applications. Second order asymptotic

that includes terms of order b−1/2, b−1 and so forth have the potential to improve

the approximations. Also discernible in the simulation is that the quality of the

approximation depends on the value of a, the larger the better. Intuitively, this

makes sense because large ameans more data under the null hypothesis. This prompts

consideration of an asymptotic framework that allows a to grow together with the

sample sizes and the number of repeated measurements. We defer consideration of

these problems to future manuscripts.

In the proofs, multivariate normality of the repeated measures is mostly needed
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for its nice property of independence up to correlation. Results under statistical

models that include this later assumption has been derived in Chen and Qin (2010)

for two-sample and Srivastava and Kubokawa (2013) for multiple-sample comparison

of mean vectors. In the interest of space, we opted to relegate the investigation of

this model in the Chapter 4.

2.8 Appendix: Proofs

Proof of Theorem 2.3.1. Note that

UAB =
1√
b

(
{tr(PaK)}−1X>(Pa ⊗ Pb)X − tr(PbΣ)

)
,

where K = diag{1/n1, . . . , 1/na}. Obviously, tr(PaK) = (1− 1/a)
∑a

i=1 1/ni. We

can write Pa = LL> and Pb = MM> where La×(a−1) and Mb×(b−1) are full rank

matrices with ranks a − 1 and b − 1, respectively. Under the null hypothesis HAB
0 ,

(L> ⊗M>)X ∼ Nab(0, (L>KL)⊗ (M>ΣM)), whence X
>

(Pa ⊗ Pb)X = {(L> ⊗

M>)X}>{(L>⊗M>)X}. Notice that the eigenvalues of M>ΣM and Σ1/2PbΣ
1/2

are the same. So are that of L>KL and K1/2PaK
1/2. Therefore, under the null

hypothesis HAB
0 ,

UAB =
1√
b


(

1− 1

a

)−1( a∑
i=1

1

ni

)−1 a∑
i=1

b∑
j=1

αiβjYij − tr(PbΣ)

 ,

where αi’s are the eigenvalues of K1/2PaK
1/2, βj’s are the eigenvalues of Σ1/2PbΣ

1/2,

and Yij’s are independently and identically distributed as chi-square distribution with

1 degree of freedom for i = 1, . . . , a, and j = 1, . . . , b. So the characteristic function

of UAB is

ϕ(t) = E[exp(ı tUAB)] =
a∏
i=1

b∏
j=1

(
1− 2ı tαiβj√

b tr(PaK)

)−1/2
exp

[
− ı t tr(PbΣ)√

b

]
,

where ı =
√
−1. Therefore, we have

ln{ϕ(t)} = −1

2

a∑
i=1

b∑
j=1

ln

(
1− 2ı tαiβj√

b tr(PaK)

)
− ı t tr(PbΣ)√

b
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=
(ı t)2

2
· tr{(PaK)2}
{tr(PaK)}2

· 2c2 + O

(
|t|3tr{(PaK)3}√
b {tr(PaK)}3

c3

)
,

by applying Taylor expansion to ln[1− (2ı tαiβj)/{
√
b tr(PaK)}]. Here

tr{(PaK)2}
{tr(PaK)}2

=
a(a− 2)

(a− 1)2

a∑
i=1

1

n2
i

/(
a∑
i=1

1

ni

)2

+
1

(a− 1)2
= c.

Since we know that K1/2 is symmetric and positive definite matrix, and Pa is positive

semidefinite and symmetric, so does K1/2PaK
1/2. Thus αi ≥ 0, and at least one αi

bigger than 0. For any k ≥ 2, we have

tr{(PaK)k}
{tr(PaK)}k

=

∑a
i=1 α

k
i

(
∑a

i=1 αi)
k
≤ 1.

Moreover, by using Hölder’s inequality we have

a∑
i=1

αi ≤

(
a∑
i=1

αki

)1/k

·

(
a∑
i=1

1k/(k−1)

)(k−1)/k

=

(
a(k−1)

a∑
i=1

αki

)1/k

.

This proves that the ratio tr{(PaK)k}/{tr(PaK)}k ≥ 1/ak−1. So under the as-

sumption A1 and A2, the remainder term of the Taylor series converges to 0 as b

goes to infinity. Also by Hölder’s inequality, (
∑a

i=1 1/n2
i )/(

∑a
i=1 1/ni)

2 ≥ 1/a which

establishes the lower bound for c.

Proof of Theorem 2.3.2. Although a much easier proof will be given in Chapter

3 (Kong and Harrar, 2017), we still include this one since it gives more idea on how to

construct the unbiased estimators. It is obvious that (ni−1)Si ∼ Wb(Σ, ni−1), where

Wp(Ω, ν) stands for p dimensional Wishart distribution with ν degrees of freedom

and scale matrix Ω. Thus (n − a)S, the sum of a independent Wb(Σ, ni − 1), has

distributionWb(Σ, n− a). The reminder of the proof is similar to that of Lemma 2.1

of Srivastava (2005). We give sketchy detail below. (See also the Proof of Theorem

2.4.2.)

Let Γ be the orthogonal matrix such that

ΓΣ1/2PbΣ
1/2Γ> = Λ
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where Λ = diag(λ1 . . . , λb) and λi’s are the eigenvalues of Σ1/2PbΣ
1/2. Also let wi

be iid Nn−a(0, In−a) for i = 1, . . . , b. Then

(n− a)tr(PbS) =
b∑
i=1

λivii,

(n− a)2{tr(PbS)}2 =
b∑
i=1

λ2i v
2
ii +

∑
i 6=j

λiλjviivjj and

(n− a)2tr{(PbS)2} =
b∑
i=1

λ2i v
2
ii +

∑
i 6=j

λiλjv
2
ij,

where vii = w>i wi and vij = w>i wj = w>j wi for i 6= j. Thus,

ĉ1 =
1

b(n− a)

b∑
i=1

λivii and

ĉ2 =
1

b(n− a− 1)(n− a+ 2)

{
b∑
i=1

λ2i v
2
ii

+
∑
i 6=j

λiλjv
2
ij −

1

(n− a)

(
b∑
i=1

λ2i v
2
ii +

∑
i 6=j

λiλjviivjj

)}

=
1

b(n− a)(n− a+ 2)

b∑
i=1

λ2i v
2
ii

+
1

b(n− a− 1)(n− a+ 2)

∑
i 6=j

λiλj

(
v2ij −

1

n− a
viivjj

)
.

Finally, we have E[ĉi] = ci, for i = 1, 2. Furthermore, Var(ĉ1) = 2c2/{b(n− a)} and

Var(ĉ2) =
4c22

(n− a)2
− 4c22

(n− a)3
+

12c22
(n− a)4

− 20c22
(n− a)5

+
8c4

b(n− a)
+

4c4
b(n− a)2

− 12c4
b(n− a)3

+
20c4

b(n− a)4
+ O(n−6)c22 + O(b−1)O(n−5)c4,

under the high-dimensional asymptotic frameworks A1 and A2. Applying Cheby-

shev’s inequality completes the proof.

Proof of Corollary 2.3.3. From Theorem 2.3.2, we know that ĉ2/c2
P−→ 1 and

√
b(ĉ1 − c)

P−→ 0. Then the desired result follows by applying CMT and Slutsky’s

Theorem to

T̂AB =
1√

2bcc2(ĉ2/c2)

(1− 1

a

)−1( a∑
i=1

1

ni

)−1
H(AB) − bc1

− √
b√

2cc2(ĉ2/c2)
(ĉ1−c1).
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Proof of Theorem 2.3.4. Obviously, tr(JaK) =
∑a

i=1 1/ni. The remainder of the

proof is analogous to that of Theorem 2.3.1.

Proof of Proposition 2.3.6. Obviously, K1/2⊗ Ib is nonsingular. Thus bKAµ =

(Da ⊗ Jb)µ = 0 if and only if

(
K1/2 ⊗ Ib

)
(Da ⊗ Jb)µ =

(
K1/2Da ⊗ Jb

)
µ = 0,

if and only if

b−1µ>
(
K1/2Da ⊗ Jb

)> (
K1/2Da ⊗ Jb

)
µ = µ> (DaKDa ⊗ Jb)µ = bµ>KAµ = 0,

since Da = DaKDa.

Proof of Theorem 2.4.1. It is easy to see, under the null hypothesis HAB
0

U ′AB =
1√
b


(

1− 1

a

)−1( a∑
i=1

1

ni

)−1 ab∑
j=1

αjYj −

(
a∑
i=1

1

ni

)−1
tr(KBΣ̃)

 ,

where αj’s are the eigenvalues of Σ̃1/2KABΣ̃1/2, and Yj’s are independently and identi-

cally distributed as chi-square distribution with 1 degree of freedom for j = 1, . . . , ab.

So the characteristic function of U ′AB is

ϕ(t) = E[exp(ı U ′AB)] =
ab∏
j=1

1− 2ı tαi
√
b (1− 1/a)

a∑
i=1

1
ni


−1/2

exp

− ı t tr(KBΣ̃)
√
b

a∑
i=1

1
ni

 .
Therefore, we have

ln{ϕ(t)} = −1

2

ab∑
j=1

ln

1− 2ı tαi
√
b (1− 1/a)

a∑
i=1

1
ni

− ı t tr(KBΣ̃)
√
b

a∑
i=1

1
ni

=
(ı t)2

2
· 2c′c′2 + O

(
|t|3c′′3√

b (1− 1/a)3

)
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by applying Taylor expansion to ln[1− 2ı tαi/{
√
b (1− 1/a)

∑a
i=1 1/ni}]. Here note

that

(1− 1/a)−2
(

a∑
i=1

1

ni

)−2 ab∑
i=1

α2
i

b

= (1− 1/a)−2
(

a∑
i=1

1

ni

)−2
tr
{

(KABΣ̃)2
}

= (1− 1/a)−2
(

a∑
i=1

1

ni

)−2 [(
1− 2

a

) a∑
i=1

tr

{(
PbΣi

ni

)2
}

+
1

a2
tr(KBΣ̃)2

]
=

(
a∑
i=1

1

ni

)−2
a(a− 2)

(a− 1)2

a∑
i=1

tr

{(
PbΣi

ni

)2
}

+
c′1

(a− 1)2
= c′c′2,

where c′2 = O(1) by assumption A1′. Next we will determine bounds for c′. We know

that

tr


(

a∑
i=1

PbΣi

ni

)2
 =

a∑
i=1

tr{(PbΣi)
2}

n2
i

+ tr

(∑
i 6=j

PbΣiPbΣj

ninj

)
.

Thus, we have

a∑
i=1

tr{(PbΣi)
2}

n2
i

/
tr


(

a∑
i=1

PbΣi

ni

)2
 ∈ (0, 1]

which implies c′ ∈ [(a− 1)−2, 1]. Note that the lower end of the interval is close

because the first term in c′ will be 0 when a = 2. Otherwise, the interval is open

on the left side for a ≥ 3. Finally, under assumption A4′, the remainder term of the

Taylor series converges to 0 as b goes to infinity.

Proof of Theorem 2.4.2. In light of remark (ii) in Section 2.3, we see from The-

orem 2.3.2 that ĉ1i and ĉ2i are unbiased and consistent estimator of c1i and c2i,

respectively, by taking a = 1 (see Srivastava, 2005). Also we have
√
b(ĉ1i− c1i)

P−→ 0.

Thus, under the high-dimensional asymptotic frameworks A1′, A3′ and A5′, ĉ′1 is an

unbiased and consistent estimator of c′1 and
√
b(ĉ1− c′1)

P−→ 0 by Slutsky’s Theorem.

Next we will prove that ĉ2ii′ is an unbiased and consistent estimator of c2ii′ . It is

obvious that (ni − 1)Si ∼ Wb(Σi, ni − 1). Thus there exists Yi = (yi1, . . . ,yini−1),

where yij are iid Nb(0,Σi), such that (ni − 1)Si = YiY
>
i . Then Yi = Σ

1/2
i Ui, where
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Ui = (ui1, . . . ,uin), and uij are iid Nb(0, Ib). Let Γi and Γi′ be two orthogonal

matrices such that Σ
1/2
i PbΣ

1/2
i′ = Γ>i Λii′Γi′ where Λii′ = diag(λ1ii′ , . . . , λbii′) and

λjii′ , for j = 1, . . . , b are the square root of eigenvalues of(
Σ

1/2
i PbΣ

1/2
i′

)(
Σ

1/2
i PbΣ

1/2
i′

)>
= Σ

1/2
i PbΣi′PbΣ

1/2
i .

Obviously, we have

Σ
1/2
i′ PbΣ

1/2
i =

(
Σ

1/2
i PbΣ

1/2
i′

)>
=
(
Γ>i Λii′Γi′

)>
= Γ>i′Λii′Γi.

Thus,

(ni − 1)(ni′ − 1)tr(PbSiPbSi′) = tr
(
PbYiY

>
i PbYi′Y

>
i′

)
=tr

(
PbΣ

1/2
i UiU

>
i Σ

1/2
i PbΣ

1/2
i′ Ui′U

>
i′ Σ

1/2
i′

)
=tr

(
U>i Σ

1/2
i PbΣ

1/2
i′ Ui′U

>
i′ Σ

1/2
i′ PbΣ

1/2
i Ui

)
=tr

(
U>i Γ>i Λii′Γi′Ui′U

>
i′ Γ
>
i′Λii′ΓiUi

)
=tr

(
b∑

j=1

λjii′wjiw
>
ji′ ·

b∑
j=1

λjii′wji′w
>
ji

)

=tr

(
b∑

j=1

λ2jii′wjiw
>
ji′wji′w

>
ji +

∑
j 6=j′

λjii′λj′ii′wjiw
>
ji′wj′i′w

>
j′i

)
,

whereU>i Γ>i = (w1i, . . . ,wbi) andwji are iidNni−1(0, Ini−1) andU>i′ Γ
>
i′ = (w1i′ , . . . ,wbi′)

and wji′ are iid Nni′−1(0, Ini′−1). Using cyclic commutativity of the trace operator

(ni − 1)(ni′ − 1)tr(PbSiPbSi′)

=
b∑

j=1

λ2jii′w
>
jiwjiw

>
ji′wji′ +

∑
j 6=j′

λjii′λj′ii′w
>
j′iwjiw

>
ji′wj′i′

=
b∑

j=1

λ2jii′v
(i)
jj v

(i′)
jj +

∑
j 6=j′

λjii′λj′ii′v
(i)
jj′v

(i′)
jj′ ,

where v
(i)
jj := w>jiwji are iid chi-square random variables with ni−1 degrees of freedom,

and v
(i)
jj′ := w>jiwj′i = w>j′iwji and v

(i′)
jj′ := w>ji′wj′i′ = w>j′i′wji′ , for any j 6= j′, are

independent and each has mean 0. Thus,

E[tr(PbSiPbSi′)] =
b∑

j=1

λ2jii′ = tr(PbΣiPbΣi′)
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and

E
[
(tr(PbSiPbSi′)

2
]

=
1

(ni − 1)2(ni′ − 1)2
E

( b∑
j=1

λ2jii′v
(i)
jj v

(i′)
jj +

∑
j 6=j′

λjii′λj′ii′v
(i)
jj′v

(i′)
jj′

)2


=
1

(ni − 1)2(ni′ − 1)2
E

[
b∑

j=1

λ4jii′v
(i)2
jj v

(i′)2
jj +

∑
j 6=j′

λ2jii′λ
2
j′ii′v

(i)
jj v

(i′)
jj v

(i)
j′j′v

(i′)
j′j′

+
∑
j 6=j′

2λ2jii′λ
2
j′ii′v

(i)2
jj′ v

(i′)2
jj′ +

∑
j 6=j′

2λ3jii′λj′ii′v
(i)
jj v

(i′)
jj v

(i)
jj′v

(i′)
jj′

+
∑
j 6=j′

2λjii′λ
3
j′ii′v

(i)
j′j′v

(i′)
j′j′v

(i)
jj′v

(i′)
jj′

]

=
(ni + 1)(ni′ + 1)

(ni − 1)(ni′ − 1)

b∑
j=1

λ4jii′ +

(
1 +

2

(ni − 1)(ni′ − 1)

)∑
j 6=j′

λ2jii′λ
2
j′ii′ ,

since

E[v
(i)
jj ] = (ni − 1), E[v

(i)2
jj ] = (ni − 1)(ni + 1), E[v

(i)2
jj′ ] = (ni − 1)

and the last two terms have mean zero. Note that we omitted the terms with three

and four different j’s in our calculations because the means for these terms are zeros.

Thus,

Var (tr(PbSiPbSi′))

=
(ni + 1)(ni′ + 1)

(ni − 1)(ni′ − 1)

b∑
j=1

λ4jii′ +

(
1 +

2

(ni − 1)(ni′ − 1)

)∑
j 6=j′

λ2jii′λ
2
j′ii′ −

(
b∑

j=1

λ2jii′

)2

=
2(ni + ni′)

(ni − 1)(ni′ − 1)

(
b∑

j=1

λ2jii′

)2

+
2(1− ni − ni′)

(ni − 1)(ni′ − 1)

∑
j 6=j′

λ2jii′λ
2
j′ii′

≤ 2

(ni − 1)(ni′ − 1)
{tr(PbΣiPbΣi′)}2 .

The last inequality follows from

∑
j 6=j′

λ2jii′λ
2
j′ii′ ≤

∑
jj′

λ2jii′λ
2
j′ii′ =

(
b∑

j=1

λjii′

)2

= {tr(PbΣiPbΣi′)}2 .

Finally, we have E[ ĉ2ii′ ] = c2ii′ , and

Var(ĉ2ii′) ≤
2

(ni − 1)(ni′ − 1)
c22ii′ ≤

2

(ni − 1)(ni′ − 1)
c′22 = O(n−2),
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under the high-dimensional asymptotic frameworks A1′ and A3′. This with Cheby-

shev’s inequality, proves that ĉ2ii′ is an unbiased and consistent estimator of c2ii′ .

Therefore, ĉ′2 and ĉ′ · ĉ′2 are unbiased and consistent estimator of c′2 and c′ · c′2 respec-

tively.

Proof of Theorem 2.4.6. Observe that

d̂1i =
tr(JbS)

b2
=

1

ni − 1

1

b
tr(JbΣi)Yi,

where Yi ∼ χ2
ni−1. Thus,

E(d̂1i) =
1

b2
tr(JbΣi) = d1i

E[(d̂1i)
2] =

(
1

b2
tr(JbΣi)

)2
(ni − 1)(ni + 1)

(ni − 1)2
=
ni + 1

ni − 1
d21i

E[(d̂1i)
4] =

(ni + 1)(ni + 3)(ni + 5)

(ni − 1)3
d41i and

Var[(d̂1i)
2] =

(ni + 1)(10ni + 14)

(ni − 1)3
d41i = O(n−1i )d41i.

Copyright c© Xiaoli Kong, 2018.
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Chapter 3 Accurate Inference for Repeated Measures in High

Dimensions

3.1 Introduction

As we know, repeated measures data arise in various disciplines of the sciences, so-

cial sciences, engineering and humanities. Study designs such as time course studies,

cross-over designs and split-plot designs naturally lead to repeated measures data.

The distinctive feature of repeated measures data is that the observations from the

same study unit (observational or experimental) are commensurate and exhibit cor-

relations. Analysis of continuous repeated measures data to make inference on the

effects of one or many between- or within-subject crossed or nested factor effects

fall into three broad categories: multivariate analysis, univariate analysis and mixed

model analyses. Mixed model analyses involve some assumption concerning the cor-

relations of the repeated measures. Despite its generality in modeling the correlation

and leading to exact inference, the multivariate method is not applicable when the

number of repeated measures is larger than the error degrees of freedom.

Univariate methods on the other hand focus on adjusting the analysis of variance

(ANOVA) for the within-unit correlation. It is well know that when all observations

are independent, ANOVA test statistics have exact F distribution. In the presence

of the within-unit correlation, the ANOVA tests are valid only if these correlations

satisfy a condition known as sphericity (Bock, 1963; Huynh and Feldt, 1970). Box

(1954) suggested a correction which involves adjustment of the numerator and de-

nominator degrees of freedom of the F-distribution by a constant multiplying factor,

commonly referred to as Box’s ε. Since the constant factor ε depends on the unknown

within-unit covariance matrix, solution such as using lower bound for ε (Geisser and

Greenhouse, 1958) or estimates of the within-unit covariance matrix in the calculation

of ε (Huynh and Feldt, 1976; Huynh, 1978; Lecoutre, 1991) have been implemented

in practical applications. These solutions have been shown to work satisfactorily in
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terms of controlling Type I error rate when the number of repeated measures is low

compared to the degrees of freedom for estimating the covariance matrix. However,

the univariate approach is obviously approximate and Rencher and Christensen (2012,

p. 219) argue that it has no power advantage over the exact multivariate test. They

continue to say “... The only case in which we need to fall back on univariate test

is when there are insufficient degrees of freedom to perform multivariate test...”, i.e.,

when the number of repeated measures is larger than the error degrees of freedom to

estimate the within-unit covariance.

Well before most researchers embarked on the high-dimension-low-sample-size

(HDLSS) problem, Collier et al. (1967), Stoloff (1970) and Maxwell and Arvey (1982)

have numerically demonstrated that the univariate approaches for repeated measures

tend to be very conservative. In an attempt to improve the estimation of ε in the

high dimensional situation, Chi et al. (2012) used “dual” forms of the within sum-of-

squares and cross-products matrices . They claim that, besides giving stable estimates

of ε, the use of the “dual” version has computational advantage. The approaches of

Brunner et al. (2012) and Happ et al. (2015), on the other hand, overcome the high

dimensional problem by using the so-called ANOVA-type statistic (Brunner et al.,

1997, 1999) and then use F-approximation to their null distribution by matching

first two moments of the numerator and denominator quadratic forms with that of a

scaled-gamma distribution, an approach shown to be successful in a related problem

by Brunner et al. (1997). Again, these approaches although were shown to be nu-

merically satisfactory, they are only approximate solutions. On the other hand, by

deriving asymptotic distributions of some suitable statistics in the high-dimensional

asymptotic framework, Pauly et al. (2015), Takahashi and Shutoh (2016) and Harrar

and Kong (2016) (as given in Chapter 2) devised asymptotically-valid tests. Pauly

et al. (2015) consider high-dimensional repeated measures analysis for one sample

situation but with the possibility of several within subject factors. The two-sample

situation was considered by Takahashi and Shutoh (2016) assuming equal covariance

matrices for the two populations. More generally, Harrar and Kong (2016) addressed

the multi-group as well as the unequal covariance cases. Other works such as Wang

45



and Akritas (2010a,b) and Wang et al. (2010) are also high-dimensional asymptotic

results applicable for repeated measures but assume that the repeated measurements

are inherently ordered and the dependence between the measurements decays as the

separation between them increases. High-dimensional asymptotic mean vector com-

parisons have recently received attention in the statistics literature (see Bai and

Saranadasa, 1996; Chen and Qin, 2010; Katayama et al., 2013; Cai et al., 2014, and

the references there in) under assumptions different from that of Pauly et al. (2015),

Takahashi and Shutoh (2016), and Harrar and Kong (2016). However, these recent

results are asymptotic and are not applicable in the repeated measures setting.

More specifically, Harrar and Kong (2016) have proven asymptotic normality for

their test statistics under certain assumptions on the covariances. In their simulation

study, Harrar and Kong (2016) noticed that the error of approximation from these

asymptotic distributions could be considerable unless both the number of repeated

measurements and replication sizes are large. The present Chapter aims to derive

second order asymptotics for the tests considered in Harrar and Kong (2016). In

addition, the results in the current Chapter are more general in the sense that they

are applicable in situations where there are multiple within and/or between unit

crossed and/or nested factors.

This Chapter is organized as follows. Section 3.2 introduces the statistical model,

hypotheses and notations used in the remainder of the Chapter. Test statistics for

the various effects are presented in Section 3.3 together with asymptotic expansions

for their null distributions. The asymptotic power are derived in Section 3.4. Nu-

merical studies are carried out in Section 3.5. First, Monte Carlo simulations are

used to show the gain in accuracy from the asymptotic expansions for a selection of

covariance matrices and wide choices of values for the number of repeated measures

and replication sizes. Data from a large Electroencephalogram (EEG) study of alco-

holic and control subjects is used to illustrate the application of the results in Section

3.6. Also, simulation results by generating data with similar design parameters as

the real data is considered later in the section. Section 3.7 contains discussions and

conclusions. All proofs and preliminary results are placed in the Appendix.
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3.2 Model and Hypotheses

Suppose ni independent b-dimensional observations; for i = 1, . . . , a; are available

from multivariate normal populationsNb(µi,Σ) denoted byXi1, . . . ,Xini and assume

that the a samples are mutually independent. The aim of this Chapter is to derive

second order asymptotic result for testing hypotheses in repeated measures analysis

when both the total sample size and the number of repeated measurements tend to

infinity.

Let

X = (X>11, . . . ,X
>
1n1
,X>21, . . . ,X

>
2n2
, . . . ,X>a1, . . . ,X

>
ana)

>,

where Xik = (Xi1k, . . . , Xibk)
>. Further, let

X = (X
>
1 , . . . ,X

>
a )>,

where X i = n−1i
∑ni

k=1Xik. The usual setting gives the interpretation that Xijk is

the responses from the kth subject treated with the ith level of factor A and the jth

level of factor B. In this model Xijk and Xi′j′k′ are assumed to be independent only

if i 6= i′ or k 6= k′ . Otherwise the dependence is completely unspecified.

Note that from the distributional assumption made above

E[Xik] = µi = (µi1, . . . , µib)
>

and Var(Xik) = Σ, where Σ is a b× b positive definite matrix. Let

µ = (µ11, . . . , µ1b, . . . , µa1, . . . , µab)
>

and Σ̃ =
⊕a

i=1 Σ/ni = D ⊗ Σ where D = diag(1/n1, . . . , 1/na). Then we have

E[X] = µ and Var(X) = Σ̃.

The hypotheses of interest can be expressed as

H0 : Kµ = 0 VS H1 : Kµ 6= 0 (3.1)

with K = T1 ⊗ T2, where T1 and T2 are a × a and b × b matrices respectively. We

require that the two matrices T1 and T2 are symmetric and there exist positive definite
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matrices Gi, such that TiGiTi = Ti (Gi = I if Ti is idempotent). Actually, we can

apply the linear transformation G
−1/2
1 ⊗G−1/22 on the data X and use the symmetric

and idempotent matrix G
1/2
i TiG

1/2
i instead of Ti. With this manipulation, the new

K still defines the same hypotheses as in (3.1). Therefore, without loss of generality,

we can assume that T1 and T2 are symmetric and idempotent matrices directly. For

such Ti, K is positive semidefinite matrix. The Rank(T2) may be finite or grow with

b at the rate O(b). In the following Theorem we establish an equivalent quadratic

form expressions for the hypotheses (3.1).

Theorem 3.2.1. The null hypotheses (3.1) are equivalent to

H′0 : µ>Kµ = 0 vs. H′1 : µ>Kµ > 0.

The above setup may give the impression that this Chapter is dealing with

one between-subject and one within-subject factor with levels a and b, respectively.

However, the indices i = 1, . . . , a and j = 1, . . . , b are to be viewed as lexico-

graphic order of the between-subject factor level combinations and within-subject

factor level combinations, respectively. Therefore, the setup covers repeated mea-

sures in factorial designs with crossed and nested factors. The factors T1 and T2 of

matrix K can be viewed as parts of the contrast matrix concerning the between-

subject factors and the within-subject factors, respectively. More specifically, suit-

able choices of T1 and T2 can allow between-subject and within-subject mean com-

parisons. For a concrete example, consider a factorial design in which there are

two between-subject crossed factors, say A and C with a and c levels, respectively,

and two within-subject factors, say B and D, where the levels of D are nested

within that of B (see also other specific designs considered in Section 3.5). Sup-

pose B has b levels and the jth level of B has dj levels of D nested within it. The

mean vector in this set up would be µ = (µ>11, . . . ,µ
>
1c, . . . ,µ

>
a1, . . . ,µ

>
ac)
> where

µik = (µ>ik11, . . . ,µ
>
ik1d1

, . . . ,µ>ikb1, . . . ,µ
>
ikbdb

)>. To test the interaction effect of A

and B, for instance, we would use T1 = Pa ⊗ c−1Jc and T2 = Q(Q>Q)−Q> where

Q = (
⊕b

j=1 d
−1
j 1dj) ⊗ Pb and (Q>Q)− is the generalized inverse of Q>Q. Further,
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the set up above can be reset accordingly. For example a would be replaced by ac,

and D = diag{n11, . . . , n1c, . . . , na1, . . . , nac}−1.

3.3 Higher-Order Asymptotic Tests

We have seen in Theorem 3.2.1 that Kµ = 0 if and only if µ>Kµ = 0. A reasonable

estimator of µ>Kµ is given by H = X
>
KX. Now, define

ck := tr(T2Σ)k = tr(Σ1/2T2Σ
1/2)k,

for k = 1, . . . , 8 and n =
∑a

i=1 ni − a. In this section, we will devise a test for

H0 : Kµ = 0

under the following high-dimensional asymptotic framework, when the rank of T2

grows with b:

B1: c8/c
4
2 = O(b−3) as b→∞.

B2: n→∞ and b→∞ such that b/n = γ → γ0 ∈ (0,∞).

It is well known that (e.g. Yang et al., 2001)

tr(AB)m ≤ {tr(A2m)tr(B2m)}1/2,

for any positive semidefinite matrices A and B. Assumption B1 is a sparsity condition

on the covariance matrix. Using the trace inequality above we have

ck/c
k/2
2 = O(b−k/2+1) as b→∞ for any 1 ≤ k ≤ 7.

For example, if k = 4, then c4 ≤ (c8 · b)1/2 and if k = 6, c6 ≤ (c8c4)
1/2. There-

fore, c4/c
2
2 = O(b−1) and c6/c

3
2 = O(b−2). Assumption B2 is weaker than the usual

requirement that each of sample sizes to diverge and have the same relation with b.

First, we assume Σ is known. A centered and suitably-scaled version of H given

by

T =
H − tr(T1D)c1√

2tr(T1D)2c2
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yields a reasonable test statistic for testing H0. Let δk = tr(T1D)k/{tr(T1D)}k

for k = 2, 3, 4. Since T1 is a symmetric and idempotent matrix, one can see that

0 < δk < 1 and, hence, δk = O(1) as n→∞. In order to generalize the test statistic

T for the unknown covariance case, we need to estimate c1 and c2 to the appropriate

order. The estimators ĉ1 and ĉ2 defined by

ĉ1 = tr(T2S) and ĉ2 =
n2

(n− 1)(n+ 2)

{
tr(T2S)2 − 1

n
{tr(T2S)}2

}
, (3.2)

where

S =
1

n

a∑
k=1

(ni − 1)Si and Si =
1

ni − 1

ni∑
k=1

(Xik −X i)(Xik −X i)
>,

have desirable asymptotic properties given in Theorem 3.3.1. Here, it should be noted

that ĉ1 and ĉ2 are unbiased estimators of c1 and c2, respectively (Srivastava, 2005;

Harrar and Kong, 2016).

Theorem 3.3.1. Under the high-dimensional asymptotic frameworks B1 and B2,

the estimators ĉ1 and ĉ2 have the following asymptotic properties:

(i) Asymptotic equivalence: (ĉ1 − c1)/
√
c2 = Op(b

−1/2) and (ĉ2 − c2)/c2 = Op(b
−1).

(ii) Ratio consistency: ĉ2/c2
p→ 1.

Next we study the asymptotic sampling distribution of the test-statistic,

T̂ =
{tr(T1D)}−1H − ĉ1√

2δ2ĉ2

which is obtained from T by replacing c1 and c2 by their empirical counterparts.

It is shown in the Appendix that T̂ can be expanded as

T̂ = T − V√
b
− 1

b

TW

2
+ Op(b

−3/2),

where

V =

√
b(ĉ1 − c1)√

2δ2c2
and W = b(ĉ2 − c2)/c2,

are Op(1) by Theorem 3.3.1. The characteristic function of T̂ can be expanded as

given in the following Theorem.
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Theorem 3.3.2. If the null hypothesis H0 holds, then under the high-dimensional

asymptotic frameworks B1 and B2, the characteristic function of T̂ can be expanded

as

φT̂ (t) = e
1
2
ı2t2
{

1 +
1√
b
ı3t3η3 +

1

b
(ı2t2

γ

2δ2
+ ı4t4η4 + ı6t6

η23
2

) + O(b−3/2)

}
,

where η3 =
4b1/2δ3c3

3(2δ2c2)3/2
and η4 =

2bδ4c4
(2δ2c2)2

.

Note that, by Assumption B1, η3 and η4 are O(1). Inverting the characteristic

function term by term, we get asymptotic expansion for the distribution function of

T̂ as follows.

Theorem 3.3.3. If the null hypothesis H0 holds, then under the high-dimensional

asymptotic frameworks B1 and B2, the distribution function of T̂ can be expanded as

FT̂ (x) = GT̂ (x) + O(b−3/2),

uniformly in x where

GT̂ (x) = Φ(x)− 1√
b
η3Φ

(3)(x) +
1

b
{ γ

2δ2
Φ(2)(x) + η4Φ

(4)(x) +
η23
2

Φ(6)(x)}

and Φ(j)(x) is the jth derivative of the standard normal cumulative distribution func-

tion Φ(x).

More specifically, Theorem 3.3.3 states that supx∈R |FT̂ (x) − GT̂ (x)| = O(b−3/2).

The function GT̂ (x) can alternatively be expressed as

GT̂ (x) = Φ(x)− φ(x)

[
1√
b
η3h2(x) +

1

b

{ γ

2δ2
h1(x) + η4h3(x) +

η23
2
h5(x)

}]
where φ(x) is the standard normal density functions and hi(x) is the ith Hermite

polynomial. The first five Hermite polynomials are:

h1(x) = x, h2(x) = x2 − 1, h3(x) = x3 − 3x,

h4(x) = x4 − 6x2 + 3 and h5(x) = x5 − 10x3 + 15x.

It should be emphasized that when the terms of orders b−1/2 and b−1 are ignored,

assumptions B1 and B2 can be relaxed as: (i) the assumption of proportional diver-

gence of n and b in B2 is not needed (Harrar and Kong, 2016) and (ii) the sparsity
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condition on the covariance matrix (assumption B1) is needed only for c4/c
2
2 = o(1),

in which case, the assumption reduces to that of Chen and Qin (2010).

Let u(z) be defined by P (T̂ ≤ u(z)) = P (Z ≤ z) where Z is a standard normal

random variable. In what follows, asymptotic expansion of u(z) in terms of z known

as Cornish-Fisher expansion (Hill and Davis, 1968) is given in Corollary 3.3.4.

Corollary 3.3.4. If the null hypothesis H0 holds, then under the high-dimensional

asymptotic frameworks B1 and B2, u(z) = uA(z) + O(b−3/2) where

uA(z) = z +
1√
b
η3h2(z) +

1

b

{ γ

2δ2
h1(z) + η4h3(z) +

η23
2
h5(z)− zη23h2(z)(

1

2
h2(z)− 2)

}
.

The expansions GT̂ (x) and uA(z) are approximations for the CDF and quantile,

respectively, of T̂ under the null hypothesis. In these approximations, η3 and η4

depend on c2 , c3, and c4 which are unknown quantities. Therefore, for practical

applications, we need an estimated version of the expansions which is uniformly

correct up to Op(b
−3/2) in the sense that supx∈R |FT̂ (x) − F̂T̂ (x)| = Op(b

−3/2) where

F̂T̂ (x) is the estimated version of FT̂ (x). To that end, let ĉ1 and ĉ2 be as defined in

(3.2) and define ĉ3 and ĉ4 as

ĉ3 =
n4

m1

[
tr(T2S)3 − 3

n
tr(T2S)2tr(T2S) +

2

n2
{tr(T2S)}3

]
and

ĉ4 =
n5(n2 + n+ 2)

m2

[
tr(T2S)4 − 4

n
tr(T2S)3tr(T2S)

− 2n2 + 3n− 6

n(n2 + n+ 2)
{tr(T2S)2}2 +

2(5n+ 6)

n(n2 + n+ 2)
tr(T2S)2{tr(T2S)}2

− 5n+ 6

n2(n2 + n+ 2)
{tr(T2S)}4

]
,

where m1 = (n − 2)(n − 1)(n + 2)(n + 4) and m2 = m1(n + 1)(n − 3)(n + 6).

These estimators are unbiased and enjoy some higher order asymptotic properties

that makes them suitable for use in asymptotic expansions.

Theorem 3.3.5. Under the high-dimensional asymptotic frameworks B1 and B2,

the estimators ĉ2, ĉ3 and ĉ4 have the following properties:

(i) Unbiasedness: E[ĉi] = ci for i = 2, 3, 4.
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(ii) Asymptotic equivalence:
b1/2ĉ3

c
3/2
2

=
b1/2c3

c
3/2
2

+ Op(b
−1) and

bĉ4
c22

=
bc4
c22

+ Op(b
−1)

Now, by using Theorems 3.3.1 and 3.3.5, we know that

η̂3 =
4b1/2δ3ĉ3

3(2δ2ĉ2)3/2
= η3 + Op(b

−1), η̂23 = η23 + Op(b
−1)

and η̂4 =
2bδ4ĉ4

(2δ2ĉ2)2
= η4 + Op(b

−1).

Therefore, we can define the estimated version ĜT̂ (x) of GT̂ (x) of Theorem 3.3.3 by

replacing η3 and η4 with η̂3 and η̂4, respectively.

Before closing this section, we provide an approximate solution in the situation

where the rank of T2 does not grow with b. Note that if T2 has finite rank, under the

null hypothesis, we may use the approximations

H
approx∼ tr(T1D)δ2c2

c1
χ2
c21/(c2δ2)

and ĉ1
approx∼ n−1c2

c1
χ2
nc21/c2

.

These approximations are obtained by matching the first two moments with that of

a scaled Chi-Square distribution. Further, it is known that H is independent of ĉ1.

Thus, a test statistic for H0 is

T̂ =
H

tr(T1D)ĉ1
,

and its distribution may be approximated by Fc21/(c2δ2), nc21/c2 distribution under the

null hypothesis. In the case when the rank of T2 is 1, it turns out that c2 = c21

and the distribution of T̂ can be approximated by F1/δ2, n. A matrix of special

interest in testing the equality of mean vectors given that they are parallel is T1 =

diag(n1, . . . , na)− (n1, . . . , na)
>(n1, . . . , na)/(n+ a). In this case, T̂ has exact Fa−1, n

distribution (Harrar and Kong, 2016). In the more general case, we need to estimate

c21/c2 consistently under the asymptotic frameworks B1 and B2. From Theorem 3.3.1,

we know that ĉ21/ĉ2 = c21/c2 + Op(b
−1/2). So we can use ĉ21/ĉ2 to estimate it.

3.4 Asymptotic Power

In this section, the asymptotic powers are derived using the methods similar to Chen

and Qin (2010). Under the alternative hypothesis H1, the expectation and variance
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of H are

E(H) = tr(T1D)c1 + µ>Kµ and

Var(H) = 2tr(T1D)2c2 + 4µ>(T1DT1)⊗ (T2ΣT2)µ,

respectively. We derive the asymptotic power under the local alternatives

B3 : {tr(T1D)}−2µ>(T1DT1)⊗ (T2ΣT2)µ = o(δ2c2),

B4 : δ2c2 = o({tr(T1D)}−2µ>(T1DT1)⊗ (T2ΣT2)µ).

A standardized version of H is

T1 =
H − tr(T1D)c1 − µ>Kµ√

2tr(T1D)2c2 + 4µ>(T1DT1)⊗ (T2ΣT2)µ
.

Asymptotic distribution of T1 is established in Theorem 3.4.1.

Theorem 3.4.1. Under the high-dimensional asymptotic framework B1 and B2, and

either the assumption B3 or B4, T1
D−→ N (0, 1).

It turns out that the power functions under the local alternatives B3 and B4

depend on the mean vectors through ∆ = µ>Kµ. Specifically, define the power

function of T̂ by

β(∆) = P(T̂ > zα).

Then, by using Theorem 3.4.1, we can obtain the power functions under the local

alternative B3 and B4 as given in Corollary 3.4.2.

Corollary 3.4.2. Under the assumption B1 and B2,

(a) if B3 holds, the power function is

β(∆) = G

(
{tr(T1D)}−1∆√

2δ2c2
− zα

)
(b) if B4 holds, the power function is

β(∆) = Φ

(
∆√

4µ>(T1DT1)⊗ (T2ΣT2)µ

)
→ 1.
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The power under B4 in (b) of Corollary 3.4.2 tends to 1 because

µ>(T1DT1)⊗ (T2ΣT2)µ ≤ {tr(T1D)}µ>Kµ
√
δ2c2 = {tr(T1D)}∆

√
δ2c2.

Note that when a = 2,T1 = P2, T2 = Ib and n1 and n2 are of same order, the power

functions have the same form as in Bai and Saranadasa (1996) and Chen and Qin

(2010).

3.5 Simulation Study

To exhibit the improvement resulting from the asymptotic expansion and, hence,

facilitate comparison with the limiting distributions in Harrar and Kong (2016), the

simulation study will mainly focus on the model where there is one between- and

one within-subject factors. We generate 10, 000 replications of data from Nb(µ,Σ).

Although the assumed asymptotic frameworks stipulate n to grow proportionally with

b, in reality the actual ratio varies from application to application. To investigate the

effect of various proportionality of growth, we look at values of several combinations

of a, b and n′is. For practical reasons, we also consider small b and large n1, . . . , na

(and vice-versa) combinations with balanced as well as unbalanced designs. For the

number of groups (number of levels of factor A), we will consider a = 2, 3, 4, 6. and

we set α at 0.01 and 0.05.

Tables 3.1–3.5 present actual Type I error rates (test sizes) for the covariance

structures Σ = ρIb + (1 − ρ)Jb, Σ = (ρ|j−j
′|) and Σ = (ρ/(j − j′)1/4), respectively.

We consider a range of values for ρ. For the first covariance structure, the assumptions

in B2 are satisfied uniformly in ρ because ci = (1− ρ)i(b− 1). However, for the other

two covariance structures these assumptions do not hold except for ρ = 0. Especially,

when ρ is close to 1, the quantities b2c6/c
3
2 and b3c8/c

4
2 diverge very fast. To see the ex-

tent of the violation of the assumption for the third covariance structure, for example,

b3/2c5/c
5/2
2 = 3.0, 6.6, 16.6, 46.1, 133.5, 392.6 for b = 12, 25, 50, 100, 200, 400 and ρ =

0.5. These numbers for b3c8/c
4
2 are 302.7, 1349.7, 6311.9, 33055.1, 190299.6, 1182934

for ρ = 0.9. It should be noted that the covariance matrix structure Σ = ρIb+(1−ρ)Jb

will be positive definite if and only if −1/(b− 1) < ρ < 1. The empty cells in Tables
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3.1 and 3.5 correspond to the cases where b and ρ combinations do not yield positive

definitive covariance matrices. In all the three tables we consider the contrast ma-

trices T1 = Pa or Ja/a and T2 = Pb. Another contrast matrix of particular interest

in repeated measures analysis is T2 = Jb/b. However, the distribution of T̂ in this

case does not depend on b. Hence, we do not carry out simulation for this contrast

matrix.

First and foremost, comparing Table 3.1, 3.3 and 3.5 (results for α = 0.05) with

the results in Harrar and Kong (2016), one can clearly see a marked gain in accuracy

resulting from the inclusion of higher-order terms in the asymptotic expansion. We

can see in Table 3.1 that for both tests (i.e. T1 = Pa and Ja/a), a large number

of the achieved error rates are within a tenth of the actual values. This phenomena

happens more for weaker correlations than for stronger ones. Further, it is clear

from the Table that the performance of the tests in controlling Type I error rates is

excellent when either the sample sizes or the dimension is large. It seems also the case

that when ni’s are small, the tests control Type I error rate better as a gets larger.

For example, looking at the rows for a = 6, performance appear to be satisfactory for

small sample sizes but large dimension. Tables 3.3 and 3.5 seem to exhibit similar

patters and behaviors. Likewise, for α = 0.01, the asymptotic expansion provides a

gain in accuracy in controlling Type I error rates (see Tables 3.2, 3.4 and 3.6).
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Table 3.1: Achieved Type I error rates (×100%) for the testing procedures when
T2 = Pb and sampling from Nb(µ,Σ) where Σ = (1− ρ)Ib + ρJb. The nominal size
is α = 0.05.

T1 = Pa T1 = Ja/a
ρ = ρ =

a b (n1, . . . , na) −0.01 0 0.2 0.5 −0.01 0 0.2 0.5

2 12 (50,100) 5.19 4.98 4.84 4.99 5.10 5.12 5.35 5.05
2 12 (100,100) 4.96 4.94 5.12 4.91 4.65 5.43 4.78 4.98
2 25 (50,100) 5.12 4.83 5.04 4.90 5.02 4.81 4.84 4.80
2 25 (100,100) 5.20 4.95 5.08 5.14 5.25 5.16 4.93 5.25
2 50 (50,100) 4.73 5.25 5.06 5.30 5.01 4.97 5.41 5.14
2 50 (100,100) 4.82 4.89 5.04 4.96 4.65 5.00 4.97 4.33
2 100 (12,13) 5.11 5.56 5.08 5.22 5.30 4.94 5.31 5.58
2 100 (12,25) 5.02 5.10 5.11 5.42 5.08 5.10 5.02 4.97
2 100 (25,25) 4.96 5.35 4.75 4.83 4.89 4.85 5.06 4.79
2 100 (25,50) 5.28 5.31 5.20 5.21 4.61 5.18 5.28 4.97
2 200 (25,25) 4.87 4.95 5.06 5.36 5.33 5.04
2 200 (25,50) 5.24 5.23 4.69 4.98 4.92 4.95
2 200 (50,50) 5.08 4.99 4.98 4.98 5.45 4.96
2 200 (50,100) 5.20 4.97 4.89 4.96 4.91 5.13
2 400 (50,50) 4.98 4.98 4.71 4.79 5.01 4.81
2 400 (50,100) 4.81 4.96 4.95 4.93 4.74 4.95
2 400 (100,100) 5.04 4.91 5.07 5.36 5.53 5.19
2 400 (100,200) 5.04 4.57 5.35 5.07 5.19 5.31

3 12 (50,100,100) 5.15 5.08 4.82 4.92 4.81 4.61 4.73 5.19
3 12 (100,100,100) 4.80 4.90 5.05 5.15 4.88 4.92 5.02 4.85
3 25 (50,100,100) 5.15 5.05 5.11 5.20 5.14 5.20 4.84 5.16
3 25 (100,100,100) 4.79 4.87 4.94 5.20 4.87 4.87 5.50 4.92
3 50 (50,100,100) 5.06 5.63 5.03 5.18 4.82 4.78 4.90 4.80
3 50 (100,100,100) 5.15 5.18 5.15 4.72 4.66 5.13 5.22 4.97
3 100 (16,17,17) 4.95 5.27 4.87 5.19 4.99 5.32 5.23 5.07
3 100 (16,17,33) 4.86 5.21 4.85 5.46 4.70 5.18 5.17 5.01
3 200 (33,33,34) 5.18 5.20 5.29 5.09 5.09 5.32
3 200 (33,34,67) 4.53 5.10 5.17 4.99 5.10 5.19
3 200 (50,50,50) 4.62 4.88 4.86 5.02 4.92 5.08
3 200 (50,50,100) 4.85 5.03 5.10 4.60 4.68 5.20

4 12 (50,50,100,100) 5.13 5.20 5.32 4.96 4.93 5.05 5.12 5.57
4 12 (100,100,100,100) 5.01 5.04 4.94 5.08 5.03 4.77 5.23 5.06
4 25 (50,50,100,100) 4.81 4.64 4.99 4.65 5.26 5.27 5.01 5.11
4 25 (100,100,100,100) 5.19 5.14 4.89 5.05 4.99 5.14 4.70 5.33
4 50 (50,50,100,100) 5.36 5.10 4.70 5.06 5.22 4.92 5.04 5.08
4 50 (100,100,100,100) 5.11 5.32 5.29 5.08 5.06 4.95 4.94 4.93
4 100 (12,12,13,13) 5.02 5.38 5.63 4.97 5.36 5.16 5.20 5.43
4 100 (12,13,25,25) 5.02 5.29 4.98 5.27 5.11 5.33 5.03 5.12
4 200 (25,25,25,25) 5.19 5.17 4.34 4.82 4.72 4.61
4 200 (25,25,50,50) 4.96 4.89 5.17 4.89 5.04 4.52
4 200 (50,50,50,50) 5.31 4.84 5.66 5.07 5.09 4.91
4 200 (50,50,100,100) 4.97 4.95 4.76 4.71 4.74 5.14

6 100 (8,8,8,8,9,9) 4.98 5.57 5.7 5.34 5.07 5.46 5.22 4.83
6 100 (8,8,9,16,17,17) 5.13 5.08 4.78 4.74 4.88 4.89 5.07 5.18
6 200 (16,16,17,17,17,17) 4.97 5.13 5.15 5.39 4.74 5.25
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Table 3.2: Achieved Type I error rates (×100%) for the testing procedures when
T2 = Pb and sampling from Nb(µ,Σ) where Σ = (1− ρ)Ib + ρJb. The nominal size
is α = 0.01.

T1 = Pa T1 = Ja/a
ρ = ρ =

a b (n1, . . . , na) −0.01 0 0.2 0.5 −0.01 0 0.2 0.5

2 12 (50,100) 1.00 0.99 1.00 1.13 1.03 1.27 0.81 0.95
2 12 (100,100) 1.16 0.91 1.01 1.07 1.06 0.92 1.00 1.05
2 25 (50,100) 0.99 1.06 1.10 1.10 1.04 1.08 0.99 1.01
2 25 (100,100) 0.95 0.76 0.96 0.96 1.10 1.14 1.12 1.00
2 50 (50,100) 1.27 1.02 1.03 1.04 0.84 1.01 0.94 1.01
2 50 (100,100) 1.04 1.09 0.84 1.05 0.96 0.89 1.04 0.89
2 100 (12,13) 1.17 1.02 1.22 1.07 1.24 1.01 0.99 1.21
2 100 (12,25) 1.06 1.02 0.93 0.94 1.14 0.98 1.00 1.16
2 100 (25,25) 1.07 1.04 0.95 1.01 1.15 1.14 1.07 1.04
2 100 (25,50) 0.91 1.03 0.9 0.98 1.12 0.93 1.01 1.08
2 200 (25,25) 1.17 0.85 1.07 1.00 1.06 1.11
2 200 (25,50) 0.95 0.85 1.00 1.00 0.99 0.94
2 200 (50,50) 1.03 0.92 1.03 0.98 1.05 1.06
2 200 (50,100) 1.02 1.30 1.07 0.95 0.95 0.88
2 400 (50,50) 1.01 1.22 0.94 0.95 0.94 0.88
2 400 (50,100) 1.06 0.95 1.10 1.07 1.04 0.98
2 400 (100,100) 0.92 1.03 0.92 1.05 0.94 0.85
2 400 (100,200) 1.08 1.08 0.82 1.11 1.04 0.92

3 12 (50,100,100) 1.08 1.13 1.19 1.04 1.09 1.17 0.97 0.96
3 12 (100,100,100) 0.94 1.11 1.10 1.03 0.92 1.00 0.99 0.99
3 25 (50,100,100) 1.07 0.94 0.96 1.14 0.93 1.12 1.02 1.05
3 25 (100,100,100) 1.07 1.13 0.79 1.05 1.08 0.81 1.04 0.84
3 50 (50,100,100) 1.00 0.78 0.92 0.97 1.19 1.02 0.82 1.00
3 50 (100,100,100) 1.16 0.94 1.12 1.10 0.94 1.04 0.76 0.93
3 100 (16,17,17) 1.06 0.92 1.13 1.13 1.09 0.94 1.10 0.95
3 100 (16,17,33) 1.17 1.16 0.92 0.91 1.17 1.04 1.03 1.06
3 200 (33,33,34) 0.91 1.17 0.98 0.97 1.00 1.13
3 200 (33,34,67) 0.94 0.91 0.84 1.08 0.99 1.15
3 200 (50,50,50) 0.86 1.07 1.09 0.92 0.85 1.01
3 200 (50,50,100) 0.98 1.01 1.02 1.16 0.95 1.12

4 12 (50,50,100,100) 0.71 0.97 0.92 1.09 0.99 1.00 1.01 0.96
4 12 (100,100,100,100) 1.06 1.04 1.03 1.07 0.98 1.09 1.09 0.90
4 25 (50,50,100,100) 1.00 1.08 1.01 1.21 0.89 1.07 0.90 0.87
4 25 (100,100,100,100) 0.88 0.91 0.72 0.95 0.92 1.09 1.07 0.89
4 50 (50,50,100,100) 1.00 0.95 1.08 1.09 1.11 0.92 1.12 0.96
4 50 (100,100,100,100) 1.04 1.02 1.07 1.24 0.93 1.11 1.00 0.90
4 100 (12,12,13,13) 1.04 0.86 1.14 1.16 1.05 1.03 0.80 0.97
4 100 (12,13,25,25) 1.07 0.99 1.04 1.12 1.02 1.03 1.03 1.03
4 200 (25,25,25,25) 1.04 0.95 1.02 0.84 0.96 1.10
4 200 (25,25,50,50) 1.02 1.06 1.07 0.95 1.19 1.09
4 200 (50,50,50,50) 1.06 0.95 1.02 0.98 1.00 1.25
4 200 (50,50,100,100) 0.95 1.11 1.12 0.96 0.91 0.98

6 100 (8,8,8,8,9,9) 1.03 0.91 1.21 1.23 0.99 1.07 0.99 0.98
6 100 (8,8,9,16,17,17) 0.86 1.12 1.26 1.16 1.01 1.08 0.98 0.95
6 200 (16,16,17,17,17,17) 1.00 1.11 1.07 0.99 0.94 0.98
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Table 3.3: Achieved Type I error rates (×100%) for the testing procedures when
T2 = Pb and sampling from Nb(µ,Σ) where Σ = (ρ|j−j

′|). The nominal size is
α = 0.05.

T1 = Pa T1 = Ja/a
ρ = ρ =

a b (n1, . . . , na) −0.01 0 0.2 0.5 −0.01 0 0.2 0.5

2 12 (50,100) 4.78 5.10 5.08 4.69 4.89 5.72 5.33 4.69
2 12 (100,100) 4.84 5.04 5.29 5.34 5.00 5.07 4.94 5.01
2 25 (50,100) 4.83 4.92 5.31 4.79 5.23 5.08 5.07 5.31
2 25 (100,100) 5.27 4.89 5.51 5.04 4.89 5.28 5.09 4.87
2 50 (50,100) 4.48 4.82 5.34 5.41 4.98 4.85 4.86 4.85
2 50 (100,100) 4.93 4.48 5.31 5.20 4.81 5.34 4.73 5.12
2 100 (12,13) 5.24 5.04 5.04 5.46 5.61 5.18 5.29 5.30
2 100 (12,25) 4.99 5.47 4.93 5.08 5.11 5.28 4.88 5.19
2 100 (25,25) 5.01 5.13 4.67 5.12 5.56 5.12 4.88 4.78
2 100 (25,50) 5.03 5.11 4.92 4.97 5.23 4.77 4.93 5.19
2 200 (25,25) 5.65 5.33 4.66 4.98 4.96 5.33 5.36 4.58
2 200 (25,50) 4.53 5.00 4.72 4.89 5.01 5.18 5.05 4.94
2 200 (50,50) 5.17 5.09 5.12 4.81 5.22 4.92 5.22 5.12
2 200 (50,100) 5.20 4.67 4.85 5.29 5.16 4.90 5.28 4.82
2 400 (50,50) 4.86 4.74 5.03 5.15 4.92 4.94 4.99 4.99
2 400 (50,100) 4.91 5.03 5.02 4.41 5.10 4.97 5.08 5.07
2 400 (100,100) 4.83 5.10 5.37 4.87 4.76 5.29 4.69 5.19
2 400 (100,200) 5.05 5.08 5.42 4.60 5.18 4.74 4.51 5.19

3 12 (50,100,100) 4.95 5.32 4.63 4.61 4.79 5.14 4.90 4.89
3 12 (100,100,100) 5.10 5.11 5.05 4.75 5.18 4.62 4.79 4.70
3 25 (50,100,100) 4.95 4.78 4.58 5.24 5.13 5.04 5.30 4.73
3 25 (100,100,100) 4.97 4.93 5.17 5.01 5.28 5.03 5.17 5.06
3 50 (50,100,100) 5.03 4.66 4.86 5.09 5.08 5.23 4.80 5.05
3 50 (100,100,100) 5.23 4.79 4.78 5.09 5.32 5.02 4.79 5.24
3 100 (16,17,17) 5.35 5.12 5.04 5.15 4.90 5.02 4.93 5.35
3 100 (16,17,33) 5.39 5.12 5.27 4.83 5.26 5.03 4.98 5.09
3 200 (33,33,34) 5.43 5.23 5.19 5.39 5.16 5.12 5.16 4.80
3 200 (33,34,67) 4.97 5.18 5.32 5.23 5.04 4.95 5.12 4.97
3 200 (50,50,50) 4.74 5.11 4.92 5.35 4.98 5.34 5.08 4.98
3 200 (50,50,100) 5.01 5.18 5.39 5.00 5.38 5.01 5.06 4.98

4 12 (50,50,100,100) 5.02 4.97 5.03 4.95 4.87 4.83 4.68 5.22
4 12 (100,100,100,100) 5.17 5.34 4.49 5.16 4.75 4.83 4.66 4.62
4 25 (50,50,100,100) 5.06 5.10 5.16 4.67 5.47 5.03 5.13 5.13
4 25 (100,100,100,100) 5.38 5.52 4.38 5.13 4.74 4.99 5.22 4.77
4 50 (50,50,100,100) 5.02 5.11 4.76 5.12 5.15 5.15 5.03 5.05
4 50 (100,100,100,100) 4.88 4.83 5.01 4.78 4.76 4.94 4.96 5.07
4 100 (12,12,13,13) 5.31 5.26 4.64 4.99 5.12 5.17 4.91 5.35
4 100 (12,13,25,25) 5.27 5.24 5.45 5.2 5.36 5.38 4.89 5.11
4 200 (25,25,25,25) 5.15 5.26 4.88 5.01 5.18 5.07 5.03 5.15
4 200 (25,25,50,50) 4.98 5.26 4.93 5.00 5.03 4.90 4.93 5.53
4 200 (50,50,50,50) 5.26 5.11 4.70 5.02 5.30 4.92 4.78 4.94
4 200 (50,50,100,100) 5.58 5.10 4.84 5.30 4.81 5.13 4.93 5.22

6 100 (8,8,8,8,9,9) 5.54 4.96 5.29 5.38 5.37 5.02 5.29 5.38
6 100 (8,8,9,16,17,17) 5.28 4.76 5.01 5.04 4.80 5.11 5.17 5.23
6 200 (16,16,17,17,17,17) 5.12 4.97 5.28 5.08 4.92 5.20 4.75 5.15
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Table 3.4: Achieved Type I error rates (×100%) for the testing procedures when
T2 = Pb and sampling from Nb(µ,Σ) where Σ = (ρ|j−j

′|). The nominal size is
α = 0.01.

T1 = Pa T1 = Ja/a
ρ = ρ =

a b (n1, . . . , na) −0.01 0 0.2 0.5 −0.01 0 0.2 0.5

2 12 (50,100) 1.12 0.96 1.11 1.07 1.07 1.00 0.95 1.05
2 12 (100,100) 1.23 1.03 0.94 0.89 0.98 1.08 1.04 0.99
2 25 (50,100) 1.01 1.05 1.12 1.22 1.04 1.01 0.99 1.03
2 25 (100,100) 1.00 1.20 0.95 0.86 0.93 1.00 1.01 1.02
2 50 (50,100) 0.79 0.86 0.93 1.00 1.13 1.01 0.96 0.79
2 50 (100,100) 0.98 0.81 1.23 0.96 0.99 1.00 1.04 0.78
2 100 (12,13) 1.17 1.17 1.01 1.26 1.17 1.17 1.14 0.97
2 100 (12,25) 1.18 1.16 0.91 1.36 1.13 1.22 1.02 1.05
2 100 (25,25) 1.07 0.95 1.18 0.98 0.91 0.90 1.15 0.98
2 100 (25,50) 1.00 0.92 0.93 1.19 1.15 0.90 0.81 1.04
2 200 (25,25) 0.95 0.95 1.08 0.87 1.12 1.01 0.95 0.97
2 200 (25,50) 1.11 1.04 0.92 1.07 1.00 0.89 1.14 0.85
2 200 (50,50) 1.04 0.94 1.02 0.92 1.01 1.04 0.98 0.86
2 200 (50,100) 0.85 1.13 1.02 1.06 1.01 0.85 0.93 1.05
2 400 (50,50) 1.09 1.09 1.04 1.08 0.98 1.05 1.12 0.86
2 400 (50,100) 1.07 1.02 1.04 0.83 1.10 1.05 0.87 0.92
2 400 (100,100) 1.01 1.01 1.12 1.07 1.00 1.05 1.03 1.12
2 400 (100,200) 0.97 0.96 0.88 1.06 1.06 0.98 1.02 1.04

3 12 (50,100,100) 0.92 0.98 1.18 1.09 0.93 1.07 1.09 1.05
3 12 (100,100,100) 0.82 1.24 0.99 0.94 1.10 0.89 0.99 0.92
3 25 (50,100,100) 0.90 0.95 1.05 0.99 1.09 0.98 0.84 0.96
3 25 (100,100,100) 1.00 1.25 1.08 1.04 1.00 1.15 0.91 1.06
3 50 (50,100,100) 1.05 1.12 0.92 0.97 1.02 0.82 1.04 1.08
3 50 (100,100,100) 0.85 0.91 1.11 0.90 1.01 0.88 1.06 1.04
3 100 (16,17,17) 1.11 0.92 1.29 1.02 1.07 0.84 0.93 0.98
3 100 (16,17,33) 1.14 1.28 0.98 0.95 1.03 1.01 1.07 1.28
3 200 (33,33,34) 1.26 1.11 0.97 1.12 1.07 0.99 1.04 0.93
3 200 (33,34,67) 1.06 1.04 0.99 1.05 0.99 0.99 1.02 0.99
3 200 (50,50,50) 1.01 0.95 1.04 1.09 1.12 1.05 1.10 1.12
3 200 (50,50,100) 0.99 1.03 0.87 1.26 1.11 1.06 0.98 1.08

4 12 (50,50,100,100) 0.79 1.02 1.10 0.85 1.08 1.03 1.17 1.03
4 25 (50,50,100,100) 1.08 0.90 1.36 0.92 1.12 0.87 1.09 0.95
4 25 (100,100,100,100) 0.89 1.23 1.11 1.08 0.99 1.14 1.12 0.96
4 50 (50,50,100,100) 1.02 0.97 0.87 0.96 1.22 0.98 1.01 0.95
4 50 (100,100,100,100) 0.97 1.03 1.04 0.92 0.98 1.13 1.29 0.92
4 100 (12,12,13,13) 1.06 1.07 1.16 1.03 1.09 1.03 1.08 1.01
4 100 (12,13,25,25) 0.97 1.04 1.10 1.12 1.19 0.93 1.03 0.91
4 200 (25,25,25,25) 1.01 0.99 1.00 0.99 0.90 0.95 0.96 1.00
4 200 (25,25,50,50) 0.91 1.05 0.90 1.04 0.72 1.08 0.94 0.95
4 200 (50,50,100,100) 0.93 0.88 1.04 1.08 0.84 0.87 1.06 0.88

6 100 (8,8,8,8,9,9) 1.11 1.24 1.14 1.33 0.99 0.92 1.14 1.00
6 100 (8,8,9,16,17,17) 1.16 1.05 0.95 1.29 1.04 0.91 1.04 1.19
6 200 (16,16,17,17,17,17) 1.12 1.05 0.90 1.05 0.99 1.05 0.99 0.90
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Table 3.5: Achieved Type I error rates (×100%) for the testing procedures when
T2 = Pb and sampling from Nb(µ,Σ) where Σ = (ρ/(j − j′)1/4). The nominal size is
α = 0.05.

T1 = Pa T1 = Ja/a
ρ = ρ =

a b (n1, . . . , na) −0.01 0 0.2 0.5 −0.01 0 0.2 0.5

2 12 (50,100) 5.04 5.06 5.28 5.41 5.40 4.95 5.63 4.92
2 12 (100,100) 5.12 4.83 5.55 4.88 5.13 4.82 5.29 4.84
2 25 (50,100) 5.24 5.20 4.90 5.02 5.23 5.25 4.89 4.42
2 25 (100,100) 5.15 5.00 4.97 4.63 5.05 4.68 5.26 4.48
2 50 (50,100) 5.24 4.95 5.06 4.97 4.80 4.97 4.83 4.70
2 50 (100,100) 4.85 4.69 5.42 5.15 5.06 5.46 5.13 5.11
2 100 (12,13) 4.88 5.46 5.05 5.58 5.51 5.07 5.25 5.23
2 100 (12,25) 4.94 4.72 5.08 5.15 4.44 5.00 5.24 4.64
2 100 (25,25) 4.94 4.57 5.01 4.45 5.90 5.18 5.18 5.12
2 100 (25,50) 5.32 4.85 5.19 4.98 4.76 5.59 4.87 5.28
2 200 (25,25) 5.12 5.45 5.19 4.88 5.05 4.99 5.18 5.03
2 200 (25,50) 5.07 4.90 4.90 5.21 5.28 5.20 5.12 4.99
2 200 (50,50) 5.24 5.32 5.20 4.60 4.93 5.46 4.42 5.01
2 200 (50,100) 4.53 5.32 5.14 4.97 4.99 5.18 4.91 4.46
2 400 (50,50) 5.45 4.74 4.73 4.70 5.13 4.33
2 400 (50,100) 5.10 4.85 4.65 5.50 5.05 4.84
2 400 (100,100) 4.93 4.88 4.87 4.91 4.87 4.94
2 400 (100,200) 4.77 5.17 5.09 4.61 4.83 4.68

3 12 (50,100,100) 4.97 5.10 4.89 4.71 4.87 5.18 5.21 5.43
3 12 (100,100,100) 4.83 4.61 5.18 5.41 4.84 4.75 4.88 4.84
3 25 (50,100,100) 5.42 4.71 5.12 5.21 4.92 4.64 5.35 4.97
3 25 (100,100,100) 5.13 5.05 5.05 4.69 5.29 4.72 4.83 4.77
3 50 (50,100,100) 5.12 4.76 5.26 4.96 5.02 5.21 4.89 5.12
3 50 (100,100,100) 4.89 5.11 5.06 5.06 5.36 5.12 5.41 4.63
3 100 (16,17,17) 4.70 5.15 5.03 5.33 4.69 5.15 4.97 4.90
3 100 (16,17,33) 5.11 5.18 5.26 5.35 4.99 4.74 5.05 5.07
3 200 (33,33,34) 5.00 4.91 5.12 5.04 4.86 5.15 5.01 4.88
3 200 (33,34,67) 4.80 4.91 5.00 4.41 5.29 5.14 5.03 4.78
3 200 (50,50,50) 5.22 4.65 4.67 4.99 5.23 5.10 5.35 4.75
3 200 (50,50,100) 4.93 4.92 4.75 5.29 5.32 4.98 5.13 4.81

4 12 (50,50,100,100) 4.72 5.04 4.86 5.26 5.14 5.05 4.64 5.05
4 12 (100,100,100,100) 5.41 5.01 5.30 4.90 4.97 4.74 5.15 4.85
4 25 (50,50,100,100) 4.98 4.97 4.81 5.46 5.38 4.93 4.66 4.75
4 25 (100,100,100,100) 5.19 4.57 5.16 4.75 4.79 5.05 5.24 4.81
4 50 (50,50,100,100) 4.87 5.13 4.74 4.94 5.25 5.18 5.38 4.75
4 50 (100,100,100,100) 5.41 5.63 5.32 5.20 5.54 5.03 4.80 4.89
4 100 (12,12,13,13) 5.43 5.39 5.22 4.93 5.13 5.24 5.07 5.07
4 100 (12,13,25,25) 5.21 4.97 5.07 5.16 5.24 5.12 4.97 4.76
4 200 (25,25,25,25) 4.78 5.34 4.86 5.07 5.14 5.08 5.32 5.10
4 200 (25,25,50,50) 4.97 4.83 4.90 4.83 4.85 5.11 4.83 4.72
4 200 (50,50,50,50) 4.96 4.68 5.23 5.00 4.93 5.33 4.97 5.12
4 200 (50,50,100,100) 4.95 4.92 4.88 4.76 4.95 5.15 5.01 4.87

6 100 (8,8,8,8,9,9) 5.27 4.76 5.19 5.57 5.35 5.33 5.12 5.25
6 100 (8,8,9,16,17,17) 5.27 4.91 4.90 5.30 5.02 5.17 5.01 4.92
6 200 (16,16,17,17,17,17) 5.27 5.05 4.93 5.36 4.78 5.20 4.72 4.84
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Table 3.6: Achieved Type I error rates (×100%) for the testing procedures when
T2 = Pb and sampling from Nb(µ,Σ) where Σ = (ρ/(j − j′)1/4). The nominal size is
α = 0.01.

T1 = Pa T1 = Ja/a
ρ = ρ =

a b (n1, . . . , na) −0.01 0 0.2 0.5 −0.01 0 0.2 0.5

2 12 (50,100) 1.03 1.10 0.97 1.01 1.17 0.93 1.02 0.90
2 12 (100,100) 0.91 0.86 1.02 0.89 1.26 1.11 0.93 1.12
2 25 (50,100) 1.32 1.13 0.86 0.99 1.14 1.08 1.15 0.92
2 25 (100,100) 0.93 1.04 0.95 1.12 1.04 1.08 1.07 0.97
2 50 (50,100) 0.99 0.91 0.94 1.04 1.06 1.07 0.97 1.09
2 50 (100,100) 1.11 0.97 1.13 1.06 1.13 1.00 1.02 0.78
2 100 (12,13) 1.10 1.09 1.15 1.13 1.04 1.22 1.19 1.24
2 100 (12,25) 1.23 1.04 1.01 1.02 0.93 1.02 1.01 1.26
2 100 (25,25) 1.03 1.05 0.93 1.11 1.08 0.97 1.08 1.00
2 100 (25,50) 0.96 1.08 0.98 1.03 1.00 0.92 1.14 1.21
2 200 (25,25) 0.96 1.09 0.71 0.90 1.02 1.02 1.07 1.12
2 200 (25,50) 0.94 1.03 1.02 0.95 1.13 1.05 1.09 1.08
2 200 (50,50) 1.00 1.02 0.84 1.02 1.03 0.98 1.14 1.06
2 200 (50,100) 0.88 1.20 0.98 0.94 1.21 0.99 0.99 1.20
2 400 (50,50) 1.14 1.02 0.87 1.14 1.06 0.91
2 400 (50,100) 0.98 1.04 1.00 0.85 1.02 0.94
2 400 (100,100) 1.10 0.91 1.07 0.90 1.11 0.86
2 400 (100,200) 0.93 0.97 0.78 0.87 1.04 0.89

3 12 (50,100,100) 1.01 1.22 0.83 1.00 1.05 0.92 1.00 0.86
3 12 (100,100,100) 0.86 1.26 1.09 1.12 0.96 0.84 1.08 0.87
3 25 (50,100,100) 1.03 1.16 1.15 1.06 1.00 0.94 0.94 1.02
3 25 (100,100,100) 1.09 1.02 0.93 0.99 1.12 1.06 0.99 0.87
3 50 (50,100,100) 0.98 1.05 1.11 1.06 0.99 1.06 0.92 0.99
3 50 (100,100,100) 1.13 1.22 1.18 1.20 1.05 1.02 1.10 0.63
3 100 (16,17,17) 1.13 1.21 1.11 1.08 1.04 0.98 0.97 0.96
3 100 (16,17,33) 1.12 1.05 1.14 1.23 1.11 0.91 0.96 0.90
3 200 (33,33,34) 1.15 1.02 1.10 0.90 0.98 0.95 1.22 0.90
3 200 (33,34,67) 0.97 1.04 0.98 1.03 0.98 0.92 1.06 1.06
3 200 (50,50,50) 1.19 0.83 1.11 0.95 0.98 0.98 1.19 0.97
3 200 (50,50,100) 0.84 1.10 1.03 1.09 1.06 1.18 1.19 1.07

4 12 (50,50,100,100) 0.98 1.02 1.10 1.07 1.05 1.05 0.94 0.89
4 12 (100,100,100,100) 0.89 0.95 1.02 1.13 1.06 1.01 1.16 1.07
4 25 (50,50,100,100) 1.05 1.02 0.97 0.99 1.16 0.95 1.00 0.97
4 25 (100,100,100,100) 1.15 1.00 1.09 1.10 1.15 0.93 1.01 0.90
4 50 (50,50,100,100) 0.98 0.97 1.11 1.10 1.00 1.12 0.95 0.87
4 50 (100,100,100,100) 1.04 1.08 0.85 0.94 1.17 0.85 0.97 0.91
4 100 (12,12,13,13) 0.91 1.16 1.02 1.36 1.07 0.96 1.21 1.20
4 100 (12,13,25,25) 0.85 1.15 0.91 1.08 1.10 1.01 1.07 1.09
4 200 (25,25,25,25) 1.12 1.01 1.00 1.08 1.20 1.02 1.12 1.03
4 200 (25,25,50,50) 1.07 0.82 1.21 0.90 1.02 1.04 1.16 0.85
4 200 (50,50,50,50) 0.89 0.77 1.00 0.99 1.00 0.92 0.85 0.83
4 200 (50,50,100,100) 1.05 1.06 1.03 1.07 0.98 1.03 0.89 0.95

6 100 (8,8,8,8,9,9) 0.96 1.08 1.09 1.22 1.02 0.91 1.01 1.18
6 100 (8,8,9,16,17,17) 1.11 0.97 1.15 0.97 0.89 0.98 1.02 1.04
6 200 (16,16,17,17,17,17) 0.98 1.05 1.02 1.33 1.20 1.09 1.04 0.93

To investigate performance in terms of power, we compare the power of the method

by Chi et al. (2012) with the methods proposed in this Chapter taking T2 = Pb and
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setting T1 to either Pa or Ja/a. To keep the comparison manageable, we fix a = 3 and

Σ = ρIb + (1− ρ)Jb where ρ = 0.2. In regards to sample sizes and dimension, we use

the combinations (b;n1, n2, n3) = (10; 5, 10, 10), (10; 50, 100, 100), (100; 5, 10, 10) and

(100; 50, 100, 100). For the alternative hypotheses, when T1 = Pa, we take µ2 = µ3 =

0 and consider two structures for µ1. The first one represents a dense alternative,

namely µ1i = (1 + δ) for i odd and µ1i = (1 − δ) for i even, and the other one

represents a sparse alternative, namely µ1 = (1 + δ,1>b−1)
>. In both cases δ is made

to vary from 0 to 1. When T1 = Ja/a, we take µ1 = 1b + µ2, µ2 = µ3 and consider

two structures of µ2 representing dense and sparse alternatives. For the first one,

we take µ2i = δ for i odd and µ2i = −δ for i even, and for the second one we take

µ2 = (0>b−1, δ)
>. Here also, δ varies from 0 to 1. The later structure for both values of

T1 represent departures that approach to the null hypotheses at the rate b1/2. More

precisely, the scaled departure from the null ||µ1 − 1b||/tr(Σ)1/2 are δ and |δ|/
√
b,

respectively. Figures 3.1 and 3.2 show power results for T1 = Pa and T1 = Ja/a,

respectively. For dense alternatives (left panels), our methods has a clear advantage

in all cases. More pronounced dominance is observed, in particular, when n is small.

Both methods perform comparably well for sparse alternatives (right panels) except

Chi et al. (2012) has an edge when b is large.
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Figure 3.1: Power comparison of the proposed methods and the test by Chi et al.
(2012) for T1 = Pa and T2 = Pb. Data is generated from Nb(µi,Σ), where Σ =
0.8Ib+0.2Jb. In the both panel of the plot, µ2 = µ3 = 0. In the left panel µ1i = (1+δ)
for i odd, µ1i = (1− δ) for i even and in the right panel µ1 = (1 + δ,1>b−1)
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Figure 3.2: Power comparison of the proposed methods and the test by Chi et al.
(2012) for T1 = Ja/a and T2 = Pb. Data is generated from Nb(µi,Σ), where Σ =
0.8Ib + 0.2Jb. In the both panel of the plot, µ1 = 1b + µ2 and µ2 = µ3. In the left
panel µ2i = δ for i odd and µ2i = −δ for i even and in the right panel µ2 = (0>b−1, δ)
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3.6 Real Data Analysis

In this section, we analyze a publicly available data obtained from the University

of California-Irvine Machine Learning Repository1. The data arose from a large

study to examine Electroencephalograph (EEG) correlates of genetic predisposition to

alcoholism. Measurements from 64 electrodes placed on subject’s scalps were recorded

256 times for 1 second. The study involved two groups of subjects: alcoholic (n1 = 77)

and control (n2 = 45). Each subject was exposed to either a single stimulus (S1) or

two stimuli (S1 and S2) which were pictures of objects chosen from a picture set. The

sixty-four electrodes (channels) are divided into groups based on their location on the

scalp (frontal, temporal, parietal and occipital lobes). To illustrate the application

of the methods concisely, we focus the analysis on data from the stimulus S1 and

the seventeen frontal-lobe channels. The outcome measurements are Event-Related

Potentials (ERP) indicating the level of electrical activity (in volts) in the region

of the brain where each of the electrodes is placed. This repeated measures data

has two within-subject factors (time and channels) and one between-subject factor

(alcohol use). The within-subject factors time and channel have 256 and 17 levels,

respectively.

The main research questions of interest are: (H01) whether the ERP profiles over

time differ between channels and groups (three-way interaction: alcohol × time ×

channel); (H02) whether ERP profiles are similar between the channels when averaged

over groups (similar time profiles for all the channels); (H03) if the time profiles of ERP

are similar between the two groups averaged over channels; (H04) whether the ERP

profiles are constant (flat) when averaged over channels and groups. For describing

the contrast matrices, we assume the data vectors from each subject are arranged

by grouping the 17 channels within each time point, i.e. the data vector from the

jth subject in the ith group is Xij = (Xij11, . . . , Xij1,17, . . . , Xij,256,1, . . . , Xij,256,17)
>.

In the notations of this Chapter, the four hypotheses of interest, viz. H0i for i =

1, 2, 3, 4, can be tested by using the contrast matrices T1 = P2 and T2 = P256 ⊗ P17;

1web address: https://archive.ics.uci.edu/ml/datasets/EEG+Database accessed on May 5, 2016.
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T1 = J2/2 and T2 = P256⊗P17; T1 = P2 and T2 = P256⊗J17/17; and T1 = J2/2 and

T2 = P256 ⊗ J17/17, respectively. The results of the analysis are presented in Table

3.7. Overall time-profile similarity across groups (averaged over channels) cannot be

rejected (p- value = 0.205). In fact, channel-by-channel similarity of time profiles of

ERP across groups cannot be rejected (p-value = 0.196). However, the flatness over

time is rejected overall for all channels as well as channel-by-channel.

Table 3.7: Analysis for EEG data in frontal channels (a = 2, b = 256 and d = 17).

Hypothesis T1 T2 T̂ p-value
H01 P2 P256 ⊗ P17 0.535 0.196
H02 J2/2 P256 ⊗ P17 26.252 0
H03 P2 P256 ⊗ J17/17 0.489 0.205
H04 J2/2 P256 ⊗ J17/17 42.430 0

As a way of ascertaining the reproducibility and reliability of the results in Table

3.7, we conducted a simulation study using parameters similar to that of the EEG

data. For table 3.8, we generate 1000 replications of data from Nb(0,Σi). We look

at values of b = 256, d = 17, a = 2 and n1 = 77 n2 = 45 and take α = 0.05.

Table 3.8 present actual Type I error rates (test sizes) for the covariance structures

Σ1 = ρIb + (1 − ρ)Jb, for ρ = 0.2 and random matrices Σi for i = 2, 3, 4 defined

as follows. Let Σi = Q>i ΛiQi, where Λi is a diagonal matrix with diagonal entries

taken from Unif(0, 1) and Qi is orthogonal matrix. Indeed, Qi can be defined from

the QR decomposition of a random matrix Zi = (Zi,jj′) where Zi,jj′ are iid random

variables. Here, we consider three distributions for Zi,jj′ , namely Z2,jj′ = 1{j=j′} with

probability 1, Z3,jj′ ∼ Exp(1) and Z4,jj′ ∼ N (0, 1).

Table 3.8: Achieved Type I error rates (×100%) for the testing procedures with
parameters similar to EEG data, i.e. a = 2, b = 256, d = 17, n1 = 77, n2 = 45.

T1 T2 Σ1 Σ2 Σ3 Σ4

P2 P256 ⊗ P17 5.0 5.9 4.5 5.8
J2/2 P256 ⊗ P17 4.5 4.0 5.4 5.8
P2 P256 ⊗ J17/17 4.6 4.6 5.4 5.4
J2/2 P256 ⊗ J17/17 5.6 4.8 5.2 4.6
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It is clear from Table 3.8 that the achieved Type I error rates are satisfactorily

close to 5% regardless of the covariance matrix assumed.

3.7 Discussion and Conclusion

This Chapter derives approximations for the null distributions and quantiles of some

test statistics in repeated measures. The approximations ensure the errors to be

of order O(b−3/2) where b is the dimension, i.e. the number of repeated measures.

Factorial designs are treated in a unified manner where multiple between- and within-

subjects factors which may be crossed or nested are allowed. General covariance

structure is allowed where no pre-determined sequence is assumed among the repeated

measurements. Therefore, the repeated measurements could be over time or under

different treatment conditions.

The asymptotic results require some regularity condition on the covariance matrix.

Such assumption appears to be inevitable as long as one prefers to consider unstruc-

tured covariance matrix. Our observation from the simulation is that this assumption

does not appear to restrict the utility of the results for application in more general

situations. Nevertheless, we made somewhat milder requirements compared to simi-

lar works (see, for example, Bai and Saranadasa, 1996; Takahashi and Shutoh, 2016).

Indeed, one may conjecture to drop these assumptions. This Chapter also assumes

proportional divergence of the sample size and dimension, i.e. n/b → γ0 ∈ (0,∞),

but otherwise either one can be larger than the other. We should point out that this

assumption can be relaxed to cover other cases, namely n = O(bε) for ε > 1 or ε < 1.

However, the expanded cumulative distribution function may have terms with order

different from b−j/2 for j = 1, 2, . . . in which case the standard Cornish-Fisher formula

for the quantile will not apply. Non standard expansions will need to be derived for

the quantiles. Regardless, our impression from the simulation is that the effect of

these terms may be insignificant. In the interest of avoiding complications we did not

pursue these cases further.

The development of this Chapter is under normality. We recommend testing the

validly of this assumption before applying the methods. Transformation that im-
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prove normality could also be attempted in the event non-normality is detected or

suspected. In the proofs, multivariate normality of the repeated measures is mostly

needed for its nice property of independence up to correlation and independence of

some linear and quadratic forms. Limiting distribution results under statistical mod-

els that include independence up to correlation assumption have been derived in Bai

and Saranadasa (1996) and Chen and Qin (2010) for two-sample and Srivastava and

Kubokawa (2013) for multiple-sample comparison of mean vectors. In the interest of

space, we opted to relegate the investigation of these models for limiting distribution

as well as asymptotic expansion to a follow-up manuscript.

3.8 Appendix: Proofs

Lemma 3.8.1. If the null hypothesis H0 holds, then under the high-dimensional

asymptotic frameworks B1 and B2, the characteristic function of T can be expanded

as

φT (t) = e
1
2
ı2t2
{

1 +
1√
b
ı3t3η3 +

1

b
(ı4t4η4 + ı6t6η23/2) + O(b−3/2)

}
.

Proof of Lemma 3.8.1. Let Z = Σ̃−1/2(X − µ). Then

T =
{tr(T1D)}−1Z>Σ̃1/2KΣ̃1/2Z − c1√

2δ2c2
.

The characteristic function of T is

φT (t) = exp
(
− ıtc1√

2δ2c2

)
E
[

exp
{ ıt√

2δ2c2
{tr(T1D)}−1Z>Σ̃1/2KΣ̃1/2Z

}]
= exp

(
− ıtc1√

2δ2c2

) ∫
Z

(2π)−ab/2 exp
{
− 1

2
Z>MZ

}
dZ

= exp
(
− ıtc1√

2δ2c2

)
|M |−1/2,

where M = I − 2ıt√
2δ2c2
{tr(T1D)}−1Σ̃1/2KΣ̃1/2 and |M | is the determinant of M .

Let αi’s be the eigenvalues of T1D, βj’s be the eigenvalues of Σ1/2T2Σ
1/2, then

|M | =
a∏
i=1

b∏
j=1

(
1− 2ıt√

2δ2c2
{tr(T1D)}−1αiβj

)
.
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Thus by Taylor’s series expansion, we have

log |M |−1/2 =− 1

2

a∑
i=1

b∑
j=1

log

(
1− 2ıt√

2δ2c2
{tr(T1D)}−1αiβj

)

=
∞∑
k=1

2k/2−1

k
(ıt)k

δkck

δ
k/2
2 c

k/2
2

=
ıtc1√
2δ2c2

+
1

2
ı2t2 +

1√
b
ı3t3η3 +

1

b
ı4t4η4 + O(b−3/2).

So the characteristic function of T can be expanded as

φT (t) = eϕT (t) = e
1
2
ı2t2
{

1 +
1√
b
ı3t3η3 +

1

b
(ı4t4η4 + ı6t6η23/2) + O(b−3/2)

}
.

Proof of Theorem 3.3.2. Denote H∗ = {tr(T1D)}−1H. Note that

ĉ2
c2

= 1 +
1

b
W and

ĉ1 − c1√
2δ2c2

=
V√
b
.

By Taylors’ expansion, we have(
ĉ2
c2

)−1/2
= 1− 1

2b
W + Op(b

−2).

Then

T̂ =
H∗ − ĉ1√

2δ2ĉ2
=

(H∗ − c1)− (ĉ1 − c1)√
2δ2c2

√
ĉ2/c2

=
(H∗ − c1)− (ĉ1 − c1)√

2δ2c2

{
1− 1

2b
W + Op(b

−2)

}
=T − V√

b
− TW

2b
+ Op(b

−3/2),

where T =
(H∗ − c1)√

2δ2c2
. So the characteristic function of T̂ is

φT̂ (t) =E[eıtT̂ ] = E

[
eıtT · e

ıt

(
− V√

b
√

2δ2c2
−TW

2b
+Op(b−3/2)

)]

=E

[
eıtT ·

{
1− ıtV√

b
− ıtTW

2b
+
ı2t2V 2

b
+ Op(b

−3/2)

}]
=E[eıtT ] +

ı2t2

2b
E[eıtT ]E[V 2] + O(b−3/2),
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since T is independent of with both (V,W ) and E[V ] = E[W ] = 0.

Finally, using Lemma 3.8.1 and the fact that

E[V 2] =
b

2δ2c2
Var(ĉ1) =

b

nδ2
=
γ

δ2

(by the Proof of Theorem 3.3.1), we have the desired result.

Proof of Theorem 3.3.1 and Theorem 3.3.5. We know that nS ∼ Wb(Σ, n),

whereWb(Σ, n) stands for b-dimensional Wishart distribution with degrees of freedom

n and scale matrix Σ. Denote ak = tr(T2S)k for k = 1, . . . , 8 and define

bT2Σ = (ck1, c
k−2
1 c2, . . . , ck)

> and bT2S = (ak1, a
k−2
1 a2, . . . , ak)

>

to be the vector of traces of the kth order moments. That means, for each partition

of k, for example k = ν1 + · · · νq, where ν1 ≤ · · · ≤ νq and q ≤ k, we include cν1 . . . cνq

and aν1 . . . aνq to the vectors bT2Σ and bT2S, respectively, at same position. It is known

(Fujikoshi, 1973) that E(bT2S) = FkbT2Σ, where the matrices Fk have been calculated

by Fujikoshi (1973) up to k = 6 and by Watamori (1990) for k = 7, 8. Using these it

can be shown that

E[ĉk] = ck, for k = 1, 2, 3, 4.

Further, under the high-dimensional asymptotic frameworks B1 and B2 and after

lengthy algebra, it can be seen that

Var
( ĉ1√

c2

)
=

2

n
= O(n−1),

Var
( ĉ2
c2

)
=

4

n(n− 1)(n+ 2)c22

[
nc22 + (2n2 + 3n− 6)c4

]
= O(n−2),

Var
(√bĉ3
c
3/2
2

)
=

6b

nm1c32

[
n2c32 + 3n(n− 1)(n+ 4)c23 + 3n(n2 + 3n− 12)c2c4+

(3n4 + 15n3 − 20n2 − 120n+ 160)c6

]
= O(n−2) and

Var
(bĉ4
c22

)
=

8b2

nm2c42

[
f1c

4
2 + f2c2c

2
3 + f3c

2
2c4 + f4c

2
4 + f5c3c5 + f6c2c6 + f7c8

]
=O(n−2),
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where

f1 = n2(n2 + n+ 2), f2 = 8n2(n+ 1)(n− 3)(n+ 6),

f3 = 2n2(2n3 + 11n2 − 47n+ 54),

f4 = n(6n5 + 40n4 − 85n3 − 631n2 + 726n+ 1224),

f5 = 8n(n+ 1)(n− 3)(n+ 6)(n2 + 4n− 16),

f6 = 4n(n5 + 10n4 − 11n3 − 220n2 + 276n+ 480) and

f7 = 2(2n7 + 23n6 + 38n5 − 423n4 − 992n3 + 4066n2 − 420n− 5040).

See also Srivastava (2005) and Hyodo et al. (2014).

Proof of Theorem 3.4.1. Using similar techniques as in the proof of Lemma 3.8.1,

T1 =
H − tr(T1D)c1 − µ>Kµ√
2tr(T1D)2c2 + 4µ>KΣ̃Kµ

=
{tr(T1D)}−1(Z>Σ̃1/2KΣ̃1/2Z + 2µ>KΣ̃1/2Z)− c1√

2δ2c2 + 4{tr(T1D)}−2µ>KΣ̃Kµ
.

Denote σ2
1 = 2δ2c2 + 4{tr(T1D)}−2µ>KΣ̃Kµ. The characteristic function of T1 is

φT1(t) = exp
(
− ıtc1

σ1

)
E
[

exp
{ ıt
σ1
{tr(T1D)}−1(Z>Σ̃1/2KΣ̃1/2Z + 2µ>KΣ̃1/2Z)

}]
= exp

(
− ıtc1

σ1

)
|M1|−1/2 exp

{2ı2t2

σ2
1

{tr(T1D)}−2µ>KΣ̃1/2M−2
1 Σ̃1/2Kµ

}
,

where M1 = I − 2ıt
σ1
{tr(T1D)}−1Σ̃1/2KΣ̃1/2. Further,

log |M1|−1/2 = −1

2

a∑
i=1

b∑
j=1

log

(
1− 2ıt

σ1
{tr(T1D)}−1αiβj

)
=
ıtc1
σ1

+
ı2t2δ2c2
σ2
1

+ o(1).

Under assumption B1, B2, B3 or B4, We can prove that:

1

σ2
1

{tr(T1D)}−2µ′KΣ̃1/2M−2
1 Σ̃1/2Kµ

}
= o(1),

Since

M−1
1 = I +

2ıt

σ1
{tr(T1D)}−1Σ̃1/2KΣ̃1/2 +

4ı2t2

σ2
1

{tr(T1D)}−2Σ̃1/2KΣ̃KΣ̃1/2 + · · · ,
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M−2
1 = I +

4ıt

σ1
{tr(T1D)}−1Σ̃1/2KΣ̃1/2 +

12ı2t2

σ2
1

{tr(T1D)}−2Σ̃1/2KΣ̃KΣ̃1/2 + · · · .

Now, under either B3 or B4, we have

1

σ3
1

{tr(T1D)}−3µ>KΣ̃KΣ̃Kµ ≤
√
δ2c2
σ3
1

{tr(T1D)}−2µ>KΣ̃Kµ = o(1),

and

1

σ4
1

{tr(T1D)}−4µ>KΣ̃KΣ̃KΣ̃Kµ ≤ δ2c2
σ4
1

{tr(T1D)}−2µ>KΣ̃Kµ = o(1).

Therefore,

exp
{2ı2t2

σ2
1

{tr(T1D)}−2µ>KΣ̃1/2M−2
1 Σ̃1/2Kµ

}
= exp

{2ı2t2

σ2
1

{tr(T1D)}−2µ>KΣ̃Kµ
}

+ o(1) = 1,

and the characteristic function of T1 is φT1(t) = exp( ı
2t2

2
) + o(1).
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Chapter 4 High-Dimensional Inference Under Non-normality

4.1 Introduction

In recent years, there is an increasing demand for effectively analyzing of high-

dimensional data. In the bid to cope with this rising demand, comparison of high-

dimensional mean vectors has received a renewed attention in the last two decades.

High-dimensional means both the sample size and dimension are large but one could

be much larger than the other without any restriction. Early theoretical attempts for

analyzing high-dimensional data in the context of the sample size being larger than

the dimension date back to the late fifties (Dempster, 1958, 1960).

For the sake of simplicity, we introduce the problem in the simplest case of com-

paring two mean vectors and extensions to more general cases will be outlined later.

Consider two mutually independent random samples Xi1, . . . ,Xini ∈ Rp for i = 1, 2,

which have means µ1 = (µ11, . . . , µ1p)
> and µ2 = (µ21, . . . , µ2p)

> and positive definite

covariance matrices Σ1 and Σ2, respectively. Other than existence of the first two

moments, no parametric structure is assumed among or within the mean vectors nor

the covariances of the populations. Define the sample summary statistics as

X i =
1

ni

ni∑
i=1

Xij and Si =
1

ni − 1

ni∑
j=1

(X ij −X i)(X ij −X i)
>

for i = 1, 2.

Consider testing the following high dimensional hypotheses:

H0 : µ1 = µ2, VS H1 : µ1 6= µ2. (4.1)

Bai and Saranadasa (1996) proposed high-dimensional test for (4.1) assuming Σ1 =

Σ2. More recently, Chen and Qin (2010) proposed and studied the test statistic

TCQ(X) = (X1 −X2)
>(X1 −X2)− n−11 tr(S1)− n−12 tr(S2)

=

∑n1

i 6=jX
>
1iX1j

n1(n1 − 1)
+

∑n2

i 6=jX
>
2iX2j

n2(n2 − 1)
−

2
∑n1

i=1

∑n2

j=1X
>
1iX2j

n1n2

,
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(see also Hu et al. (2017) for multi-group test) weakening the equality as well as

other regularity assumptions on the covariance matrices. The first two moments of

the statistics TCQ are

E{TCQ(X)} = (µ1 − µ2)
>(µ1 − µ2) and Var{TCQ(X)} = σ2

n + σ2
n2,

where

σ2
n =

2

n1(n1 − 1)
tr(Σ2

1) +
2

n2(n2 − 1)
tr(Σ2

2) +
4

n1n2

tr(Σ1Σ2) and

σ2
n2 = 4n−11 (µ1 − µ2)

>Σ1(µ1 − µ2) + 4n−12 (µ2 − µ1)
>Σ2(µ2 − µ1).

Many papers (one, two or multiple groups) have investigated this test or its mod-

ified version (e.g., Chen et al., 2010; Wang et al., 2015; Ghosh and Biswas, 2016; Hu

et al., 2017; Zhou et al., 2017). There are also other mean-based tests that assume

weak dependence (e.g. Srivastava and Kubokawa, 2013; Cai et al., 2014; Cai and Xia,

2014; Feng et al., 2015; Gregory et al., 2015).

Chen and Qin (2010) (also, Bai and Saranadasa, 1996; Hu et al., 2017) required

the following conditions.

C1: For i = 1 or 2, assume Xij = ΓiZij +µi, for j = 1, . . . , ni, where Γi is a p×m

matrix for some m ≥ p such that ΓiΓ
>
i = Σi and Zij are m-variate identically

and independently distributed random vectors.

C2: The components of Zij = (Zij1, . . . , Zijp)
> satisfy E(Zij) = 0, Var(Zij) = Im,

and E[Z4
ijk] = 3 +4i <∞ and

E(Zα1
ijl1
· · · , Zαq

ijlq
) = E(Zα1

ijl1
) · · ·E(Z

αq
ijlq

)

for a positive integers q such that 1 ≤ l1 < l2 < · · · < lq ≤ p and
∑q

i=1 αi ≤ 8.

C3: The sample sizes diverge proportionally, i.e. n1/n → κ ∈ (0, 1), where n =

n1 + n2.

C4: The covariance matrices satisfy the regularity condition

tr(Σi1Σi2Σi3Σi4) = o
[
tr2{(Σ1 + Σ2)

2}
]

for i1, i2, i3, i4 ∈ {1, 2}.
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C5: The mean vectors µ1 and µ2 satisfy (µ1−µ2)
>Σi(µ1−µ2) = o [tr(Σ1 + Σ2)

2].

Whereas there is essentially no restriction imposed by conditions C1, condition C3

is mild and reasonable. The local alternative condition C5 is automatically satisfied

under the null hypothesis. There is, however, redundancy in condition C4. Indeed,

we only need

tr(Σ4
i ) = o

[
tr2{(Σ1 + Σ2)

2}
]
, for i = 1, 2,

while others can be derived using that. For example, from the result in Yang et al.

(2001), it follows that

tr(Σ2
1Σ

2
2) ≤ {tr(Σ4

1)tr(Σ
4
2)}1/2 = o[tr2{(Σ1 + Σ2)

2}],

tr{(Σ1Σ2)
2} ≤ {tr(Σ4

1)tr(Σ
4
2)}1/2 = o[tr2{(Σ1 + Σ2)

2}],

and that

tr(Σ1Σ
3
2) ≤

[
tr{(Σ1/2

2 Σ1Σ
1/2
2 )2}tr(Σ4

2)}
]1/2

=
[
tr{(Σ1Σ2)

2}tr(Σ4
2)
]1/2

= o[tr2{(Σ1 + Σ2)
2}].

Condition C2 requires existence and factoring of mixed moments up to the eighth

order. This requirement is unnecessarily strong. Indeed, this condition is close to the

assumption of normality. For example, it does exclude spherically-contoured mod-

els for Zij. Spherically-contoured distribution is a popular semi-parametric model

that covers the multivariate normal as a special case (Fang and Zhang, 1990). It

also covers models that are lighter and heaver tailed than the normal distribution.

Examples include the multivariate t, multivariate Laplace and multivariate Logistic

distributions, to mention a few. When Zij is spherically distributed, it can be shown,

for example, that
E(Z2

ijkZ
2
ijl)

E(Z2
ijk)E(Z2

ijl)
=

cp2

p(p+ 2)

for k < l provided the expectations exist (see Fang and Zhang, 1990; Anderson,

2003) where c depends on the specific spherical distribution. For example, c = p(p+

1)/p2 for multivariate normal distribution and factoring the expectation E(Z2
ijkZ

2
ijl) =
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E(Z2
ijk)E(Z2

ijl) happens only for this value of c. It should also be noted that the lack

of factoring can occur also for mixed moments of order six and eight.

The two-sample results of Chen and Qin (2010) were recently extended to the

one-way MANOVA layout in Hu et al. (2017). The assumptions are essentially the

same as C1–C5 except that the indices i, i1, i2, i3, i4 run from 1 to a where a is the

number of samples. The test statistic considered is a formal extensions of TCQ given

by

THBWW(X) =
a∑
i<k

(X i −Xk)
>(X i −Xk)− (a− 1)

a∑
i=1

n−1i tr (Si)

= tr

(
aX

>
PaX − (a− 1)

a∑
i=1

n−1i Si

)
(4.2)

where X = (X1, . . . ,Xa)
> and Pa = Ia − a−11a1>a . The later form hints a formal

extension of the statistic for a general factorial design where the appropriate projec-

tion matrix that target the hypothesis of interest should be used in place of Pa. To

see why this may work in the general case, denote

H = X
>
PaX =

a∑
i=1

(X i − X̃)(X i − X̃)> and G = (a− 1)
a∑
i=1

n−1i Si

where X̃ = a−1
∑a

i=1X i. Here, H may be viewed as the between sum of squares

and crossproducts matrix in MANOVA but using unweighted average for the overall

mean (Harrar and Bathke, 2008). Similarly, G can be viewed as the within sum of

squares and crossproducts matrix. It is easy to verify that

E(H)− E(G) = 0 if and only if µ1 = . . . = µa.

Therefore THBWW(X) defines a reasonable test statistic.

The aim of this Chapter is to broaden the scope of applicability of pertinent high-

dimensional tests for mean vectors by replacing stringent assumptions with realistic

ones. This allows, for example, application of the theory for rank-based methods

(Kong and Harrar, 2018b, as given in Chapter 5), where the assumption of existence

of higher order moments are not needed. To that end, this Chapter is organized as

follows. Some preliminary results on the order of quadratic form of high dimensional
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random vectors are presented in Section 4.2. This section also states general regularity

conditions on the dependence among the multiple variables and points out some

realistic scenarios that lead to the assumed dependence models. Section 4.3 deals

with asymptotic distributions of the test statistics under the null as well as local

alternatives. Also considered in Section 4.3 are various consistent estimators of the

asymptotic variance. Section 4.4 provides some details on the multi-group extension.

The numerical accuracy of the results are investigated in Section 4.5 with simulation

studies that mimic realistic data generation mechanisms. The methods are applied to

an Electroencephalograph (EEG) dataset in Section 4.6. Discussions and concluding

remarks will be the provided in Section 4.7. All proofs and technical details are placed

in the Appendix.

4.2 Model for Dependence

In this section, we present model on the dependence of the multivariate data that

improves condition C2 in two important ways. First, the assumption of factoring

of mixed moments up to the eighth order are removed and only the fourth order

mixed moments are regulated without factoring requirement. Our condition is sig-

nificantly milder than C2 in that it is satisfied by popular multivariate distributions

(Elliptically-Contoured) and fairly weak but realistic model for dependence such as

α-mixing (strong-mixing). Another significant improvement pertains to making the

regularity condition on the original variables rather than on the normalized versions

(Zij). The significance of this improvement is that the model in C1 is not quite

natural for common type of dependence conditions (e.g., mixing condition) or they

are not convenient for rank-based applications (Kong and Harrar, 2018b) because

original observations are ranked rather than their normalized versions. To facilitate

ease of presentation, in this section we drop the subscripts (i and j) that identify the

sample and the subject to which the vectors belong.

C6: Suppose Z = (Z1, . . . , Zp)
> be a centered p-variate random vector. Let {ϕk}∞k=1

be a non-increasing sequence of nonnegative number, such that, for all k1 < k2 <
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k3 < k4,

|Cov(Zk1 , Zk2Zk3Zk4)| ≤ ϕk2−k1 , |Cov(Zk1Zk2Zk3 , Zk4)| ≤ ϕk4−k3 ,

|Cov(Zk1Zk2 , Zk3Zk4)| ≤ ϕk3−k2 , and |Cov(Zk1 , Zk2)| ≤ ϕk2−k1 .
(4.3)

Also, let {φk}∞k=1 be a sequence of nonnegative number, such that, for all k1 < k2

Cov(Z2
k1
, Z2

k2
) ≤ φk2−k1 . (4.4)

C7: Assume Φ0,Φ1 and Φ2 are bounded where

Φ0 = sup
k
{E[Z4

k ]}, Φ1 =
∞∑
k=1

kϕk, and Φ2 =
∞∑
k=1

φk.

For simplicity, we can further assume that E(Z2
i ) ≤ 1, as this can always be

achieved by rescaling the variables. These assumptions deal with covariances of Zi’s

products up to the fourth order only and are closely related to the classical fourth-

order cumulant condition for a stationary time series (see Theorem V.4 in Hannan

(1970) and Assumption A in Andrews (1991)). Clearly, condition C2 implies con-

dition C6 and C7, with ϕk = φk = 0 for k = 1, 2, . . .. We give two examples in

the remarks below to illustrate that conditions C6 and C7 taken together are much

milder than condition C2.

Remark 1. Suppose Z has spherical distribution with finite fourth moment (see, for

example Fang and Zhang, 1990). Conditions C6 and C7 hold automatically by the

symmetry of the distribution with ϕk = 0 and proper φk since

Cov(Z2
k1
, Z2

k2
) = O(p−2).

Remark 2. Suppose the component random variables in Z with zero mean, and

bounded moments of order 4δ for some δ > 1, constitute an α-mixing sequence with

mixing coefficients {αk, k = 1, 2, . . .}, as p tends to infinity, that means,

sup
A∈Al,B∈Bl,k∈Z+

|P (A ∩B)− P (A)P (B)| ≤ αk as k →∞,

where

Al = σ{Z1, . . . , Zl}, Bl,k = σ{Zl+k, Zl+k+1, . . .}
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and σ(·) denotes the σ-field generated by the random variables. This model for de-

pendence is particularly attractive for repeated measures data. In this case, α-mixing

condition basically requires the dependence between observations from the same subject

to decay as the separation between the observations increases. With the coefficients αk

(nonincreasing) condition C6 holds for ϕk = φk = Dα
(δ−1)/δ
k and large enough D > 0

(see, for example, Corollary A.2 in Hall and Heyde, 1980; Yaskov, 2015). Condition

C7 is satisfied for some αk, for example αk = O(k−5) when δ > 5/4.

Conditions C6 and C7 afford us an inequality on the variance of quadratic forms

which was established in Yaskov (2015).

Theorem 4.2.1. (Theorem 2.2 of Yaskov, 2015) Under condition C6, there is a

universal constant C > 0 such that for all p× p matrices A,

Var(Z>AZ) ≤ C(Φ0 + Φ1 + Φ2)tr(AA
>).

When the component random variables in Z are uncorrelated, it can easily be

verified that condition (4.3) in C6 can be reduced to

|E[Zk1Zk2Zk3Zk4 ]| ≤ min{ϕk2−k1 , ϕk3−k2 , ϕk4−k3}, k1 < k2 < k3 < k4. (4.5)

A version of the inequality in Theorem 4.2.1, which is convenient in light of condition

C1 together with condition C6 is as follows.

Corollary 4.2.2. Let Z be centered orthonormal random variables satisfy condition

C6. There is a universal constant C > 0 such that for all p× p matrices A,

Var(Z>Γ>AΓZ) ≤ C(Φ0 + Φ1 + Φ2)tr(ΣAΣA>), for i = 1, 2,

where Σ = ΓΓ>.
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4.3 Main Results

4.3.1 Asymptotic Results

For the two-sample testing problem, it was proved in Chen and Qin (2010) that under

conditions C1–C5,

TCQ(X)− ||µ1 − µ2||2

σn

D−→ N (0, 1), as p, n→∞. (4.6)

In order to formulate a test procedure based on (4.6), σ2
n needs to be consistently

estimated. A few unbiased and ratio-consistent estimators of tr(Σ2
i ) and tr(Σ1Σ2),

and hence of σ2
n are available in the literature (Bai and Saranadasa, 1996; Chen

and Qin, 2010; Chen et al., 2010; Li and Chen, 2012). While the estimator of Bai

and Saranadasa (1996) is designed for Σ1 = Σ2 case, it has the advantage that it

is uniformly minimum variance unbiased under normality and is easy to compute.

The other estimators (Chen and Qin, 2010; Li and Chen, 2012) are asymptotically

equivalent and designed for the unequal covariance case.

The estimators of Chen and Qin (2010) are

t̃r(Σ2
i ) =

1

ni(ni − 1)
tr
{ ni∑

k 6=l

(Xik −X i(k,l))X
>
ik(Xil −X i(k,l))X

>
il

}
(4.7)

and

˜tr(Σ1Σ2) =
1

n1n2

tr
{ n1∑
k=1

n2∑
l=1

(X1k −X1(k))X
>
1k(X2l −X2(l))X

>
2l

}
(4.8)

where X i(k,l) is the ith sample mean after excluding Xik and Xil and X i(k) is the ith

sample mean after excluding Xik. Under conditions C1–C5,

t̃r(Σ2
i )

tr(Σ2
i )

P−→ 1 and
˜tr(Σ1Σ2)

tr(Σ1Σ2)

P−→ 1, as n, p→∞. (4.9)

Therefore, a ratio-consistent estimator of σ2
n under H0 is

σ̂2
n =

2

n1(n1 − 1)
t̃r(Σ2

1) +
2

n2(n2 − 1)
t̃r(Σ2

2) +
4

n1n2

˜tr(Σ1Σ2).

The estimators in Li and Chen (2012) (see also, Chen et al., 2010, for a = 1)

also satisfy (4.9) under C1–C5. These estimators can be conveniently expressed as
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U -statistics:

t̂r(Σ2
i ) =

1

(ni)4

ni∑
k1 6=k2 6=l1 6=l2

tr
{

(Xik1 −Xik2)(Xik1 −Xik2)
>

(Xil1 −Xil2)(Xil1 −Xil2)
>
}
, (4.10)

and

̂tr(Σ1Σ2) =
1

(n1)2(n2)2

n1∑
k1 6=k2

n2∑
l1 6=l2

tr
{

(X1k1 −X1k2)(X1k1 −X1k2)
>

(X2l1 −X2l2)(X2l1 −X2l2)
>
}
, (4.11)

where (ni)k = ni!/(ni − k)!.

In the following theorems, we establish that (4.6) and (4.9) hold when assumption

C2 is replaced by the weaker assumptions C6 and C7.

Theorem 4.3.1. Under conditions C1, C3– C7, the asymptotic normality result

(4.6) holds.

Theorem 4.3.2. Under the conditions C1, C3–C7, the consistency result (4.9) holds

for the estimators defined from (4.7) and (4.8) or for (4.10) and (4.11).

4.3.2 Computational Formulae for the Ratio Consistent Estimators

For ease of proving Theorem 4.3.2, we can rewrite t̂r(Σ2
i ) and ̂tr(Σ1Σ2) as follows:

t̂r(Σ2
i ) =

1

(ni)2

∑
k1 6=k2

(X>ik1Xik2)
2 − 2

(ni)3

∑
k1 6=k2 6=k3

(X>ik1Xik2)(X
>
ik1
Xik3)

+
1

(ni)4

∑
k1 6=k2 6=k3 6=k4

(X>ik1Xik2)(X
>
ik3
Xik4).

̂tr(Σ1Σ2) =
1

n1n2

n1∑
k1=1

n2∑
k2=1

(X>1k1X2k2)
2 − 1

(n1)(n2)2

n1∑
k1=1

n2∑
k2 6=k3

(X>1k1X2k2)(X
>
1k1
X2k3)

− 1

(n1)2(n2)

n2∑
k1 6=k2

n1∑
k3=1

(X>2k3X1k1)(X
>
2k3
X1k2)

+
1

(n1)2(n2)2

n1∑
k1 6=k2

n2∑
k3 6=k4

(X>1k1X2k3)(X
>
1k2
X2k4).
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These forms of the estimators have also been used in elsewhere (Chen et al., 2010; Li

and Chen, 2012; Zhang et al., 2018, etc. . . ). From Hu et al. (2017) and Zhang et al.

(2018), the estimators can be further rewritten as

t̂r(Σ2
i ) =

(ni − 1)2
(ni)4

|||Θi|||22 −
2(ni − 1)

(ni)4
|||Θi|||21,2 +

1

(ni)4
|||Θi|||21 (4.12)

and

̂tr(Σ1Σ2) = tr(S1S2),

where Θi = X>i Xi − diag(X>i Xi), and Xi = (Xi1, . . . ,Xini) be a p × n1 matrix.

For any matrix A = (aij)m×n, we denote

|||A|||q =
{ m∑

i=1

n∑
j=1

(aij)
q
}1/q

and

|||A|||p,q =
[ m∑
i=1

{ n∑
j=1

(aij)
q
}q/p]1/q

.

Note that if all aij ≥ 0 or for even number q, these are entrywise norm and Lp,q norm

of A.

Another expression of the estimator (4.10) of tr(Σ2
i ) was given in Himeno and

Yamada (2014) as,

t̂r(Σ2
i ) =

n1 − 1

n1(ni − 2)(ni − 3)
{(ni − 1)(ni − 2)tr(S2

i ) + tr2(S)− niQ},

where Q = (ni − 1)−1
∑ni

i=1 ||Xij −X i||4.

Using the same method, we also give the simple form of estimators (4.7-4.8) in

Chen and Qin (2010), which can be rewritten as:

t̃r(Σ2
i ) =

1

(ni)2

∑
k1 6=k2

(X>ik1Xik2)
2 − 2ni − 5

(ni)(ni − 1)(ni − 2)2

∑
k1 6=k2 6=k3

(X>ik1Xik2)(X
>
ik1
Xik3)

+
1

(ni)(ni − 1)(ni − 2)2

∑
k1 6=k2 6=k3 6=k4

(X>ik1Xik2)(X
>
ik3
Xik4)
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and

˜tr(Σ1Σ2) =
1

n1n2

n1∑
k1=1

n2∑
k2=1

(X>1k1X2k2)
2 − 1

(n1)(n2)2

n1∑
k1=1

n2∑
k2 6=k3

(X>1k1X2k2)(X
>
1k1
X2k3)

− 1

(n1)2(n2)

n2∑
k1 6=k2

n1∑
k3=1

(X>2k3X1k1)(X
>
2k3
X1k2)

+
1

(n1)2(n2)2

n1∑
k1 6=k2

n2∑
k3 6=k4

(X>1k1X2k3)(X
>
1k2
X2k4).

After much simplification and rearrangement, these estimators have simplified forms:

t̃r(Σ2
i ) =

(ni − 1)

ni(ni − 2)2
|||Θi|||22−

2ni − 1

(ni)3(ni − 2)
|||Θi|||21,2 +

1

(ni)3(ni − 2)
|||Θi|||21. (4.13)

and

˜tr(Σ1Σ2) = tr(S1S2),

respectively. Examining (4.12) and (4.13), it is easy to see that the simulation com-

putation will be substantially improved by using the rewritten form for both the

estimators of Chen and Qin (2010) and Li and Chen (2012). The calculations for the

original forms cost O(n4
i ), but for the simplified forms cost only O(ni). Comparing

(4.12) and (4.13), the simplified forms of the two estimators of tr(Σ2
i ) share the same

leading order term which was also noted by Li and Chen (2012), and the estimators

of tr(Σ1Σ2) are the the same.

4.3.3 Other Conditions

4.3.3.1 Assumptions on Original Observations

In Theorem 4.3.1 and Theorem 4.3.2, the dependence conditions C6 and C7 are

assumed on Zij, which is defined in condition C1. For some type of dependence (such

as α-mixing) or for some applications (Kong and Harrar, 2018b), making assumptions

on Zij may not be realistic. For these situations we require two new conditions.

C8: The covariance matrix Σi, i = 1, 2, satisfies tr{(Σ1 + Σ2)
2)} → ∞ as p→∞.

C9: p/n→ η ∈ (0,∞) as n, p→∞.
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Condition C8 is rather mild. We know that tr(Σ2) =
∑n

i=1 λ
2
i where λ1, . . . , λp are

the eigenvalues of Σ. Then, condition C8 holds, if infinite number of the eigenvalues

remain bounded away from zero as p→∞. If condition C8 holds, it is easy to verify

that

n2σ2
n ≥ tr(Σ2

1) + tr(Σ2
2) + tr(Σ1Σ2) = tr{(Σ1 + Σ2)

2)} → ∞.

Condition C9, which stipulates the same rate of growth for n and b, is not new (e.g.,

Bai and Saranadasa, 1996).

The following theorems state asymptotic results for TCQ(X) by using conditions

C8 and C9 instead of C1. More precisely, the dependence is assumed only on the

centered original variables, i.e. we assume conditions C6–C7 on Zij where Xij =

Zij + µi.

Theorem 4.3.3. Under conditions C3–C9, the asymptotic normality result (4.6)

holds.

Theorem 4.3.4. Under conditions C3–C9, the consistency result (4.9) holds for the

estimators defined from (4.7) and (4.8) or (4.10) and (4.11).

Note that Theorems 4.3.3 and 4.3.4 can be directly applied by assuming the

sequences {Xij1, Xij2, . . .} to be α-mixing sequences for all i and j with some depen-

dence coefficients αk such that conditions C6 and C7 are satisfied.

4.3.3.2 Assumptions on Quadratic Forms

Throughout the proofs of Theorem 4.3.1 and Theorem 4.3.2, we note that Corollary

4.2.2 plays a crucial rule. Apparently, condition C10 is sufficient to prove Theorem

4.3.1 and Theorem 4.3.2 instead of the conditions C1, C6 and C7.

C10: There are universal positive constants C and D, such that for all p×p symmetric

real matrix A,

Var(X>ijAXij) ≤ Ctr{(AΣi)
2}+Dtr2(AΣi).
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Conditions C1 and C2 imply C10, since (see Auxiliary results in Zhang et al.,

2018)

Var(X>ijAXij) = 2tr{(AΣi)
2}+4i||diag(ΓiAΓi)||2 ≤ (2 +4i)tr{(AΣi)

2}.

The beauty of this condition, besides being weaker than C2, is that it doesn’t regulate

the dependence based on the separation between the variables within the observation

vectors. For example, Elliptically-Contoured populations satisfy condition C10, since

(Mathai et al., 1995)

Var(X>ijAXij) = 2(κi + 1)tr{(AΣi)
2}+ κitr

2(AΣi),

for κi <∞, where κi = p−1(p+ 2)−1E(X>ijΣ
−1Xij)

2 − 1.

Theorem 4.3.5. Under conditions C3– C5 and C10, the asymptotic normality result

(4.6) holds.

Theorem 4.3.6. Under conditions C3– C5 and C10, the consistency result (4.9)

holds for the estimators defined from (4.7) and (4.8) or from (4.10) and (4.11).

4.3.4 Test and Asymptotic Power

Theorems 4.3.1 (4.3.3, 4.3.5) and Theorem 4.3.2 (4.3.4, 4.3.6) lead to the test statistic

Qn = TCQ(X)/σ̂n
D−→ N (0, 1), as n, p→∞,

under H0 and assumptions C1, C3–C7 (or C3–C9, or C3–C5 and C10), where a

ratio-consistent estimator of σ2
n is defined to be

σ̂2
n =

2

n1(n1 − 1)
t̂r(Σ2

1) +
2

n2(n2 − 1)
t̂r(Σ2

2) +
4

n1n2

̂tr(Σ1Σ2), (4.14)

by the estimators t̂r(Σ2
i ) and ̂tr(Σ1Σ2) defined from (4.7) and (4.8) or (4.10) and

(4.11). Our proposed test with an α level of significance rejects H0 if Qn > ξα,

where ξα is the upper α quantile of standard normal distribution. Also Theorems

4.3.1 (4.3.3, 4.3.5) and Theorems 4.3.2 (4.3.4, 4.3.6) allow us to discuss the power

85



properties of the proposed test under assumption C5. The power under the local

alternative C5 is

βn1(||µ1 − µ2||2) = Φ

(
−ξα +

nκ(1− κ)||µ1 − µ2||2√
2tr{(1− κ)Σ1 + κΣ2)}2

)
,

where Φ is the cumulative function of standard normal distribution. This indicates

that the proposed test has nontrivial power under the alternative hypothesis under

assumption C5 as long as

nκ(1− κ)||µ1 − µ2||2√
2tr{(1− κ)Σ1 + κΣ2}2

does not vanish to 0 as n, p→∞.

4.4 Extensions

4.4.1 Extension to Multi-Group Equality Test

Suppose there are a(> 2) groups and, for i = 1, . . . , a, let the ith sampleXi1, . . . ,Xini

be iid with mean vector µi and covariance matrix Σi. The test statistic TCQ was

generalized to multiple groups by Hu et al. (2017) for testing the hypotheses:

H0 : µ1 = · · · = µa, VS H1 : µi 6= µi1 for some i 6= i1. (4.15)

In order to generalize the asymptotic results in Section 4.3 to the multi-group case, we

first reformulate the assumptions by making the necessary notational modifications.

C1′: For i = 1, . . . , a, assume Xij = ΓiZij +µi, for j = 1, . . . , ni, where Γi is a p×m

matrix for some m ≥ p such that ΓiΓ
>
i = Σi and Zij are m-variate identically

and independently distributed random vectors.

C3′: The sample sizes diverge proportionally, i.e. ni/n→ κi ∈ (0, 1) for i = 1, . . . , a

where n = n1 + · · ·+ na.

C4′: The covariance matrices satisfy the regularity condition

tr(Σi1Σi2Σi3Σi4) = o
[
tr2{(Σ1 + · · ·+ Σa)

2}
]

for i1, i2, i3, i4 ∈ {1, . . . , a}.
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C5′: For any i, i1, i2 ∈ {1, . . . , a}, (µi − µi1)>Σi2(µi − µi1) = o [tr(Σ1 + · · ·+ Σa)
2],

C8′: The covariance matrix Σi, i = 1, . . . , a, satisfies tr{(Σ1 + · · ·+ Σa)
2)} → ∞ as

p→∞.

The test statistic in (4.2) can be expressed as (Hu et al., 2017),

THBWW(X) =(a− 1)
a∑
i=1

∑ni
k 6=k1X

>
ikXik1

ni(ni − 1)
− 2

a∑
i<i1

∑ni
k=1

∑ni1
k1=1X

>
ikXi1k1

nini1
.

Note that when a = 2, this statistic reduces to TCQ. The mean and variance of

THBWW are

E{THBWW(X)} =
a∑

i<i1

||µi − µi1||2, and Var{THBWW(X)} = σ2
na + σ2

na2,

where

σ2
na =

a∑
i=1

2(a− 1)2

ni(ni − 1)
tr(Σ2

i ) +
a∑

i<i1

4

nini1
tr(ΣiΣi1) and

σ2
na2 = 4

a∑
i=1

n−1i

( a∑
i1=1

µi1 − aµi
)>

Σi

( a∑
i1=1

µi1 − aµi
)
.

Using the same technique as Theorem 4.3.1, we can prove the following theorem.

Theorem 4.4.1. Under the assumption C1′, C3′–C5′ C6 and C7,

THBWW(X)−
∑a

i<i1
||µi − µi1||2

σna

D−→ N (0, 1), as p, n→∞.

The asymptotic normality in Theorem 4.4.1 can also be proved under the cond-

tions C3′–C5′ C6, C7, C8′ and C9, where C6 and C7 are made on Zij = Xij − µi,

or under conditions C3′–C5′ and C10.

In multiple groups case, we can similarly construct the ratio-consistent estimator

of σ2
na as follows:

σ̂2
na =

a∑
i=1

2(a− 1)2

ni(ni − 1)
t̂r(Σ2

i ) +
a∑

i<i1

4

nini1
̂tr(ΣiΣi1),

where t̂r(Σ2
i ) and ̂tr(ΣiΣi1) are defined in (4.7) and (4.8) or as in (4.10) and (4.11)

for i 6= i1 ∈ {1, . . . , a}. The proofs are exactly the same. These lead to the test
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statistic

Qna(X) = THBWW(X)/σ̂na
D−→ N (0, 1), as n, p→∞, (4.16)

under assumptions C1′, C3′–C5′ C6 and C7 (or under C3′–C5′ C6, C7, C8′ and C9,

or under C3′–C5′ and C10). Our proposed test for an α level of significance rejects

H0 if Qna > ξα.

The power of the proposed test for the multi-group case can also be derived under

assumption C5′ . From the above discussions, under the local alternative C5′, the

power function is

βn1(
a∑

i<i1

||µi − µi1||2) = Φ

(
−ξα +

∑a
i<i1
||µi − µi1||2

σna

)
+ o(1).

4.4.2 Extension to Multi-Group Parallelism Test

In related works, Harrar and Kong (2016) and Hyodo (2017) considered comparison

of mean profiles in multiple groups for normal and Elliptical populations, respectively,

under high-dimensional frameworks. The test statistic investigated in this Chapter

can also be manipulated for use in testing parallelism of the mean profiles in different

groups. The hypothesis of parallelism is

H
(P )
0 : ∀i,µi−µa = γi1p for γi ∈ R, VS H

(P )
1 : ∃ i,µi−µa 6= γi1p,∀γi ∈ R. (4.17)

To deal with that parallelism test, we can transform the random vector first in such

a way that the parallelism hypothesis reduces to equality of mean vectors for the

transformed random vectors. The parallelism hypothesis can equivalently be stated

in terms of equality of Pµi, where P = Ip − Jp/p (e.g., Harrar and Kong, 2016;

Hyodo, 2017),

H0 : Pµ1 = · · · = Pµa, VS H1 : ∃ i 6= i1,Pµi 6= Pµi1 . (4.18)

Therefore, we can transform the data by setting X ′ij = PXij, which has the mean

Pµi and covariance matrix PΣiP
>. Then we can use the test statistic Qna(X

′) in

(4.16) defined on X ′ij to test the hypotheses (4.18). It can be shown that Hyodo
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(2017) studied the same test statistic as Chen and Qin (2010) (or Hu et al., 2017) but

under Elliptical populations. It is well noted that estimators used in Hyodo (2017)

are exactly the same as the estimators (4.10) and (4.11) defined on X ′ij.

4.5 Simulation Study

Numerical performance of Chen and Qin (2010)’s method has been investigated in

many papers (e.g. Srivastava et al., 2013; Cai et al., 2014; Feng and Sun, 2015; Feng

et al., 2016; Hu et al., 2017). Here, we focus the simulation on the test for parallelism

to evaluate and compare numerical performances of the tests in Chen and Qin (2010)

with asymptotic variance estimators constructed from (4.7) and (4.8) (hereinafter

referred to as CQ); the test Chen and Qin (2010) with asymptotic variance estimator

constructed from (4.10) and (4.11) (referred to as CQ1) and the test in Harrar and

Kong (2016) (referred to as HK). Note that, CQ1 and the test in Hyodo (2017) are

exactly the same. For the simulations, we generate data from

(i) Multivariate normal distribution with µi and Σi, N (µi,Σi).

(ii) Multivariate t distribution with µi and Σi and degrees of freedom ν1 = 6 and

ν2 = 8.

(iii) Multivariate contaminated-normal distribution which has density function

fi(x|µi,Σi, αi, ηi) = αiφ(x|µi,Σi) + (1− αi)φ(x|µi, ηiΣi)

with parameters µi and Σi where φ(x|µ,Σ) is the pdf of the multivariate

normal N (µ,Σ). For the other parameters, we fix η1 = 5, α1 = 0.5, η2 = 3,

and α2 = 0.1.

Note that populations (ii) and (iii) do not satisfy conditions C2. However, since these

populations are Elliptically contoured, they satisfy condition C10.

The empirical size of CQ, CQ1 and HK are presented in Tables 4.1–4.3 where we

set µ1 = (µ11, . . . , µ1p)
>, µ1j

iid∼ Uniform(0, 1) and µ2 = µ1 + 1p. We investigate the

effects of there different types of Σi:
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(1) Σ11 = 0.5Ip + 0.5Jp and Σ12 = 0.9Ip + 0.1Jp,

(2) Σ21 = (0.5|j−j1|) and Σ22 = (0.1|j−j1|) and

(3) Σ31 = (0.5|j − j1|−1/2) and Σ32 = (0.1|j − j1|−1/2).

The sizes are calculated with 10,000 replications for the significance level α = 0.05.

Table 4.1: Achieved Type I error rate for multivariate normal distribution with µ1 =

(µ1, . . . , µp)
>, where µij

iid∼ Uniform(0, 1), µ2 = µ1 + 1p, and three different pairs of
Σ1 and Σ2.

Σ11 and Σ12 Σ21 and Σ22 Σ31 and Σ32

p (n1, n2) CQ CQ1 HK CQ CQ1 HK CQ CQ1 HK
(50, 90) 0.056 0.056 0.058 0.061 0.061 0.062 0.061 0.061 0.062

50 (100,150) 0.056 0.056 0.056 0.063 0.063 0.063 0.060 0.060 0.060
(200,240) 0.060 0.060 0.060 0.060 0.060 0.060 0.058 0.058 0.058
(50, 90) 0.058 0.058 0.059 0.062 0.062 0.063 0.061 0.061 0.062

100 (100,150) 0.059 0.059 0.060 0.061 0.061 0.061 0.061 0.061 0.061
(200,240) 0.059 0.059 0.059 0.057 0.057 0.057 0.060 0.060 0.060
(50, 90) 0.057 0.058 0.059 0.057 0.058 0.058 0.059 0.059 0.060

200 (100,150) 0.054 0.054 0.055 0.058 0.058 0.059 0.059 0.059 0.060
(200,240) 0.053 0.053 0.053 0.056 0.056 0.056 0.062 0.062 0.062
(50, 90) 0.056 0.056 0.058 0.059 0.059 0.060 0.060 0.060 0.061

400 (100,150) 0.052 0.052 0.053 0.060 0.060 0.060 0.059 0.059 0.060
(200,240) 0.056 0.056 0.056 0.057 0.057 0.057 0.057 0.057 0.057

Table 4.2: Achieved Type I error rate for multivariate t distribution with µ1 =

(µ1, . . . , µp)
>, where µij

iid∼ Uniform(0, 1), µ2 = µ1 + 1p, degrees freedom ν1 = 6,
ν2 = 8, and three different pairs of Σ1 and Σ2.

Σ11 and Σ12 Σ21 and Σ22 Σ31 and Σ32

p (n1, n2) CQ CQ1 HK CQ CQ1 HK CQ CQ1 HK
(50, 90) 0.059 0.059 0.031 0.064 0.064 0.048 0.062 0.062 0.050

50 (100,150) 0.055 0.055 0.036 0.059 0.059 0.050 0.062 0.062 0.053
(200,240) 0.065 0.065 0.051 0.066 0.066 0.060 0.060 0.060 0.055
(50, 90) 0.057 0.057 0.020 0.058 0.058 0.035 0.059 0.059 0.037

100 (100,150) 0.058 0.058 0.026 0.058 0.058 0.043 0.059 0.059 0.045
(200,240) 0.055 0.055 0.036 0.057 0.057 0.047 0.057 0.057 0.049
(50, 90) 0.055 0.055 0.004 0.057 0.058 0.020 0.061 0.061 0.026

200 (100,150) 0.054 0.054 0.013 0.057 0.057 0.031 0.059 0.059 0.036
(200,240) 0.053 0.053 0.023 0.064 0.064 0.045 0.058 0.058 0.042
(50, 90) 0.056 0.056 0.002 0.058 0.058 0.007 0.060 0.060 0.014

400 (100,150) 0.055 0.055 0.005 0.055 0.055 0.013 0.059 0.059 0.024
(200,240) 0.053 0.053 0.011 0.057 0.057 0.027 0.055 0.055 0.034

90



Table 4.3: Achieved Type I error rate for multivariate contaminate normal distri-

bution with µ1 = (µ1, . . . , µp)
>, where µij

iid∼ Uniform(0, 1), µ2 = µ1 + 1p, η1 = 5,
α1 = 0.5, η2 = 3, α2 = 0.1, and three different pairs of Σ1 and Σ2.

Σ11 and Σ12 Σ21 and Σ22 Σ31 and Σ32

p (n1, n2) CQ CQ1 HK CQ CQ1 HK CQ CQ1 HK
(50, 90) 0.061 0.061 0.057 0.066 0.066 0.064 0.062 0.062 0.061

50 (100,150) 0.060 0.060 0.059 0.065 0.065 0.065 0.062 0.062 0.061
(200,240) 0.061 0.061 0.060 0.056 0.056 0.056 0.060 0.060 0.059
(50, 90) 0.059 0.059 0.052 0.058 0.058 0.054 0.062 0.062 0.060

100 (100,150) 0.061 0.061 0.057 0.056 0.056 0.054 0.057 0.057 0.056
(200,240) 0.058 0.058 0.056 0.056 0.056 0.055 0.063 0.063 0.062
(50, 90) 0.060 0.060 0.045 0.056 0.056 0.047 0.061 0.061 0.055

200 (100,150) 0.055 0.055 0.047 0.060 0.060 0.055 0.062 0.062 0.059
(200,240) 0.054 0.054 0.050 0.059 0.059 0.055 0.057 0.057 0.055
(50, 90) 0.053 0.054 0.029 0.055 0.056 0.039 0.062 0.062 0.049

400 (100,150) 0.053 0.053 0.036 0.057 0.057 0.045 0.059 0.059 0.052
(200,240) 0.053 0.053 0.043 0.055 0.055 0.049 0.058 0.058 0.054

From Table 4.1, we note that the performances of the three tests are about the

same under normality. For the heavier tailed populations (Tables 4.2 and 4.3), HK is

not performing well as expected. In particular, it is too conservative for large p but

its performance improves as n increases. The tests CQ and CQ1, which are designed

to work under non-normality, perform well for all the three distributions. In fact, CQ

and CQ1 are nearly identical. As the asymptotic framework suggests, the quality of

the asymptotic approximation substantially improves when both n and p are large.

4.6 Real Data Application

In this section, we analyze the Electroencephalograph (EEG) data for the single

stimulus (S1) exposure only to compare the results with that of Harrar and Kong

(2016). Event-Related Potential (ERP) measures the level of brain activity. The EEG

data1 found at the University of California-Irvine Machine Learning Repository was

from a large study to examine EEG correlates of genetic predisposition to alcoholism.

Sixty-four electrodes were used to measure ERP and recorded 256 times for in one

second. Each channel (electrode) has names identifying the location of the electrode

on the scalp. The names are made up of a letter identifying the anatomical location

1Web Address: https://archive.ics.uci.edu/ml/datasets/EEG%2BDatabase

91



of the placement of the electrode (F–frontal lobe, T–temporal lobe, P–parietal lobe

and O–occipital lobe) and a number identifying the hemisphere of the brain (odd

number – the left hemisphere and even number – the right hemisphere and letter z

(zero) is used for the mid-line). The exception to this naming rule is that, due to their

placement and depending on the individual, the “C” electrodes can exhibit/represent

EEG activity more typical of Frontal, Temporal, and some Parietal-Occipital activity.

ERP reading from an electrode indicates the level of electrical activity (in volts) in the

region of the brain where the electrode is placed. There are two groups of subjects

in the study: alcoholic and control. Each subject was exposed to either a single

stimulus (S1) or to two stimuli (S1 and S2) which were pictures of objects chosen

from a picture set. In this Chapter, we analyze the data only for the single stimulus

(S1) exposure. For a more detailed account of the EEG data, see Harrar and Kong

(2016). The main objective is to compare CQ1 and HK for testing whether Event-

Relates Potential (ERP) mean profiles are similar between the alcoholic and control

groups.

Table 4.4 shows FDR adjusted p–values for testing equality and similarity (par-

allelism) of ERP mean profiles for each of the 64 channels (at FDR = 0.05). The

columns in the table contain channel names (Ch) and p-values for testing equality

(E) and Similarity (P). The channel-by-channel decisions based on the CQ1 method

for similarity (parallelism) are displayed in Figure 4.1 panel (b). The figure depicts

the scalp of a human viewed from the top, the triangle marking the nose. The loca-

tions of the electrodes are indicated by bubbles. The colors of the bubbles indicate

whether the brain activity pattern for that channel is significantly dissimilar (red)

or not significantly dissimilar (green). Also shown in Figure 4.1 (panel (a)) is the

significance results for equality hypothesis, i.e. whether the mean activity levels are

equal between the two groups.
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Table 4.4: False Discovery Rate (FDR) adjusted p–values for testing equality and
parallelism of mean profiles for Electroencephalograph (EEG) experiment involving
alcoholic and control subjects. In the table, the columns are channel label (Ch) and
the p-value for equality (E) and parallelism (P) group mean profiles.

Ch E P Ch E P Ch E P Ch E P

AF1 0.007 0.071 CP6 0 0 FC6 0.370 0.236 P5 0 0
AF2 0.018 0.08 CPz 0 0 FCz 0 0 P6 0 0
AF7 0.805 0.761 Cz 0.468 0.643 FP1 0.786 0.716 P7 0 0
AF8 0.805 0.763 F1 0 0 FP2 0.812 0.768 P8 0 0
AFz 0 0.010 F2 0 0.001 FPz 0.787 0.761 PO1 0 0
C1 0.672 0.140 F3 0 0.005 FT7 0.747 0.693 PO2 0 0
C2 0.040 0.005 F4 0.057 0.208 FT8 0.449 0.092 PO7 0 0
C3 0.367 0 F5 0.197 0.424 Fz 0 0 PO8 0 0
C4 0.002 0 F6 0.439 0.543 nd 0.064 0.002 POz 0 0
C5 0.094 0 F7 0.468 0.643 O1 0 0 Pz 0 0
C6 0 0 F8 0.770 0.768 O2 0 0 T7 0.217 0
CP1 0 0 FC1 0 0.001 Oz 0 0 T8 0.065 0
CP2 0 0 FC2 0.003 0.037 P1 0 0 TP7 0 0
CP3 0 0 FC3 0.018 0.407 P2 0 0 TP8 0 0
CP4 0 0 FC4 0.805 0.768 P3 0 0 X 0.770 0.768
CP5 0 0 FC5 0.568 0.640 P4 0 0 Y 0 0.028

Figure 4.1: Channel-by-Channel results for EEG data analysis on testing the equality
(panel (a)) or similarity (panel (b)) in brain activity between alcoholic and control
subjects. Red means brain activity patterns are significantly unequal or dissimilar at
α = 0.05. Green means that the similarity hypothesis cannot be rejected.
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Comparing the significance results in panel (b) of Figure 4.1 with the correspond-

ing Figure in Harrar and Kong (2016), we note that the results for testing similarity

in mean brain activity levels between alcoholic and control subjects for CQ1 are same

as HK test. It is clear from both panels (a) and (b) of Figure 4.1 that there are no

evidence in the data to show difference in the mean electrical activity nor in the pat-

terns between the two groups in the central frontal region of the brain. Most of the

significant differences occur in the temporal, parietal and occipital lobes. Of note,

the results clearly demarcate contagious similar and non-similar activity regions of

the brain.

4.7 Discussion and Conclusion

Recent high-dimensional tests for mean vectors in two or multiple groups are exam-

ined. In particular, several realistic and milder conditions are provided to replace

existing conditions and the entire theory is reproved under these new conditions.

Specifically, the standard assumptions do not cover common multivariate models for

dependent data. For example, the simple and popular models for dependent data

such as elliptically-contoured and α-mixing are excluded. Further, the methods im-

pose near-independence conditions on the normalized versions of the observations.

Some authors refer to these restrictive conditions as pseudo-independence. Besides

being strong, making assumptions on normalized versions may not be realistic.

The simulation study investigated the empirical sizes by generating data that vi-

olate dependence assumptions imposed in the existing works. No prior simulation

study investigated the tests under these models. The numerical results suggest that

the finite-sample approximations of high-dimensional asymptotic results are excel-

lent. The application of the results for conducting profile analysis are illustrated via

simulated as well as real data set. The formal extension of the methods to a factorial

design is also indicated in the manuscript. The detail of such extension is postponed

for a future investigation.
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4.8 Appendix: Proofs

Conditions C6 and C7 have implications in regulating the trace of the powers of

covariance matrices.

Lemma 4.8.1. Assume C6 and C7 hold on Y1 and Y2, where Y1 and Y2 are inde-

pendent and centered p-variate random vectors with covariance matrices Σ1 and Σ2

respectively. Then tr(Σ2
i ) = O(p) for i = 1, 2 and tr(Σ1Σ2) = O(p).

Proof. Note that Var(Yik) is bounded by ϕ0 = max{1 + Φ0, ϕ1}. By condition (2),

|Cov(Yik, Yil)| ≤ ϕ|k−l|, for i = 1, 2. Then we have

1

p
tr(Σ2

i ) =
1

p

p∑
k=1

Var(Yik)
2 +

1

p

p∑
k=1

p∑
l=1

|Cov(Yik, Yil)|2

≤1

p

p∑
k=1

p∑
l=1

ϕ2
|k−l| =

1

p

p−1∑
k=0

(p− k)ϕ2
k ≤

p−1∑
k=0

ϕ2
k ≤ ∞.

It is easy to see that tr(Σ1Σ2) = O(p) since tr(Σ1Σ2) ≤
{

tr(Σ2
1)tr(Σ

2
2)
}1/2

.

4.8.1 Proof of Theorem 4.3.1 and Theorem 4.3.3

Note that

Tn(X)− ||µ1 − µ2||2 = Tn(Xc) + Tn2(X
c),

where

Tn2(X
c) =

2
∑n1

i=1(µ1 − µ2)
>Xc

1i

n1

+
2
∑n2

i=1(µ2 − µ1)
>Xc

2i

n2

,

and Xc
ij = Xij − µi, for i = 1, 2 and j = 1, . . . , ni. It is easy to show that

E[Tn(Xc)] = E[Tn2(X
c)] = 0,

and

Var(Tn(Xc)) = σ2
n Var(Tn2(X

c)) = σ2
n2.

Thus, under assumption C3,

Tn(X)− ||µ1 − µ2||2√
Var(Tn(X)

=
Tn(Xc)

σn
+ oP (1).
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Next, we will prove the asymptotic normality of Tn(X) under assumption C1, C3-

C7. Without loss of generality, we assume that µ1 = µ2 = 0. Let Yj = X1j, for

j = 1, . . . , n1, and Yn1+j = X2j, for j ∈ 1, . . . , n2. Let g(i) = 1, if 1 ≤ i ≤ n1, or 2 if

n1 < i ≤ n, and let φij = cijY
>
i Yj, for 1 ≤ i < j ≤ n, where

cij =


2n−11 (n1 − 1)−1, if 0 < i < j ≤ n1

2n−12 (n2 − 1)−1, if n1 < i < j ≤ n1 + n2

−2n−11 n−12 if 0 < i ≤ n1 < j ≤ n1 + n2

.

For m = 2, . . . , n, define Vnm =
∑m−1

i=1 φim and define Fn0 = {∅,Ω} and Fnm =

σ{Y1, . . . ,Ym}, which is the σ algebra generated by {Y1, . . . ,Ym}. Then, it is clear

that

Fn0 ⊆ Fn1 ⊆ · · · ⊆ Fnn.

Note that

E[Vnm|Fnm−1] =
m−1∑
i=1

E[φim|Fnm−1] =
m−1∑
i=1

cimY
>
i E[Ym] = 0,

E[V 2
nm] =

m−1∑
i=1

c2imE[Y >i YmY
>
m Yi] =

m−1∑
i=1

c2imtr
{

E[YmY
>
m ]E[YiY

>
i ]
}
.

When m ≤ n1,

E[V 2
nm] =

2(m− 1)

n2
1(n1 − 1)2

tr(Σ2
1),

and when n1 < m ≤ n,

E[V 2
nm] =

4

n1n2
2

tr(Σ1Σ2) +
4(m− n1 − 1)

n2
2(n2 − 1)2

tr(Σ2
2).

So {Vnm,Fnm}nm=1 is the sequence of square-integrable martingale difference. Fur-

thermore, we have

Tn(X) =
n∑

m=2

Vnm.

To prove Theorem 4.3.1, we only need to prove the following Lemma 4.8.2 and the

Lindeberg condition Lemma 4.8.3. Then, the desired result follows by the martingale

difference central limit theorem, see Shiryaev (2015) or Hall and Heyde (1980).
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Lemma 4.8.2. Under the assumptions C1, C3– C7,

σ−2n

n∑
m=2

E[V 2
nm|Fn,m−1]

P−→ 1, as n→∞.

Proof. First,

n∑
m=2

E[V 2
nm|Fnm−1]− σ2

n =
n∑

m=2

m−1∑
i,j=1

cimcjmY
>
i Σg(m)Yj − σ2

n =
4∑

k=1

Bk,

where

B1 =

n1∑
i=1

4(n1 − i)
n2
1(n1 − 1)2

{Y >i Σ1Yi − tr(Σ2
1)}+

n∑
j=n1+1

4(n− j)
n2
2(n2 − 1)2

{Y >j Σ2Yj − tr(Σ2
2)},

B2 =

n1∑
i=1

4

n2
1n2

{Y >i Σ2Yi − tr(Σ1Σ2)}+

n1∑
i=2

i−1∑
j=1

8

n2
1n2

Y >i Σ2Yj,

B3 =

n1∑
i=2

i−1∑
j=1

8(n1 − i)
n2
1(n1 − 1)2

Y >i Σ1Yj +
n∑

i=n1+2

i−1∑
j=n1+1

8(n− i)
n2
2(n2 − 1)2

Y >i Σ2Yj, and

B4 =

n1∑
i=1

n∑
j=n1+1

4(n− j)
n1n2

2(n2 − 1)
Y >i Σ2Yj.

From this decomposition, it is easy to check
∑4

k=1 E[Bi] = 0. By Holder’s inequality,

Var
( n∑
m=2

E[V 2
nm|Fn,m−1]

)
= E

[ 4∑
k=1

Bk

]2
≤ 4

4∑
k=1

E[B2
i ].

Therefore, we only need to prove σ−4n
∑4

k=1 E[B2
i ] = o(1). Under assumptions C1 and

C6, and by Corollary 4.2.2, for i, i1 ∈ {1, 2} and j 6= j1 ∈ {1 . . . , n}, we have

Var(Y >j ΣiYj) ≤ C(Φ1 + Φ2 + Φ3)tr{(ΣiΣg(j))
2}

and

Var(Y >j ΣiYj1) = E(Y >j ΣiYj1Y
>
j1

ΣiYj) = tr(ΣiΣg(j)ΣiΣg(j1)).
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Consequently, under assumptions C3, C4 and C7, we have

E[B2
1 ] =

n1∑
i=1

16(n1 − i)2

n4
1(n1 − 1)4

Var(Y >i Σ1Yi) +
n∑

i=n1+1

16(n− i)2

n4
2(n2 − 1)4

Var(Y >i Σ2Yi)

≤
2∑
i=1

4(2ni − 1)

n3
i (ni − 1)3

C(Φ1 + Φ2 + Φ3)tr(Σ
4
i ) = o(σ4

n/n),

E[B2
2 ] =

n1∑
i=1

16

n4
1n

2
2

Var(Y >i Σ2Yi) +

n1∑
i=2

i−1∑
j=1

64

n4
1n

2
2

Var(Y >i Σ2Yj)

≤ 16

n3
1n

2
2

C(Φ1 + Φ2 + Φ3)tr{(Σ1Σ2)
2}+

32(n1 − 1)

n3
1n

2
2

tr{(Σ1Σ2)
2} = o(σ4

n/n),

E[B2
3 ] =

n1∑
i=2

i−1∑
j=1

64(n1 − i)2

n4
1(n1 − 1)4

Var(Y >i Σ1Yj) +
n∑

i=n1+2

i−1∑
j=n1+1

64(n− i)2

n4
2(n2 − 1)4

Var(Y >i Σ2Yj)

=
2∑
i=1

16(ni − 2)

3n3
i (ni − 1)2

tr(Σ4
i ) = o(σ4

n) and

E[B2
4 ] =

n1∑
i=1

n∑
j=n1+1

16(n− j)2

n2
1n

4
2(n2 − 1)2

Var(Y >i Σ2Yj) =
8(2n2 − 1)

3n1n3
2(n2 − 1)

tr(Σ1Σ
3
2) = o(σ4

n).

That finishes the proof.

Lemma 4.8.3. Under the assumptions C1, C3– C7,

σ−4n

n∑
m=2

E{V 2
nmI(|Vnm| > ε)|Fn,m−1}

P−→ 0, as n→∞, ∀ε > 0.

Proof. Since

n∑
m=2

E{V 2
nmI(|Vnm| > ε)|Fn,m−1} ≤ ε2−q

n∑
m=2

E(V q
nm|Fnm−1),

for some q > 2. By choosing q = 4 the conclusion of the lemma is true if we can

prove

E
{ n∑
m=2

E(V 4
nm|Fn,m−1)

}
=

n∑
m=2

E[V 4
nm] = o(σ4

n).

Note that

E[V 4
nm] = E

{(m−1∑
i=1

φim

)4}
=

m−1∑
i=1

E(φ4
im) + 6

m−1∑
i<j

E(φ2
imφ

2
jm).
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Now, for 1 ≤ i 6= j < m, under assumption C1 and C6

E(φ4
im) =c4imE

[
E
{

(Y >i Ym)4|Fnm−1
}]

= c4imE
[
E
{

(Y >m YiY
>
i Ym)2|Fnm−1

}]
=c4imE

[
Var
(
Y >m YiY

>
i Ym|Fnm−1) + tr2(YiY

>
i Σg(m))

]
≤c4im

{
1 + C(Φ0 + Φ1 + Φ2)

}
E
{(
Y >i Σg(m)Yi

)2}
≤c4im

{
1 + C(Φ0 + Φ1 + Φ2)

}{
Var(Y >i Σg(m)Yi) + tr2(Σg(i)Σg(m))

}
≤c4im

{
1 + C(Φ0 + Φ1 + Φ2)

}[
C(Φ0 + Φ1 + Φ2)tr

{
(Σg(i)Σg(m))

2
}

+ tr2(Σg(i)Σg(m))
]
,

and

E(φ2
imφ

2
jm) =E

{
E(φ2

imφ
2
jm|Fnm−1)

}
=c2imc

2
jmE

{
(Y >m YiY

>
i Ym)(Y >m YjY

>
j Ym)|Fnm−1

}
=c2imc

2
jmE

{
Cov(Y >m YiY

>
i Ym,Y

>
m YjY

>
j Ym)|Fnm−1)

+ tr(YiY
>
i Σg(m))tr(YjY

>
j Σg(m))

}
≤c2imc2jm

{
1 + C(Φ0 + Φ1 + Φ2)

}
E
{

(Y >i Σg(m)Yi)(Y
>
j Σg(m)Yj)

}
≤c2imc2jm

{
1 + C(Φ0 + Φ1 + Φ2)

}
tr(Σg(i)Σg(m))tr(Σg(j)Σg(m)).

Thus, under assumption C3, C4 and C7, we have

n∑
m=2

E[V 4
nm] =

n∑
m=2

m−1∑
i=1

E(φ4
im) + 6

n∑
m=2

m−1∑
i<j

E(φ2
imφ

2
jm)

≤
{

1 + C(Φ0 + Φ1 + Φ2)
}{ 2∑

i=1

2ni − 3

2n3
i (ni − 1)3

tr2(Σ2
i )

+
3n1 − 2

n3
1n

3
2

tr2(Σ1Σ2) +
3

n1n3
2(n2 − 1)

tr2(Σ1Σ2)tr(Σ2
2)

}
+

2∑
i=1

O
{ tr(Σ4

i )

n3
i (ni − 1)3

}
+O

{tr{(Σ1Σ2)
2}

n3
1n

3
2

}
= o(σ4

n).

Theorem 4.3.3, we just need to prove that Lemma 4.8.2 and Lemma 4.8.3 hold
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under assumptions C3–C9. From the above discussions, it suffices to prove

4∑
k=1

E[B2
i ] = o(σ4

n), and
n∑

m=2

E[V 4
nm] = o(σ4

n).

In fact, by Theorem 4.2.1, under assumption C3–C9, we have

E[B2
1 ] =

n1∑
i=1

16(n1 − i)2

n4
1(n1 − 1)4

Var(Y >i Σ1Yi) +
n∑

i=n1+1

16(n− i)2

n4
2(n2 − 1)4

Var(Y >i Σ2Yi)

≤
2∑
i=1

4(2ni − 1)

n3
i (ni − 1)3

C(Φ1 + Φ2 + Φ3)tr(Σ
2
i ) = o(σ4

n),

E[B2
2 ] =

n1∑
i=1

16

n4
1n

2
2

Var(Y >i Σ2Yi) +

n1∑
i=2

i−1∑
j=1

64

n4
1n

2
2

Var(Y >i Σ2Yj)

≤ 16

n3
1n

2
2

C(Φ1 + Φ2 + Φ3)tr(Σ
2
2) +

32(n1 − 1)

n3
1n

2
2

tr{(Σ1Σ2)
2} = o(σ4

n),

E[B2
3 ] =

n1∑
i=2

i−1∑
j=1

64(n1 − i)2

n4
1(n1 − 1)4

Var(Y >i Σ1Yj) +
n∑

i=n1+2

i−1∑
j=n1+1

64(n− i)2

n4
2(n2 − 1)4

Var(Y >i Σ2Yj)

=
2∑
i=1

16(ni − 2)

3n3
i (ni − 1)2

tr(Σ4
i ) = o(σ4

n) and

E[B2
4 ] =

n1∑
i=1

n∑
j=n1+1

16(n− j)2

n2
1n

4
2(n2 − 1)2

Var(Y >i Σ2Yj) =
8(2n2 − 1)

3n1n3
2(n2 − 1)

tr(Σ1Σ
3
2) = o(σ4

n).

Further, for 1 ≤ i 6= j < m, under assumption C6,

E(φ4
im) =c4imE

[
E
{

(Y >i Ym)4|Fnm−1
}]

= c4imE
[
E
{

(Y >m YiY
>
i Ym)2|Fnm−1

}]
=c4imE

[
Var
(
Y >m YiY

>
i Ym|Fnm−1) + tr2(YiY

>
i Σg(m))

]
≤c4imE

{
C(Φ0 + Φ1 + Φ2)

(
Y >i Yi

)2
+
(
Y >i Σg(m)Yi

)2}
≤c4im

[
C(Φ0 + Φ1 + Φ2)

{
Var(Y >i Yi) + tr2(Σg(i))

}
+ Var(Y >m Σg(i)Ym) + tr2(Σg(i)Σg(m))

]
≤c4imC2(Φ0 + Φ1 + Φ2)

2p+ c4imC(Φ0 + Φ1 + Φ2)
[
tr2(Σg(i)) + tr

{
(Σg(i)Σg(m))

2
}]

+ c4imtr2(Σg(i)Σg(m)),
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and

E(φ2
imφ

2
jm) =E

{
E(φ2

imφ
2
jm|Fnm−1)

}
= c2imc

2
jmE

{
(Y >m YiY

>
i Ym)(Y >m YjY

>
j Ym)|Fnm−1

}
=c2imc

2
jmE

{
Cov(Y >m YiY

>
i Ym,Y

>
m YjY

>
j Ym)|Fnm−1)

+ tr(YiY
>
i Σg(m))tr(YjY

>
j Σg(m))

}
≤c2imc2jmE

{
C(Φ0 + Φ1 + Φ2)(Y

>
i Yi)(Y

>
j Yj) + (Y >i Σg(m)Yi)(Y

>
j Σg(m)Yj)

}
≤c2imc2jm

{
C(Φ0 + Φ1 + Φ2)tr(Σg(i))tr(Σg(j)) + tr(Σg(i)Σg(m))tr(Σg(j)Σg(m)

}
.

Thus under assumption C3–C9, we have

n∑
m=2

E[V 4
nm] =

n∑
m=2

m−1∑
i=1

E(φ4
im) + 6

n∑
m=2

m−1∑
i<j

E(φ2
imφ

2
jm)

≤
2∑
i=1

2ni − 3

2n3
i (ni − 1)3

tr2(Σ2
i ) +

3n1 − 2

n3
1n

3
2

tr2(Σ1Σ2)

+
3

n1n3
2(n2 − 1)

tr2(Σ1Σ2)tr(Σ2
2) +

2∑
i=1

O
{ tr(Σ4

i )

n3
i (ni − 1)3

}
+O

{tr(Σ1)tr(Σ2)

n3
1n

3
2

}
+

2∑
i=1

O
{tr2(Σi)

n5

}
+O

{ p

n6

}
=o(σ4

n).

The last step is following from condition C8 and C9 as

tr(Σi)tr(Σj) ≤
1

2
{tr2(Σi) + tr2(Σj)} ≤ p[tr{(Σ1)

2}+ tr{(Σ2)
2}]

≤ ptr{(Σ1 + Σ2)
2} = o(n5σ4

n),

for any i, j ∈ {1, 2}, and p = o(n5σ4
n).

4.8.2 Proof of Theorem 4.3.2 and Theorem 4.3.4

For Theorem 4.3.2, we will only present the proof of the ratio-consistency of tr(Σ2
1)

in (4.10) under assumptions C1, C3-C7 as the proofs of the others follow along the

same lines. The proof of Theorem 4.3.4 proceeds along the same steps and, therefore,

is omitted. For notational convenience, we denote X1j − µ1 as Xj, µ1 as µ, Σ1 as

Σ and n1 as n, since we are effectively in the one-sample situation.
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Proof of Theorem 4.3.2. It suffices to show that

E{t̂r(Σ2)} = tr(Σ2) and Var{t̂r(Σ2)} = o(tr2(Σ2)).

Note that

t̂r(Σ2) =
1

(n)2

∑
i 6=j

(X>i Xj)
2 − 2

(n)3

∑
i 6=j 6=k

(X>i Xj)(X
>
i Xk)

+
1

(n)4

∑
i 6=j 6=k 6=l

(X>i Xj)(X
>
k Xl) = A1 + A2 + A3,

where

A1 =
1

(n)2

n∑
i 6=j

X>i XjX
>
j Xi,

and Ai, i = 2, 3 are defined to be the corresponding terms in the equation.

It is obvious that E{t̂r(Σ2)} = tr(Σ2), since the E(A2) = E(A3) = 0 and E(A1) =

tr(Σ2). To prove Var{t̂r(Σ2)} = o(tr2(Σ2)), it is enough to show that E(A2
1) =

tr2(Σ2)(1 + o(1)) and E(A2
i ) = o(tr2(Σ2)) for i = 2, 3. Indeed, under conditions C1,

C3-C7,

E(A2
1) =

1

n2(n− 1)2
E
( n∑

i 6=j

X>j XiX
>
i Xj

)2
=

1

n2(n− 1)2
E
[ n∑
i 6=j

2(X>j XiX
>
i Xj)

2 +
n∑

i 6=j 6=k

4X>j XiX
>
i XjX

>
j XkX

>
k Xj

+
n∑

i 6=j 6=k 6=l

X>j XiX
>
i XjX

>
l XkX

>
k Xl

]
=O
{ 2n− 5

n(n− 1)

}
tr2(Σ2) +O

{ 1

n(n− 1)

}
tr(Σ4) +

(n− 2)(n− 3)

n(n− 1)
tr2(Σ2)

=tr2(Σ2)(1 + o(1)),

E(A2
2) =

4

{(n)3}2
E
( n∑
i 6=j 6=k

X>i XjX
>
k Xi

)2
≤ 4

{(n)3}2
E
{ n∑

i

n
( n∑
j 6=k(6=i)

X>i XjX
>
k Xi

)2}
=

8n

{(n)3}2
n∑
i

n∑
j 6=k(6=i)

E
(
X>i XjX

>
k Xi)

2
)

=O
{ 1

(n− 1)(n− 2)

}
tr2(Σ2) = o(tr2(Σ2)),
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and

E(A2
3) =

1

{(n)4}2
E
( n∑
i 6=j 6=k 6=l

X>i XjX
>
k Xl

)2
≤ 1

{(n)4}2
E
{ n∑

i 6=j

n(n− 1)
( n∑
j 6=k( 6=i,j)

X>i XjX
>
k Xl

)2}
=

2n(n− 1)

{(n)4}2
n∑
i 6=j

n∑
j 6=k( 6=i,j)

E
(
X>i XjX

>
k Xl)

2
)

=O
{ 1

(n− 2)(n− 3)

}
tr2(Σ2) = o(tr2(Σ2)),

the inequalities in the proof arise from application of Hölder’s inequality.

Copyright c© Xiaoli Kong, 2018.
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Chapter 5 High-Dimensional Rank-Based Inference

5.1 Introduction

High-dimensional data have been the subject of theoretical and applied investigations

in the last few decades sparked by advance in technology that allowed large number of

observations to be collected from each analysis unit (subject). For example, genomic

studies, satellite imaging, modern diagnostic and intervention modalities generate

high-dimensional data. To analyze these data, in particular in the context of group

comparison or treatment efficacy, the asymptotic theory requires both the sample

size and dimension to diverge. Sparsity conditions that characterize the nature of the

within-unit dependence are also needed to establish the results. Some of these results

assume multivariate normality (Dempster, 1958, 1960; Fujikoshi et al., 2004; Schott,

2007a; Srivastava and Du, 2008; Yamada and Srivastava, 2012; Dong et al., 2017),

while others assume existence of higher-order moments and pseudo-independence in

the sense that higher order mixed moments factor into the product of the correspond-

ing univariate moments (Bai and Saranadasa, 1996; Chen and Qin, 2010; Srivastava

and Kubokawa, 2013; Hu et al., 2017) or other forms weaker dependence (Cai et al.,

2014; Cai and Xia, 2014; Feng et al., 2015; Gregory et al., 2015). The nonparametric

methods (Wang et al., 2015; Ghosh and Biswas, 2016) are essentially mean based and

also assume (generalized) elliptical populations.

In this Chapter, we pursue a fully nonparametric approach for high-dimensional

comparison of population or treatment groups in which neither existence of moments

nor pseudo independence assumptions are required. For brevity, we focus on the

two-group situation and extensions to more general cases will be outlined later.

For each i = 1, 2, j = 1, . . . , ni , assume Xij = (Xij1, . . . , Xijp)
> to be identically

and independently distributed observations with marginal distributions Xijk ∼ Fik,

which are assumed to be non-degenerate. Denote the total sample size by n =

n1 + n2 and let N = np be the total number of observations. Here, we are using the
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normalized version of distribution function, which is defined by

Fik(x) =
1

2
{F+

ik (x) + F−ik (x)} = P (Xi1k < x) +
1

2
P (Xi1k = x)

where F+
ik (x) = P (Xi1k ≤ x) and F−ik (x) = P (Xi1k < x) are, respectively, the right-

and left-continuous versions of the distribution function. Using normalized distribu-

tion function allows us to treat the discrete and continuous cases in a unified manner

(e.g., Akritas et al., 1997). Define the nonparametric relative summary effect by

ωik = E[H(Xi1k)] =

∫
HdFik,

for i = 1, 2 and k = 1, . . . , p, where H(x) = N−1
∑p

k=1{n1F1k(x) + n2F2k(x)}. Let

Z ∼ H be a random variable, then it is an easy matter to show that

ωik = P (Xi1k > Z) +
1

2
P (Xi1k = Z).

Therefore, ωik indicates the tendency of observations on the k-th variables from group

i to be larger (smaller) than observations on a random variables from the average

distribution according as ωik > 1/2(< 1/2). In view of this, we consider the testing

problem

H0 : ω1 = ω2 VS H1 : ω1 6= ω2, (5.1)

where ωi = (ωi1, . . . , ωip)
> for i = 1, 2. That is, the hypothesis is stated in terms

of ωik, a quantity that does not involve any parameter nor require existence of any

moment. Besides these obvious advantages, the hypothesis in terms of the relative

summary effects does not impose equality of marginal nor joint distribution under the

null hypothesis. The significance of this versatility is that the treatment groups could

be different but in ways that are not interesting to the researcher. It can easily be seen

that hypotheses of equality of all marginal distributions or joint distributions between

the two treatment groups imply ω1k = ω2k for k = 1, . . . , p. Mean vectors are not well

defined when some of the variable are measured in ordinal scales, rendering recent

high-dimensional parametric tests for comparing mean vectors: Bai and Saranadasa

(1996); Chen and Qin (2010); Srivastava and Kubokawa (2013); Ahmad (2014); Cai

et al. (2014); Feng and Sun (2015); Feng et al. (2015); Gregory et al. (2015); Xu
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et al. (2016) and nonparametric ones (Wang et al., 2015; Ghosh and Biswas, 2016)

inappropriate.

This Chapter is organized as follows. Asymptotic equivalence theory for quadratic

forms in ranks is developed in Section 5.2. Also in this section, a result on the trans-

fer of dependence on original observations to Asymptotic Rank Transforms (main

asymptotic tool of this Chapter) is stated. Section 5.3 introduces the test statis-

tic and develops asymptotic normality result for it. The extension of the methods

to mulit-group case is taken up in Section 5.4. A simulation study is carried out

in Section 5.5 to numerically show the performance of the new test in comparison

with competing methods. Section 5.6 uses high-dimensional Electroencephalograph

(EEG) data to illustrate the application of the new rank-method. Discussions and

some conclusions are summarized in Section 5.7. All proofs and technical details are

placed in the Appendix.

5.2 High-Dimensional Quadratic Forms in Ranks

The approach we follow in this Chapter seeks rank-based estimate of the relative

summary effects and uses these estimates to construct a high-dimensional asymptotic

test. It would be natural to estimate ωik by

ω̂ik =

∫
ĤdF̂ik

where F̂ik = 1
2
(F̂+

ik +F̂−ik ) where F̂+
ik and F̂−ik are the right- and left-continuous versions

of the empirical distribution function and Ĥ(x) = N−1
∑p

k=1[n1F̂1k(x) + n2F̂2k(x)].

More specifically, F̂ik(x) = n−1i
ni∑
j=1

c(x − Xijk) where c(u) = {c−(u) + c+(u)}/2,

c−(u) = I(u > 0) and c+(u) = I(u ≥ 0) are the normalized, left-continuous and

right-continuous, respectively, versions of the counting function.

Define the asymptotic rank transforms (ART) Yij and rank transform (RT) Ŷij

by Yijk = H(Xijk) and Ŷijk = Ĥ(Xijk), respectively. Let Rijk be the (mid-) rank of

Xijk among all the N observations

{X111, . . . , X1n11, X211, . . . , X2n21, . . . , X11p, . . . , X1n1p, X21p, . . . , X2n2p}.
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It is easy to see that the rank transforms are related to the ranks by the relation

Ŷijk = N−1(Rijk − 1
2
). After some simplification, the estimator ω̂ik can be expressed

as

ω̂ik = n−1i

ni∑
j=1

Ŷijk =
1

N
(Ri·k − 1/2)

where Ri·k = n−1i
ni∑
j=1

Rijk. It can be shown that ω̂ik is L2 consistent for ωik under the

asymptotic framework that n1 and n2 diverge but p is fixed.

Suppose T (R) is a test statistic defined in terms of the ranks Rijk and let T (Y) and

T (Ŷ) be the same test statistic calculated based on the asymptotic rank transforms

Yijk and rank transforms Ŷijk, respectively. For our purpose, the test statistic will

be a quadratic form in R. To achieve weak convergence, we need the within-subject

dependence to be regulated. Using a regularity condition on dependence, we prove

a general result, which is useful to establish asymptotic equivalence of quadratic

forms in rank transforms Ŷijk and the analogous quadratic forms in asymptotic rank

transforms Yijk under the high-dimensional asymptotic framework.

5.2.1 Regularity Condition on Dependence

A sequence of random variables X1, X2, . . . is said to be an α-mixing (strong mixing)

sequence (process) with mixing coefficients {αk, k = 1, 2, . . .}, if

sup
A∈Al,B∈Bk,l,l∈Z+

|P (A ∩B)− P (A)P (B)| ≤ αk, as k →∞.

where

Al = σ{X1, . . . , Xl}, Bk,l = σ{Xl+k, Xl+k+1, . . .}

and σ(·) denotes the σ-field generated by the random variables. Although this model

for dependence is particularly suitable for repeated measures data, it can also be mo-

tivated for more general data (Xu et al., 2016). In repeated measures data, measure-

ments corresponding to different subjects are independent and those corresponding

to the same subject are assumed to satisfy an α-mixing condition. The α-mixing

condition basically requires the dependence between two observations from the same

subject to decay as the separation between the observations (k) increases.
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Assumed α-mixing property on the process {Xijk, k = 1, . . . , } for any i, j au-

tomatically transfers over to the process {Yijk, k = 1, . . . , }. This fact, proved in

Bradley (2005), is summarized in Lemma 5.2.1 for convenience. As multiple α-

mixing sequences are involved in the lemma, we use identifier of the sequence in

the notation for the mixing coefficient αk as α(X, k) for a given α-mixing sequence

X = {Xk, k ∈ Z}, where Z is a countable index set.

Lemma 5.2.1. (Theorem 5.2 in Bradley, 2005) Suppose that Xi = {Xik, k ∈ Z, }

is a sequence of α-mixing random variables, for each i = 1, 2, 3, . . ., and they are

independent of each other. Suppose that for each k ∈ Z, hk : R × R × R × · · · → R

is a Borel function. Define the sequence U = {Uk, k ∈ Z} of random variables by

Uk = hk(X1k, X2k, X3k, . . .), k ∈ Z. Then for each m ≥ 1, the sequence U is α-mixing

with mixing coefficient α(U ,m) ≤
∑∞

i=1 α(Xi,m).

In applying this lemma to our situation, by its almost everywhere continuity, the

function H(x) is a Borel functions with a single argument. Therefore, the sequence

of ARTs {Yijk, k = 1, . . . , } is an α-mixing process with the same mixing coefficients

as {Xijk, k = 1, . . . , } for each i = 1, 2 and j = 1, . . . , ni.

5.2.2 Asymptotic Equivalence of Quadratic Forms

Due to their simple linear relationship, a test statistic in terms of ranks can be

equivalently expressed in terms of the rank transforms (RT). The ART are asymp-

totic versions of RT at least for large n but fixed p in the sense that the two are

asymptotically close in probability (e.g., Brunner et al., 1999). The next theorem

will characterize the closeness (in the sense of L2-norm) between quadratic forms in

ART and RT for the high-dimensional situation. The principal utility of this result

is that studying the asymptotic properties of quadratic forms in ARTs is relatively

less involved because they are independent for different units (subjects).

Lemma 5.2.2. Suppose that for each i = 1, 2, 3, . . ., Xi = {Xik, k = 1, . . . p} is a

sequence of α-mixing random variables with αk = O(k−5). Suppose these sequences

Xi, i = 1, . . . n are independent of each other with marginal distribution Xik ∼ Fik,
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for k = 1, . . . , p. Let X = (X1, . . . ,Xn)> be a n × p matrix and Y and Ŷ be the

corresponding matrix of same dimension whose components are the asymptotic rank

transforms and rank transforms, respectively, defined in Section 5.2. Let C = (cik)

be an n× n symmetric matrix with diagonals cii = 0. And let

DC =
n∑
i=1

n∑
k=1

|cik| and SC =
n∑
i=1

n∑
k=1

n∑
l=1

|cikcil|+
n∑
i 6=k

c2ik.

Furthermore, let

TN = tr(Ŷ >ω CŶω) = Vec(Ŷω)>(Ip ⊗C)Vec(Ŷω)

and

VN = tr(Y >ω CYω) = Vec(Yω)>(Ip ⊗C)Vec(Yω)

be two traces of p × p-matrices of quadratic forms generated by matrix C, where

Yω = Y −ω, Ŷω = Ŷ −ω and ω is the n× p matrix of the expectations ωik = E(Yik)

for i = 1, . . . , n, and k = 1, . . . , p. Then,

E{(TN − VN)2} = O(D2
C/n

2) +O(SC/n),

as n, p→∞, while p/n→ η ∈ (0,∞).

The zero diagonal condition on the quadratic matrix C typically holds for quadratic

forms arising from asymptotic manipulations of MANOVA and ANOVA decompo-

sitions (e.g., Akritas and Arnold, 2000). Asymptotic equivalence between quadratic

forms of RT and ART has been considered by Bathke and Lankowski (2005) for

univariate case and Bathke and Harrar (2008) in the multivariate case but small

and bounded p. The major improvement established in Lemma 5.2.2 is covering the

high-dimensional situation.

5.3 Test Statistic

A popular nonparametric test statistic literature (Brunner et al., 1997, 1999) is

the ANOVA-type statistic. The test considers N ||ω̂1 − ω̂2||2 . More precisely, the

ANOVA-type statistic is defined by

Q =
1

N
||R1· −R2·||2
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where Ri· = (Ri·1, . . . , Ri·p)
>. Besides its simplicity, the ANOVA-type test has fa-

vorable small sample properties in terms of controlling Type I error rate and having

power advantage over the popular Wald-type test (Brunner et al., 1997). When the

dimension p is fixed, asymptotic theory seeks to establish root-n asymptotic equiva-

lence between centered versions of ω̂ and averages of independent random variables

where standard limit theorem are applied on the later (e.g., Akritas et al., 1997;

Brunner et al., 1997, 1999). This manipulation is not applicable when the dimension

as well as sample size go to infinity.

In the high-dimensional inference, the ANOVA-type test as defined above is not

particularly convenient to work with. Let R = (R11, . . . ,R1n1 ,R21, . . . ,R2n2) where

Rij = (Rij1, . . . , Rijp)
>. Harrar and Bathke (2008) studied the difference between

the rank-based quadratic forms H(R) and G(R), where

H(R) = R

[(
2⊕
i=1

1

ni
1ni

)
P2

(
2⊕
i=1

1

ni
1>ni

)]
R> =: RC1R

> and

G(R) =
1

2
R

[
2⊕
i=1

1

ni(ni − 1)
Pni

]
R> =: RC2R

>

(5.2)

to construct a valid nonparametric test. Here,
r⊕
i=1

Ai is the block-diagonal matrix

whose diagonal blocks are A1, . . . , Ar. Interestingly, 2tr(H(R)−G(R)) is the same

as the test statistic

Tn(R) =

∑n1

i 6=jR
>
1iR1j

n1(n1 − 1)
+

∑n2

i 6=jR
>
2iR2j

n2(n2 − 1)
− 2

∑n1

i=1

∑n2

j=1R
>
1iR2j

n1n2

,

studied by Chen and Qin (2010) but defined on (mid-) ranks. When applied to

the original data set X, Chen and Qin (2010) noted that the L2 based statistic

of Bai and Saranadasa (1996) and the ANOVA-type statistic contain terms that

are not useful for testing mean differences in high dimensions but rather complicate

theoretical derivations. Therefore, the difference in 2tr(H − G) exclude terms that

are asymptotically negligible, whereby making the asymptotic manipulation tractable

without adverse consequence on performance. Furthermore, E(H(X)−G(X)) = 0

if and only if E(X1i) = E(X2i). Motivated by these, we adapt the test statistic of
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Chen and Qin (2010) and define it in terms of (mid-) ranks to make it useful for the

nonparametric hypothesis.

Unlike most high-dimensional tests, no assumption on the covariances nor higher

moments of the data are required in this Chapter. Indeed, none of the moments have

to exist for the validity of the asymptotic results derived in this Chapter. To establish

the weak convergence theory, however, we require the dependence among the different

variables to be regulated by imposing a local dependence structure in the form of a

strong mixing condition. Similar assumptions are also required, for example, in Cai

and Xia (2014); Gregory et al. (2015); Xu et al. (2016) among others. Of particular

note, Xu et al. (2016) provide a motivation for such type of condition in context of

Genome-Wide Association Studies (GWAS).

Using the assumed regularity condition on the dependence, we establish a general

result useful to establish asymptotic equivalence of quadratic forms in terms of the

RT Ŷijk and the analogous quadratic forms in ART Yijk under the high-dimensional

asymptotic framework. This result will be instrumental because it allows us to estab-

lish the equivalence between the rank-based statistics Tn(R) and its analog based on

the asymptotic rank transform Tn(Y ). Note that the later one is a function H(Xijk),

for all i, j, k which are independent over for different values of i or j. Furthermore, H

is the average of all marginal distribution functions. That is, it is uniformly bounded

by 1, which guarantees the existence of all its moments. These two facts make Tn(Y )

amenable for treatment by existing high-dimensional results (e.g., Chen and Qin,

2010; Hu et al., 2017) under the relaxed conditions given in Chapter 4, cited as Kong

and Harrar (2018a).

Denote ωi = E(Yi1) and Σi = Var(Yi1) for i = 1, 2. Defining Y c
ij = Yij − ωi,

Ŷ c
ij = Ŷ c

ij − ωi and Rc
ij = Rij − ωR,i, where ωR,i = E[Rij] = Nωi − 1

2
1p. Let

σ2
n = Var(Tn(Y c)) =

2

n1(n1 − 1)
tr(Σ2

1) +
2

n2(n2 − 1)
tr(Σ2

2) +
4

n1n2

tr(Σ1Σ2).

It is obviously that

Tn(Rc)

N2
= Tn(Ŷ c) = Tn(Ŷ ), under H0.
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Before we state the asymptotic results for the rank-based test, we list some con-

ditions below for ease of reference.

D1: As p → ∞, Xij = {Xijk, k = 1, . . . , p} is an α-mixing random vector with

αm = O(m−5) as p→∞.

D2: The sample sizes diverge proportionally, i.e. n1/n → κ ∈ (0, 1), where n =

n1 + n2.

D3: The covariance matrices satisfy the regularity condition tr(Σi1Σi2Σi3Σi4) =

o [tr2{(Σ1 + Σ2)
2}] for i1, i2, i3, i4 ∈ {1, 2}.

D4: The mean vectors ω1 and ω2 satisfy (ω1−ω2)
>Σi(ω1−ω2) = o [tr(Σ1 + Σ2)

2].

D5: The covariance matrix Σi, i = 1, 2, satisfies tr{(Σ1 + Σ2)
2)} → ∞ as p→∞.

D6: p/n→ η ∈ (0,∞) as n, p→∞.

As it turns out, assumption D1 and D6 are sufficient to establish high-dimensional

asymptotic equivalence between the test statistics defined in terms of ranks and de-

fined in terms of ARTs.

Theorem 5.3.1. Under assumptions D1 and D6,

Tn(Ŷ c)− Tn(Y c) = op(σn), as n, p→∞.

Recall that, for each i = 1, 2, Yij are iid with mean ωi and covariance Σi for

j = 1, . . . , ni. The components of Yij are bounded random variables and, hence,

moments of any order exist. Therefore, by applying Theorem 4.3.3 (Theorem 3.3 of

Kong and Harrar, 2018a), we get asymptotic normal distribution for T (Yc).

Theorem 5.3.2. Under assumptions D1–D6,

σ−1n Tn(Y c)
D−→ N (0, 1), as n, p→∞.

Theorems 5.3.1 and 5.3.2 afford us asymptotic normal distribution for the rank

based test statistic T (R).
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Theorem 5.3.3. Under the null hypothesis and assumptions D1–D6,

Tn(Ŷ )

σn

D−→ N (0, 1), as n, p→∞.

In terms of the ART vectors Yij, unbiased and consistent estimator of σ2
n can be

constructed by consistently estimating tr(Σ2
i ) and tr(Σ1Σ2). These estimators can

be obtained by using the results in Kong and Harrar (2018a). Define

t̂r(Σ2
i ) =

1

(ni)4

ni∑
k1 6=k2 6=l1 6=l2

tr
{

(Yik1 − Yik2)(Yik1 − Yik2)>

(Yil1 − Yil2)(Yil1 − Yil2)>
}
, (5.3)

and

̂tr(Σ1Σ2) =
1

(n1)2(n2)2

n1∑
k1 6=k2

n2∑
l1 6=l2

tr
{

(Y1k1 − Y1k2)(Y1k1 − Y1k2)
>

(Y2l1 − Y2l2)(Y2l1 − Y2l2)
>
}
, (5.4)

where (ni)k = ni!/(ni − k)!.

Theorem 5.3.4. An unbiased and, under assumptions D1–D6, a ratio-consistent

estimator of σ2
n is

σ̂2
n =

2

n1(n1 − 1)
t̂r(Σ2

1) +
2

n2(n2 − 1)
t̂r(Σ2

2) +
4

n1n2

̂tr(Σ1Σ2).

The fact that the ART random vectors Yij are unobservable limits the application

of this estimator in practice. A reasonable approach to fill the gap is to replace the

ARTs Yij by the RT Ŷij, their empirical version, to get a computable estimator. The

resulting estimator of σ2
n will be denoted by σ̂2

n(Ŷ )). Therefore, for an approximate

size α test, we propose the test that rejects H0 if Tn(Ŷ ))/σ̂n(Ŷ )) > zα where zα is

the 1− α quantile of the standard normal distribution.

5.4 Multi-group Test Statistic

To facilitate a formal extension of the two-group test to a multi-group situation, we

recall that the two-group test statistic can be expressed as Tn(R) = 2 tr(H(R) −
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G(R)) where H(R) and G(R) are as defined in (5.2). The matrices C1 and C2 can

be formally extended to the a-group situation as

C1 =

(
a⊕
i=1

1

ni
1ni

)
Pa

(
a⊕
i=1

1

ni
1ni

)>
and C2 =

(
1− 1

a

) a⊕
i=1

1

ni(ni − 1)
Pni . (5.5)

Now let Xij = (Xij1, . . . , Xijp)
> be the jth observation vector in the ith group and

assume Xij are iid with joint distribution Fi for i = 1, . . . , a and j = 1, . . . , ni. With

the matrices in (5.5), it can be shown that a formal extension of the test statistic to

the a-group situation is

Ta,n(R) = a tr(H(R)−G(R))

= (a− 1)
a∑
i=1

∑ni
k 6=lR

>
ikRil

ni(ni − 1)
− 2

a∑
i<i1

∑ni
k=1

∑ni1
l=1R

>
ikRi1l

nini1

where Rij = (Rij1, . . . , Rijp)
> and Rijk is the (mid-) rank of Xijk among all N = n×p

observations and n = n1 + · · ·+ na. Along the same lines we get asymptotic normal

distribution analogous to Theorem 5.3.2 in the a-group situation with σ2
n defined by

σ2
n =

a∑
i=1

2(a− 1)2

ni(ni − 1)
tr(Σ2

1) +
a∑
i<j

4

n1n2

tr(ΣiΣj).

where Σi = Var(Yi1), Yi1 = (H(Xi11), . . . , H(Xi1p))
> and

H(x) = N−1
p∑

k=1

a∑
i=1

niFik(x).

With estimator of σ2
n also defined analogously, an approximate size α test can be

constructed.

5.5 Simulation Study

In this section, we report results of simulation study intended to compare the empir-

ical sizes and powers of the rank-based test, the CQ test defined in Chen and Qin

(2010) and the SK test defined in Srivastava and Kubokawa (2013). Data for the ith

group is generated from:

(i) Multivariate normal distribution with mean µi and covariance Σi, N (µi,Σi).
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(ii) Multivariate t distribution with location vector µi, and scale matrix Σi but

degrees of freedom fixed at ν1 = 6 and ν2 = 8 in groups 1 and 2, respectively.

(iii) Contaminated multivariate normal distribution with pdf

fi(x|µi,Σi, αi, ηi) = αiφ(x|µi,Σi) + (1− αi)φ(x|µi, ηiΣi)

where φ(x|µ,Σ) is the pdf of the multivariate normal N (µ,Σ). The other

parameters are fixed at η1 = 5, α1 = 0.5, η2 = 3, and α2 = 0.1

(iv) Multivariate Cauchy distribution with location vector µi and scale matrix Σi

These distributions represent light, moderately-heavy and very-heavy tailed distribu-

tions with the possibility of getting outliers.

The empirical size of the rank-based, CQ and SK tests are presented in Tables

5.1–5.4 in which we fix µ1 = µ2 = 0p and consider three settings for Σ1 and Σ2, here

in after denoted by Σl1 and Σl2, respectively, for l = 1, 2, 3. The three settings are:

l = 1: Σ11 = 0.5Ip + 0.5Jp and Σ12 = 0.9Ip + 0.1Jp,

l = 2: Σ21 = (0.5|j−j1|) and Σ22 = (0.1|j−j1|),

l = 3: Σ31 = (0.5|j − j1|−1/2) and Σ32 = (0.1|j − j1|−1/2).

The sizes as well as powers are calculated for 10, 000 replications and the actual level

of significance is set at α = 0.05.

From Tables 5.1–5.4, the performance of CQ and the new rank-based method are

about the same for all covariance structures and population distributions except that

the rank method show a liberal tendency when the covariance between observations

is constant or decays at a slow rate (k−1/2). Regardless, the quality of approximation

generally improves as the sample size and dimension increase. The hypothesis for the

CQ method is equality of mean vectors where means do not even exist for the Cauchy

distribution. Despite all the strong moment assumption made, its performance in

terms of the empirical size is comparably well to the rank-based method. SK is

designed for equal covariance situation. However, it showed reasonable performance
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Table 5.1: Achieved Type I error rate for multivariate normal distribution with µ1 =
µ2 = 0p and three different pairs of (Σl1,Σl2) for l = 1, 2, 3.

Σ11 and Σ12 Σ21 and Σ22 Σ31 and Σ32

p (n1, n2) CQ SK Rank CQ SK Rank CQ SK Rank
(50, 90) 0.074 0.089 0.077 0.061 0.062 0.063 0.062 0.069 0.061

50 (100,150) 0.068 0.059 0.071 0.059 0.055 0.057 0.068 0.068 0.067
(200,240) 0.072 0.042 0.078 0.055 0.047 0.057 0.063 0.058 0.062
(50, 90) 0.074 0.074 0.075 0.057 0.060 0.060 0.059 0.069 0.061

100 (100,150) 0.072 0.056 0.076 0.061 0.061 0.063 0.065 0.070 0.064
(200,240) 0.066 0.028 0.070 0.059 0.054 0.059 0.060 0.057 0.059
(50, 90) 0.072 0.057 0.075 0.058 0.061 0.061 0.066 0.082 0.067

200 (100,150) 0.071 0.040 0.074 0.058 0.058 0.057 0.063 0.070 0.062
(200,240) 0.070 0.023 0.074 0.057 0.053 0.058 0.068 0.067 0.069
(50, 90) 0.077 0.049 0.079 0.056 0.057 0.055 0.064 0.082 0.062

400 (100,150) 0.073 0.031 0.077 0.055 0.056 0.055 0.057 0.069 0.059
(200,240) 0.070 0.017 0.074 0.057 0.053 0.057 0.060 0.062 0.059
(50, 90) 0.073 0.032 0.076 0.052 0.050 0.053 0.060 0.075 0.058

800 (100,150) 0.066 0.021 0.070 0.055 0.054 0.057 0.060 0.071 0.060
(200,240) 0.069 0.010 0.073 0.056 0.052 0.054 0.061 0.063 0.061
(50, 90) 0.077 0.024 0.080 0.053 0.047 0.052 0.059 0.075 0.061

1600 (100,150) 0.075 0.015 0.077 0.053 0.050 0.051 0.061 0.072 0.061
(200,240) 0.072 0.007 0.076 0.049 0.045 0.049 0.059 0.059 0.057

Table 5.2: Achieved Type I error rate for multivariate t distribution with µ1 = µ2 =
0p, degrees freedom ν1 = 6, ν2 = 8, and three different pairs of (Σl1,Σl2) for l = 1, 2, 3.

Σ11 and Σ12 Σ21 and Σ22 Σ31 and Σ32

p (n1, n2) CQ SK Rank CQ SK Rank CQ SK Rank
(50, 90) 0.073 0.091 0.077 0.060 0.064 0.061 0.069 0.076 0.065

50 (100,150) 0.071 0.065 0.075 0.064 0.064 0.065 0.065 0.068 0.064
(200,240) 0.069 0.041 0.073 0.064 0.057 0.064 0.063 0.057 0.063
(50, 90) 0.077 0.078 0.075 0.063 0.065 0.062 0.068 0.079 0.066

100 (100,150) 0.071 0.053 0.078 0.061 0.061 0.061 0.059 0.067 0.059
(200,240) 0.072 0.036 0.081 0.059 0.051 0.058 0.061 0.055 0.062
(50, 90) 0.069 0.055 0.074 0.059 0.048 0.057 0.064 0.071 0.064

200 (100,150) 0.070 0.041 0.076 0.059 0.052 0.060 0.061 0.062 0.059
(200,240) 0.070 0.025 0.073 0.059 0.046 0.062 0.065 0.057 0.066
(50, 90) 0.073 0.048 0.076 0.057 0.033 0.057 0.068 0.060 0.063

400 (100,150) 0.071 0.031 0.080 0.056 0.039 0.059 0.059 0.055 0.061
(200,240) 0.071 0.018 0.074 0.055 0.036 0.051 0.059 0.049 0.062
(50, 90) 0.073 0.033 0.074 0.056 0.013 0.054 0.058 0.036 0.058

800 (100,150) 0.071 0.022 0.074 0.053 0.018 0.054 0.058 0.042 0.056
(200,240) 0.067 0.010 0.073 0.055 0.018 0.054 0.056 0.037 0.056
(50, 90) 0.077 0.023 0.080 0.052 0.004 0.052 0.060 0.020 0.060

1600 (100,150) 0.075 0.013 0.075 0.050 0.005 0.048 0.063 0.028 0.062
(200,240) 0.068 0.007 0.075 0.052 0.006 0.053 0.059 0.024 0.058
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Table 5.3: Achieved Type I error rate for multivariate contaminate normal distribu-
tion with µ1 = µ2 = 0p, η1 = 5, α1 = 0.5, η2 = 3, α2 = 0.1, and three different pairs
of (Σl1,Σl2) for l = 1, 2, 3.

Σ11 and Σ12 Σ21 and Σ22 Σ31 and Σ32

p (n1, n2) CQ SK Rank CQ SK Rank CQ SK Rank
(50, 90) 0.072 0.110 0.078 0.063 0.276 0.066 0.073 0.219 0.079

50 (100,150) 0.069 0.075 0.078 0.066 0.189 0.067 0.067 0.151 0.073
(200,240) 0.068 0.043 0.080 0.066 0.102 0.064 0.062 0.085 0.071
(50, 90) 0.071 0.096 0.075 0.065 0.391 0.065 0.065 0.284 0.070

100 (100,150) 0.073 0.067 0.082 0.056 0.243 0.056 0.067 0.187 0.073
(200,240) 0.069 0.036 0.081 0.060 0.120 0.060 0.060 0.093 0.069
(50, 90) 0.071 0.079 0.079 0.057 0.543 0.058 0.066 0.393 0.071

200 (100,150) 0.072 0.050 0.079 0.059 0.356 0.058 0.062 0.253 0.073
(200,240) 0.071 0.028 0.082 0.060 0.144 0.058 0.064 0.113 0.073
(50, 90) 0.079 0.069 0.087 0.054 0.739 0.054 0.062 0.538 0.070

400 (100,150) 0.073 0.040 0.081 0.057 0.521 0.058 0.063 0.344 0.070
(200,240) 0.070 0.020 0.076 0.059 0.189 0.057 0.061 0.135 0.068
(50, 90) 0.073 0.047 0.079 0.053 0.896 0.057 0.059 0.711 0.065

800 (100,150) 0.072 0.028 0.077 0.049 0.702 0.052 0.064 0.482 0.070
(200,240) 0.070 0.011 0.078 0.054 0.247 0.054 0.064 0.168 0.072
(50, 90) 0.072 0.033 0.078 0.047 0.978 0.049 0.061 0.876 0.065

1600 (100,150) 0.071 0.016 0.081 0.054 0.882 0.053 0.060 0.654 0.066
(200,240) 0.066 0.007 0.076 0.052 0.316 0.049 0.059 0.209 0.065

Table 5.4: Achieved Type I error rate (×100%) for multivariate Cauchy distribution
with µ1 = µ2 = 0p, and three different pairs of (Σl1,Σl2) for l = 1, 2, 3.

Σ11 and Σ12 Σ21 and Σ22 Σ31 and Σ32

p (n1, n2) CQ SK Rank CQ SK Rank CQ SK Rank
(50, 90) 0.071 0.010 0.070 0.056 0.000 0.060 0.057 0.001 0.066

50 (100,150) 0.071 0.006 0.070 0.051 0.000 0.065 0.056 0.000 0.066
(200,240) 0.070 0.003 0.073 0.053 0.000 0.066 0.060 0.000 0.062
(50, 90) 0.071 0.007 0.070 0.051 0.000 0.060 0.053 0.000 0.063

100 (100,150) 0.073 0.005 0.075 0.049 0.000 0.061 0.056 0.000 0.059
(200,240) 0.073 0.003 0.074 0.051 0.000 0.059 0.054 0.000 0.063
(50, 90) 0.075 0.004 0.075 0.048 0.000 0.057 0.054 0.000 0.057

200 (100,150) 0.075 0.002 0.073 0.049 0.000 0.057 0.054 0.000 0.058
(200,240) 0.074 0.001 0.075 0.048 0.000 0.056 0.055 0.000 0.063
(50, 90) 0.072 0.004 0.074 0.046 0.000 0.055 0.054 0.000 0.061

400 (100,150) 0.074 0.001 0.072 0.049 0.000 0.058 0.054 0.000 0.064
(200,240) 0.073 0.000 0.069 0.048 0.000 0.056 0.049 0.000 0.055
(50, 90) 0.069 0.001 0.076 0.045 0.000 0.052 0.051 0.000 0.063

800 (100,150) 0.079 0.001 0.074 0.046 0.000 0.052 0.051 0.000 0.058
(200,240) 0.071 0.001 0.073 0.046 0.000 0.056 0.054 0.000 0.056
(50, 90) 0.075 0.001 0.075 0.046 0.000 0.053 0.051 0.000 0.060

1600 (100,150) 0.072 0.000 0.072 0.044 0.000 0.053 0.051 0.000 0.059
(200,240) 0.068 0.000 0.071 0.046 0.000 0.049 0.054 0.000 0.057
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for the lighter tail (multivariate normal and t with df ≥ 6) distributions but can not

be recommended for heavy tailed populations.

The power plots of the rank-based test, CQ test and SK test are displayed in

Figures 5.1–5.3. To keep the investigation manageable, while showing the essential

features, we limit the power plots to multivariate t, multivariate contaminated-normal

and multivariate Cauchy populations. For the alternative points, we consider µ1 = 0p

and µ2 = (µ21, . . . , µ2p)
> where µ2k are iid Uniform(0, δ) for δ ∈ {0, 0.1, 0.2, . . . , 1}.

In the left panel of each figure, the covariance structure l = 2 (Σ1 = Σ21 and

Σ2 = Σ22) are used and in the right panel the covariance structure l = 3 (Σ1 = Σ31

and Σ2 = Σ32) are used. The sample sizes will be fixed at n1 = 100 and n2 = 150,

but three different dimensions p = 50, 100 or 200 are investigated.

Figure 5.1: Power comparison of the test for the locations when a = 2, for p =
50, 100 or 200, and n1 = 100 and n2 = 150. Data are generated from multivariate t
distribution with µi and Σi with degrees of freedom νi for i = 1, 2. In both plots,
µ1 = 0p and µ2 = (µ21, . . . , µ2p)

> where µ2k are iid Uniform(0, δ); ν1 = 6 and ν2 = 8.
In the left panel, Σ1 = (0.5|j−j1|) and Σ2 = (0.1|j−j1|) are used. In the right panel,
Σ1 = (0.5|j − j1|−1/2) and Σ2 = (0.1|j − j1|−1/2) are used.
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Figure 5.2: Power comparison of the test for the locations when a = 2, for p =
50, 100 or 200, and n1 = 100 and n2 = 150. Data are generated from multivariate
contaminate normal distribution with µi, Σi, ηi and αi for i = 1, 2. In both plots,
µ1 = 0p and µ2 = (µ21, . . . , µ2p)

> where µ2k are iid Uniform(0, δ); η1 = 5 and η2 = 3;
α1 = 0.5 and α2 = 0.1. In the left panel, Σ1 = (0.5|j−j1|) and Σ2 = (0.1|j−j1|) are
used. In the right panel, Σ1 = (0.5|j − j1|−1/2) and Σ2 = (0.1|j − j1|−1/2) are used.
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It is clear from Figure 5.1 that the performances of all the three methods (CQ, SK

and rank-based) are comparably well for the lighter tail (multivariate t with df ≥ 6)

distribution, but rank-based method has a slight edge. For the contaminated-normal

distribution (Figure 5.2), SK shows a liberal tendency (see also Table 5.3), but the

other two perform well. Here, rank-method has a more pronounced edge over CQ.

For Cauchy distributions, the rank-based method which does not require existence

of any moments of the population shows an overwhelming power advantage over the

other two methods. For all the three distributions, the faster decaying covariances in

structure l = 2 yield higher power compared to the slower decaying ones in structure

l = 3. Furthermore, for the alternatives considered in this simulation, larger values

of p lead to higher powers than a smaller value of p.
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Figure 5.3: Power comparison of the test for the locations when a = 2, for p = 50, 100
or 200, and n1 = 100 and n2 = 150. Data are generated from multivariate Cauchy
distribution with µi, Σi, for i = 1, 2. In both plots, µ1 = 0p and µ2 = (µ21, . . . , µ2p)

>

where µ2k are iid Uniform(0, δ). In the left panel, Σ1 = (0.5|j−j1|) and Σ2 = (0.1|j−j1|)
are used. In the right panel, Σ1 = (0.5|j − j1|−1/2) and Σ2 = (0.1|j − j1|−1/2) are
used.
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5.6 Real Data Application

The Electroencephalograph (EEG) data1 found at the University of California-Irvine

Machine Learning Repository was from a large study to examine EEG correlates

of genetic predisposition to alcoholism. Sixty-four electrodes were used to measure

Event-Related Potentials (ERP) recorded 256 times for one second. Each channel

(electrode) has name identifying the location of the electrode on the scalp. The

names are made up of a letter identifying the anatomical location of the placement

of the electrode (F–frontal lobe, T–temporal lobe, P–parietal lobe and O–occipital

lobe) and a number identifying the hemisphere of the brain (odd number – the left

hemisphere and even number – the right hemisphere and letter z (zero) is used for

1Web Address: https://archive.ics.uci.edu/ml/datasets/EEG%2BDatabase
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the mid-line). The exception to this naming rule is that, due to their placement and

depending on the individual, the “C” electrodes can exhibit/represent EEG activity

more typical of Frontal, Temporal, and some Parietal-Occipital activity.

ERP reading from an electrode indicates the level of electrical activity (in volts)

in the region of the brain where the electrode is placed. There are two groups of

subjects in the study: alcoholic and control. Each subject was exposed to either a

single stimulus (S1) or to two stimuli (S1 and S2) which were pictures of objects

chosen from a picture set. For a more detailed account of the EEG data, see Harrar

and Kong (2016). In this Chapter, we analyze the data only for the single stimulus

(S1) exposure using CQ and the rank method.

FDR adjusted p-values for channel-by-channel results of CQ test and rank-based

method are displayed in Figure 5.4. In the left panel, bar plot of the FDR adjusted

p-values are shown. The horizontal reference line (black dashed line) marks α = 0.05

level of significance. From panel (a), we note that the rank-based method declares the

brain activity of one more channel to be significantly different compared to the CQ

method. Considering the power advantage the rank-method demonstrated in the sim-

ulation study, its results are more reliable and trustworthy. The minor disagreement

aside, the locations where differences are detected by rank-method are displayed in

panel (b) to put the results in perspective. The picture depicts the scalp of a human

viewed from the top, the triangle marking the nose. The locations of the electrodes

are indicated by bubbles. The color of the bubbles indicates whether the brain ac-

tivity pattern for that channel is significantly dissimilar (red) or not significantly

different (green).

Interestingly, the results show a markedly-distinct patch of significant difference

in brain activity in the central part of the frontal lobe of the brain. This section of

the frontal lobe is responsible for cognitive function, emotion control, self awareness,

judgement and talking – activities known to be affected by alcohol at least temporar-

ily. No significance difference was found in the outer peripheral channels of the frontal

lobe. Significant difference occurs only on some the C channels. No significant differ-

ence was detected on the C channels that are expected to show frontal-type activity
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Figure 5.4: Channel-by-Channel results for EEG data for testing equality in brain
activity between alcoholic and control subjects. (a) Bar plots of FDR adjusted p-
values for CQ and rank-based methods (b) Locations (on the scalp) of significant
results for rank-based method. Green (Red) means that the the difference between
the two groups is statistically significant (insignificant).
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(a) CQ and Rank methods (b) Rank method

except on channels C4 and C6. However, there is always significant difference on

channels where parental or occipital type activity is expected. With the exception

of T7, the other three temporal lobe channels (T8, TP7 and TP8) are showing sig-

nificant difference. The activity levels in all the parietal or occipital lobes channels

are significantly different between the two groups. These two lobes largely control

temperature, taste, touch, movement and vision functions – functions that are likely

to sustain effects from alcohol use. In summary, except in the peripheral areas of

the frontal lobe, alcohol use is associated with change in the electrical activity of the

brain.

5.7 Discussion and Conclusion

A fully nonparametric high-dimensional rank-based method for comparison of treat-

ments or populations is developed. No assumption is made on the distribution of the

population except that the dependence between the variables are required to satisfy
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some mild conditions. The assumptions, for example, hold for linear process type

dependence or dependence that decays polynomially fast. The numerical results have

unequivocally shown that when data has heavy tails to preclude existence of mo-

ments, then the rank-method has a superior power. From data analysis perspective,

the application of this method would be a safe strategy when data is in ordinal scale

or exhibits outliers. From theoretical stand point, when none of the moments can

be assumed to exist, formulation of hypothesis in terms of mean vectors does not

make much sense. This Chapter formulates hypothesis in terms of the nonparametric

measure of effect, which is always well defined whether the moments or densities exist

or not.

The theory is worked out in detail for the two-group (two-sample) situation and

the extension to the multi-group case is outlined. The detail derivation in the later

case essentially follows along the same lines. The formal extension to a factorial

structure is not difficult to envision. The details, with the necessary assumptions,

need to be carefully examined. We defer this topic for a future investigation.

5.8 Appendix: Proofs

For notation simplification, denote X1j as Xj and X2j as Xn1+j. Let

g1(Xik) = H(Xik)− ωik, g2(Xik) = Ĥ(Xik)−H(Xik),

and

G(Xik, Xi1k1) =
1

N

{
c(Xik, Xi1k1)− Fi1k1(Xik)

}
.

It is obvious that

g2(Xik) =
n∑

i1=1

p∑
k1=1

G(Xik, Xi1k1),

g1 and g2 are bounded by 1 and G is bounded by 1/N . The mean of g1(Xik) is 0 and

that of G(Xik, Xi1k1) can be found by considering the following three cases:
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(i) If i 6= i1, then

E{G(Xik, Xi1k1)} =
1

N
E
[
E
{
c(Xik, Xi1k1)− Fi1k1(Xik)|Xik

}]
=

1

N
E
{1

2
P (Xi1k1 = Xik|Xik) + P (Xi1k1 < Xik|Xik)− Fi1k1(Xik)

}
=

1

N
E{Fi1k1(Xik)− Fi1k1(Xik)} = 0

(ii) If i = i1 and k = k1, then G(Xik, Xik) = 1
2
− Fik(Xik), which has mean 0.

(iii) If i = i1 but k 6= k1, then G(Xik, Xik1) is bounded by 1
N

, so is its mean.

Proof of Lemma 5.2.2. Using a decomposition similar to Bathke and Lankowski

(2005) (seel also, Wang and Akritas, 2010b),

TN = Vec(Ŷω)>(Ip ⊗C)Vec(Ŷω)

= Vec(Ŷ − Y + Y − ω)>(Ip ⊗C)Vec(Ŷ − Y + Y − ω)

= VN + 2Vec(Ŷ − Y )>(Ip ⊗C)Vec(Y − ω) + Vec(Ŷ − Y )>(Ip ⊗C)Vec(Ŷ − Y )

= VN + 2tr
{

(Ŷ − Y )>C(Y − ω)
}

+ tr
{

(Ŷ − Y )>C(Ŷ − Y )
}
,

we have

E{(TN − VN)2} ≤ 8E
[
tr2
{

(Ŷ − Y )>C(Y − ω)
}]

+ 2E
[
tr2
{

(Ŷ − Y )>C(Ŷ − Y )
}]
.

Therefore, it will be sufficient to show that

E
[
tr2
{

(Ŷ − Y )>C(Y − ω)
}]

= O(D2
C/n

2) +O(SC/n), (5.6)

and

E
[
tr2
{

(Ŷ − Y )>C(Ŷ − Y )
}]

= O(D2
C/n

2) +O(SC/n). (5.7)

To prove (5.6), observe that

E
[
tr2
{

(Ŷ − Y )>C(Y − ω)
}]

= E
[{ n∑

i 6=j

cij

p∑
k=1

g1(Xik)g2(Xjk)
}2]

≤
n∑

i 6=j,i1 6=j1

|cij| |ci1j1|E
{ p∑
k=1

g1(Xik)g2(Xjk)

p∑
k1=1

g1(Xi1k1)g2(Xj1k1)
}

=
n∑

i 6=j,i1 6=j1

|cij| |ci1j1|
[ p∑
k,k1,k2,k3

n∑
j2,j3

E
{
g1(Xik)g1(Xi1k1)G(Xjk, Xj2k2)G(Xj1k1 , Xj3k3)

}]
.
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Note that the summation of the expectations is zero if the number of different indices

in the set {i, i1, j, j1, j2, j3} is five or six. We consider several cases to evaluate the

term in the square bracket,

p∑
k,k1,k2,k3

∑
j2,j3

E
{
g1(Xik)g1(Xi1k1)G(Xjk, Xj2k2)G(Xj1k1 , Xj3k3)

}
.

Case 1: If j2, j3 are both equal to one of the indices i, i1, j or j1 and i, i1, j, j1 are all

different. The summation of expectations vanishes except when {j2 = i, j3 = i1}

or {j2 = i1, j3 = i}. For each of these situations, the summation is O(1/n2)

because

p∑
k,k1,k2,k3

E
{
g1(Xik)g1(Xi1k1)G(Xjk, Xik2)G(Xj1k1 , Xi1k3)

}
=

p∑
k,k1,k2,k3

E
[
E
{
g1(Xik)G(Xjk, Xik2)g1(Xi1k1)G(Xj1k1 , Xi1k3)|Xjk, Xj1k1

}]
≤ 16

p∑
k,k1,k2,k3

α|k2−k|α|k3−k1|
1

N2
= O(p2/N2) = O(1/n2),

where the last inequality follows from Lemma 2 of Billingsley (2012, Section

27).

Case 2: If j2, j3 are both equal to one of the indices i, i1, j or j1 and there are three differ-

ent numbers in {i, i1, j, j1}. We breakdown this case into two sub-cases: i = i1

or i 6= i1. In any these cases, we can prove that the summation of expectations

(with their respective coefficients cijcij1 , cijci1i or cii1ci1j) is O(p3/N2) = O(1/n).

Case 3: If j2, j3 are both equal to one of the indices i, i1, j or j1 and there are two different

numbers in {i, i1, j, j1}. Itt must be that i = i1 and j = j1, or i = j1 and j = i1

because i 6= j and i1 6= j1 (cij = 0 and ci1j1 = 0). There are four different

possible values for j2 and j3: {j2 = j3 = i}, {j2 = j3 = j}, {j2 = i, j3 = j}, or

{j2 = j, j3 = i}. For each combination, the summation of expectations (with

their corresponding coefficients c2ij or cijcji) is O(p3/N2) = O(1/n) . To see this,

we only prove here the case when i = j1, i1 = j, j2 = j, j3 = i and k, k1, k2, k3 are
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all different. The proofs of the other cases follow along the same lines. Indeed,
p∑

k 6=k1 6=k2 6=k3

g1(Xik)G(Xik1 , Xik3)g1(Xjk1)G(Xjk, Xjk2)

=

p∑
k 6=k1 6=k2 6=k3

E
{
g1(Xik)G(Xik1 , Xik3)

}
E
{
g1(Xjk1)G(Xjk, Xjk2)

}
≤

p∑
k 6=k1 6=k2 6=k3

242

N2
α|k1−k| = O(p3/N2),

while the last inequality follows because

E
{
g1(Xik)G(Xik1 , Xik3)

}
=

1

N
E
[
E
{
g1(Xik)G2(Xik1 , Xik3)|Xik, Xik1

}]
=

1

N
E
[
g1(Xik)

{
FXik3 |Xik,Xik1 (Xik1)− Fik3(Xik1)

}]
≤ 24

N
α
1/2
|k1−k|

by Lemma 3 of Billingsley (2012, Section 27).

Case 4: When j2 equals one of the indices i, i1, j, j1, but j3 is different from all of them,

then Xj3k3 is independent of the others, so the summation of the expectation

vanishes since

E{G(Xj1k1 , Xj3k3)} = 0, for j3 6= j1.

Case 5: When both the indices j2 and j3 are different from i, i1, j and j1, the expectation

vanishes again, except when j2 = j3. In the later case, since g1(Xik) has mean

0, we need to look at the cases {i = i1} or {i 6= i1, i = j1, i1 = j}. In both of

these cases, we have the summation of the expectations to be O(1/n). To see

this, if i = i1,
p∑

k,k1,k2,k3

E
{
g1(Xik)g1(Xik1)

∑
j2 /∈{i,j,j1}

G(Xjk, Xj2k2)G(Xj1k1 , Xj2k3)
}

≤ 4

p∑
k,k1

α|k1−k|
∑

j2 /∈{i,j,j1}

p∑
k2,k3

4

N2
α|k3−k2| = O(np2/N2) = O(1/n).

On the other hand, if i 6= i1, i = j1, i1 = j, then j 6= j1. Therefore, for k2 6= k3,
p∑

k,k1,k2,k3

E
{
g1(Xj1k)g1(Xjk1)

∑
j2 /∈{j,j1}

G(Xjk, Xj2k2)G(Xj1k1 , Xj2k3)
}

≤
p∑

k,k1,k2,k3

∑
j2 /∈{j,j1}

4

N2
α|k3−k2|E

{
g1(Xj1k)g1(Xjk1)

}
= 0,
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and for k2 = k3,

p∑
k,k1,k2

E
{
g1(Xj1k)g1(Xjk1)

∑
j2 /∈{j,j1}

G(Xjk, Xj2k2)G(Xj1k1 , Xj2k2)
}

=

p∑
k,k1,k2

∑
j2 /∈{j,j1}

E
[
E
{
g1(Xj1k)G(Xj1k1 , Xj2k2)|Xj2k2

}
· E
{
g1(Xjk1)G(Xjk, Xj2k2)|Xj2k2

}]
≤

p∑
k,k1,k2

∑
j2 /∈{j,j1}

64(1 + 2/N)2α|k1−k| = O(np2/N2) = O(1/n).

Combining the five cases completes the proof of (5.6)

For the proof of (5.7), we first prove that E{g2(Xik)
4} = O(1/N2). Note that

E{g2(Xik)
4}

=
n∑

i1,i2,i3,i4

p∑
k1,k2,k3,k4

E
{
G(Xik, Xi1k1)G(Xik, Xi2k2)G(Xik, Xi3k3)G(Xik, Xi4k4)

}
=
[ p∑
k1,k2,k3,k4

E
{
G(Xik, Xik1)G(Xik, Xik2)G(Xik, Xik3)G(Xik, Xik4)

}]
+
[ n∑
i1 6=i

p∑
k1,k2,k3,k4

E
{
G(Xik, Xi1k1)G(Xik, Xi1k2)G(Xik, Xi1k3)G(Xik, Xi1k4)

+ 4G(Xik, Xik1)G(Xik, Xi1k2)G(Xik, Xi1k3)G(Xik, Xi1k4)

+ 6G(Xik, Xik1)G(Xik, Xik2)G(Xik, Xi1k3)G(Xik, Xi1k4)
}]

+
[
3

n∑
i1 6=i2 6=i

p∑
k1,k2,k3,k4

E
{
G(Xik, Xi1k1)G(Xik, Xi1k2)G(Xik, Xi2k3)G(Xik, Xi2k4)

}]
= [A] + [B1 +B2 +B3] + [C].

The first summation A is at most O(p4/N4) = O(1/n4) = O(1/N2) since n/p →

η ∈ (0,∞).

The second summation B1 + B2 + B3 is O(np3/N4) = O(1/N2) if the number

of different elements in set {k1, k2, k3, k4} is at most three. If all k1, k2, k3, k4 are
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different, then

B1 =
n∑

i1 6=i

p∑
k1,k2,k3,k4

E
{
G(Xik, Xi1k1)G(Xik, Xi1k2)G(Xik, Xi1k3)G(Xik, Xi1k4)

}
= 24

n∑
i1 6=i

p∑
k1<k2<k3<k4

E
{
G(Xik, Xi1k1)G(Xik, Xi1k2)G(Xik, Xi1k3)G(Xik, Xi1k4)

}
≤ 96

n∑
i1 6=i

p∑
k1<k2<k3<k4

min{αk2−k1 , αk4−k3}
1

N4
= O(np3/N4) = O(1/N2),

B2 = O
{ n∑
i1 6=i

p∑
k1 6=k2<k3<k4

min{αk3−k2 , αk4−k3}
1

N4

}
= O(np3/N4) = O(1/N2),

and

B3 = O
{ n∑
i1 6=i

p∑
k1 6=k2 6=k3<k4

αk4−k3
1

N4

}
= O(np3/N4) = O(1/N2).

The last summation C is O(n2p2/N4) = O(1/N2), if the number of different

elements in set {k1, k2, k3, k4} is at most two. If the number is three, without loss of

generality, we can assume k1 = k2 and

C =
n∑

i1 6=i2 6=i

p∑
k1 6=k3 6=k4

E
{
G(Xik, Xi1k1)G(Xik, Xi1k1)G(Xik, Xi2k3)G(Xik, Xi2k4)

}
≤

n∑
i1 6=i2 6=i

p∑
k1 6=k3 6=k4

E
[
E
{
G(Xik, Xi1k1)G(Xik, Xi1k1)G(Xik, Xi2k3)G(Xik, Xi2k4)|Xik

}]
≤ 4

n∑
i1 6=i2 6=i

p∑
k1 6=k3 6=k4

α|k4−k3|
1

N4
= O(n2p2/N4) = O(1/N2).

If all {k1, k2, k3, k4} are different, then

C =
n∑

i1 6=i2 6=i

p∑
k1 6=k2 6=k3 6=k4

E
{
G(Xik, Xi1k1)G(Xik, Xi1k2)G(Xik, Xi2k3)G(Xik, Xi2k4)

}
≤ 4

n∑
i1 6=i2 6=i

p∑
k1<k2 6=k3<k4

E
[
E
{
G(Xik, Xi1k1)G(Xik, Xi1k2)

·G(Xik, Xi2k3)G(Xik, Xi2k4)|Xik

}]
≤ 64

n∑
i1 6=i2 6=i

p∑
k1<k2 6=k3<k4

αk2−k1αk4−k3
1

N4
= O(n2p2/N4) = O(1/N2).

128



Finally, the result (5.7) can be easily shown by Cauchy-Schwarz inequality as follows:

E
[
tr2
{

(Ŷ − Y )>C(Ŷ − Y )
}]

= E
[{ n∑

i 6=j

cij

p∑
k=1

g2(Xik)g2(Xjk)
}2]

≤
n∑

i 6=j,i1 6=j1

|cij| |ci1j1|
p∑

k,k1=1

{
E{g2(Xik)

4}E{g2(Xjk)
4}E{g2(Xi1k1)

4}E{g2(Xj1k1)
4}
}1/4

= O(D2
Cp

2/N2) = O(D2
C/n

2).

Proof of Theorem 5.3.1. Since

Tn(Ŷ c)− Tn(Y c) = 2tr
{
H(Ŷ )−G(Ŷ )

}
−
{

(H(Y )−G(Y )
}
,

where G and H are given in equation (5.2). By Lemma 5.2.2, we have

E{Tn(Ŷ c)− Tn(Y c)}2 = O(D2
C/n

2) +O(SC/n),

where

C = 2

[(
2⊕
i=1

1

ni
1ni

)
P2

(
2⊕
i=1

1

ni
1>ni

)]
−

[
2⊕
i=1

1

ni(ni − 1)
Pni

]
.

It is easy to calculate that DC = 6 and SC = 1
n1−1 + 1

n2−1 + 1
n1n2

. Therefore,

1

σ2
n

{O(D2
C/n

2) +O(SC/n)} = O(
1

n2σ2
n

) = o(1),

under assumption D5 and D6. That finishes the proof of

1

σn
{Tn(Ŷ c)− Tn(Y c)} = op(1).
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Chapter 6 Summary

In this dissertation, new high-dimensional methods for profile analysis of mean vectors

of repeated measures were introduced. The tests allow the covariance to be equal

or unequal. The methods have favorable numerical performance especially when

the dimension is large. A more general and flexible test statistic was proposed for

a high-dimensional factorial design setting that can be used to make comparisons

among cell means (including profile analysis). We also derived a second-order accurate

asymptotic null distribution and upper quantiles of it. Simulation results clearly

demonstrated the gain improvement from the second-order asymptotic expansions

compared to the first-order (limiting distribution) approximation. The methods work

well under rather general covariance structures.

By dropping the normality assumption, high-dimensional inferential procedures

were proposed and studied in the parametric (mean-base) as well as non-parametric

paradigms. The high-dimensional methods of testing equality of mean vectors under

non-normality were closely investigated. We relaxed the commonly imposed depen-

dence conditions and broaden the scope of the applicability of the results. The theory

is worked out in detail for the two-group situation and the extension to the multi-

group was shown to follow along the same lines. The results can also be formally

extended to multivariate factorial designs. In fully-nonparametric approach, no as-

sumption is made on the distribution of the population except that the dependence

between the variables are required to satisfy some mild conditions. The methods

are rank-based and can be applied for variables that are binary, ordered categorical,

skewed and heavy tailed. The numerical results have clearly shown that when data

comes from distribution with tails too thick for moments to exist, the rank-method

has a superior power.
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