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ABSTRACT OF DISSERTATION 
 
 
 
 

ALTERNATIVELY ACTIVATED MACROPHAGES IN PSEUDOMONAS 
AERUGINOSA PNEUMONIA: 

MODULATION OF THE NF-ΚB SIGNALING PATHWAY  
AND THE IMMUNOMODULATORY ROLE OF ARGINASE-1 

 
Background: Azithromycin polarizes macrophages into an alternative phenotype 
and promotes a regulated immunity. Arginase is an important effector of these 
macrophages believed to play an essential role in decreasing injury and 
promoting repair. 
 
Hypothesis: Decreases in inflammation in response to Pseudomonas aeruginosa 
(PA) pneumonia achieved by polarizing macrophages to an alternative 
phenotype is dependent upon the production of arginase. 
 
Methods: Requirement of arginase was examined by pharmacological inhibition 
using S-(2-boronoethyl)- L-cysteine (BEC) or L-norvaline and by infecting 
arginase-1 conditional knock-out mice (Arg1flox/flox;Lyz2-cre (Arg1∆M)) with PA 
intratracheally. Arg1∆M and control Arg1flox/flox mice were then dosed with 
azithromycin daily via oral gavage beginning four days prior to infection. Analysis 
of weight loss in addition to characterization of inflammatory cells and cytokine 
production via flow cytometry was performed. Macrophages were then stimulated 
with LPS and polarized with IL4/13, IFNγ, or azithromycin plus IFNγ. Western 
blot for signaling mediators, p65 translocation assay, and immunofluorescence 
were performed. 
 
Results: Myeloid arginase-1 deletion resulted in greater morbidity along with 
more severe inflammatory response compared to the Arg1flox/flox mice. Arg1Δm 
mice had greater numbers of neutrophils, macrophages, and lymphocytes in their 
airways and lymph nodes compared to the Arg1flox/flox mice. Conversely, global 
arginase inhibition resulted in greater weight loss along with greater neutrophil 
and macrophage infiltration compared to Arg1Δm mice. BEC and L-norvaline 
treated mice had higher numbers of lymphocytes in their lymph nodes with 
variable effects on airway lymphocyte counts. Azithromycin treatment 
comparably reduced the acute inflammatory responses in both Arg1∆M and 



Arg1flox/flox mice. To evaluate this mechanism, we show in vitro that azithromycin 
decreases NF-κB activation by preventing p65 nuclear translocation and by 
decreasing STAT1 activation in a concentration-dependent manner. These 
effects were reversed with IKKβ inhibition. 
 
Conclusions: Myeloid arginase is essential for control of inflammatory responses in 
PA pneumonia with potentially different effects of other cellular sources 
demonstrated with global arginase inhibition. Azithromycin reduces excessive 
inflammation even in the absence of arginase, potentially through a cross-
inhibitory mechanism involving STAT1 and NF-κB pathways through IKKβ. 
 
 
KEYWORDS: Azithromycin, Alternative Macrophages, Arginase-1, STAT1 and 
NF-κB pathways, Chronic Pseudomonas aeruginosa pneumonia 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 
 
 
 
 
 
 
 

 
 
 

Dalia Haydar 

June 12, 2018 



ALTERNATIVELY ACTIVATED MACROPHAGES IN PSEUDOMONAS 
AERUGINOSA PNEUMONIA: 

MODULATION OF THE NF-ΚB SIGNALING PATHWAY  

AND THE IMMUNOMODULATORY ROLE OF ARGINASE-1 

By 
Dalia Haydar 

Dr. David Feola      

Director of Dissertation 

Dr. David Feola    

Director of Graduate Studies 

07/25/2018    



This thesis work is dedicated to my husband Nader and my sister Katia who have 

been a constant source of support and encouragement during the challenges of 

graduate school and life. I am truly thankful for having you in my life. This work is 

also dedicated to my parents, Abir and Chawki, and my brothers, Mohammed 

and Haydar, who have always loved me unconditionally and whose good 

examples have taught me to work hard for the things that I aspire to achieve. 



iii 

ACKNOWLEDGMENTS 

I am very fortunate to have performed my graduate work at the University of 

Kentucky, College of Pharmacy where I got to know many people to thank for 

contributing to my success. I would first like to thank my advisor, Dr. David J. 

Feola, for giving me a home in his lab and support over the years. I am grateful 

for his guidance and the opportunities he has provided for me. He is incredibly 

caring, perceptive, appreciative, and a great listener and problem solver. His 

qualities were extremely helpful in moving my project forward. Dave is very 

thoughtful and a great scientist, he helped me learn how to think about my 

project and he provided tremendous feedback in writing this dissertation. Dave 

helped me grow as a person and he was a very supportive mentor whom I will 

always look up to in my own professional career.  

I would also like to thank my previous lab mates, Rene Gonzalez and Nayon 

Kang, who helped me with the very long and hectic experiment days and 

provided amazing feedback and support during this process. Additionally, I would 

like to thank Melissa Hollifield who helped me with the infection procedure and 

made sure I had all the mice I needed right on time. I would also like to thank 

Cyndi Mattingly, our lab manager, for her help, advice, and support throughout 

my work in the Feola lab. 

I would also like to thank my committee members Dr. Penni Black, Dr. Sylvie 

Garneau-Tsodikova, Dr. David Burgess, and Dr. Joseph McGillis. Dr. Black was 

an amazing teacher, a great listener, and she always answered my questions in 

a way that made me think through the answers. Dr. Garneau-Tsodikova provided 

tremendous advice and support throughout my research work. Dr. Burgess has 

been an amazing source of support and guidance. And finally, I am extremely 

grateful to Dr. McGillis who provided ongoing feedback, support, and guidance.  



 iv 

In particular, I would like to thank Ms. Catina Rossoll who helped me throughout 

my stay at the college of pharmacy and provided me with lots of great insight and 

support. 

 

Finally, to the great friends who were my family here in Lexington, thank you for 

all your love and encouragement. 

 



 v 

TABLE OF CONTENTS 

 

Acknowledgments ................................................................................................ iii 

List of tables  ........................................................................................................ x 

List of figures  ....................................................................................................... xi 

Chapter 1: Introduction  ................................................................................... 1-61 

I. Cystic fibrosis and infection .................................................................... 1 

II. Inflammation and immune response in cystic fibrosis ............................ 7 

i. Epithelium ................................................................................. 8 

ii. The NF-κB pro-inflammatory signaling pathway ...................... 9 

iii. Neutrophilic inflammation ...................................................... 13 

iv. Macrophage alterations ........................................................ 16 
a. M1 and M2 macrophage activation .................................... 17 
b. Arginase-1 immunomodulatory properties ......................... 20 
c. Altered macrophage polarization ........................................ 23 
d. Altered macrophage functions ........................................... 24 
e. Altered alveolar and interstitial macrophages .................... 25 

III. Adaptive immunity in cystic fibrosis .................................................... 27 

i. Impaired communication between innate and adaptive 
immunity .................................................................................... 27 

ii. Skewed T cell responses ....................................................... 29 
a. CFTR in lymphocytes ......................................................... 31 
b. Intrinsic and environmental lymphocyte alterations ............ 32 

IV. Dysregulated inflammation ................................................................. 36 

V. Current treatments for cystic fibrosis ................................................... 39 

i. CFTR based therapies ............................................................ 39 

ii. Anti-inflammatory therapies ................................................... 40 
a. Corticosteroids ................................................................... 40 
b. Therapies targeting neutrophil recruitment......................... 40 
c. Therapies against NF-κB signaling pathway ...................... 41 



vi 

d. Cell-based therapies .......................................................... 42

iii. Antimicrobial therapies .......................................................... 42

VI. Azithromycin use in cystic fibrosis ...................................................... 43

i. Azithromycin antimicrobial spectrum and pharmacokinetic
properties .................................................................................. 44 

ii. Anti-inflammatory effectiveness of azithromycin .................... 45
a. Improved lung function ....................................................... 46
b. Reduced exacerbations and improved quality of life .......... 46
c. Reduced need for antibiotics .............................................. 47
d. Reduced inflammatory parameters .................................... 47
e. Adverse events .................................................................. 47

iii. Current treatment guidelines for azithromycin use in cystic
fibrosis ....................................................................................... 48 

iv. Anti-inflammatory cellular and molecular mechanisms of
azithromycin .............................................................................. 49 

VII. Summary and specific aims ............................................................... 54

Chapter 2: Methods ....................................................................................... 62-98 

I. Mice. ..................................................................................................... 62 

i. Arginase-1 conditional knock-out mice .............................................. 62

ii. BALB/cJ mice ................................................................................... 62

II. Murine infection and drug dosing ......................................................... 63

i. PA-laden agarose beads ................................................................... 63

ii. Infection ............................................................................................ 65

iii. Animal dosing .................................................................................. 65
a. Azithromycin ................................................................................. 65
b. L-norvaline and BEC ..................................................................... 66

III. Tissue harvest and processing ........................................................... 67

i. Murine lung lavage ............................................................................ 67

ii. Tracheobronchial lymph nodes ......................................................... 68

iii. Interstitial lung tissues ...................................................................... 68



 vii 

IV. Histology ............................................................................................. 68 

i. Tissue cryosectioning ........................................................................ 69 

ii. Sectioning of paraffin-embedded tissues .......................................... 69 

iii. Lung injury scoring ........................................................................... 70 

V. Flow cytometry .................................................................................... 70 

i. Surface staining ................................................................................. 70 

ii. Intracellular staining .......................................................................... 71 

iii. Flow cytometry analysis ................................................................... 72 

iv. Flow panels ..................................................................................... 73 
a. Surface staining panels ................................................................ 73 
b. Intracellular staining panels .......................................................... 74 

VI. Macrophage polarization .................................................................... 75 

VII. RNA isolation and quantitative RT-PCR. ........................................... 76 

VIII. RelA translocation assay. ................................................................. 77 

IX. Immunofluorescence staining and analysis ........................................ 78 

X. Arginase assay. ................................................................................... 79 

XI. Western blot analysis. ........................................................................ 79 

XII. Human study protocol ....................................................................... 80 

i. Study design ...................................................................................... 80 

ii. Study population ............................................................................... 81 
a. Inclusion criteria ............................................................................ 82 
b. Exclusion criteria ........................................................................... 82 

iii. Human sample processing .............................................................. 83 
a. TaqMan microfluidic cards for gene expression assays ............... 83 
b. Flow cytometry analysis of immune cells in the sputum ............... 84 
c. Cytometric Bead Array (CBA) ....................................................... 84 

XIII. Statistical analysis. ........................................................................... 85 

 



 viii 

Chapter 3: Requirement of arginase in host protection against excessive 
inflammation ..................................................................................... 98-173 

I. Introduction ........................................................................................... 98 

II. Results ............................................................................................... 102 

III. Discussion ........................................................................................ 111 

Chapter 4: Azithromycin polarizes macrophages to an M2 phenotype via 
inhibition of STAT1 through cross-talk from NF-κB signaling 
mediators…….............. ................................................................... 174-205 

I. Introduction ......................................................................................... 174 

II. Results ............................................................................................... 176 

III. Discussion ........................................................................................ 179 

Chapter 5: Dependence of azithromycin-induced M2-like macrophage phenotype 
on arginase-1 to alter inflammation ................................................. 206-246 

I. Introduction ......................................................................................... 206 

II. Results ............................................................................................... 209 

III. Discussion ........................................................................................ 215 

Chapter 6: Summary and conclusions ....................................................... 247-264 

I. Project Overview ................................................................................. 247 

II. Results overview ................................................................................ 251 

i. Myeloid arginase production is essential for regulation of 
excessive inflammation in PA pneumonia ............................... 251 

ii. Azithromycin balances the M1/M2 macrophage polarization by 
cross-inhibiting the M1-associated transcription factors, NF-κB 
and STAT-1 ............................................................................. 252 

iii. Azithromycin protects against excessive morbidity and 
inflammation through mechanisms independent of arginase-1 
production ................................................................................ 253 

 



 ix 

III. Significance ...................................................................................... 253 

i. Myeloid arginase, a therapeutic target to control inflammation
 ................................................................................................ 253 

ii. NF-κB signaling pathway, a targeted approach to limit pro-
inflammatory macrophage polarization .................................... 255 

iii. Arginase production by myeloid cells is not required for 
azithromycin anti-inflammatory effects .................................... 257 

IV. Future directions ............................................................................... 259 

i. Evaluating the contribution of L-arginine synthesis in modulating T 
cell responses to PA infections ................................................... 259 

ii. Evaluating the requirements of non-myeloid arginase in the anti-
inflammatory mechanisms of azithromycin ................................. 259 

iii. Evaluating the effects of arginase deletion in cystic fibrosis 
mouse models ............................................................................. 260 

iv. Evaluating the clinical applicability of azithromycin anti-
inflammatory mechanisms .......................................................... 261 

v. Additional future studies .......................................................... 262 

V. Conclusions ....................................................................................... 263 

I- Arginase-1 immunomodulatory role in PA pneumonia ............. 263 

II- Azithromycin anti-inflammatory mechanism of action ............. 263 

III- Dependence of azithromycin-induced M2 macrophage 
phenotype on Arginase-1 to alter inflammation ........................... 263 

APPENDIX A: DATA COLLECTION FORM ..................................................... 265 

APPENDIX B: HUMAN GENES FOR ARRAY PLATES ................................... 270 

REFERENCES ................................................................................................. 272 

VITA…………... ................................................................................................ 303 

 
  



 x 

LIST OF TABLES 

Table 2.1. Surface staining panels …………………………………………… ........ 73 

Table 2.2. Intracellular staining panels ………………………………………… ..... 74 

Table 2.3. Lung injury scoring guide…………………………………………… ...... 86 

Table 2.4. Key markers for different immune cell populations……………… ....... 87 

Table 2.5. P65 nuclear translocation scoring scale…………………………... ...... 88 

  



xi 

LIST OF FIGURES 

Figure 1.1. Cystic fibrosis pathology. ............................................................. 59-61 

Figure 1.1a ...................................................................................................... 59 

Figure 1.1b ...................................................................................................... 60 

Figure 2.1. Arginase deletion from Arg1Δm mice. ........................................... 89-90 

Figure 2.2. Murine experimental design. ....................................................... 91-94 

Figure 2.2a ...................................................................................................... 91 

Figure 2.2b ...................................................................................................... 92 

Figure 2.2c ...................................................................................................... 93 

Figure 2.3. Synthesis of BEC......................................................................... 95-97 

Figure 2.3a Synthesis of BEC ........................................................................ 95 

Figure 2.3b 1H NMR of BEC in D2O (400 MHz). ............................................. 96 

Figure 2.3c 13C NMR of BEC in D2O (100 MHz). ............................................ 97 

Figure 3.1. Arginase conditional knock-out mice lose more weight post 
intratracheal infection with PA compared to their littermate controls.…... .. 129-132 

Figure 3.1a .................................................................................................... 129 

Figure 3.1b .................................................................................................... 130 

Figure 3.1c .................................................................................................... 131 

Figure 3.2. Arginase conditional knock-out mice respond with a profound 
recruitment of innate immune cells. ........................................................... 133-140 

Figure 3.2a .................................................................................................... 133 

Figure 3.2b .................................................................................................... 134 

Figure 3.2c .................................................................................................... 135 

Figure 3.2d .................................................................................................... 136 

Figure 3.2e .................................................................................................... 137 

Figure 3.2f ..................................................................................................... 138 

Figure 3.2g .................................................................................................... 139 



 xii 

 
Figure 3.3. Greater T cell recruitment and activation in response to PA 
pneumonia in arginase conditional knock-out mice…………………………141-145 

Figure 3.3a .................................................................................................... 141 

Figure 3.3b .................................................................................................... 142 

Figure 3.3c .................................................................................................... 143 

Figure 3.3d .................................................................................................... 144 

Figure 3.4. Arginase conditional knock-out mice respond to PA pneumonia with 
an excessive recruitment of Th1 and Th17 pro-inflammatory 
lymphocytes………………………………………..........................................146-149 

Figure 3.4a .................................................................................................... 146 

Figure 3.4b .................................................................................................... 147 

Figure 3.4c .................................................................................................... 148 

Figure 3.5. Pharmacological arginase inhibition results in comparable acute 
morbidity with faster recovery. ................................................................... 150-154 

Figure 3.5a .................................................................................................... 150 

Figure 3.5b .................................................................................................... 151 

Figure 3.5c .................................................................................................... 152 

Figure 3.5d .................................................................................................... 153 
 
Figure 3.6. BALB/cJ mice with global arginase inhibition respond to PA 
pneumonia with comparable but slightly attenuated recruitment of innate immune 
cells…………………………………………………..…………………………..156-165 

Figure 3.6a .................................................................................................... 155 

Figure 3.6b .................................................................................................... 156 

Figure 3.6c .................................................................................................... 157 

Figure 3.6d .................................................................................................... 158 

Figure 3.6e .................................................................................................... 159 

Figure 3.6f ..................................................................................................... 160 

Figure 3.6g .................................................................................................... 161 

Figure 3.6h .................................................................................................... 162 



 xiii 

Figure 3.6i ..................................................................................................... 163 

Figure 3.6i (continued) .................................................................................. 164 

Figure 3.7. Global arginase inhibition results in greater T cell recruitment and 
activation in the lymph nodes but not the lungs of infected mice………... . 166-169 

Figure 3.7a .................................................................................................... 166 

Figure 3.7b .................................................................................................... 167 

Figure 3.7c .................................................................................................... 168 

Figure 3.8. Global arginase inhibition is associated with increased activation of 
Th1, Th17 and regulatory T lymphocytes in the lymph nodes of infected mice with 
potentially reduced migration into the lungs. ............................................. 170-173 

Figure 3.8a .................................................................................................... 170 

Figure 3.8b .................................................................................................... 171 

Figure 3.8c .................................................................................................... 172 

Figure 4.1. Azithromycin decreases NF-κB activation and prevents p65 nuclear 
translocation. ............................................................................................. 185-187 

Figure 4.1a .................................................................................................... 185 

Figure 4.1b .................................................................................................... 186 

Figure 4.2. NF-κB p65 subunit accumulates in the cytoplasm around the nuclear 
membrane in azithromycin treated macrophages. ..................................... 188-190 

Figure 4.2a .................................................................................................... 188 

Figure 4.2b .................................................................................................... 189 

Figure 4.3. Azithromycin prevents IκB-α degradation while accumulating IKKβ.
 .................................................................................................................. 191-196 

Figure 4.3a .................................................................................................... 191 

Figure 4.3b .................................................................................................... 192 

Figure 4.3c .................................................................................................... 193 

Figure 4.3d .................................................................................................... 194 

Figure 4.3e .................................................................................................... 195 

 



 xiv 

Figure 4.4. Azithromycin induced arginase gene expression and activity are 
reversed with IKKβ inhibition. .................................................................... 197-200 

Figure 4.4a .................................................................................................... 197 

Figure 4.4b .................................................................................................... 198 

Figure 4.4c .................................................................................................... 199 

 
Figure 4.5. Azithromycin prevents STAT-1 activation in an IKKβ dependent 
mechanism……………………………………………………………………....201-203 

Figure 4.5a .................................................................................................... 201 

 Figure 4.5b ................................................................................................... 202 

Figure 4.6. The proposed interaction induced by azithromycin (AZM) is depicted.
 .................................................................................................................. 204-205 

Figure 5.1. Azithromycin treatment protects against excessive morbidity and 
weight loss in arginase-1 conditional knock-out mice. ............................... 223-226 

Figure 5.1a .................................................................................................... 223 

Figure 5.1b .................................................................................................... 224 

Figure 5.1c .................................................................................................... 225 

Figure 5.2. Azithromycin treatment attenuates acute inflammatory infiltration of 
innate immune cells in arginase conditional knock-out 
mice………………………………………………………………………………227-237 

Figure 5.2a .................................................................................................... 227 

Figure 5.2b .................................................................................................... 228 

Figure 5.2c .................................................................................................... 229 

Figure 5.2d .................................................................................................... 230 

Figure 5.2e .................................................................................................... 231 

Figure 5.2f ..................................................................................................... 232 

Figure 5.2g .................................................................................................... 233 

Figure 5.2h .................................................................................................... 234 

Figure 5.2i ..................................................................................................... 235 

Figure 5.2i (continued) .................................................................................. 236 



 xv 

Figure 5.3. Azithromycin treatment in arginase conditional knock-out mice is 
associated with decreased CD4+ lymphocyte recruitment and 
activation………………………………………………………………………..238-241 

Figure 5.3a .................................................................................................... 238 

Figure 5.3b .................................................................................................... 239 

Figure 5.3c .................................................................................................... 240 
 
Figure 5.4. Azithromycin treatment in the arginase conditional knock-out mice 
suppresses the exaggerated recruitment of inflammatory 
lymphocytes..............................................................................................242-246 

Figure 5.4a .................................................................................................... 242 

Figure 5.4b .................................................................................................... 243 

Figure 5.4c .................................................................................................... 244 

Figure 5.4d .................................................................................................... 245 

 



 1 

Chapter 1: Introduction 

 

I. Cystic fibrosis and infection 

 

Cystic fibrosis is a hereditary progressive disease of the secretory glands 

acquired by inheriting the mutated genes of a chloride ion transport channel 

called the cystic fibrosis transmembrane conductance regulator (CFTR) [1]. The 

autosomal recessive mutation of the CFTR gene on chromosome 7 affects about 

1 in 3300 white newborns with lower incidence in other races [2]. People with 

defective CFTR suffer from abnormal thickening of their mucoid secretions. 

Thickened mucus constitutes a major problem in the lungs although other organs 

can be affected including the kidneys, intestines, pancreas, and liver [2-6]. In the 

lungs, a vicious cycle of thickened mucus, repetitive infections, and extensive 

inflammation result in mucoid plugging of the airways, lung injury, and 

progressive pulmonary function decline [1-5, 7].  

 

According to the Cystic Fibrosis Foundation, more than 70,000 people in the 

world suffer from cystic fibrosis [2, 6]. In the United States, more than 30,000 

people live with cystic fibrosis with an expected increase of 1000 new patients 

annually. Today, patients suffering from this life-shortening disease have a 

median survival of 37 years with an anticipated increase in survival beyond 50 

years of age [1, 7]. This is considered a major advancement since 1962 when 

patients used to die by 10 years of age due to extensive mucus accumulation in 

their lungs and inability to breathe [2-6]. At least 50% of the cystic fibrosis 

patients in the United States are above 18 years of age according to the 2017 

Cystic Fibrosis Foundation Patient Registry [2, 6]. 

 

Newborns with cystic fibrosis develop structural abnormalities, mucus 

accumulation and obstruction of the airways, along with hypertrophy of the 

mucosal glands [8-11]. Radiological evidence of lung destruction is strongly 

correlated with chronic lung infections. The increased risk for chronic bacterial 
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colonization along with the exaggerated inflammation result in progressive airway 

wall thickening and lumen dilatation along with permanent scarring in the lungs 

[12-16]. Additionally, early signs of inflammation occur shortly after birth 

preceding structural changes and are predictive of the future disease progression 

[14]. The mucosal glands in cystic fibrosis are hypertrophied and ducts of these 

glands are obstructed due to mucus cell hyperplasia. Early structural changes in 

cystic fibrosis also include increased smooth muscle content and smooth muscle 

cell hyperplasia in the airway walls in early disease stages [12]. These structural 

abnormalities are also responsible for changes in the velocity and resistance of 

the airflow in cystic fibrosis lungs compared to healthy lungs [13]. Additionally, 

elevated pro-inflammatory mediators in the patients’ lungs constitute a positive 

indicator for the early development of bronchiectasis, a condition where the lung 

structure is lost due to irreversible damage with thickened and dilated airways 

[15].  Bronchiectasis occurs in end-stage cystic fibrosis and results in respiratory 

failure and death.  

 

Additionally, the lungs of cystic fibrosis patients are plugged with dense mucus. 

The mucus becomes abnormally heavy and thick due to loss of water content 

resulting from the abnormal ion transport across the mutated CFTR channels. 

Besides the ion and water abnormalities, some reports suggest increased mucus 

secretion in cystic fibrosis due to increased expression of mucin genes (e.g. 

Muc1, Muc6, Muc5AC, and Muc5B) [13]. Mucins are large glycoproteins that 

normally constitute about 1-2% of mucus along with water which constitutes 

about 98%.  When mucin concentration in mucus increases, it results in mucus 

hyperconcentration and dehydration [13]. Collectively, the increased mucin 

concentration and the disrupted chloride channels increase the mucus viscosity 

in cystic fibrosis to 104-105 times higher than that of water. Increased mucus 

accumulation in cystic fibrosis complicates the disease via mechanically 

obstructing the airways, trapping bacteria and pathogens in the lungs, therefore 

driving inflammation.  

 



 3 

Infection and inflammation are the other two main pathological aspects of cystic 

fibrosis to be extensively discussed in this dissertation. Chronic infections are the 

leading cause of mortality in these patients with the most predominant pathogen 

being Pseudomonas aeruginosa (PA) [17-19]. In fact, about 60% of patients with 

cystic fibrosis are infected with PA, which chronically colonizes the lungs of 80% 

of the patients older than 18 years of age [17-19].  According to Davies et al., for 

a given bacterial load, a person with cystic fibrosis will have up to 10 times more 

inflammation than a person with a lower respiratory tract infection but without the 

disease [15]. Many scientists initially approached the inflammatory aspect of 

cystic fibrosis as a consequence of the chronic and repetitive infections. 

However, it has become clear that inflammation is an independent factor of cystic 

fibrosis pathophysiology. Yet, it is not very well understood why the immune 

system responds in an exaggerated manner to the infections. 

 

Several factors increase the infection risk in cystic fibrosis lungs including 

environmental, structural, and immune abnormalities. The resultant dense and 

viscous mucus along with the dampened mucociliary clearance are believed to 

create a favorable environment for the growth and replication of bacteria and 

microorganisms in the lower respiratory tract [20]. It is hypothesized that the 

excessively high salt concentrations in the airways due to the malfunctional 

CFTR channels are responsible for pulmonary infections. The high salt 

concentrations inactivate host antimicrobial defensin proteins [21, 22]. 

Additionally, the malfunctional channels disrupt the homeostatic balance of the 

water volume in the airways. The inability to efficiently transport the sodium and 

chloride across the airway epithelium disrupts the isotonic state and results in 

volume and water depletion. This eventually results in increased viscosity and 

malfunctional mucociliary clearance; thus, invading microbes are trapped in the 

lower respiratory tract [23, 24].  

 

Patients with cystic fibrosis are also more susceptible to bacterial infections due 

to altered macrophage function [20]. The specific macrophage alterations in 
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cystic fibrosis are extensively discussed in later sections. However, reduced 

macrophage autophagosome function and the reduced ability to engulf and 

phagocytize pathogens contribute to increased susceptibility for pulmonary 

infections. The loss of CFTR channels on the surface of these immune cells is in 

part responsible for the loss of macrophage functions [25-35].  

 

Moreover, the structural abnormalities discussed above also contribute to the 

increased risk of infection [20]. Structural changes blunt the effectiveness of 

physical defense mechanisms in clearing invading pathogens. Additionally, these 

changes make the sites of infection in the lower respiratory tract inaccessible for 

macrophages and other immune cells [11, 25-28, 30-36]. Specific changes in the 

trachea, airway size, and wall thickness can also contribute to the increased 

infection risk. Long et al. and Meyerholz et al. found dilated and thickened 

airways and bronchioles in children with cystic fibrosis before any infectious and 

pulmonary symptoms occur [11, 36]. These changes promote colonization of the 

initially sterile lower respiratory airways and thus comprise challenges to the 

normal host-defense mechanisms. This “otherwise harsh lung environment” with 

limited oxygen and nutrient supply for microbiota favors the development of 

evolving survival tools for bacteria. This drives the bacteria to mutate in order to 

adapt and colonize the lower airways for prolonged durations [37-42].  

 

Acidification of the lung microenvironment also increases the risk of pulmonary 

infections in patients with cystic fibrosis [20]. Mucus in cystic fibrosis lungs is of 

gel-rubber consistency which results in ciliary dyskinesia and increased acidity. 

Acidification of the lung environment impairs the host-defense mechanisms 

which are sensitive to pH and creates an aerobic condition favorable for 

microbes and harmful for the patients’ lung function [11, 20-24, 29-36]. 

Collectively, these factors contribute to an excessive inflammatory response in 

an anatomical region of the lung which is normally free of any immune reactions. 

Thus, the inflammatory response itself constitutes an additional factor for 

prolonged bacterial colonization of the lower respiratory tract in cystic fibrosis.  
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Similarly, infections with PA are predominant in cystic fibrosis due to microbial, 

environmental, and immune factors [43-48]. PA is a rod-like bacterium which 

benefits from the tremendous pulmonary changes. This microorganism 

undergoes genotypic and phenotypic changes which make it able to survive in 

the cystic fibrosis lungs for prolonged periods. PA is able to combat the oxidative 

and nutrient stresses and it develops efficient and specialized antibiotic 

resistance mechanisms. Additionally, PA is able to change its lifecycle by 

reducing its metabolic rate, decreasing its motility and dampening its growth and 

replication cycles. Moreover, PA chronically colonizing the lungs are 

characterized by reduced quorum sensing and increased alginate production 

[20]. PA commonly found the lungs of patients with cystic fibrosis have highly 

evolved virulence factors along with increased ability to line the airways with 

biofilm formation. Thus, these facultative anaerobic Gram-negative bacteria can 

alter the cystic fibrosis lung environment to favor its survival and replication [45-

47]. 

 

Chronic infections with PA are also related to the unique ability of this micro-

organism to down- and up-regulate the expression of different genes related to 

virulence and infectivity [48-54].  PA colonizing cystic fibrosis airways can 

compete with other pathogens by regulating the nutrient levels and by releasing 

antimicrobial substances capable of killing other bacteria. For instance, PA 

competes with the second most common pathogen in cystic fibrosis, 

Staphylococcus aureus [49] by inhibiting its growth and replication through tight 

regulation of free iron concentrations and by lysing S. aureus through the release 

of bactericidal substances [49]. Conversely, infections with other pathogens 

including bacteria (Burkholderia cenocepacia, Mycobacterium smegmatis, 

Haemophilus influenzae, and Staphylococcus aureus), viruses (Respiratory 

syncytial virus), fungi and certain yeast strains (Aspergillus, Candida, Exophiala 

dermatitidis and Lomentospora prolificans) have been shown to promote 
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infections and colonization with PA by directly altering the micro-environment and 

disturbing the immune response against PA [50-54]. 

 

Altered CFTR channels also favor PA acquisition in patients with cystic fibrosis 

[55-59]. CFTR channels act as receptors for the uptake of PA by the airway 

epithelium; therefore, the inability to internalize PA can evade its clearance and 

the antigen presentation for incoming immune cells [60-62].  This strong 

adherence to mutated CFTR channels contributes to chronic and prolonged 

infections with PA [55-57]. Epithelial cells with mutated or deleted CFTR are also 

prone to increased activation of the pro-inflammatory transcription factor, NF-κB 

when stimulated with PA in-vitro compared to normal epithelial cells [57, 58]. 

Increased NF-κB activation is associated with significantly lower levels of IFNγ 

release by the cystic fibrosis epithelial cells challenged with PA. IFNγ is an 

essential pro-inflammatory cytokine required for an efficient activation of the 

inflammatory response. Thus, dampening the IFNγ response is a unique tool by 

which PA can evade its immune recognition and clearance [59]. 

 

Additionally, PA forms biofilms to evade immune response and to cause 

prolonged infections. PA is characterized with biofilm formation and strong 

adherence to the thick mucus which prevents its recognition and phagocytosis by 

neutrophils [63, 64]. Moreover, PA is able to utilize the neutrophil extracellular 

traps (NETs) to favor its own survival. As the name implies, NETs are network-

shaped traps made of extracellular fibers, primarily composed of DNA from 

neutrophils and used to bind pathogens. PA utilizes these neutrophil traps to 

secrete a highly virulent and pro-inflammatory toxin called Pyocyanin [65, 66]. 

Pyocyanin released by PA can kill other competing bacteria and alter the 

activation and function of immune cells. 

 

Finally, PA benefits from the skewed T cells responses to evade clearance and 

to chronically colonize the lungs. The adaptive immune response in cystic fibrosis 

promotes PA infections as it is skewed towards a Th2/Th17 response which is 
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believed to favor and even prime infections with PA [67-70]. Despite all the 

studies about the different variants of PA and the different characteristics related 

to the infection and host-defense mechanisms in cystic fibrosis; the exact 

machinery and environmental characteristics that favor the competition with other 

pathogens and survival of PA are very poorly understood. 

 

II. Inflammation and immune response in cystic fibrosis  

 

The inflammatory response in cystic fibrosis is dysregulated and significantly 

contributes to disease pathology [63]. Epithelial cells and resident macrophages 

lining the airways release pro-inflammatory mediators and chemokines when an 

invading pathogen is sensed. A normal immune system responds to the released 

inflammatory mediators by recruiting innate immune cells (like neutrophils and 

macrophages) which are non-specific but show up early to contain and clear the 

infection. The innate immune cells then activate adaptive immunity in a very well-

coordinated and controlled manner [63]. Adaptive immunity is antigen-specific 

and is highly efficient in clearing infections. However, the immune system in 

patients with cystic fibrosis responds in an abnormally excessive and inefficient 

manner against the invading pathogens. Consequently, altered inflammation fails 

to clear the infection and results in lung injury. Additionally, the non-resolving 

pulmonary inflammation creates niches which favor further chronic infections and 

colonization with highly virulent and opportunistic pathogens. The following 

section discusses the specific alterations in the innate immune response of cystic 

fibrosis (also summarized in Figure 1.1 a and b). The main elements of the innate 

immune response which are altered in cystic fibrosis include the epithelium, the 

NF-κB pro-inflammatory signaling pathway, the neutrophil response, as well as 

the macrophage response.  
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i. Epithelium  

 

The bronchial epithelium is the first line of defense against invading pathogens 

and its physical, chemical, and immunologic functions are disrupted in cystic 

fibrosis. The epithelium functions to physically remove and prevent the spread of 

inhaled microbes by cough, mucociliary clearance, as well as by forming tight 

physical and chemical barriers [63, 71-73]. Appropriate composition, hydration, 

and viscosity of the mucus are essential for the release and transport of mucus in 

the airways. The malfunctional CFTR channels, as mentioned previously, prevent 

chloride and bicarbonate transport. This increases the viscosity and acidity of the 

mucus thus hindering the mucociliary clearance process. Eventually, the thick 

mucus along with the trapped pathogens remain adherent to the epithelium and 

fail to be expelled by cough and mucociliary clearance [13, 74, 75]. Another way 

by which the epithelium prevents invading pathogens from spreading and 

establishing an infection is by the release of antimicrobial products and peptides. 

However, these are inactivated at the acidified airway surface liquid (ASL). The 

ASL pH drops drastically due to ion flux imbalance by the mutated CFTR 

channels [63, 76]. The inactivation of epithelial microbicidal products prevents the 

killing of invading bacteria, viruses, and yeasts. Additionally, the tight epithelial 

barrier is cleaved and digested in the presence of elevated neutrophil elastases 

and proteases [63, 77, 78], thereby increasing paracellular permeability of 

pathogens into the lung interstitium [79, 80]. Collectively, CFTR channel 

dysfunction and the altered inflammatory environment impair the physical and 

chemical functions of the epithelial barrier. 

 

The immunologic function of the epithelium also includes the activation of innate 

immunity via antigen presentation and pro-inflammatory cytokine release. The 

cellular innate immune response is activated when the pathogen-associated 

molecular patterns (PAMPs) are recognized by the Toll-like receptors (TLR) 

expressed on the epithelial cells [81-84]. This primary response occurs when the 

non-self antigens of invading pathogens are presented by the pattern recognition 
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receptors. Several TLRs recognize microbial components of PA, which 

expresses numerous PAMPs, including lipopolysaccharides (LPS) and flagellin. 

TLR2 and TLR4 detect LPS while TLR5 detects flagellin. Along with the cytokine 

stimulation of their corresponding receptors, binding of PAMPs to TLRs activates 

efficient downstream signaling cascades [81]. Activation of the nuclear 

transcription factor NF-κB is one of the main pro-inflammatory singling cascades 

triggered in the stimulated epithelial cells. However, functional CFTR mutations 

are associated with increased NF-κB activation, reduced TLR4 expression and 

stimulation, as well as reduced antigen processing and presentation [85-88]. The 

increased NF-κB activation in epithelial cells is therefore partly responsible for 

the dysregulated immunologic function of the epithelium as it results in excessive 

release of pro-inflammatory cytokines and mediators. Pro-inflammatory 

mediators then act to recruit and activate exaggerated numbers of innate 

immune cells which can lead to inflammatory lung injury [85-88]. 

 

ii. The NF-κB pro-inflammatory signaling pathway 

 

Increased NF-κB activation is a major immunologic alteration in cystic fibrosis. As 

mentioned previously, NF-κB is a nuclear transcription factor in epithelial cells 

and in many other immune cells including macrophages, neutrophils, as well as 

B and T lymphocytes. Disruption of NF-κB activation in the epithelial cells and in 

the macrophages is a very well described pathological factor in cystic fibrosis 

[89-91]. The NF-κB family of proteins includes different transcription factors 

which control genes involved in inflammation, immunity, cell proliferation, 

differentiation, and survival. 

 

The NF-κB family of transcription factors is divided into the canonical vs the non-

canonical pathways. The canonical pathway is mainly involved in inflammation 

while the non-canonical pathway is involved in immune cell differentiation and 

maturation. Each NF-κB transcription factor consists of a heterodimer or a 

homodimer of the five NF-κB subunits: RelA (also named p65), RelB, cRel, p50, 
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and p52 (p50 and p52 subunits are synthesized as precursor proteins, p105 and 

p100) [91]. Activation of the canonical NF-κB pathway mainly involves IκB-α 

degradation and p50/p65 subunits (p50/p65 heterodimers and p65 homodimers). 

Alternatively, activation of the non-canonical NF-κB mainly involves RelB/p52 

subunits and is independent of IκB-α degradation (instead it is dependent on the 

processing of the precursor proteins p100 and p105). Moreover, the activation of 

the canonical pathway frees pre-existing subunits while the non-canonical 

pathway allows the synthesis of new subunits. Finally, the two pathways are 

induced and regulated through independent mechanisms. The canonical 

pathway involves the activation of a NEMO-dependent IKK complex (a trimeric 

complex composed of two catalytic subunits, IKKα and IKKβ, and a regulatory 

subunit, IKKγ) [91]. Conversely, the non-canonical pathway is mediated through 

the activation of a NEMO-independent kinase complex including IKK1 and the 

NF-κB -inducing kinase (NIK) [89]. Inappropriate activation of the canonical 

pathway results in inflammatory and auto-immune diseases while the disruption 

of non-canonical NF-κB signaling results in lymphoid malignancies. Since the 

canonical pathway is mainly involved in inflammation and in cystic fibrosis, 

whenever NF-κB is mentioned in this dissertation it refers to the activation of p65 

subunits through the canonical pathway unless otherwise specified [91]. 

  

In the absence of TLR and cytokine receptor stimulants, NF-κB activation is 

suppressed by an inhibitory subunit (IκB-α, IκB-β, or IκB-ɛ) which binds the NF-

κB subunits (p50 or p65) and prevents them from translocating to their site of 

action in the nucleus. Stimulation through TLR allows the phosphorylation and 

activation of the IκB kinase (IKKβ) which phosphorylates the inhibitory IκB-α 

subunits. Once phosphorylated, the IκB-α subunits undergo rapid ubiquitination 

and proteasomal degradation, thus releasing p50/p65 from the inhibited state. 

Free p50/p65 subunits undergo further phosphorylation in the cytoplasm, 

dimerize, and translocate to the nucleus where they bind to the NF-κB DNA 

promoter region. This promoter region controls several genes for pro-

inflammatory cytokines and mediators including TNF-α, IL-1β, IL-6, IL-8, IL-12, 
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iNOS, IFNγ, adhesion molecules (VCAM1, ICAM1), as well as many other 

immune and non-immune related genes [81, 92-95]. The release of those 

inflammatory cytokines and mediators results in the recruitment and 

chemoattraction of neutrophils and macrophages to the site of infection. 

 

NF-κB activation in epithelial cells plays an essential role in initiating and 

modulating the immune response. In addition to recruiting innate immune cells, 

the inflammatory cytokines also polarize different inflammatory signaling 

cascades in the recruited immune cells including further activation of the NF-κB 

pathway in the recruited neutrophils and macrophages. Thus, any deviation from 

the normal NF-κB activation levels can result in serious pathology [96]. For 

instance, regulation of NF-κB activation mainly involves tight control of the 

activity and synthesis of the IκB-α and IKKβ proteins as well as controlling 

subunit nuclear translocation and DNA binding [91]. Synthesis of IκB-α subunits 

and IKKβ are sensitive to NF-κB activation through a negative feedback 

regulation. Binding of p50/p65 subunits to the DNA shuts down the IKKβ 

synthesis and stimulates the synthesis of new IκB-α subunits thus critically 

controlling the duration of the NF-κB response. IκB-α controls the nuclear 

translocation of p50/p65 subunits by masking the nuclear localization sequence 

(NLS) of p65. Therefore, terminating the NF-κB response is disrupted in the case 

of IκB-α deficiency [91]. Alternatively, IKKβ activation requires phosphorylation of 

two serines; thus, regulation of IKKβ activation involves tight control of its trans-

autophosphorylation as well as its phosphorylation by the upstream kinases [91-

94]. IKKβ deficiency abolishes the activation of an NF-κB response while IKKβ 

accumulation shuts down other signaling pathways which release pro-

inflammatory cytokines including the STAT-1 pathway [91]. Additionally, post-

translational modifications of NF-κB subunits affect their nuclear translocation, 

dimerization, and DNA binding. For instance, several modifications have been 

described like Ser276 phosphorylation of p65 which facilitates its DNA binding, 

while Ser536 phosphorylation affects its nuclear translocation [91]. Other 

modifications like methylation, acetylation, and phosphorylation of additional sites 
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affect p65 interaction with other enzymes and NF-κB subunits as well as 

inhibiting the transcriptional activity of p65. In fact, abnormal NF-κB activation 

has been described in many diseases like cancer, Alzheimer’s disease, multiple 

sclerosis, and cystic fibrosis [96]. 

 

Increased NF-κB activation in epithelial cells is well described in cystic fibrosis 

and is caused by mutated CFTR channels as well as changes in the 

inflammatory environment. Continual NF-κB activation in cystic fibrosis 

contributes to chronic infection, neutrophil inflammation, and lung injury [97]. 

Unopposed NF-κB activation is attributed to the significantly high levels of IL-8 

and the suppressed levels of IL-10. Carrabino et al. found that in the absence of 

any stimulation, isolated cystic fibrosis nasal epithelial cells release high levels of 

IL-8 [98]. Under basal conditions, cells from cystic fibrosis nasal epithelium 

express significantly higher activity of NF-κB compared to normal epithelial cells. 

Co-stimulation of epithelial cells from cystic fibrosis patients with PA and IL-1β 

produced a two-fold increase in NF-κB activation and at least six-folds greater 

increase in IL-8 levels compared to normal epithelial cells [98]. Additionally, 

CFTR mutations in epithelial cells and macrophages are related to increased NF-

κB activation. Specifically, the most common CFTR mutation is the deletion of 

phenylalanine 508 (ΔF508), which results in its endoplasmic reticulum associated 

degradation (ERAD) by the ubiquitin-proteasome system. The inability of ΔF508-

CFTR to translocate to the cell surface is associated with exaggerated NF-κB 

activation [97]. According to Chanson et al., the ΔF508 mutation enhances NF-

κB activation due to lack of gap junctional communication (GJIC) of CFTR with 

inflammatory receptors [97]. Additionally, CFTR binds to and colocalizes with 

TRADD (the key adaptor molecule in TNF-α signaling) while ΔF508 CFTR cannot 

bind TRADD thus preventing the degradation of TRADD, an event that is 

necessary for turning off TNF-α-induced NF-κB activation [99].  

 

Additionally, appropriate CFTR localization within the lipid-rafts formed in 

response to infection is essential for raft clustering and regulated signaling 
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through the NF-κB pathway [100].  Mutated CFTR disrupts lipid-raft formation 

and clustering thereby inducing uncontrolled activation of the NF-κB signaling 

pathway. Tabary et al. also show that disrupted calcium signaling is associated 

with increased NF-κB activation in cystic fibrosis epithelial cells [100]. They show 

that cells with mutated CFTR channels respond to IL-1β stimulation with a 

significant increase in calcium concentrations along with increased NF-κB 

activation. This effect was reversed with thapsigargin treatment which prevents 

calcium release from the endoplasmic reticulum. Tabary et al. suggest that 

epithelial cells with mutated CFTR are endogenously primed for excessive 

release of calcium which results in abnormal lipid-raft formation and disrupts NF-

κB signaling [100].  Finally, Saadane and colleagues infected normal and cystic 

fibrosis mice with PA intratracheally [101]. Although infection is cleared in both 

groups with similar kinetics; cystic fibrosis mice have greater neutrophil influx 

along with higher levels of pro-inflammatory cytokines compared to wild-type 

mice. Saadane found that cystic fibrosis mice lack the ability to re-synthesize 

new IκB-α once it was degraded resulting in prolonged and excessive activation 

of NF-κB which lasted for 6 days compared to normal mice which had 

significantly lower levels of NF-κB which rapidly decreased by day 4 post-

infection [101]. Collectively, aberrant activation of the NF-κB pathway is a 

hallmark of cystic fibrosis pathology. 

 

iii. Neutrophilic inflammation 

 

The third element of the disrupted innate immunity in cystic fibrosis is the 

excessive recruitment and influx of neutrophils. Neutrophils are thought to greatly 

contribute to morbidity and mortality in cystic fibrosis. This is due to the 

overwhelming numbers of neutrophils which migrate to the lungs in large 

numbers due to persistent infection and continuous stimulation. Inflammation in 

cystic fibrosis is characterized by elevated concentrations of neutrophil 

chemokines including IL-17, IL-8, and IL-6 [8]. Neutrophils exert their pro-

inflammatory function by releasing powerful antimicrobial substances, free 
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radicals, and antioxidants which the cystic fibrosis lungs are unable to clear. This 

is aggravated by the death of neutrophils which further releases its granular 

contents resulting in inflammatory lung injury and damage. The resultant lung 

injury and oxidative stress eventually recruit more neutrophils thus causing an 

excessive inflammation that is characteristic of cystic fibrosis [102-105].  

 

CFTR channels are also expressed on the neutrophil cell surface and CFTR 

mutations impair the degranulation of important neutrophil microbicidal products 

from the secondary and tertiary granules (lysozyme, lactoferrin, and cathepsins) 

[102]. Additionally, there is an excessive amount of neutrophil elastases and 

proteases that overwhelm the antiproteases that protect the lungs. In fact, even 

milder forms of cystic fibrosis are associated with greater than 1000 times the 

concentration of α1-protease inhibitors compared to healthy individuals [103-

105]. Thus, neutrophils contribute to lung injury by releasing excessive amounts 

of neutrophil elastases which break down the connective tissues and matrix 

proteins leading to a structural loss in the small airways [106-110]. Additionally, 

unopposed neutrophil elastases are also capable of cleaving non-structural 

proteins like essential immune cell surface receptors (CFTR, CD4, CD8, 

complement receptors, and antigen presentation receptors) [8, 111, 112]. Also, 

elastases can cleave the macrophage phosphatidylserine receptors which 

prevents compensatory anti-inflammatory mechanisms due to impaired 

efferocytosis, the process by which macrophages clear dead and apoptotic 

neutrophils [113-115]. 

 

The changes in the lung microenvironment and the ion imbalance result in 

decreased phagocytic and degranulation capacities of neutrophils. New studies 

suggest that neutrophils express CFTR in their phagolysosomes. Thus, 

mutations in CFTR impair neutrophils ability to kill engulfed pathogens. This 

occurs due to impaired chlorination of the internalized pathogen [111, 112, 116]. 

So, there is an excessive number of neutrophils in the cystic fibrosis lungs that 
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are unable to clear the invading pathogens and simultaneously contribute to 

excessive inflammatory injury.  

 

Additionally, unregulated death of neutrophils contributes to severe inflammatory 

lung injury. The excessive numbers of neutrophils in cystic fibrosis is associated 

with failure of some neutrophils to undergo regulated cell death or apoptosis. 

Large numbers of recruited neutrophils undergo necrosis which releases massive 

intracellular contents like inflammatory mediators and cytokines, oxidants and 

proteases, in addition to large DNA fragments and actin [117]. Neutrophils also 

form chromatin traps called NETs. The purpose of these traps is to facilitate the 

catching and killing of bacteria. However, these NETs contain high amounts of 

DNA which are released upon death of the neutrophils and the released DNA 

further increases the mucus viscosity and reactivity [118]. Thus, the death of 

neutrophils releases tremendous amounts of intracellular contents that are 

extremely harmful to the lungs. 

 

Neutrophils in cystic fibrosis can also undergo metabolic changes which affect 

their pro-inflammatory functions and half-life. According to Ingersoll and his 

colleagues, neutrophils in cystic fibrosis can develop metabolic adaptations 

which contribute to their altered function [119]. Changes in metabolic cycles 

affect the ability of neutrophils to engulf and phagocytize pathogens. It also 

results in additional production of toxic metabolites and prolongs the other-wise 

short half-life of neutrophils. In fact, neutrophils are short-lived immune cells with 

a lifespan ranging from a few hours to 5 days. In cystic fibrosis, several factors 

prolong the neutrophil lifespan including the prolonged pro-survival signals and 

the delayed apoptosis signal (due to mutated CFTR) [120]. These changes 

impair the neutrophil phagocytic capacities and extend their half-life while 

enhancing the neutrophil chemotaxis and migratory abilities. 

 

Neutrophils also control T cell responses in cystic fibrosis. One mechanism 

through which neutrophils can regulate T cell proliferation is by controlling 
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arginine concentration. Arginine is a conditionally essential amino acid required 

for T cell function and proliferation. In cystic fibrosis, neutrophils release 

excessive amounts of arginase-1 which depletes arginine and renders the airway 

lumen a highly inhibitory milieu for T cells. Additionally, neutrophil arginase-1 

cleaves T cell receptors and prevents their activation [119-125]. Conversely, 

neutrophils in cystic fibrosis can exert positive regulation of T cell responses by 

increasing the neutrophil expression of T cell activation receptors, major 

histocompatibility complex II, co-activator CD80, and prostaglandin D2 receptor 

(CD294). Neutrophils have been shown to particularly promote the expansion of 

Th2 and Th17 lymphocytes [119, 123]. Th17 lymphocytes will then recruit more 

neutrophils by releasing IL-17, the major cytokine involved in neutrophil 

chemotaxis and cystic fibrosis pathology (to be discussed in later sections). 

Thus, excessive influx if neutrophils in cystic fibrosis also impact the 

development and function of other immune cells, mainly T lymphocytes [119]. 

  

In summary, neutrophils constitute a major threat in the cystic fibrosis 

inflammatory process as they release toxic substances, reactive oxygen and 

nitrogen species, as well as DNA [82, 119]. Along with proteinases, these toxic 

neutrophil substances result in progressive inflammatory lung injury. 

 

iv. Macrophage alterations 

 

Macrophage function is an important element of innate immunity and is disrupted 

in cystic fibrosis. Changes in lung micro-environment affect macrophage 

polarization, phagocytic function, and antigen presentation. In normal 

circumstances, macrophage subpopulations are recruited to the lungs at different 

timepoints during the infection. These macrophage populations are essential for 

initiation, control, coordination, and resolution of inflammation [126]. Therefore, 

any disruption of a specific macrophage population can drastically affect the 

initiation and control of the immune response against infections. In this section, 
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changes in macrophage polarization and functions in patients with cystic fibrosis 

will be discussed. 

 

a. M1 and M2 macrophage activation 

 

Macrophage populations are separated into two distinct subpopulations based on 

their role in inflammation. Classically activated macrophages (designated M1 

macrophages) are inflammatory while alternatively activated macrophages 

(designated M2 macrophages) are regulatory. M1 macrophages produce high 

levels of pro-inflammatory cytokines and mediate resistance to pathogens by 

releasing reactive nitrogen and oxygen intermediates, phagocytizing invading 

organisms, and promoting Th1 responses. In contrast, M2 macrophages control 

parasitic and helminth infections, express scavenger mannose receptor and anti-

inflammatory cytokines, promote tissue remodeling and immune regulation, clear 

apoptotic cells and debris, and promote Th2 responses [127, 128].  Activation of 

M2 macrophages inhibits M1 macrophage proliferation and function and 

suppresses Th1-type cell-mediated immune responses. The latter is achieved 

through a characteristic pattern of gene up-regulation that includes the 

production of the type II cytokine TGFβ and the effector molecule arginase-1. By 

functioning to orchestrate remodeling and repair mechanisms, arginase-1 and 

TGFβ are also important in controlling lung homeostasis, inflammation, and 

subsequent damage [128-132]. It is important to note that M2 macrophages have 

recently been further characterized into M2a, M2b, M2c and M2d subsets based 

on their distinct gene expression profiles [127, 128]. However, in this dissertation 

we refer to the M2a subtype elicited by IL-4 and IL-13 as M2 macrophages. In 

cystic fibrosis, both macrophage populations are required. M1 macrophages are 

essential for protecting against infections and intracellular pathogens, while M2 

macrophages are essential for inflammation resolution and for tissue 

regeneration and airway remodeling. 
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The activation of M1 and M2 macrophages are governed by distinct signaling 

mediators. M1 macrophages are activated by TNF-α or IFN-γ when stimulated by 

non-self foreign antigens (such as LPS in the case of Gram-negative bacteria) 

[127, 128]. Conversely, M2 macrophages are activated by IL-4, IL-13, or IL-10. 

Signaling through the interferon regulatory transcription factor and the signal 

transducer and activator of transcription proteins (IRF/STAT) is the central 

governing mechanism of macrophage M1–M2 polarization [118, 127-129]. LPS 

signaling through TLR4 activates several signaling cascades which involve two 

adaptors, MyD88 and TRIF. MyD88 signaling activates several kinases including 

IRAK4, TRAF6, and IKKβ which ultimately activate NF-κB, the main M1 

macrophage transcription factor [127, 128]. Alternatively, TRIF signaling 

promotes the secretion of type I interferons through IRF3 activation. 

Consequently, secreted interferons bind receptors on macrophages and 

stimulate the phosphorylation and activation of the second M1 transcription 

factor, STAT-1. STAT proteins form dimers and translocate to the nucleus [128]. 

While NF-κB activation depends on IκB-α and IKKβ regulation, STAT signaling is 

mainly controlled by the suppressor of cytokine signaling (SOCS) family. SOCS 

modulates the sensitivity of cytokine receptors and alters the signaling pathways 

induced in response to TLR stimulation [127-129].  

 

In contrast to M1 macrophages, M2 macrophages are activated upon IL-4, IL-13, 

or IL-10 binding to their receptors, IL-4R, IL-13R, or IL-10R [108, 128, 129]. 

Binding to the receptors activates JAK1 and JAK3. Activation of JAK signaling 

through IL-4Rα activates STAT-6 while IL-10 stimulation through IL-10R activates 

STAT-3 transcription factor. The activation of STAT-6 and STAT-3 induce their 

phosphorylation, dimerization, and nuclear translocation which results in an anti-

inflammatory M2 macrophage phenotype [108, 127]. STAT-6 and STAT-3 

activation is regulated via SOCS proteins and protein inhibitors of activated STAT 

(PIAS). SOCS proteins form a negative feedback loop whereby SOCS genes are 

induced following cytokine stimulation and inhibit cytokine signaling. Conversely, 
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PIAS regulate STAT signaling by binding the activated STATs and preventing 

them from binding to the DNA [108, 128]. 

 

M1 and M2 macrophages have distinct effectors and secrete different cytokines 

and mediators upon stimulation. Activation of STAT-1 and NF-κB signaling in M1 

macrophages promotes the release of TNF-α, IL-1, IL-6, IL-12, Type I IFN, 

CXCL1-3, CXCL-5, and CXCL8-10.  TNF-α and IL-1β are pro-inflammatory 

cytokines responsible for inducing fever, tissue destruction, hematopoiesis, 

leukocyte chemotaxis, and interferon secretion [108, 127, 128].  IL-6 is a 

pleiotropic cytokine with a wide range of pro-inflammatory effects and some 

regenerative and anti-inflammatory activities. IL-12 is a potent pro-inflammatory 

cytokine and it promotes the activation of cytotoxic T lymphocytes and natural 

killer cells. CXCL-8 is also called IL-8 and it is the major neutrophil chemotactic 

factor. Last but not least, IFNγ promotes type 1 T helper cell responses (Th1 

immunity). The other cytokines mediate inflammation, recruitment and migration 

of immune cells, and release of pro-inflammatory mediators [127, 128, 133]. 

 

Alternatively, activation of STAT-6 and STAT-3 promotes the release of anti-

inflammatory mediators. This includes the expression of IL-10, YM1, and FIZZ1 

by M2 macrophages. Additionally, activation of STAT-6 and STAT-3 upregulates 

the expression of Dectin-1, DC-SIGN, mannose receptor, scavenger receptor A, 

scavenger receptor B-1, and CD163 [128]. IL-10 is an anti-inflammatory cytokine 

which suppresses the expression of pro-inflammatory cytokines, inhibits NF-κB 

signaling, suppresses Th1 immunity and promotes a regulatory T cell phenotype. 

Ym1 and FIZZ1 promote Th2 cytokine expression, wound healing, and allergic 

airway inflammation.  Moreover, mannose receptor functions as a pattern 

recognition receptor, plays a role in antigen uptake and presentation, mediates 

phagocytosis, scavenges unwanted mannoglycoproteins, and clears pro-

inflammatory mediators during inflammation resolution. Additionally, scavenger 

receptors remove debris and waste materials [108, 127-130, 133, 134]. 
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M1 and M2 macrophages also express distinct enzymes which are believed to 

play important immunomodulatory functions [127, 131, 132, 135, 136]. M1 

macrophages release nitric oxide and reactive oxygen byproducts due to the 

upregulation of iNOS enzyme which metabolizes arginine into nitric oxide and 

citrulline. M2 macrophages express arginase instead which leads to the 

production of prolines and polyamines through arginase conversion of arginine 

into ornithine and urea [128]. The iNOS/arginase paradigm has been studied for 

its role in modulating the immune response. This hinges upon the competition 

between iNOS and arginase for the same substrate, arginine, as well as the 

distinct immunomodulatory effects of arginase [127-132, 135, 136]. 

 

b. Arginase-1 immunomodulatory properties 

 

Arginase is a unique effector of alternative macrophages believed to have an 

immunomodulatory function, particularly through its competition with iNOS for 

their common substrate, arginine. iNOS induced by LPS and Th1 cytokines 

generates tremendous amounts of nitric oxide (NO). This results in an 

aggravated inflammatory response, contributes to bacterial clearance, and 

causes tissue injury [129-132]. Thus, the protective role of arginase-1 was initially 

expressed in terms of its competition with iNOS for arginine to limit the NO-

derived inflammatory damage. This hypothesis has recently been challenged 

because of the important role of NO in macrophage cytotoxic function and 

bacterial clearance [132, 135]. Hopkins and colleagues addressed this issue by 

distinguishing the role of NO in chronic and acute PA lung infection [136]. 

Acutely, the exaggerated generation of NO, the reactive nitrogen species, 

peroxynitrite, and superoxide radicals does not only contribute to the clearance of 

pathogens but also results in serious lung injury and fibrosis. NO is essential for 

angiogenesis, smooth muscle relaxation, and inhibition of neutrophil and 

leukocyte chemotaxis and migration to the lung [136].  
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The anti-inflammatory role of arginase-1 is believed to be far beyond limiting NO 

generation. In fact, increased arginase-1 expression is associated with down-

regulation of the immune response in several conditions including solid and 

hematological tumors, leishmaniasis, schistosomiasis, autoimmune 

encephalomyelitis, sepsis, pregnancy, trauma and experimental 

glomerulonephritis [137-150]. The immunomodulatory effects of arginase have 

been described in these disease models and they include: (1) suppressing Th1 

mediated pathology; (2) modulating the interplay of Th1/Th2 cytokines; (3) 

shifting the macrophage/neutrophil balance; (4) suppressing immune recognition 

and rejection of tumor cells; (5) reducing CD8+ and CD4+ T cell proliferation; and 

(6) decreasing NO-mediated injury [137-150].  

 

The most commonly described immunomodulatory property of arginase-1 

includes the induction of T cell hyporesponsiveness through arginine depletion 

[151-161]. Arginine depletion results in decreased T cell proliferation, decreased 

T cell effector function, and significantly decreased cytokine release (IFNγ, IL4, 

IL5, and IL10) [151, 152, 154-156, 157 2004, 158-161]. Activated T cells under 

arginine depleted conditions fail to express CD3ζ and CD3ε which results in 

decreased receptor-mediated tyrosine phosphorylation [162]. CD3ζ, CD3ε, and 

CD3δ form the CD3 co-receptor essential for T cell activation and transduction of 

intracellular signaling pathways upon antigen stimulation. Decreased expression 

of CD3 impairs the immune response and impairs T cell development, lineage 

determination, and activation [153 2004, 154, 155, 156 2004, 158-161].  

Decreased CD3ζ expression in arginine-depleted conditions is associated with 

decreased cyclin D3 mRNA stability and expression which in turn prevents 

progression in the cell cycle and arrests T cells in the G0-G1 phase [157]. 

Impairment of T cell activation under arginine depleted conditions is T cell 

receptor (TCR) independent and is not mediated via inhibitory effects of CTLA4, 

IL10, PDL1, or TGFβ [144]. Moreover, the decreased T cell proliferation is not 

associated with an increase in apoptosis or T cell death [151]. Additionally, 

arginase-1 promotes a regulatory T cell phenotype independent of IL2, TGFβ, 
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IL10, CTLA4, or PDL1 [144]. Although arginine depletion results in decreased 

expression of T cell activation markers (CD28, CD62L, and CD25), it does not 

affect macrophage activation [160]. Arginine depletion by arginase-producing M2 

macrophages does not affect the expression of other M2 macrophage effectors 

(IL-10, Ym1, and Fizz1) [144, 160]. In most cases, arginase-mediated T cell 

suppression is localized to the site of infection and does not affect naïve T cells 

in lymph nodes and other secondary lymphoid organs [138-144]. Importantly, 

arginine depletion does not affect the expression of iNOS or arginase. Finally, 

this T cell suppression has been demonstrated to be reversible with arginase 

inhibition or with L-arginine supplementation in a variety of disease models [137-

150].  

 

Arginase-1 also plays an essential role in wound healing and protection against 

inflammatory injury [135, 163]. Arginase is thought to promote its effects on 

tissue remodeling by metabolizing arginine into prolines and polyamines thereby 

promoting collagen synthesis, cell proliferation, and tissue regeneration [163]. 

Inhibiting or deleting arginase is associated with delayed wound healing along 

with defects in matrix deposition in several disease models. Campbell et al. show 

a macroscopic increase in cutaneous wound area along with decreased 

reepithelization in arginase conditional knock-out mice (Tie2-cre-mediated 

deletion from endothelial cells) [163].  In cystic fibrosis, the increased risk for 

chronic bacterial colonization along with the exaggerated inflammation result in 

progressive airway wall thickening and lumen dilatation along with permanent 

scarring of the lungs. Arginase is thought to protect against the resultant scarring 

and to mediate airway remodeling [135, 163]. 

 

Collectively, arginase-1 is an effector of M2 macrophages which exerts 

immunomodulatory and anti-inflammatory properties. Arginase-1 was evaluated 

in different diseases where is it shown to suppress T cell immunity and to 

promote a regulatory phenotype. Thus, it is critical to define the role of arginase-1 

in the setting of dysregulated immunity in cystic fibrosis. It is reported that 
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patients with cystic fibrosis express significantly high levels of arginase in their 

sputum along with decreased levels of NO. The increased arginase expression in 

patients with cystic fibrosis is believed to be mainly of neutrophil origin. 

Moreover, increased sputum arginase activity is reported in patients with end-

stage disease, patients with disease exacerbations, and in patients with severe 

lung disease and bronchiectasis [109, 119, 123-126, 135, 143, 164]. According to 

Grasemann et al., patients with stable disease have significantly lower levels of 

arginase expression and arginase activity is significantly increased upon hospital 

admission for exacerbation. Thus, arginase activity negatively correlates with 

lung function [109]. Current clinical studies link arginase expression with cystic 

fibrosis pathology due to significantly reduced levels of NO required for bacterial 

clearance [109, 119, 123-126, 135, 143, 165]. However, the immunomodulatory 

properties of arginase in cystic fibrosis and its ability to regulate the immune 

response in chronic infections have not been investigated.  

 

c. Altered macrophage polarization 

 

Proportional and balanced macrophage polarization is essential for effective 

control of inflammation. In response to any infection, different populations of 

macrophages are activated to play specialized roles in clearing bacteria and 

dead cells by phagocytosis, recruiting neutrophils and antigen presenting cells to 

the site of infection, as well as establishing and coordinating an efficient adaptive 

immune response. 

 

In patients infected with PA, there are increased levels of M2 macrophages in 

their bronchoalveolar lavage fluids while M1 macrophages predominate in the 

nasal cavities of these patients [166, 167]. Similarly, macrophages in sputum 

samples of cystic fibrosis patients show reduced expression of M2 markers and 

tend to be predominantly M1 polarized [168, 169]. Additionally, Tarique et al. 

show that macrophages from cystic fibrosis patients as well as macrophages with 

inhibited CFTR fail to respond to IL-4 and IL-13; therefore, they fail to polarize to 
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an M2 phenotype [27]. However, polarization to an M1 phenotype is unaffected 

[27]. Thus, CFTR mutations contribute to the altered macrophage phenotype and 

promote an M1 predominant polarization. According to Levi, stimulation of cystic 

fibrosis macrophages with IFN-γ and LPS induces a significantly greater increase 

in STAT-1 phosphorylation and activation compared to normal macrophages. 

This was also associated with significantly greater levels of pro-inflammatory 

cytokine release compared to normal macrophages [27, 167, 169]. Importantly, 

several studies report excessive and dysregulated stimulation of NF-κB 

transduction pathway in macrophages and epithelial cells [170].  

 

Additionally, the lung environment in cystic fibrosis skews macrophage 

polarization depending on the stability of the disease and the nature of infections 

at specific timepoints. The regulatory environment in stable disease and the Th2 

mediated immune responses drive macrophage polarization towards an M2 

phenotype. Infections which favor a Th1 response are associated with an 

aberrant polarization of M1 macrophages [171]. These macrophages are 

recruited in excessive numbers and are more sensitive to external stimuli, 

resulting in robust signal transduction and excessive release of their 

characteristic cytokines. Gao and colleagues show that alveolar macrophages 

with mutated or inhibited CFTR have exaggerated activation of NF-κB and 

increased release of TNF-α [25]. Gao also shows increased chemotaxis and 

migratory abilities of macrophages with mutated CFTR [25]. Therefore, skewing 

macrophage polarization in cystic fibrosis is uncontrolled and results in an 

exaggerated immune response [134, 170-172]. 

 

d. Altered macrophage functions 

 

Macrophage phagocytic function is affected by the absence or mutation of CFTR 

receptors normally expressed on the cell surface. Malfunctional CFTR receptors 

impair the ability of cystic fibrosis macrophages to clear engulfed pathogens 

[134, 172, 173]. CFTR is essential to control phagosomal pH which is critical for 
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macrophage bactericidal functions. This was demonstrated in CFTR knock-out 

mice as alveolar macrophages from these animals fail to acidify their 

phagolysosomes and therefore lack the ability to efficiently kill internalized 

microbes [174]. Additionally, cystic fibrosis causes a disruption in macrophage 

lysosome function and the ability to recognize PAMPs. Bruscia and colleagues 

show that cystic fibrosis macrophages are characterized by defective endosomes 

with delayed endosome/lysosome maturation during LPS challenge [106, 170]. 

This prevents trafficking of TLR4 from the plasma membrane to the lysosome 

resulting in profound stimulation of these macrophages and increased release of 

inflammatory mediators compared to wild-type macrophages [170]. Additionally, 

this defect contributes to long-term colonization of the cystic fibrosis lungs by PA 

which is able to mutate their recognition sequences in order to escape the 

recognition by macrophage TLRs [25, 175, 176].  

 

Macrophages in cystic fibrosis also have decreased ability to clear dead 

neutrophils. Dead neutrophils are normally cleared from the airways by being 

expelled in the coughed mucus or through phagocytosis by alveolar 

macrophages. However, the impaired macrophage signaling pathways, the 

increased intraphagosomal pH, as well as the impaired trafficking of recognition 

receptors to the surface of macrophages render these cells inefficient in clearing 

the excessive number of dead neutrophils [134, 170-172]. Neutrophils also form 

extracellular traps which interact with macrophages and further impair the 

macrophage functions. Therefore, clearance of dead neutrophils is impaired in 

cystic fibrosis leading to accumulation of highly toxic substances [20, 25, 63, 133, 

134, 170-175]. 

 

e. Altered alveolar and interstitial macrophages 

 

Two major macrophage populations are normally present in the lungs, the 

alveolar macrophages and the interstitial macrophages. Alveolar macrophages 

are found in the airway lumen while interstitial macrophages reside in the lung 
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parenchyma [63, 133, 134, 172-174]. When alveolar and interstitial macrophages 

are activated they release mediators to recruit other macrophages from the 

circulation to assist in pathogen clearance. Alveolar macrophages are inherently 

suppressive and maintain homeostasis by clearing debris, recycling surfactant 

molecules, and preventing inflammation. However, they are the first line of 

defense which is initiated by the release of pro-inflammatory cytokines upon 

encountering a pathogen [63, 133]. Conversely, interstitial macrophages are very 

heterogeneous with versatile regulatory functions including the activation of IL-10 

mediated adaptive responses. Alveolar and interstitial macrophages in cystic 

fibrosis are intrinsically modified with metabolic hyperactivity, excessive cytokine 

release, as well as the production of ciliary dyskinesia and tissue-damaging 

substances [63, 133, 177-182]. Additionally, several reports describe a 

remarkable increase in the numbers of tissue macrophages in cystic fibrosis and 

strongly correlate their altered functions with increased mucus accumulation and 

pulmonary exacerbations [63, 133, 134, 172-174, 183-185]. Moreover, tissue 

macrophages are very sensitive to CFTR mutations. A single allelic CFTR 

mutation is sufficient to exacerbate macrophage pro-inflammatory functions. 

Alveolar macrophages in cystic fibrosis have reduced ability to secrete IL-10 

while they release tremendous amounts of IL-6, IL-8, IL-1, and TNF-α. Therefore, 

alveolar macrophages in cystic fibrosis are unable to exert their regulatory 

functions and they fail to establish homeostasis in the lungs. Additionally, 

alveolar and interstitial macrophages in cystic fibrosis express high levels of TLR-

4 which is associated with significantly elevated and sustained signal 

transduction and activation of the NF-κB and MAPK pathways [63, 133, 177, 186, 

187]. Tissue macrophages in the cystic fibrosis lungs also have impaired 

phagocytosis, impaired autophagy, impaired lipid raft composition, impaired 

vesicle trafficking, as well as impaired pH in the trans-Golgi, endosome, and 

lysosome [63, 133, 184, 185]. Collectively, these impairments render the tissue 

macrophages unable to engulf and clear pathogens [63, 133, 178-182]. 
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In summary, macrophages present in the cystic fibrosis lungs fail to exert the 

essential functions required for pathogen clearance while coordinating an 

inflammatory response that is excessive and dysregulated. These changes are 

evident even before any signs of infection and continue to accumulate with non-

resolving infections. The phagocytic and regulatory functions of these 

macrophages are impaired and thus are drastically deleterious to the host. 

 

III. Adaptive immunity in cystic fibrosis  

 

The activation of an efficient and specialized adaptive immune response is 

crucial to completely clear and eradicate infections. There are two main 

categories of cells which carry out adaptive immunity: B cells and T cells. Both 

are antigen-specific and selectively expand in lymphoid organs after recognition 

of foreign antigens presented to them by antigen presenting cells (APC). Similar 

to the innate system, adaptive immune cells exert regulatory functions which 

terminate the inflammatory response. Additionally, adaptive immunity provides 

long-lasting immunological memory. Disruption of adaptive immune responses in 

patients with cystic fibrosis is associated with disease pathology and is a result of 

the disturbed communication with the innate immune cells, environmental factors 

which skew T and B lymphocyte responses, as well as intrinsic factors like CFTR 

mutations and altered signaling [63, 133, 182]. The following section discusses 

the main elements of the adaptive immune response and how they are altered in 

patients with cystic fibrosis.  

 

i. Impaired communication between innate and adaptive immunity 

 

In cystic fibrosis, innate immune cells display a decreased efficiency in antigen 

presentation and to provide necessary costimulation for B and T cell selection. 

The communication, whether direct or indirect, between the innate and adaptive 

immune cells is essential to selectively induce the expansion of antigen-specific 

B and T lymphocytes. Positive selection requires antigen presentation through 
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the MHC receptors on APC. Macrophages and dendritic cells process antigens 

from the site of infection and present them for lymphocyte selection in the 

lymphoid organs. When T or B cells get activated, they require costimulation by a 

second signal in order to expand and differentiate. Costimulation involves 

cytokine signaling for lymphocyte differentiation and proliferation (like IL-2, IL-4, 

IFN) as well as costimulatory receptors (like B7 and CD28) that govern cognate 

interactions between cells [182]. In cystic fibrosis, non-CFTR genetic mutations 

disrupt the communication between innate and adaptive immunity. In fact, Wright 

and colleagues show that disease severity is directly correlated with the MHC 

gene polymorphisms in cystic fibrosis [182]. These polymorphisms are related to 

the failure of appropriate antigen processing and presentation. For instance, 

dendritic cells from cystic fibrosis patients express lower levels of MHC-II on their 

surface compared to dendritic cells from healthy volunteers [63, 133, 183]. 

Specific mutations were also associated with increased infections with PA 

including the DR7/DQA*0201 mutation while HLA-DQB1*0201 increases the risk 

for diabetes in cystic fibrosis patients. Additionally, genetic variations of MHC 

alleles predict susceptibility to PA infections. Expression of HLA-DR7 in cystic 

fibrosis patients is associated with increased risk for PA colonization while HLA-

DR4 expression is associated with reduced frequency of PA colonization [188]. In 

addition, neutrophil elastases are capable of cleaving MHC receptors from 

antigen-presenting cells. Additionally, B lymphocytes are essential for antigen 

presentation required for effector and memory T cell priming and induction. B 

cells from cystic fibrosis patients are characterized with an inefficient uptake, 

processing, and antigen presentation on their B-cell receptors [189-191]. 

Additionally, T and B cells with mutated CFTR lose the appropriate membrane 

polarization potential due to abnormal ion flux across the CFTR channels thus 

losing the essential ion clustering along the membrane for stabilizing the 

interaction between these lymphocytes and the antigen presenting cells.  

 

While immune cells fail to present antigens effectively, costimulatory signals are 

also altered in cystic fibrosis lungs [133, 182, 183, 188-192]. Evidence suggests 
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that PD-L1/PD-1 interaction between airway epithelial cells and T cells is 

suppressed with reduced PD-L1 expression on cystic fibrosis epithelial cells. 

Additionally, epithelial cells control costimulation by intrinsically modulating their 

cytokine release. They skew T lymphocytes into a Th2 response by releasing IL-

4 and they control T cell proliferation by releasing IL-2. Finally, the local release 

of different pro- and anti- inflammatory cytokines, as well as growth factors, by 

different immune cells directly influence the clonal selection and the 

differentiation of T and B lymphocytes [189-192]. Collectively, genetic and 

inflammatory factors contribute to the failure of coordinated activation of the 

adaptive immune response in cystic fibrosis. 

 

ii. Skewed T cell responses 

 

Differentiation of T lymphocytes into different effector cells is altered in cystic 

fibrosis due to CFTR mutation, intrinsic alterations, and environmental factors 

(summarized in Figure 1.1b). T cell responses involve the activation of T helper 

(Th) lymphocytes which are divided into different subpopulations. Type-1 or Th1 

lymphocytes are pro-inflammatory and are polarized by IFN-γ predominantly 

produced by natural killer (NK) and natural killer T (NKT) cells and by Th1 and 

cytotoxic T lymphocytes [192-194]. Th1 cells are involved in clearance of 

intracellular pathogens and they polarize macrophages into an M1 phenotype 

thus promoting their microbicidal function [192-194]. Th1 lymphocytes are 

stimulated through IFN-γ mediated activation of the STAT-1 signaling pathway 

which activates T-bet, the main Th1 transcription factor. Th1 lymphocytes release 

IL-2, IFN-γ, TNF-α, macrophage inflammatory protein-1 alpha (MIP-1α), and MIP-

1β [192-194]. Additionally, IL-12 from M1 macrophages can activate STAT-4 

which binds and activates T-bet. Conversely, Type-2 or Th2 lymphocytes are 

polarized by IL-13 or IL-4 and release anti-inflammatory cytokines, mediate 

humoral immunity, and clear extracellular bacteria and parasites. IL-4 activates 

the STAT-6 signaling pathway which stimulates GATA3 activation, the Th2 

transcription factor. Additionally, IL-4 is a negative regulator of STAT-4 while IFN-
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γ is a negative regulator of STAT-6; thus, the polarization into a specific Th cell 

subset negatively regulates the other [192-194]. 

 

A third population of T helper cells includes the Th17 lymphocytes which are 

strongly associated with morbidity in cystic fibrosis. Th17 lymphocytes are 

polarized in the presence of IL-6, IL-23, and TGF-β and are responsible for the 

production of neutrophil chemokines, IL-17 and IL-8 [193]. TGF-β along with IL-6 

activate STAT-3 which stimulates the Th17 transcription factor, RORγt. IL-23 

also activates STAT-3 by stimulation of IL-23R. Th17 lymphocytes are 

considered pro-inflammatory due to the potent ability of IL-17 to induce the 

release of TNF-α, IL-1β, and MCP-1 [194]. Th17 lymphocytes and their 

contribution to inflammatory lung injury and pathogenesis in cystic fibrosis are 

discussed in later sections. However, Th17 lymphocytes are the main source of 

neutrophil chemoattractant factors. IL-17A and IL-17F are elevated in the sputum 

of patients with cystic fibrosis and correlate with the excessive neutrophil 

recruitment [164, 194-207]. Chronic infections with PA and other Gram-negative 

bacteria skew the T cell responses towards a Th17 predominant response [194]. 

 

The fourth subset of T helper lymphocytes is referred to as regulatory T cells 

(Tregs). Tregs naturally exist in the thymus and can be polarized peripherally in 

the presence of TGF-β [195]. Tregs express CD25 (IL-2rα) and FoxP3, both of 

which are essential for the suppressive activity of these lymphocytes. Tregs 

release anti-inflammatory mediators upon activation including IL-10, IL-35, and 

TGF-β. Tregs are significantly decreased in the peripheral blood and airways of 

patients with cystic fibrosis compared to healthy individuals. Moreover, patients 

with chronic infections like PA have reduced numbers of Tregs [195, 205] and the 

numbers of Treg lymphocytes in cystic fibrosis lungs positively correlate with lung 

function [195, 205-207]. Additionally, Treg lymphocytes with mutated CFTR fail to 

suppress T cell responses and promote regulated immunity. According to Hector 

et al., infections with PA promote suppressed Treg numbers, impaired Treg 

regulatory functions, and impaired Treg memory development [207].  
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T lymphocytes exhibit unique plasticity and are able to convert from one 

phenotype to another [164, 194-207]. For instance, IL-6 can downregulate FoxP3 

expression in Tregs and increase their secretion of IL-17 thus converting them 

into Th17 phenotype [164, 194-207].  Additionally, an intermediate phenotype of 

Th17 and Th1 lymphocytes has been described where cells co-express IFN-γ 

and IL-17 [194].  Th2 lymphocytes stimulated with IFN-γ also co-express GATA3 

and T-bet. It is important to note that two new subsets of Th lymphocytes were 

discovered, and they include Th9s which release IL-9 and Th22s which release 

IL-22 [194]. Th9 lymphocytes mediate immunopathology and mitigate allergic 

inflammation and fibrosis in patients with cystic fibrosis. Th22 lymphocytes 

observed to play a role are in bacterial infections and help in microbe clearance 

[164, 194-208]. 

 

In cystic fibrosis, T helper lymphocyte populations contribute to pulmonary 

pathology and excessive inflammation. The specific role of each population and 

the different environmental factors that alter these responses are discussed in 

the following sections. 

 

a. CFTR in lymphocytes 

 

CFTR is expressed on B and T lymphocytes and its mutation contributes to the 

alteration of B and T cell responses. Lack of functional CFTR expression on B 

cells is associated with suppressed ability to produce λ light chain upon 

stimulation [196]. Lack of λ light chain significantly affects B cell response against 

PA and the clearance of this pathogen [164, 196-206]. Additionally, lack of 

functional CFTR expression on T cells is associated with exaggerated IgE levels 

and a skewed proallergic Th2 response [164, 197-199]. Increased IL-4, IL-13 and 

IgE levels in CFTR deficient T cells results in a Th2 dominated response which is 

effective against parasites but cannot clear PA infections [164, 196-199]. Several 

studies in CFTR knock-out mice and in CFTR-deficient lymphocytes show the 
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direct correlation between CFTR mutations and allergic inflammation in cystic 

fibrosis [164, 197-199]. CFTR knock-out mice infected with PA produce defective 

Th1 lymphocytes which can release IL-12 but do not exhibit other Th1 properties. 

This was explained by the altered calcium flux in T cells which lack CFTR [196, 

200-202]. Increased calcium signaling alters the expression of calcium-sensitive 

genes including those involved in Th1/Th2 differentiation. According to Mueller, 

increased calcium signaling in T cells activates NFAT transcription factor which 

increases Th2 cytokines (IL-4, IL13, and IL-6) along with increased IgE synthesis 

in B cells leading to suppression of Th1 cytokines and therefore creating an 

allergic inflammatory environment in the cystic fibrosis lungs [200, 201]. 

Moreover, the altered ion flux across the CFTR deficient T cells results in 

membrane depolarization due to retention of intracellular chloride concentrations 

thus altering the surface signaling pathways and resulting in abnormal gene 

expression [202]. Collectively, CFTR mutation in cystic fibrosis skews 

lymphocytic responses by altering the different signaling pathways and 

machineries in B and T cells.  

 

b. Intrinsic and environmental lymphocyte alterations 

 

Lymphocytes in cystic fibrosis are skewed into a Th2 and T17 predominant 

immune response due to inherent predisposition as well as abundance of 

inflammatory signals and cytokines which polarize these cells. Inherent 

predisposition is described by the ability of naïve T cells isolated from cystic 

fibrosis patients to be polarized into Th2 and Th17 phenotypes [203-206]. 

Moreover, there is a significant imbalance between driving and opposing signals 

and cytokines involved in Th2 and Th17 polarization. In fact, Th2 and Th17 

lymphocytes are present in excessive amounts and are believed to mediate 

pathology in cystic fibrosis [203, 204]. Kushwah et al. provide evidence on the 

intrinsic tendency of naïve T cells from cystic fibrosis patients to polarize towards 

the Th17 phenotype [205]. Naïve T cells were isolated from mice and humans 

and examined in response to different polarizing cytokines and stimulants [205]. 
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They found that T cells, with or without mutated CFTR channels, can equally 

differentiate under the influence of appropriate cytokines into Th1 and Treg 

phenotypes. However, when T cells with CFTR mutation were polarized with 

Th17 stimulants, there was at least a 2 times higher and faster shift into the Th17 

phenotype compared to wild-type lymphocytes. Similarly, at least double the 

number of naïve lymphocytes from cystic fibrosis patients polarized into Th17 

phenotype compared to lymphocytes from healthy volunteers. Simultaneously, 

there was equal differentiation of naïve T lymphocytes into Th1 and Treg 

phenotypes from healthy and diseased populations [205]. Interestingly, a case 

report from a 16 year old female diagnosed with cystic fibrosis shows T cell 

unresponsiveness despite the fact that she was not receiving steroids or any 

other immunomodulatory therapy. T cells isolated from her blood failed to 

produce IFN-γ and ex vivo stimulation of naïve T cells failed to differentiate into 

either Th1, Treg, or Th17 phenotypes [206]. This patient had greater severity and 

faster progression of her disease. While intrinsic impairment in T cell 

differentiation might be in part related to CFTR mutations, the exact intrinsic 

mechanisms by which naïve T cells from cystic fibrosis patients polarize to a 

specific phenotype are yet to be elucidated [206].    

 

Several other factors drive lymphocyte polarization in patients with cystic fibrosis 

including the suppressed Treg numbers and the exaggerated release of 

cytokines released by epithelial cells and macrophages. The numerous Th2 and 

Th17 lymphocytes are attributed to the fact that there are minimal numbers of 

Tregs [207]. The deficiency in Tregs creates an imbalance in the pro- and anti- 

inflammatory cytokines. Thus, the lack of IL-10 from Tregs and the pro-

inflammatory lung environment in cystic fibrosis promote polarization of T 

lymphocytes into the Th17 subtype [205-207, 209]. Additionally, lower numbers 

of Tregs in cystic fibrosis patients are associated with increased Th2 

lymphocytes and reduced lung function. M2 macrophages and epithelial cells 

release TGF-β and IL-6 which further polarize T cells towards a Th17 phenotype. 

Moreover, excessively elevated levels of IL-1β, TNF-α, and IL-21 in the cystic 
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fibrosis lungs, along with TGF-β, strongly drive Th17 polarization [67, 207, 209-

219]. Th17s also secrete IL-21 which results in a vicious cycle of continual Th17 

stimulation. IL-6 by itself upregulates IL-23R expression, the latter is stimulated 

with IL-23 binding which further promotes the expansion and maintenance of 

Th17 lymphocytes. Other environmental factors which contribute to increased 

Th17 polarization include the change in lung microbiota and prolonged infections 

[209]. In fact, high concentration of antigen and microbial stimuli synergistically 

stimulate Th17 differentiation by upregulating CD40 expression on T cells and 

increasing IL-6 release by dendritic cells. Strong CD40/CD40 ligand interaction in 

this way preferentially drives Th17 polarization [209-214].  Collectively, intrinsic 

and environmental alterations skew the T lymphocytes in cystic fibrosis towards 

Th2/Th17 phenotype. 

 

Th17 lymphocytes and IL-17 production are associated with poor prognosis and 

play an early role in disease pathology. In fact, IL-17 has been found to be 

involved in several inflammatory diseases including multiple sclerosis, rheumatic 

diseases, inflammatory bowel disease, asthma, and atopic dermatitis [210]. In 

cystic fibrosis, human lung lavage and sputum samples show elevated 

concentrations of IL-17 and IL-23, especially in patients infected with PA 

infections [211-213]. IL-17 is strongly associated with disease pathology via 

upregulation of mucin-producing genes [214, 215]. Th17 cells provide a 

continuous signal for sustained neutrophil inflammation which further aggravates 

lung injury [216-220]. Th2 and Th17 lymphocyte populations also predict disease 

progression. In a study of T cell phenotypes in 57 cystic fibrosis patients, stable 

patients had augmented numbers of Th1, Th2, and Th17 lymphocytes compared 

to normal individuals. Cystic fibrosis patients with PA colonization had 

significantly higher numbers of Th17 lymphocytes compared to non-cystic fibrosis 

patients [67]. Moreover, symptomatic patients with PA or fungal infections had 

significantly higher concentrations of IL-17, IL-13, and IL-5 compared to 

asymptomatic patients. Immune responses in symptomatic patients were 

Th2/Th17 skewed and correlated with increased neutrophils and high-resolution 
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computed tomography changes (fibrosis) [67]. These changes, interestingly, 

were independent of IFN-γ levels. There were higher levels of Th2 and Th17 

cytokines in the bronchoalveolar lavage fluids of patients prior to infections with 

PA and the levels of these cytokines positively predicted the development of PA 

infections [67]. Moreover, decreased IFN-γ levels and defective Th1 responses 

were also predictive of increased PA infection frequency [67]. Another study 

shows increased Th17 cytokines in the lungs of PA infected cystic fibrosis 

patients, and the authors report a strong negative correlation between Th17 

levels and lung function. This relationship remained significant even after 

antimicrobial treatment [221].  

 

It is important to note that Th17s and IL-17 are key elements of cystic fibrosis 

pathology as they are present very early in the disease and are maintained and 

remain elevated throughout the course of the disease. As the disease reaches 

the end stages, high IL-17 concentrations persist. This is partially explained by 

the fact that Th17 cells exhibit immunological memory and that other immune 

cells secrete IL-17 [222]. Non-Th17 cells which secrete IL-17 are thought to play 

a role in later more progressive stages of the disease and include the NKT cells 

and the γδ T-cells [211-213]. IL-17 producing γδ T-cells result in 

hyperinflammatory granulomatous disease and are associated with severe and 

fatal lung damage [209]. Cystic fibrosis patients infected with PA have increased 

numbers of γδ T-cells which release large amounts of IL-17, TNF-α and IFN-γ 

thereby aggravating inflammation and lung injury [67, 223, 224]. Similarly, NKTs 

are pro-inflammatory cells which function to maintain a profound activation of the 

immune response by attracting other immune cells. NKT cells express RORγt 

and recruit large numbers of neutrophils by releasing IL-17. In cystic fibrosis, a 

significant decrease in the Treg/NKT ratio is observed. This further relates to the 

constantly activated inflammatory response with persistent neutrophilia and 

airway hyperresponsiveness [209, 225, 226]. 
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In summary, adaptive immunity is altered in cystic fibrosis and is directly related 

to CFTR mutations as well as to intrinsic T and B cell alterations. Changes in ion 

flux and signaling transduction along with changes in the lung microenvironment 

and the predominance of specific cytokines drive lymphocyte polarization and 

dysfunction. Th2 and Th17 lymphocytes predict lung function and acquisition of 

PA infections while they contribute to cystic fibrosis pathology and lung damage. 

 

 

IV. Dysregulated inflammation  

 

There is evidence that inflammation exists in cystic fibrosis even before any signs 

of infection or lung disease [186]. Scientists originally thought of excessive 

inflammation in cystic fibrosis as a consequence of chronic and repetitive 

infections. However, in a review of primary literature and clinical studies by Rao 

et al., the authors propose that the cause of inflammation in cystic fibrosis 

extends far beyond infection [186]. Rao presents inflammation as an important 

pathological component of cystic fibrosis. Inflammation in cystic fibrosis is 

exaggerated, results in lung injury, persists after pathogen clearance, and is 

present even before the first pulmonary infection [186]. Human sputum and 

bronchoalveolar lavage samples reflect an established pro-inflammatory state in 

cystic fibrosis lungs independent of the presence of an active infection. Several 

clinical studies show at least 10 fold more neutrophils in uninfected cystic fibrosis 

lungs compared to normal humans with or without lower respiratory tract 

infections. Moreover, there is an elevated presence of pro-inflammatory 

cytokines including TNF-α, IL-6, IL-8, and LTB-4 in un-infected cystic fibrosis 

lungs as well [173, 227, 228]. There is an increased number of macrophages in 

un-infected cystic fibrosis lungs. These macrophages are believed to have a 

more profound ability to release mediators and to induce an inflammatory state 

compared to macrophages from non-cystic fibrosis lungs [186]. Studies show 

that in the absence of any infection, macrophages in cystic fibrosis lungs are 

polarized towards a pro-inflammatory M1 phenotype [173, 184]. Naïve human 
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macrophages from cystic fibrosis patients stimulated with LPS show significantly 

higher stimulation of the NF-κB and MAPK signaling pathways, higher levels of 

pro-inflammatory cytokine release, and a decreased ability to produce the anti-

inflammatory cytokine IL-10 [134, 172-174, 181, 229-232]. Similarly, T 

lymphocytes from cystic fibrosis lungs have an increased pro-inflammatory 

potential in culture when compared to T lymphocytes from healthy volunteers 

[231].  

 

In addition, cells that makeup tracheal and epithelial tissues are also capable of 

producing dysregulated inflammation. In a study by Tirouvanziam et al., naïve 

tissues from newborns with cystic fibrosis were grafted into immunocompromised 

mice to investigate the inflammatory potential of cystic fibrosis lung tissues [233]. 

When fetal tracheal tissues were transplanted into severe combined 

immunodeficient mice, there was an eight-fold greater increase in IL-8 secretion 

as compared to mice which received non-cystic fibrosis tracheal grafts. When 

these mice were infected with PA, there was a rapid increase in leukocyte 

migration and spread of PA into the lamina propria within 3 hours in mice which 

received grafts from diseased neonates [233]. In mice with grafts from normal 

neonates, the inflammatory response occurred later and at a slower rate after 6 

hours of infection. The inflammation in mice grafted with tissues from cystic 

fibrosis neonates was associated with severe exfoliation of the lung epithelium 

along with damage in the mucosa which was not otherwise observed in mice with 

normal grafts. These pulmonary changes are believed to create a niche for PA 

growth and replication which is thought to resemble the chronic infection in 

humans [233]. This study supports the idea that CFTR mutations predispose to 

an inflammatory state in cystic fibrosis patients independent of infection. And that 

in the presence of an infection, the already primed and inflamed lungs of cystic 

fibrosis patients respond in an exaggerated manner to invading pathogens.  

 

Additionally, Khan et al. analyzed lavage fluids from the lungs of 16 human 

newborns with cystic fibrosis whose cultures were negative for any possible 



 38 

infection (bacterial, viral, or fungal) [234]. In comparison with normal infants, the 

lavage fluids of the diseased population had significantly higher levels of 

neutrophils, neutrophil elastases, anti-protease inhibitors, and IL-8. Collectively, 

this study by Khan, in addition to many similar studies, confirm the inverse 

relation between neutrophil counts and lung function in cystic fibrosis which is 

again independent of the infection state [185, 234-240]. 

 

Cystic fibrosis patients also have a reduction in the typical anti-inflammatory set 

point of the pulmonary environment, represented by a decrease in the 

concentrations of IL-10, nitric oxide, and lipoxin-A4. IL-10 acts to stop the 

inflammatory response by suppressing the pro-inflammatory transcription factors, 

shutting down the synthesis of inflammatory mediators, and inducing the 

regulated-cell death of neutrophils. The reduction in nitric oxide prevents 

bacterial killing and relaxation of the airways. And finally, lipoxin-A4 is essential 

to limit the neutrophil-mediated inflammatory response [228, 241-250]. These 

changes exist along with the pre-described pro-inflammatory state. Thus, there is 

a disrupted balance of the inflammatory state in patients with cystic fibrosis. 

 

Another factor that clearly relates to the inflammatory picture of cystic fibrosis 

which is independent of infection is the presence of reactive airway (asthma-like) 

signs and symptoms. In fact, smooth muscle cells express CFTR receptors. 

When the latter are mutated they are believed to impair the smooth muscle 

contractility due to impairment of ion flux [248]. Additionally, smooth muscle cells 

in children and adults with cystic fibrosis were observed to be affected with 

hyperplasia and hypertrophy which impairs their contraction [12, 249]. The airway 

hyper-responsiveness and the asthma-like phenotype are also attributed to 

inflammatory mediators which induce smooth muscle contractions. In response 

to these inflammatory cytokines, smooth muscle cells can release IL-8 which 

further contributes to the inflammatory process. Additionally, the excessive 

release of IL-4 and IL-13 by T lymphocytes with mutated CFTR (Th2s) drives 

airway hyper-responsiveness directly and through the increased production of 
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IgE [68]. This presents an inflammatory pulmonary disease overlapping with 

cystic fibrosis pathology and independent of infection state [248-250]. 

 

Collectively, the evidence presented distinguishes the inflammatory process as a 

unique pathological element of cystic fibrosis. This is supported by the facts that 

inflammation is (1) present prior to any infection; (2) is excessive compared to 

the number of infective microbes; (3) contributes to lung injury and damage; (4) 

and is innately skewed towards a pro-inflammatory response. This further 

emphasizes that dysregulated inflammation is a key factor in cystic fibrosis 

pathology to be closely considered for therapeutic targeting and treatment. 

 

V. Current treatments for cystic fibrosis 

 

Current treatment options for patients with cystic fibrosis include supportive 

treatment to improve breathing and lung function, as well as symptomatic 

treatment targeting the infections and pulmonary inflammation. Most of the 

currently available anti-inflammatory and immunomodulatory therapies fail to 

effectively resolve the dysregulated inflammation without drastically impairing the 

immune response [84 2001, chmiel, 1999, 97, 250-279]. Several elements of the 

disrupted inflammation and the dysregulated innate and adaptive immune 

responses have been considered for development of new therapeutic targets. 

 

i. CFTR based therapies 

 

Novel therapeutic approaches aim at targeting CFTR function. As discussed 

earlier, CFTR mutations contribute to altered inflammation in several aspects 

[250-256]. Patients with cystic fibrosis have 2 mutated CFTR alleles which result 

in decreased number and malfunction of the CFTR channels. Genotype-directed 

therapies use genetic approaches to restore expression and function of CFTR 

channels. The personalized approaches have been successful in restoring 

epithelial and phagosomal functions; however, they are of limited usefulness in 
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advanced disease stages [250-253]. Additionally, small molecules have been 

developed as CFTR modulators. These modulators target specific CFTR variants 

and mutations that are associated with a minimum level of CFTR protein 

expression. Therefore, these CFTR modulators potentiate and improve the 

function of CFTR expressed on cell surface level [250-253]. Ivacaftor, 

lumacaftor/ivacaftor, and tezacaftor/ivacaftor are FDA approved CFTR 

potentiators. They improve ion flux across the channels, improve lung function, 

and reduce morbidity and mortality. However, the use of these CFTR modulators 

remains limited for patients with a particular mutation [254-256]. 

 

ii. Anti-inflammatory therapies 

 

a. Corticosteroids 

 

Corticosteroids are the main anti-inflammatory agents used in cystic fibrosis 

patients [81, 257]. They are widely available and efficiently dampen airway 

inflammation in a global and non-specific way. There are several oral, inhaled, 

and intravenous corticosteroid formulations that are extensively used in patients 

with cystic fibrosis [81, 256]. Corticosteroids are effective in slowing disease 

progression and suppressing excessive inflammation. However, long-term 

steroid use is associated with many adverse events including growth retardation 

and even decline in lung function [256-259]. Nonetheless, steroids are broadly 

used in cystic fibrosis as targeted anti-inflammatory drugs are not available. 

 

b. Therapies targeting neutrophil recruitment 

 

Multiple approaches aim to correct specific alterations of the immune response 

[8]. Clinicians and immunologists are attempting to target the signaling pathways 

involved in neutrophil recruitment. For instance, a human monoclonal antibody 

against IL-8 is proving to be promising in clinical trials [260]. Besides targeting IL-

8, studies in mice show that neutralizing IL-17 is also promising and it effectively 
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reduces neutrophil influx in response to PA [260-262]. However, targeting IL-17 

with neutralizing antibodies is challenging due to the importance of this cytokine 

in the clearance of pathogens [8, 260-262]. 

 

Other therapies directed against neutrophils include the attempt to deliver or 

stimulate the endogenous release of anti-proteinases (α1-proteinase inhibitor) 

[105, 263-267]. Several studies are evaluating the potential to formulate 

appropriate dosage forms or genetic approaches to achieve therapeutic levels of 

these proteinase inhibitors [105, 263-266]. A recent study just passed phase-II 

clinical trials where they show limited toxicity with an inhaled form of α-1 

antitrypsin (a human anti-protease) [267]. 

 

Moreover, new therapies are directed to clear the pathogenic DNA released from 

dead neutrophils and bacteria [268, 269]. The release of DNA fragments results 

in increased mucus thickness and activation of several inflammatory cascades. 

Recombinant DNase was evaluated in several human trials where it proved to 

reduce mucus thickness, decrease neutrophil influx and recruitment, improve 

lung function, and decrease exacerbations [268, 269]. In fact, some DNases are 

FDA approved for use in cystic fibrosis.  

 

c. Therapies against NF-κB signaling pathway 

 

Several approaches target specific pathways involved in exaggerated 

inflammation including that governed by NF-κB [84 2001, chmiel, 1999, 97, 257-

259, 270, 271, 279]. Recombinant IL-10 succeeds in regulating inflammation by 

inhibiting NF-κB activation in murine models of PA pneumonia. However, it has 

not yet been assessed in humans [280]. A phase-II clinical trial is currently 

evaluating the efficacy of Genestein which is a tyrosine kinase inhibitor that 

stimulates CFTR and inhibits NF-κB activation [270, 271]. Other therapies in 

development which target NF-κB activation in cystic fibrosis include (1) HE3286, 

which is currently in phase I/II clinical trials; (2) azithromycin, which passed a 
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phase III clinical trial and is suggested to inhibit NF-κB and AP1 activation; (3) 

curcumin, which is proven to block NF-κB activation and rescue mutated CFTR 

from degradation; (4) and ibuprofen and fenretinide/docosahexaenoic acid (in 

phase II clinical trial), which are shown to regulate NF-κB activation and lipid-raft 

formation and clustering [97].  

 

A major concern for developing an NF-κB inhibitor is the threat to suppress 

immunity and pathogen clearance. Attempts are being made to target NF-κB 

activation locally in the lungs by developing dosage forms that deliver the 

inhibitors to the lungs directly. Alternative approaches include screening for 

specific molecular targets that would provide controlled inhibition of NF-κB 

without global inhibition. Therefore, optimizing currently available therapies by 

identifying specific pathways by which they exert their beneficial effects is 

essential to overcome the failure and adverse drug effects of the current 

therapies. 

 

d. Cell-based therapies 

 

Cellular therapy is also an interesting and promising venue for cystic fibrosis 

treatment [272-274]. Clinical studies show a significant reduction of bacterial 

replication and infectivity along with increased soluble bactericidal substances in 

the airways of cystic fibrosis patients treated with human mesenchymal stem 

cells. Other cellular therapies include the restoration and transfer of engineered 

epithelial cells, monocytes, or macrophages [272-274]. Some of these 

approaches made it into clinical trials while others are still at the level of 

experimental animal models [272-274].  

 

iii. Antimicrobial therapies 

 

Scientists are developing new antimicrobial molecules and evolving better ways 

to deliver the currently available antibiotics [275-277]. New dosage forms deliver 
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high concentrations of antibiotics locally into the lungs which can allow the 

compounds to reach into the inaccessible areas of infection in the cystic fibrosis 

airways. Rapamycin and azithromycin can be successfully delivered in high 

concentrations packed in engineered nano-particles [275, 276]. Other therapies 

directed against the infecting microorganisms include the development of viral 

phages to kill the colonizing bacteria [277]. However, resolution of chronic 

infection is promising, no evidence is available on how helpful it would be 

because inflammation is dysregulated independent of the infection status. 

 

In summary, cystic fibrosis pathology is based on the chronic infections and the 

non-resolving pulmonary inflammation. Our increased understanding of the 

different components of cystic fibrosis pathology and the specific alterations in 

the immune system and the lung microenvironment identifies novel therapeutic 

targets. In fact, many therapies in development are targeting these specific 

alterations including (1) therapies which restore CFTR function; (2) therapies 

which control neutrophil inflammation; (3) therapies which control NF-κB 

activation; (4) therapies which restore functional immune cells; (5) and therapies 

which clear non-resolving infections. Additionally, the advancement in therapeutic 

options necessitates the consideration of combination therapy that would target 

infection, inflammation, genetic, and symptomatic components of this complex 

disease [84 2001, chmiel, 1999, 97, 250-278]. 

 

VI. Azithromycin use in cystic fibrosis 

 

Macrolide antibiotics constitute a unique therapeutic option proven to be 

tremendously effective in cystic fibrosis patients colonized with PA [281-285]. 

Macrolides exhibit anti-inflammatory properties and are used to control 

dysregulated inflammation. Macrolide antibiotics include azithromycin, 

erythromycin, clarithromycin, and roxithromycin. Macrolide antibiotics inhibit 

bacterial growth by binding and inhibiting the 50s ribosomal subunit thereby 

inhibiting protein synthesis by blocking the translation of mRNA into proteins in 
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bacteria [281]. However, the beneficial effects of macrolide antibiotics in cystic 

fibrosis are independent of their antibacterial activity. In fact, several studies 

evaluated the anti-inflammatory properties of the four macrolides mentioned. In a 

study by Ianaro et al., treatment with either macrolide reduced leukocyte 

infiltration, exudate volume, as well as reducing the pro-inflammatory cytokine 

burst in an acute pleuritic model in rats. The four macrolides reduce TNF-α, IL-

1β, IL-6, and nitric oxide levels in normal and in inflamed lungs [282]. The four 

macrolides were also evaluated in several inflammatory diseases in humans 

where they proved to control neutrophil migration, oxidative burst in phagocytes, 

as well as pro-inflammatory cytokine release [281-285]. Additionally, the four 

macrolides share the ability to accumulate intracellularly in macrophages and 

neutrophils suggesting a possible interaction with leukocytes to control 

inflammation [282-285]. However, the specific mechanism underlying the anti-

inflammatory properties remains unclear. In cystic fibrosis, azithromycin received 

special attention and it proved to exert clinically beneficial effects without 

considerable adverse reactions. This section summarizes the clinical studies 

which evaluate azithromycin anti-inflammatory properties in cystic fibrosis and 

presents the cellular and molecular mechanisms involved. 

 

i. Azithromycin antimicrobial spectrum and pharmacokinetic properties 

 

Azithromycin is effective against some Gram-positive, some Gram-negative, and 

some atypical bacteria [281-295]. The drug’s spectrum of activity covers some 

strains of Staphylococcus, Streptococcus, Haemophilus, Chlamydia, 

Mycoplasma, Neisseria, Moraxella, Legionella, and Prevotella. Additionally, 

azithromycin is orally bioavailable and peaks within 2-3 hours in adult humans 

[281, 282]. Azithromycin accumulates in tissues and intracellularly- particularly in 

macrophages. Thus, tissue levels are at least 50 fold greater than plasma 

concentrations. Additionally, azithromycin is characterized with a very long half-

life estimated to be about 35-40 hours and can be as high as 68 hours following 

a single 500 mg dose [286-289]. Despite its large therapeutic window, 
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azithromycin can cause gastrointestinal toxicity and cardiotoxicity (including QT-

prolongation and arrhythmias). The FDA has issued a warning concerning the 

cardiotoxicity with azithromycin which indicates that the risk is very low in 

patients with no coexisting risk factors [289-293]. However, the use of 

azithromycin should be closely monitored in patients with pre-existing cardiac 

problems, arrhythmias, baseline QT prolongation, electrolyte disturbances, and 

kidney problems [290-295].  

 

ii. Anti-inflammatory effectiveness of azithromycin  

 

Several clinical studies have evaluated the effectiveness of azithromycin in lung 

infection and inflammation [296]. Azithromycin is particularly beneficial in 

inflammatory lung diseases with non-resolving infections. In fact, azithromycin 

was used in 1982 against panbronchiolitis where patients suffer from chronic 

pulmonary inflammation and PA infections. Azithromycin has proven in 

randomized clinical trials in patients with panbronchiolitis to improve lung function 

and outcomes in patients infected with PA. PA virulence was shown to be 

reduced with long-term azithromycin treatment, primarily its ability to form 

biofilms [297, 298]. However, it is important to note that azithromycin does not 

inhibit or kill PA. Thus, these studies provided early evidence of an alternative 

mechanism involved with azithromycin beneficial effects which is independent of 

azithromycin antibacterial activity [296]. 

 

In patients with cystic fibrosis, five large clinical trials have evaluated the safety 

and anti-inflammatory efficacy of chronic azithromycin administration. Southern 

et al. performed a meta-analysis of these clinical trials comparing azithromycin 

therapy against placebo and including at least 959 patients from different ages 

[296]. The following section presents the main outcomes of the five clinical trials. 
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a. Improved lung function 

 

Chronic azithromycin administration in patients with cystic fibrosis improves lung 

function. Three of the clinical trials show a significant improvement in lung 

function in patients on azithromycin (measured by forced expiratory volume, 

FEV1) [299-301], while the other two trials reported that azithromycin treatment 

did not alter the FEV1 in patients with cystic fibrosis [302-305]. Nevertheless, the 

grouped meta-analysis of all the data from the above-mentioned trials supports 

the fact that azithromycin improves lung function in adults and children with cystic 

fibrosis at a 6-month treatment timepoint [296]. Additionally, there was a 

significant improvement in the forced vital capacity (FVC) in patients who 

received azithromycin. However, these studies did not distinguish the effects of 

azithromycin on FEV1 or FVC in the context of chronic PA infections. The five 

trials either excluded the patients with PA infections or included them randomly 

along with other patients not infected with PA [296]. Therefore, there are no 

studies that directly compare the effects of azithromycin vs placebo in cystic 

fibrosis patients infected with PA.  

 

b. Reduced exacerbations and improved quality of life 

 

Another endpoint evaluated in these trials include the effects of azithromycin on 

the exacerbation frequency [296]. Exacerbations recorded in these trials were 

either protocol defined or physician determined and they were reported in terms 

of frequency and time to exacerbation. In the five clinical trials mentioned above, 

there was a significant reduction in the number of exacerbations and hospital 

visits in patients who were on azithromycin [299-305]. 

 

Additionally, chronic azithromycin use in patients with cystic fibrosis improved 

quality of life [296]. There were slight differences among the five clinical trials as 

the quality of life (QOL) endpoint was analyzed using different QOL assessment 

questionnaires.  However, each trial showed improvement in certain measurable 
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components including the physical performance, body image, mental health, and 

social involvement [299-305]. 

 

c. Reduced need for antibiotics 

 

Although long-term antibiotic use could lead to antimicrobial resistance and other 

issues of collateral damage, the chronic use of azithromycin reduced the need for 

antibiotics and infection risk [296]. According to the five clinical trials, there was a 

significant reduction in the need for initiation and duration of oral and IV 

antibiotics in the azithromycin group. Patients on azithromycin acquired PA 

infections at a minimal rate similar to the placebo arm. Moreover, patients in the 

azithromycin group had a significantly lower rate of Staphylococcus aureus 

infections [299-305]. Conversely, the azithromycin group was at higher risk for 

infections with macrolide-resistant Staphylococcus aureus while the infection rate 

with MRSA was not different. Additionally, the risk for acquiring other infections 

was similar between the two groups in all the trials [299-305]. 

 

d. Reduced inflammatory parameters 

 

The five clinical trials evaluated the anti-inflammatory effects of chronic 

azithromycin use in patients with cystic fibrosis [296]. There was a significant 

reduction in pulmonary inflammation with azithromycin use. For instance, there 

was a significant drop in C-reactive protein (CRP) levels at 3, 6, and 12 months 

intervals. Additionally, the trials reported reduced neutrophilia and pro-

inflammatory cytokine concentrations with azithromycin treatment [299-305]. 

 

e. Adverse events 

 

Chronic azithromycin administration in patients with cystic fibrosis was safe and 

well tolerated [296]. Although patients on azithromycin had reduced fever, cough, 

and other respiratory symptoms, they had a higher incidence of gastrointestinal 
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side effects compared to the placebo group [299-305]. None of the patients on 

azithromycin developed any severe side effects while a few patients had 

moderate side effects that required treatment discontinuation (in the 5 trials 

0,1,1,5, & 12 dropouts were recorded for an overall percentage of 0.5–11% of the 

total number of subjects enrolled). Finally, there were no deaths reported in any 

of the studies [296, 299-305].  

 

In summary and despite the heterogeneity of the study populations, the meta-

analysis supported the use of azithromycin treatment in cystic fibrosis patients. 

The improved lung function, reduced exacerbations, reduced need for antibiotics, 

and the decreased inflammatory parameters (CRP) were all clinically significant. 

However, these studies had some limitations including: (1) none of the studies 

evaluated the effects of azithromycin in patients with PA infections; (2) only one 

study evaluated azithromycin use at a 12-months timepoint and the remaining 

were for 6-months treatment durations; (3) different daily and weekly doses of 

azithromycin were evaluated in different age groups; (4) and none of the studies 

stratified the effects of azithromycin based on the CFTR mutation category [296, 

299-305]. Therefore, more studies are required to distinguish the beneficial 

effects of azithromycin among patients with PA infections and patients within 

specific age groups.  

 

iii. Current treatment guidelines for azithromycin use in cystic fibrosis 

 

In Europe, and based on this meta-analysis by Southern et al., the off-label use 

of azithromycin in cystic fibrosis patients was added to the National Institute for 

Health and Care Excellence (NICE) antibiotic treatment guidelines [306]. A 6-

month treatment in patients with deteriorating disease or as determined by 

physician judgment is suggested. The regimen for the off-label use as per the 

NICE clinical guidelines suggests a 3 times weekly dose of azithromycin [306].  
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In the United States, and according to the Cystic Fibrosis Pulmonary Guidelines, 

azithromycin long-term use in cystic fibrosis is divided into two recommendations 

[307, 308]. The guidelines suggest “high” benefit in patients with PA infections 

who are 6 years of age and above. The Cystic Fibrosis Foundation recommends 

the “chronic use of azithromycin to improve lung function and reduce 

exacerbations” in these patients chronically colonized with PA. Alternatively, the 

guidelines suggest “moderate” benefit in patients not infected with PA. The Cystic 

Fibrosis Foundation recommends for these patients, 6 years of age and above, 

without evidence of PA in their lungs to consider long-term azithromycin 

treatment to reduce exacerbations [308]. 

 

iv. Anti-inflammatory cellular and molecular mechanisms of 

azithromycin 

 

The mechanisms underlying the clinical benefits of azithromycin and the 

substantial improvement in lung function and inflammatory parameters are yet to 

be elucidated. As discussed in sections (i) and (ii), macrolides and specifically 

azithromycin exert a clinically beneficial role in cystic fibrosis patients by 

regulating the pro-inflammatory cytokine release and the oxidative burst and 

migration of phagocytes [309]. Additionally, azithromycin has unique 

pharmacokinetic properties allowing it to accumulate intracellularly in these 

phagocytes. This drove many researchers to believe that the macrolide anti-

inflammatory mechanisms involve specific targets in neutrophils and 

macrophages. Yet, the specific cellular and molecular targets of azithromycin had 

not been described. 

 

In 2008, Murphy et al. successfully advanced our knowledge by demonstrating 

the effects of azithromycin on macrophage polarization [310]. This report by our 

group examined the effects of azithromycin on macrophage phenotype by 

stimulating J774 murine macrophages invitro. Macrophages were polarized into 

an M1 phenotype with IFNγ or into an M2 phenotype with IL-4 and IL-13. After 
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stimulation with LPS, polarized J774 macrophages expressed different surface 

markers that distinguish either macrophage phenotype. Interestingly, 

azithromycin in the presence of IFNγ and LPS was able to shift the macrophage 

polarization away from an M1 towards an M2-like phenotype [310]. This was 

based upon reduced CCR7 expression (M1 marker) and increased MR and 

CD23 expression (M2 markers) compared to IFNγ alone and similar to IL-4 and 

IL-13 treated macrophages. Additionally, azithromycin treated macrophages 

produced significantly less IL-12 and IL-6 pro-inflammatory cytokines and more 

of the anti-inflammatory cytokine IL-10 compared to IFNγ treated cells [310]. 

Moreover, Murphy and his colleagues showed that azithromycin also modulates 

other important effectors of macrophage polarization, iNOS and arginase-1 [166, 

310]. Specifically, azithromycin blunts the increase in iNOS expression observed 

with IFNγ and overcomes the suppressed arginase expression in these otherwise 

M1-polarized macrophages. Azithromycin, in the presence of IFNγ and LPS 

signals, was shown to significantly increase arginase-1 (M2 effector) expression 

and activity similar to IL-4 and IL-13 treated macrophages [310].  In summary, 

this report by our group was the first to show that azithromycin directly affects 

macrophage phenotype and drives macrophages into an alternative M2 

phenotype in-vitro. 

 

To examine the physiological relevance of these findings, azithromycin’s effect 

on macrophage phenotype was then evaluated in a mouse model of PA 

pneumonia [311]. In a 2010 report by Feola et al., C57BL/6 mice were infected 

with a clinical mucoid strain of PA (M57-15) [311].  The PA was incorporated in 

agarose beads prior to intratracheal instillation in anesthetized mice. The PA-

impregnated agarose beads result in a prolonged infection similar to that in cystic 

fibrosis patients. In order to examine the effects of azithromycin, infected mice 

received the drug via oral gavage four days prior to infection and daily thereafter. 

Azithromycin treatment of infected mice did not significantly alter bacterial burden 

while protecting against excessive weight loss and improving survival. 

Importantly, the azithromycin-treated group had significantly higher numbers of 
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CD11b+ immune cells infiltrating into their alveolar spaces, lower number of 

neutrophils in their airways, and higher number of CD4+ lymphocytes [311].  

 

The phenotype of these CD11b+ monocytes migrating into the lungs and alveolar 

spaces was then evaluated. Similar to the in-vitro observations, macrophages in 

the azithromycin-treated mice exhibited higher levels of M2 markers like the 

increased MR surface expression and the increased arginase activity. 

Additionally, CD11b+ monocytes in the azithromycin-treated mice exhibited 

greater production of IL-10 and significantly lower production of TNF-α, CCL2 

and IL-6. Subsequently, the effects of azithromycin on lung fibrosis and 

inflammatory changes were evaluated in H&E stained lung sections. 

Histologically, azithromycin treatment was associated with reduced inflammatory 

infiltrates around the bronchioles of PA infected mice compared to untreated 

mice at day seven post-infection. Additionally, the inflammatory infiltrates in 

infected mice were predominantly monocytes in the azithromycin-treated group 

versus neutrophils in the untreated group [311]. 

 

In summary, azithromycin treatment blunts the neutrophilic inflammation and 

shifts the compartmentalization of monocytes infiltrating the lungs and alveolar 

spaces in response to PA intratracheal infection. Collectively, these data support 

the hypothesis that azithromycin shifts macrophage polarization into an 

alternative anti-inflammatory phenotype in response to PA pneumonia.  

 

The next step was to evaluate the clinical applicability of the developing central 

hypothesis [166]. A pilot clinical study was conducted to evaluate the 

immunomodulatory properties of azithromycin and the role of alternatively 

activated macrophages in the pathophysiology of cystic fibrosis. The study 

objective was to characterize the expression of classical and alternatively 

activated macrophage markers in the context of PA infection, immunomodulatory 

drug therapy and pulmonary function [166]. Sputum and lung lavage samples 

were collected from forty-eight cystic fibrosis patients. Flow cytometry was used 
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to evaluate the expression of surface macrophage proteins. Additionally, analysis 

of arginase activity and cytokine levels were evaluated in the sputum and lavage 

samples [166].  

 

Patients with chronic PA infections had a significant increase in M2 macrophage 

markers. Cystic fibrosis patients infected with PA had higher levels of MR 

expressing monocytes compared to patients with no history of PA. Additionally, 

patients infected with PA had increased arginase activity compared to uninfected 

patients [166]. These observations emphasize the role of alternative 

macrophages in the pathophysiology of PA infections in patients with cystic 

fibrosis and suggest that the cytokine environment in patients with chronic PA 

infections skew the macrophage polarization towards an alternative phenotype. 

However, whether alternative macrophage effectors contribute to improved lung 

function or to pathology is yet to be elucidated [166]. 

 

In this pilot study, there were no significant differences in the pro- and anti- 

inflammatory cytokines between the azithromycin and the PA infected subgroups 

when analyzing gene expression [166]. While patients infected with PA had 

significantly higher levels of IL-8, IL-1, and IL-12, there were no significant 

differences in TNF-α, IL-6, and IL-10 compared to the uninfected group. 

Moreover, the increased expression of alternative macrophage effectors or the 

increased arginase expression were inversely correlated with lung function [166]. 

However, it is hard to correlate these observations with any direct effects of 

azithromycin due to the observational nature of this study and the fact that 

empiric azithromycin therapy is very likely to be prescribed to patients with 

declining lung function. In fact, patients infected with PA had a greater chance of 

being on long-term azithromycin therapy compared to uninfected patients. 

Therefore, it was difficult to separate the effects of azithromycin versus the 

effects of PA infections due to the overlap of these two parameters [166]. 
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Importantly, this pilot study examined the effects of azithromycin on alternative 

macrophages in patients with cystic fibrosis [166]. Azithromycin treatment was 

not associated with significant differences in terms of arginase activity, cytokine 

levels, or expression of alternative macrophage proteins. However, data 

generated in the azithromycin group were analyzed based on the PA infection 

status, a significant relationship between arginase activity and lung function and 

between lung function and the expression of alternative macrophage effectors 

was observed in the azithromycin-treated patients with PA infection and not in 

the other groups [166]. These observations emphasize the potential 

immunomodulatory mechanism of azithromycin which involves suppression of 

exaggerated inflammation rather than promoting anti-inflammatory mediators. 

Additionally, these data validate that patients with chronic PA infections might 

benefit the most from azithromycin therapy [166]. 

 

Finally, a combination of parameters was used to predict lung function. Lung 

function (FEV1) was best interpreted from a linear combination of the patient's 

age, PA infection status, azithromycin treatment status, macrophage MR surface 

expression, and arginase activity [166]. In fact, MR expression and arginase 

activity were significant predictors of lung function in cystic fibrosis patients along 

with azithromycin treatment and PA infection status. These data suggest that 

azithromycin alters macrophage polarization in patients infected with PA and 

emphasize the ability of azithromycin to drive macrophage polarization 

independently of the cytokine environment in the lungs. However, the specific 

mechanisms involved with alternative macrophage polarization with azithromycin 

are yet to be elucidated [166]. 

 

This was a novel study by our group which was the first to show evidence of 

alternative macrophage function and its relation to azithromycin use in cystic 

fibrosis. It is important to note that due to the limitations of this study, it was 

difficult to have definitive answers for the specific anti-inflammatory effects and 

mechanisms of azithromycin in the context PA pneumonia in cystic fibrosis [166]. 
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In summary, the Feola lab group provided evidence that azithromycin polarizes 

macrophages into an alternative phenotype in vitro, and that alternative 

macrophages predominated in the lungs of azithromycin treated mice infected 

with PA and in cystic fibrosis patients with PA pneumonia [166, 310, 311]. 

Azithromycin increases alternative macrophage effectors including MR 

expression and arginase activity while suppressing pro-inflammatory cytokine 

release. However, the specific mechanisms by which azithromycin promotes an 

alternative macrophage phenotype remain unknown. 

 

VII. Summary and specific aims 

 

The previous sections summarize our current understanding of cystic fibrosis 

pathology and the available therapeutic options. Patients suffer from genetic 

abnormalities to the CFTR gene which predispose them for chronic and repetitive 

infections. Infections with PA are the most common in patients 18 years and 

older and they are characterized by a chronic, dysregulated, inflammatory 

response with aberrant T cell immunity and a predominant recruitment of 

neutrophils and pro-inflammatory macrophages [312]. This continual immune 

response lowers patients’ life expectancy by 30 years as a result of lung injury 

and damage, deteriorated lung function, and decreased quality of life [313].  

 

Azithromycin, a macrolide antibiotic, exerts anti-inflammatory and 

immunomodulatory effects in cystic fibrosis patients. We have previously shown 

that azithromycin alters macrophage polarization and shifts the macrophages into 

an alternatively activated phenotype, both in vitro and in a mouse model of PA 

pneumonia [166, 310, 311]. Murine experiments with an early polarization of 

macrophages into an alternative phenotype show decreased neutrophil influx and 

pulmonary injury in mice infected with PA. Conversely, abolishing alternative 

macrophage polarization was associated with a profound acute immune 

response along with exaggerated neutrophil influx and an altered T cell 
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phenotype. The absence of alternative macrophages was also associated with 

increased morbidity and mortality in our model of murine PA pneumonia [166, 

310, 311]. 

 

These findings from in vitro, murine, and human experiments were the basis for 

the central hypothesis that the alternatively activated macrophages decrease 

pulmonary inflammation in PA infection, an effect that is dependent upon 

production of TGFβ and arginase-1. The objective is to determine whether 

alternative macrophages induced with azithromycin are essential to regulate the 

exaggerated inflammatory response against PA pneumonia. Additionally, our 

objective is to determine which specific macrophage effectors are essential for 

immunomodulation and whether this involves control of other immune cells like 

neutrophils and T cells. The second objective of our research is to define the 

specific mechanisms by which azithromycin modulates these macrophages. The 

long-term goal is to utilize these mechanisms to optimize the current therapeutic 

options and to identify new therapeutic targets for patients with non-resolving 

pulmonary inflammation. 

 

Work presented in this dissertation is based on our previous findings and aims to 

identify the specific effectors of alternative macrophages that are crucial for 

regulating inflammation and modulating T cell disposition. Closely examining the 

different effectors of alternative macrophages revealed an important role of 

arginase-1. Arginase-1 expression and activity are increased in alternative 

macrophages polarized with azithromycin. Preliminary experiments using 

arginase-1 conditional knock-out mice verified that arginase deficiency is 

associated with greater morbidity in terms of more significant weight loss. 

Additionally, arginase-1 has unique immunomodulatory properties (discussed 

earlier) and include controlling NO-mediated injury, suppression of T cell function 

and proliferation, as well as promoting a Treg phenotype [151, 152, 154, 157, 

312-316]. In cancer, myeloid suppressor cells producing arginase inhibit T cell 

responses against tumor cells [317, 318]. In pregnancy, arginase is essential to 
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prevent maternal immune reactions against the fetus [319]. Arginase also plays 

an important role in sepsis, trauma, surgery, certain infections, and some 

inflammatory and autoimmune diseases [151, 152, 154, 157, 314-316]. However, 

arginase-1 mediated modulation of the inflammatory response against PA 

pneumonia has not been investigated. 

 

The work presented here also investigates the specific pathways involved with 

azithromycin macrophage polarization. It is unknown how azithromycin 

modulates the expression of different pro- and anti- inflammatory macrophage 

effectors. The expression of these inflammatory cytokines and mediators is 

controlled via different transcription factors induced in response to distinct stimuli. 

Th1 cytokines can induce M1 macrophage activation by stimulation of the STAT-

1 and NF-κB transcription factors. Alternatively, Th2 cytokines activate alternative 

M2 macrophages through STAT-6 activation. While some reports suggest that 

azithromycin can inhibit NF-κB activation and polarize macrophages into an M2 

phenotype, a link between these effects has not been established. Theodore 

Cory, a previous graduate student in the Feola lab, conducted a preliminary 

study of azithromycin using an in-vitro model of J774 murine macrophages. He 

showed that azithromycin affects non-canonical NF-κB activation. He showed 

that azithromycin increases the level of inactive NF-κB p105 subunit while the 

active p50 subunit was down-regulated. The work in this dissertation ties the 

preliminary data that Dr. Cory generated with specific regard to the effects of 

azithromycin on the canonical NF-κB subunit, p65. Additionally, the research in 

this dissertation evaluates cross-talk between the canonical NF-κB pathway and 

the STAT-1 pathway. 

 

The purpose of the work presented in this dissertation is to specifically 

investigate the role of arginase-1 in the immunomodulatory functions of 

alternative macrophages and to define the molecular anti-inflammatory 

mechanism of azithromycin. In addition to evaluating my hypotheses in murine 

models of PA pneumonia, I also address the translatability of my observations by 
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evaluating the immunomodulatory properties of azithromycin in cystic fibrosis 

patients. 

 

The long-term goal is to define key regulators of the exaggerated immune 

response that can be of therapeutic value for immunotherapy in cystic fibrosis. 

The objective of this project is to investigate the regulatory role of arginase-1 in 

the immune response to PA pneumonia and its modulation of T cell immunity. 

Additionally, this project examines the effects of azithromycin on the transcription 

factors involved with macrophage polarization, specifically NF-κB and STAT-1. 

 

The central hypotheses to be tested in the following chapters are: 

 

I- Decreases in inflammation in response to PA pneumonia achieved by 

polarizing macrophages to an alternatively-activated phenotype is 

dependent upon the production of arginase-1. 

 

II- Azithromycin polarizes macrophages to an M2 phenotype via inhibition 

of STAT1 through cross-talk from NF-κB signaling mediators. 

 

 

III- The ability of azithromycin-induced M2 macrophages to control 

inflammation in response to PA pneumonia is dependent on arginase-1 

expression. 

 

I found that decreases in inflammation in response to PA pneumonia are 

dependent upon the production of arginase-1. Arginase-1 deletion resulted in 

exaggerated neutrophil influx and in skewing of the T cell responses towards a 

Th1 and Th17 responses.  

 

Additionally, azithromycin polarized macrophages to an M2 phenotype via 

inhibition of STAT1 through cross-talk from the NF-κB signaling mediators. 
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Azithromycin inhibited p65 nuclear translocation which resulted in IKKβ 

accumulation due to suppressed negative feedback. Thus, inhibiting the NF-κB 

signaling pathway cross-inhibited the STAT-1 pathway. 

 

Finally, azithromycin regulated the immune responses in PA pneumonia via 

mechanisms independent of arginase.  Azithromycin protected against excessive 

morbidity and exaggerated inflammation by controlling the influx of neutrophils 

and inflammatory macrophages in mice with macrophages that could not express 

arginase-1. Additionally, azithromycin balanced the Th17/Treg responses in mice 

infected with PA, an effect that was also independent of arginase production.
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Figure 1.1a 
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Figure 1.1b 
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Figure 1.1. Cystic fibrosis pathology.  
Cystic fibrosis patients suffer from a defective and dysregulated immune 

response. (a) The main alterations of the cystic fibrosis epithelium, macrophages, 

neutrophils, and adaptive immune cells. (b) Figure depicts the progression of 

cystic fibrosis pathogenesis from a functional CFTR mutation (1) to the 

development of end-stage bronchiectasis (11). 
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Chapter 2: Methods 

 

I. Mice 

 

i. Arginase-1 conditional knock-out mice 

 

The function of macrophage arginase was studied by genetically modifying 

C57BL/6 mice to delete arginase-1 expression in myeloid cells. To generate 

arginase-1 conditional knock-out mice, C57BL/6-Arg1 tm1Pmu/J (or Arg1flox) mice 

were utilized along with B6.129P2-Lyz2 tm1(cre)Ifo/J (or LysMcre) mice (The 

Jackson Laboratory, Bar Harbor, ME). Arg1flox are floxed mutants with LoxP sites 

flanking exons 7 and 8 of the arginase-1 gene. When these mice are bred with 

the LysMcre mice expressing Cre recombinase under the control of Lyz2 

promoter, floxed arginase-1 gene in myeloid cell lineages is deleted. All animals 

were bred in-house starting with the homozygous loxP mice (Arg1flox) and the 

transgenic Cre mice. These generate heterozygous loxP, hemizygous Cre mice; 

the latter were backcrossed with the homozygous loxP mice to generate 

homozygous loxP, hemizygous Cre mice (arginase-1 conditional knock-out mice 

or Arg1Δm), and homozygous loxP, non-carrier mice (littermate controls that do 

not have Cre recombinase to excise the flanked allele, Arg1flox/flox). All studies 

were approved by the University of Kentucky Institutional Animal Care and Use 

Committee. The mice were housed under conditions of pathogen-free isolation 

and were transferred to a biosafety level 2 housing unit after infection. All mice 

utilized in the infection experiments were about 6-8 weeks of age and were 

randomized into different treatment groups with comparable weight and sex. 

Arginase deletion from different immune cells is shown in Figure 2.1 

 

ii. BALB/cJ mice 

 

BALB/cJ mice were utilized in experiments with pharmacological arginase 

inhibition. The rationale behind using BALB/cJ mice is that they are 
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immunologically modified and demonstrate a Th-2 biased immune response with 

a significant expression of arginase-1 post infection. BALB/cJ females 4-6 weeks 

of age were purchased from Jackson Laboratory (Bar Harbor, ME). Mice were 

allowed to acclimate after shipment for 1 week prior to use. All mice utilized in the 

infection experiments were 6-8 weeks of age and were randomized into different 

treatment groups. 

 

II. Murine infection and drug dosing 

 

i. PA-laden agarose beads 

 

Mice were infected with PA incorporated into agarose beads to cause a 

prolonged infection similar to that in cystic fibrosis patients. PA M57-15 is a 

clinical mucoid strain of PA isolated from a patient with cystic fibrosis and 

obtained as a generous gift from Anna Van Heeckeren from Case Western 

University. 

 

PA M57-15 were frozen in glycerol stocks at -80 °C. Prior to each infection, a 

fresh batch of beads was prepared. A sterile inoculating loop was used to scrape 

bacteria off the frozen bacterial stock. The scraped bacteria (1, 2, and 3 loops) 

were allowed to grow overnight in three 125 mL flasks with 30 mL of sterile 

Trypticase soy broth (TSB). The bacterial cultures were allowed to grow for 18 

hours (to reach the late log phase or early stationary phase) in a shaking 

incubator at 37 °C and 220 RPM. According to the growth curves and the optical 

density (OD) analysis of the PA M57-15 cultures, the starting OD of the bacterial 

culture to be incorporated into the beads for optimal infective beads is 1.0 – 2.0.      

The OD of each bacterial culture was measured using the spectrophotometer at 

620 nm wavelength and by normalizing the OD to that of TSB. After determining 

which bacterial culture to use, two stirring hot plates were placed in a hood. 

Agarose powder (0.5 g) was dissolved in 25 mL of sterile phosphate buffered 

saline solution (PBS) by microwaving for 1 minute. The agarose solution was 
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placed on a hot plate with a slow stirring magnet bar and a thermometer. 

Simultaneously, 40 mL of mineral oil was heated on the second hot plate with a 

slow stirring magnet bar and a thermometer. The temperatures were monitored 

closely to assure that the agarose solution cooled down to 50 °C and the mineral 

oil heated up to the same temperature of 50 °C. Once the target temperature was 

reached, 15 mL of the bacterial culture was slowly added to the agarose solution 

and allowed to mix for 3-5 minutes. Subsequently, the stirring speed of the 

mineral oil was increased, and 10 mL of the bacteria-glycerol mixture was 

transferred to the mineral oil- 1 mL at a time. The mineral oil flask was then 

cooled immediately by adding ice to the secondary beaker and allowing the 

mixture to stir at maximal speed for 10 minutes. The rapid speed allows the 

agarose to break into beads trapping the bacteria inside. Different sizes of 

agarose beads form, each containing different amounts of PA. After cooling the 

oil-agarose-bacteria mixture and mixing briskly, a milky and frothy mixture forms. 

This mixture was collected into 50 mL canonical tubes and several washes were 

done by centrifuging with different buffers at 600 RCF for 4 minutes. Two initial 

washes with 0.5% and 0.25% deoxycholic acid (DCA) were performed to remove 

the mineral oil. Two more washes with PBS were then performed to remove the 

DCA. Four more washes with PBS were used to settle the large beads and 

collect the floating smaller beads. The latter constitutes the bead stock. A sample 

of the bead stock was then homogenized on ice to break the beads. The 

homogenized beads were serially diluted and plated on dry TSA (Trypticase soy 

agar) plates using a spiral plater. Inverted plates were incubated overnight at 37 

°C. The concentration of PA in the bead stock was then determined by counting 

the colonies growing on the incubated plates using a QCount Colony Counter. 

The bead stock was then diluted to make the infecting solution with the desired 

inoculum of 2 × 10^5 CFU in 100 μL for C57BL/6 mice and 2 × 10^6 CFU in 100 

μL for BALB/c mice.  This inoculum was determined to result in significant murine 

pneumonia without causing severe morbidity or mortality in each mouse strain. 

The target inoculum was calculated as the 10% of the lethal CFU or LD10. 
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ii. Infection 

 

Mice were lightly anesthetized in a chamber connected to an isoflurane vaporizer 

and an oxygen source. Mice were then placed on the infection stand and the 

tongue was pulled out gently with forceps to visualize the trachea. A curved and 

blunted 24-gauge needle was used to infect the mouse by introducing 100 μL of 

the infecting bead solution intratracheally. Importantly, the infecting bead solution 

was allowed to mix on a stirring plate during the infection procedure and each 

100 μL was pulled individually to make sure an even bead sample was used to 

infect each mouse. The infecting bead solution was then homogenized and 

platted on Pseudomonas isolation agar (PSA) plates and the colony count was 

determined after 24 hours of incubation at 37 °C to confirm the concentration of 

PA that was instilled into the mice. Experimental designs for each infection 

experiment are depicted in Figures 2.2 a, b, and c. 

 

iii. Animal dosing 

 

a. Azithromycin 

 

To evaluate azithromycin effects in arginase-1 conditional knock-out mice, the 

drug was dosed via oral gavage starting four days prior to infection and daily 

thereafter. Azithromycin was dosed based on murine body weight at 40 mg/Kg. 

The murine dose of azithromycin was prepared by suspending crushed 

azithromycin tablets (Teva, Petah Tikva, Israel) in 2% methylcellulose. 

Alternatively, the control group was dosed with the vehicle (2% methylcellulose). 

To administer the drug, the head of each mouse was gently restrained and kept 

in an upright position. A stainless-steel bulb-tipped gavage needle was then 

gently rolled along the back of the tongue into the esophagus and towards the 

stomach. The drug was then delivered orally by instilling 150 μL of the 

azithromycin suspension into the stomach of each mouse. 
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b. L-norvaline and BEC 

 

In select experiments, the arginase inhibitors L-norvaline or S-(2-Boronoethyl)- L-

cysteine hydrochloride (BEC) were given to mice to evaluate the 

immunomodulatory effects of pharmacological arginase inhibition in PA 

pneumonia. L-norvaline and BEC were dosed via oral gavage starting 1 day prior 

to infection and daily thereafter.  

 

BEC was synthesized in the lab of our collaborator Dr. Sylvie Garneau-Tsodikova 

lab. The thiol-ene reaction strategy was used to synthesize S-(2-boronethyl)- L-

cysteine. The single step reaction between di-(n-butyl)-vinylboronate and L-

cysteine in the presence of a radical initiator 2,2′-azobis(2-methylpropionitrile) 

resulted in the formation of BEC at a 53% yield [320]. Detailed synthesis 

procedure is described in Figures 2.3 and 2.4. 

 

The BEC dose was calculated based on the daily water consumption of BALB/cJ 

mice and the suggested dosing of 0.2% BEC in water. A dose of 0.2% represents 

0.2 g of BEC per 100 mL of water intake. The reported volume of water 

consumption in BALB/cJ mice is about 6 mL per day [321]. Therefore, the daily 

volume of water consumed by each mouse contains about 0.012 g of BEC. To 

ensure each mouse receives an equivalent dose of the arginase inhibitor, a daily 

dose of 0.012 g of BEC was administered in 100 μL of water via oral gavage 

(same as described in II.iii.a). 

 

L-norvaline was purchased from Sigma-Aldrich (St. Louis, MO). The murine dose 

of L-norvaline was calculated from the rat dose of 50 mg/kg [322]. Animal 

equivalent dose calculation based on body surface area resulted in an estimated 

dose of 100 mg/kg in mice [323]. Appropriate L-norvaline dose was administered 

daily in 100 μL of water via oral gavage (same as described in II.iii.a). 
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III. Tissue harvest and processing 

 

Murine body weight was monitored daily to assess morbidity post infection. Mice 

were euthanized and excluded from the experiment if they lose 20% or more of 

their body weight prior to infection along with 1 sign of morbidity (immobility, 

hunched posture, or lack of response to handling). If mice suffered from 

cyanosis, dyspnea, or loss of righting reflex, they were euthanized immediately.  

 

Mice which survived and lost at least 5% of their body weight were included in 

the analysis. A representative sample of the infected mice was humanely killed at 

different timepoints post-infection (select experiments had timepoints at different 

days post-infection. Death was ensured using two methods (intraperitoneal 

injection of pentobarbital and aortic exsanguination).  

 

i. Murine lung lavage 

 

Lung lavage was performed on each mouse to collect cells from the airway and 

alveolar spaces. Lavage was performed by connecting two 5 mL syringes to a 

three-way stopcock with a lavage catheter inserted into a small puncture in the 

exposed trachea. Each lung was then lavaged with 5 mL of PBS (with 30 μM 

EDTA) in 1 mL aliquots. The lavage samples were then centrifuged at 1200 RPM 

for 7 minutes at 4 °C. The supernatants were saved while the cells were 

incubated for 2 minutes with a lysis buffer to lyse the red blood cells. The lysis 

buffer was then washed away by centrifuging the samples with fresh PBS (for 2 

times). The final pellet was suspended in 1 mL of PBS and cells were counted 

prior to being aliquoted into 5 mL flow cytometry tubes for processing for flow 

cytometry analysis. 
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ii. Tracheobronchial lymph nodes 

 

Tracheobronchial lymph nodes draining the site of infection were excised and 

placed in 1 mL of PBS. Lymph nodes were then pushed through a 70 μm cell 

strainer with a syringe plunger to create a single cell suspension. Similar to the 

lavage samples, the lymph nodes were centrifuged and the pellet was incubated 

with red blood cell lysis buffer for 2 minutes. After washing away the lysis buffer 

with PBS, the final pellet was suspended in 1 mL of PBS and the cells were 

counted prior to being aliquoted into 5 mL flow cytometry tubes for processing for 

flow cytometry analysis. 

 

iii. Interstitial lung tissues  

 

To collect cells from the interstitial spaces, the lung tissues were collected after 

being lavaged and the lymph nodes harvested. Each lung was collected in 2 mL 

of RPMI with 5% Fetal Bovine Serum (FBS). Lungs were then minced with 

scissors and incubated with 1 mg/mL of collagenase and 50 U/ml of DNase for 1 

hour at 37 °C. After digestion, the lungs were then pushed through a 70 μm cell 

strainer with a syringe plunger to create a single cell suspension. The lung 

samples were centrifuged, and the pellet was incubated with red blood cell lysis 

buffer for 2 minutes. The lysis buffer was then washed away by centrifugation 

with PBS (twice). The final pellet was suspended in 1 mL of PBS and the cells 

were counted prior to being aliquoted into 5 mL flow cytometry tubes for 

processing for flow cytometry analysis. 

 

IV. Histology 

 

Lungs from infected mice were collected for histologic analysis. Importantly, the 

lung lavage procedure was not performed when the lungs were to be sectioned. 

Lungs were sectioned using two different methods, cryosectioning and paraffin-

embedding. 
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i. Tissue cryosectioning 

 

Lungs for cryosectioning were insufflated with 2-3 mL of formalin- optimal cutting 

temperature (OCT) solution (50% OCT and 50% formalin (10%)). The lungs were 

inflated to the appropriate degree so as to not cause bursting of the alveoli. The 

formalin-OCT solution was slowly and gently infused into the lungs after the 

trachea was cannulated with an 18G catheter needle. When the lungs were fully 

inflated, the trachea was tied with a suture and the lungs were carefully removed 

and placed in 25 mL of 5% formalin overnight. The next day, lungs were 

transferred into a 15% sucrose solution and incubated overnight. Finally, the 

lungs were transferred to a 30% sucrose solution and incubated overnight. 

Subsequently, lungs were placed in a tissue mold and submerged OCT. Tissue 

molds were then snap frozen at -80 °C. Frozen tissues were cryosectioned at the 

Biospecimen Procurement & Translational Pathology Shared Resource Facility of 

the University of Kentucky Markey Cancer Center (P30CA177558). Specimens 

were sectioned on a cryostat at 8 μm. Hematoxylin and eosin stain (H&E) was 

performed according to the standard Harris’ hematoxylin protocol on a Leica XL 

Autostainer and mounted with permanent mounting media [324]. 

 

ii. Sectioning of paraffin-embedded tissues 

 

Lungs for paraffin embedding were collected after the mice were euthanized. 

Harvested lungs were gently inflated with 2-3 mL of 10% formalin. Excised lungs 

were then kept overnight in 25 mL of 10% formalin. Lungs were then transferred 

into 70% ethanol. Tissues were processed and paraffin embedded according to 

standard procedures described by Morton et al. [325].  Lungs were trimmed in 

from the ventral face until all 5 lobes were visible. H&E staining was performed 

according to the standard Harris’ hematoxylin protocol. Paraffin embedding and 

staining were performed at the COBRE Pathology Core of the University of 

Kentucky which is supported by an Institutional Development Award (IDeA) from 
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the National Institute of General Medical Sciences of the National Institutes of 

Health under grant number P20GM103527. 

 

iii. Lung injury scoring 

 

Histologic analysis of sectioned lungs was performed to evaluate acute 

inflammatory lung injury after infection. Lung injury scoring was calculated 

according to the American Thoracic Society guidelines [326]. Briefly, 20 random 

high-power fields were independently and blindly scored. The scoring system 

takes into consideration the number of neutrophils in the alveolar and interstitial 

spaces, the presence of hyaline membranes and proteinaceous debris, as well 

as septal wall thickening. The scoring system is summarized in Table 2.3. To 

generate a lung injury score, the sum of each of the five independent variables 

shown in Table 2.3 were weighted according to the significance factor of each 

variable and then normalized to the number of fields evaluated. The following 

formula was used to calculate the lung injury score: Score = [(20 x A) + (14 x B) + 

(7 x C) + (7 x D) + (2 x E)] / (number of fields x 100). Scoring was performed by 

an independent pathologist, Dr. Therese Bocklage, MD. 

 

V. Flow cytometry 

 

i. Surface staining 

 

Samples of the processed lung lavage, lung digest, and lymph nodes were 

counted using the TC10 Automated Bio-Rad Cell Counter with Tryptan Blue to 

determine viability. Aliquots of 1 x 10^5 - 1 x 10^6 cells were transferred into 

each flow cytometry tube (5 mL polystyrene round-bottom tubes). Cells were 

then washed with PBA (PBS with bovine serum albumin and sodium azide) by 

centrifuging at 1200 RPM for 7 minutes at 4 °C. Tubes were then decanted and 

the pellets were incubated with 20 μL of the appropriately diluted fluorochrome-

conjugated antibodies. The latter were diluted according to the manufacturer 
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instructions or as determined by the antibody titter experiments. Cell-antibody 

mixtures were incubated on ice and in the dark for 20 minutes. Subsequently, 

unbound antibodies were washed away with PBA. When fixation was required for 

some experiments, the stained cells were fixed by incubating with 200 μL of 5% 

formalin for 20 minutes in the dark. Excess formalin was then removed by 

washing with PBS and fixed cells were suspended in PBS for flow cytometry. 

 

ii. Intracellular staining 

 

After tissue processing and cell counting, samples for intracellular staining were 

aliquoted into flow cytometry tubes (5 mL polypropylene round-bottom tubes). 

Cells were then incubated in 2 mL of RPMI (with 5% FBS and 1% 

Penicillin/Streptomycin). Ionomycin (1 μg/mL final concentration) and PMA 

(Phorbol 12-myristate 13-acetate, 50 ng/mL final concentration) were added to 

the media for stimulation of intracellular cytokine expression. Cells were 

incubated for 2 hours at 37 °C. After 2 hours, Brefeldin A was added into each 

tube (2 μL of 1000x) in order to enhance intracellular cytokine staining by 

blocking protein transport. Cells were incubated with Brefeldin A for additional 2 

hours at 37 °C after which they were centrifuged and washed with PBA. Staining 

for surface markers was performed similarly to the procedure described in (a) 

followed by fixation with 5 % formalin when required. After washing away the 

excess formalin with PBA, cells were incubated with permeabilization buffer (PBA 

+ 0.5% saponin) for 10 minutes at room temperature. Cells were then centrifuged 

and the pellet was incubated with Fc block (10 μL of 1:10 diluted stock) for 10 

minutes at room temperature. This was followed by adding 20 μL of the 

appropriately diluted fluorochrome-conjugated antibodies specific for intracellular 

proteins. Unbound antibodies were washed away by centrifuging twice with 

permeabilization buffer followed by a third wash with PBA. Cells were then 

suspended in PBA for flow cytometry analysis. 

 

 



 72 

iii. Flow cytometry analysis 

 

Surface and intracellularly stained cells were analyzed using either the Attune 

Flow Cytometer (Applied Biosystems, Foster City, CA) at the Feola lab or the BD 

LSR II Flow Cytometer (BD Biosciences, Franklin Lakes, NJ) at the UKY flow 

core facility. Attune Performance Tracking Beads were used to run a 

performance test prior to each experiment in order to define the baseline 

performance of each laser and to set the intensity level of each detection 

channel. Unstained and single-stained control tubes were used to adjust the 

instrument settings by running a compensation for each set of antibodies used in 

a multicolor panel. During compensation setup, the threshold and voltages of the 

fluorescence channels were adjusted to visualize the desired populations. Proper 

compensation is necessary to correct for spillover due to the overlap of the 

emission spectra of the used fluorochromes. Subsequently, each sample was run 

according to the collection criteria set during the compensation setup in order to 

record a minimum of 50,000 events per sample. Further analysis of the recorded 

events was performed using FlowJo software (FlowJo, LLC, Ashland, Oregon). 

FlowJo allows analysis of single live cells and performs statistics on the desired 

populations. Additionally, FlowJo allows analysis for multiple surface and 

intracellular markers in single cells. Therefore, FlowJo was used to generate 

percentages and counts of specific cells that were gated by selecting on the 

positively stained versus the negatively stained events for specific markers within 

the identified parent populations and sub-populations. For graphs with cell 

counts, the FlowJo percentages were multiplied by the number of cells added 

into each tube. Table 2.4 illustrates the specific markers of different immune cell 

populations analyzed. 

 

  



 73 

iv. Flow panels  

 

a. Surface staining panels 

 

Immune cells recruited into the lungs and lymph nodes were identified by staining 

for surface markers. The antibodies listed below were used to identify these 

specific cell markers. Importantly, in certain experiments the antibody panels or 

fluorochromes varied from the list below as will be indicated in the Results 

section. 

Table 2.1. Surface staining panels  

Tissue Sample Antibody- Fluorochrome  

Lung lavage and lung digest F4/80- APC 

CD11c- PE/Cy7 

CD11b- PerCP/Cy5.5 

Ly6G- APC/Cy7 

CD68- FITC 

MR- PE 

Lung lavage, lymph nodes, and 

lung digest 

CD4 PE/Cy7 

CD44- FITC 

CD62L- PE 

CD69- APC 

CD25- PerCP-Cy5.5 

Lung lavage, lymph nodes, and 

lung digest 

LIN- FITC 

CD90.2- APC 

IL33R- PE 

CD127- PE/Cy7 

CD25- PerCP-Cy5.5 



 74 

b. Intracellular staining panels 

 

Cytokine production and expression of lineage transcription factors by immune 

cells in the lungs and lymph nodes were identified by staining for intracellular 

proteins. The antibodies listed below were used to identify surface and 

intracellular proteins. Importantly, in certain experiments the antibody panels or 

fluorochromes varied from the list below as will be indicated in the Results 

section. 

Table 2.2. Intracellular staining panels 

  
Tissue Sample Antibody-Fluorochrome  

Lung lavage and lung digest F4/80- PerCP-Cy5.5 

CD11c- PE/Cy7 

TNF-α- FITC 

CCR7- APC 

iNOS- PE 

Lung lavage and lung digest F4/80- PerCP-Cy5.5 

CD11c- PE/Cy7 

IL10- PE 

ARG1- APC 

Ly6G- APC/Cy7 

Lung lavage, lymph nodes, and 

lung digest 

CD4- PE/Cy7 

IFNγ- APC 

IL17- PE 

RORγt- PerCP-Cy5.5 

CXCR3- FITC 

Lung lavage, lymph nodes, and 

lung digest 

CD4- PE/Cy7 

CD25- FITC 

FOXP3- PE 

TGFβ- PerCP-Cy5.5 

ARG1-APC 
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VI. Macrophage polarization 

 

Invitro assays used to study azithromycin’s mechanism of action were performed 

using the murine macrophage cell line J774A.1 (ATCC, Manassas, VA). J774 

macrophages were allowed to grow and reach confluency in appropriate media 

(Dulbecco's Modified Eagle's Medium (DMEM) + 10% FBS + 1% Sodium 

Pyruvate + 1% penicillin/streptomycin).  

 

Confluent cells were scrapped, counted, and plated in 24-well plates at a 

concentration of 2.5x10^5 cells per 1ml of media. Cells were allowed to adhere 

for 4-6 hours and then polarized to an M1 phenotype with IFNγ (final 

concentration 20 ng/mL) or to an M2 phenotype with both IL-4 and IL-13 (final 

concentration 10 ng/mL of each). Additionally, azithromycin was added to select 

wells along with IFNγ at concentrations ranging from 5 to 100 μM. Additionally, 

IKK-16, an IKKβ inhibitor, was added to select wells with azithromycin and IFNγ 

(final concentrations 50 or 100 nM). Cells were then incubated overnight at 37 °C 

with 5% CO2.  

 

Polarized cells were then stimulated with LPS (final concentration 100 ng/mL). 

The duration of LPS stimulation ranged from 0, 2, 5, 10, 15, 30, and 60 minutes 

up to 24 hours depending on the experimental goals. LPS and other cytokines 

were then washed away with PBS. Cells were scraped, enumerated, and lysed in 

0.1% (v/v) Triton X-100 (protease and phosphatase inhibitors were added to the 

lysis buffer prior to use). Protein concentrations were quantified utilizing the 

Pierce BCA reaction kit. Alternatively, in some experiments, stimulated cells were 

fractionated into nuclear and cytoplasmic contents; or, homogenized with trizol 

for RNA extraction (procedures described in the following sections). 
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VII. RNA isolation and quantitative RT-PCR.  

 

RNA isolation was performed using trizol reagent (Invitrogen, Carlsbad, CA) and 

RNeasy Mini Kits (QIAGEN, Valencia, CA). Polarized cells were homogenized 

with 1 mL of trizol reagent by pipetting up and down several times to lyse the 

cells. Lysates were allowed to incubate at room temperature in trizol, then 0.2 mL 

of chloroform was added. The lysate-trizol-chloroform mixture was vortexed and 

incubated for 2-3 minutes. The mixture was then centrifuged at 12,000 g for 15 

minutes at 4 °C. The last step separated the mixture into 2 fractions: an aqueous 

transparent layer and a pink phenol-chloroform layer. The aqueous (top) layer 

containing the RNA was transferred to a new tube. Subsequently, RNA was 

purified using Spin technology. Briefly, the isolated RNA was mixed with 245 μL 

of 100% ethanol. The mixture was then transferred to the spin columns provided 

by the RNeasy Mini Kit. Columns were centrifuged at 8,000g for 30 seconds 

which allows the isolated RNA to be trapped in the columns. The columns were 

then washed twice by centrifuging for 30 seconds with 700 μL of RW1 and 500 

μL of RPE buffers respectively. A third wash with 500 μL of RPE buffer was 

performed by centrifuging from 2 minutes. After the 3 washes with RW1 and RPE 

buffers, the flow-through eluents were discarded and the columns were 

transferred into new tubes. RNA was eluted from the columns by adding 40 μL of 

RNase-free water and by centrifuging the columns at 8,000g for 1 minute. 

Isolated RNA was quantified using Nanodrop 2000 spectrophotometer (Thermo 

Fisher Scientific, Wilmington, DE).  

 

Equal amounts of RNA were then reverse transcribed into cDNA using the iScript 

cDNA Synthesis Kit (Bio-Rad, Hercules, CA) according to manufacturer's 

protocols. cDNA samples were then used for quantitative real-time PCR using 

the TaqMan gene expression arrays for murine Arg1 (arginase-1), Ikbkb (IKKβ) 

and GAPDH. An epMotion 5070 robot was used to accurately pipette the PCR 

reaction components (cDNA template, forwards and reverse primers, TaqMan 

Gene Expression Master Mix, and RNase-free water) into 384-well plates. Plates 
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were centrifuged briefly and transferred into the ABI Prism 7900HT Fast Real 

Time-PCR System (Applied Biosystems, Foster City, CA) set for 40 standard 

thermal PCR cycles. The generated cycle threshold (CT) values were used to 

quantify gene expression. ΔCt values were calculated by normalizing the target 

gene expression (Arg1 and Ikbkb) to the housekeeping gene expression 

(GAPDH).  ΔΔCt was then calculated by comparing the expression of the 

experimental condition to the control condition. Power analysis of the generated 

ΔΔCt values was then used to interpret the fold change in gene expression. 

 

VIII. RelA translocation assay.  

 

Analysis for cellular localization of p65 subunit reflects on the activation of the 

NF-κB signaling pathway. Therefore, a nuclear translocation assay was used to 

interpret NF-κB activation by quantifying the amount of translocated subunit in 

the nucleus versus the cytoplasmic levels. Polarized and stimulated J774 

macrophages (as described in VI) were washed with PBS to remove polarizing 

cytokines and then scraped manually using sterile well scrapers. Cells were then 

counted and fractionated into nuclear and cytoplasmic fractions using the NF-κB 

Assay Kit (FivePhoton Biochemicals, San Diego, CA) and according to the 

manufacturer protocol. Briefly, collected cells were treated with ice-cold 

Cytoplasmic Fractionation Reagent (CFR) containing protease inhibitors and 

centrifuged at 2500 RPM for 4 minutes at 4 °C. The supernatant was then 

collected as the cytoplasmic fraction. The pellet was then washed a second time 

with the CFR by centrifugation. The washed pellet was resuspended in ice-cold 

Nuclear Fractionation Reagent (NFR) containing protease inhibitors. The pellet 

was allowed to incubate in the NFR for 10 minutes on ice and then centrifuged at 

maximum speed for 10 minutes. The final supernatant containing the nuclear 

fraction was then collected. RelA (or p65 subunit of NF-κB) was then quantified in 

the nuclear and cytoplasmic fractions by Western blot. 

 

 



 78 

IX. Immunofluorescence staining and analysis 

 

Immunostaining was used to visualize the NF-κB subunit localization in 

stimulated cells. Macrophages were polarized as described in VI except that 

round glass coverslips (12 mm) were added to each well of the 24-well plates. 

Cells were allowed to attach to the glass coverslips overnight. After polarization 

and stimulation, the coverslips were washed three times with PBS++ (PBS with 

0.5 mM CaCl2 and MgCl2). Cells were then fixed and permeabilized by adding 1 

mL of ice-cold methanol and incubating for 5 minutes. Methanol was then 

aspirated, and the coverslips were washed three times with PBS++. Primary and 

secondary antibodies were diluted at appropriate concentrations in 3% BSA as 

determined by the titration experiments. A humidified chamber was used for the 

antibody incubations. Coverslips were removed using thin tip forceps and 

incubated over a 50 µL drop of the primary antibody for 45 minutes at room 

temperature. Unbound primary antibodies were washed away by repeating the 3 

washes with PBS++. Subsequently, coverslips were incubated over a 50 µL drop 

of the fluorochrome-conjugated secondary antibody for 45 minutes at room 

temperature and in the dark. Excess secondary antibodies were washed away 

with PBS++ and the coverslips were finally incubated in DAPI nucleic acid stain 

to visualize the nuclei. About 300 µL of the 300 nM DAPI stock solution 

(Invitrogen, Carlsbad, CA) were added to completely cover each coverslip. After 

5 minutes incubation with the DAPI stain, the coverslips were washed with 

PBS++ several times and mounted using an antifade reagent.  

 

Stained cells were visualized using a Zeiss fluorescent microscope (Oberkochen, 

Germany) at the 100X objective. The scoring system described in Table 2.5 was 

used to interpret the activation of the NF-κB signaling pathway based on the 

localization of the subunits. The scoring system gives each cell a number based 

on the location of the subunit relative to the DAPI stained nuclei. At least 100 

cells were scored per each replicate coverslip. Scores were then averaged and 

compared to the control condition. 



 79 

X. Arginase assay.  

 

Arginase enzymatic activity was assessed using the urea assay. Arginase is an 

enzyme which metabolizes arginine into ornithine and urea; therefore, urea 

concentrations directly correlate with the activity and expression level of 

arginase. J774 murine macrophages were polarized and lysed with 0.1% Triton 

X-100 (containing protease and phosphatase inhibitors) as described in VI. The 

enzyme was activated by incubating 50 µL of the cell lysate with 50 µL of the 

arginase activation solution (10 mM MnCl2 in 50 mM Tris HCl, pH 7.5) for 10 

minutes at 55 °C. Subsequently, 25 µL of the previous reaction mixture was 

added to 25 µL of the arginase substrate solution (0.5 M L-arginine in water, pH 

9.7). This mixture was allowed to incubate at 37 °C for 6 hours. The reaction was 

then terminated by adding 400 µL of the acid mixture (H2SO4, H3PO4, water at a 

ratio of 1:3:7) followed by the addition of 25 µL of alpha-isonitrosopropiophenone 

(9% w/v). The reaction mixture was heated at 100 °C for 45 minutes. Optical 

density was then read at 540 nm wavelength using a spectrophotometer (the 

intensity of color change of the urea-chromogen complex was measured). A 

standard curve was used to interpret the results by repeating the assay 

described above using standard stock solutions with known urea concentrations.  

 

Readings were normalized to the optical density of blank sample and water. 

Arginase activity was then calculated in units where 1 unit of arginase activity is 

equal to the conversion of 1 µmole of L-arginine to ornithine and urea per 1 

minute; arginase activity was then normalized to the protein concentrations of 

each sample. 

 

XI. Western blot analysis.  

 

Western blot analysis was performed to determine the effect of macrophage 

polarization on the protein mediators of NF-κB and Stat1 signaling pathways. Cell 

lysates obtained from the polarization assay described in VI were quantified. 
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Samples of 20-30 µg of protein were denatured by heating for 5 minutes at 95 °C 

in loading buffer (Bio-Rad, Hercules, CA) containing β-mercaptoethanol. 

Denatured samples were loaded onto 4-15% precast polyacrylamide gels (Bio-

Rad, Hercules, CA). Proteins were then separated by electrophoresis at 100 V 

for 1-2 hours and transferred onto a methanol-activated and wetted Immobilon®-

FL PVDF membrane at 100-200 V for 90 minutes (LI-COR Biosciences, Lincoln, 

NE). The membranes were rinsed with PBS and then blocked for 1 hour at room 

temperature with Tris-buffered saline (TBS) based Odyssey® Blocking Buffer (LI-

COR Biosciences, Lincoln, NE). Membranes were then incubated overnight at 

4°C with primary antibodies specific for p65, IκB-α, IKKβ, phospho-IKKβ (Abcam, 

Cambridge, UK), phospho-Stat1 (Santa Cruz, Dallas, TX), Stat1 (ThermoFisher, 

Wilmington, DE), or actin (LI-COR Biosciences, Lincoln, NE) at recommended 

dilutions. Unbound primary antibodies were washed away with PBS + 0.1% 

Tween 20 (repeated 3 times with gentle shaking). Subsequently, membranes 

were incubated with the appropriate IRDye Subclass Specific secondary antibody 

for 1 hour at room temperature (IRDye 680RD Goat anti-rabbit or IRDye 800CW 

Goat anti-mouse, LI-COR Biosciences, Lincoln, NE). Excess secondary 

antibodies were washed away with PBS + 0.1% Tween 20. Membranes were 

finally rinsed with PBS to remove residual detergents and then imaged and 

analyzed using the Odyssey® CLx Imaging System (LI-COR Biosciences, 

Lincoln, NE). 

 

XII. Human study protocol 

 

i. Study design  

 

To evaluate azithromycin anti-inflammatory mechanisms in cystic fibrosis 

patients, a prospective, unblinded, non-randomized study was designed in which 

each patient served as his or her own control. The study was approved by the 

Institutional Review Board of the University of Kentucky. Patients with cystic 

fibrosis who were on chronic azithromycin therapy and meet the 
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inclusion/exclusion criteria were consented (alternatively children were assented) 

and instructed to stop azithromycin use for 60-90 days.  After informed consent 

was obtained, sputum was induced voluntarily or via inhalation of hypertonic 

saline. Samples were collected at 3 regular clinician visits which were scheduled 

every 1-3 months.  At the 1st visit, samples were collected, and patients started 

their 60-90 day azithromycin holiday. At the 2nd visit and by the end of the 60-90 

day drug holiday period, sputum was collected again and patients re-initiated 

azithromycin therapy. Finally and at the 3rd visit, samples were collected again 

60-90 days after azithromycin re-initiation.  During the drug holiday and re-

initiation periods, patients were encouraged to report any illness and potential 

adverse reactions to the pulmonologist on call. In addition, check-up calls were 

done every 2 weeks during the azithromycin holiday to make sure there were no 

adverse effects that require medical attention.  

 

Demographic information, CFTR mutation type, pulmonary function status, 

current medication regimen, blood glucose measurements, culture data, and any 

comorbidities were recorded via chart review for each subject (Data collection 

form in appendix 1).  

 

ii. Study population 

 

The University of Kentucky Children's' Hospital pulmonology group provides care 

for a cystic fibrosis population of approximately 300 patients in our targeted age 

range between 12 to 50 years.  The target of this study was to recruit up to 25 

subjects during the period starting from January 2018 until December 2019 (if 

necessary).  Subjects were included without regard to gender, race, or ethnic 

background according to the following criteria: 
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a. Inclusion criteria 

 

• Age from 12 to 50 years 

• Confirmed diagnosis of CF  

• Stable disease with FEV1 > 40 % (no CF pulmonary exacerbation, no 

intravenous antibiotics, no hospitalization, and stable clinical symptoms for 

past 1 month) 

• Chronically colonized with Gram-negative bacterial pathogens based on 1 

previous infection and 2 positive cultures on regular visits in the absence 

of an exacerbation. 

• Able and willing to provide the induced sputum clinical samples 

• Clinically stable and is on azithromycin for at least 1 year 

 

b. Exclusion criteria 

   

• History of cancer 

• HIV infection 

• Pregnancy 

• Breastfeeding 

• Any other major illness/disease like heart failure, liver failure  

• Systemic corticosteroid treatment   

• Participation in other clinical studies 

• Undergoing change of therapy during the 4-month study period (including 

immunomodulatory therapy or steroids) 

 

The above criteria were selected to minimize variability in immune function due to 

parameters including age, medication exposure, and other disease states.  

Aspects of pulmonary immune function have been demonstrated to decline at 

older ages.  Additionally, the above immunomodulatory disease states affect the 

parameters that were measured; therefore, exclusion of these patients was 

necessary. 
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iii. Human sample processing 

 

Fresh samples were transported on ice to the laboratory for analysis of 

inflammatory cell populations and their function. Sputum samples were liquefied 

and homogenized with an equal volume of Sputasol (Thermo Fisher Scientific, 

Waltham, MA) containing dithiothreitol. Samples were then filtered using a 48-µm 

nylon mesh and centrifuged to separate cells from the fluid phase. Cells were 

then enumerated and divided for different experimental purposes. 

 

a. TaqMan microfluidic cards for gene expression assays  

 

RNA was isolated as described in section VII and used for microarray analysis to 

compare expression of inflammatory genes at different treatment timepoints. 

Microarrays were performed using TaqMan® Array Micro Fluidic Cards (Life 

Technologies, Grand Island, New York).  Life Technologies Corporation 

manufactured gene microarrays that are specific to a given cellular function, 

pathway, or disease state.  These arrays each consisted of 47 genes associated 

with expression of the inflammatory immune reactions.   

RT-qPCR reactions were performed using cDNA reverse transcribed from the 

purified RNA to amplify the specific genes of interest (as described in VII). When 

the 3 samples are obtained from each patient, genetic information will be 

compared between different timepoints to determine if alterations exist in relative 

expression levels as a result of azithromycin treatment.  Scatter plots will be 

generated to analyze fold differences in relative expression levels for each gene 

when patients are on and off azithromycin.  A list of genes included in the 

assessment can be found in Appendix 2. 
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b. Flow cytometry analysis of immune cells in the sputum 

 

Single-cell suspensions from processed sputum were stained and analyzed with 

flow cytometry as described in V. Cells were stained for multiple surface and 

intracellular markers listed below: 

• TLR 

• CD25 

• CD19 

• CD11c 

• CD4 

• CD8 

• Foxp3 

• RORγt 

• CD11b 

• ARG1 

• ARG2 

 

c. Cytometric Bead Array (CBA) 

 

Cytokine concentrations in cell lysates from sputum samples were evaluated 

using CBA kits. After sputum processing, cells were lysed in a hypotonic buffered 

solution, and the lysates were frozen at -80°C for simultaneous analysis of all 

samples within 6 months.  Concentrations of the cytokines listed below were 

quantified using BD CBA Kits (BD Biosciences, San Jose, CA) according to the 

manufacturer protocol.  Briefly, the CBA Kit contains bead populations with 

distinct fluorescence intensities that are coated with capture antibodies specific 

for each cytokine to be measured.  These beads were incubated with 

fluorochrome-conjugated detection antibodies and then incubated with 50 μL of 

each sample for 3 hours at room temperature.  Sandwich complexes formed, 

after which the beads were washed, and the fluorescence intensity was assayed 

by flow cytometry.  These intensities were then compared to a standard curve 

generated for each cytokine to determine the concentration in each sample. 

 

• TNF-α 

• IL-1β 

• IFNγ 

• IL-2 

• IL-4 

• IL-6 

• IL-10 

• IL-12p40 

• IL-5 

• IL-8
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XIII. Statistical analysis.  

 

Statistical analysis was performed utilizing GraphPad Prism (GraphPad 

Software, La Jolla, CA). Comparison between groups was made via one-way 

ANOVA with Tukey’s test multiple comparisons, paired sample T-test with 

McNemar's test, or via two-way ANOVA with Sidak's multiple comparisons test. 

Repeated-measures ANOVA with Tukey's multiple comparison tests were utilized 

for time course experiments. Kaplan-Meier survival curves were compared using 

Log-rank (Mantel-Cox) and Gehan-Breslow-Wilcoxon tests. The trend of survival 

curves was also compared using Log-rank test. 

 

Gene and protein expression levels in sputum samples were analyzed through 

principal component analysis. The expression levels were compared among 

paired samples from the 3-collection time-points when patients are on and off 

azithromycin. Results were then correlated to clinical outcomes (demographic 

information, pulmonary function tests, requirement for hospitalization, 

requirement for antibiotics, etc.) acquired through retrospective review of the 

chart. Paired sample T-test with McNemar's test and two-way ANOVA were used 

to perform statistical analysis for paired human samples and among groups.  
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Table 2.3. Lung injury scoring guide 

 

Parameter Score per field 

0 1 2 

A. Neutrophils in the alveolar space None 1-5 >5 

B. Neutrophils in the interstitial space None 1-5 >5 

C. Hyaline membranes None 1 >1 

D. Proteinaceous debris filling the airspaces None 1 >1 

E. Alveolar septal thickening <2x 2x-4x >4x 
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Table 2.4. Key markers for different immune cell populations. 

 

  Immune Cell Populations Key Markers 

Infiltrating Monocytes F4/80 +, CD11c -, CD11b+ 

Alveolar Macrophages F4/80 +, CD11c +, CD11b- 

Interstitial Macrophages F4/80 +, CD11c +, CD11b+ 

Neutrophils F4/80 -, Ly6G + 

Type 2 innate lymphoid cells (ILC2) LIN -, CD90.2 +, CD127 +, IL33R + 

Activated CD4+ T cells CD4 +, CD44 Hi, CD62L lo 

Th1 lymphocytes CD4 +, CXCR3 +, IFNγ + 

Th17 Lymphocytes CD4 +, RORγt +, IL-17 + 

Treg Lymphocytes CD4 +, FOXP3 +, TGFβ + 
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Table 2.5. P65 nuclear translocation scoring scale. 

 

 

 

 

 

 

 

 

 

 

Table 2.5. P65 nuclear translocation scoring scale.  

Polarized J774 murine macrophages were immunostained on glass coverslips 

and visualized using Zeiss fluorescent microscope. Different fields were 

evaluated to score at least 150 cells per each replicate coverslip by 2 blinded 

investigators. Each cell was evaluated to determine the localization of the p65 

signal with respect to the nucleus.  

Score Location of p65 in a single cell 

0 Cytoplasmic signal only 

1 Evenly distributed signal (nuclear and 

cytoplasmic) 

2 Mainly nuclear with faint cytoplasmic signal 

3 Nuclear signal only 
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Figure 2.1 
  

Arg1flox/flox mice Arg1Δm mice 
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Figure 2.1. Arginase deletion from Arg1Δm mice. 

Lungs from Arg1flox/flox and Arg1Δm mice were lavaged with PBS as described and 

the lung tissues were collected. Cells were then processed into single cell 

suspensions for flow cytometry analysis. Figure shows representative images of 

arginase-1 expression in alveolar macrophages, infiltrating monocytes, 

neutrophils, and lymphocytes from Arg1flox/flox and Arg1Δm mice. 
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Figure 2.2a 
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Figure 2.2b 
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Figure 2.2c 
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Figure 2.2. Murine experimental design. 

(a) and (b) figures depict the experimental design for experiments in chapter 3. 

(c) Experimental design for experiments in chapter 5.  
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Figure 2.3. Synthesis of BEC 

 

Synthesis of BEC. Di-(n-butyl)-vinylboronate (303 mg, 1.65 

mmol) and L-cysteine (200 mg, 1.65 mmol) were mixed in 

MeOH (5 mL) and H2O (3 mL) under N2. 2,2′-Azobis(2-methylpropionitrile) (AIBN) 

(30 mg) was added and the mixture was heated at 80 °C for 1 h. An additional 

portion of AIBN (20 mg) was further added and the mixture was heated for an 

additional 6 h at 80 °C. The solvents were evaporated and the crude product was 

purified by flash column chromatography (SiO2 gel, 1:4:0.5/CH2Cl2:MeOH:NH4OH) 

to afford BEC as white solid (170 mg, 53%): 1H NMR (400 MHz, D2O, Figure 2.3b) 

δ 3.74 (dd, J1 = 7.6 Hz, J2 = 4.2 Hz, 1H), 2.96 (dd, J1 = 14.8 Hz, J2 = 4.2 Hz, 1H), 

2.84 (dd, J1 = 14.8 Hz, J2 = 7.6 Hz, 1H), 2.54 (t, J = 7.9 Hz, 2H), 2.84 (td, J1 = 7.9 

Hz, J2 = 2.4 Hz, 2H); 13C NMR (100 MHz, D2O, Figure 2.4c) δ 172.9, 53.4, 31.7, 

26.8, 14.8. 
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Figure 2.3b 1H NMR of BEC in D2O (400 MHz). 
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Figure 2.3c 13C NMR of BEC in D2O (100 MHz). 
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Chapter 3: Requirement of arginase in host protection against excessive 

inflammation 

 

I. Introduction 

 

Macrophages are important sentinel cells of the immune system that play highly 

complex and coordinated functions during inflammatory responses [131]. In 

addition to macrophages that reside in tissues, activated monocytes are recruited 

from the bone marrow and infiltrate tissues in response to injury, infections, or 

other inflammatory stimuli. However, both tissue and infiltrating macrophages are 

not terminally differentiated; they undergo phenotypic changes which can direct 

their functions into killer (M1) macrophages or into repair (M2) macrophages 

[327]. The balance between these two macrophage phenotypes is essential for 

proper activation and termination of the immune response and for maintaining 

tissue homeostasis. In fact, a shift towards M1 macrophage polarization is 

associated with exaggerated inflammation and autoimmune disorders; while a 

shift towards M2 macrophage polarization is associated in some instances with 

suppressed immunity and inability of the immune system to combat infections 

[327]. Therefore, macrophage phenotypic changes are viewed as a spectrum of 

changes which are driven by the two major classes of lymphocytes [327]. Th1 

cytokines (IFNγ) polarized macrophages towards an M1 or classical phenotype 

while M2 or alternative macrophages are polarized in the presence of Th2 

cytokines (IL-4 and IL-13). M1 macrophages are pro-inflammatory, they are 

characterized with bactericidal and phagocytic properties and they release pro-

inflammatory cytokines and mediators. Alternatively, M2 macrophages are 

viewed as anti-inflammatory cells with important functions for limiting the immune 

response and driving wound healing and tissue repair. Additionally, M1 and M2 

macrophages have distinct metabolic properties which drive their different 

immune functions. The two macrophage populations metabolize arginine, a 

unique conditionally essential amino acid, differently through the expression of 

different enzymes. Nitric oxide (NO) is the characteristic inflammatory and 
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microbicidal mediator of M1 macrophages which is generated with the induced 

expression of nitric oxide synthase enzyme (iNOS). Conversely, M2 

macrophages express arginase-1 enzyme which metabolizes arginine into 

proline and polyamines essential for cell proliferation and wound healing [328]. 

 

Thus, arginine metabolomics in macrophages had been evaluated as a key 

regulator of the immune response. While 80% of circulating arginine comes from 

diet and proteolysis, the remaining 15-20% are from citrulline-derived synthesis 

in the kidneys [130]. Under physiological conditions, arginine primarily 

participates in the urea cycle for the elimination of toxic ammonia compounds. 

However, under certain inflammatory conditions, arginine becomes semi-

essential where it is metabolized by arginase-1, arginase-2, or iNOS [130]. Both 

arginase isoforms convert arginine into ornithine and urea. Cytosolic arginase-1 

is predominantly expressed in hepatocytes and certain immune cells, whereas 

mitochondrial arginase-2 is found in renal cells, enterocytes, neurons, and 

mammary gland cells. Constitutive expression of arginase-2 is mainly involved in 

the generation of ornithine precursor for the synthesis of proline (for collagen 

synthesis and repair) and polyamines (for cell proliferation and regeneration). 

Conversely, arginase-1 expression is induced in macrophages, neutrophils, and 

other immune cells where it competes with iNOS thereby regulating NO 

generation and limiting NO-mediated inflammatory injury [129-132, 135, 136, 

317-319]. However, recent studies evaluating the immunomodulatory role of 

arginase-1 suggest that its beneficial properties reach beyond its effects on 

limiting NO generation. In contrast to iNOS which does not deplete the arginine 

pool due to the citrulline recycling pathway, arginase depletion of arginine was 

found to have important effects on T cell function and proliferation [152, 154, 157, 

314, 315, 316 2008, 317]. Arginine depletion by arginase arrests T cell 

proliferation in the G0-G1 phase of the cell cycle, decreases its CD3ζ expression, 

affects the development of memory T cells, and suppresses the T cell effector 

pro-inflammatory functions [151-161]. By this mechanism, arginase suppresses 

the secretion of Th1 cytokines (IFNγ), as well as Th2 cytokines (IL4, IL5, and 
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IL10) [151-161]. Arginine deprived T cells also decrease their expression of 

activation markers (CD25, CD28, and CD62L) [160]. Those changes promote a 

regulatory T cell phenotype and suppress T cell immunity [129-132, 135, 136, 

317-319]. Additionally, arginase expression by M2 macrophages stimulates 

autophagy by increasing the conversion of microtubule-associated protein light 

chain 3 (LC3) from LC3-I to LC3-II [329]. Thus, arginase expression mediates the 

formation of autophagosomes and induces caspase-independent apoptosis. 

Autophagy induction by arginase is cytoprotective and it plays a critical regulatory 

role that downregulates inflammation [329-334]. Collectively, arginase expression 

by macrophages and other immune cells depletes arginine, controls T cell 

responses, prevents inflammatory injury, induces autophagy, and modulates the 

immune response. 

 

The immunomodulatory role of arginase had been evaluated in several disease 

models. In cancer, myeloid suppressor cells producing arginase inhibit T cell 

responses against tumor cells [151-162]. In pregnancy, arginase is essential to 

prevent maternal immune reactions against the fetus [319]. Arginase also plays 

an important immunomodulatory role in sepsis, trauma, surgery, certain 

infections, and some inflammatory and autoimmune diseases (e.g. leishmaniasis, 

streptococcus pneumonia infection, schistosomiasis, autoimmune 

encephalomyelitis, asthma, and experimental glomerulonephritis) [151, 152, 

316]. However, arginase mediated modulation of the inflammatory response 

against Pseudomonas aeruginosa (PA) pneumonia has not been investigated. 

 

About 60% of patients with cystic fibrosis (CF) are infected with PA which 

chronically colonizes the lungs of 80% of the patients older than 18 years [17-19]. 

Infections with PA are characterized by a chronic dysregulated inflammatory 

response with aberrant T cell immunity and a predominant recruitment of 

neutrophils and pro-inflammatory macrophages [312]. Epithelial cells with 

mutated CFTR channels release excessive amounts of cytokines and 

chemokines (IL8, IL1, and TNF-α) recruiting tremendous amounts of neutrophils 
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and pro-inflammatory macrophages which further release more inflammatory 

mediators. Neutrophil death results in the release of proteases and neutrophil 

elastases which digest the structural airway proteins and result in bronchiectasis. 

Death also causes the release of neutrophil intracellular DNA resulting in 

increased mucus viscosity, oxidative stress, and free radical formation. In 

addition to the exaggerated responses of pro-inflammatory neutrophils and 

macrophages, T cell responses against PA pneumonia in CF are also 

dysregulated, with a Th1 predominant response believed to be disproportionate 

to that required to respond to infection [312, 335]. This exaggerated inflammation 

had previously been attributed to abnormal NF-κB activation, decreased negative 

feedback and regulatory responses, disproportional cytokine release, and 

irregular immune cell activation [312].  

 

Our group has previously demonstrated that azithromycin-driven polarization of 

macrophages into an alternative phenotype controls several aspects of the 

immune response in mice infected with PA-impregnated agarose beads [166, 

310, 311]. Previously published data suggest that azithromycin treatment 

polarizes macrophages towards an M2 phenotype, shifts the immune response in 

infected mice into a monocyte predominant response, blunts neutrophil influx, 

and shifts the T cell response away from the Th1 phenotype [166, 310, 311].  

 

Closely examining the different effectors of those M2 macrophages revealed an 

important role of arginase-1. Azithromycin treatment significantly increases 

arginase expression and activity in vitro and in vivo. In mice treated with 

azithromycin, peaks in arginase expression in the lungs at days 3 and 14 post-

infection were consistent with reduced morbidity and decreased airway damage. 

In this chapter, we evaluate the hypothesis that the decreases in inflammation in 

response to PA pneumonia achieved by polarizing macrophages to an M2 

phenotype is dependent upon the production of arginase-1. The possible role 

and mechanism of arginase modulation of inflammation and T cell immunity in 

PA pneumonia have not been previously investigated. Many studies focus on 
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changes in arginase expression and its competition with iNOS in pulmonary 

inflammatory conditions, but to our knowledge, none of the studies previously 

examined the possible protective role of arginase in PA pneumonia. This study 

presents a novel approach for examining the immune-protective role of arginase-

1 in PA pneumonia by utilizing arginase-1 conditional knock-out mice and two 

pharmacological inhibitors of arginase (L-norvaline and S-(2-boronoethyl)- L-

cysteine (BEC)). We show that macrophage arginase-1 is essential for control of 

inflammatory responses in PA pneumonia with potentially different effects of 

other cellular sources as shown with global arginase inhibition.  

 

II. Results 

 

Increased morbidity and acute inflammation in arginase-1 conditional knock-out 

mice. We evaluated the impact of arginase deletion from myeloid cells upon the 

acute inflammatory response against PA pneumonia. We conditionally deleted 

arginase-1 in macrophages and neutrophils of C57BL/6 mice.  Arg1Δm and 

control Arg1flox/flox mice were infected intratracheally with PA-laden agarose 

beads to cause a prolonged infection similar to the chronic infections in patients 

with cystic fibrosis. Morbidity in infected mice was evaluated by measuring their 

body weight daily (Figure 3.1a). Mice were then humanely killed for assessment 

of inflammation and lung injury at different timepoints post-infection (Figure 3.2). 

Lungs were lavaged to collect cells from the alveolar spaces and the lung tissues 

were harvested to collect cells from the lung interstitium. Lavage and lung tissue 

samples were processed for flow cytometry analysis to assess neutrophil 

recruitment, macrophage disposition, as well as macrophage polarization over 

time post-infection. Arg1Δm mice lost more weight compared to their littermate 

controls. There was a significantly faster and greater decline in murine body 

weight at days 1 and 2 post-infection in the arginase conditional knock-out mice 

(Figure 3.1a). Increased morbidity in the Arg1Δm mice was associated with an 

average weight loss of 13.33% of their baseline body weight versus an average 

weight loss of 8.09% in the control mice (Figure 3.1, day 2, p-value < 0.0001). 
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Conversely, control mice recovered faster than the Arg1Δm mice which slowly 

regained their weight over time (Figure 3.1a, day 3, littermate control mice at 

96.02% of their baseline weight vs 90.38% in the conditional knock-out mice, p-

value = 0.0002). 

 

Interestingly, there were no significant differences in terms of bacterial clearance 

and mortality between the two groups (Figure 3.1 b and c). Lung bacterial 

clearance was evaluated at different timepoints post-infection by counting the 

number of viable PA colonies in homogenized lung tissues. Arg1Δm mice cleared 

PA at a comparable rate similar to the Arg1flox/flox mice. Both groups failed to 

completely clear the infection and PA was still present in the lungs by day 10 

post-infection. Similarly, arginase deletion from myeloid cells was not associated 

with increased mortality (Figure 3.1c). Importantly, the infective inoculum used in 

these experiments was selected to cause murine pneumonia without causing 

severe morbidity or mortality in each mouse strain. Mice were euthanized and 

excluded from the analysis if they lose 20% or more of their body weight prior to 

infection along with 1 sign of morbidity (e.g. immobility, hunched posture, or lack 

of response to handling).  

  

Additionally, the impact of arginase production by myeloid cells upon the acute 

inflammatory response to the infection was evaluated (Figure 3.2). Figure 3.2a 

explains the gating scheme used in FlowJo to identify different immune cell 

populations activated in response to the infection. Arg1Δm mice had significantly 

greater recruitment and infiltration of neutrophils into their lung interstitial and 

alveolar spaces. Arg1Δm mice had a greater peak in neutrophil counts at day 3 

post-infection compared to their littermate control mice (Figure 3.2b, p-value = 

0.0033 in the alveolar spaces and lung interstitium). Similarly, there was a 

significantly larger number of macrophages in the lungs of arginase conditional 

knock-out mice (Figure 3.2c). Littermate control mice had significantly lower 

numbers of tissue macrophages at day 3 post-infection in their alveolar spaces 

compared to the Arg1Δm mice (p-value = 0.0042). The latter recruited and 
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maintained a larger number of macrophages into their lung interstitium at days 3 

through 5 post-infection (Figure 3.2c, day 3, p-value = 0.0003; day 5 p-value < 

0.0001).  

 

Macrophage polarization was also evaluated in the arginase conditional knock-

out mice. The expression of different M1 and M2 macrophage effectors was 

assessed to determine the phenotype of macrophages recruited in response to 

the infection (Figure 3.2 d, e, f). Arg1Δm mice recruited larger numbers of all 

macrophage phenotypes. There were significantly higher numbers of TNF-α 

producing macrophages in the lungs of arginase conditional knock-out mice 

(Figure 3.2d, day 5, p-value = 0.0063 (alveolar and infiltrating)). Additionally, 

there was a significantly greater number of IL-10 producing alveolar 

macrophages in the lungs of arginase conditional knock-out mice compared to 

their littermate controls (Figure 3.2e, day 3, p-value = 0.0225). However, the 

number of infiltrating monocytes producing IL-10 were comparable in both groups 

with no significant difference. Similarly, there was no significant difference in the 

number of mannose receptor expressing alveolar macrophages between the 2 

groups (Figure 3.2f). However, the arginase conditional knock-out mice recruited 

significantly larger numbers of mannose receptor expressing macrophages into 

their lung interstitium later at 10 post-infection compared to the control mice 

(Figure 3.2f, day 10, p-value = 0.0493). Interestingly, the ratios of TNF-α and IL-

10 producing cells were comparable in both groups (Figure 3.2g, A). However, 

Arg1Δm had at least 2 times more neutrophils than macrophages in their lungs by 

day 3 post-infection compared to Arg1flox/flox mice (Figure 3.2g, B, day 3, p-value 

= 0.0387).  

 

Arginase conditional knock-out mice respond to PA pneumonia with greater T 

cell recruitment and activation. The impact of arginase production by neutrophils 

and macrophages upon the T cell responses was evaluated in Arg1Δm mice 

infected with PA-laden agarose beads intratracheally. T cell responses and 

activation profiles at different timepoints post-infection were evaluated in the 
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tracheobronchial lymph nodes that drain the site of infection, in the lung lavage, 

and in the lung tissue samples (Figure 3.3). Figure 3.3a and 3.4a explain the 

gating scheme used in FlowJo to identify different T cell populations. Although 

the arginase conditional knock-out mice responded to the infection with a greater 

increase in T cell numbers in their tracheobronchial lymph nodes by day 5 post-

infection, the differences were not statistically significant (Figure 3.3b). Similarly, 

there was a greater increase in T cell activation in the lymph nodes of arginase 

conditional knock-out mice at day 5 post-infection which was not statistically 

significant. Conversely, there were significantly greater numbers of CD4+ T cells 

and activated CD4+ T cells in the alveolar spaces of arginase conditional knock-

out mice compared to their littermate controls (Figure 3.3c, day 5, p-value = 

0.0369 and 0.0092, respectively). However, the arginase conditional knock-out 

mice responded with comparable T cell recruitment and activation in their 

interstitial spaces compared to their littermate controls with no significant 

differences (Figure 3.3d).  

 

Additionally, we analyzed the phenotypes of activated T cells in the lymph nodes 

and lungs overtime post-infection (Figure 3.4). Th1 lymphocytes were defined as 

the CD4+ T cells which express CXCR3 and IFNγ. In the lymph nodes of 

arginase conditional knock-out mice, there was a greater increase in the number 

of Th1 lymphocytes compared to the littermate control mice, but the differences 

were not statistically significant (Figure 3.4b). However, there were significantly 

higher numbers of Th1 lymphocytes in the lungs of arginase conditional knock-

out mice at days 3 and 5 post-infection (Figure 3.4c, p-value = 0.0345 and 

0.0371, respectively). Finally, Th17 lymphocytes were defined as the CD4+ T 

cells which express RORγt and IL-17. There were significantly larger numbers of 

Th17 lymphocytes in the lymph nodes and in the lungs of arginase conditional 

knock-out mice compared to the littermate control mice (Figure 3.4 b and c, day 

3, p-value = 0.0191 and 0.0488, respectively).  

 



 106 

Additionally, we estimated the ratios of pro- and anti-inflammatory cytokines 

expressed by all lymphocytes. The lymphocyte population contains CD4+ T cells 

as well as other lymphoid cells including the innate lymphoid cells, CD8+ T cells, 

and NK cells. Figure 3.2g shows the ratios of IL-17, IFNγ, and IL-10 cytokines 

from lymphoid origin. The ratio of IL-17 to IL-10 producing lymphocytes was 

significantly higher in Arg1Δm mice at days 3, 5, and 10 post-infection (Figure 

3.2g, C, p-value < 0.0001). However, the ratios and trend of IFNγ to IL-10 

expressing lymphocytes were comparable among the 2 groups with similar 

trends (Figure 3.2g, D). 

 

Pharmacological arginase inhibition is associated with comparable morbidity and 

acute inflammatory response. We evaluated the impact of pharmacologic 

arginase inhibition upon the inflammatory response to PA pneumonia. BALBc/J 

mice were dosed with one of 2 pharmacological arginase inhibitors (BEC or L-

norvaline) via oral gavage starting 1 day prior to infection and daily thereafter. 

Control BALBc/J mice were dosed with water daily. Mice were infected with PA-

laden agarose beads as described in the methods section. Figure 3.5a shows 

morbidity at different tested infective inoculums. No significant morbidity was 

attained at the lowest inoculum of 5 × 10^6 CFU/mL (Figure 3.5a, B) while the 

highest inoculum of 5 × 10^7 CFU/mL resulted in severe morbidity (Figure 3.5a, 

D). Most of the mice infected with the inoculum of 1 × 10^7 CFU/mL lost at least 

10% of the baseline body weight (Figure 3.5a, C).  Therefore, we selected an 

inoculum between 1 × 10^7 CFU/mL and 5 × 10^7 CFU/mL for our experiments. 

Statistical significance was determined using two-way ANOVA ((x) BEC treated 

group significantly different than water treated group; (#) L-norvaline treated 

group significantly different than water treated group; (+) BEC treated group 

significantly different than L-norvaline treated group; p-value < 0.05).  

 

Morbidity post-infection was evaluated by measuring daily weight and evaluating 

weight loss as compared to the baseline prior to infection. There were no 

significant differences in terms of acute weight loss in mice treated with water 
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versus mice treated with the arginase inhibitors. However, control mice 

recovered slowly and incompletely compared to the mice treated with the 

arginase inhibitors (Figure 3.5b). While the BEC and L-norvaline treated mice 

regained their lost weight at day 6 post-infection up to an average of 89.94% and 

91.5% of their baseline body weight respectively, the water treated mice failed to 

recover with an average body weight at day 6 of 83.2% of their original weight 

prior to infection (Figure 3.5b, day 6, (x) p-value = 0.0391, (#) p-value = 0.0187). 

Similarly, BEC and L-norvaline treated mice recovered with an increase in their 

weight up to 98.21% and 99.4% of their baseline body weight at day 10 post-

infection while the water treated mice remained at 88.5% of their original weight 

(Figure 3.5b, day 10, (x) p-value = 0.025, (#) p-value = 0.0161). Interestingly, 

there were no significant differences in terms of mortality or bacterial clearance 

among the 3 groups (Figure 3.5 c and d). 

 

Additionally, we evaluated the impact of pharmacologic arginase inhibition on the 

inflammatory response and recruitment of innate immune cells (Figure 3.6). 

Surface and intracellular staining of lung lavage and lung tissue samples 

collected at different timepoints post-infection were performed and analyzed 

using flow cytometry. While the water treated mice had significantly higher 

numbers of neutrophils recruited into their alveolar spaces compared to the mice 

treated with BEC and L-norvaline (Figure 3.6a, day 2, (x) p-value = 0.0264, (#) p-

value = 0.0221); neutrophil recruitment into the lung interstitium was comparable 

among the 3 groups of mice. Similarly, water treated mice had significantly higher 

numbers of macrophages in their alveolar spaces at day 2 post-infection (Figure 

3.6b, day 2, (x) p-value = 0.0263, (#) p-value = 0.0053). Macrophage infiltration 

into the lung interstitium was comparable with no significant differences among 

the 3 groups (Figure 3.6b).  

 

To evaluate the phenotype of macrophages recruited into the lungs of mice 

treated with pharmacologic arginase inhibitors we stained for different M1 and 

M2 macrophage effectors and cytokines. There were no statistically significant 
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differences in either alveolar or infiltrating macrophages expressing TNF-α, IL-10, 

or iNOS (Figure 3.6c, d, f) among the 3 groups of mice. However, mice treated 

with BEC or L-norvaline had significantly lower numbers of MR expressing 

alveolar macrophages compared to water treated mice (Figure 3.6e, day 2, (x) p-

value = 0.038, (#) p-value = 0.0165). Similarly, mice treated with pharmacologic 

arginase inhibitors presented with significantly lower numbers of infiltrating M1 

macrophages at day 2 post-infection compared to water treated mice (Figure 

3.6g, day 2, (x) p-value = 0.0253, (#) p-value = 0.0349). Conversely, alveolar M1 

macrophages and infiltrating macrophages expressing MR were comparable 

among the 3 groups. Interestingly, the ratio of CCR7 and MR expressing 

macrophages and of TNF-α and IL-10 producing cells were comparable among 

the 3 groups (Figure 3.6h, A and B).  

 

Finally, we stained for type 2 innate lymphoid cells (ILC2) which are a major 

source of arginase in addition to neutrophils and macrophages (Figure 3.6i). 

ILC2s are derived from a lymphoid progenitor, but they lack B and T cell 

receptors. ILC2s are found in the skin, respiratory and gastrointestinal systems 

and they play a role in asthma, allergy, and parasitic infections. They release Th2 

cytokines and express arginase-1 constitutively [336]. Control mice had a greater 

increase in ILC2 recruitment to the alveolar spaces at day 2 post-infection which 

was not significantly different than the ILC2 recruitment in mice treated with 

arginase inhibitors. Similarly, the numbers of ILC2 infiltrating into the lung 

interstitium were comparable among the 3 groups of mice. 

 

Pharmacologic arginase inhibition is associated with increased T cell recruitment 

and activation in the lymph nodes of infected mice with potentially reduced 

chemotaxis to the lungs. We evaluated the impact of arginase inhibition in mice 

infected with PA pneumonia upon the activation of different T cell responses. The 

total number of CD4+ T cells and the number of CD4+ T cells expressing 

activation markers were quantified at different time points post-infection. In the 

tracheobronchial lymph nodes of water treated mice, there was a slightly higher 
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acute recruitment and activation of CD4+ T cells at day 2 post-infection 

compared to mice treated with arginase inhibitors (Figure 3.7a, day 2, p-value > 

0.05). The latter had a significantly increased recruitment and activation of CD4+ 

lymphocytes in their tracheobronchial lymph nodes at day 10 post-infection 

(Figure 3.7a, day 10, Total T cells: (x) p-value = 0.0017, (#) p-value = 0.0066; 

Activated T cells: (x) p-value = 0.0292, (#) p-value = 0.0044). Conversely, water 

treated mice had significantly higher numbers of CD4+ lymphocytes in their 

alveolar spaces at day 2 post-infection compared to the 2 groups treated with 

arginase inhibitors (Figure 3.7b, day 2, (x) p-value = 0.0349, (#) p-value = 

0.0285). However, there were no significant differences in T cell recruitment to 

the alveolar spaces at later timepoints post-infection. Similarly, the number of 

activated T cells in the alveolar spaces were comparable at all timepoints post-

infection with no significant differences among the 3 groups of mice (Figure 

3.7b).  As for the T cell responses in the lung interstitium, the 2 groups of mice 

treated with arginase inhibitors have slightly higher numbers of CD4+ 

lymphocytes compared to the water-treated mice (Figure 3.7c, Total T cells, p-

value > 0.05). However, mice treated with L-norvaline had significantly higher 

numbers of activated T cells in their interstitial spaces compared to both BEC 

and water treated mice (Figure 3.7c, activated T cells, day 2 (+) p-value = 

0.0081, (#) p-value = 0.0016; day 5 (+) p-value = 0.0256, (#) p-value = 0.0179). 

Although no statistical significance was observed, the trend of increased 

numbers of CD4+ T cells observed on day 10 post-infection in the lymph nodes 

holds true for both the airways and the lung interstitium. 

 

Next, we sought to determine the phenotype of T cells recruited and activated in 

the lymph nodes and lungs of mice treated with pharmacologic arginase 

inhibitors. We stained for different surface receptors, lineage-specifying 

transcription factors, and intracellular cytokines. Mice treated with BEC or L-

norvaline had higher recruitment of Th17 lymphocytes in their lymph nodes with 

significantly higher numbers at day 10 post-infection (Figure 3.8a, day 10, (x) p-

value = 0.0079, (#) p-value < 0.0001). However, there were no significant 
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differences in the number of Th17 lymphocytes in the interstitial spaces among 

the 3 groups of mice; whereas, the water treated mice had significantly higher 

numbers of Th17 lymphocytes in their alveolar spaces compared to the L-

norvaline treated mice only (Figure 3.8a, day 2, (#) p-value = 0.0127).  

As for the type 1 T helper lymphocytes, the numbers were comparable in the 

lymph nodes with no significant differences among the 3 groups of mice. 

However, water treated mice had significantly higher numbers of Th1 

lymphocytes in the alveolar and interstitial spaces at day 2 post-infection 

compared to mice treated with BEC and L-norvaline (Figure 3.8b, day 2, lung 

interstitium (x) p-value = 0.0002, (#) p-value < 0.0001; alveolar spaces (x) p-

value = 0.0066, (#) p-value = 0.0165).  

 

Lastly, water-treated mice had higher numbers of regulatory T cells in their lymph 

nodes, alveolar spaces, and lung interstitium (Figure 3.8c). While the number of 

Treg lymphocytes were not significantly different among the groups treated with 

BEC versus the groups treated with L-norvaline, the latter had significantly lower 

numbers of Treg lymphocytes compared to the water treated mice (Figure 3.8c, 

day 2, lymph nodes (#) p-value = 0.0317; lung interstitium (#) p-value = 0.0128).  

 

Additionally, we estimated the ratios of pro- and anti-inflammatory cytokines 

expressed by CD4+ T cells as well as other lymphocytes. Figure 3.6h shows the 

ratios of total IL-17, IFNγ, TGFβ, and IL-10 expressing lymphoid cells in the 

alveolar spaces. The ratio of IL-17 to IL-10 producing lymphocytes was 

significantly higher in water treated mice at day 3 post-infection compared to the 

L-norvaline treated group (Figure 3.6h, C, (#) p-value = 0.0014). However, the 

ratios and trend of IFNγ to TGFβ expressing lymphocytes were comparable 

among the 3 groups (Figure 3.6h, D). 
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III. Discussion 

 

Patients with cystic fibrosis are genetically predisposed for chronic and repeated 

infections against which the immune system responds in an exaggerated but 

inefficient manner. The excessive immune response fails to adequately clear the 

infection while damaging the lungs and aggravating the pathology. The resultant 

lung injury further activates the immune response resulting in a vicious cycle of 

continuous inflammation and decline in lung function. Because of this, pulmonary 

infections are the leading cause of mortality in cystic fibrosis [1]. Despite our 

increased understanding of the altered immune response, life expectancy in 

patients with cystic fibrosis is still limited to 40 years in male patients and 37 

years in female patients. 

 

Several drugs against individual elements of the altered immune response are in 

clinical trials; yet, there is no defined target that can globally modulate the 

multiple mechanisms involved. Arginase-1 is an immunomodulatory enzyme with 

a versatile power in regulating multiple elements of the immune system.  

Additionally, we consistently see increased arginase expression and activity with 

improved inflammatory response and decreased lung pathology. Our group has 

previously shown increased arginase expression in mice treated with 

azithromycin along with improved morbidity and mortality [166, 310, 311]. 

Additionally, we have previously shown increased arginase expression in 

patients with cystic fibrosis and in J774 murine macrophages polarized with 

azithromycin in vitro [166, 310, 311]. Yet, whether arginase plays a role in 

modulating immunity in cystic fibrosis has not been investigated. And if so, the 

specific mechanisms involved in arginase modulation of the immune response 

are yet to be elucidated. The current study investigates the hypothesis that 

regulating excessive inflammation in PA pneumonia is dependent upon arginase 

production. We provide novel evidence concerning the different aspects of the 

immune response modulated with arginase expression, broadening our 
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knowledge of the specific mechanisms involved in regulating the immune 

response against infections in cystic fibrosis patients.  

 

We utilized an arginase-1 conditional knock-out mouse model as well as two 

global pharmacological arginase inhibitors to investigate the impact of arginase 

deletion or inhibition upon the inflammatory response to PA pneumonia. Our 

group has previously developed an effective method for establishing a prolonged 

infection with PA in mice. We incorporate bacteria isolated from cystic fibrosis 

patients into agarose beads which are instilled intratracheally in mice to cause a 

chronic PA lung infection.  

 

We show that arginase deletion from myeloid cells is associated with increased 

morbidity in mice infected with PA-laden agarose beads. Arginase conditional 

knock-out mice got sicker and lost more weight after the infection compared to 

mice whose macrophages and neutrophils can produce arginase. Additionally, 

arginase-1 conditional knock-out mice had a more severe response to the 

infection compared to their littermate controls. Arginase deletion from myeloid 

cells resulted in an excessive recruitment of neutrophils and macrophages into 

the lungs of infected mice. The increased macrophage infiltration into the lungs of 

arginase conditional knock-out mice was predominantly skewed towards an M1 

pro-inflammatory phenotype with excessive numbers of TNF-α producing 

macrophages. These results suggest that arginase production is essential to 

control the acute inflammatory response and that absence of arginase precludes 

regulatory mechanisms essential for limiting the immune response and 

preventing exaggerated activation and recruitment of immune cells. One of the 

possible mechanisms by which arginase could lead to reduced recruitment of 

pro-inflammatory cells into the lungs is by protecting against permeability edema 

[337]. It is suggested that arginase reduces NO concentrations, through 

competition with iNOS, thereby reducing NO-mediated capillary endothelial 

hyperpermeability which is associated with excessive infiltration of neutrophils 

and macrophages from the blood into the alveoli. Therefore, arginase protects 
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against dysfunction of the alveolar-capillary barriers which limit the influx of 

inflammatory cells into the lungs [337]. Moreover, it is very likely that the 

arginase-mediated regulation of T cell responses that we observed in our model 

is responsible for limiting the excessive recruitment and chemotaxis of 

inflammatory cells into the lungs. 

 

The most described immunomodulatory properties of arginase include its 

modulation of T cell responses. Consistently, we demonstrate abruptly increased 

proliferation and activation of CD4+ T lymphocytes in the Arg1Δm mice. The 

deletion of arginase from myeloid cells resulted in increased T cell numbers in 

the lymph nodes and alveolar spaces of infected mice. This can be attributed to 

the increased arginine concentrations in the absence of arginase-mediated 

arginine depletion. These findings are consistent with research showing that 

arginase-1 expression induces T cell hypo-responsiveness through arginine 

depletion by the enzyme [130-132, 135, 136, 338-340]. In fact, arginase-

mediated arginine depletion was shown to be associated with down-regulation of 

the T cell mediated immune responses in several conditions including (1) solid 

and hematological tumors, (2) virus-induced diseases, (3) leishmaniasis, (4) 

dextran sodium sulfate induced intestinal inflammation, (5) Behςet disease, (6) 

streptococcus pneumonia infections, (7)  schistosomiasis, (8) autoimmune 

encephalomyelitis, (9) filarial infections, (10) sepsis, (11) asthma, (12) trauma, 

and (13) experimental glomerulonephritis [137-150, 341, 342]. Arginase-

mediated effects on T cell responses were variable among the disease models 

listed above ranging from suppression of Th1 mediated pathology, to modulating 

the interplay of Th1/Th2 cytokines, shifting the macrophage/neutrophil balance, 

suppressing immune recognition and rejection of tumor cells, reducing CD8+ and 

CD4+ T cell proliferation, and modulating the Treg/Th17 balance [137-150, 341, 

343]. According to Denning et al., arginase expression by lamina propria 

macrophages controls T cell differentiation into Treg and T17 phenotypes [344]. 

Overall our findings are in accordance with findings reported by Denning and 

several other studies which show that arginine depletion by arginase decreases 
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T cell proliferation and T cell effector functions [151-161]. Previous studies show 

that T cells activated under arginine depleted conditions fail to express CD3ζ and 

CD3ε. This results in decreased receptor-mediated tyrosine phosphorylation; 

however, it does not affect Ca2+ flux [162]. The decreased CD3ζ expression is 

not due to protein degradation or decreased mRNA but due to decreased global 

protein synthesis [157]. It is attributed to decreased cyclin D3 mRNA stability and 

expression which in turn prevents forward progression in the cell cycle and 

arrests T cells in the G0-G1 phase [157]. Impairment of T cell activation under 

arginine depleted conditions is T cell receptor (TCR) independent and is not 

mediated via inhibitory effect of CTLA4, IL10, PDL1, or TGFβ [144]. Moreover, 

the decreased T cell proliferation is not associated with an increase in apoptosis 

or T cell death [151]. Previous literature suggests that in most cases the 

arginase-mediated suppression of T cells is localized to the site of infection and 

does not affect naïve T cells in lymph nodes and other secondary lymphoid 

organs ensuring that this suppression is not due to T cell intrinsic defects [138-

143]. Additionally, T cell suppression due to arginine depletion is reversed with 

arginase inhibition or with the L-arginine supplementation [137-150]. Thus, the 

increased arginine availability in Arg1Δm mice is most likely driving increased T 

cell proliferation and contributing to the robust and excessive numbers of T cells 

in infected mice. Additionally, we show that deletion of arginase is associated 

with excessive numbers of activated T cells emphasizing the important role of 

this immunomodulatory enzyme in controlling the expression of T cell activation 

markers and limiting T cell responses in PA pneumonia.  

 

Additionally, our results show that arginase deletion from myeloid cells skews the 

T helper cell responses towards a Th1/Th17 predominant response consistent 

with previous reports of arginase-mediated shift towards a regulatory T cell 

phenotype along with suppression of pro-inflammatory cytokine production [129]. 

We show that in a murine model of PA pneumonia, Arg1Δm mice respond with 

excessive activation of Th1 and Th17 pro-inflammatory lymphocytes in their 

lymph nodes and in their lungs. In addition to the previously discussed evidence 
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of arginase effects on T cell phenotype mediated via arginine depletion, several 

other mechanisms could be involved. According to Obermajer and colleagues, 

iNOS mediates Th17 induction and stabilization via NO mediated pathways 

[345]. NO secretion by myeloid-derived suppressor cells expressing iNOS 

promoted the differentiation of RORγt+ IL-17+ CD4+ T cells from naïve and 

memory human T cells. These effects of NO on T cell polarization were mediated 

via signaling through the canonical cyclic guanosine monophosphate (cGMP)-

dependent protein kinase (cGK) pathway within CD4+ T cells. Inhibition of iNOS 

or cGMP–cGK signaling prevents the polarization towards a Th17 phenotype  

[345]. Obermajer reports that suppression of NO levels significantly reduces IL-

17 concentrations in patients with ovarian cancer  [345]. Therefore, comparing 

our results to the findings by Obermajer et al., it is likely that arginase deletion 

shifts the arginine metabolism towards the iNOS pathway thereby increasing NO 

levels which drive T cell polarization towards the Th17 phenotype. Additionally, it 

is likely that an arginase-mediated shift of T cell response towards a regulatory 

phenotype suppresses Th17 and Th1 responses. Geiger and colleagues suggest 

that arginase controls several metabolic pathways in T cells which promotes their 

regulatory functions [346]. Arginase modulates glycolysis and oxidative 

phosphorylation in activated T cells which shifts their function towards regulatory 

and memory cells by direct effects on several transcription regulators including 

BAZ1B, PSIP1, and TSN [346]. Tregs suppress Th1 and Th17 responses and 

directly inhibiting the secretion of polarizing cytokines [346, 347]. Therefore, it is 

likely arginase deletion shifts the Treg/Th17 balance in Arg1Δm mice by promoting 

Th17 polarization and suppressing Treg numbers. 

 

Skewing of the T cell responses towards a Th17 and Th1 predominant response 

partially explains the increased recruitment of neutrophils and M1 macrophages. 

It is very likely that the excessive amounts of IFNγ and IL-17 released by the Th1 

and Th17 lymphocytes are responsible for polarizing macrophages towards an 

M1 pro-inflammatory phenotype and for recruiting excessive numbers of 

neutrophils. According to Disteldorf et al., Th17 responses attract destructive 



 116 

neutrophils which cause renal tissue injury [348]. In a murine model of crescentic 

glomerulonephritis, authors report that CXCL5 drives the excessive influx of 

pathogenic neutrophils into sites of inflammation via a Th17-dependent pathway 

in later chronic stages of the disease [348]. Similarly, Th17 responses recruit 

neutrophils both of which mediate immunopathogenesis in Leishmaniasis. This is 

mediated via cooperation of IL-17 with other cytokines which recruits neutrophils 

in excessive numbers during Leishmania infection [349]. Therefore, our results 

emphasize the importance of arginase-mediated regulation of Th17 responses 

thereby limiting the pathogenic neutrophil influx into the lungs of patients with 

cystic fibrosis. Our data support that arginase is a mediator which controls Th17-

associated inflammation providing new targets to manipulate Th17 responses in 

cystic fibrosis, cancer, autoimmunity, and other inflammatory diseases. 

 

Additionally, results show significantly increased ratio of IL-17/IL-10 producing 

lymphoid cells at days 3 through 10 post-infection in Arg1Δm mice. We observed 

marked expression of IL-17 cytokine in CD4+ T cells expressing non Th17 

cytokines or lineage markers as well as in non CD4+ lymphoid cells. This reflects 

upon the potential of arginase-1 to control IL-17 production through mechanisms 

additional to Th17 regulation. According to Hayes et al., IL-17 is required to 

control chronic infection with PA and is released by Th17 cells, innate lymphoid 

cells, γδ-T cells, and NK cells [289]. Hayes and colleagues infected IL-17RA 

knock-out mice with PA-laden agarose beads to cause a chronic infection with a 

mucoid PA strain similar to our procedure. Authors found that IL-17RA knock-out 

mice had significantly lower morbidity and faster recovery while the bacterial 

loads in their lungs were higher at 2 weeks post-infection compared to wild-type 

mice. Additionally, there were no significant differences in the number of 

neutrophils and the histologic lung injury scores between wild-type and IL-17RA 

knock-out mice [289]. The decreased morbidity in IL-17RA knock-out mice is 

attributed to the lack of IL-17 direct effects on pro-inflammatory cytokines like IL-

6 and TNF-α. Additionally, they show a CD3+ population expressing both IFNγ 

and IL-17 in the lymph nodes of infected mice. About 90% of the cells expressing 
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IL-17 in the lymph nodes at 2 weeks post-infection had a phenotype consistent 

with ILC3 cells while the remaining 5-10% of the cells had B cell markers [289]. 

However, in the lungs of wild-type mice, there was a significant increase in IL-17 

expressing cells. About 50% of these cells were consistent with Th17 and γδ-T 

cells while the majority of the remaining cells were consistent with ILC3 cells. A 

small fraction of about 3.83% of all IL-17 expressing cells in the lungs had B cell 

markers and was consistent with B1 cell population [289]. Accordingly, our 

results from Arg1Δm mice show significantly increased IL-17 expression along 

with increased morbidity. We observed a significant IL-17 expression by 

lymphoid and non-lymphoid cells. Although we did not specifically stain for ILC3 

cells, it is very likely that ILC3 cells contribute to the increased IL-17 expression 

by non-CD4+ T cells. Group 3 ILCs produce IL-22 and IL-17A and express 

RORγt, they present antigens and control CD+ T cell responses [350, 351]. 

According to von Burg et al., ILC3 cells can regulate lymphoid tissue 

development and can alter the adaptive immune response by directly stimulating 

CD4+ lymphocytes [350]. ILC3 cells prime CD4+ T cells and induce their 

proliferation and activation by directly presenting antigen and secreting cytokines. 

Therefore, regulating IL-17 production by ILC3 cells constitutes a novel approach 

to control T cell immune responses [350, 351]. Accordingly, it is essential to 

closely examine the effects of arginase mediated regulation of IL-17 secretion 

and whether it involves regulation of ILC3 development and subsequent 

regulation of T cell mediated immunity. 

 

Importantly, the absence of arginase does not inhibit anti-inflammatory 

responses, as we see recruitment of IL-10 and MR expressing M2 macrophages. 

The latter are likely to be elevated in the absence of arginase as a regulatory 

feedback that is failing to downregulate the excessive inflammation. Despite the 

increased levels of the anti-inflammatory cytokine IL-10, the anti-inflammatory 

response is still unable to protect against the excessive inflammation caused by 

the deletion of arginase. We have consistently observed this in past experiments 

in mice that lack alternative macrophage activation. Also, in-vitro when TNF-α 
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production increases as a result of increased M1 polarization, IL-10 is also 

increased in a compensatory manner [166, 310, 311]. According to Stenvinkel et 

al., systemic inflammation responsible for pathogenesis in cardiovascular 

disease and end-stage live disease is associated with elevated concentrations of 

IL-10, IL-6, and TNF-α. Authors report that IL-10 secretion is delayed and always 

follows the release of TNF-α with a latency of a few hours. The coupling of 

excessive inflammatory mediators with the delayed secretion of IL-10 ensures 

that inflammation will securely be down-regulated [352]. Additionally, several 

reports describe complex signaling mechanisms involved with TNF-α induced IL-

10 secretion which involves activation of protein kinase C [353-355]. Exclusive 

secretion of IL-10 without preceding secretion of pro-inflammatory cytokines 

seems to be a rare event. Our results were broadly in agreement with the 

previous findings which demonstrate that excessive TNF-α release induces 

increased IL-10 concentrations as a regulatory mechanism to control excessive 

inflammation. However, in our model the increased IL-10 was not enough to 

protect against the increased morbidity in the Arg1Δm mice. 

 

Our model of Arg1Δm mice allowed us to address our hypothesis concerning 

macrophage and neutrophil specific arginase expression. Arginase is expressed 

by many other immune and non-immune cells; therefore, we next sought to 

confirm the results by globally inhibiting arginase by administering pharmacologic 

arginase inhibitors. BALBc/J mice are known to be Th2-dominant compared to 

C57BL/6 mice which are on a Th1-dominant. BALBc/J mice respond to the 

infection with significant expression and activation of arginase. Hence, we 

decided to globally inhibit arginase in these mice to investigate the impact of 

inhibiting arginase from all cellular sources on the immune response to PA 

pneumonia. Mice treated with global arginase inhibitors did not lose more weight 

compared to mice which were dosed with water. However, it is important to note 

that mice with global arginase inhibition lost more weight generally compared to 

mice with conditional arginase deletion from myeloid cells. The maximum weight 

loss in arginase conditional knock-out mice was about 13.33% achieved by day 2 
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post-infection, versus a maximum average weight loss of about 20% in BALBc/J 

mice treated with arginase inhibitors and achieved by day 3 post-infection. This is 

a trend that we observed in our experiments, but we did not directly compare the 

2 strains with simultaneous infection. 

 

Global arginase inhibition with both pharmacologic inhibitors suppressed the 

acute inflammatory response in infected mice. There were significantly lower 

numbers of neutrophils in the alveolar spaces of mice treated with BEC or L-

norvaline compared to mice which were dosed with water only. However, in the 

lung interstitial spaces there was a delayed and slightly elevated influx of 

neutrophils into the lungs of mice treated with arginase inhibitors at day 5 post-

infection. Results suggest that while arginase inhibitors can acutely attenuate 

neutrophil influx in the alveolar spaces, the global arginase inhibition is 

associated with a delay in neutrophil infiltration into the lung interstitium. 

Importantly, the total number of neutrophils recruited in the 3 groups of BALBc/J 

mice were much higher than in the arginase conditional knock-out mice (1.5-9 x 

10^6 versus 0.5-1.5 x 10^6 in the alveolar spaces; 8-9 x 10^6 versus 1-3 x 10^6 

in the lung interstitium). Whether this difference is significant, and if so, whether 

this is due to global inhibition of arginase versus deleting it from myeloid cells is a 

question to be answered. Additionally, this difference might be due to a more 

infective batch of PA-laden agarose beads as we prepare these prior to each 

infection and there is always a chance of the bacteria changing its virulence or 

becoming more or less infective. Moreover, the difference in the weight loss and 

in the inflammatory response to the infection might be solely due to the different 

genetic background of the two strains of mice.  Therefore, a clear and definitive 

assumption about the effect of global arginase inhibition on morbidity and 

neutrophil influx cannot be concluded from these results. 

 

Similarly, global arginase inhibition was associated with different effects on 

alveolar and infiltrating macrophages. While mice treated with BEC or L-norvaline 

had reduced numbers of alveolar macrophages activated in response to the 
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infection, they had higher numbers of infiltrating macrophages in their lung 

interstitium. Again, the total number of macrophages recruited in the 3 groups of 

BALBc/J mice were much higher than in the arginase conditional knock-out mice 

(1 - 4 x 10^6 versus 0.25 - 0.5 x 10^6 in the alveolar spaces; 0.5 - 2 x 10^7 

versus 1 - 5 x 10^6 in the lung interstitium) and this is likely due to the use of 

BALB/c mice, a strain in which we consistently observe higher macrophage 

numbers as compared to neutrophils. Moreover, the numbers of TNF producing 

macrophages were comparable in mice treated with water versus mice treated 

with global arginase inhibitors. As for IL-10 producing macrophages, they were 

slightly lower in the BEC and L-norvaline groups without being statistically 

significant. Similarly, there were lower levels of MR expressing alveolar 

macrophages in the groups treated with arginase inhibitors while the infiltrating 

monocytes were not significantly different among the 3 groups. Moreover, there 

were no significant differences in iNOS expressing alveolar and infiltrating 

macrophages. While the numbers of alveolar M1 pro-inflammatory macrophages 

were comparable among the 3 groups of mice, the numbers of infiltrating M1 

macrophages were significantly lower in mice treated with arginase inhibitors. 

Our results suggest that arginase inhibitors have potentially different effects on 

resident versus infiltrating macrophages. This might be explained by potentially 

different local, anatomical, or cellular effects of the pharmacologic inhibitors. 

Additionally, these observations may be a mere effect of the murine strain used 

in these experiments. According to Loke and colleagues, C57BL/6 mice and 

BALB/c mice have inherent differences in PDL1 and PDL2 expression on the 

surface of macrophages [356]. The expression of these markers, as well as other 

surface receptors essential for migration of leukocytes, is governed by Th1 and 

Th2 cytokines. These differences account for a significant variation in leukocyte 

recruitment and transmigration as well as to differences in T cell activation 

among the 2 strains of mice [356, 357]. Therefore, it is important to consider the 

differences among the 2 strains of mice used in our experiments besides the 

effects of the arginase inhibitors. This urges us to repeat the arginase inhibitor 

experiments in C57BL/6 mice to better draw informative conclusions about the 
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specific effects of these inhibitors on leukocyte recruitment and activation in 

response to PA pneumonia. 

 

Collectively, global arginase inhibition had different effects on alveolar versus 

interstitial macrophages. Our results do not support a definite conclusion as to 

whether arginase inhibition modulates compartmentalization of immune cells 

recruited in response to the infection. Additionally, BALBc/J mice are on a Th2 

background which drives a completely different immune response compared to 

Arg1Δm mice which are on a C57BL/6 background. Stevenson and colleagues 

suggest resistance of BALBc/J to infections with PA whereas the C57BL/6 mice 

were more susceptible to the infection. This group shows increased cellularity 

and a shift towards a neutrophilic response in C57BL/6 while BALBc/J had a 

monocytic predominant influx with less cellularity [358]. However, both groups in 

this report were infected at the same CFU while in our experiments there was a 

10-fold difference in the CFU required to cause a comparable infection in both 

strains. Additionally, a mucoid PA strain was used which is not the same that was 

used in our experiments which might result in differences in the immune 

response activated. Moreover, our BALBc/J were dosed with arginase inhibitors 

which might have contributed to the difference in the inflammatory response 

observed. Furthermore, the difference in susceptibility to the infection is also 

related to the differences in clearance due to altered macrophage activation and 

chemotaxis between C57BL/6 mice and BALBc/J mice. According to Watanbe et 

al., in vitro infection of naïve macrophages from both strains of mice with live 

bacteria shows a significant impairment of bactericidal functions of BALB/c 

macrophages compared to macrophages from C57BL/6 mice [359]. This effect 

was explained by the impaired ability of BALBc/J macrophages to upregulate 

lysosomal enzyme and NO essential for bacterial killing. Authors show that in a 

murine model of septic peritonitis, BALBc/J mice fail to clear the infection despite 

the excessive recruitment of leukocytes. Similar to our observations, BALBc/J 

mice recruited tremendous numbers of macrophages into the peritoneal cavity 

with significantly higher levels of pro-inflammatory cytokines and mediators 
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compared to C57BL/6 mice thereby resulting in exaggerated systemic 

inflammation. Watanbe and colleagues suggest significant differences in innate 

immune responses between C57BL/6 mice and BALB/c mice depicted by 

increased cellularity but decreased functionality of immune cells recruited in 

response to infections in BALB/c mice compared to the C57BL/6 mice [359]. 

Therefore, it is important to distinguish the effects of the pharmacological 

arginase inhibitors on leukocyte activation and migration versus the inherent 

immune differences in the BALBc/J mice. 

 

Additionally, we evaluated the effects of the pharmacologic arginase inhibition 

upon the T cell responses. As expected, mice treated with BEC or L-norvaline 

had a significantly higher number of T cells in their lymph nodes similar to the 

effects with myeloid arginase deletion. This can be explained by the increased 

arginine pool and the lack of arginase-dependent suppression of T cell activation 

as we explained in the Arg1Δm murine experiments. However, in contrast to the 

observations with Arg1Δm mice, there were lower numbers of T cells and 

activated T cells in the alveolar spaces of mice treated with global arginase 

inhibitors (differences not statistically significant). Yet, there was a greater 

infiltration and activation of T cells in the interstitial spaces of mice treated with 

BEC or L-norvaline. Therefore, global arginase inhibition increases T cell 

numbers in the lymph nodes and in the lung interstitium but not in the alveolar 

spaces. This may be explained by the potentially different spatial effects of the 

arginase inhibitors and the potential effects of arginase inhibitors on chemotaxis 

and migration of T cells between the lymph nodes and the different lung 

compartments. It is likely that BEC and L-norvaline modulate effectors involved in 

T cell migration into the alveolar spaces. Future studies will evaluate the effects 

of arginase inhibitors on T cell migration and chemotaxis. This includes looking 

for transmigration effectors and proteins in addition to performing T cell migration 

assays using transwells and Boyden chambers. Additionally, in vivo T cell 

migration assays to evaluate the effects of arginase inhibition of T cell 

recruitment to the lungs involve adoptively transferring T cells into mice as well 
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as tracking radiolabeled T cells according to the methods proposed by 

Campanella and colleagues [360-362]. 

 

Lastly, we evaluated the specific phenotypes of T cells affected by 

pharmacologic arginase inhibition. Similar to the results from Arg1Δm mice, there 

was a significantly higher number of Th17 lymphocytes in the lymph nodes of 

mice treated with BEC or L-norvaline. Conversely, arginase inhibitors did not 

significantly increase the numbers of Th17 lymphocytes in the lungs like in the 

Arg1Δm mice. There were comparable numbers of Th17 lymphocytes in the 

alveolar spaces and lower numbers in the interstitial spaces compared to the 

water treated mice. Similarly, there were higher numbers of Th1 lymphocytes in 

the lymph nodes of mice treated with arginase inhibitors while they were 

considerably lower in the interstitial and alveolar spaces compared to the water 

treated mice. These observations are also different than the effects of arginase 

deletion from myeloid cells in the Arg1Δm mice which promotes Th1 responses 

both in the lungs and the lymph nodes. Additionally, global arginase inhibition 

suppressed the development of regulatory T cells. There were significantly lower 

numbers of Treg lymphocytes in the lymph nodes and interstitial spaces of mice 

treated with arginase inhibitors versus mice treated with water. In the alveolar 

spaces, arginase inhibitors reduced the numbers of Treg lymphocytes; however, 

the differences were not statistically significant. Therefore, results from 

experiments with global arginase inhibition validate our previous hypotheses that 

global arginase inhibition has different effects on the lung compartments versus 

the lymph nodes and that T cell migration and chemotaxis is potentially altered in 

mice treated with BEC or L-norvaline. It is likely that arginase inhibitors prevent 

migration of activated T helper cells (including Th1, Th17, and Tregs) from the 

lymph nodes to the lungs of infected mice. This will be confirmed using the 

chemotaxis assay proposed earlier. However, it is also possible that the arginase 

inhibitors affect local T cell activation in the lungs via effects on leukocyte 

activation and expression of co-stimulatory molecules. It has been reported that 

PDL1 and PDL2 promote peripheral tolerance in viral infections and in cancer. In 
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a murine model of Trypanosoma cruzi infection, peritoneal macrophages 

suppressed proliferation of T cells at the site of infection through a PD-1/PDL1 

dependent mechanism [363]. This effect was mediated by modulation of the 

iNOS/arginase metabolic pathways and it results in suppression of peripheral T 

cell proliferation and cytokine release. Therefore, future experiments will evaluate 

the effects of arginase inhibitors on macrophage expression of T cell inhibitory 

receptors and whether effects of arginase inhibitor are mediated through effects 

on transmigration versus monocyte-mediated peripheral tolerance.  

 

In summary, results from Arg1Δm mice experiments confirm the importance of 

myeloid arginase in the regulation of the inflammatory response, while 

experiments with global arginase inhibition suggest different and broad effects of 

other cellular sources of arginase. Besides neutrophils and macrophages, many 

other immune cells express arginase which can potentially influence our 

observations. Monticelli et al. show that arginase deletion from type 2 innate 

lymphoid cells can suppress Th2 mediated inflammation and reduce cytokine 

release. They suggest that arginase deletion from these cells changed multiple 

metabolic pathways with potential effects on several inflammatory and immune 

responses [364]. Additionally, Bando et al. show that arginase expression in 

ILC2s is governed by distinct signaling pathways as compared to the M2 

macrophages and that ILC2s express arginase at rest and during inflammation. 

Bando’s group show that altered arginase expression affects the development 

and expansion of the ILC2 population besides affecting arginase expression in 

M2 macrophages [365]. Moreover, CD4+ and CD8+ T cells as well as B cells can 

express arginase. In our experiments with BEC and L-norvaline we inhibited 

arginase from all of the above-listed sources and therefore it is difficult to tease 

apart the specific effects of different arginase sources on the immune response 

to PA pneumonia.  

 

Our results confirm that global arginase inhibition has a different effect on 

different elements of the immune response. Our results suggest that arginase 
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inhibition affects compartmentalization of both myeloid and lymphoid cells 

recruited in response to the infection. While arginase inhibition did not result in 

increased weight loss, mice which received BEC and L-norvaline did have 

multiple signs of increased morbidity, reduced motility, and increased 

inflammation. However, comparing these results to the experiments with Arg1Δm 

mice confirms our hypothesis that myeloid arginase is essential in controlling the 

inflammatory response. Therefore, we provide strong evidence that myeloid 

arginase specifically, and not other arginase sources, is important for controlling 

inflammation in PA pneumonia. 

 

Importantly, results were comparable among the two arginase inhibitors used, 

BEC and L-norvaline. Both inhibitors are arginine analogs and they compete with 

the substrate and irreversibly inhibit arginase enzymatic activity. We used 2 

inhibitors to confirm that our observations are due to arginase inhibition rather 

than other pleiotropic effects of the inhibitor. However, some reports suggest that 

L-norvaline and not BEC might have some anti-inflammatory effects independent 

of arginase inhibition [366]. Ming et al. suggest that L-norvaline can have anti-

inflammatory effects by suppressing the S6K1 pathway thereby reducing TNF-α 

secretion. However, their results are from in vivo experiments with endothelial 

cells which might be valid but insignificant in our murine model of PA pneumonia. 

Yet, it is possible that some of our results with BEC and L-norvaline might be 

driven by different alternative mechanisms that either of the inhibitors can exert. 

Moreover, it is possible that the inhibitors act differently on different immune cells 

and in different anatomical compartments and that this difference is responsible 

for our observations in mice treated with either BEC or L-norvaline. Additionally, 

although the doses of both arginase inhibitors used in our study were adapted 

from literature and established to result in comparable enzymatic inhibition, it is 

possible that the potency of these drugs in our mouse model is different and that 

this drives some of our results.  
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The effects of arginase inhibitors on the migration and chemotaxis of myeloid 

cells and T lymphocytes to the lungs might be attributed to the effects on NO 

production. Both BEC and L-norvaline are shown to affect NO production by NOS 

and to modulate the endothelium junctions and affect dilation and relaxation of 

the blood vessels [367]. While arginase inhibition can affect the expression of 

surface markers on immune cells, the changes in the endothelium and blood 

vessels with our inhibitors can potentially be responsible for reduced 

transmigration and trafficking of immune cells across the vessel walls. 

 

Some of the other limitations in our study include the “leaky” LysM cre system 

and the difference in murine strains used in both experiments. The deletion of 

arginase in our murine model is controlled by lysozyme expression. Lysozyme M 

is expressed in neutrophils and macrophages. So, it is hard to delineate the 

difference between neutrophil versus macrophage arginase function as both are 

deleted. Additionally, new reports show different levels of lysozyme expression 

between tissue and infiltrating macrophages thus accounting for different levels 

of arginase deletion from these two populations system [368]. Suggested models 

which may be associated with even deletion of arginase from different 

macrophage population would be the Arg1flox/floxTie2cre system [358]. 

Arg1flox/floxTie2cre mice delete Arg1 in all macrophage populations and they 

are available on both the BALB/c and C57BL/6 genetic backgrounds making it 

possible to examine the influence of Arg1 activity on two distinct backgrounds. 

Tie2cre system is associated with >99% deletion of Arg1 from all macrophage 

populations as the Tie2 endothelial-specific receptor tyrosine kinase promoter 

expression allows the deletion of floxed sequences in endothelial and myeloid 

cells during embryogenesis and adulthood [143, 369]. 

 

Future experiments will define the contribution of arginine to the modulation of T 

cell phenotype. This will be approached by evaluating whether L-citrulline, the 

arginine precursor, can rescue the T cell responses in PA pneumonia. The 

hypothesis is that L-citrulline metabolism in T cells increases CD4+ cell 
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recruitment, proliferation, and Th17 effector function following PA. This is based 

on preliminary data suggesting that L-citrulline rescues T cell proliferation and 

differentiation in arginine-depleted environments. Furthermore, we will test if T 

cells require L-citrulline to L-arginine synthesis to regulate neutrophil recruitment 

and defense to PA. This will be achieved using AslΔTcell mice, a novel mouse 

model in which T cells cannot synthesize L-arginine from L-citrulline. 

 

Moreover, the arginase conditional knock-out mice are on a C57BL/6 background 

which is known to express a lower level of arginase as compared to BALBc/J 

mice as discussed earlier. Therefore, we will examine the effects of conditional 

arginase deletion from myeloid cells in BALBc/J mice. Especially that it is hard to 

make any comparison between the two experiments with obvious differences 

among the two strains of mice. Moreover, global arginase inhibition with 

pharmacologic inhibitors does not provide a clear explanation of the role of 

arginase from non-myeloid cells. Therefore, utilizing different mouse models with 

conditional arginase deletion from other immune cells is essential to answer the 

question of whether myeloid arginase functions differently as compared to other 

cellular sources. Additionally, our models did not specifically distinguish the role 

of different arginase isoforms. Future work aims at examining the 

immunomodulatory effects of different arginase isoforms. Studies to differentiate 

the functions of arginase-1 versus arginase-2 are needed. 

 

Moreover, correlating our results with their applicability in humans is essential. In 

fact, the role of arginase in humans is complex as there is a large discrepancy 

between the cellular sources of arginase in humans. Studies in cystic fibrosis 

suggest that neutrophils may be the predominant source of arginase in these 

patients. Because arginase is consistently elevated during disease exacerbation 

and in end-stage deteriorated and severe disease states, arginase has been 

correlated with pathology [109, 135, 164, 370]. Additionally, many reports 

suggest distinct effects of arginase-1 versus arginase-2 in humans. For instance, 

several studies show that arginase-1 induces autophagy while some reports 
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show that arginase-2 suppresses autophagy [248, 371]. Moreover, some data in 

systemic lupus erythematosus and in sickle cell anemia suggest that arginase 

promotes Th17 responses and neutrophil influx contributing to 

immunopathogenesis [372-375]. However, it is likely that arginase upregulation 

follows the activation of exaggerated inflammation and that arginase induction is 

a regulatory mechanism to downregulate the activated inflammation. Therefore, 

extending our studies to validate the immunomodulatory mechanisms of arginase 

in humans is crucial.    

 

Our results show for the first time that myeloid arginase has a role in regulation of 

the immune response to chronic PA pneumonia. We show that arginase 

production by macrophages and neutrophils is essential to protect against 

excessive morbidity and inflammation. To our knowledge, we are the first to show 

that deletion of arginase from myeloid cells is associated with an acute influx of 

neutrophils and pro-inflammatory macrophages which are likely to be driven by 

the altered T cell response. Our results emphasize the effects of myeloid 

arginase on T cell polarization and skewing the T helper response towards a Th1 

and Th17 predominant response in mice infected with PA pneumonia. 

Additionally, we show that global arginase inhibition has different effects on 

immune cell recruitment, activation, and chemotaxis. We show that 

pharmacologic arginase inhibition might not be the best way to control 

inflammation in chronic infections with PA pneumonia. Results from experiments 

with global arginase inhibition suggest close consideration of the effects of 

different cellular sources on the immune response and how this could potentially 

influence treatment of excessive inflammation and regulation of altered immune 

responses.  

 

We conclude that myeloid arginase is essential for control of inflammatory 

responses in PA pneumonia. 
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Figure 3.1a 
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Figure 3.1b 
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Figure 3.1c 
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Figure 3.1. Arginase conditional knock-out mice lose more weight post 

intratracheal infection with PA compared to their littermate controls.  

Mice were infected with PA-laden agarose beads through intratracheal instillation 

of 2 × 10^6 CFU/ mL as described. Murine morbidity post infection was evaluated 

in terms of weight loss measured at least once daily before and after infection. 

(a) The graph represents percentage weight loss normalized to the baseline body 

weight prior to infection. (b) The graph represents bacterial clearance from the 

lungs. (c) Kaplan-Meier curve represents the survival of mice post-infection. Data 

represents mean ± SD.  Data are representative of 3 independent experiments. 

Statistical significance determined by two-way ANOVA (p-value < 0.05 (*); p-

value < 0.0005 (***); p-value < 0.0001 (****)). Graphs plotted using GraphPad 

Prism 7.  
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Figure 3.2a 
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Figure 3.2b 

 

  



 135 

Figure 3.2c 
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Figure 3.2d  
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Figure 3.2e  
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Figure 3.2f 
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Figure 3.2g 
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Figure 3.2. Arginase conditional knock-out mice respond with a profound 

recruitment of innate immune cells.  

Lungs from infected mice were lavaged with PBS to collect cells from the alveolar 

spaces and lung tissues were then harvested to collect cells from the lung 

interstitium. Lavage and lung tissue samples were collected from at least 4 mice 

per timepoint per group. Harvested samples were processed into single cell 

suspensions and stained for flow cytometry analysis as described. At least 

50,000 events per sample were analyzed using the FlowJo software to quantify 

different immune cell populations. Data represent total count of each cell 

population as a fraction of the total number of live cells analyzed. (a) Gating 

scheme representing the FlowJo analysis performed to identify different immune 

cell populations activated in response to the infection. (b) Neutrophil recruitment 

into the alveolar and lung interstitial spaces (c) Total number of tissue and 

infiltrating macrophages. (d, e, f) Total counts of alveolar and infiltrating 

macrophages producing TNF-α, IL-10, or expressing Mannose receptor (MR). (g) 

Bar graphs represent ratios of TNF-α to IL-10 expressing monocytes in the 

alveolar spaces (A); ratios of neutrophils to macrophages in the alveolar spaces 

(B); ratios of IL-17 to IL-10 expressing lymphocytes in the alveolar spaces (C); 

and ratios of IFNγ to IL-10 expressing lymphocytes in the alveolar spaces (D). 

Data represents mean ± SD.  Data are representative of 3 independent 

experiments. Statistical significance determined by two-way ANOVA (p-value < 

0.05 (*); p-value < 0.0005 (***); p-value < 0.0001 (****)). Graphs plotted using 

GraphPad Prism 7. 
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Figure 3.3a 
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Figure 3.3b 

   



 143 

Figure 3.3c  
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Figure 3.3d 
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Figure 3.3. Greater T cell recruitment and activation in response to PA 

pneumonia in arginase conditional knock-out mice.  

Tracheobronchial lymph nodes draining the site of infection were harvested and 

processed into single cell suspensions by passing through mesh strainers. Lung 

lavage and lung tissue samples were collected and processed as described. 

Single cell suspensions were stained for flow cytometry analysis as described. At 

least 50,000 events per sample were analyzed using the FlowJo software to 

quantify different immune cell populations. Data represent total count of each cell 

population as a fraction of the total number of live cells analyzed. (a) Gating 

scheme representing the FlowJo analysis performed to identify different immune 

cell populations activated in response to the infection (b, c, d) Total number of 

CD4+ T cells recruited and activated in the lymph nodes, alveolar spaces, and 

lung interstitium of infected mice. Data represents mean ± SD.  Data are 

representative of 3 independent experiments. Statistical significance determined 

by two-way ANOVA (p-value < 0.05 (*); p-value < 0.0005 (***); p-value < 0.0001 

(****)). Graphs plotted using GraphPad Prism 7. 
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Figure 3.4a 
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Figure 3.4b   

  



 148 

Figure 3.4c 
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Figure 3.4. Arginase conditional knock-out mice respond to PA pneumonia with 

an excessive recruitment of Th1 and Th17 pro-inflammatory lymphocytes.  

Tracheobronchial lymph nodes draining the site of infection and lung tissue 

samples were collected and processed as described. Single cell suspensions 

were stained for flow cytometry analysis as described. At least 50,000 events per 

sample were analyzed using the FlowJo software to quantify different immune 

cell populations. Data represent total count of each cell population as a fraction 

of the total number of live cells analyzed. (a) Gating scheme representing the 

FlowJo analysis performed to identify different lymphocyte populations activated 

in response to the infection (b, c) Total number of Th1 and Th17 lymphocytes in 

the lymph nodes and lung interstitium of infected mice. Data represents mean ± 

SD.  Data are representative of 3 independent experiments. Statistical 

significance determined by two-way ANOVA (p-value < 0.05 (*); p-value < 0.0005 

(***); p-value < 0.0001 (****)). Graphs plotted using GraphPad Prism 7. 
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Figure 3.5a 
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Figure 3.5b 
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Figure 3.5c 
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Figure 3.5d 
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Figure 3.5. Pharmacological arginase inhibition results in comparable acute 

morbidity with faster recovery.  

BALB/cJ mice were infected intratracheally with PA-laden agarose beads as 

described. Murine morbidity post infection was evaluated in terms of weight loss 

measured at least once daily before and after infection. (a) Graph represents 

percentage weight loss normalized to the baseline body weight prior to infection 

at different infective inoculums (A: 0 CFU/mL; B: 5 × 10^6 CFU/mL; C: 1 × 10^7 

CFU/mL; D: of 5 × 10^7 CFU/mL). (b) The graph represents percentage weight 

loss normalized to the baseline body weight prior to infection at the chosen 

optimal infective inoculum of 2 × 10^7 CFU/mL. (c) Kaplan-Meier curve 

representing mortality post-infection in mice infected with 2 × 10^7 CFU/mL. (d) 

The graph represents bacterial clearance after infection with 2 × 10^7 CFU/mL. 

Data represents mean ± SD.  Data are representative of 3 independent 

experiments. Statistical significance determined by two-way ANOVA ((x) BEC 

treated group significantly different than water treated group; (#) L-norvaline 

treated group significantly different than water treated group; p-value < 0.05). 

Graphs plotted using GraphPad Prism 7 (Note: for some points, the error bars 

are shorter than the height of the symbol. In these cases, Prism simply does not 

draw the error bars).  
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Figure 3.6a  
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Figure 3.6b 
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Figure 3.6c 
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Figure 3.6d 
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Figure 3.6e 

  



 160 

Figure 3.6f 
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Figure 3.6g 
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Figure 3.6h 
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Figure 3.6i 
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Figure 3.6i (continued) 
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Figure 3.6. BALB/cJ mice with global arginase inhibition respond to PA 

pneumonia with comparable but slightly attenuated recruitment of innate immune 

cells.  

Lungs from infected mice were lavaged with PBS to collect cells from the alveolar 

spaces and lung tissues were then harvested to collect cells from the lung 

interstitium. Lavage and lung tissue samples were collected from at least 4 mice 

per timepoint per group. Harvested samples were processed into single cell 

suspensions and stained for flow cytometry analysis as described. At least 

50,000 events per sample were analyzed using the FlowJo software to quantify 

different immune cell populations. Data represent total count of each cell 

population as a fraction of the total number of live cells analyzed. (a) Neutrophil 

recruitment into the alveolar and lung interstitial spaces (b) Total number of 

tissue and infiltrating macrophages in the lungs of infected mice. (c, d, e, f) Total 

number of alveolar and infiltrating macrophages producing TNF-α, IL-10, 

expressing MR, or expressing iNOS enzyme respectively. (g) The total number of 

M1 macrophages expressing CCR7 receptor and positive for iNOS and TNF-α. 

(h) Bar graphs represent ratios of CCR7 to MR expressing monocytes in A; ratio 

of TNF-α to IL-10 expressing monocytes in B; ratio of IL-17 to IL-10 expressing 

lymphocytes in C; and the ratio of IFNγ to TGFβ expressing lymphocytes in D. (i) 

The total number of type 2 innate immune cells recruited into the alveolar and 

lung interstitial spaces.  Data represents mean ± SD.  Data are representative of 

3 independent experiments. Statistical significance determined by two-way 

ANOVA ((x) BEC treated group significantly different than water treated group; 

(#) L-norvaline treated group significantly different than water treated group; (+) 

BEC treated group significantly different than L-norvaline treated group; p-value < 

0.05). Graphs plotted using GraphPad Prism 7 (Note: for some points, the error 

bars are shorter than the height of the symbol. In these cases, Prism simply does 

not draw the error bars). 
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Figure 3.7a  
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Figure 3.7b  
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Figure 3.7c  
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Figure 3.7. Global arginase inhibition results in greater T cell recruitment and 

activation in the lymph nodes but not the lungs of infected mice.  

Tracheobronchial lymph nodes draining the site of infection were harvested and 

processed into single cell suspensions by passing through mesh strainers. Lung 

lavage and lung tissue samples were collected and processed as described. 

Single cell suspensions were stained for flow cytometry analysis as described. At 

least 50,000 events per sample were analyzed using the FlowJo software to 

quantify different immune cell populations. Data represent total count of each cell 

population as a fraction of the total number of live cells analyzed. (a, b, c) The 

total number of CD4+ T cells recruited and activated in the lymph nodes, alveolar 

spaces, and lung interstitium of infected mice. Data represents mean ± SD.  Data 

are representative of 3 independent experiments. Statistical significance 

determined by two-way ANOVA ((x) BEC treated group significantly different than 

water treated group; (#) L-norvaline treated group significantly different than 

water treated group; (+) BEC treated group significantly different than L-norvaline 

treated group; p-value < 0.05). Graphs plotted using GraphPad Prism 7 (Note: for 

some points, the error bars are shorter than the height of the symbol. In these 

cases, Prism simply does not draw the error bars). 
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Figure 3.8a 
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Figure 3.8b 
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Figure 3.8c 
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Figure 3.8. Global arginase inhibition is associated with increased activation of 

Th1, Th17 and regulatory T lymphocytes in the lymph nodes of infected mice with 

potentially reduced migration into the lungs.  

Tracheobronchial lymph nodes draining the site of infection, lung lavage, and 

lung tissue samples were collected and processed as described. Single cell 

suspensions were stained for flow cytometry analysis as described. At least 

50,000 events per sample were analyzed using the FlowJo software to quantify 

different immune cell populations. Data represent total count of each cell 

population as a fraction of the total number of live cells analyzed. (a, b, c) Total 

number of Th1, Th17, and Treg lymphocytes in the lymph nodes, alveolar 

spaces, and lung interstitium of infected mice. Data represents mean ± SD.  Data 

are representative of 3 independent experiments. Statistical significance 

determined by two-way ANOVA ((x) BEC treated group significantly different than 

water treated group; (#) L-norvaline treated group significantly different than 

water treated group; (+) BEC treated group significantly different than L-norvaline 

treated group; p-value < 0.05). Graphs plotted using GraphPad Prism 7 (Note: for 

some points, the error bars are shorter than the height of the symbol. In these 

cases, Prism simply does not draw the error bars). 
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Chapter 4: Azithromycin polarizes macrophages to an M2 phenotype via 
inhibition of STAT1 through cross-talk from NF-κB signaling mediators 
 

I. Introduction 

 

While the function of alternatively activated macrophages (M2-polarized) has 

been primarily evaluated in host responses to disease processes that elicit Th2-

type immune mechanisms [143, 376-378], little is known of their function in 

regulating inflammation in response to extracellular Gram-negative bacterial 

infections. While primarily functioning to orchestrate remodeling and repair, M2-

polarized macrophages produce effector molecules such as arginase-1 and 

TGFβ that control lung homeostasis, inflammation, and subsequent pulmonary 

damage associated with pneumonia [143, 379]. We have demonstrated that the 

immunomodulatory antimicrobial azalide azithromycin can induce macrophage 

characteristics that are consistent with an M2 polarization, both in vitro and in a 

mouse model of Pseudomonas aeruginosa infection of the lungs [135, 310, 311]. 

The subsequent improvement observed in the mortality and severity of lung 

destruction in this infection model has direct bearing on chronic inflammatory 

lung conditions such as cystic fibrosis, where P. aeruginosa relapsing 

pneumonias contribute to the decline of pulmonary function over time [380, 381]. 

 

Macrophages are polarized to distinct functional phenotypes via signaling from 

two separate pathways. Classical, or M1 activation requires signaling through 

both the cytokine IFNγ and a pattern recognition receptor, which, in the case of 

responses to Gram-negative bacterial pathogens, is mainly toll-like receptor 4 

(TLR4). IFNγ-dependent signaling results in phosphorylation and dimerization of 

STAT-1, allowing for translocation to the nucleus of the cell. Similarly, IFNγ and 

LPS signal through interferon receptors and TLR4 respectively, inducing a series 

of phosphorylation steps which result in NF-κB activation and nuclear 

translocation. NF-κB is the prototypical pro-inflammatory transcription factor 

activated through TLR and inflammatory cytokine signaling. Stimulation through 

TLR, IL1R, or other TNF receptor family members results in a series of 
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phosphorylation reactions activating the canonical pathway kinase IκB kinase 

(IKK)β [382]. Activated IKKβ phosphorylates and releases the NF-κB inhibitory 

subunit, IκB-α, which is subsequently ubiquitinated and degraded. This frees the 

nuclear translocation signal on the NF-κB p65 subunits. After translocating to the 

nucleus, together with the activated subunit of STAT-1, phospho-p65 (RelA) 

induces the transcription of many inflammatory mediators and cytokines [383, 

384]. Nuclear fractions of RelA are representative of NF-κB activation. 

 

Alternative, or M2 polarization, occurs through the binding of either interleukin 

(IL)-4 or IL-13 to their respective receptors leading to the phosphorylation and 

dimerization of STAT-6. Upon activation, STAT-6 translocates to the nucleus of 

the cell and upregulates the expression of genes associated with anti-

inflammatory processes [158, 385-388]. Through our work characterizing the 

effects of azithromycin, we found that the drug is only able to polarize 

macrophages to an M2-like phenotype when they are stimulated with LPS [310]. 

This characteristic provides the basis for our hypothesis that the mechanism of 

the drug’s ability to polarize cells lies in its interference with these signaling 

cascades. Other groups have shown that azithromycin decreases the activation 

of NF-κB signaling and subsequent production of pro-inflammatory cytokines and 

other inflammatory effectors [389, 390]. While these effects may help to explain 

the beneficial effects of azithromycin in patients with CF, the mechanism by 

which azithromycin is able to polarize macrophages towards an M2-like 

phenotype is unknown. Because of work by others that demonstrates a cross-talk 

between the NF-κB and STAT-1 signaling cascades through IKKβ [391], we 

hypothesized that azithromycin polarizes macrophages to an M2 phenotype via 

inhibition of STAT-1 through cross-talk from NF-κB signaling mediators.  

 

In the present study, we demonstrate that azithromycin inhibits the nuclear 

translocation of p65. Concurrently, total IKKβ levels were increased, and through 

this mediator STAT-1 phosphorylation was directly inhibited. In cultured 

macrophages, inhibition of IKKβ resulted in a reversal of M2-macrophage 
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polarization. These results provide insights into the immunomodulatory 

mechanism of azithromycin and support studies by other groups that 

demonstrate a cross-talk between the 2 pathways.  

 

II. Results 

 

Azithromycin prevents p65 nuclear translocation while increasing IKKβ levels. 

We first assessed the effects of azithromycin on the activation of transduction 

proteins involved in the NF-κB signaling cascade. Cells were incubated overnight 

with IFNγ alone or with azithromycin at concentrations ranging from 5 to 100 μM. 

Cells were then stimulated with LPS for durations ranging from 0 to 60 minutes. 

Polarized macrophages were fractionated into nuclear and cytoplasmic fractions 

to assess the effects of azithromycin on the translocation of p65 subunits to the 

nucleus. (Figure 4.1). Importantly, overnight polarization with IFNγ alone prior to 

LPS stimulation (Figure 4.1a, time 0) induced p65 nuclear translocation to a 

lower extent with a peak in nuclear p65 fractions at 30 minutes post LPS 

stimulation (Figure 4.1a, time 30). However, azithromycin treatment in the 

presence of IFNγ completely and significantly prevented p65 translocation to the 

nucleus at all timepoints. Treatment with azithromycin at all concentrations tested 

was associated with accumulation of p65 in the cytoplasm, shown for 

azithromycin concentrations of 5 μM and 30 μM (Figure 4.1a). This was coupled 

with decreased p65 fractions in the nucleus of cells treated with azithromycin 

compared to cells treated with IFNγ only, with the ratios of p65 nuclear to 

cytosolic fractions shown over time in Figure 4.1b.  

 

To confirm the observations above, immunostaining was used to visualize the 

localization of p65 subunits relative to the nucleus at 30 minutes post LPS 

stimulation (Figure 4.2). NF-κB p65 subunits were stained with a FITC-

conjugated antibody (green). The p65 signal was overlayed with the DAPI 

stained nuclei (blue) to determine the localization of the subunits in the polarized 

macrophages (Figure 4.2a). Similar to the observations in Figure 4.1, a strong 
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nuclear signal was observed in IFNγ polarized macrophages while azithromycin 

treatment was associated with a strong cytoplasmic signal. The nuclear 

translocation scoring (Figure 4.2b) shows a significant decrease in p65 nuclear 

translocation with azithromycin treatment at all the concentrations tested 

compared to IFNγ polarized macrophages.  

 

The impact of azithromycin upon the expression of NF-κB associated proteins 

was then assessed. The amounts of IκB-α, IKKβ, and pIKKβ were measured 

over time after stimulation with LPS as described. For cells incubated with IFNγ, 

LPS caused the expected decrease in IκB-α within 2 minutes, with a steady 

reemergence over time (Figure 4.3). This is due to activation of this pathway, 

because when IκB-α is phosphorylated it is rapidly ubiquitinated and degraded. 

The presence of azithromycin at concentrations as low as 5 μM prevented this 

decrease in IκB-α, as graphically represented in Figure 4.3b. The amount of IKKβ 

present in cell lysates was increased at all timepoints even before the addition of 

LPS in cells polarized with azithromycin and IFNγ (Figure 4.3a). The 

phosphorylated form of IKKβ was also increased by azithromycin (Figure 4.3a).  

 

This increase in IKKβ is likely a result of the inhibition of p65 translocation to the 

nucleus, as transcription of the IKKβ gene (Ikbkb) is normally inhibited when p65 

is in the nucleus as a feedback mechanism [89, 91, 382, 392-394]. To test this, 

we compared messenger RNA expression for Ikbkb via RT-PCR and found that 

azithromycin treatment caused an increase as compared to the control condition 

(Figure 4.3c). Significant differences were observed only at higher azithromycin 

concentrations at 0 and 5 minutes post LPS stimulation while all azithromycin 

concentrations were associated with significantly higher levels of Ikbkb 

expression at 30 minutes after LPS stimulation. 

 

Inhibition of IKKβ activation prevents azithromycin from polarizing macrophages 

to the M2 phenotype. Because azithromycin increased the amount of IKKβ 

present, we sought to determine whether azithromycin exerts its effect on 
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macrophage polarization via this mechanism. Previous reports have shown that 

excessive IKKβ activation prevents the activation of pro-inflammatory 

characteristics of macrophages [391]. We treated macrophages with cytokines 

and azithromycin to polarize them into either M1 or M2 cells, and in addition 

added IKK-16, an inhibitor of IKKβ (Figure 4.4). This inhibitor displays a high 

affinity for IKKβ, with an IC50 of 40 nM. At higher concentrations, it can also 

inhibit the activation of the entire IKK complex [395]. Arginase-1 (Arg1) is an 

important effector of M2 macrophages and it is a marker of M2 macrophage 

polarization induced in response to Th2 cytokines [396]. Azithromycin increased 

Arg1 gene expression in cells incubated with IFNγ and exposed to LPS (Figure 

4.4a). The addition of the IKKβ inhibitor significantly negated the effect of 

azithromycin on Arg1 gene expression. Interestingly, the decrease in Arg1 gene 

expression was not statistically significant when IKK-16 was added to wells 

treated with IL4 and IL13 (the M2 control condition) (p=0.115). These data 

suggest that azithromycin’s ability to induce expression of Arg1, an important M2 

effector, is dependent on its ability to activate IKKβ. 

 

We next assessed the effect of IKK-16 on arginase protein activity (Figure 4.4b). 

In this series of experiments cells were treated with 100 nM of IKK-16, a 

concentration chosen due to its maximal inhibition. Once again azithromycin 

increased the amount of arginase activity as previously published, but not to the 

extent of the M2 control condition of IL4 and IL13 treatment. The inhibitor had no 

effect on arginase activity in cells treated with IL4 and IL13 plus LPS, but for the 

cells incubated with azithromycin, treatment with IKK-16 decreased arginase 

activity to similar levels as cells that were not exposed to the drug. When cells 

were treated with increasing concentrations of IKK-16, the inhibition of 

azithromycin-induced arginase activity was consistent over a wide range of 

concentrations, with statistically significant decreases from 12.5 to 200 nM 

(Figure 4.4c). The inhibition of IKKβ had a little effect however on IL4 and IL13-

dependent arginase production over the broad range of concentrations. 
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Inhibition of STAT-1 phosphorylation by azithromycin is dependent upon IKKβ. 

We then assessed the effect of azithromycin on the phosphorylation of STAT-1. 

Phosphorylated STAT-1 represents the activated form. It dimerizes and 

translocates to the nucleus of the cell where it initiates the transcription of several 

cytokines and inflammatory genes, most of which are associated with M1 

macrophage activation [383, 384]. J774 macrophages were polarized under 

conditions to drive them to an M1 (IFNγ) or an M2 (IL4/13) phenotype. Cells were 

also polarized using different azithromycin concentrations (5, 30, 60, and 100 

µM) in the presence of IFNγ. After stimulation with LPS we assessed the levels of 

phospho-STAT-1 and STAT-1 (Figure 4.5a). As shown in Figure 4.5b, IFNγ 

activated STAT-1 leading to an increase in the phosphorylated form whereas IL4 

and IL13 blunted this increase in phosphorylation and resulted in suppressed 

levels of pSTAT-1 as expected. Azithromycin treatment also blunted IFNγ-

dependent STAT-1 phosphorylation decreasing pSTAT-1 levels in a 

concentration-dependent manner. These results support our previous 

observation that azithromycin blunts NF-κB activation and subsequently shifts 

macrophage polarization away from the M1 phenotype. Importantly, inhibiting 

IKKβ via IKK-16 was associated with a reversal of azithromycin's effect on 

pSTAT-1 levels. The addition of IKK-16 to the azithromycin polarized 

macrophages prevented the suppression of pSTAT-1 levels and resulted in a 

restoration of STAT-1 phosphorylation. 

 

III. Discussion 

 

Macrophages constitute the first line of defense for pathogen infiltration into the 

lungs through their ability to initiate inflammation. This is accomplished in the 

case of Gram-negative pathogens primarily through the binding of TLR4 to 

bacterial LPS [397]. Together with IFNγ, this initiates NF-κB signal activation that 

leads to the transcription of inflammatory genes including cytokines and 

chemokines. The NF-κB signaling cascade works along with STAT-1 activation to 

polarize macrophages to a classically activated phenotype to govern this process 
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[383, 384]. Here we demonstrate that the immunomodulatory mechanism of 

azithromycin involves elements of both of these pathways, stemming from the 

inhibition of the translocation of p65 to the nucleus. This leads to an increase in 

IKKβ which then in turn blocks the phosphorylation of STAT-1, increasing the 

expression of M2 effectors. 

 

In the case of PA, influx of neutrophils into infected tissues is the primary 

mechanism to prevent the pathogen’s replication and spread. In chronic 

inflammatory lung conditions, responses to bacteria like PA induce exaggerated 

or prolonged neutrophilia leading to pulmonary damage and fibrosis caused by 

excessive neutrophil elastase concentrations, an imbalance in the protease-

antiprotease ratio, and a vicious cycle of excessive inflammation that leads to 

scarring [186, 312, 398-400]. While many groups have demonstrated that 

azithromycin reduces NF-κB activation [390, 401-404], we showed that 

azithromycin also polarizes macrophages to an M2-like phenotype, both in vitro 

and in vivo during PA infection [310, 311]. Subsequently, we demonstrated in a 

mouse model of PA infection that polarizing the macrophage response to one in 

which the M2 phenotype predominates early in the inflammatory process reduces 

neutrophil influx, decreases inflammation, and reduces fibrotic changes that 

correlate to improved morbidity and survival [311]. This includes decreased 

production of iNOS and an increased production of the M2 effectors, mannose 

receptor and arginase-1. Utilizing the anti-inflammatory effects of azithromycin, it 

appears that by polarizing the macrophage response early in the infection, lung 

damage is controlled, and importantly the clearance kinetics of the pathogen are 

not altered [311]. The efficacy of azithromycin in this setting is also reflected in 

clinical practice, as this agent is used as a chronic therapy for patients with cystic 

fibrosis. Quality of life is improved according to multiple clinical trials that utilized 

azithromycin chronically. Additionally, extended treatment with azithromycin 

slowed the pulmonary function decline in patients with CF who are colonized with 

PA [299-301]. We have observed in our mouse model that the clearance of PA is 

not altered, and likewise no changes in the incidence of bacterial infection have 
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been observed in these studies that place subjects on azithromycin long-term 

[299-301]. 

 

Future studies will investigate whether the modulation of macrophage phenotype 

with azithromycin via cross-inhibition of the NF-κB and STAT-1 signaling 

pathways is beneficial in patients with cystic fibrosis. Several groups have 

studied the impact of macrolides including azithromycin, clarithromycin, and 

erythromycin on ERK1/2 and p35 MAPK signaling cascades which result in 

decreased downstream NF-κB and AP-1 signaling. Azithromycin was shown in 

vivo and in vitro, both in human and murine cell culture models, to decrease NF-

κB activation, decrease its nuclear translocation, and decrease NF-κB and Sp1 

transcription factor binding to DNA [390, 402-405]. These effects are associated 

with a significant reduction in inflammatory cell infiltration into infected lungs, and 

a profound decrease in pro-inflammatory cytokine concentrations in the alveolar 

space. Groups studying the anti-inflammatory mechanisms of azithromycin show 

decreases in NF-κB binding to DNA along with suppressed induction of pro-

inflammatory genes and cytokine production in different murine and in vitro 

models of various inflammatory and infectious diseases [389, 390, 401-406]. We 

expanded these studies to address the specific effects on the upstream 

mediators of the NF-κB signaling cascade and their cross-talk with the other 

inflammatory signaling pathways. 

 

Previous studies demonstrate that the nuclear translocation of phospho-p65 is 

inhibited by azithromycin [403, 404]. Additionally, Vrancic et al. showed no 

overall impact of azithromycin on the phosphorylation of p65—this is also 

consistent with our findings when factoring in the increase in phospho-p65 in the 

cytoplasmic fraction, as this group did not fractionate the nuclear compartment 

[402]. They also demonstrated that azithromycin inhibits the phosphorylation of 

STAT-1. We extend these studies here in our model to prove a direct relationship 

between increased IKKβ protein concentrations and this effect on STAT-1 

through experimentally blocking IKKβ through competitive inhibition. 
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Evidence from the work by Fong and colleagues alludes to a potential link 

between the NF-κB and STAT-1 signaling pathways. This group demonstrated 

that the NF-κB signaling molecule IKKβ can inhibit STAT-1 signaling in 

macrophages in a model of group B streptococcus (GBS) infection [391]. While 

deletion of IKKβ in airway epithelial cells led to a decrease in inflammation, 

macrophage-specific deletion of IKKβ caused a resistance to GBS infection that 

was associated with increased expression of M1-associated inflammatory 

molecules including IL-12, iNOS, and MHCII [391]. Additionally, in macrophages 

infected with GBS and in macrophages incubated with IFNγ, the absence of IKKβ 

led to an increase in phosphorylation of STAT-1 [391]. These findings, along with 

our data, suggest that the increase in IKKβ expression in macrophages by 

azithromycin may be the mechanism through which polarization to the M2 

phenotype occurs. 

 

There are other examples of small molecules that inhibit the translocation of NF-

κB including aspirin, non-steroidal anti-inflammatory drugs, and 1,8-Cineol [407-

410]. The nuclear binding of p65 normally provides a feedback signal to shut 

down the production of IKKβ [91, 411-417]. Therefore, it is likely that the 

inhibition of p65 translocation is causing the increase in IKKβ production. 

Additionally, IKKβ degradation occurs through a mechanism of 

autophosphorylation. Because p65 concentrations are high in the cytoplasm, this 

autophosphorylation process is likely decreased, which turns the degradation 

pathway off [411, 416-423]. We have shown by PCR that message expression 

for Ikbkb is increased, therefore a reversal of the feedback loop is at least partly 

responsible. However, message expression is not increased until 30 minutes 

after LPS stimulation at lower azithromycin concentrations, whereas the IKKβ 

protein expression is increased earlier, even at time zero, suggesting other 

potential mechanisms. 
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Despite the evidence concerning macrophage polarization, the primary 

immunomodulatory mechanism of azithromycin remains to be discovered. 

Because increases in IKKβ expression and phosphorylation should lead to 

increased NF-κB activation, it is highly likely that the effect of azithromycin is 

below this step in the pathway, involving either IκB itself or other mechanisms 

that regulate nuclear translocation. Clearly this process is highly dependent upon 

the degradation of IκB [411, 413, 416, 424]. Our data shows that with 

azithromycin treatment, degradation of IκB-α is inhibited, leading to decreases in 

p65 nuclear translocation. IκB-α concentration is decreased upon stimulation with 

LPS for 30 minutes, and then rebounds to baseline concentrations (Figure 4.3), 

with p65 translocation peaking at the corresponding 30-minute timepoint (Figure 

4.1)—all of which is blocked by azithromycin. However, nuclear translocation of 

p65 also depends upon a number of other factors. Alteration of the nuclear 

location sequence of p65 can occur through a number of mechanisms, including 

changes in the dimerization or improper folding, which are both required. The 

function of importins and other nuclear shuttling machinery [425-427], and 

permeability characteristics of the nuclear membrane can be disrupted [428-433]. 

Additionally, acetylation of the activated subunit in the nucleus at multiple lysine 

residues is required for translocation and is governed by histone regulation and 

coactivators such as CREP-binding protein [434, 435, 436 1994, 437]. We are 

continuing to evaluate the impact of azithromycin on these mechanisms. 

 

In conclusion, the immunomodulation of macrophage function by azithromycin is 

a complex effect associated with the alteration of STAT1 signaling through the 

inhibition of NF-κB mediators, linked through cross-talk via IKKβ. Macrolides 

have been demonstrated to have an effect through the polarization of 

macrophages to a regulatory phenotype in several models of inflammation. 

Studies have been extended to investigations of spinal cord injury, stroke, and 

other cerebrovascular events. An improved understanding of the mechanisms 

associated with these agents could lead to promising therapeutic target discovery 

in these and other devastating disease processes. And, defining interactions 
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between signaling pathways will lead to a better understanding of cellular biology 

and provide the impetus for future drug discovery. 
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Figure 4.1a 
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Figure 4.1b 
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Figure 4.1. Azithromycin decreases NF-κB activation and prevents p65 nuclear 

translocation.  

J774 cells were plated at 2.5 x 10^5 cells per 1 ml of DMEM in 24 well plates. 

Cells were allowed to attach for 8 hours and then polarized overnight with INFγ 

(50U/ml) alone or with azithromycin (5, 10, 15, 30, 60, and 100 µM). Cells were 

then stimulated with LPS (10 nM) for 0, 2, 5, 10, 15, 30, and 60 minutes. (a) Cells 

were harvested by scrapping and NF-κB Assay Kit (FivePhoton Biochemicals, 

San Diego, CA) was used to collect nuclear and cytoplasmic fractions according 

to the manufacturer protocol. Western blots for p65 in nuclear and cytoplasmic 

fractions were performed. (b) Bar graph represents the ratio of nuclear to 

cytoplasmic fractions of p65 from (a). Data represents mean ± SD.  Data is 

representative of 3 independent experiments.  Statistical significance determined 

by two-way ANOVA with Sidak's multiple comparisons test (p-value < 0.05 (*); p-

value < 0.005 (**); p-value < 0.0005 (***)). Bar graphs plotted using GraphPad 

Prism 7. Western Blots quantified using ImageJ. 
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  Figure 4.2a  
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Figure 4.2b 
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Figure 4.2. NF-κB p65 subunit accumulates in the cytoplasm around the nuclear 

membrane in azithromycin treated macrophages.  

J774 murine macrophages were plated at 2.5 x 10^5 cells on round glass 

coverslips. Cells were allowed to attach to the glass and then polarized overnight 

with INFγ (50 U/mL) alone or with azithromycin (5, 10, 15, 30, 60, and 100 µM). 

Additionally, some azithromycin polarized macrophages were treated with IKK-

16. Cells were then stimulated with LPS (10 nM) for 0, 2, 5, 10, 15, 30, and 60 

minutes. (a) Immunostaining for p65 subunit was performed on the glass 

coverslips in a wet chamber. Images were taken using Zeiss fluorescent 

microscope at 100X oil objective. Images show NF-κB p65 subunits stained in 

green (FITC) overlayed with DAPI nuclear staining. (b) Bar graphs represent the 

nuclear vs cytoplasmic fractions of p65 quantified using the scoring system in 

Table 2.5. Data represents mean ± SD.  Data is representative of 3 independent 

experiments. Statistical significance determined by two-way ANOVA (p-value < 

0.05 (*); p-value < 0.0005 (***); p-value < 0.0001 (****)). Bar graphs plotted using 

GraphPad Prism 7. 
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Figure 4.3a  
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Figure 4.3b 
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Figure 4.3c  
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Figure 4.3d 
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Figure 4.3e 
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Figure 4.3. Azithromycin prevents IκB-α degradation while accumulating IKKβ.  

J774 cells were plated at 2.5 x 10^5 cells per 1 ml of DMEM in 24 well plates. 

Cells were allowed to attach for 8 hours and then polarized overnight with INFγ 

(50 U/mL) alone or with azithromycin (5, 10, 15, 30, 60, and 100 µM). Cells were 

then stimulated with LPS (10 nM) for 0, 2, 5, 10, 15, 30, and 60 minutes. Proteins 

and RNA were then collected and probed for mediators in the NF-κB signaling 

cascade using western blot and RT-PCR. (a) Western blots for IκB-α, IKKβ, and 

p-IKKβ. (b) Bar graphs represent the relative fold change in protein concentration 

over time in INFγ treated macrophages versus azithromycin and INFγ treated 

macrophages. (c) Bar graphs represent fold change in IKKβ gene expression 

calculated from the ΔΔCt values and normalized to GAPDH and compared to 

INFγ treated macrophages over time. Data represents mean ± SD.  Data is 

representative of 3 independent experiments. Statistical significance determined 

by two-way ANOVA with Sidak's multiple comparisons test (p-value < 0.05 (*); p-

value < 0.0005 (***); p-value < 0.0001 (****)). Bar graphs plotted using GraphPad 

Prism 7. Western Blots quantified using ImageJ.  
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Figure 4.4a 
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Figure 4.4b  
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Figure 4.4c 
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Figure 4.4. Azithromycin induced arginase gene expression and activity are 

reversed with IKKβ inhibition.   

J774 cells were stimulated overnight with IFNγ, IL4 and IL13, or with 

azithromycin (concentration 10 μM shown here) and IFNγ in the presence or 

absence of the IKKβ inhibitor, IKK-16.  Cells were then stimulated with LPS for 

24 hours. (a) Arginase-1 gene expression was analyzed by qRT-PCR. Bar 

graphs represent fold change in arginase-1 gene expression calculated from the 

ΔΔCt values normalized to GAPDH and compared to INFγ treated macrophages. 

(b) Arginase activity was determined using an enzymatic assay in lysates from 

polarized macrophages. Bar graph represents fold change in arginase activity 

calculated from the standard curve under different polarization conditions 

compared to INFγ treated macrophages. (c) Bar graph represents percentage 

change in arginase activity with increasing IKK-16 concentrations compared to 

no inhibitor treatment. Data represents mean ± SD.  Data is representative of 3 

independent experiments.  Statistical significance determined by two-way 

ANOVA (p-value of < 0.05 (*); p-value of < 0.0001 (****)). Bar graphs plotted 

using GraphPad Prism 7.  
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Figure 4.5a 
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 Figure 4.5b 
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Figure 4.5. Azithromycin prevents STAT-1 activation in an IKKβ dependent 

mechanism.  

J774 cells were plated at 2.5 x 10^5 cells per 1 ml of DMEM in 24 well plates. 

Cells were then polarized with IL4 and IL13 (10 nM each), or with INFγ (50 U/mL) 

alone, or with INFγ and azithromycin (5, 30, 60, and 100 µM) with/without IKK-16 

(100 nM). After overnight polarization cells were stimulated with LPS (10 nM) for 

15 minutes and proteins were harvested by cell lysis. (a) Western blots for the 

active form pSTAT-1 and the inactive STAT-1 subunits were performed. (b) Bar 

graph represents fold change in STAT-1 phosphorylation under different 

polarization conditions compared to IFNγ and LPS stimulated macrophages 

(normalized to actin and STAT-1 levels). Data represents mean ± SD.  Data is 

representative of 3 independent experiments.  Statistical significance determined 

by two-way ANOVA with Sidak's multiple comparisons test ((*) denotes 

significant difference compared to IFNγ+LPS; (#) denotes significant difference 

compared to the corresponding AZM concentration with no IKK16 treatment; p-

value < 0.05). Bar graphs plotted using GraphPad Prism 7. Western Blots 

quantified using ImageJ. 
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Figure 4.6 

Figure 4.6. The proposed interaction induced by azithromycin (AZM) is depicted. 

Azithromycin inhibits IFNγ-induced STAT-1 activation though cross-inhibition of 

the LPS induced NF-κB signaling mechanism. The nuclear translocation of p65 

otherwise required for induction of pro-inflammatory gene transcription is 

inhibited by azithromycin. This prevents the negative feedback which otherwise 

shuts down the inflammatory signal by decreasing IKKβ production through 

decreased Ikbkb gene expression. Simultaneously, the lack of p65 nuclear 

translocation results in sustained IκB-α levels. Accumulated IKKβ protein cross-
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inhibits the STAT-1 signaling pathway by decreasing STAT-1 phosphorylation 

thereby decreasing the associated pro-inflammatory gene transcription and 

increasing the expression of the M2-associated protein arginase-1. 
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Chapter 5: Dependence of azithromycin-induced M2-like macrophage phenotype 

on arginase-1 to alter inflammation 

 

I. Introduction 

 

Cystic fibrosis (CF) is a chronic inflammatory lung disease caused by genetic 

mutations which make the lung a favorable environment for chronic bacterial 

colonization. The dysfunctional mucociliary clearance, persistent lung injury, and 

accumulation of mucoid and endobronchial secretions promote repeated 

infections [312]. In fact, 90% of these patients die due to chronic lung infections 

with the most predominant pathogen being Pseudomonas aeruginosa (PA) [2, 6, 

18, 19]. Additionally, the immune system in these patients responds in an 

exaggerated manner to infections with a characteristic chronic dysregulated 

inflammatory response along with aberrant T cell immunity and a predominant 

recruitment of neutrophils and pro-inflammatory macrophages [312]. While it is 

known that a Th1 response is important for the clearance of PA and other 

extracellular Gram-negative pathogens, patients with CF have a dysregulated T 

cell response that emphasizes pro-inflammatory T cell phenotypes [438].  It is 

possible that this dysregulation could lead to the increased susceptibility to 

Gram-negative colonization and infection observed in this patient population. 

Thus, the continual exaggerated immune response contributes to the shortening 

of patient life expectancy by 30 years as a result of lung injury and damage, 

deteriorates lung function, and decreases the quality of life [2, 6, 18].  

 

Recently, there has been much interest in the use of azithromycin in patients with 

CF who are chronically infected with PA.  Three randomized, placebo-controlled 

trials have shown an improvement in lung function with 6-12 months of treatment 

[299-301].  To date, the mechanisms of action of azithromycin in patients with CF 

remain unknown and long-term studies to demonstrate clinical benefit are on-

going.  
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In vitro studies have demonstrated that macrolides reduce several virulence 

factors of PA infection including the disruption of biofilm formation and altering 

expression of structural proteins such as flagellin [2, 6, 17, 18, 312, 439-441]. 

From other in vitro data, the anti-inflammatory effects of azithromycin have been 

postulated to occur by inhibiting pro-inflammatory cytokine production; 

decreasing chemotaxis, oxidative burst and adhesion of neutrophils; and 

accelerating pro-apoptotic state of monocytes. Our group studied azithromycin 

immunomodulatory mechanism in vitro where azithromycin polarized 

macrophages into an alternative phenotype via a mechanism that is dependent 

on cross-inhibition of the NF-κB and STAT1 signaling pathways. This modulation 

was dependent on IKKβ, a signaling molecule in the NF-κB pathway, and 

resulted in subsequent suppression of inflammatory gene activation while 

promoting an anti-inflammatory phenotype (Chapter 4). 

 

Moreover, we have demonstrated that azithromycin-driven polarization of 

macrophages into an alternative phenotype controls several aspects of the 

immune response in mice infected with PA. Results demonstrate that 

alternatively activated macrophages shift the immune response into a monocyte 

predominant influx, decreasing the number of neutrophils that enter the lungs 

post-infection, and shifting the T cell response away from the Th1 phenotype 

[166, 310, 311]. Thus, our results are consistent with previous literature 

supporting the immunoregulatory role of azithromycin and support a macrophage 

reprogramming that could be responsible for a large portion of the beneficial 

effects observed when using the drug. 

 

Our published in vitro and in vivo data show that azithromycin significantly 

upregulates arginase expression and activity [166, 310, 311]. Arginase is an 

important effector of M2 macrophages normally induced in response to Th2 

cytokines (IL4, 10, and 13) [128-132, 135-138, 198, 331]. Its competing enzyme, 

iNOS, is induced in M1 macrophages in response to Th1 cytokines (e.g. IFNγ). 

Arginase metabolizes arginine into ornithine and urea while iNOS metabolizes 
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arginine into nitric oxide (NO) and citrulline [151, 152, 315, 316]. In addition to 

competing with iNOS for the same substrate and controlling its generation of NO, 

arginase is believed to be an immunomodulatory effector with important effects 

on T cell function and proliferation [151, 152, 154, 157, 315-318, 442]. Our group 

has shown a 10-fold increase in arginase activity in J774 murine macrophages 

polarized with IFNγ and azithromycin [166, 310, 311]. Azithromycin-induced 

arginase expression in vitro was associated with reduced M1 pro-inflammatory 

macrophage effectors (e.g. IL-6, IL-12, TNF-α, iNOS, and CCR7) along with 

increased M2 anti-inflammatory macrophage effectors (e.g. IL10, MR, and CD23) 

[166, 310, 311]. Additionally, we have shown that azithromycin treatment in mice 

infected with PA increases arginase expression which is associated with reduced 

morbidity and decreased airway damage. Therefore, we consistently observe 

increased arginase expression with azithromycin along with reduced 

inflammatory parameters and a shift in macrophage polarization into an 

alternative phenotype. 

 

Moreover, results show that arginase deletion from macrophages and neutrophils 

results in exaggerated inflammation (Chapter 3). Experiments using Arg1Δm mice 

verified that arginase deficiency is associated with greater morbidity in terms of 

more significant weight loss. Arg1Δm mice had greater neutrophil, macrophage, 

and lymphocyte infiltration with higher numbers of IL-10 and TNF-α producing 

macrophages compared to their littermate control mice. Moreover, Arg1Δm mice 

had higher numbers of CD4+ T-cells, activated T-cells, IFNγ and IL-17 producing 

CD4+ T-cells. These results validate that the production of arginase-1 by M2 

macrophages is essential to regulate the inflammatory response against PA 

pneumonia. However, whether the production of arginase by macrophages is 

essential for the immunomodulatory mechanism of azithromycin has not been 

investigated.  

 

Our group has previously studied the transcriptional profiles of inflammatory 

genes in patients with cystic fibrosis treated with azithromycin. Although 
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azithromycin treatment was not associated with an increase in M2 anti-

inflammatory genes, the group of patients treated with azithromycin did have 

significantly reduced pro-inflammatory macrophage gene expression [442]. Yet, 

these observations could not be correlated to clinical outcomes or to definitive 

mechanisms by which azithromycin is thought to exert its beneficial immune-

modulatory role. This was because of the small sample size and the fact that 

most of the subjects colonized with PA were on chronic azithromycin therapy 

making it difficult to distinguish the specific effects of azithromycin therapy on 

macrophages and inflammatory gene expression [442]. 

 

The study described herein evaluates the dependence of azithromycin anti-

inflammatory mechanisms on arginase production by alternative macrophages to 

alter inflammation. We investigated whether the beneficial response to 

azithromycin is dependent upon arginase-1.  Arg1Δm and control mice were 

dosed with azithromycin and infected with PA-laden agarose beads. Moreover, 

we developed a clinical study which improves upon the limitations and design of 

the previous studies by generating matched data from subjects while on and off 

of azithromycin. We tested the hypothesis that azithromycin balances the 

immune response by controlling the inflammatory gene expression and the 

dependence of these mechanisms on arginase-1 production. While the human 

study is still in its early phases, murine experiments suggest that azithromycin is 

protective regardless of arginase production. 

 

II. Results 

 

Azithromycin treatment in mice infected with PA protects against excessive 

morbidity and inflammation regardless of arginase production. Three groups of 

mice were infected with PA-laden agarose beads as described. Four days prior 

to infection, one group of Arg1Δm mice and one group of littermate control mice 

received a dose of azithromycin via oral gavage. Azithromycin dosing continued 

daily thereafter. As a control, a group of Arg1Δm mice received daily doses of the 
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vehicle only (2% methylcellulose). Each group of mice consisted of at least four 

mice per timepoint. Infected mice were humanely killed, and tissues were 

harvested and processed for flow cytometry analysis. Additionally, we monitored 

morbidity post-infection by comparing the daily weight to the baseline murine 

body weight prior to infection (Figure 5.1a). The control Arg1Δm mice lost weight 

faster and to a greater degree compared to the other two groups treated with 

azithromycin. While the control Arg1Δm mice lost the maximum amount of weight 

by day 2 post-infection with an average of 82.52% of their initial weight; 

maximum weight loss in the azithromycin treatment group was attained at day 3 

post-infection with an average of 85.95% of their baseline body weight (Figure 

5.1a, day 3 (x) p-value = 0.0059; day 3 (x) p-value < 0.0001, (#) p-value = 

0.0008).  

 

We also evaluated the effects of azithromycin on bacterial clearance and 

mortality in Arg1Δm mice (Figure 5.1 b and c). Lung bacterial clearance was 

evaluated at different timepoints post-infection by counting the number of viable 

PA colonies in homogenized lung tissues. Azithromycin treated groups cleared 

PA at a rate comparable to the control Arg1Δm mice. Additionally, the three 

groups failed to completely clear the infection and PA was still present in the 

lungs by day 10 post-infection (Figure 5.1b). Importantly, azithromycin treatment 

protected against mortality in both Arg1Δm and Arg1flox/flox groups (Figure 5.1c). 

Importantly, the infective inoculum used in these experiments was selected to 

cause murine pneumonia without causing severe morbidity or mortality in each 

mouse strain. Mice were euthanized and excluded from the analysis if they lose 

20% or more of their body weight prior to infection along with one sign of 

morbidity (e.g. immobility, hunched posture, or lack of response to handling).  

 

Azithromycin has been previously shown to shift the cellular influx towards a 

monocytic response and to reduce neutrophil infiltration in response to the 

infection. To examine the dependence of these mechanisms on arginase-1 

expression, we used flow cytometry to characterize populations of neutrophils 
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and macrophages (Figure 5.2). Azithromycin treatment protected against 

excessive inflammation in both Arg1Δm and Arg1flox/flox groups. There was a 

significant attenuation of neutrophil recruitment into the alveolar spaces of 

azithromycin treated groups compared to the control Arg1Δm group at day 3 post-

infection (Figure 5.2a, day 3, alveolar spaces (x) p-value = 0.0038, (#) p-value = 

0.0017). While neutrophil numbers in the lung interstitium were lower in the 

azithromycin group, the differences were not statistically significant. However, 

azithromycin treatment, regardless of arginase deletion in macrophages, 

decreased the total number of tissue and infiltrating macrophages in the lungs of 

infected mice at day 3 post-infection (Figure 5.2, day 3, alveolar macrophages (x) 

p-value = 0.0469, (#) p-value = 0.0068; infiltrating macrophages (x) p-value = 

0.0055, (#) p-value = 0.0457). Similarly, azithromycin treatment in both knock-out 

and control groups significantly reduced recruitment of M1 pro-inflammatory 

macrophages (tissue and infiltrating) into the alveolar spaces at day 3 post-

infection (Figure 5.2c, day 3, (x) p-value = 0.0107, (#) p-value = 0.0026 and 

Figure 5.2d, day 3, (x) p-value = 0.046, (#) p-value = 0.0419). However, in the 

lung interstitium, both Arg1Δm groups had significantly lower numbers of M1 

macrophages (tissue and infiltrating) compared to the azithromycin-treated 

Arg1flox/flox mice (Figure 5.2c, day 3, (+) p-value = 0.0091, (#) p-value = 0.0189 

and Figure 5.2d, day 3, (x) p-value = 0.0118, (+) p-value < 0.0001, (#) p-value = 

0.0288). 

 

Additionally, we used flow cytometry analysis to define the expression of specific 

M1 and M2 macrophage effectors. Consistently we observed lower levels of 

resident and infiltrating TNF-α producing macrophages in the azithromycin-

treated groups compared to the control Arg1Δm mice (Figure 5.2e, day 3, (x) p-

values = 0.0408 and 0.0166, (#) p-values = 0.0243 and 0.0466, respectively). 

While azithromycin reduced the number of alveolar macrophages expressing 

iNOS in both Arg1Δm and Arg1flox/flox groups (Figure 5.2f, (x) p-value = 0.0439, (#) 

p-value = 0.0416), only the Arg1Δm mice treated with azithromycin had lower 
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number of infiltrating macrophages expressing iNOS (Figure 5.2f, (x) p-value = 

0.0003, (+) p-value = 0.0003).  

 

To determine the effects of azithromycin treatment on M2 macrophage 

polarization, we used two M2 macrophage markers, mannose receptor (MR) and 

IL-10. There were no statistically significant differences in MR expressing 

macrophages among the three groups of mice (Figure 5.2g). However, both 

azithromycin treated groups had significantly lower numbers of IL-10 producing 

alveolar and infiltrating macrophages compared to the control Arg1Δm mice 

(Figure 5.2h, day 5, (x) p-values = 0.0461 and 0.0399, (#) p-values = 0.0325 and 

< 0.0001 respectively). Interestingly, the ratio of pro- and anti-inflammatory 

monocytes were comparable among the three groups with similar trends 

including the ratio of CCR7/MR expressing macrophages (Figure 5.4d, A), IL-

17/IL-10 expressing monocytes (Figure 5.4d, B), and TNF-α/IL-10 producing 

monocytes (Figure 5.4d, C). 

 

We then evaluated the role that arginase expression plays in the ability of 

azithromycin to protect against inflammatory lung injury. Lung sections from mice 

treated with azithromycin and infected with PA-laden agarose beads were 

stained with H&E. An independent pathologist evaluated the lung sections blindly 

using a scoring system adapted from the American Thoracic Society guidelines 

[326]. The scoring system takes into consideration (1) the number of neutrophils 

in the alveolar spaces; (2) the number of neutrophils in the interstitial spaces; (3) 

the formation of hyaline membranes; (4) accumulation of proteinaceous debris in 

the airspaces; and (5) septal wall thickening. The inflammatory lung injury at day 

2 post-infection was comparable among the 3 groups of mice. However, both 

azithromycin treated groups had significantly lower mean lung injury score 

compared to the control Arg1Δm mice. The lung injury score decreased in the 

azithromycin-treated Arg1Δm mice to an average of 0.1065 ± 0.031 at day 5 post-

infection and in the azithromycin-treated Arg1flox/flox mice to an average of 0.2016 
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± 0.146 versus a persistent lung injury score of 0.446 ± 0.113 in the control 

Arg1Δm mice (Figure 5.2i, day 5, (x) p-value = 0.0012, (#) p-value = 0.0078).  

 

Azithromycin treatment in arginase conditional knock-out mice reduces T cell 

recruitment and activation in response to PA pneumonia. Our results in chapter 3 

show that arginase is required for modulation of T cell responses to PA 

pneumonia and that deletion of arginase in Arg1Δm mice skews the T cell 

responses towards Th1/Th17 predominance. However, because azithromycin is 

protective in part by increasing arginase in normal infected mice, we next 

evaluated whether azithromycin required arginase expression for its effects on T 

cells. Arg1Δm mice were dosed with azithromycin and infected with PA-laden 

agarose beads intratracheally. Tracheobronchial lymph nodes draining the site of 

infection, in addition to the lung lavage and lung tissue samples were stained for 

surface and intracellular markers to evaluate T cell responses and activation 

profiles at different timepoints post-infection (Figures 5.3 and 5.4). Azithromycin 

treated Arg1Δm mice responded to PA pneumonia with lower numbers of CD4+ 

and activated CD4+ T cells in their tracheobronchial lymph nodes (Figure 5.3a, 

day 14, Total CD4+ T cells (+) p-value = 0.0059; activated T cells (x) p-value = 

0.0079, (+) p-value = 0.0017). Similarly, both azithromycin treated groups had 

significantly lower numbers of CD4+ lymphocytes and activated CD4+ 

lymphocytes in their interstitial spaces (Figure 5.3b, day 10 Total CD4+ T cells (x) 

p-value = 0.0228, (#) p-value = 0.0426; activated T cells day 14 (x) p-value < 

0.0001, (#) p-value < 0.0001). However, there were no statistically significant 

differences in the numbers of CD4+ T cells and activated CD4+ T cells in the 

alveolar spaces in the 3 groups (Figure 5.3c). 

 

Next, we used flow cytometry to analyze the different T helper cell lineages 

modulated with azithromycin treatment in Arg1Δm mice (Figure 5.4). We observed 

a consistent decrease in Th17 recruitment with azithromycin treatment in both 

Arg1Δm and Arg1flox/flox groups compared to untreated control Arg1Δm mice (Figure 

5.4a). In the lymph nodes, only the azithromycin-treated Arg1flox/flox mice had 
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significantly lower numbers compared to the control Arg1Δm mice (Figure 5.4a, 

day 3, (#) p-value = 0.0489). While in the lung tissues, both azithromycin treated 

groups had significantly reduced numbers of Th17 lymphocytes at day 3 post-

infection (Figure 5.4a, day 3, (x) p-value = 0.0047, (#) p-value = 0.0079; day 10 

(#) p-value = 0.0463). Similarly, both azithromycin treated groups had 

significantly lower numbers of Th17 lymphocytes recruited into their alveolar 

spaces at day 3 post-infection (Figure 5.4a, day 3, (x) p-value = 0.0047, (#) p-

value = 0.0079; day 10 (#) p-value = 0.0463).  

 

Additionally, azithromycin treatment was associated with attenuation of the type 1 

T helper lymphocyte counts in both Arg1Δm and Arg1flox/flox groups. In the lymph 

nodes, azithromycin treatment significantly lowered the number of Th1 

lymphocytes activated (Figure 5.4b, day 3, (x) p-value = 0.0002, (#) p-value = 

0.0004). Similarly, both azithromycin treated groups had significantly lower 

numbers of Th1 lymphocytes recruited into their interstitial spaces at day 10 post-

infection (Figure 5.4b, day 10, (x) p-value = 0.0314, (#) p-value = 0.0121). While 

in the alveolar spaces, both azithromycin treated groups had significantly 

reduced numbers of Th1 lymphocytes at day 3 post-infection (Figure 5.4b, day 3, 

(x) p-value < 0.0001, (+) p-value 0.007, (#) p-value < 0.0001; day 10 (#) p-value 

= 0.0208).  

 

Finally, azithromycin treatment was associated with increased regulatory T cell 

numbers in both Arg1Δm and Arg1flox/flox groups. In the lymph nodes, untreated 

control Arg1Δm mice had significantly higher numbers of Treg lymphocytes 

compared to both azithromycin treated groups at day 5 post-infection (Figure 

5.4c, day 5, (x) p-value = 0.0139, (#) p-value = 0.034). However, in the interstitial 

and alveolar spaces of both azithromycin treated groups, we observed increased 

numbers of Treg lymphocytes at days 3 through 10 compared to the untreated 

control Arg1Δm mice (Figure 5.4c, lung interstitium and alveolar spaces, p-values 

> 0.05). 
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Additionally, we estimated the ratios of pro- and anti-inflammatory cytokines 

expressed by all lymphoid cells. The lymphocyte population contains CD4+ T 

cells as well as other lymphoid cells including the innate lymphoid cells, CD8+ T 

cells, and NK cells. Figure 5.4d shows the ratios of total IL-17, IFNγ, TGFβ, and 

IL-10 expressing lymphoid cells in the alveolar spaces. The ratio of IL-17 to IL-10 

producing lymphocytes was significantly higher in the control Arg1Δm mice at day 

3 post-infection compared to the azithromycin groups (Figure 5.4d, D, (x) and (#) 

p-values < 0.0001). Similarly, azithromycin treated mice had decreased IFNγ to 

TGFβ ratios at days 0 and 3 post-infection compared to the control Arg1Δm group 

(Figure 5.4d, E, day 0, (x) p-value = 0.0151; day 3 (x) p-value = 0.004 and (#) p-

value = 0.0024). Additionally, azithromycin treated mice had decreased Th17 to 

Treg lymphocyte ratios at days 10 post-infection compared to the control Arg1Δm 

group (Figure 5.4d, F, day 10, (x) p-value = 0.0002, (#) p-value = 0.001). 

 

III. Discussion 

 

Azithromycin is a well-known and widely used macrolide antibiotic with 

significantly important anti-inflammatory properties. The use of azithromycin as 

an immunomodulatory drug in cystic fibrosis patients is a common practice today 

in patients chronically infected with PA. The clinical benefits of this drug are well 

established and the clinical trials showing its anti-inflammatory efficacy has led to 

a recommendation for its use in the European NICE guidelines and the American 

Cystic Fibrosis Pulmonary guidelines [306, 307]. Yet, very little is known about 

azithromycin anti-inflammatory mechanisms. Despite the extended use of this 

drug in CF patients, it is still unclear how azithromycin exerts its 

immunomodulatory functions. Therefore, there are no clear-cut guidelines on 

when to use this drug and if there is a specific population that would benefit from 

this drug more than another. Our limited understanding of azithromycin anti-

inflammatory mechanisms and the specific targets involved limits our judgment 

on the duration of use and whether we can adjust the dosing or modify the 

structure for increased benefit. 
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Our group has shown that azithromycin shifts the macrophage polarization away 

from the M1 pro-inflammatory phenotype towards an M2 anti-inflammatory 

phenotype. We consistently observe suppression of pro-inflammatory effectors 

and cytokines with azithromycin (including iNOS, TNF-α, IL-6, and IFNγ), and an 

increase in anti-inflammatory effectors (including IL-10 and arginase-1) in both in-

vitro and in-vivo PA infection models [166, 310, 311]. We have demonstrated that 

arginase-1 production by alternative macrophages is essential for regulating 

excessive inflammation in PA pneumonia and by limiting Th1 and Th17 cell 

responses (chapter 3). Here, we have focused on the question of whether 

azithromycin’s anti-inflammatory mechanisms require arginase-1 for regulation of 

inflammation.  

 

Results from experiments with arginase conditional knock-out mice treated with 

azithromycin negate this hypothesis. Our results show that azithromycin protects 

against excessive morbidity and inflammation in mice infected with PA 

pneumonia regardless of arginase production. We have previously shown that 

arginase conditional knock-out mice do worse compared to their littermate 

controls with excessive neutrophil and pro-inflammatory macrophage influx in 

response to infections with PA pneumonia. The current study shows that 

azithromycin is equally protective in both arginase conditional knock-out mice 

and in their littermate controls. Azithromycin equally blunted neutrophil influx in 

infected mice regardless of arginase production. Moreover, azithromycin reduced 

macrophage infiltration and polarization towards an M1 phenotype regardless of 

arginase deletion from myeloid cells. Therefore, azithromycin suppresses 

excessive neutrophil influx and pro-inflammatory macrophage polarization 

through mechanisms that are independent of arginase. Although we see 

increased arginase expression and activation with azithromycin treatment, it is 

most likely a consequence rather than a mechanism by which azithromycin 

exerts its clinical benefits.  

 



 217 

Our in vitro data suggest that azithromycin cross-inhibits NF-κB and STAT-1 pro-

inflammatory transcription factors rather than promoting M2 anti-inflammatory 

signaling mediators. Consistently, we see suppression of pro-inflammatory 

macrophage effectors with azithromycin treatment rather than an increase in anti-

inflammatory effectors. There were no significant differences in MR expressing 

M2 macrophages, and azithromycin equally downregulated IL-10 expressing 

macrophages in both arginase conditional knock-out mice and their littermate 

controls. It is very likely that azithromycin suppresses pro-inflammatory mediators 

and cytokines rather than increasing anti-inflammatory mediators; thus, it adjusts 

the balance of the pro- and anti-inflammatory effectors and protects against 

excessive inflammation.  

 

Similar to arginase-mediated modulation of the T cell phenotype, azithromycin 

modulates the T cell responses, but independently of arginase. Our previous 

data suggest that arginase production by neutrophils and macrophages is 

essential for limiting Th1 and Th17 pro-inflammatory responses. However, the 

current study shows that azithromycin can suppress excessive Th1 and Th17 

responses regardless of arginase deletion from myeloid cells. Additionally, we 

saw reduced T cell numbers in the interstitial spaces with azithromycin treatment 

while the effects were variable in the lymph nodes and alveolar spaces. Results 

indicate that azithromycin affects T cell polarization and disposition independent 

of arginase production. It is likely that azithromycin affects compartmentalization 

of T cell responses and that effects of azithromycin on T cell polarization are 

cytokine mediated. Future studies evaluating effects of azithromycin in the 

presence of neutralizing cytokine antibodies are essential to determine the major 

cytokines driving the effects of the drug on T cells and other immune responses 

to PA pneumonia.  

 

Lastly, azithromycin treatment promoted a regulatory T cell phenotype in the 

lungs of mice infected with PA regardless of arginase. While azithromycin 

reduced the numbers of Treg lymphocytes in the lymph nodes of infected mice, 
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there were more Treg lymphocytes in the lungs and alveolar spaces. It is 

possible that the attenuation of the Th17/Th1 responses tilts the balance towards 

a Treg predominant phenotype. The specific mechanisms by which azithromycin 

affects the Th17/Treg balance is independent of arginase-mediated modulation 

of T cell phenotype. It is possible that azithromycin might have direct effects on T 

cell proliferation and expression of activation markers. Yet, the specific 

mechanisms involved are yet to be elucidated.  

 

Collectively, our results show that azithromycin protects against excessive 

inflammation in PA pneumonia by attenuating the release of pro-inflammatory 

cytokines and thus shifting the T cell responses away from the Th1/Th17-

mediated inflammation. This modulation is associated with reduced neutrophil 

influx and is independent of arginase production. Additionally, we have extended 

our studies to show protective effects of azithromycin in myocardial infarction, 

spinal cord injury, stroke, and other diseases with potential inflammatory 

pathology [443-446]. It is clear that arginase production in these models can 

modulate the immune response; however, we show here that azithromycin exerts 

its anti-inflammatory mechanism independent of its ability to increase arginase. It 

is possible that the increased arginase expression and activity with azithromycin 

assists in better modulation of the immune response and in speeding the 

recovery and inducing wound healing and repair. However, azithromycin 

mediates faster recovery via non-arginase pathways. We hypothesize that 

azithromycin regulates inflammation via increased TGFβ secretion thereby 

modulating the T cell subset distribution and function in response to PA infection. 

In support of this notion, we observed increased TGF-β expression in 

azithromycin-treated mice. TGFβ is an important type II cytokine which inhibits T 

cell activation and alters the differentiation of naïve T cells into effector 

phenotypes [447]. According to Cottrez et al., TGF-β expression suppresses T 

cell proliferation and cytokine secretion. These effects are potentiated with 

increased IL-10 concentrations which increase the surface expression of TGF-β 

receptors [448]. According to Cottrez and colleagues, IL-10 restores TGF-β 
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inhibitory effects on activated and memory T cells [448]. Therefore, it is very 

likely that the increased IL-10 concentrations with azithromycin treatment along 

with the induced TGF-β levels, act synergistically to modulate T cell responses 

and to induce a regulatory phenotype. In a murine model of helminth infection, 

mice colonized with the nematode, Heligmosomoides polygyrus, have increased 

IL-10 and TGF-β concentrations which inhibits the release of Th1 cytokines [449]. 

Ince and colleagues show that increase TGF-β mediates a Treg predominant 

immune response via an IL-10 dependent mechanism and suppresses Th1 and 

Th2 responses thereby protecting against chronic colitis in mice infected with H. 

polygyrus [449]. Similarly, IL-10/TGF-β synergism promotes an increase in Treg 

numbers in active Mycobacterium tuberculosis infections [450]. Feruglio and 

colleagues suggest that early inhibition of IL-10/TGF-β pathway facilitates M. 

tuberculosis clearance by rescuing the Th1 responses [450]. Additionally, 

deletion of TGF-β drastically affects Treg development and promotes Th1 

responses. This effect is dependent on the TGF-β mediated regulation of T-bet, 

the Th1 transcription factor, expression [447, 451]. Therefore, it is possible the 

azithromycin induces a Treg phenotype through TGF-β dependent mechanisms 

thereby limiting the Th1 and Th17 responses. Moreover, it is likely that TGF-β is 

driving fibrogenesis and wound healing which we otherwise see with arginase. In 

fact, TGF-β is a master regulator of fibrosis through signaling pathways 

independent of arginase. It is possible that azithromycin-mediated modulation of 

TGF-β affects the latter signaling through Smad and non-Smad pathways which 

regulates myofibroblast activation and extracellular matrix deposition [452]. 

Future studies utilizing TGF-β neutralizing antibodies in azithromycin-treated 

Arg1Δm mice will help validate this hypothesis. Additionally, future studies will 

examine the effects of azithromycin on non-arginase mediated signaling 

pathways involved with wound healing including the Smad pathway [452]. This 

will be achieved by utilizing Lck-creSmad4 mice. These mice lack the Smad4 

intracellular signaling molecule in lymphoid cells.  This protein is responsible for 

the signaling cascade through the receptor that binds to members of the TGFβ 

superfamily [453].  
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Some of the limitations of our study include the “leakiness” of the LysMcre 

system and the deletion of arginase from both neutrophils and macrophages as 

discussed in Chapter 3. Briefly, the deletion of arginase in our murine model is 

controlled by lysozyme expression. Lysozyme M is expressed in neutrophils and 

macrophages. So, it is difficult to delineate the difference between neutrophil 

versus macrophage arginase functions as both are deleted. Additionally, new 

reports show different levels of lysozyme expression between tissue and 

infiltrating macrophages thus accounting for different levels of arginase deletion 

from these two populations [368]. 

 

Importantly, it is possible that azithromycin induces arginase expression in non-

myeloid cells. Hence, non-myeloid sources of arginase may be rescuing the 

effects of its deletion from neutrophils and macrophages in Arg1Δm mice. 

Therefore, it is essential to study the effects of azithromycin in other models of 

conditional arginase deletion or global inhibition. For instance, ILC2s are an 

important source of arginase which may be induced with azithromycin thereby 

counteracting the effects of deleted arginase from myeloid cells. In fact, Amantea 

et al. show that pharmacologic arginase inhibition in peritoneal macrophages 

reversed the neuroprotective effects of azithromycin in ischemic stroke [445]. The 

authors suggest that polarization of migratory macrophages towards an M2 

phenotype with azithromycin is essential for the reduced ischemic injury which 

requires arginase production by these macrophages. This group shows that 

azithromycin does not alter microglia or tissue macrophages but affects 

infiltrating macrophages. These results are similar to our observation that 

differential effects of azithromycin on alveolar versus interstitial macrophages in 

the lungs. However, this group shows a 10-fold increase in M2 anti-inflammatory 

macrophage numbers rather than a suppression of the pro-inflammatory M1 

macrophage numbers which we see in our model. Therefore, it might be possible 

that azithromycin acts differently in different disease models. While a shift in 

macrophage polarization towards the M2 phenotype underlies the beneficial 

effects of the drug in ischemic stroke thus requiring arginase function for 
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neuroprotection, a shift in macrophage polarization away from the M1 phenotype 

underlies the beneficial effects of the drug in PA pneumonia thus functioning 

independent of arginase.  

  

Finally, we designed a clinical study to evaluate the applicability of our 

observations in patients with cystic fibrosis. As discussed in chapter 1, the 

immunomodulatory role of arginase-1 in humans is controversial. It is well 

established that increased arginase expression promotes suppressed immunity 

and increased inhibitory Treg responses in cancer, type I diabetes, rheumatoid 

arthritis, and many other auto-immune diseases [454-456]. However, increased 

arginase expression is also associated with exaggerated inflammation and 

exacerbations in patients with cystic fibrosis as well as in patients with systemic 

lupus erythematosus, myasthenia gravis, autoimmune encephalomyelitis, and 

obesity [109, 135, 164, 165, 248, 370-375, 457]. Additionally, several studies 

suggest that the two arginase isoforms function differently in humans [248, 371]. 

However, a direct link between arginase expression and pathogenesis of the 

above-listed diseases have not been elucidated yet. It is likely that arginase 

upregulation follows the activation of exaggerated inflammation and that arginase 

induction is a regulatory mechanism. Therefore, future studies are needed to 

validate the immunomodulatory mechanisms of arginase in humans. Additionally, 

the specific mechanisms by which azithromycin exerts its clinically beneficial 

effects and whether arginase is required for azithromycin anti-inflammatory 

mechanisms are yet to be elucidated. Our proposed clinical study will help 

answer these questions and will improve our understanding of azithromycin’s 

clinical benefits. This will provide the opportunity to individualize therapy for 

maximal benefits in different patient populations. Additionally, knowing the 

effectors involved in modulating inflammation identifies future drug targets for 

new and improved immunomodulatory agents for cystic fibrosis and many other 

inflammatory and autoimmune diseases.  
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The clinical study was approved by the Institutional Review Board at the 

University of Kentucky. We are currently pre-screening cystic fibrosis patients 

between 12 and 50 years of age, who are clinically stable and have been on 

azithromycin for at least a year. We hope to recruit about 20 subjects within the 

next 1 year. Patients who meet our inclusion/exclusion criteria will take a drug 

holiday discontinuing azithromycin treatment for 2-3 months. We will utilize the 

methods proposed in Chapter 2 including flow cytometry, gene expression 

assays, and cytometric bead arrays to compare immune signatures and 

inflammatory responses in patients when on and off azithromycin. Additionally, 

we will use principal component analysis and paired sample T-tests to compare 

the matched samples over time after re-initiating azithromycin therapy in these 

patients. We will also utilize statistical analysis to correlate our results with 

clinical outcomes (including demographic information, pulmonary function tests, 

requirement for hospitalization, and requirement for antibiotics).  

 

Along with the in vitro and in vivo data, our research leads the way towards fully 

describing the role and mechanism of azithromycin in modulating the immune 

response to PA infections. Completion of this study will have a positive impact by 

defining the immune-regulatory mechanisms of azithromycin in the context of 

chronic inflammatory lung disease. Additionally, it will provide evidence on the 

mechanisms of arginase-mediated regulation of the immune response. Results 

from this pilot clinical study will broaden our knowledge of the specific role of 

arginase in the anti-inflammatory mechanisms of azithromycin. With this, we 

hope to identify essential regulatory pathways and specific downstream signaling 

cascades which modulation can be of therapeutic value for future drug targets in 

patients with non-resolving pulmonary infections and in other chronic and acute 

inflammatory pathologies. 
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Figure 5.1a 
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Figure 5.1b 
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Figure 5.1c 
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Figure 5.1. Azithromycin treatment protects against excessive morbidity and 

weight loss in arginase-1 conditional knock-out mice. 

Arg1Δm and their littermate Arg1flox/flox mice were treated with azithromycin 

starting 4 days prior to infection and daily thereafter. A third control group of 

Arg1Δm mice was dosed with the vehicle (2% methylcellulose). The 3 groups of 

mice were infected with PA-laden agarose beads through intratracheal instillation 

of 2 × 10^6 CFU/ mL as described. Murine morbidity post infection was evaluated 

in terms of weight loss measured at least once daily before and after infection. 

(a) The graph represents the percentage weight loss normalized to the baseline 

body weight prior to infection. (b) The graph represents bacterial clearance from 

the lungs post-infection. (c) Kaplan-Meier graph represents murine survival post-

infection. Data represent mean ± SD and is representative of 3 independent 

experiments. Statistical significance was determined by two-way ANOVA ((x) 

azithromycin treated arginase conditional knock-out mice significantly different 

than control arginase conditional knock-out mice; (#) azithromycin treated 

littermate control mice group significantly different than control arginase 

conditional knock-out mice; (+) azithromycin treated arginase conditional knock-

out mice significantly different than the azithromycin-treated littermate control 

mice; p-value < 0.05). Graphs plotted using GraphPad Prism 7 (Note: for some 

points, the error bars are shorter than the height of the symbol. In these cases, 

Prism simply does not draw the error bars).  
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Figure 5.2a 
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Figure 5.2b 
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 Figure 5.2c 
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Figure 5.2d 
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Figure 5.2e 
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Figure 5.2f  
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Figure 5.2g 
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Figure 5.2h 
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Figure 5.2i 
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Figure 5.2i (continued) 
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Figure 5.2. Azithromycin treatment attenuates acute inflammatory infiltration of 

innate immune cells in arginase conditional knock-out mice.  

Lungs from infected mice were lavaged with PBS to collect cells from the alveolar 

spaces and lung tissues were then harvested to collect cells from the lung 

interstitium. Lavage and lung tissue samples were collected from at least four 

mice per timepoint per group. Harvested samples were processed into single cell 

suspensions and stained for flow cytometry analysis as described. At least 

50,000 events per sample were analyzed using the FlowJo software to quantify 

different immune cell populations. Data represent total count of each cell 

population as a fraction of the total number of live cells analyzed. (a) Neutrophil 

recruitment into the alveolar and lung interstitial spaces (b) Total number of 

tissue and infiltrating macrophages. (c, d) The total number of tissue and 

infiltrating M1 macrophages expressing CCR7 receptor and positive for iNOS 

and TNF-α. (e, f, g, h) Total counts of alveolar and infiltrating macrophages 

producing TNF-α, iNOS, IL-10, or expressing Mannose receptor (MR). (i) Lungs 

were insufflated and fixed in paraformaldehyde for sectioning. Lung sections 

were stained with H&E and lung injury was assessed by an independent blinded 

investigator. Lung injury was scored as described in methods. The score ranges 

from 0-1 (inclusive). Data represent mean ± SD and is representative of 3 

independent experiments. Statistical significance determined by two-way ANOVA 

((x) azithromycin treated arginase conditional knock-out mice significantly 

different than control arginase conditional knock-out mice; (#) azithromycin 

treated littermate control mice group significantly different than control arginase 

conditional knock-out mice; (+) azithromycin treated arginase conditional knock-

out mice significantly different than the azithromycin-treated littermate control 

mice; p-value < 0.05). Graphs plotted using GraphPad Prism 7 (Note: for some 

points, the error bars are shorter than the height of the symbol. In these cases, 

Prism simply does not draw the error bars). 
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Figure 5.3a 
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Figure 5.3b 
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Figure 5.3c 
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Figure 5.3. Azithromycin treatment in arginase conditional knock-out mice is 

associated with decreased CD4+ lymphocyte recruitment and activation. 

Tracheobronchial lymph nodes draining the site of infection were harvested and 

processed into single cell suspensions by passing through mesh strainers. Lung 

lavage and lung tissue samples were collected and processed as described. 

Single cell suspensions were stained for flow cytometry analysis as described. At 

least 50,000 events per sample were analyzed using the FlowJo software to 

quantify different immune cell populations. Data represent total count of each cell 

population as a fraction of the total number of live cells analyzed. (a, b, c) Total 

number of CD4+ T cells recruited and activated in the lymph nodes, alveolar 

spaces, and lung interstitium of infected mice. Data represent mean ± SD.  Data 

are representative of 3 independent experiments. Statistical significance 

determined by two-way ANOVA ((x) azithromycin treated arginase conditional 

knock-out mice significantly different than control arginase conditional knock-out 

mice; (#) azithromycin treated littermate control mice group significantly different 

than control arginase conditional knock-out mice; (+) azithromycin treated 

arginase conditional knock-out mice significantly different than the azithromycin-

treated littermate control mice; p-value < 0.05). Graphs plotted using GraphPad 

Prism 7 (Note: for some points, the error bars are shorter than the height of the 

symbol. In these cases, Prism simply does not draw the error bars). 
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Figure 5.4a 
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Figure 5.4b 
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Figure 5.4c 
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Figure 5.4d 
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Figure 5.4. Azithromycin treatment in the arginase conditional knock-out mice 

suppresses the exaggerated recruitment of inflammatory lymphocytes. 

Tracheobronchial lymph nodes draining the site of infection and lung tissue 

samples were collected and processed as described. Single cell suspensions 

were stained for flow cytometry analysis as described. At least 50,000 events per 

sample were analyzed using the FlowJo software to quantify different immune 

cell populations. Data represent total count of each cell population as a fraction 

of the total number of live cells analyzed. (a, b, c) Total number of Th17, Th1, 

and regulatory T lymphocytes in the lymph nodes, alveolar spaces, and lung 

interstitium of infected mice. (d) Bar graphs represent ratios of CCR7 to MR 

expressing cells in A; ratio of IL-17 to IL-10 expressing monocytes in B; ratio of 

TNF-α to IL-10 expressing macrophages in C; ratio IL-17 to IL-10 expressing 

lymphocytes in D; ratio of IFNγ to TGFβ expressing lymphocytes in E, and ratio 

of Th17 to Treg cells in F. Data represent mean ± SD.  Data are representative of 

3 independent experiments. Statistical significance determined by two-way 

ANOVA ((x) azithromycin treated arginase conditional knock-out mice 

significantly different than control arginase conditional knock-out mice; (#) 

azithromycin treated littermate control mice group significantly different than 

control arginase conditional knock-out mice; (+) azithromycin treated arginase 

conditional knock-out mice significantly different than the azithromycin-treated 

littermate control mice; p-value < 0.05). Graphs plotted using GraphPad Prism 7 

(Note: for some points, the error bars are shorter than the height of the symbol. 

In these cases, Prism simply does not draw the error bars).  
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Chapter 6: Summary and conclusions 
 

I. Project Overview 

  

Research work presented in this dissertation aimed at defining the 

immunomodulatory functions of the alternative macrophage effector, arginase-1, 

as well as defining the immunomodulatory mechanisms of azithromycin. We 

utilized genetically modified mouse models, pharmacological inhibitors, in-vitro 

assays, and clinical approaches to better understand the immune response to 

infections with PA pneumonia.  

 

Infections with PA pneumonia are the leading cause of morbidity and mortality in 

patients with cystic fibrosis [1-6]. As discussed in the introduction, cystic fibrosis 

is an autosomal recessive disorder caused by mutations of the CFTR gene. This 

mutation is associated with disrupted ion flux across the epithelium resulting in 

the production of abnormally thick and dense mucus which obstructs the airways, 

pancreatic ducts, intestines, and other organs [1-7]. Additionally, patients 

suffering from this mutation develop structural airway abnormalities including 

increased smooth muscle content and smooth muscle cell hyperplasia [12].  

These changes predispose the patients to chronic and repetitive lung infections 

against which the immune system responds in an exaggerated manner. The 

increased risk for infections is attributed to the failure of the epithelium to perform 

its role as the first line of defense against inhaled microbes. This happens due to 

the abnormally viscous mucus which causes ciliary dyskinesis thereby hindering 

the mucociliary clearance essential for expelling trapped pathogens [63, 133]. 

Additionally, the altered airway surface liquid and the increased pH inactivate the 

epithelial microbicidal substances essential for killing the invading bacteria, 

viruses, and yeasts [63-91, 102-105, 133, 458]. Additionally, CFTR mutations 

potentiate the signaling through the NF-κB pathway in epithelial cells which 

results in a robust and vigorous release of pro-inflammatory mediators upon 

activation by non-self antigens [63-75, 77-95, 102-105, 133, 458, 459]. These 
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pro-inflammatory cytokines function to recruit innate and adaptive immune cells 

which are essential for containing the infection and resolving the immune 

response. However, several alterations of the innate and adaptive immune 

responses occur in cystic fibrosis rendering the inflammatory response 

disproportionate to the severity of the infection.  

 

First, neutrophils are recruited in excessive numbers due to the persistent 

infections and continuous stimulation. These neutrophils are affected by the 

CFTR mutations which impair the degranulation of important neutrophil 

microbicidal products from the secondary and tertiary granules [102]. 

Additionally, neutrophils release excessive amounts of neutrophil elastases and 

proteases in the cystic fibrosis lungs which overwhelm the antiproteases that 

protect the lungs. The excessive amounts of neutrophil elastases break down the 

connective tissues and matrix proteins leading to a structural loss in the small 

airways [106-110]. Additionally, neutrophils in cystic fibrosis patients fail to 

undergo programmed cell death and the resultant necrosis releases the massive 

intracellular contents like inflammatory mediators and cytokines, oxidants and 

proteases, in addition to large DNA fragments and actin [117]. Thus, the death of 

neutrophils releases tremendous amounts of intracellular contents that are 

extremely harmful to the lungs. 

 

Second, macrophages are recruited into the lungs of cystic fibrosis patients in 

response to the infection. However, changes in lung microenvironment and the 

altered inflammatory signals result in altered macrophage polarization, 

phagocytic function, and antigen presentation. Several reports observed intrinsic 

macrophage alterations which result in an exaggerated release of pro-

inflammatory mediators from cystic fibrosis macrophages compared to normal 

human macrophages [27, 166-170]. This is attributed to the potentiated NF-κB 

and STAT-1 signaling pathways in these cells. Additionally, the lung environment 

in cystic fibrosis skews macrophage polarization depending on the stability of the 

disease and the nature of infections at specific timepoints. This results in a 
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disproportional balance of M1/M2 macrophages in patients with cystic fibrosis. 

Moreover, malfunctional CFTR on the surface of macrophages impairs their 

microbicidal functions by dysregulating the formation of phagosomes with 

appropriate pH and by impairing the late endosome/lysosome maturation 

essential for trafficking of surface pattern recognition receptors [25, 134, 170-

176]. Hence, mutated CFTR on the surface of macrophages drastically affects 

their ability to present antigens for incoming immune cells. 

 

Third, altered adaptive immune responses in patients with cystic fibrosis are 

attributed to the impaired communication between innate and adaptive immune 

cells and to the skewing of the T cell responses towards a Th2 and Th17 

predominant response. Innate immune cells fail to present antigens and provide 

necessary costimulation for B and T cell selection. This results from non-CFTR 

genetic mutations of the MHC complex which affects efficient antigen 

presentation. Moreover, suppressed PD-L1/PD-1 interaction between airway 

epithelial cells and T cells results in uncontrolled activation of the adaptive 

immune response [63, 133, 182, 183, 188-192]. Additionally, naïve T cells 

isolated from cystic fibrosis patients are inherently predisposed to be polarized 

towards Th2 and Th17 phenotypes [203, 204]. Moreover, there is a significant 

imbalance of signals and cytokines which drive T cell differentiation towards a 

Th17 predominant phenotype versus signals essential for limiting this response. 

In fact, T cells with mutated CFTR can equally differentiate under the influence of 

appropriate cytokines into Th1 and Treg phenotypes. However, when T cells with 

CFTR mutations are polarized with Th17 stimulants, there is a higher and faster 

shift into the Th17 phenotype compared to wild-type lymphocytes. Importantly, 

Th17 lymphocytes and IL-17 production are associated with poor prognosis as 

they play an early role in disease pathology. They are associated with sustained 

neutrophil recruitment and a decline in lung function [67, 210-219, 221]. 

 

Collectively, intrinsic and environmental alterations result in an exaggerated 

immune response. These alterations impair the function of immune cells thereby 
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failing to contain and clear the infections. This results in a vicious cycle of 

exaggerated inflammation, inflammatory lung injury, and persistent infections  

[185, 233, 235-247, 460]. Our long-term goal is to define key regulators of this 

exaggerated immune response that can be of therapeutic value for 

immunotherapy in cystic fibrosis. Our group has previously demonstrated that 

azithromycin, a macrolide antibiotic, drives macrophages into an alternative M2 

phenotype in-vitro [166, 310, 311]. Additionally, murine experiments with early 

polarization of macrophages into an alternative phenotype show decreased 

neutrophil influx and pulmonary injury in mice infected with PA. Alternatively, 

abolishing alternative macrophage polarization was associated with a profound 

acute immune response along with exaggerated neutrophil influx and an altered 

T cell response. The absence of alternative macrophages was also associated 

with increased morbidity and mortality in our murine model of PA pneumonia 

[166, 310, 311]. Closely examining the different effectors of alternative 

macrophages revealed an important role of arginase-1. Arginase-1 expression 

and activity are increased in alternative macrophages polarized with 

azithromycin. Moreover, preliminary experiments using arginase-1 conditional 

knock-out mice verified that arginase deficiency is associated with greater 

morbidity in terms of more significant weight loss. Additionally, arginase-1 has 

unique immunomodulatory properties where it is shown in other disease models 

to control of NO-mediated injury, to suppress T cell function and proliferation, and 

to promote a Treg phenotype [17, 151, 152, 154, 157, 312, 314-318].  

 

Hence, the objective of this project was to investigate the regulatory role of 

arginase in the immune response to PA pneumonia and its modulation of T cell 

immunity. Additionally, our second objective was to evaluate the anti-

inflammatory mechanisms of azithromycin and the dependence of these 

mechanisms on arginase. Our central hypothesis was that regulation of 

exaggerated inflammation achieved by polarizing macrophages into an 

alternative anti-inflammatory phenotype is dependent on arginase production. 
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Our second hypothesis was that azithromycin controls immunity in PA 

pneumonia via cross-inhibition of the NF-κB and STAT-1 signaling pathways.  

 

II. Results overview 

 

i. Myeloid arginase production is essential for regulation of excessive 

inflammation in PA pneumonia 

 

Our results show that arginase production by myeloid cells is essential to 

regulate immunity against PA pneumonia. We utilized Arg1Δm mice with 

conditional arginase deletion from macrophages and neutrophils along with two 

global pharmacological arginase inhibitors to examine the effects of arginase on 

the immune response. Mice were infected with PA-laden agarose beads to cause 

a prolonged infection similar to the chronic PA pneumonia in patients with cystic 

fibrosis. We used flow cytometry analysis to identify the immune cell populations 

activated and recruited in response to the infection. Our results show that 

arginase deletion from myeloid cells resulted in increased morbidity and weight 

loss post infection, while global arginase inhibition resulted in exaggerated weight 

loss (Chapter 3). Additionally, Arg1Δm mice responded to the infection with an 

amplified influx of neutrophils and pro-inflammatory macrophages into their lungs 

and alveolar spaces. BALBc/J mice dosed with arginase inhibitors responded 

with significantly higher numbers of neutrophils and macrophages compared to 

the Arg1Δm mice. Additionally, Arg1Δm mice responded with significantly 

increased numbers of CD4+ T cells and activated T cells along with a 

predominant polarization towards a Th1 and Th17 response. Conversely, global 

arginase inhibition was associated with increased numbers of CD4+ T cells and 

activated T cells in the lymph nodes and in the lung interstitial spaces of infected 

mice while these effects were reversed in the alveolar spaces. This trend also 

applied to the Th1, Th17, and Treg polarized lymphocytes in the lymph nodes 

with potentially reduced transmigration of these lymphocytes to the lung 

interstitial and alveolar spaces of mice treated with BEC or L-norvaline.   
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Therefore, our results show that myeloid arginase is essential to limit T cell 

proliferation and activation and to protect against disproportionate polarization 

towards a Th1 and Th17 predominant response which contributes to excessive 

neutrophil and pro-inflammatory macrophage recruitment. However, global 

arginase inhibition results in exaggerated morbidity and inflammation along with 

blunted lymphocyte recruitment and chemotaxis to the lungs. 

  

ii. Azithromycin balances the M1/M2 macrophage polarization by 

cross-inhibiting the M1-associated transcription factors, NF-κB and 

STAT-1 

 

Our results show that azithromycin acts directly on macrophages by cross-

inhibiting the NF-κB and STAT-1 signaling pathways. We utilized an in vitro 

model of J774 murine macrophages which were polarized with azithromycin and 

cytokines to drive macrophage polarization towards an M1 or an M2 phenotype. 

Using a p65 translocation assay coupled with western blot analysis of p65 protein 

in the nuclear versus the cytoplasmic compartments and using 

immunofluorescence assay to visualize p65 localization in the cell upon 

stimulation, we demonstrated that azithromycin significantly suppresses p65 

translocation to the nucleus of stimulated macrophages. We also showed that 

azithromycin results in increased IKKβ protein concentrations along with blunted 

IκB-α degradation. Our results also show increased IKKβ gene expression with 

azithromycin treatment suggesting that increased IKKβ protein concentration 

results from the inhibited p65 nuclear translocation which blunts the negative 

feedback response essential to downregulate IKKβ and to turn off the NF-κB 

pathway. Additionally, we showed that accumulated IKKβ was associated with 

cross-inhibition of the STAT-1 pathway with azithromycin. Moreover, our results 

show that IKKβ played a critical role in azithromycin anti-inflammatory 

mechanisms. Results from experiments with IKK-16, an IKKβ inhibitor, showed a 

reversal of azithromycin effects on arginase expression and activity as well as on 

the suppressed STAT-1 activation. Therefore, azithromycin polarizes 
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macrophages towards an alternative M2 phenotype by cross-inhibiting the NF-κB 

and STAT-1 signaling pathways through a mechanism dependent on IKKβ. 

 

iii. Azithromycin protects against excessive morbidity and inflammation 

through mechanisms independent of arginase-1 production 

 

Our results show that azithromycin regulates neutrophil influx and T cell 

responses in mice infected with PA independent of myeloid arginase production. 

Arg1Δm mice were pre-treated with azithromycin starting four days prior to the 

infection and daily thereafter. Azithromycin protected against excessive morbidity 

and weight loss in Arg1Δm and Arg1flox/flox mice. Additionally, azithromycin 

suppressed the excessive recruitment of neutrophils and pro-inflammatory 

macrophages independent of myeloid arginase production. Importantly, 

azithromycin suppressed Th1 and Th17 responses and skewed towards a Treg 

phenotype equally in Arg1Δm and Arg1flox/flox mice. Additionally, azithromycin 

treatment in Arg1Δm and Arg1flox/flox mice was associated with faster recovery in 

terms of earlier resolution of inflammatory lung injury compared to untreated 

mice. Therefore, azithromycin protects against excessive morbidity and 

inflammation in chronic PA pneumonia through mechanisms independent of 

arginase production by macrophages and neutrophils. 

 

III. Significance 

 

i. Myeloid arginase, a therapeutic target to control inflammation 

 

Arginase production by myeloid cells was essential to limit inflammation and to 

regulate the influx of pro-inflammatory neutrophils and lymphocytes into the lungs 

in response to PA infections. We provided evidence that exaggerated 

inflammation can be regulated by directly modulating the production of arginase 

by myeloid cells while other cellular sources of arginase exert potentially different 

functions. The significance of this evidence lies in the potential of myeloid 



 254 

arginase production to regulate the influx of neutrophils and Th17 lymphocytes, 

both of which are highly pathogenic in patients with cystic fibrosis. The increased 

IL17 release by Th17 lymphocytes is associated with increased disease severity, 

decline in lung function, and end-stage bronchiectasis [461]. According to 

Mulcahy et al., cystic fibrosis is a Th17-mediated disease [221]. They evaluated 

T cell responses in 42 cystic fibrosis patients ranging from 6 months to 53 years 

of age. They observed a very strong association between Th17 numbers and 

poor lung function. Malcahy et al. suggest that peripheral blood Th17 levels may 

be a surrogate marker of lung function in cystic fibrosis [221]. Additionally, Th17 

lymphocytes contribute to pathology by recruiting neutrophils in cystic fibrosis as 

well as in other disease models like Leishmaniasis, rheumatoid arthritis, 

inflammatory bowel disease, and crescentic glomerulonephritis [348, 349, 462]. 

Neutrophils are immunopathogenic in these disease models where they 

contribute to inflammatory tissue injury as a result of the extensive release of 

proteinases, neutrophil elastases, DNA, and oxidative free radicals [348, 349, 

462]. In the case of PA infections in cystic fibrosis, Dubin and colleagues 

conclude from an extensive literature review that the inability to clear PA results 

in chronic IL-17 production and the development of a Th17 phenotype [163, 215-

218, 222, 463]. The persisting neutrophilia fails to clear the pathogen [222, 464, 

465], which triggers the recruitment of more neutrophils that result in 

inflammatory lung injury and a decline in lung function [466, 467]. Therefore, 

identifying a pathway that can limit Th17 lymphocyte activation thereby 

controlling the influx of neutrophils represents a very promising target to 

manipulate excessive inflammation in cystic fibrosis, cancer, autoimmunity, and 

other inflammatory diseases. Our data suggest that arginase can serve as a 

novel target to control immunity and to prevent inflammatory lung injury in cystic 

fibrosis.  

 

In fact, there are recombinant human arginase formulations in clinical trials being 

evaluated in multiple disease models. A pegylated recombinant human arginase 

(BCT-100) is currently in phase I/II trial where its safety and efficacy in children 
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and young adults with relapsed/refractory leukemia, neuroblastoma, sarcoma 

and high-grade gliomas are being evaluated [468]. Moreover, there are several 

small molecules that are being evaluated for inducing endogenous expression of 

arginase by signaling through pathways involved with arginase expression [208, 

469-472]. However, whether those approaches can control immunity in cystic 

fibrosis without dampening the essential functions of the immune system is yet to 

be elucidated. It is important to develop new approaches that would balance the 

immune response rather than suppressing it and preventing bacterial clearance. 

Therefore, it is pertinent to closely evaluate the effects of arginase administration 

in humans on the immune system and to consider targeted approaches to deliver 

arginase to the sites of infection or to stimulate arginase expression in particular 

cells without globally promoting suppressed immunity. 

 

ii. NF-κB signaling pathway, a targeted approach to limit pro-

inflammatory macrophage polarization 

 

We show that azithromycin controls pro-inflammatory macrophage activation by 

cross-inhibiting the NF-κB and STAT-1 signaling pathways. The beneficial clinical 

effects of azithromycin are well established in patients with cystic fibrosis [296-

304]. Azithromycin is known to regulate pro-inflammatory cytokines and to 

improve lung function in these patients [296, 297, 299-304, 306, 307]. Our results 

are significant in that they identify the specific molecular mechanisms that can be 

targeted to modulate the M1/M2 macrophage balance thereby regulating 

inflammation. Targeting macrophage-specific NF-κB and STAT-1 signaling 

pathways provide a novel approach that would protect against the unwanted side 

effects of azithromycin and against the potential antimicrobial resistance and 

other issues of collateral damage. Additionally, it protects against global NF-κB 

inhibition that would result in suppressed immunity. According to Hoesel et al., 

inhibition of the NF-κB pathway is a very effective approach to limit chronic 

inflammation and to promote anti-tumorigenic effects of many chemotherapeutic 

agents [394]. However, NF-κB is activated in several cell lineages and is 
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essential to induce sufficient inflammation needed to clear infections and to 

promote regulated cell death and other physiological functions activated through 

the NF-κB signaling pathway [394]. For example, dexamethasone, prednisone, 

methylprednisolone, aspirin, cyclosporin A, indomethacin, and ibuprofen are all 

reported to inhibit NF-κB [416, 417]. However, their effects are generalized and 

non-macrophage specific thereby resulting in suppressed immunity and inability 

of the immune system to clear the invading pathogen. Additionally, azithromycin 

inhibits the NF-κB pathway through a unique mechanism which cross-inhibits the 

pro-inflammatory STAT-1 transcription factor. According to Breuer a STAT1 gain 

of function mutation promotes severe bronchiectasis even in non-cystic fibrosis 

patients [473]. Additionally, Kretzmer and colleagues report that increased STAT-

1 phosphorylation was associated with recurrent pneumonia, exaggerated 

inflammation, and severe bronchiectasis in a 5-year-old child [474]. Whereas 

Kreiselmeier et al., report that cystic fibrosis pathology is associated with altered 

STAT-1 activation which mediates pathogenesis by altered iNOS induction while 

statin-mediated correction of STAT-1 signaling may represent a potential avenue 

for therapeutic intervention in cystic fibrosis [475]. Therefore, the ability of 

azithromycin to target two transcription factors involved in immunopathogenesis 

and exaggerated inflammation in cystic fibrosis constitutes a favorable approach 

to limit pathology using a single agent. Identifying the cross-inhibitory mechanism 

of azithromycin mediated via IKKβ presents a promising approach to be 

considered for the development of immunomodulatory agents that target several 

pathological mediators. 

 

Additionally, identifying the molecular mechanisms of azithromycin is essential to 

improve the efficacy and functionality of the drug in other disease models. Our 

group has shown promising cardioprotective effects with azithromycin pre-

treatment in myocardial infarction (MI). Unpublished preliminary data show a 

significant reduction in mortality in a murine model of MI. Additionally, 

azithromycin pretreatment resulted in attenuated inflammation and enhanced 

recovery post-MI in mice. Our collaborators have shown in a murine model of 
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spinal cord injury that azithromycin promotes an anti-inflammatory phenotype 

and improves tissue sparing and recovery of gross and coordinated locomotor 

functions [443]. However, myocardial infarctions and traumas resulting in spinal 

cord injury in humans happen suddenly; therefore, it is essential to identify 

azithromycin analogs that exert comparable beneficial anti-inflammatory effects 

post-injury or to develop formulations that are associated with fast attainment of 

steady-state concentrations essential for azithromycin’s immunomodulatory 

effects. Moreover, our group is working with medicinal chemists to develop 

azithromycin analogs that lack the antimicrobial activity and improve upon the 

anti-inflammatory properties. Thus, identifying azithromycin molecular targets 

and developing new analogs or small molecules that would exert immediate 

beneficial effects are crucial to extend the usefulness of this drug. 

 

iii. Arginase production by myeloid cells is not required for azithromycin 

anti-inflammatory effects 

 

Azithromycin blunts the Th1 and Th17 immune responses thereby protecting 

against excessive neutrophil recruitment and inflammatory lung injury in 

response to PA infections. Importantly, azithromycin does not require myeloid 

arginase production to exert its anti-inflammatory effects. These effects were 

associated with increased secretion of TGF-β and IL-10 which are most likely 

responsible for the induction of the regulatory T cell phenotype thereby 

suppressing Th1 and Th17 responses [447-453]. Therefore, the significance of 

these results includes the identification of alternative pathways for targeted 

immunotherapy against aberrant T cell responses and exaggerated inflammation 

in cystic fibrosis. According to Kramer and colleagues, TGF-β targeted 

therapeutics can be complicated in cystic fibrosis due to differential effects on 

this cytokine on different cellular mechanisms [476]. For instance, Sun et al., 

show that TGF-β disrupts the function and the numbers of CFTR channels along 

the cystic fibrosis epithelium [477]. Similarly, Arkwright suggests that increased 

TGF-β concentrations are associated with a decline in lung function in patients 
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with cystic fibrosis [478]. These effects were mediated via direct effects of TGF-β 

on the lung parenchyma and ion flux across the CFTR channels. Therefore, 

developing targeted TGFβ-dependent therapeutics is required to prevent the 

unwanted detrimental effects [477, 478]. Accordingly, we have identified 

azithromycin as a potentially novel and targeted TGFβ-modulator which regulates 

T cell responses without broadly impacting other necessary TGFβ signaling 

effects.  

 

Additionally, the ability of azithromycin to exert protective effects independent of 

arginase suggests possible synergistic mechanisms between these two powerful 

immunomodulatory effectors. New therapeutic approaches focus on combination 

therapies to target the different elements of the altered immune response. 

According to Randhawa et al., combination immunotherapy including 

azathioprine and cyclosporine which act through independent mechanisms 

resulted in significantly improved lung function and reduced hospitalization along 

with reduced need for IV antibiotics [479]. Similarly, Obaid and colleagues report 

that combination immunotherapy including IL-21 and anti-IL10 antibodies act 

synergistically by correcting the different aspects of the altered immune response 

in patients with Hepatitis C Virus (HCV) infections [480]. Additionally, the NICE 

clinical guidelines recommended a combination of nivolumab and ipilimumab 

both of which boost the activity of the immune system against cancer cells [481]. 

Therefore, combination immunomodulatory therapies are widely considered in 

several disease models where different aspects of the immune response are 

altered. Here we identify two distinct immunomodulators which act through 

independent mechanisms to be considered for new potential combinations. 
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IV. Future directions 

 

i. Evaluating the contribution of L-arginine synthesis in modulating T 

cell responses to PA infections 

 

Our results show that arginase controls T cell proliferation and polarization 

towards Th1 and Th17 phenotypes. As discussed in Chapter 3, these effects are 

very likely to be mediated with L-arginine depletion. Future studies will evaluate 

the hypothesis that eliminating T cell L-arginine synthesis will impair Th17 

proliferation, recruitment, and cytokine production in response to PA infection. 

The studies will focus on whether L-citrulline metabolism regulates the 

accumulation and effector profile of T cells during PA infection, and whether PA-

associated pathophysiology or burden is regulated by T cell L-citrulline 

metabolism. L-citrulline is an essential precursor for L-arginine synthesis. Recent 

evidence supports the contribution of L-citrulline during immune cell activity, 

especially during host defense to infectious disease [482]. We will test whether T 

cells require L-citrulline to L-arginine synthesis to regulate neutrophil recruitment 

and defense to PA. This will be achieved using AslΔTcell mice, a novel mouse 

model in which T cells cannot synthesize L-arginine from L-citrulline. We 

anticipate decreased CD4+ T cell accumulation and Th17 responses in AslΔTcell 

mice as compared to littermate controls. We also expect decreased neutrophil 

accumulation and increased PA burden in the lungs of AslΔTcell mice as compared 

to littermate controls. If our hypothesis is correct, this will validate the effects of 

arginase on T cell activation and neutrophil recruitment via arginine depletion.  

 

ii. Evaluating the requirements of non-myeloid arginase in the anti-

inflammatory mechanisms of azithromycin   

 

It is important to note that we evaluated the effects of azithromycin in a murine 

model with conditional arginase deletion from macrophages and neutrophils. It is 

possible that other cellular sources of arginase can rescue the depleted myeloid 
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arginase. It is also possible that azithromycin promotes arginase expression in 

other immune cells. Therefore, it is essential to evaluate the effects of 

azithromycin with global arginase inhibition and in other models of conditional 

deletion from non-myeloid cells. We will evaluate the effects of azithromycin on 

the immune response in BALB/cJ mice and C57BL/6 mice dosed with BEC and 

L-norvaline. Also, will evaluate the immunomodulatory effects of azithromycin in 

AslΔTcell mice. Therefore, we will test if azithromycin can control inflammation and 

modulate T cell disposition in these models.  

 

Additionally, we will evaluate the requirement for TGF-β for azithromycin 

protective effects. This will be achieved by utilizing TGF-β neutralizing antibodies 

in azithromycin-treated Arg1Δm mice. Additionally, future studies will examine the 

effects of azithromycin on non-arginase mediated signaling pathways involved 

with wound healing including the Smad pathway [452]. This will be achieved by 

utilizing Lck-creSmad4 mice. These mice lack the Smad4 intracellular signaling 

molecule in lymphoid cells.  This protein is responsible for the signaling cascade 

through the receptor that binds to members of the TGFβ superfamily [453].  

 

iii. Evaluating the effects of arginase deletion in cystic fibrosis mouse 

models 

 

Work presented in this dissertation evaluated the immune response against 

chronic PA pneumonia in non-cystic fibrosis murine models. We used a mucoid 

PA strain isolated from a cystic fibrosis patient and we incorporated the bacteria 

in agarose beads to imitate the infection in humans. Heeckeren and colleagues 

show that this method causes a chronic infection in mice that mimics the 

colonization in humans. Intra-tracheal instillation of PA immobilized in agarose 

beads has proven to be very successful in revealing cystic fibrosis defects in 

bacterial clearance and it ensues an exaggerated inflammatory response [483]. 

However, it is important to take into consideration the various alterations of the 

immune response caused by CFTR mutations in humans (discussed in chapter 
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1). Therefore, future studies will utilize CFTR knock-out mice to validate that 

arginase controls inflammation and that azithromycin is effective in mice with 

mutated CFTR. At least 11 models of CFTR knock-out mice are available 

targeting the most common mutations ΔF508 and G551D [484]. Earlier models of 

CFTR knock-out mice were limited by the very low survival rate, lack of cystic 

fibrosis pulmonary manifestations, resistance to certain pathogens, and 

development of severe intestinal obstruction [484-489]. We will use CFTRtm1G551D 

and CFTRtm1EU to examine the effects of arginase and azithromycin in mice with 

the most common mutations, G551D and ΔF508. If our clinical studies reveal any 

preferential effects with specific mutations in humans, we will consider mouse 

models representative of these mutations. 

 

iv. Evaluating the clinical applicability of azithromycin anti-inflammatory 

mechanisms 

 

Investigating the clinical applicability of our results is still ongoing. In order to 

study the immune changes induced with azithromycin in patients with cystic 

fibrosis we proposed a prospective, unblinded, non-randomized study in which 

each patient will serve as his or her own control. Patients with cystic fibrosis 

currently taking azithromycin who meet the inclusion/exclusion criteria will be 

consented/assented.  Enrolled subjects will be taken off of azithromycin for 60-90 

days. Three sputum samples induced via inhalation of hypertonic saline will be 

collected from each patient at 3 different timepoints. The first sputum sample will 

be collected after the patient had been on azithromycin for at least a year and 

prior to the initiation of the 60-90 day azithromycin holiday. The second sputum 

sample will be collected by the end of the 60-90 day drug holiday period and 

patients will re-initiate azithromycin therapy. Finally, the third sample will be 

collected again 2-3 months after azithromycin re-initiation. This pilot clinical study 

is unique in that it generates matched data from subjects while on and off of 

azithromycin. Data generated from this study will be very useful in identifying 

pathways affected by azithromycin in humans. Additionally, this study will allow 
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us to identify specific genes and immune cells induced with azithromycin and the 

possible correlation with clinical effectiveness by measuring the patient’s 

performance when on and off of azithromycin. The study protocol has been fully 

established and the study was approved by the Institutional Review Board at the 

University of Kentucky. Three leading pulmonologists at the KY clinic are 

involved in the study and are pre-screening potential study patients. Our 

inclusion/exclusion criteria have been very carefully selected to minimize 

variability in immune function due to parameters including age, medication 

exposure, and other disease states.  Therefore, recruiting patients into our study 

has been challenging due to the strict inclusion/exclusion criteria. Future work 

aims to screen more potential subjects and to reassess the inclusion/exclusion 

criteria if no subjects were eligible. 

 

v. Additional future studies 

 

Future work includes extending our human studies and closely evaluating the 

effects of arginase on T cell responses and transmigration. We hope to broaden 

our human experiments to evaluate changes in arginase expression and its 

effects on T cell immunity in cystic fibrosis as well as other disease models. 

Additionally, future studies aim to delineate the NOS/arginase paradigm and how 

disruptions in arginine/NO balance can affect the beneficial effects of arginase 

expression in non-resolving inflammatory conditions. Moreover, future studies will 

evaluate the mechanisms involved in skewing T cell responses with azithromycin 

and with arginase and whether it is cytokine-mediated versus a specific direct 

effect on T cell activation. It is also essential to define the mechanisms by which 

arginase and azithromycin affect T cell disposition and compartmentalization in 

the alveolar versus the interstitial spaces. Further studies are also needed to 

define the effects on T cell chemotaxis and transmigration from the lymph nodes 

to the sites of infection. Last but not least, it is crucial to define the specific effects 

of arginase-1 versus arginase-2 isoforms and whether one and not the other 

modulates T-cell immunity in humans. 
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V. Conclusions 

 

I- Arginase-1 immunomodulatory role in PA pneumonia 

 

We conclude that decreases in inflammation in response to PA pneumonia 

achieved by polarizing macrophages to an alternatively-activated phenotype is 

dependent upon the production of arginase-1. Arginase-1 is an important 

immunomodulatory enzyme which suppresses exaggerated inflammation in PA 

pneumonia by controlling the Th1 and Th17 responses and therefore protecting 

against the excessive influx of neutrophils and pro-inflammatory macrophages. 

 

II- Azithromycin anti-inflammatory mechanism of action 

 

We conclude that azithromycin polarizes macrophages to an M2 phenotype via 

inhibition of STAT1 through cross-talk from the NF-κB signaling mediators. 

Azithromycin inhibits p65 nuclear translocation which results in IKKβ 

accumulation due to suppressed negative feedback. Thus, inhibiting the NF-κB 

signaling pathway cross-inhibits the STAT-1 pathway. This modulation is 

dependent on IKKβ and results in subsequent suppression of inflammatory gene 

activation while promoting an anti-inflammatory phenotype. 

   

III- Dependence of azithromycin-induced M2 macrophage phenotype on 

Arginase-1 to alter inflammation 

 

Azithromycin balances the immune responses in PA pneumonia via mechanisms 

independent of arginase.  Azithromycin protects against excessive morbidity and 

exaggerated inflammation by regulating the Th17/Treg balance and thus 

controlling the influx of neutrophils and inflammatory macrophages to the lungs 

regardless of arginase production. 
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Collectively, the work presented in this dissertation significantly improves our 

knowledge of the immune system in cystic fibrosis. Defining the 

immunomodulatory mechanisms of arginase and of azithromycin identifies new 

molecular targets for immunotherapy in patients with non-resolving pulmonary 

inflammation. Therefore, our research provides hope for the development of new 

targeted therapies that control inflammation and prevent lung injury without the 

need for long-term antibiotic use. Moreover, the ability of azithromycin to balance 

macrophage polarization provides a unique approach for controlling the function 

of the immune system without blunting the immune response or promoting 

severe systemic immune suppression like with steroids and other non-specific 

immunosuppressants.  

 

Additionally, the significance of this work extends to other immune-mediated 

diseases. In fact, immune dysregulation has been shown to be involved in many 

disorders where the role of the immune system in disease pathogenesis has not 

been previously considered. Immune dysregulation has been found to contribute 

to pathology in solid and hematological tumors, Alzheimer’s disease, Parkinson’s 

disease, major depressive disorder, autism, obsessive-compulsive disorders, as 

well as epilepsy, stroke, and brain injury [490, 491]. Therefore, defining key 

regulators of the immune response and the primary regulatory mechanisms 

involved identifies new drug targets for other diseases. 

 

Research from this dissertation provides insight into specific downstream 

signaling cascades and mechanisms involved with arginase and azithromycin’s 

immunomodulatory functions. We identify specific pathways which modulation 

can be of therapeutic value for targeted immunotherapy that could be 

generalizable to multiple immune-mediated disorders. 
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APPENDIX A: DATA COLLECTION FORM 
 
 
Subject Study Code Number _______________ 
 
 
Visit 1: Patient on Azithromycin 
 
Specimen Date _______________  
 
Specimen collection: _____Induced 
 _____Spontaneous 
Inclusion/Exclusion 
Age _______  CF diagnosis age __________  CFTR 
mutation_____________ 
 
Receiving immunomodulatory agent    Yes  No 
     (steroids—date last dose received__________) 
Pregnant, lactating      Yes  No 
Immunomodulatory disease     Yes  No 
     (cancer, DM, obesity, malnutrition, SLE 

HIV-infection, transplantation) 
 
Azithromycin Treatment 
Receiving azithromycin     Yes  No 
 Dose  __________ 
 Start  __________ 
 Duration __________ 
 
Demographics 
Wt ____ Ht ____ Gender ____ 
Ethnicity ___ white ___ black ___ Asian ___ other   Hispanic ___yes ___no 
Current medications: 
 Drug  Start  Stop 
 ____________ ____________ _____________ 
 ____________ ____________ _____________ 
 ____________ ____________ _____________ 
 ____________ ____________ _____________ 
 ____________ ____________ _____________ 
 ____________ ____________ _____________ 
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Subject Study Code Number _______________ 
 
Other drugs:    
     Non-
prescription_______________________________________________________ 
     Other vitamins, 
supplements_____________________________________________________ 
 
 
 
Labs:  Date _________ 
Metabolic panel:  Glucose____ BUN____ SrCr____ 
WBC____ Hgb____ Hct____   Diff:  N___ L___ E___ B___            
 
Pulmonary Function Tests: 
Date _________ FEV1 ____ FVC ____ 
Date _________ FEV1 ____ FVC ____ 
Date _________ FEV1 ____ FVC ____ 
 
Pulmonary Cultures 
Date  Result/organism   Sensitivities 
_________ _________________________  
_________ _________________________  
_________ _________________________  
_________ _________________________  
_________ _________________________  
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Subject Study Code Number _______________ 
 
Visit 2: After Azithromycin Holiday 
 
Specimen Date _______________  
 
Specimen collection: _____Induced 
 _____Spontaneous 
 
Demographics 
Wt ____ Ht ____  
 
Current medications: 
 Drug  Start  Stop 
 ____________ ____________ _____________ 
 ____________ ____________ _____________ 
 ____________ ____________ _____________ 
 ____________ ____________ _____________ 
 ____________ ____________ _____________ 
 ____________ ____________ _____________ 
 
Other drugs:    
     Non-
prescription_______________________________________________________
_______ 
     Other vitamins, 
supplements_____________________________________________________ 
 
 
 
Labs:  Date _________ 
Metabolic panel:  Glucose____ BUN____ SrCr____ 
WBC____ Hgb____ Hct____   Diff:  N___ L___ E___ B___            
 
Pulmonary Function Tests: 
Date _________ FEV1 ____ FVC ____ 
Date _________ FEV1 ____ FVC ____ 
Date _________ FEV1 ____ FVC ____ 
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Subject Study Code Number _______________ 
 
 
Pulmonary Cultures 
Date  Result/organism   Sensitivities 
_________ _________________________  
_________ _________________________ 
_________ _________________________  
_________ _________________________  
_________ _________________________  
 
Visit 3: After Azithromycin Restart 
 
Specimen Date _______________  
 
Specimen collection: _____Induced 
 _____Spontaneous 
 
Demographics 
Wt ____ Ht ____  
 
Current medications: 
 Drug  Start  Stop 
 ____________ ____________ _____________ 
 ____________ ____________ _____________ 
 ____________ ____________ _____________ 
 ____________ ____________ _____________ 
 ____________ ____________ _____________ 
 ____________ ____________ _____________ 
 
Other drugs:    
     Non-
prescription_______________________________________________________
_______ 
     Other vitamins, 
supplements_____________________________________________________ 
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Subject Study Code Number _______________ 
 
 
 
Labs:  Date _________ 
Metabolic panel:  Glucose____ BUN____ SrCr____ 
WBC____ Hgb____ Hct____   Diff:  N___ L___ E___ B___            
 
Pulmonary Function Tests: 
Date _________ FEV1 ____ FVC ____ 
Date _________ FEV1 ____ FVC ____ 
Date _________ FEV1 ____ FVC ____ 
 
Pulmonary Cultures 
Date  Result/organism   Sensitivities 
_________ _________________________  
_________ _________________________  
_________ _________________________  
_________ _________________________  
_________ _________________________  
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APPENDIX B: HUMAN GENES FOR ARRAY PLATES 
 
 
384 well Micro Fluidic Card; 47 genes + 1 mandatory control; 
Format 48, Part #  4342253 
 
Wel
l Gene Fisher # 

A1 CD86 Hs01567026_m1 
A2 CD64/CD64 Hs00417598_m1 
A3 ITGAM Hs00167304_m1 
A4 CD14 Hs02621496_s1 
A5 CD68 Hs02836816_g1 
A6 CD23/FCER2 Hs00233627_m1 
A7 CD40 Hs01002915_g1 
A8 STAT1 Hs01013996_m1 
A9 SOCS3 Hs02330328_s1 

A10 SLAMF1 Hs00234149_m1 
A11 RNA18S5 manufacturing control (housekeeping gene)  
A12 TNF Hs00174128_m1 
A13 IL6 Hs00174131_m1 
A14 IL12B Hs01011518_m1 
A15 IL1B Hs01555410_m1 
A16 IL10 Hs00961622_m1 
A17 TGFB1 Hs00998133_m1 
A18 IL12A Hs01073447_m1 
A19 IL8/CXCL8 Hs00174103_m1 
A20 IL23A Hs00372324_m1 
A21 IL4RA Hs00965056_m1 
A22 IL27RA Hs00945029_m1 
A23 HLA-DRA Hs00219575_m1 
A24 MARCO Hs00198937_m1 

B1 CCL17 Hs00171074_m1 
B2 CCR2 Hs00704702_s1 
B3 TREM2 Hs00219132_m1 
B4 CCL22 Hs01574247_m1 
B5 CCL18 Hs00268113_m1 
B6 NOS2 Hs01075529_m1 
B7 RETNLB Hs00395669_m1 
B8 ARG1 Hs00163660_m1 
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B9 PPARG Hs01115513_m1 
B10 IKBKB Hs01559460_m1 
B11 ARG2 Hs00982833_m1 
B12 IDO1 Hs00984148_m1 
B13 IRF1 Hs00971965_m1 
B14 MRC1/CD206 Hs00267207_m1 
B15 NLRP1 Hs00248187_m1 
B16 CASP1 Hs00354836_m1 
B17 MAP1LC3B Hs00797944_s1 
B18 AKT1 Hs00178289_m1 
B19 PCNA Hs00427214_g1 
B20 ATG5 Hs00169468_m1 
B21 MTOR Hs00234508_m1 

B22 
GCN2/EIF2AK
4 Hs01010957_m1 

B23 GAPDH Hs02786624_g1 

B24 
CCND1/cyclin 
D1 Hs00765553_m1 

 
 

 

 

 

 

  



 272 

REFERENCES 
 
1. MacKenzie, T., et al., Longevity of patients with cystic fibrosis in 2000 to 

2010 and beyond: survival analysis of the Cystic Fibrosis Foundation 
patient registry. Ann Intern Med, 2014. 161(4): p. 233-41. 

2. Cystic Fibrosis Foundation. About cystic fibrosis. 2017; Available from: 
https://www.cff.org/What-is-CF/About-Cystic-Fibrosis/. 

3. Cantin, A.M., et al., Inflammation in cystic fibrosis lung disease: 
Pathogenesis and therapy. J Cyst Fibros, 2015. 14(4): p. 419-30. 

4. Health Research Funding. 17 amazing cystic fibrosis life expectancy 
statistics. 2015; Available from: https://healthresearchfunding.org/17-
amazing-cystic-fibrosis-life-expectancy-statistics/. 

5. Lane, L. Facts and figures: Cystic fibrosis in Canada. 2010; Available 
from: http://www.med.uottawa.ca/sim/data/Cystic_fibrosis_e.htm. 

6. Cystic Fibrosis Foundation, 2016 patient registry annual data report. 2017. 
7. Ferreira, L.M. Cystic fibrosis life expectancy. 2017; Available from: 

https://cysticfibrosisnewstoday.com/cystic-fibrosis-life-expectancy/. 
8. Nichols, D.P. and J.F. Chmiel, Inflammation and its genesis in cystic 

fibrosis. Pediatr Pulmonol, 2015. 50 Suppl 40: p. S39-56. 
9. Davis, P.B., M. Drumm, and M.W. Konstan, Cystic fibrosis. Am J Respir 

Crit Care Med, 1996. 154(5): p. 1229-56. 
10. Bedrossian, C.W., et al., The lung in cystic fibrosis. A quantitative study 

including prevalence of pathologic findings among different age groups. 
Hum Pathol, 1976. 7(2): p. 195-204. 

11. Meyerholz, D.K., et al., Loss of cystic fibrosis transmembrane 
conductance regulator function produces abnormalities in tracheal 
development in neonatal pigs and young children. Am J Respir Crit Care 
Med, 2010. 182(10): p. 1251-61. 

12. Hays, S.R., et al., Structural changes to airway smooth muscle in cystic 
fibrosis. Thorax, 2005. 60(3): p. 226-8. 

13. Kreda, S.M., C.W. Davis, and M.C. Rose, CFTR, mucins, and mucus 
obstruction in cystic fibrosis. Cold Spring Harb Perspect Med, 2012. 2(9): 
p. a009589. 

14. Sly, P.D., et al., Risk factors for bronchiectasis in children with cystic 
fibrosis. N Engl J Med, 2013. 368(21): p. 1963-70. 

15. Davies, J.C., E.W. Alton, and A. Bush, Cystic fibrosis. BMJ, 2007. 
335(7632): p. 1255-9. 

16. Hays, S.R. and J.V. Fahy, Characterizing mucous cell remodeling in cystic 
fibrosis: relationship to neutrophils. Am J Respir Crit Care Med, 2006. 
174(9): p. 1018-24. 

17. Moffett, K.S., Pseudomonas aeruginosa in patients with cystic fibrosis. 
Antimicrob. Ther, 2010. 1(1). 

18. Saiman, L. Pivotal new drugs for cystic fibrosis. 2003. 
19. Van Daele, S.G., et al., Epidemiology of Pseudomonas aeruginosa in a 

cystic fibrosis rehabilitation centre. Eur Respir J, 2005. 25(3): p. 474-81. 

https://www.cff.org/What-is-CF/About-Cystic-Fibrosis/
https://healthresearchfunding.org/17-amazing-cystic-fibrosis-life-expectancy-statistics/
https://healthresearchfunding.org/17-amazing-cystic-fibrosis-life-expectancy-statistics/
http://www.med.uottawa.ca/sim/data/Cystic_fibrosis_e.htm
https://cysticfibrosisnewstoday.com/cystic-fibrosis-life-expectancy/


 273 

20. Bhagirath, A.Y., et al., Cystic fibrosis lung environment and Pseudomonas 
aeruginosa infection. BMC Pulm Med, 2016. 16(1): p. 174. 

21. Heijerman, H., Infection and inflammation in cystic fibrosis: a short review. 
J Cyst Fibros, 2005. 4 Suppl 2: p. 3-5. 

22. Smith, J.J., et al., Cystic fibrosis airway epithelia fail to kill bacteria 
because of abnormal airway surface fluid. Cell, 1996. 85(2): p. 229-236. 

23. Boucher, R.C., An overview of the pathogenesis of cystic fibrosis lung 
disease. Adv Drug Deliv Rev, 2002. 54(11): p. 1359-71. 

24. Matsui, H., et al., Evidence for periciliary liquid layer depletion, not 
abnormal ion composition, in the pathogenesis of cystic fibrosis airways 
disease. Cell, 1998. 95(7): p. 1005-1015. 

25. Gao, Z. and X. Su, CFTR regulates acute inflammatory responses in 
macrophages. QJM, 2015. 108(12): p. 951-8. 

26. Del Porto, P., et al., Dysfunctional CFTR alters the bactericidal activity of 
human macrophages against Pseudomonas aeruginosa. PLoS One, 
2011. 6(5): p. e19970. 

27. Tarique, A.A., et al., CFTR-dependent defect in alternatively-activated 
macrophages in cystic fibrosis. Journal of Cystic Fibrosis, 2017. 16(4): p. 
475-482. 

28. Anke, D., et al., CFTR regulates phagosome acidification in macrophages 
and alters bactericidal activity. Nature Cell Biol, 2006. 8: p. 933-944. 

29. Leroy, C., et al., Regulation of ENaC and CFTR expression with K+ 
channel modulators and effect on fluid absorption across alveolar 
epithelial cells. American Journal of Physiology-Lung Cellular and 
Molecular Physiology, 2006. 291(6): p. L1207-L1219. 

30. Lu, M., et al., CFTR is required for PKA-regulated ATP sensitivity of Kir1. 
1 potassium channels in mouse kidney. The Journal of clinical 
investigation, 2006. 116(3): p. 797-807. 

31. Wang, J., K.A. Haanes, and I. Novak, Purinergic regulation of CFTR and 
Ca2+-activated Cl− channels and K+ channels in human pancreatic duct 
epithelium. American Journal of Physiology-Cell Physiology, 2013. 304(7): 
p. C673-C684. 

32. Gabriel, S.E., et al., CFTR and outward rectifying chloride channels are 
distinct proteins with a regulatory relationship. Nature, 1993. 363(6426): p. 
263-8. 

33. Egan, M.E., E.M. Schwiebert, and W.B. Guggino, Differential expression 
of ORCC and CFTR induced by low temperature in CF airway epithelial 
cells. Am J Physiol, 1995. 268(1 Pt 1): p. C243-51. 

34. Fischer, H., et al., CFTR and calcium-activated chloride channels in 
primary cultures of human airway gland cells of serous or mucous 
phenotype. Am J Physiol Lung Cell Mol Physiol, 2010. 299(4): p. L585-94. 

35. Hendrick, S.M., et al., Bile acids stimulate chloride secretion through 
CFTR and calcium-activated Cl- channels in Calu-3 airway epithelial cells. 
Am J Physiol Lung Cell Mol Physiol, 2014. 307(5): p. L407-18. 



 274 

36. Long, F.R., R.S. Williams, and R.G. Castile, Structural airway 
abnormalities in infants and young children with cystic fibrosis. The 
Journal of pediatrics, 2004. 144(2): p. 154-161. 

37. Fauvart, M., V.N. De Groote, and J. Michiels, Role of persister cells in 
chronic infections: clinical relevance and perspectives on anti-persister 
therapies. J Med Microbiol, 2011. 60(Pt 6): p. 699-709. 

38. Ferroni, A., et al., Effect of mutator P. aeruginosa on antibiotic resistance 
acquisition and respiratory function in cystic fibrosis. Pediatr Pulmonol, 
2009. 44(8): p. 820-5. 

39. Lewis, K., Persister cells: molecular mechanisms related to antibiotic 
tolerance, in Antibiotic resistance. 2012, Springer. p. 121-133. 

40. Oliver, A., Mutators in cystic fibrosis chronic lung infection: prevalence, 
mechanisms, and consequences for antimicrobial therapy. International 
Journal of Medical Microbiology, 2010. 300(8): p. 563-572. 

41. Hogardt, M. and J. Heesemann, Microevolution of Pseudomonas 
aeruginosa to a chronic pathogen of the cystic fibrosis lung. Curr Top 
Microbiol Immunol, 2013. 358: p. 91-118. 

42. Warren, A.E., et al., Genotypic and phenotypic variation in Pseudomonas 
aeruginosa reveals signatures of secondary infection and mutator activity 
in certain cystic fibrosis patients with chronic lung infections. Infection and 
immunity, 2011. 79(12): p. 4802-4818. 

43. Zimakoff, J., et al., Epidemiology of Pseudomonas aeruginosa infection 
and the role of contamination of the environment in a cystic fibrosis clinic. 
Journal of Hospital Infection, 1983. 4(1): p. 31-40. 

44. Maselli, J.H., et al., Risk factors for initial acquisition of Pseudomonas 
aeruginosa in children with cystic fibrosis identified by newborn screening. 
Pediatric pulmonology, 2003. 35(4): p. 257-262. 

45. Tingpej, P., et al., Phenotypic characterization of clonal and nonclonal 
Pseudomonas aeruginosa strains isolated from lungs of adults with cystic 
fibrosis. Journal of clinical microbiology, 2007. 45(6): p. 1697-1704. 

46. Emerson, J., et al., Pseudomonas aeruginosa and other predictors of 
mortality and morbidity in young 

children with cystic fibrosis. Pediatr Pulmonol, 2002. 34(2): p. 91-100. 
47. Hudson, V.L., C.L. Wielinski, and W.E. Regelmann, Prognostic 

implications of initial oropharyngeal bacterial flora in patients with cystic 
fibrosis diagnosed before the age of two years. J Pediatr, 1993. 122(6): p. 
854-60. 

48. McCarthy, R.R., et al., A new regulator of pathogenicity (bvlR) is required 
for full virulence and tight microcolony formation in Pseudomonas 
aeruginosa. Microbiology, 2014. 160(7): p. 1488-1500. 

49. Nguyen, A.T., et al., Iron depletion enhances production of antimicrobials 
by Pseudomonas aeruginosa. Journal of bacteriology, 2015: p. JB. 00072-
15. 

50. Coutinho, H.D., V.S. Falcao-Silva, and G.F. Goncalves, Pulmonary 
bacterial pathogens in cystic fibrosis patients and antibiotic therapy: a tool 
for the health workers. Int Arch Med, 2008. 1(1): p. 24. 



 275 

51. Pihet, M., et al., Occurrence and relevance of filamentous fungi in 
respiratory secretions of patients with cystic fibrosis–a review. Medical 
mycology, 2009. 47(4): p. 387-397. 

52. Mouhajir, A., et al., Long-term Rasamsonia argillacea complex species 
colonization revealed by PCR amplification of repetitive DNA sequences in 
cystic fibrosis patients. Journal of clinical microbiology, 2016. 54(11): p. 
2804-2812. 

53. Lim, Y.W., et al., Metagenomics and metatranscriptomics: windows on 
CF-associated viral and microbial communities. Journal of Cystic Fibrosis, 
2013. 12(2): p. 154-164. 

54. Willner, D., et al., Metagenomic analysis of respiratory tract DNA viral 
communities in cystic fibrosis and non-cystic fibrosis individuals. PloS one, 
2009. 4(10): p. e7370. 

55. Imundo, L., et al., Cystic fibrosis epithelial cells have a receptor for 
pathogenic bacteria on their apical surface. Proc Natl Acad Sci U S A, 
1995. 92(7): p. 3019-23. 

56. de Bentzmann, S., et al., Asialo GM1 is a receptor for Pseudomonas 
aeruginosa adherence to regenerating respiratory epithelial cells. Infect 
Immun, 1996. 64(5): p. 1582-8. 

57. DiMango, E., et al., Activation of NF-kappaB by adherent Pseudomonas 
aeruginosa in normal and cystic fibrosis respiratory epithelial cells. J Clin 
Invest, 1998. 101(11): p. 2598-605. 

58. Venkatakrishnan, A., et al., Exaggerated Activation of Nuclear Factor-κ B 
and Altered I κ B-β Processing in Cystic Fibrosis Bronchial Epithelial Cells. 
American journal of respiratory cell and molecular biology, 2000. 23(3): p. 
396-403. 

59. Parker, D., et al., Induction of type I interferon signaling by Pseudomonas 
aeruginosa is diminished in cystic fibrosis epithelial cells. American journal 
of respiratory cell and molecular biology, 2012. 46(1): p. 6-13. 

60. Pier, G.B., M. Grout, and T.S. Zaidi, Cystic fibrosis transmembrane 
conductance regulator is an epithelial cell receptor for clearance of 
Pseudomonas aeruginosa from the lung. Proceedings of the National 
Academy of Sciences, 1997. 94(22): p. 12088-12093. 

61. Pier, G.B., et al., Role of mutant CFTR in hypersusceptibility of cystic 
fibrosis patients to lung infections. Science, 1996. 271(5245): p. 64-67. 

62. Coleman, F.T., et al., Hypersusceptibility of cystic fibrosis mice to chronic 
Pseudomonas aeruginosa oropharyngeal colonization and lung infection. 
Proc Natl Acad Sci U S A, 2003. 100(4): p. 1949-54. 

63. Bruscia, E.M. and T.L. Bonfield, Innate and Adaptive Immunity in Cystic 
Fibrosis. Clin Chest Med, 2016. 37(1): p. 17-29. 

64. Zhou, Y., et al., Cystic fibrosis transmembrane conductance regulator 
recruitment to phagosomes in neutrophils. Journal of innate immunity, 
2013. 5(3): p. 219-230. 

65. Branzk, N., et al., Neutrophils sense microbe size and selectively release 
neutrophil extracellular traps in response to large pathogens. Nat 
Immunol, 2014. 15(11): p. 1017-25. 



 276 

66. Dubois, A.V., et al., Influence of DNA on the activities and inhibition of 
neutrophil serine proteases in cystic fibrosis sputum. Am J Respir Cell Mol 
Biol, 2012. 47(1): p. 80-6. 

67. Tiringer, K., et al., A Th17-and Th2-skewed cytokine profile in cystic 
fibrosis lungs represents a potential risk factor for Pseudomonas 
aeruginosa infection. American journal of respiratory and critical care 
medicine, 2013. 187(6): p. 621-629. 

68. Hartl, D., et al., Pulmonary TH2 response in Pseudomonas aeruginosa-
infected patients with cystic fibrosis. J Allergy Clin Immunol, 2006. 117(1): 
p. 204-211. 

69. Iannitti, R.G., et al., Th17/Treg imbalance in murine cystic fibrosis is linked 
to indoleamine 2,3-dioxygenase deficiency but corrected by kynurenines. 
Am J Respir Crit Care Med, 2013. 187(6): p. 609-20. 

70. Moss, R., Y.P. Hsu, and L. Olds, Cytokine dysregulation in activated cystic 
fibrosis (CF) peripheral lymphocytes. Clinical & Experimental Immunology, 
2000. 120(3): p. 518-525. 

71. Knowles, M.R. and R.C. Boucher, Mucus clearance as a primary innate 
defense mechanism for mammalian airways. The Journal of clinical 
investigation, 2002. 109(5): p. 571-577. 

72. Bals, R. and P.S. Hiemstra, Innate immunity in the lung: how epithelial 
cells fight against respiratory pathogens. Eur Respir J, 2004. 23(2): p. 
327-33. 

73. Pohl, C., et al., Barrier functions and paracellular integrity in human cell 
culture models of the proximal respiratory unit. European journal of 
pharmaceutics and biopharmaceutics, 2009. 72(2): p. 339-349. 

74. Hoegger, M.J., et al., Impaired mucus detachment disrupts mucociliary 
transport in a piglet model of cystic fibrosis. Science, 2014. 345(6198): p. 
818-22. 

75. Quinton, P.M., Role of epithelial HCO3− transport in mucin secretion: 
lessons from cystic fibrosis. American Journal of Physiology-Cell 
Physiology, 2010. 299(6): p. C1222-C1233. 

76. Abou Alaiwa, M.H., et al., pH modulates the activity and synergism of the 
airway surface liquid antimicrobials beta-defensin-3 and LL-37. Proc Natl 
Acad Sci U S A, 2014. 111(52): p. 18703-8. 

77. Goldstein, W. and G. Doring, Lysosomal enzymes from 
polymorphonuclear leukocytes and proteinase inhibitors in patients with 
cystic fibrosis. Am Rev Respir Dis, 1986. 134(1): p. 49-56. 

78. Bruce, M.C., et al., Biochemical and pathologic evidence for proteolytic 
destruction of lung connective tissue in cystic fibrosis. Am Rev Respir Dis, 
1985. 132(3): p. 529-35. 

79. Coyne, C.B., et al., Regulation of airway tight junctions by proinflammatory 
cytokines. Mol Biol Cell, 2002. 13(9): p. 3218-34. 

80. Losa, D., et al., Airway epithelial cell integrity protects from cytotoxicity of 
Pseudomonas aeruginosa quorum-sensing signals. American journal of 
respiratory cell and molecular biology, 2015. 53(2): p. 265-275. 



 277 

81. Koehler, D.R., et al., Lung inflammation as a therapeutic target in cystic 
fibrosis. American journal of respiratory cell and molecular biology, 2004. 
31(4): p. 377-381. 

82. Devaney, J.M., et al., Neutrophil elastase up-regulates interleukin-8 via 
toll-like receptor 4. FEBS Lett, 2003. 544(1-3): p. 129-32. 

83. Takeda, K., T. Kaisho, and S. Akira, Toll-like receptors. Ann. Rev. 
Immunol., 2003. 21: p. 335-376. 

84. Lai, H.-C., et al., Risk of persistent growth impairment after alternate-day 
prednisone treatment in children with cystic fibrosis. New England Journal 
of Medicine, 2000. 342(12): p. 851-859. 

85. Kube, D., et al., Proinflammatory cytokine responses to P. aeruginosa 
infection in human airway epithelial cell lines. American Journal of 
Physiology-Lung Cellular and Molecular Physiology, 2001. 280(3): p. 
L493-L502. 

86. Weber, A.J., et al., Activation of NF-κB in airway epithelial cells is 
dependent on CFTR trafficking and Cl− channel function. American 
Journal of Physiology-Lung Cellular and Molecular Physiology, 2001. 
281(1): p. L71-L78. 

87. Perez, A., et al., CFTR inhibition mimics the cystic fibrosis inflammatory 
profile. American Journal of Physiology-Lung Cellular and Molecular 
Physiology, 2007. 292(2): p. L383-L395. 

88. Saadane, A., J. Soltys, and M. Berger, Role of IL-10 deficiency in 
excessive nuclear factor-κB activation and lung inflammation in cystic 
fibrosis transmembrane conductance regulator knockout mice. Journal of 
allergy and clinical immunology, 2005. 115(2): p. 405-411. 

89. Shih, V.F., et al., A single NFkappaB system for both canonical and non-
canonical signaling. Cell Res, 2011. 21(1): p. 86-102. 

90. Sun, S.-C., Non-canonical NF-κB signaling pathway. Cell research, 2011. 
21(1): p. 71. 

91. Oeckinghaus, A. and S. Ghosh, The NF-kappaB family of transcription 
factors and its regulation. Cold Spring Harb Perspect Biol, 2009. 1(4): p. 
a000034. 

92. Pahl, H.L., Activators and target genes of Rel/NF-κB transcription factors. 
Oncogene, 1999. 18(49): p. 6853. 

93. Ghosh, S. and M. Karin, Missing pieces in the NF-kappaB puzzle. Cell, 
2002. 109 Suppl: p. S81-96. 

94. Huang, W.C., J.J. Chen, and C.C. Chen, c-Src-dependent tyrosine 
phosphorylation of IKKbeta is involved in tumor necrosis factor-alpha-
induced intercellular adhesion molecule-1 expression. J Biol Chem, 2003. 
278(11): p. 9944-52. 

95. Li, J.-D., et al., Activation of NF-κB via a Src-dependent Ras-MAPK-
pp90rsk pathway is required for Pseudomonas aeruginosa-induced mucin 
overproduction in epithelial cells. Proceedings of the National Academy of 
Sciences, 1998. 95(10): p. 5718-5723. 



 278 

96. Ferrari, C.K.B., THE BIOLOGY OF NUCLEAR FACTOR KAPPA BETA 
(NFkB) IN HEALTH AND PATHOLOGY. Researchers World, 2011. 2(3): 
p. 53. 

97. Bodas, M. and N. Vij, The NF-kappaB signaling in cystic fibrosis lung 
disease: pathophysiology and therapeutic potential. Discov Med, 2010. 
9(47): p. 346-56. 

98. Carrabino, S., et al., Dysregulated interleukin-8 secretion and NF-kappaB 
activity in human cystic fibrosis nasal epithelial cells. J Cyst Fibros, 2006. 
5(2): p. 113-9. 

99. Wang, H., et al., CFTR Controls the Activity of NF-κB by Enhancing the 
Degradation of TRADD. Cellular Physiology and Biochemistry, 2016. 
40(5): p. 1063-1078. 

100. Tabary, O., et al., Calcium-dependent regulation of NF-κB activation in 
cystic fibrosis airway epithelial cells. Cellular signalling, 2006. 18(5): p. 
652-660. 

101. Saadane, A., J. Soltys, and M. Berger, Acute Pseudomonas challenge in 
cystic fibrosis mice causes prolonged nuclear factor-kappa B activation, 
cytokine secretion, and persistent lung inflammation. J Allergy Clin 
Immunol, 2006. 117(5): p. 1163-9. 

102. Pohl, K., et al., A neutrophil intrinsic impairment affecting Rab27a and 
degranulation in cystic fibrosis is corrected by CFTR potentiator therapy. 
Blood, 2014. 124(7): p. 999-1009. 

103. Chmiel, F., M. Berger, and M.W. Konstan, The role of inflammation in the 
pathophysiology of CF lung disease. Clin Rev Allergy Immunol, 2002. 23: 
p. 5-27. 

104. Konstan, M.W., et al., Bronchoalveolar lavage findings in cystic fibrosis 
patients with stable, clinically mild lung disease suggest ongoing infection 
and inflammation. Am J Respir Crit Care Med, 1994. 150(2): p. 448-54. 

105. Birrer, P., et al., Protease-antiprotease imbalance in the lungs of children 
with cystic fibrosis. Am J Respir Crit Care Med, 1994. 150(1): p. 207-13. 

106. Hartl, D., et al., Innate immunity in cystic fibrosis lung disease. J Cyst 
Fibros, 2012. 11(5): p. 363-82. 

107. Gao, L., et al., Abnormal glutathione transport in cystic fibrosis airway 
epithelia. Am J Physiol, 1999. 277(1 Pt 1): p. L113-8. 

108. Andrews, R.P., et al., Analysis of the life cycle of stat6. Continuous cycling 
of STAT6 is required for IL-4 signaling. J Biol Chem, 2002. 277(39): p. 
36563-9. 

109. Grasemann, H., et al., Increased arginase activity in cystic fibrosis 
airways. Am J Respir Crit Care Med, 2005. 172(12): p. 1523-8. 

110. Wagner, C.J., C. Schultz, and M.A. Mall, Neutrophil elastase and matrix 
metalloproteinase 12 in cystic fibrosis lung disease. Molecular and cellular 
pediatrics, 2016. 3(1): p. 25. 

111. Painter, R.G., et al., The role of chloride anion and CFTR in killing of 
Pseudomonas aeruginosa by normal and CF neutrophils. Journal of 
leukocyte biology, 2008. 83(6): p. 1345. 



 279 

112. Painter, R.G., et al., CFTR‐mediated halide transport in phagosomes of 
human neutrophils. Journal of leukocyte biology, 2010. 87(5): p. 933-942. 

113. Vandivier, R.W., et al., Impaired clearance of apoptotic cells from cystic 
fibrosis airways. Chest, 2002. 121(3): p. 89S. 

114. Vandivier, R.W., et al., Elastase-mediated phosphatidylserine receptor 
cleavage impairs apoptotic cell clearance in cystic fibrosis and 
bronchiectasis. The Journal of clinical investigation, 2002. 109(5): p. 661-
670. 

115. Vandivier, R.W., P.M. Henson, and I.S. Douglas, Burying the dead:  The 
impact of failed apoptotic cell removal (efferocytosis) on chronic 
inflammatory lung disease. Chest, 2006. 129: p. 1673-1682. 

116. Painter, R.G., et al., CFTR expression in human neutrophils and the 
phagolysosomal chlorination defect in cystic fibrosis. Biochemistry, 2006. 
45(34): p. 10260-10269. 

117. Bartling, T.R. and M.L. Drumm, Oxidative stress causes IL8 promoter 
hyperacetylation in cystic fibrosis airway cell models. Am J Respir Cell Mol 
Biol, 2009. 40(1): p. 58-65. 

118. Nauseef, W.M. and N. Borregaard, Neutrophils at work. Nature 
immunology, 2014. 15(7): p. 602. 

119. Ingersoll, S.A., et al., Mature cystic fibrosis airway neutrophils suppress T 
cell function: evidence for a role of arginase 1 but not programmed death-
ligand 1. J Immunol, 2015. 194(11): p. 5520-8. 

120. Margaroli, C. and R. Tirouvanziam, Neutrophil plasticity enables the 
development of pathological microenvironments: implications for cystic 
fibrosis airway disease. Molecular and cellular pediatrics, 2016. 3(1): p. 
38. 

121. Norian, L.A., et al., Tumor-infiltrating regulatory dendritic cells inhibit CD8+ 
T cell function via L-arginine metabolism. Cancer research, 2009. 69(7): p. 
3086-3094. 

122. Burrack, K.S., et al., Myeloid Cell Arg1 Inhibits Control of Arthritogenic 
Alphavirus Infection by Suppressing Antiviral T Cells. PLoS Pathog, 2015. 
11(10): p. e1005191. 

123. Doring, G., et al., Cleavage of lymphocyte surface antigens CD2, CD4, 
and CD8 by polymorphonuclear leukocyte elastase and cathepsin G in 
patients with cystic fibrosis. J Immunol, 1995. 154(9): p. 4842-50. 

124. Bank, U., et al., Selective proteolytic cleavage of IL-2 receptor and IL-6 
receptor ligand binding chains by neutrophil-derived serine proteases at 
foci of inflammation. J Interferon Cytokine Res, 1999. 19(11): p. 1277-87. 

125. Sharpe, A.H., et al., The function of programmed cell death 1 and its 
ligands in regulating autoimmunity and infection. Nature immunology, 
2007. 8(3): p. 239. 

126. Brennan, S., et al., Alveolar macrophages and CC chemokines are 
increased in children with cystic fibrosis. Eur Respir J, 2009. 34(3): p. 655-
61. 



 280 

127. Locati, M., A. Mantovani, and A. Sica, Macrophage activation and 
polarization as an adaptive component of innate immunity, in Advances in 
immunology. 2013, Elsevier. p. 163-184. 

128. Wang, N., H. Liang, and K. Zen, Molecular mechanisms that influence the 
macrophage M1–M2 polarization balance. Frontiers in immunology, 2014. 
5: p. 614. 

129. Rath, M., et al., Metabolism via arginase or nitric oxide synthase: two 
competing arginine pathways in macrophages. Frontiers in immunology, 
2014. 5: p. 532. 

130. Wijnands, K.A., et al., Arginine and citrulline and the immune response in 
sepsis. Nutrients, 2015. 7(3): p. 1426-1463. 

131. Yang, Z. and X.-F. Ming, Functions of arginase isoforms in macrophage 
inflammatory responses: impact on cardiovascular diseases and metabolic 
disorders. Frontiers in immunology, 2014. 5: p. 533. 

132. Amin, A., The metabolomics of nitric oxide and reactive nitrogen species 
in immune editing tumor milieu: influence of nitric oxide-modulating 
therapies. J Drug Metab Toxicol S, 2012. 8: p. 2. 

133. Bruscia, E.M. and T.L. Bonfield, Cystic Fibrosis Lung Immunity: The Role 
of the Macrophage. J Innate Immun, 2016. 8(6): p. 550-563. 

134. Azad, A.K., M.V. Rajaram, and L.S. Schlesinger, Exploitation of the 
Macrophage Mannose Receptor (CD206) in Infectious Disease 
Diagnostics and Therapeutics. J Cytol Mol Biol, 2014. 1(1). 

135. Maarsingh, H., T. Pera, and H. Meurs, Arginase and pulmonary diseases. 
Naunyn-Schmiedeberg's archives of pharmacology, 2008. 378(2): p. 171. 

136. Hopkins, N., et al., Anti-inflammatory effect of augmented nitric oxide 
production in chronic lung infection. J Pathol, 2006. 209(2): p. 198-205. 

137. Burrack, K.S. and T.E. Morrison, The role of myeloid cell activation and 
arginine metabolism in the pathogenesis of virus-induced diseases. Front 
Immunol, 2014. 5: p. 428. 

138. Modolell, M., et al., Local suppression of T cell responses by arginase-
induced L-arginine depletion in nonhealing leishmaniasis. PLoS neglected 
tropical diseases, 2009. 3(7): p. e480. 

139. Weisser, S.B., et al., Arginase activity in alternatively activated 
macrophages protects PI3Kp110δ deficient mice from dextran sodium 
sulfate induced intestinal inflammation. European journal of immunology, 
2014. 44(11): p. 3353-3367. 

140. Belguendouz, H., et al., Cytokines Modulate the "Immune-Metabolism" 
Interactions during Behcet Disease: Effect on Arginine Metabolism. Int J 
Inflam, 2015. 2015: p. 241738. 

141. Knippenberg, S., et al., Arginase 1 activity worsens lung‐protective 
immunity against Streptococcus pneumoniae infection. European journal 
of immunology, 2015. 45(6): p. 1716-1726. 

142. Mehl, A., et al., Effect of arginase inhibition on pulmonary L-arginine 
metabolism in murine Pseudomonas pneumonia. PLoS One, 2014. 9(3): 
p. e90232. 



 281 

143. Pesce, J.T., et al., Arginase-1-expressing macrophages suppress Th2 
cytokine-driven inflammation and fibrosis. PLoS Pathog, 2009. 5(4): p. 
e1000371. 

144. Taylor, M.D., et al., F4/80+ alternatively activated macrophages control 
CD4+ T cell hyporesponsiveness at sites peripheral to filarial infection. J 
Immunol, 2006. 176(11): p. 6918-27. 

145. Grasemann, H., et al., Arginase inhibition prevents bleomycin-induced 
pulmonary hypertension, vascular remodeling, and collagen deposition in 
neonatal rat lungs. Am J Physiol Lung Cell Mol Physiol, 2015. 308(6): p. 
L503-10. 

146. Arikan-Ayyildiz, Z., et al., Effects of inhaled L-arginine administration in a 
murine model of acute asthma. Iran J Allergy Asthma Immunol, 2014. 
13(5): p. 317-23. 

147. Bratt, J.M., et al., Competitive metabolism of L-arginine: arginase as a 
therapeutic target in asthma. J Biomed Res, 2011. 25(5): p. 299-308. 

148. Wijnands, K.A., et al., Arginase-1 deficiency regulates arginine 
concentrations and NOS2-mediated NO production during endotoxemia. 
PloS one, 2014. 9(1): p. e86135. 

149. Benson, R.C., K.A. Hardy, and C.R. Morris, Arginase and arginine 
dysregulation in asthma. J Allergy (Cairo), 2011. 2011: p. 736319. 

150. Grumont, R.J. and S. Gerondakis, Rel induces interferon regulatory factor 
4 (IRF-4) expression in lymphocytes: modulation of interferon-regulated 
gene expression by rel/nuclear factor kappaB. J Exp Med, 2000. 191(8): p. 
1281-92. 

151. Rodríguez, P.C. and A.C. Ochoa, Arginine regulation by myeloid derived 
suppressor cells and tolerance in cancer: mechanisms and therapeutic 
perspectives. Immunological reviews, 2008. 222(1): p. 180-191. 

152. Kahnert, A., et al., Alternative activation deprives macrophages of a 
coordinated defense program to Mycobacterium tuberculosis. Eur J 
Immunol, 2006. 36(3): p. 631-47. 

153. Zea, A.H., et al., l-Arginine modulates CD3ζ expression and T cell function 
in activated human T lymphocytes. Cellular immunology, 2004. 232(1-2): 
p. 21-31. 

154. Munder, M., et al., Suppression of T-cell functions by human granulocyte 
arginase. Blood, 2006. 108(5): p. 1627-1634. 

155. Rodriguez, P.C., et al., L-arginine consumption by macrophages 
modulates the expression of CD3 zeta chain in T lymphocytes. J Immunol, 
2003. 171(3): p. 1232-9. 

156. Zea, A.H., et al., Arginase-producing myeloid suppressor cells in renal cell 
carcinoma patients: a mechanism of tumor evasion. Cancer research, 
2005. 65(8): p. 3044-3048. 

157. Rodriguez, P.C., et al., L-arginine deprivation regulates cyclin D3 mRNA 
stability in human T cells by controlling HuR expression. The Journal of 
Immunology, 2010. 185(9): p. 5198-5204. 



 282 

158. Weng, M., et al., Alternatively activated macrophages in intestinal helminth 
infection: effects on concurrent bacterial colitis. The Journal of 
immunology, 2007. 179(7): p. 4721-4731. 

159. Bronte, V., et al., IL-4-induced arginase 1 suppresses alloreactive T cells 
in tumor-bearing mice. J Immunol, 2003. 170(1): p. 270-8. 

160. Choi, B.S., et al., Differential impact of L-arginine deprivation on the 
activation and effector functions of T cells and macrophages. J Leukoc 
Biol, 2009. 85(2): p. 268-77. 

161. Rodriguez, P.C., et al., Arginase I–producing myeloid-derived suppressor 
cells in renal cell carcinoma are a subpopulation of activated granulocytes. 
Cancer research, 2009. 69(4): p. 1553-1560. 

162. Munder, M., et al., Cytotoxicity of tumor antigen specific human T cells is 
unimpaired by arginine depletion. PloS one, 2013. 8(5): p. e63521. 

163. Campbell, L., et al., Local arginase 1 activity is required for cutaneous 
wound healing. J Invest Dermatol, 2013. 133(10): p. 2461-2470. 

164. Jaecklin, T., et al., Lung arginase expression and activity is increased in 
cystic fibrosis mouse models. J Appl Physiol (1985), 2014. 117(3): p. 284-
8. 

165. Grasemann, H., et al., Oral L-arginine supplementation in cystic fibrosis 
patients: a placebo-controlled study. Eur Respir J, 2005. 25(1): p. 62-8. 

166. Murphy, B.S., et al., Characterization of macrophage activation states in 
patients with cystic fibrosis. J Cyst Fibros, 2010. 9(5): p. 314-22. 

167. Krysko, O., et al., Comment on “potent phagocytic activity with impaired 
antigen presentation identifying lipopolysaccharide-tolerant human 
monocytes: demonstration in isolated monocytes from cystic fibrosis 
patients”. The Journal of Immunology, 2009. 183(8): p. 4831-4832. 

168. Rao, S., et al., Monocyte chemoattractant chemokines in cystic fibrosis. J 
Cyst Fibros, 2009. 8(2): p. 97-103. 

169. Oceandy, D., et al., Gene complementation of airway epithelium in the 
cystic fibrosis mouse is necessary and sufficient to correct the pathogen 
clearance and inflammatory abnormalities. Human molecular genetics, 
2002. 11(9): p. 1059-1067. 

170. Bruscia, E.M., et al., Abnormal trafficking and degradation of TLR4 
underlie the elevated inflammatory response in cystic fibrosis. J Immunol, 
2011. 186(12): p. 6990-8. 

171. Wermuth, P.J. and S.A. Jimenez, The significance of macrophage 
polarization subtypes for animal models of tissue fibrosis and human 
fibrotic diseases. Clinical and translational medicine, 2015. 4(1): p. 2. 

172. Bruscia, E.M., et al., Macrophages directly contribute to the exaggerated 
inflammatory response in cystic fibrosis transmembrane conductance 
regulator-/- mice. Am J Respir Cell Mol Biol, 2009. 40(3): p. 295-304. 

173. Meyer, M., et al., Azithromycin Reduces Exaggerated Cytokine Production 
by M1 Alveolar Macrophages in Cystic Fibrosis. Am J Respir Cell Mol Biol, 
2009. 41(5): p. 590-602. 

174. Di, A., et al., CFTR regulates phagosome acidification in macrophages 
and alters bactericidal activity. Nature Cell Biology, 2006. 8: p. 933-944. 



 283 

175. Rieber, N., et al., Current concepts of immune dysregulation in cystic 
fibrosis. The international journal of biochemistry & cell biology, 2014. 52: 
p. 108-112. 

176. Anil, N. and M. Singh, CD4(+)CD25(high) FOXP3(+) regulatory T cells 
correlate with FEV1 in North Indian children with cystic fibrosis. Immunol 
Invest, 2014. 43(6): p. 535-43. 

177. Rao, S., et al., P133 Cd14+ cd16+ Blood Monocytes In Cystic Fibrosis. 
Thorax, 2005. 60: p. ii93. 

178. Deriy, L.V., et al., Disease-causing mutations in the cystic fibrosis 
transmembrane conductance regulator determine the functional 
responses of alveolar macrophages. J Biol Chem, 2009. 284(51): p. 
35926-38. 

179. Radtke, A.L., et al., Listeria monocytogenes exploits cystic fibrosis 
transmembrane conductance regulator (CFTR) to escape the phagosome. 
Proceedings of the National Academy of Sciences, 2011. 108(4): p. 1633-
1638. 

180. Sorio, C., et al., Defective CFTR expression and function are detectable in 
blood monocytes: development of a new blood test for cystic fibrosis. PloS 
one, 2011. 6(7): p. e22212. 

181. Zaman, M.M., et al., Interleukin 8 secretion from monocytes of subjects 
heterozygous for the ΔF508 cystic fibrosis transmembrane conductance 
regulator gene mutation is altered. Clinical and diagnostic laboratory 
immunology, 2004. 11(5): p. 819-824. 

182. Wright, F.A., et al., Genome-wide association and linkage identify modifier 
loci of lung disease severity in cystic fibrosis at 11p13 and 20q13. 2. 
Nature genetics, 2011. 43(6): p. 539. 

183. Xu, Y., et al., Low Sphingosine-1–Phosphate Impairs Lung Dendritic Cells 
in Cystic Fibrosis. American journal of respiratory cell and molecular 
biology, 2013. 48(2): p. 250-257. 

184. Wilson, G.B. and V.J. Bahm, Synthesis and secretion of cystic fibrosis 
ciliary dyskinesia substances by purified subpopulations of leukocytes. 
The Journal of clinical investigation, 1980. 66(5): p. 1010-1019. 

185. Hubeau, C., E. Puchelle, and D. Gaillard, Distinct pattern of immune cell 
population in the lung of human fetuses with cystic fibrosis. J Allergy Clin 
Immunol, 2001. 108(4): p. 524-9. 

186. Rao, S. and J. Grigg, New insights into pulmonary inflammation in cystic 
fibrosis. Arch Dis Child, 2006. 91(9): p. 786-8. 

187. Frankenberger, M., et al., Characterization of a population of small 
macrophages in induced sputum of patients with chronic obstructive 
pulmonary disease and healthy volunteers. Clin Exp Immunol, 2004. 
138(3): p. 507-16. 

188. Aron, Y., et al., HLA class II polymorphism in cystic fibrosis: a possible 
modifier of pulmonary phenotype. American journal of respiratory and 
critical care medicine, 1999. 159(5): p. 1464-1468. 



 284 

189. Bunting, M.M., et al., Interleukin-33 drives activation of alveolar 
macrophages and airway inflammation in a mouse model of acute 
exacerbation of chronic asthma. Biomed Res Int, 2013. 2013: p. 250938. 

190. Knight, R., et al., Defective antigen presentation by lavage cells from 
terminal patients with cystic fibrosis. Clinical & Experimental Immunology, 
1997. 107(3): p. 542-547. 

191. Hampton, T.H. and B.A. Stanton, A novel approach to analyze gene 
expression data demonstrates that the DeltaF508 mutation in CFTR 
downregulates the antigen presentation pathway. Am J Physiol Lung Cell 
Mol Physiol, 2010. 298(4): p. L473-82. 

192. Weitnauer, M., V. Mijošek, and A. Dalpke, Control of local immunity by 
airway epithelial cells. Mucosal immunology, 2016. 9(2): p. 287. 

193. Moore, B., T. Moore, and G. Toews, Role of T-and B-; lymphocytes in 
pulmonary host defences. European Respiratory Journal, 2001. 18(5): p. 
846-856. 

194. Olson, N.C., et al., T helper cell polarization in healthy people: implications 
for cardiovascular disease. Journal of cardiovascular translational 
research, 2013. 6(5): p. 772-786. 

195. Sekiya, T. and A. Yoshimura, In vitro Th differentiation protocol, in TGF-β 
Signaling. 2016, Springer. p. 183-191. 

196. Bubien, J.K., CFTR may play a role in regulated secretion by lymphocytes: 
a new hypothesis for the pathophysiology of cystic fibrosis. Pflugers Arch, 
2001. 443 Suppl 1: p. S36-9. 

197. Knutsen, A.P., et al., Asp f I CD4+ TH2-like T-cell lines in allergic 
bronchopulmonary aspergillosis. Journal of Allergy and Clinical 
Immunology, 1994. 94(2): p. 215-221. 

198. Müller, C., et al., Enhanced IgE allergic response to Aspergillus fumigatus 
in CFTR−/− mice. Laboratory investigation, 2006. 86(2): p. 130. 

199. Knutsen, A., et al., IgE antibody to Aspergillus fumigatus recombinant 
allergens in cystic fibrosis patients with allergic bronchopulmonary 
aspergillosis. Allergy, 2004. 59(2): p. 198-203. 

200. Hodge, M.R., et al., Hyperproliferation and dysregulation of IL-4 
expression in NF-ATp-deficient mice. Immunity, 1996. 4(4): p. 397-405. 

201. Yoshida, H., et al., The transcription factor NF-ATc1 regulates lymphocyte 
proliferation and Th2 cytokine production. Immunity, 1998. 8(1): p. 115-
124. 

202. Ratner, D. and C. Mueller, Immune responses in cystic fibrosis: are they 
intrinsically defective? American journal of respiratory cell and molecular 
biology, 2012. 46(6): p. 715-722. 

203. Regamey, N., et al., Distinct patterns of inflammation in the airway lumen 
and bronchial mucosa of children with cystic fibrosis. Thorax, 2011: p. 
thoraxjnl-2011-200585. 

204. Tan, H.-L., et al., The Th17 pathway in cystic fibrosis lung disease. 
American journal of respiratory and critical care medicine, 2011. 184(2): p. 
252-258. 



 285 

205. Kushwah, R., S. Gagnon, and N.B. Sweezey, Intrinsic predisposition of 
naïve cystic fibrosis T cells to differentiate towards a Th17 phenotype. 
Respiratory research, 2013. 14(1): p. 138. 

206. Kushwah, R., S. Gagnon, and N.B. Sweezey, T cell unresponsiveness in a 
pediatric cystic fibrosis patient: a case report. Allergy, Asthma & Clinical 
Immunology, 2014. 10(1): p. 2. 

207. Hector, A., et al., Regulatory T-cell impairment in cystic fibrosis patients 
with chronic pseudomonas infection. Am J Respir Crit Care Med, 2015. 
191(8): p. 914-23. 

208. Muller, A.J. and P.A. Scherle, Targeting the mechanisms of tumoral 
immune tolerance with small-molecule inhibitors. Nature Reviews Cancer, 
2006. 6(8): p. 613. 

209. Nembrini, C., B.J. Marsland, and M. Kopf, IL-17–producing T cells in lung 
immunity and inflammation. Journal of Allergy and Clinical Immunology, 
2009. 123(5): p. 986-994. 

210. Tesmer, L.A., et al., Th17 cells in human disease. Immunological reviews, 
2008. 223(1): p. 87-113. 

211. Brodlie, M., J. Lordan, and C. Ward, Can cells other than Th17 
lymphocytes be important sources of IL-17 in the lungs? Thorax, 2011. 
66(12): p. 1096-1096. 

212. Brodlie, M., et al., Raised interleukin-17 is immunolocalised to neutrophils 
in cystic fibrosis lung disease. Eur Respir J, 2011. 37(6): p. 1378-85. 

213. Brodlie, M., J.L. Lordan, and C. Ward, Ceramide and cystic fibrosis lung 
disease. Am J Respir Crit Care Med, 2011. 183(1): p. 133. 

214. Lubberts, E., et al., IL-17 promotes bone erosion in murine collagen-
induced arthritis through loss of the receptor activator of NF-κB 
ligand/osteoprotegerin balance. The Journal of Immunology, 2003. 170(5): 
p. 2655-2662. 

215. Decraene, A., et al., Elevated expression of both mRNA and protein levels 
of IL-17A in sputum of stable Cystic Fibrosis patients. Respir Res, 2010. 
11: p. 177. 

216. Dubin, P.J. and J.K. Kolls, IL-23 mediates inflammatory responses to 
mucoid Pseudomonas aeruginosa lung infection in mice. Am J Physiol 
Lung Cell Mol Physiol, 2007. 292(2): p. L519-28. 

217. Dubin, P.J., F. McAllister, and J.K. Kolls, Is cystic fibrosis a TH17 
disease? Inflamm Res, 2007. 56(6): p. 221-7. 

218. McAllister, F., et al., Role of IL-17A, IL-17F, and the IL-17 receptor in 
regulating growth-related oncogene-α and granulocyte colony-stimulating 
factor in bronchial epithelium: implications for airway inflammation in cystic 
fibrosis. The Journal of Immunology, 2005. 175(1): p. 404-412. 

219. Tan, H.-L. and M. Rosenthal, IL-17 in lung disease: friend or foe? Thorax, 
2013: p. thoraxjnl-2013-203307. 

220. Dubinsky, M.C., et al., IL-23 receptor (IL-23R) gene protects against 
pediatric Crohn's disease. Inflamm Bowel Dis, 2007. 13(5): p. 511-5. 

221. Mulcahy, E.M., et al., High peripheral blood Th17 percent associated with 
poor lung function in cystic fibrosis. PloS one, 2015. 10(3): p. e0120912. 



 286 

222. Dubin, P.J. and J.K. Kolls, IL-17 in cystic fibrosis: more than just Th17 
cells. Am J Respir Crit Care Med, 2011. 184(2): p. 155-7. 

223. Raga, S., et al., γδ T lymphocytes from cystic fibrosis patients and healthy 
donors are high TNF-α and IFN-γ-producers in response to Pseudomonas 
aeruginosa. Respiratory research, 2003. 4(1): p. 9. 

224. Bayes, H.K., et al., T helper cell subsets specific for Pseudomonas 
aeruginosa in healthy individuals and patients with cystic fibrosis. PLoS 
One, 2014. 9(2): p. e90263. 

225. Siegmann, N., et al., Invariant natural killer T (iNKT) cells prevent 
autoimmunity, but induce pulmonary inflammation in cystic fibrosis. 
Cellular Physiology and Biochemistry, 2014. 34(1): p. 56-70. 

226. Hofer, T.P., et al., Decreased expression of HLA-DQ and HLA-DR on cells 
of the monocytic lineage in cystic fibrosis. J Mol Med (Berl), 2014. 92(12): 
p. 1293-304. 

227. Greally, P., et al., Sputum tumour necrosis factor-alpha and leukotriene 
concentrations in cystic fibrosis. Arch Dis Child, 1993. 68(3): p. 389-92. 

228. Bonfield, T., et al., Inflammatory cytokines in cystic fibrosis lungs. Am J 
Respir Crit Care Med, 1995. 152(6 Pt 1): p. 2111-8. 

229. Thomas, G.R., et al., G551D cystic fibrosis mice exhibit abnormal 
regulation of inflammation in lungs and macrophages. The Journal of 
Immunology, 2000. 164(7): p. 3870-3877. 

230. Andersson, C., et al., Alterations in immune response and PPAR/LXR 
regulation in cystic fibrosis macrophages. J Cyst Fibros, 2008. 7(1): p. 68-
78. 

231. Hubeau, C., et al., Dysregulation of IL-2 and IL-8 production in circulating 
T lymphocytes from young cystic fibrosis patients. Clin Exp Immunol, 
2004. 135(3): p. 528-34. 

232. Moss, R., et al., Reduced IL‐10 secretion by CD4+ T lymphocytes 
expressing mutant cystic fibrosis transmembrane conductance regulator 
(CFTR). Clinical & Experimental Immunology, 1996. 106(2): p. 374-388. 

233. Tirouvanziam, R., et al., Inflammation and infection in naive human cystic 
fibrosis airway grafts. American journal of respiratory cell and molecular 
biology, 2000. 23(2): p. 121-127. 

234. Khan, T.Z., et al., Early pulmonary inflammation in infants with cystic 
fibrosis. Am J Respir Crit Care Med, 1995. 151(4): p. 1075-82. 

235. Balough, K., et al., The relationship between infection and inflammation in 
the early stages of lung disease from cystic fibrosis. Pediatr Pulmonol, 
1995. 20(2): p. 63-70. 

236. Rosenfeld, M., et al., Early pulmonary infection, inflammation, and clinical 
outcomes in infants with cystic fibrosis. Pediatric pulmonology, 2001. 
32(5): p. 356-366. 

237. Armstrong, D.S., et al., Lower respiratory infection and inflammation in 
infants with newly diagnosed cystic fibrosis. BMJ, 1995. 310(6994): p. 
1571-2. 



 287 

238. Armstrong, D.S., et al., Lower airway inflammation in infants with cystic 
fibrosis detected by newborn screening. Pediatr Pulmonol, 2005. 40(6): p. 
500-10. 

239. Dakin, C.J., et al., Inflammation, infection, and pulmonary function in 
infants and young children with cystic fibrosis. Am J Respir Crit Care Med, 
2002. 165(7): p. 904-10. 

240. Brennan, S., et al., Correlation of forced oscillation technique in preschool 
children with cystic fibrosis with pulmonary inflammation. Thorax, 2005. 
60(2): p. 159-63. 

241. Bonfield, T., M.W. Konstan, and M. Berger, Altered respiratory epithelial 
cell cytokine production in cystic fibrosis. J Allergy Clin Immunol, 1999. 
104(1): p. 72-8. 

242. Grasemann, H., et al., Decreased concentration of exhaled nitric oxide 
(NO) in patients with cystic fibrosis. Pediatr Pulmonol, 1997. 24(3): p. 173-
7. 

243. Balfour-Lynn, I.M., A. Laverty, and R. Dinwiddie, Reduced upper airway 
nitric oxide in cystic fibrosis. Arch Dis Child, 1996. 75(4): p. 319-22. 

244. Karp, C.L., et al., Defective lipoxin-mediated anti-inflammatory activity in 
the cystic fibrosis airway. Nat Immunol, 2004. 5(4): p. 388-92. 

245. Mhanna, M.J., et al., Nitric oxide deficiency contributes to impairment of 
airway relaxation in cystic fibrosis mice. American journal of respiratory 
cell and molecular biology, 2001. 24(5): p. 621-626. 

246. Smith, A.W., et al., Nitric oxide-induced potentiation of the killing of 
Burkholderia cepacia by reactive oxygen species: implications for cystic 
fibrosis. Journal of medical microbiology, 1999. 48(5): p. 419-423. 

247. Sato, M., et al., Functional skewing of bone marrow-derived dendritic cells 
by Th1- or Th2-inducing cytokines. Immunol. Lett., 1999. 67: p. 63-68. 

248. Michoud, M.-C., et al., Role of the cystic fibrosis transmembrane 
conductance channel in human airway smooth muscle. American journal 
of respiratory cell and molecular biology, 2009. 40(2): p. 217-222. 

249. Regamey, N., et al., Increased airway smooth muscle mass in children 
with asthma, cystic fibrosis, and non-cystic fibrosis bronchiectasis. 
American journal of respiratory and critical care medicine, 2008. 177(8): p. 
837-843. 

250. McNeer, N.A., et al., Nanoparticles that deliver triplex-forming peptide 
nucleic acid molecules correct F508del CFTR in airway epithelium. Nature 
communications, 2015. 6: p. 6952. 

251. Maeder, M.L. and C.A. Gersbach, Genome-editing technologies for gene 
and cell therapy. Molecular Therapy, 2016. 24(3): p. 430-446. 

252. Paul-Smith, M.C., et al., Gene therapy for cystic fibrosis: recent progress 
and current aims. Expert Opinion on Orphan Drugs, 2016. 4(6): p. 649-
658. 

253. Mueller, C. and T.R. Flotte, Gene therapy for cystic fibrosis. Clinical 
reviews in allergy & immunology, 2008. 35(3): p. 164-178. 

254. Harrison, M.J., D.M. Murphy, and B.J. Plant, Ivacaftor in a G551D 
homozygote with cystic fibrosis. N Engl J Med, 2013. 369(13): p. 1280-2. 



 288 

255. Grasemann, H., CFTR Modulator Therapy for Cystic Fibrosis. N Engl J 
Med, 2017. 377(21): p. 2085-2088. 

256. Ong, T. and B.W. Ramsey, New therapeutic approaches to modulate and 
correct cystic fibrosis transmembrane conductance regulator. Pediatric 
Clinics, 2016. 63(4): p. 751-764. 

257. Ren, C., et al., Inhaled corticosteroid (ICS) use is associated with a slower 
rate of decline in CF lung disease. Pediatr Pulmonol Suppl, 2003. 25: p. 
295. 

258. Escotte, S., et al., Fluticasone reduces IL-6 and IL-8 production of cystic 
fibrosis bronchial epithelial cells via IKK-beta kinase pathway. Eur Respir 
J, 2003. 21(4): p. 574-81. 

259. Balfour-Lynn, I.M., N.J. Klein, and R. Dinwiddie, Randomised controlled 
trial of inhaled corticosteroids (fluticasone propionate) in cystic fibrosis. 
Arch Dis Child, 1997. 77(2): p. 124-30. 

260. Ferretti, S., et al., IL-17, produced by lymphocytes and neutrophils, is 
necessary for lipopolysaccharide-induced airway neutrophilia: IL-15 as a 
possible trigger. The Journal of Immunology, 2003. 170(4): p. 2106-2112. 

261. Hsu, D., et al., Il-17 Targeted Antibody Treatment Suppresses The 
Excessive Pulmonary Inflammation In Cystic Fibrosis Mice. Pediatric 
Pulmonology, 2006. 41: p. 256. 

262. Van Asperen, P., et al., Bronchial reactivity in cystic fibrosis with normal 
pulmonary function. American Journal of Diseases of Children, 1981. 
135(9): p. 815-819. 

263. Hang, L., et al., Interleukin-8 receptor knockout mice have subepithelial 
neutrophil entrapment and renal scarring following acute pyelonephritis. J 
Infect Dis, 2000. 182(6): p. 1738-48. 

264. Bayes, H.K., N.D. Ritchie, and T.J. Evans, Interleukin-17 Is Required for 
Control of Chronic Lung Infection Caused by Pseudomonas aeruginosa. 
Infect Immun, 2016. 84(12): p. 3507-3516. 

265. McElvaney, N., et al., Aerosol α1-antitrypsin treatment for cystic fibrosis. 
The Lancet, 1991. 337(8738): p. 392-394. 

266. Kapui, Z., et al., Biochemical and pharmacological characterization of 2-
(9-(2-piperidinoethoxy)-4-oxo-4H-pyrido[1,2-a]pyrimidin-2-yloxymethyl)-4-
(1-met hylethyl)-6-methoxy-1,2-benzisothiazol-3(2H)-one-1,1-dioxide 
(SSR69071), a novel, orally active elastase inhibitor. J Pharmacol Exp 
Ther, 2003. 305(2): p. 451-9. 

267. Nichols, D., et al., a 3 Week Dose Escalation, Randomized, Double-blind, 
Placebo-controlled Trial To Assess The Safety, Tolerability, And Possible 
Efficacy Of 100 Mg Or 200 Mg Of Once Daily Inhaled Alpha-1 Hc In Cystic 
Fibrosis (cf): 281. Pediatric Pulmonology, 2014. 49: p. 316. 

268. Quan, J.M., et al., A two-year randomized, placebo-controlled trial of 
dornase alfa in young patients with cystic fibrosis with mild lung function 
abnormalities. The Journal of pediatrics, 2001. 139(6): p. 813-820. 

269. Paul, K., et al., Effect of Treatment with Dornase Alpha on Airway 
Inflammation in Patients with Cystic Fibrosis. AMERICAN JOURNAL OF 



 289 

RESPIRATORY AND CRITICAL CARE MEDICINE, 2004. 169: p. 719-
725. 

270. Tabary, O., et al., Genistein inhibits constitutive and inducible NFκB 
activation and decreases IL-8 production by human cystic fibrosis 
bronchial gland cells. The American journal of pathology, 1999. 155(2): p. 
473-481. 

271. Natarajan, K., et al., Caffeic acid phenethyl ester is a potent and specific 
inhibitor of activation of nuclear transcription factor NF-kappa B. 
Proceedings of the National Academy of Sciences, 1996. 93(17): p. 9090-
9095. 

272. Sutton, M.T., et al., Antimicrobial properties of mesenchymal stem cells: 
therapeutic potential for cystic fibrosis infection, and treatment. Stem cells 
international, 2016. 2016. 

273. Martiniano, S.L., S.D. Sagel, and E.T. Zemanick, Cystic fibrosis: a model 
system for precision medicine. Current opinion in pediatrics, 2016. 28(3): 
p. 312. 

274. Sinagoga, K.L. and J.M. Wells, Generating human intestinal tissues from 
pluripotent stem cells to study development and disease. The EMBO 
journal, 2015. 34(9): p. 1149-1163. 

275. Beringer, P.M., et al., Rhesus theta-defensin-1 (RTD-1) exhibits in vitro 
and in vivo activity against cystic fibrosis strains of Pseudomonas 
aeruginosa. J Antimicrob Chemother, 2016. 71(1): p. 181-8. 

276. McMillan, J., E. Batrakova, and H.E. Gendelman, Cell delivery of 
therapeutic nanoparticles, in Progress in molecular biology and 
translational science. 2011, Elsevier. p. 563-601. 

277. Friman, V.P., et al., Pre-adapting parasitic phages to a pathogen leads to 
increased pathogen clearance and lowered resistance evolution with 
Pseudomonas aeruginosa cystic fibrosis bacterial isolates. J Evol Biol, 
2016. 29(1): p. 188-98. 

278. Wainwright, C.E., et al., Lumacaftor–ivacaftor in patients with cystic 
fibrosis homozygous for Phe508del CFTR. New England Journal of 
Medicine, 2015. 373(3): p. 220-231. 

279. Wojtczak, H.A., et al., Beclomethasone diproprionate reduced airway 
inflammation without adrenal suppression in young children with cystic 
fibrosis: a pilot study. Pediatric pulmonology, 2001. 32(4): p. 293-302. 

280. Chmiel, J.F., et al., IL-10 attenuates excessive inflammation in chronic 
Pseudomonas infection in mice. Am J Respir Crit Care Med, 1999. 160(6): 
p. 2040-7. 

281. Toovey, S., Macrolide antibiotics. Modern Medicine, 2004. 29(6): p. 52-54. 
282. Ianaro, A., et al., Anti-inflammatory activity of macrolide antibiotics. J 

Pharmacol Exp Ther, 2000. 292(1): p. 156-63. 
283. Hand, W.L., D.L. Hand, and N.L. King-Thompson, Antibiotic inhibition of 

the respiratory burst response in human polymorphonuclear leukocytes. 
Antimicrob Agents Chemother, 1990. 34(5): p. 863-70. 

284. Hand, W.L., N. King-Thompson, and J.W. Holman, Entry of roxithromycin 
(RU 965), imipenem, cefotaxime, trimethoprim, and metronidazole into 



 290 

human polymorphonuclear leukocytes. Antimicrob Agents Chemother, 
1987. 31(10): p. 1553-7. 

285. Laufen, H., A. Wildfeuer, and K. Räder, Uptake of antimicrobial agents by 
human polymorphonuclear leucocytes. Arzneimittel-Forschung, 1985. 
35(7): p. 1097-1099. 

286. Foulds, G., R.M. Shepard, and R.B. Johnson, The pharmacokinetics of 
azithromycin in human serum and tissues. J Antimicrob Chemother, 1990. 
25 Suppl A: p. 73-82. 

287. Gladue, R.P., et al., In vitro and in vivo uptake of azithromycin (CP-
62,993) by phagocytic cells: possible mechanism of delivery and release 
at sites of infection. Antimicrob Agents Chemother, 1989. 33(3): p. 277-82. 

288. Gladue, R.P. and M.E. Snider, Intracellular accumulation of azithromycin 
by cultured human fibroblasts. Antimicrob Agents Chemother, 1990. 34(6): 
p. 1056-60. 

289. Carlier, M.B., et al., Accumulation, release and subcellular localization of 
azithromycin in phagocytic and non-phagocytic cells in culture. Int J 
Tissue React, 1994. 16(5-6): p. 211-20. 

290. Russo, V., G. Puzio, and N. Siniscalchi, Azithromycin-induced QT 
prolongation in elderly patient. Acta Bio Medica Atenei Parmensis, 2006. 
77(1): p. 30-32. 

291. Kezerashvili, A., et al., Azithromycin as a cause of QT-interval 
prolongation and torsade de pointes in the absence of other known 
precipitating factors. J Interv Card Electrophysiol, 2007. 18(3): p. 243-6. 

292. Matsunaga, N., Y. Oki, and A. Prigollini, A case of QT-interval 
prolongation precipitated by azithromycin. The New Zealand Medical 
Journal (Online), 2003. 116(1185). 

293. Samarendra, P., et al., QT prolongation associated with 
azithromycin/amiodarone combination. Pacing and Clinical 
Electrophysiology, 2001. 24(10): p. 1572-1574. 

294. Huang, B.H., et al., Azithromycin-induced torsade de pointes. Pacing Clin 
Electrophysiol, 2007. 30(12): p. 1579-82. 

295. Ohtani, H., et al., Comparative pharmacodynamic analysis of QT interval 
prolongation induced by the macrolides clarithromycin, roxithromycin, and 
azithromycin in rats. Antimicrobial agents and chemotherapy, 2000. 
44(10): p. 2630-2637. 

296. Southern, K.W., Macrolide antibiotics for cystic fibrosis. Paediatric 
respiratory reviews, 2012. 13(4): p. 228-229. 

297. Kobayashi, H., N. Ohgaki, and H. Takeda, Therapeutic possibilities for 
diffuse panbronchiolitis. International journal of antimicrobial agents, 1993. 
3: p. S81-S86. 

298. Hoiby, N., Diffuse panbronchiolitis and cystic fibrosis: East meets West. 
Thorax, 1994. 49(6): p. 531-2. 

299. Equi, A., et al., Long term azithromycin in children with cystic fibrosis: a 
randomised, placebo-controlled crossover trial. Lancet, 2002. 360(9338): 
p. 978-84. 



 291 

300. Saiman, L., et al., Azithromycin in patients with cystic fibrosis chronically 
infected with Pseudomonas aeruginosa: a randomized controlled trial. 
JAMA, 2003. 290(13): p. 1749-1756. 

301. Wolter, J., et al., Effect of long term treatment with azithromycin on 
disease parameters in cystic fibrosis: a randomised trial. Thorax, 2002. 
57(3): p. 212-216. 

302. Clement, A., et al., Long term effects of azithromycin in patients with cystic 
fibrosis: A double blind, placebo controlled trial. Thorax, 2006. 61(10): p. 
895-902. 

303. Saiman, L., et al., Effect of azithromycin on pulmonary function in patients 
with cystic fibrosis uninfected with Pseudomonas aeruginosa: a 
randomized controlled trial. JAMA, 2010. 303(17): p. 1707-15. 

304. Saiman, L., Azithromycin In Cf Patients Uninfected With Pseudomonas 
aeruginosa. Pediatric Pulmonology, 2009. 44: p. 185-186. 

305. Saiman L, A.M., Ratjen F, Lands L,. Effect of azithromycin on lung 
function in 6-18 year-olds with cystic fibrosis (cf) not infected with p. 
Aeruginosa. 2015; Available from: 
https://clinicaltrials.gov/ct2/show/NCT00431964. 

306. National Institute for Health and Care Excellence (NICE). Cystic fibrosis: 
Long-term azithromycin. 2014; Available from: 
https://www.nice.org.uk/advice/esuom37/chapter/Key-points-from-the-
evidence. 

307. Flume, P.A., et al., Cystic fibrosis pulmonary guidelines: chronic 
medications for maintenance of lung health. Am J Respir Crit Care Med, 
2007. 176(10): p. 957-69. 

308. Mogayzel Jr, P.J., et al., Cystic fibrosis pulmonary guidelines: chronic 
medications for maintenance of lung health. American journal of 
respiratory and critical care medicine, 2013. 187(7): p. 680-689. 

309. Scaglione, F. and G. Rossoni, Comparative anti-inflammatory effects of 
roxithromycin, azithromycin and clarithromycin. J Antimicrob Chemother, 
1998. 41 Suppl B: p. 47-50. 

310. Murphy, B.S., et al., Azithromycin alters macrophage phenotype. J 
Antimicrob Chemother, 2008. 61(3): p. 554-560. 

311. Feola, D.J., et al., Azithromycin alters macrophage phenotype and 
pulmonary compartmentalization during lung infection with Pseudomonas. 
Antimicrob Agents Chemother, 2010. 54(6): p. 2437-47. 

312. Elizur, A., C.L. Cannon, and T.W. Ferkol, Airway inflammation in cystic 
fibrosis. Chest, 2008. 133(2): p. 489-95. 

313. Moffett, K.S. Pseudomonas aeruginosa in patients with cystic fibrosis. 
2014; Available from: http://www.antimicrobe.org/new/b260.asp. 

314. Kang, K., et al., Effect of L-arginine on immune function: a meta-analysis. 
Asia Pac J Clin Nutr, 2014. 23(3): p. 351-9. 

315. Nieves Jr, C. and B. Langkamp-Henken, Arginine and immunity: a unique 
perspective. Biomedicine & pharmacotherapy, 2002. 56(10): p. 471-482. 

316. Bronte, V. and P. Zanovello, Regulation of immune responses by L-
arginine metabolism. Nat Rev Immunol, 2005. 5: p. 641-654. 

https://clinicaltrials.gov/ct2/show/NCT00431964
https://www.nice.org.uk/advice/esuom37/chapter/Key-points-from-the-evidence
https://www.nice.org.uk/advice/esuom37/chapter/Key-points-from-the-evidence
http://www.antimicrobe.org/new/b260.asp


 292 

317. Munder, M., Arginase: an emerging key player in the mammalian immune 
system. British journal of pharmacology, 2009. 158(3): p. 638-651. 

318. Crittenden, M.R., et al., Expression of arginase I in myeloid cells limits 
control of residual disease after radiation therapy of tumors in mice. Radiat 
Res, 2014. 182(2): p. 182-90. 

319. Kropf, P., et al., Arginase activity mediates reversible T cell 
hyporesponsiveness in human pregnancy. European journal of 
immunology, 2007. 37(4): p. 935-945. 

320. Busnel, O., et al., Synthesis and evaluation of new omega-borono-alpha-
amino acids as rat liver arginase inhibitors. Bioorg Med Chem, 2005. 
13(7): p. 2373-9. 

321. Bachmanov, A.A., et al., Food intake, water intake, and drinking spout 
side preference of 28 mouse strains. Behav Genet, 2002. 32(6): p. 435-
43. 

322. El-Bassossy, H.M., R. El-Fawal, and A. Fahmy, Arginase inhibition 
alleviates hypertension associated with diabetes: effect on endothelial 
dependent relaxation and NO production. Vascul Pharmacol, 2012. 57(5-
6): p. 194-200. 

323. Nair, A.B. and S. Jacob, A simple practice guide for dose conversion 
between animals and human. Journal of basic and clinical pharmacy, 
2016. 7(2): p. 27. 

324. National Diagnostics. Harris' hematoxylin protocol. 2011; Available from: 
www.nationaldiagnostics.com/histology/protocol/harris-hematoxylin-
protocol. 

325. Morton, J. and T.A. Snider, Guidelines for collection and processing of 
lungs from aged mice for histological studies. Pathobiology of Aging & 
Age-related Diseases, 2017. 7(1): p. 1313676. 

326. Matute-Bello, G., et al., An official American Thoracic Society workshop 
report: features and measurements of experimental acute lung injury in 
animals. American journal of respiratory cell and molecular biology, 2011. 
44(5): p. 725-738. 

327. Gordon, S. and A. Pluddemann, Tissue macrophages: heterogeneity and 
functions. BMC Biol, 2017. 15(1): p. 53. 

328. Li, Z., et al., Differences in iNOS and arginase expression and activity in 
the macrophages of rats are responsible for the resistance against T. 
gondii infection. PloS one, 2012. 7(4): p. e35834. 

329. Shen, W., et al., A novel and promising therapeutic approach for NSCLC: 
recombinant human arginase alone or combined with autophagy inhibitor. 
Cell death & disease, 2017. 8(3): p. e2720. 

330. Liu, K., et al., Impaired macrophage autophagy increases the immune 
response in obese mice by promoting proinflammatory macrophage 
polarization. Autophagy, 2015. 11(2): p. 271-284. 

331. Wang, Z., et al., Involvement of autophagy in recombinant human 
arginase-induced cell apoptosis and growth inhibition of malignant 
melanoma cells. Applied microbiology and biotechnology, 2014. 98(6): p. 
2485-2494. 



 293 

332. Lin, C., et al., The role of autophagy in the cytotoxicity induced by 
recombinant human arginase in laryngeal squamous cell carcinoma. 
Applied microbiology and biotechnology, 2015. 99(20): p. 8487-8494. 

333. Chen, W.N., et al., [Correlation between autophagy and polarization of 
macrophages in atherosclerosis plaque in arteriosclerosis obliterans 
amputees]. Yao Xue Xue Bao, 2016. 51(1): p. 68-74. 

334. Hunt, J.B., Jr., et al., Sustained Arginase 1 Expression Modulates 
Pathological Tau Deposits in a Mouse Model of Tauopathy. J Neurosci, 
2015. 35(44): p. 14842-60. 

335. Lavoie, E.G., T. Wangdi, and B.I. Kazmierczak, Innate immune responses 
to Pseudomonas aeruginosa infection. Microbes and infection, 2011. 
13(14-15): p. 1133-1145. 

336. Lund, S., H. H Walford, and T. A Doherty, Type 2 innate lymphoid cells in 
allergic disease. Current immunology reviews, 2013. 9(4): p. 214-221. 

337. Lucas, R., et al., Arginase 1: an unexpected mediator of pulmonary 
capillary barrier dysfunction in models of acute lung injury. Frontiers in 
immunology, 2013. 4: p. 228. 

338. Das, P., et al., Modulation of the arginase pathway in the context of 
microbial pathogenesis: a metabolic enzyme moonlighting as an immune 
modulator. PLoS Pathog, 2010. 6(6): p. e1000899. 

339. Pohjanpelto, P. and E. Hölttä, Arginase activity of different cells in tissue 
culture. Biochimica et Biophysica Acta (BBA)-General Subjects, 1983. 
757(2): p. 191-195. 

340. Schneider, E. and M. Dy, The role of arginase in the immune response. 
Immunology today, 1985. 6(4): p. 136-140. 

341. Arikan-Ayyildiz, Z., et al., Beneficial effects of arginase inhibition and 
inhaled L-arginine administration on airway histology in a murine model of 
chronic asthma. Allergol Immunopathol (Madr), 2014. 42(4): p. 316-23. 

342. Grasemann, H., et al., Effect of ivacaftor therapy on exhaled nitric oxide in 
patients with cystic fibrosis. J Cyst Fibros, 2015. 14(6): p. 727-32. 

343. Pesce, J.T., et al., Retnla (relmalpha/fizz1) suppresses helminth-induced 
Th2-type immunity. PLoS Pathog, 2009. 5(4): p. e1000393. 

344. Denning, T.L., et al., Lamina propria macrophages and dendritic cells 
differentially induce regulatory and interleukin 17-producing T cell 
responses. Nat Immunol, 2007. 8(10): p. 1086-94. 

345. Obermajer, N., et al., Induction and stability of human Th17 cells require 
endogenous NOS2 and cGMP-dependent NO signaling. Journal of 
Experimental Medicine, 2013. 210(7): p. 1433-1445. 

346. Geiger, R., et al., L-Arginine Modulates T Cell Metabolism and Enhances 
Survival and Anti-tumor Activity. Cell, 2016. 167(3): p. 829-842 e13. 

347. Crome, S.Q., et al., Inflammatory effects of ex vivo human Th17 cells are 
suppressed by regulatory T cells. J Immunol, 2010. 185(6): p. 3199-208. 

348. Disteldorf, E.M., et al., CXCL5 drives neutrophil recruitment in TH17-
mediated GN. J Am Soc Nephrol, 2015. 26(1): p. 55-66. 



 294 

349. Goncalves-de-Albuquerque, S.D.C., et al., The Equivocal Role of Th17 
Cells and Neutrophils on Immunopathogenesis of Leishmaniasis. Front 
Immunol, 2017. 8: p. 1437. 

350. von Burg, N., et al., Activated group 3 innate lymphoid cells promote T-
cell–mediated immune responses. Proceedings of the National Academy 
of Sciences, 2014. 111(35): p. 12835-12840. 

351. Goc, J., M.R. Hepworth, and G.F. Sonnenberg, Group 3 innate lymphoid 
cells: regulating host-commensal bacteria interactions in inflammation and 
cancer. Int Immunol, 2016. 28(1): p. 43-52. 

352. Stenvinkel, P., et al., IL-10, IL-6, and TNF-α: central factors in the altered 
cytokine network of uremia—the good, the bad, and the ugly. Kidney 
international, 2005. 67(4): p. 1216-1233. 

353. Kinoshita, K., Traumatic brain injury: pathophysiology for neurocritical 
care. J Intensive Care, 2016. 4: p. 29. 

354. Meisel, C., et al., Differential regulation of monocytic tumor necrosis 
factor‐α and interleukin‐10 expression. European journal of immunology, 
1996. 26(7): p. 1580-1586. 

355. Gee, K., M. Kozlowski, and A. Kumar, Tumor necrosis factor-alpha 
induces functionally active hyaluronan-adhesive CD44 by activating 
sialidase through p38 mitogen-activated protein kinase in 
lipopolysaccharide-stimulated human monocytic cells. J Biol Chem, 2003. 
278(39): p. 37275-87. 

356. Loke, P.n. and J.P. Allison, PD-L1 and PD-L2 are differentially regulated 
by Th1 and Th2 cells. Proceedings of the National Academy of Sciences, 
2003. 100(9): p. 5336-5341. 

357. Thach, D.C., T. Kimura, and D.E. Griffin, Differences between C57BL/6 
and BALB/cBy mice in mortality and virus replication after intranasal 
infection with neuroadapted Sindbis virus. Journal of virology, 2000. 
74(13): p. 6156-6161. 

358. Herbst, F.A., et al., Major proteomic changes associated with amyloid-
induced biofilm formation in Pseudomonas aeruginosa PAO1. J Proteome 
Res, 2015. 14(1): p. 72-81. 

359. Watanabe, H., et al., Innate immune response in Th1-and Th2-dominant 
mouse strains. Shock, 2004. 22(5): p. 460-466. 

360. Campanella, G.S. and A.D. Luster, Chapter 18. A chemokine-mediated in 
vivo T-cell recruitment assay. Methods Enzymol, 2009. 461: p. 397-412. 

361. Botti, C., et al., Comparison of three different methods for radiolabelling 
human activated T lymphocytes. Eur J Nucl Med, 1997. 24(5): p. 497-504. 

362. Liu, Z. and Z. Li, Molecular imaging in tracking tumor-specific cytotoxic T 
lymphocytes (CTLs). Theranostics, 2014. 4(10): p. 990. 

363. Dulgerian, L.R., et al., Programmed death ligand 2 regulates arginase 
induction and modifies Trypanosoma cruzi survival in macrophages during 
murine experimental infection. Immunology, 2011. 133(1): p. 29-40. 

364. Monticelli, L.A., et al., Arginase 1 is an innate lymphoid-cell-intrinsic 
metabolic checkpoint controlling type 2 inflammation. Nature immunology, 
2016. 17(6): p. 656. 



 295 

365. Bando, J.K., et al., Type 2 innate lymphoid cells constitutively express 
arginase-I in the naive and inflamed lung. J Leukoc Biol, 2013. 94(5): p. 
877-84. 

366. Ming, X.-F., et al., Inhibition of S6K1 accounts partially for the anti-
inflammatory effects of the arginase inhibitor L-norvaline. BMC 
cardiovascular disorders, 2009. 9(1): p. 12. 

367. Huynh, N.N., et al., The vascular effects of different arginase inhibitors in 
rat isolated aorta and mesenteric arteries. Br J Pharmacol, 2009. 156(1): 
p. 84-93. 

368. Vannella, K.M., et al., Incomplete deletion of IL-4Rα by LysMCre reveals 
distinct subsets of M2 macrophages controlling inflammation and fibrosis 
in chronic schistosomiasis. PLoS pathogens, 2014. 10(9): p. e1004372. 

369. Kisanuki, Y.Y., et al., Tie2-Cre transgenic mice: a new model for 
endothelial cell-lineage analysis in vivo. Developmental biology, 2001. 
230(2): p. 230-242. 

370. Iyer, R., et al., The human arginases and arginase deficiency. J Inherit 
Metab Dis, 1998. 21 Suppl 1: p. 86-100. 

371. Xiong, Y., et al., Arginase-II induces endothelial autophagy suppression 
and smooth muscle cell mitochondrial dysfunction contributing to 
atherosclerotic plaque vulnerability. Atherosclerosis, 2015. 241(1): p. e5. 

372. Flynn, R.J. and P. Legembre, Myeloid-derived suppressor cell, arginase-1, 
IL-17 and cl-CD95L: an explosive cocktail in lupus? Ann Transl Med, 
2016. 4(24): p. 554. 

373. Wu, H., et al., Arginase-1–dependent promotion of TH17 differentiation 
and disease progression by MDSCs in systemic lupus erythematosus. 
Science translational medicine, 2016. 8(331): p. 331ra40-331ra40. 

374. Vilas-Boas, W., et al., Arginase levels and their association with Th17-
related cytokines, soluble adhesion molecules (sICAM-1 and sVCAM-1) 
and hemolysis markers among steady-state sickle cell anemia patients. 
Annals of hematology, 2010. 89(9): p. 877-882. 

375. Yi, H., et al., MDSCs enhance Th17 differentiation and disease 
progression through arginase-1 production in patients with systemic lupus 
erythematosus. 2016, Am Assoc Immnol. 

376. Herbert, D.R., et al., Alternative macrophage activation is essential for 
survival during schistosomiasis and downmodulates T helper 1 responses 
and immunopathology. Immunity, 2004. 20(5): p. 623-35. 

377. Wills-Karp, M., et al., Interleukin-13: central mediator of allergic asthma. 
Science, 1998. 282: p. 2258-2261. 

378. Reece, J.J., M.C. Siracusa, and A.L. Scott, Innate immune responses to 
lung-stage helminth infection induce alternatively activated alveolar 
macrophages. Infect Immun, 2006. 74(9): p. 4970-81. 

379. Morty, R.E., M. Konigshoff, and O. Eickelberg, Transforming growth 
factor-beta signaling across ages: from distorted lung development to 
chronic obstructive pulmonary disease. Proc Am Thorac Soc, 2009. 6(7): 
p. 607-13. 



 296 

380. Gibson, R.L., J.L. Burns, and B.W. Ramsey, Pathophysiology and 
management of pulmonary infections in cystic fibrosis. Am J Respir Crit 
Care Med, 2003. 168: p. 918-951. 

381. Lycza, J.B., C.L. Cannon, and G.B. Pier, Lung infections associated with 
cystic fibrosis. Clin Microbiol Rev, 2002. 15: p. 194-222. 

382. Christian, F., E.L. Smith, and R.J. Carmody, The Regulation of NF-kappaB 
Subunits by Phosphorylation. Cells, 2016. 5(1). 

383. Gough, D.J., et al., IFNgamma signaling-does it mean JAK-STAT? 
Cytokine Growth Factor Rev, 2008. 19(5-6): p. 383-94. 

384. Kovarik, P., et al., Stat1 combines signals derived from IFN-gamma and 
LPS receptors during macrophage activation. EMBO J, 1998. 17(13): p. 
3660-8. 

385. Daley, J.M., T.A. Leadley, and K.G. Drouillard, Evidence for 
bioamplification of nine polychlorinated biphenyl (PCB) congeners in 
yellow perch (Perca flavascens) eggs during incubation. Chemosphere, 
2009. 75(11): p. 1500-5. 

386. Mishra, B.B., U.M. Gundra, and J.M. Teale, STAT6(-)/(-) mice exhibit 
decreased cells with alternatively activated macrophage phenotypes and 
enhanced disease severity in murine neurocysticercosis. J Neuroimmunol, 
2011. 232(1-2): p. 26-34. 

387. Nelms, K., et al., The IL-4 receptor: signaling mechanisms and biologic 
functions. Annu Rev Immunol, 1999. 17: p. 701-38. 

388. Rutschman, R., et al., Cutting edge: Stat6-Dependent Substrate Depletion 
Regulates Nitric Oxide Production. J Immunol, 2001. 166: p. 2173 - 2177. 

389. Cheung, P.S., E.C. Si, and K. Hosseini, Anti-inflammatory activity of 
azithromycin as measured by its NF-kappaB, inhibitory activity. Ocul 
Immunol Inflamm, 2010. 18(1): p. 32-7. 

390. Cigana, C., B.M. Assael, and P. Melotti, Azithromycin selectively reduces 
tumor necrosis factor alpha levels in cystic fibrosis airway epithelial cells. 
Antimicrob Agents Chemother, 2007. 51(3): p. 975-81. 

391. Fong, C.H., et al., An antiinflammatory role for IKKbeta through the 
inhibition of "classical" macrophage activation. J Exp Med, 2008. 205(6): 
p. 1269-76. 

392. Moreno, R., et al., Specification of the NF-κB transcriptional response by 
p65 phosphorylation and TNF-induced nuclear translocation of IKKε. 
Nucleic acids research, 2010. 38(18): p. 6029-6044. 

393. Hacker, H. and M. Karin, Regulation and function of IKK and IKK-related 
kinases. Sci STKE, 2006. 2006(357): p. re13. 

394. Hoesel, B. and J.A. Schmid, The complexity of NF-kappaB signaling in 
inflammation and cancer. Mol Cancer, 2013. 12: p. 86. 

395. Waelchli, R., et al., Design and preparation of 2-benzamido-pyrimidines as 
inhibitors of IKK. Bioorganic & medicinal chemistry letters, 2006. 16(1): p. 
108-112. 

396. Briken, V. and D.M. Mosser, Editorial: switching on arginase in M2 
macrophages. J Leukoc Biol, 2011. 90(5): p. 839-41. 



 297 

397. Mogensen, T.H., Pathogen recognition and inflammatory signaling in 
innate immune defenses. Clin Microbiol Rev, 2009. 22(2): p. 240-73. 

398. Nichols, D., J. Chmiel, and M. Berger, Chronic inflammation in the cystic 
fibrosis lung: alterations in inter- and intracellular signaling. Clin Rev 
Allergy Immunol, 2008. 34(2): p. 146-62. 

399. Meyer, K.C. and J. Zimmerman, Neutrophil mediators, Pseudomonas, and 
pulmonary dysfunction in cystic fibrosis. J Lab Clin Med, 1993. 121(5): p. 
654-61. 

400. Abboud, R.T. and S. Vimalanathan, Pathogenesis of COPD. Part I. The 
role of protease-antiprotease imbalance in emphysema. Int J Tuberc Lung 
Dis, 2008. 12(4): p. 361-7. 

401. Stellari, F.F., et al., Azithromycin inhibits nuclear factor‐κB activation 
during lung inflammation: an in vivo imaging study. Pharmacology 
research & perspectives, 2014. 2(5). 

402. Vrancic, M., et al., Azithromycin distinctively modulates classical activation 
of human monocytes in vitro. Br J Pharmacol, 2012. 165(5): p. 1348-60. 

403. Li, D.-Q., et al., Suppressive effects of azithromycin on zymosan-induced 
production of proinflammatory mediators by human corneal epithelial cells. 
Investigative ophthalmology & visual science, 2010. 51(11): p. 5623-5629. 

404. Kanoh, S. and B.K. Rubin, Mechanisms of action and clinical application 
of macrolides as immunomodulatory medications. Clin Microbiol Rev, 
2010. 23(3): p. 590-615. 

405. Matsumura, Y., et al., Azithromycin may inhibit interleukin-8 through 
suppression of Rac1 and a nuclear factor-kappa B pathway in KB cells 
stimulated with lipopolysaccharide. J Periodontol, 2011. 82(11): p. 1623-
31. 

406. Iwamoto, S., et al., The effect of azithromycin on the maturation and 
function of murine bone marrow-derived dendritic cells. Clin Exp Immunol, 
2011. 166(3): p. 385-92. 

407. Kopp, E. and S. Ghosh, Inhibition of NF-kappa B by sodium salicylate and 
aspirin. Science, 1994. 265(5174): p. 956-9. 

408. Yamamoto, Y., et al., Sulindac inhibits activation of the NF-kappaB 
pathway. J Biol Chem, 1999. 274(38): p. 27307-14. 

409. Greiner, J.F., et al., 1,8-Cineol inhibits nuclear translocation of NF-kappaB 
p65 and NF-kappaB-dependent transcriptional activity. Biochim Biophys 
Acta, 2013. 1833(12): p. 2866-78. 

410. Wong, B.C., et al., Suppression of RelA/p65 nuclear translocation 
independent of IkappaB-alpha degradation by cyclooxygenase-2 inhibitor 
in gastric cancer. Oncogene, 2003. 22(8): p. 1189-97. 

411. Karin, M., How NF-kappaB is activated: the role of the IkappaB kinase 
(IKK) complex. Oncogene, 1999. 18(49): p. 6867-74. 

412. Perkins, N. and T. Gilmore, Good cop, bad cop: the different faces of NF-
κB. Cell death and differentiation, 2006. 13(5): p. 759. 

413. Scheidereit, C., IkappaB kinase complexes: gateways to NF-kappaB 
activation and transcription. Oncogene, 2006. 25(51): p. 6685-705. 



 298 

414. Barisic, S., et al., Identification of PP2A as a crucial regulator of the NF-
kappaB feedback loop: its inhibition by UVB turns NF-kappaB into a pro-
apoptotic factor. Cell Death Differ, 2008. 15(11): p. 1681-90. 

415. Singh, S. and B.B. Aggarwal, Activation of transcription factor NF-kappa B 
is suppressed by curcumin (diferuloylmethane). J Biol Chem, 1995. 
270(42): p. 24995-5000. 

416. Gupta, S.C., et al., Modification of cysteine 179 of IkappaBalpha kinase by 
nimbolide leads to down-regulation of NF-kappaB-regulated cell survival 
and proliferative proteins and sensitization of tumor cells to 
chemotherapeutic agents. J Biol Chem, 2010. 285(46): p. 35406-17. 

417. Gupta, S.C., et al., Inhibiting NF-kappaB activation by small molecules as 
a therapeutic strategy. Biochim Biophys Acta, 2010. 1799(10-12): p. 775-
87. 

418. Karin, M., The beginning of the end: IkappaB kinase (IKK) and NF-kappaB 
activation. J Biol Chem, 1999. 274(39): p. 27339-42. 

419. Delhase, M., et al., Positive and negative regulation of IkappaB kinase 
activity through IKKbeta subunit phosphorylation. Science, 1999. 
284(5412): p. 309-13. 

420. Schomer-Miller, B., et al., Regulation of IκB kinase (IKK) complex by IKKγ-
dependent phosphorylation of the T-loop and C terminus of IKKβ. Journal 
of Biological Chemistry, 2006. 281(22): p. 15268-15276. 

421. Koul, D., et al., Tumor suppressor MMAC/PTEN inhibits cytokine-induced 
NFκB activation without interfering with the IκB degradation pathway. 
Journal of Biological Chemistry, 2001. 276(14): p. 11402-11408. 

422. Israel, A., The IKK complex, a central regulator of NF-kappaB activation. 
Cold Spring Harb Perspect Biol, 2010. 2(3): p. a000158. 

423. Jeong, J.Y., et al., Nuclear factor-kappa B inhibition reduces markedly cell 
proliferation in Epstein-Barr virus-infected stomach cancer, but affects 
variably in Epstein-Barr virus-negative stomach cancer. Cancer Invest, 
2010. 28(2): p. 113-9. 

424. Meyer, S., N.G. Kohler, and A. Joly, Cyclosporine A is an uncompetitive 
inhibitor of proteasome activity and prevents NF-kappaB activation. FEBS 
Lett, 1997. 413(2): p. 354-8. 

425. Theiss, A.L., et al., Prohibitin inhibits tumor necrosis factor alpha–induced 
nuclear factor-kappa b nuclear translocation via the novel mechanism of 
decreasing importin α3 expression. Molecular biology of the cell, 2009. 
20(20): p. 4412-4423. 

426. Xu, D., et al., USP18 restricts PRRSV growth through alteration of nuclear 
translocation of NF-kappaB p65 and p50 in MARC-145 cells. Virus Res, 
2012. 169(1): p. 264-7. 

427. Guzman, J.R., et al., Oxymatrine prevents NF-kappaB nuclear 
translocation and ameliorates acute intestinal inflammation. Sci Rep, 
2013. 3: p. 1629. 

428. Lin, Y.-Z., et al., Inhibition of nuclear translocation of transcription factor 
NF-κB by a synthetic peptide containing a cell membrane-permeable motif 



 299 

and nuclear localization sequence. Journal of Biological Chemistry, 1995. 
270(24): p. 14255-14258. 

429. Torgerson, T.R., et al., Regulation of NF-κB, AP-1, NFAT, and STAT1 
nuclear import in T lymphocytes by noninvasive delivery of peptide 
carrying the nuclear localization sequence of NF-κB p50. The Journal of 
Immunology, 1998. 161(11): p. 6084-6092. 

430. Letoha, T., et al., A nuclear import inhibitory peptide ameliorates the 
severity of cholecystokinin-induced acute pancreatitis. World journal of 
gastroenterology: WJG, 2005. 11(7): p. 990. 

431. Abate, A., S. Oberle, and H. Schroder, Lipopolysaccharide-induced 
expression of cyclooxygenase-2 in mouse macrophages is inhibited by 
chloromethylketones and a direct inhibitor of NF-kappa B translocation. 
Prostaglandins Other Lipid Mediat, 1998. 56(5-6): p. 277-90. 

432. Kolenko, V., et al., Inhibition of NF-kappa B activity in human T 
lymphocytes induces caspase-dependent apoptosis without detectable 
activation of caspase-1 and -3. J Immunol, 1999. 163(2): p. 590-8. 

433. Mohan, R.R., et al., Modulation of TNF-α–induced apoptosis in corneal 
fibroblasts by transcription factor NF-κB. Investigative ophthalmology & 
visual science, 2000. 41(6): p. 1327-1336. 

434. Kiernan, R., et al., Post-activation turn-off of NF-kappa B-dependent 
transcription is regulated by acetylation of p65. J Biol Chem, 2003. 278(4): 
p. 2758-66. 

435. Chen, L., et al., Duration of nuclear NF-kappaB action regulated by 
reversible acetylation. Science, 2001. 293(5535): p. 1653-7. 

436. Chen, L.F. and W.C. Greene, Shaping the nuclear action of NF-kappaB. 
Nat Rev Mol Cell Biol, 2004. 5(5): p. 392-401. 

437. Corraliza, I.M., et al., Determination of arginase activity in macrophages: a 
micromethod. J Immunol Methods, 1994. 174(1-2): p. 231-235. 

438. Hartl, D., et al., Pulmonary TH2 response in Pseudomonas aeruginosa-
infected patients with cystic fibrosis. J Allergy Clin Immunol, 2006. 117(1): 
p. 204-211. 

439. Saiman, L., et al., Evaluation of MicroScan Autoscan for identification of 
Pseudomonas aeruginosa isolates from cystic fibrosis patients. J Clin 
Microbiol, 2003. 41(1): p. 492-4. 

440. Saiman, L., et al., An outbreak of methicillin-resistant Staphylococcus 
aureus in a neonatal intensive care unit. Infect Control Hosp Epidemiol, 
2003. 24(5): p. 317-21. 

441. Beceiro, A., M. Tomas, and G. Bou, Antimicrobial resistance and 
virulence: a successful or deleterious association in the bacterial world? 
Clin Microbiol Rev, 2013. 26(2): p. 185-230. 

442. Cory, T.J., et al., Impact of azithromycin treatment on macrophage gene 
expression in subjects with cystic fibrosis. J Cyst Fibros, 2014. 13(2): p. 
164-71. 

443. Zhang, B., et al., Azithromycin drives alternative macrophage activation 
and improves recovery and tissue sparing in contusion spinal cord injury. 
Journal of neuroinflammation, 2015. 12(1): p. 218. 



 300 

444. Gensel, J.C., et al., Predictive screening of M1 and M2 macrophages 
reveals the immunomodulatory effectiveness of post spinal cord injury 
azithromycin treatment. Sci Rep, 2017. 7: p. 40144. 

445. Amantea, D., et al., Azithromycin protects mice against ischemic stroke 
injury by promoting macrophage transition towards M2 phenotype. Exp 
Neurol, 2016. 275 Pt 1: p. 116-25. 

446. Al-Darraji, A., et al., Azithromycin therapy reduces cardiac inflammation 
and mitigates adverse cardiac remodeling after myocardial infarction: 
Potential therapeutic targets in ischemic heart disease. PloS one, 2018. 
13(7): p. e0200474. 

447. Li, M.O., S. Sanjabi, and R.A. Flavell, Transforming growth factor-beta 
controls development, homeostasis, and tolerance of T cells by regulatory 
T cell-dependent and -independent mechanisms. Immunity, 2006. 25(3): 
p. 455-71. 

448. Cottrez, F. and H. Groux, Regulation of TGF-beta response during T cell 
activation is modulated by IL-10. J Immunol, 2001. 167(2): p. 773-8. 

449. Ince, M.N., et al., Role of T cell TGF-beta signaling in intestinal cytokine 
responses and helminthic immune modulation. Eur J Immunol, 2009. 
39(7): p. 1870-8. 

450. Feruglio, S.L., D. Kvale, and A.M. Dyrhol-Riise, T Cell Responses and 
Regulation and the Impact of In Vitro IL-10 and TGF-beta Modulation 
During Treatment of Active Tuberculosis. Scand J Immunol, 2017. 85(2): 
p. 138-146. 

451. Li, M.O. and R.A. Flavell, TGF-β: a master of all T cell trades. Cell, 2008. 
134(3): p. 392-404. 

452. Meng, X.-m., D.J. Nikolic-Paterson, and H.Y. Lan, TGF-β: the master 
regulator of fibrosis. Nature Reviews Nephrology, 2016. 12(6): p. 325. 

453. Schiller, M., D. Javelaud, and A. Mauviel, TGF-beta-induced SMAD 
signaling and gene regulation: consequences for extracellular matrix 
remodeling and wound healing. J Dermatol Sci, 2004. 35(2): p. 83-92. 

454. Taams, L.S., et al., Regulatory T cells in human disease and their 
potential for therapeutic manipulation. Immunology, 2006. 118(1): p. 1-9. 

455. Shurin, G.V., Y. Ma, and M.R. Shurin, Immunosuppressive mechanisms of 
regulatory dendritic cells in cancer. Cancer Microenvironment, 2013. 6(2): 
p. 159-167. 

456. Chapman, N.M. and H. Chi, mTOR signaling, Tregs and immune 
modulation. Immunotherapy, 2014. 6(12): p. 1295-311. 

457. Xu, L., et al., Arginase and autoimmune inflammation in the central 
nervous system. Immunology, 2003. 110(1): p. 141-148. 

458. Abou Alaiwa, M.H., et al., Neonates with cystic fibrosis have a reduced 
nasal liquid pH; a small pilot study. J Cyst Fibros, 2014. 13(4): p. 373-7. 

459. Li, L., et al., Th2-induced eotaxin expression and eosinophilia coexist with 
Th1 responses at the effector stage of lung inflammation. J. Immunol., 
1998. 161: p. 3128-3135. 

460. Sato, Y., et al., Nitric oxide reduces the sequestration of 
polymorphonuclear leukocytes in lung by changing deformability and 



 301 

CD18 expression. American journal of respiratory and critical care 
medicine, 1999. 159(5): p. 1469-1476. 

461. Chen, A.C., et al., Adult non-cystic fibrosis bronchiectasis is characterised 
by airway luminal Th17 pathway activation. PLoS One, 2015. 10(3): p. 
e0119325. 

462. Hsu, D., et al., Interleukin-17 Pathophysiology and Therapeutic 
Intervention in Cystic Fibrosis Lung Infection and Inflammation. Infect 
Immun, 2016. 84(9): p. 2410-21. 

463. Aujla, S.J., et al., IL-22 mediates mucosal host defense against Gram-
negative bacterial pneumonia. Nat Med, 2008. 14(3): p. 275-81. 

464. Dinwiddie, R., Pathogenesis of lung disease in cystic fibrosis. Respiration, 
2000. 67(1): p. 3-8. 

465. Doring, G. and D. Worlitzsch, Inflammation in cystic fibrosis and its 
management. Paediatr Respir Rev, 2000. 1(2): p. 101-6. 

466. Marcos, V., et al., CXCR2 mediates NADPH oxidase–independent 
neutrophil extracellular trap formation in cystic fibrosis airway 
inflammation. Nature medicine, 2010. 16(9): p. 1018. 

467. Parks, Q.M., et al., Neutrophil enhancement of Pseudomonas aeruginosa 
biofilm development: human F-actin and DNA as targets for therapy. 
Journal of medical microbiology, 2009. 58(4): p. 492-502. 

468. Clinicaltrials.gov. A study evaluating the safety and activity of pegylated 
recombinant human arginase (bct-100) (PARC). 2018; Available from: 
https://clinicaltrials.gov/ct2/show/NCT03455140. 

469. Zhang, C., et al., Upregulation of vascular arginase in hypertension 
decreases nitric oxide–mediated dilation of coronary arterioles. 
Hypertension, 2004. 44(6): p. 935-943. 

470. Osorio, E.Y., et al., Growth factor and Th2 cytokine signaling pathways 
converge at STAT6 to promote arginase expression in progressive 
experimental visceral leishmaniasis. PLoS pathogens, 2014. 10(6): p. 
e1004165. 

471. Vasquez-Dunddel, D., et al., STAT3 regulates arginase-I in myeloid-
derived suppressor cells from cancer patients. The Journal of clinical 
investigation, 2013. 123(4): p. 1580-1589. 

472. Butcher, B.A., et al., Toxoplasma gondii rhoptry kinase ROP16 activates 
STAT3 and STAT6 resulting in cytokine inhibition and arginase-1-
dependent growth control. PLoS Pathog, 2011. 7(9): p. e1002236. 

473. Breuer, O., et al., Autosomal dominant gain of function STAT1 mutation 
and severe bronchiectasis. Respir Med, 2017. 126: p. 39-45. 

474. Kretzmer, R., J. Church, and M. Bansal, A Stat1 Gain-Of-Function 
Mutation In Multifactorial Bronchiectasis In A Five Year-Old, in C65. 
PEDIATRIC CASE REPORTS: BRONCHIECTASIS, CYSTIC FIBROSIS, 
AND LUNG INFECTIONS. 2017, American Thoracic Society. p. A6087-
A6087. 

475. Kreiselmeier, N.E., et al., Statin-mediated correction of STAT1 signaling 
and inducible nitric oxide synthase expression in cystic fibrosis epithelial 

https://clinicaltrials.gov/ct2/show/NCT03455140


 302 

cells. American Journal of Physiology-Lung Cellular and Molecular 
Physiology, 2003. 285(6): p. L1286-L1295. 

476. Kramer, E.L. and J.P. Clancy, TGFβ as a therapeutic target in cystic 
fibrosis. Expert opinion on therapeutic targets, 2018. 22(2): p. 177-189. 

477. Sun, H., et al., Tgf-beta downregulation of distinct chloride channels in 
cystic fibrosis-affected epithelia. PloS one, 2014. 9(9): p. e106842. 

478. Arkwright, P.D., et al., TGF-beta(1) genotype and accelerated decline in 
lung function of patients with cystic fibrosis. Thorax, 2000. 55(6): p. 459-
62. 

479. Randhawa, I., C. Caperton, and E. Nussbaum, P168 Cystic fibrosis 
immunotherapy: use of combination chemotherapy for treatment of cystic 
fibrosis lung disease. Annals of Allergy, Asthma & Immunology, 2016. 
117(5): p. S72. 

480. Obaid, A., et al., Model of the adaptive immune response system against 
HCV infection reveals potential immunomodulatory agents for combination 
therapy. Scientific reports, 2018. 8(1): p. 8874. 

481. Wise, J., NICE approves immunotherapy combination for advanced 
melanoma. BMJ: British Medical Journal (Online), 2016. 353. 

482. Patejunas, G., et al., Generation of a mouse model for citrullinemia by 
targeted disruption of the argininosuccinate synthetase gene. Somat Cell 
Mol Genet, 1994. 20(1): p. 55-60. 

483. Heeckeren, A., et al., Excessive inflammatory response of cystic fibrosis 
mice to bronchopulmonary infection with Pseudomonas aeruginosa. J Clin 
Invest, 1997. 100(11): p. 2810-5. 

484. Guilbault, C., et al., Cystic fibrosis mouse models. Am J Respir Cell Mol 
Biol, 2007. 36(1): p. 1-7. 

485. Dorin, J.R., et al., Cystic fibrosis in the mouse by targeted insertional 
mutagenesis. Nature, 1992. 359(6392): p. 211-5. 

486. Dorin, J.R., et al., Successful targeting of the mouse cystic fibrosis 
transmembrane conductance regulator gene in embryonal stem cells. 
Transgenic Res, 1992. 1(2): p. 101-5. 

487. Ratcliff, R., et al., Production of a severe cystic fibrosis mutation in mice 
by gene targeting. Nature genetics, 1993. 4(1): p. 35. 

488. Rozmahe, R., et al., Modulation of disease severity in cystic fibrosis 
transmembrane conductance regulator deficient mice by a secondary 
genetic factor. Nature genetics, 1996. 12(3): p. 280. 

489. Zeiher, B.G., et al., A mouse model for the delta F508 allele of cystic 
fibrosis. The Journal of clinical investigation, 1995. 96(4): p. 2051-2064. 

490. Adapa, D., et al., A Brief Review on Immune Mediated Diseases. J Clin 
Cell Immunol S, 2011. 11: p. 2. 

491. Kuek, A., B.L. Hazleman, and A.J. Östör, Immune-mediated inflammatory 
diseases (IMIDs) and biologic therapy: a medical revolution. Postgraduate 
medical journal, 2007. 83(978): p. 251-260. 
 

  



303 

VITA 

Place of birth: 

Tyre, Lebanon 

Education: 

Lebanese American University 

Pharm.D.  

University of Kentucky 

Ph.D in Pharmaceutical Sciences (expected), Clinical and Experimental Therapeutics 

University of Kentucky 

Graduate Degree+ in Leadership, Team Building, and Communication for careers 

Professional positions: 

University of Kentucky 

August 2013- December 2017 

Teaching Assistant 

University of Kentucky 

July 2013 - current 

Research Assistant 



304 

Honors and Awards: 

October 2017: Peter G. Glavinos Jr. Ph.D. Memorial Travel Award 

August 2017: Pharmaceutical Sciences Excellence in Graduate Achievement 

Fellowship 

November 2016: AAI Young Investigator Award 

June 2016: First Place Excellence Award for the Podium Presentation at the 48th 

Annual Pharmaceutics Graduate Student Research Meeting  

November 2015: Third Place Outstanding Elevator Speech Presentation at the  

Symposium on Drug Discovery and Development 2015 

July 2015: AAPS Student Chapter of the Year Award 

Publications: 

August 2017: 

Azithromycin Therapy Reduces Cardiac Inflammation and Mitigates Adverse 

Cardiac Remodeling after Myocardial Infarction: Potential Therapeutic Targets 

in Ischemic Heart Disease 

Ahmed Al-Darraji, Dalia Haydar, Lakshman Chelvarajan, Himi Tripathi,  

Bryana Levitan, Shaojing Ye, Vincent J. Venditto, John C. Gensel,  

David J. Feola and Ahmed Abdel-Latif 

PLOS ONE 

July 2018 (submitted): 

Azithromycin Decreases Stat-1 Phosphorylation via Cross-talk with 

NF-κB Signaling Pathway. 

Dalia Haydar, Theodore J. Cory, Susan E. Birket, Brian S. Murphy, 

Keith R. Pennypacker, and David J. Feola  

Scientific Reports 

December 2017 (under construction): 

Impact of azithromycin treatment on pulmonary gene expression in a murine 



305 

model of chronic Pseudomonas aeruginosa infection 

Rene Gonzalez, Dalia Haydar, John Gensel, Cynthia Mattingly, David J. Feola 

June 2018 (under construction): 

Macrophage Arginase-1 is essential for regulation of excessive inflammation in 

Pseudomonas aeruginosa pneumonia 

Dalia Haydar, Nishad Thamban Chandrika, Rene Gonzalez, Beth Garvy,  

Sylvie Garneau-Tsodikova, and Dave J. Feola 

June 2018 (under construction): 

Azithromycin balances the immune responses in PA pneumonia via 

mechanisms independent of arginase.  

Dalia Haydar, Rene Gonzalez, Beth Garvy, David J. Feola 

Typed name: 

Dalia Haydar 


	ALTERNATIVELY ACTIVATED MACROPHAGES IN PSEUDOMONAS AERUGINOSA PNEUMONIA: MODULATION OF THE NF-ΚB SIGNALING PATHWAY AND THE IMMUNOMODULATORY ROLE OF ARGINASE-1
	Recommended Citation

	Title Page
	Abstract
	Acknowledgment
	Table of Contents (TOC)
	I. Cystic fibrosis and infection
	II. Inflammation and immune response in cystic fibrosis
	i. Epithelium
	ii. The NF-κB pro-inflammatory signaling pathway
	iii. Neutrophilic inflammation
	iv. Macrophage alterations
	a. M1 and M2 macrophage activation
	b. Arginase-1 immunomodulatory properties
	c. Altered macrophage polarization
	d. Altered macrophage functions
	e. Altered alveolar and interstitial macrophages


	III. Adaptive immunity in cystic fibrosis
	i. Impaired communication between innate and adaptive immunity
	ii. Skewed T cell responses
	a. CFTR in lymphocytes
	b. Intrinsic and environmental lymphocyte alterations


	IV. Dysregulated inflammation
	V. Current treatments for cystic fibrosis
	i. CFTR based therapies
	ii. Anti-inflammatory therapies
	a. Corticosteroids
	b. Therapies targeting neutrophil recruitment
	c. Therapies against NF-κB signaling pathway
	d. Cell-based therapies

	iii. Antimicrobial therapies

	VI. Azithromycin use in cystic fibrosis
	i. Azithromycin antimicrobial spectrum and pharmacokinetic properties
	ii. Anti-inflammatory effectiveness of azithromycin
	a. Improved lung function
	b. Reduced exacerbations and improved quality of life
	c. Reduced need for antibiotics
	d. Reduced inflammatory parameters
	e. Adverse events

	iii. Current treatment guidelines for azithromycin use in cystic fibrosis
	iv. Anti-inflammatory cellular and molecular mechanisms of azithromycin

	VII. Summary and specific aims
	Chapter 2: Methods
	I. Mice
	i. Arginase-1 conditional knock-out mice
	ii. BALB/cJ mice

	II. Murine infection and drug dosing
	i. PA-laden agarose beads
	ii. Infection
	iii. Animal dosing
	a. Azithromycin
	b. l-norvaline and BEC


	III. Tissue harvest and processing
	i. Murine lung lavage
	ii. Tracheobronchial lymph nodes
	iii. Interstitial lung tissues

	IV. Histology
	i. Tissue cryosectioning
	ii. Sectioning of paraffin-embedded tissues
	iii. Lung injury scoring

	V. Flow cytometry
	i. Surface staining
	ii. Intracellular staining
	iii. Flow cytometry analysis
	iv. Flow panels
	a. Surface staining panels
	b. Intracellular staining panels


	VI. Macrophage polarization
	VII. RNA isolation and quantitative RT-PCR.
	VIII. RelA translocation assay.
	IX. Immunofluorescence staining and analysis
	X. Arginase assay.
	XI. Western blot analysis.
	XII. Human study protocol
	i. Study design
	ii. Study population
	a. Inclusion criteria
	b. Exclusion criteria

	iii. Human sample processing
	a. TaqMan microfluidic cards for gene expression assays
	b. Flow cytometry analysis of immune cells in the sputum
	c. Cytometric Bead Array (CBA)


	XIII. Statistical analysis.
	Chapter 3: Requirement of arginase in host protection against excessive inflammation
	I. Introduction
	II. Results
	III. Discussion
	Chapter 4: Azithromycin polarizes macrophages to an M2 phenotype via inhibition of STAT1 through cross-talk from NF-κB signaling mediators
	I. Introduction
	II. Results
	III. Discussion
	Chapter 5: Dependence of azithromycin-induced M2-like macrophage phenotype on arginase-1 to alter inflammation
	I. Introduction
	II. Results
	III. Discussion
	Chapter 6: Summary and conclusions
	I. Project Overview
	II. Results overview
	i. Myeloid arginase production is essential for regulation of excessive inflammation in PA pneumonia
	ii. Azithromycin balances the M1/M2 macrophage polarization by cross-inhibiting the M1-associated transcription factors, NF-κB and STAT-1
	iii. Azithromycin protects against excessive morbidity and inflammation through mechanisms independent of arginase-1 production

	III. Significance
	i. Myeloid arginase, a therapeutic target to control inflammation
	ii. NF-κB signaling pathway, a targeted approach to limit pro-inflammatory macrophage polarization
	iii. Arginase production by myeloid cells is not required for azithromycin anti-inflammatory effects

	IV. Future directions
	i. Evaluating the contribution of l-arginine synthesis in modulating T cell responses to PA infections
	ii. Evaluating the requirements of non-myeloid arginase in the anti-inflammatory mechanisms of azithromycin
	iii. Evaluating the effects of arginase deletion in cystic fibrosis mouse models
	iv. Evaluating the clinical applicability of azithromycin anti-inflammatory mechanisms
	v. Additional future studies

	V. Conclusions
	I- Arginase-1 immunomodulatory role in PA pneumonia
	II- Azithromycin anti-inflammatory mechanism of action
	III- Dependence of azithromycin-induced M2 macrophage phenotype on Arginase-1 to alter inflammation

	Appendix A: Data Collection Form
	Appendix B: Human Genes for Array Plates
	Bibliography
	VITA


