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APPLICATION OF HYPERSPECTRAL IMAGING AND ACOUSTIC  
EMISSION TECHNIQUES FOR APPLE QUALITY PREDICTION 

N. Ekramirad,  A. Rady,  A. A. Adedeji,  R. Alimardani 

ABSTRACT. There is a growing demand for developing effective non-destructive quality assessment methods with quick 
response, high accuracy, and low cost for fresh fruits. In this study, hyperspectral reflectance imaging (400 to 1000 nm) 
and acoustic emission (AE) tests were applied to ‘GoldRush’ apples (total number, n = 180) to predict fruit firmness, total 
soluble solids (TSS), and surface color parameters (L*, a*, b*) during an eight-week storage period. Partial least squares 
(PLS) regression, least squares support vector machine (LS-SVM), and multivariate linear regression (MLR) methods were 
used to establish models to predict the quality attributes of the apples. The results showed that hyperspectral imaging (HSI) 
could accurately predict all the attributes except TSS, while the AE method was capable of predicting fruit firmness, b* 
color index, and TSS. Overall, HSI regression using PLS had better comprehensive ability for predicting firmness, TSS, and 
color parameters (L*, a*, b*) than AE, with correlation coefficients of prediction (rp) of 0.92, 0.41, 0.83, 0.87, and 0.94 and 
root mean square errors of prediction (RMSEP) of 4.32 (N), 1.78 (°Brix), 3.41, 2.28, and 4.29, respectively, while AE 
regression using LS-SVM gave rp values of 0.88, 0.74, 0.34, 0.37, and 0.81 and RMSEP values of 4.26 (N), 0.64 (°Brix), 
4.69, 1.8, and 5.17 for firmness, TSS, and color parameters (L*, a*, b*), respectively. The results show the potential of these 
two non-destructive methods for predicting some of the quality attributes of apples. 

Keywords. Apple, Acoustic emission, Fruit quality, Hyperspectral imaging, Regression model. 

pples are among the most widely cultivated tree 
fruits worldwide, with an annual production of 
80.8 million metric tons valued at nearly $31.9 
billion in 2013, and they are estimated to be the 

second most consumed fruit after oranges (FAOSTAT, 
2013). Meanwhile, consumers are demanding higher inter-
nal and external fruit qualities, such as ripeness, firmness, 
total soluble solids (TSS), and color. Apples are generally 
sorted manually or automatically on the basis of size, color, 
and surface defects (Lu and Peng, 2007). Furthermore, the 
internal quality traits that influence consumer acceptance 
and price are still evaluated at small scale with conventional 
destructive tests, which are either subjective or time-con-
suming, so there is a need for the development of non-de-
structive methods for the inspection and classification of ap-
ples’ internal and external attributes, accurately and rapidly, 

to ensure that all fruits meet a minimum level of acceptance. 
During the last few decades, considerable studies have 

been carried out on the development of non-destructive eval-
uation methods for fruit properties based on different tech-
nologies, e.g., sonic (Morrison and Abeyratne, 2014), elec-
trical (El Khaled et al., 2015), machine vision (Parmar et al., 
2011), Vis/NIR spectroscopy (McGlone et al., 2002; Rung-
pichayapichet et al., 2016), hyperspectral imaging (HSI) 
(Lu, 2003; Mendoza et al., 2011), computed tomography 
(CT) (Ma et al., 2016), nuclear magnetic resonance (NMR) 
(Hernández-Sánchez et al., 2007), and electronic nose 
(Xiaobo et al., 2010). As table 1 shows, none of these ap-
proaches seems to provide all the information necessary to 
predict fruit quality. Additionally, non-destructive detection 
methods have their advantages and drawbacks. For example, 
optical methods provide better detection of external proper-
ties than internal properties, and sonic methods are still ex-
perimental and have not been applied commercially. Conse-
quently, different measuring principles should be applied in 
parallel to improve the available information on fruit quality. 

Hyperspectral imaging (HSI) is a relatively new technol-
ogy that produces a spatial map of the spectral variation of 
the tested sample, and thus it is a useful tool in evaluation 
applications in agricultural and food industries (Ekramirad 
et al., 2016). HSI integrates spectroscopic and imaging tech-
niques to enable direct identification of different compo-
nents and changes and their spatial distribution in the tested 
sample using a three-dimensional dataset called a hypercube. 
A hypercube contains a large amount of information that can 
be analyzed to describe the object in a more reliable manner 
than conventional machine vision or spectroscopy methods. 
HSI technology can provide more detection information, in-
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cluding internal characteristics, morphology, and chemical 
composition, than a single machine vision technology or 
spectroscopic analysis technology. HSI technology has been 
used for predicting internal qualities such as TSS, firmness, 
and pH of peaches (Lu and Peng, 2006), blueberries (Leiva-
Valenzuela et al., 2013), strawberries (ElMasry et al., 2007), 
and bananas (Rajkumar et al., 2012). For apples, Peng and 
Lu (2005) investigated the firmness and TSS of ‘Golden De-
licious’ apples, Mendoza et al. (2011) predicted the firmness 
and TSS of three varieties of apples (‘Jonagold’, ‘Red Deli-
cious’, and ‘Golden Delicious’), and Dong and Guo (2015) 
used this method to study the TSS, firmness, and pH of ‘Fuji’ 
apples. The results of these studies showed that HSI is feasi-
ble for non-destructively predicting internal quality attrib-
utes of fruits. However, the results also indicated that this 
method could not predict all attributes exactly, and some 
properties were evaluated coarsely or were not predicted. 

Acoustic emission (AE) techniques, especially within the 
ultrasonic frequency range, have the advantages of quick 
measurement and interpretation, high accuracy, low cost, 
freedom from radiation hazards, ease of on-line measure-
ment, and characterization of the entire sample rather than 
being site-specific. Therefore, AE techniques have gained 
increasing popularity in the assessment of biological materi-
als and foodstuffs. The characteristics of the sound waves 
that pass through the product can be used to indicate the 
quality attributes of fruit during postharvest processing 
(Butz et al., 2005). Mizrach et al. (2000) reported using an 
ultrasonic measurement system for assessment of some 
transmission parameters. Those parameters may have quan-
titative relationships with ripening, maturity, firmness, and 
other internal qualities of fruit and vegetables. Thus, in the 
present study, a novel approach was applied to record the 
ultrasound emission signals of intact apples using a contact 
piezoelectric sensor in order to predict the fruit internal qual-
ities based on time domain and frequency domain parame-
ters of the collected signals. 

Applying novel technologies as well as combining differ-
ent methods in the field of post-harvest fruit quality assess-
ment could increase the prediction accuracy of both internal 
and external quality attributes. Moreover, it is necessary to 
evaluate these methods in order to propose a new sensor fu-
sion approach for more accurate and robust assessment of 
fruit quality. Therefore, the objectives of this study were to 
propose a novel AE technique for fruit quality prediction and 

to compare the performance of AE and HSI techniques in 
predicting quality characteristics of apples. 

MATERIALS AND METHODS 
SAMPLES AND REFERENCE ANALYSES 

Apples of ‘GoldRush’ variety were harvested from a 
commercial orchard in Georgetown, Kentucky, during the 
2015 harvest season. The apples were transported to our la-
boratory at the University of Kentucky, where they were 
washed in clean potable water with detergent to remove in-
secticide residues, and then air-dried. The apples were then 
divided equally into four groups and placed in storage con-
ditions of 27°C, 17°C, 10°C, and 4°C at a relative humidity 
that ranged from 75% to 90%. Measurements were taken in-
itially and at one-week intervals during the eight-week stor-
age period, and thus the samples varied in their quality at-
tributes. Three replicates were taken from each storage con-
dition. Intact apples were marked and scanned by an HSI 
system, and AE signals were recorded before carrying out 
destructive tests, which included firmness, TSS, and surface 
color (L*, a*, and b* space indices) measurements. Standard 
destructive methods were applied to measure quality attrib-
utes for reference values. Fruit firmness was measured using 
a texture analyzer (CT3, Ametek Brookfield) to perform a 
puncture test, using a 11 mm diameter steel cylindrical probe 
at a compression depth of 8 mm. Maximum force (N) rec-
orded by a Magness-Taylor (MT) tester is considered to be 
a measure of fruit firmness. TSS was obtained by squeezing 
flesh samples to extract the juice in order to measure the re-
fractive index on a compensated digital refractometer (Leica 
Auto Abbe). The measurement of apple peel color was car-
ried out using a Minolta Chromameter (CR300 Series). The 
color was expressed in terms of L*, a*, and b* color indices, 
where L denotes lightness on a scale of 100 to 0, a− denotes 
greenness while a+ denotes redness, and b− denotes blueness 
while b+ denotes yellowness. All reference measurements 
were repeated three times on each sample. 

HYPERSPECTRAL IMAGING SYSTEM 
An HSI system (Middleton Spectral Vision) was used for 

acquiring reflectance images from the apple samples in the 
spectral range of 400 to 1000 nm. The line scan (pushbroom) 
system is made up of four main parts (fig. 1): a sample plate 
(model MRC-999-031, Middleton Spectral Vision), 150 W 

Table 1. Non-destructive methods for prediction of fruit quality attributes. 
Basis Method Used Properties References 

Optical Image processing and  
machine vision 

Size, shape, external defects Blasco et al. (2003), Hatcher (2008) 

Spectroscopy Sugar, acidity, total soluble solids, color,  
internal and external defects, firmness 

Nicolaï et al. (2007), 
Rungpichayapichet et al. (2016) 

Hyperspectral imaging Sugar, acidity, total soluble solids, color, size,  
shape, internal and external defects, firmness 

Huang et al. (2014), Lu and Peng (2006), 
Nanyam et al. (2012), Pu et al. (2015) 

X-ray X-ray imaging and  
computed tomography 

Internal cavity, maturity Schoeman et al. (2016) 

Acoustic Vibrational Firmness, viscoelasticity, maturity Ikeda et al. (2015), Liu and Hui (2015) 
Sound and ultrasound Firmness, viscoelasticity, internal cavity,  

density, sugar 
Mizrach et al. (2000) 

Electromagnetic Magnetic resonance imaging and  
nuclear magnetic resonance 

Sugar, moisture content, internal cavity,  
internal defects 

Mazhar et al. (2015), 
Winisdorffer et al. (2015) 

Chemical E-nose and E-tongue Acidity, sugar Baietto and Wilson (2015) 
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halogen lamp (model A20800, Schott) positioned above the 
sample at a 45° angle, a Pixelfly CCD digital camera with 
12 bit (69.5 dB) dynamic range coupled with a zoom lens, 
and a spectrograph (model V10E, Specim) attached to the 
front of the camera lens. The adjusted configurations were 
2 × 2 binning, 45 ms exposure time, and scanning speed of 
3322 counts s-1. Spectral and spatial resolutions were 2.8 nm 
and 0.13 mm pixel-1, respectively. The output image (*.raw) 
had a size of 696 × 619 pixels with 512 spectral bands form-
ing a hypercube. 

IMAGE PROCESSING AND HYPERSPECTRAL  
DATA ANALYSIS 

Each apple was placed on a black plastic tray and scanned 
four times at the stem, calyx end, and twice from different 
sides around the equator. The data from averaging all four 
orientations were used in the modeling. To segment the re-
gion of interest (ROI) from the images, the image with a 
wavelength of 710 nm was considered as a masking image, 
which is a binary image obtained by the histogram thresh-
olding technique. This masking image was then applied on 
each image of the hypercube (i.e., all 512 wavelengths) to 
obtain the ROI, which contains only the sample, with other 
pixels representing the background equal to zero. The mean 
reflectance spectrum (MRS) was computed by averaging 
over all the pixels for each segmented ROI. Each image was 
then calibrated using the MRS of a 50% reference plate 
(SRT-40-050, Labsphere) and the MRS of the dark or back-
ground. The relative reflectance (RR) was calculated using 
the following equation: 

 
)()(

)()(RR
idir

idis

II

II

−
−

=  (1) 

where Is, Ir, and Id are the intensity values for the sample, 
reference, and dark, respectively. Subscript i refers to the 

pixel index (i = 1, 2, 3, ..., n, where n is the size of the MRS 
vector). Figure 2 shows the sequence of image processing 
steps followed to obtain the MRS. 

The spectral data (fig. 3) were analyzed using PLS regres-
sion with preprocessing. Several spectral preprocessing 
methods, including standard normal variate (SNV), mean 
centering, multiplicative signal correction (MSC), smooth-
ing using first and second derivatives, and min/max normal-
ization, were applied in addition to the non-preprocessed 
data, and the best preprocessing approach was selected based 
on the standard error (Rady et al., 2015).The purpose of 
spectral preprocessing is to eliminate the effects of noise, 
distortion, and observational environment and to improve 
the precision and stability of models. 

The multicollinearity problem usually occurs in multivar-
iate analysis of hyperspectral images. Some congruous 
wavelengths are related to similar constituents and thus con-
tain much of the same information. Therefore, it is essential 
to find the few characteristic wavelengths that would be 
most effective for quality evaluation of the product and to 
eliminate wavelengths with no discrimination power. The 
interval partial least squares (IPLS), which is a known vari-
able selection method for spectroscopic data and for optimiz-
ing the performance of PLSR models, was applied in this re-
search. 

All image processing and feature extraction of the ac-
quired hyperspectral images was carried out using 
MATLAB (R2014b, The MathWorks, Inc.), and PLS cali-
bration models were developed in MATLAB with the rou-
tines of the PLS-Toolbox (Eigenvector Research, Inc.) to 
predict fruit quality parameters. 

ACOUSTIC EMISSION TEST AND DATA ANALYSIS 
An experimental AE monitoring apparatus was custom-

designed and developed by TriboFlow Separations Co. 
(Lexington, Ky.) to acquire high-quality ultrasound emis-

Figure 1. Hyperspectral imaging system at the University of Kentucky Food Engineering Laboratory. 
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sion data from apple samples (fig. 4). The apparatus consists 
of a rectangular stainless steel compartment enclosing a 
chamber that was sound and vibration isolated, an acoustic 
piezoelectric ceramic sensor (R6α model SNAD54, Physical 
Acoustics Corp.) with an operating frequency range of 35 to 
100 kHz, a 40 dB preamplifier (1220A, Physical Acoustics 
Corp.), and a designated channel to preprocess the signals. 

Data were collected and analyzed using AEwin software 
(Physical Acoustics Corp.), which performed fast Fourier 
transform on the data and provided the various features and 
parameters of the sound obtained from the sample auto-
matically. 

To acquire acoustic data, the setup shown in figure 4 
was used. First, a background signal was collected to set 
the threshold input parameter in the data acquisition soft-
ware. When acoustic wave intensities above the threshold 
were detected (called a “hit”), the software enabled stor-
age, and signal data were recorded. To obtain acoustic sig-
nals, each apple was placed inside the chamber in contact 
with the piezoelectric sensor, and a recording time of 60 s 
was used for each sample. Nine features were obtained 
(seven time domains and two frequency domains): rise 
time, number of counts, energy, amplitude, signal strength, 
absolute energy, frequency centroid, and peak frequency. 
These features were used as predictors to model the quality 
parameters. 

MODELING METHODS 
Two linear models, i.e., multivariate linear regression 

(MLR) and partial least squares (PLS), and one nonlinear 
model, i.e., least squares support vector machine (LS-SVM), 
were applied to establish prediction models for firmness, 
TSS, and the three color parameters. MLR predicts the de-

 

Figure 2. Steps followed to obtain MRS for raw images of apple samples scanned using visible/near-infrared imaging system. 

Figure 3. Relative reflectance of spectral data for regression analysis.
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pendent variables by a linear combination of predictor val-
ues at each data point, and the error between predicted and 
measured values is minimized in a least squares sense. MLR 
is a simple method used for explanatory or predictive pur-
poses; however, in prediction analysis, multicollinearity be-
tween the variables reduces the performance of the model. 
Thus, LS-SVM was also applied as a non-linear model to 
deal with non-linearity of the data. LS-SVM, proposed by 
Suykens et al. (2002), is a modified algorithm of the standard 
support vector machine (SVM), which is an emerging ma-
chine learning algorithm that improves the generalization 
ability of the learning machine based on the principle of 
structural risk minimization (Yu et al., 2011). LS-SVM is 
widely applied in pattern recognition and function regression 
due to the advantages of limited overfitting, high predictive 
reliability, and strong generalization ability, which is espe-
cially feasible for circumstances of small sample space mod-
eling. In this study, we applied LS-SVM with radial basis 
function (RBF) kernel in prediction of quality parameters 
from the acoustic signals. The simplex technique and leave-
one-out cross-validation were applied to find the two turning 
parameters, i.e., regularization parameter (γ) and kernel 
function parameters (σ2), of LS-SVM. The LS-SVMlab 
Toolbox (v. 1.8, Katholieke Universiteit Leuven) was em-
ployed for LS-SVM regression. The computations and data 
analysis were performed in MATLAB (R2014b, The Math-
Works, Inc.). 

Generally, PLS is implemented in spectral data analysis 
to transfer the large sets of highly correlated and often col-
linear experimental data into smaller factors. PLS is a widely 
used algorithm that combines factor analysis techniques with 
regression. In PLS, the original independent information 
(spectral data) is projected onto a few underlying variables 
called latent variables (LVs) to reduce the dimensionality 
and compress the original spectral data (Dong and Guo, 
2015; Li et al., 2013). Synthesizing the sense of principal 
component analysis (PCA) and MLR, PLS regression is es-
pecially feasible in circumstances where multicollinearity 
exists between the variables, and the number of LVs is usu-
ally smaller than in PCR regression. The optimum number 
of latent variables was selected based on minimizing the 
standard error of cross-validation by selecting the first min-
imum calculated with the leave-one-out method. 

The predictive ability of a model is evaluated by model 
parameters such as the correlation coefficient (r) and root 
mean square error of prediction (RMSEP) between the pre-
dicted value and the measured value in the validation set 
(Wang et al., 2015). Another commonly used evaluation pa-
rameter is the residual predictive deviation (RPD), which is 
the ratio of the standard deviation of the dependent variable 
to the RMSEP. According to Nicola et al. (2007) and Pissard 
et al. (2013), when the RPD value of a prediction model is 
between 2 and 2.5, coarse prediction is possible, while an 
RPD value above 2.5 indicates good to excellent prediction. 
In this study, the correlation coefficient (r), RMSEP, and 
RPD were used to evaluate the models. 

RESULTS AND DISCUSSION 
QUALITY CHARACTERISTICS OF SAMPLES 

The statistics of firmness, TSS, and color parameters of the 
apples, used as calibration and prediction sets, are shown in 
table 2. For each parameter, the measured data range in the 
prediction set was within the limits of the data in the calibra-
tion set. In addition, the standard deviation of each parameter 
was 23% to 40% of the data range of that parameter in both 
sets. This means that the data contained enough variation for 
a meaningful calibration (Dong and Guo, 2015; Savenije et 
al., 2006). Moreover, each quality parameter in the two sets 
covered a similar range. All these factors suggest a meaning-
ful sample division, leading to effective models. 

As shown in table 2, broad ranges of values were meas-
ured for firmness (28 to 59.78 N) and for the three color pa-
rameters. This can be attributed to the fact that sampling was 
carried out at different times during an eight-week period 
with four different storage conditions. It is well known that 
firmness declines during storage as a result of changes in wa-
ter content and pectin transformation, leading to a loss of cell 
wall integrity, cell-to-cell adhesion, increase in intercellular 
spaces, and a change in tissue structure (Cybulska et al., 
2012; Zude et al., 2006). The increase in b* values, a varia-
tion from blueness to yellowness (from 29.87 to 51.43 for 
apples stored at 4°C), could be associated with a yellowing 
tendency, which usually indicates ripening. In fact, the skin 
color of ‘GoldRush’ apple is greenish-yellow with an occa-
sional bronze to red blush at harvest, and the skin turns deep 

Figure 4. Acoustic setup. 
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yellow during storage (Crosby et al., 1994). The values of 
firmness, TSS, and color parameters in this work were 
within the ranges for apples found in the literature (Jiménez 
et al., 2011; Mendoza et al., 2011). 

PREDICTION OF QUALITY ATTRIBUTES  
BY ACOUSTIC EMISSION 

The calibration and prediction performances of the LS-
SVM and MLR models for firmness, TSS, and color param-
eters of apples are listed in table 3. For the MLR model, the 
RPD values of the color indices were not higher than 1.20, 
indicating that the established MLR model was incapable of 
predicting the color of apples using the AE technique. How-
ever, LS-SVM has better comprehensive ability than MLR 
in predicting all the quality parameters, indicating the non-
linear nature of the acoustic data. A high correlation between 
firmness and the acoustic data was found, and the LS-SVM 
model for firmness prediction achieved a relatively good 
performance for both the calibration set and the prediction 
set, with a correlation coefficient (rc) and root mean square 
error of calibration (RMSEC) of 0.97 and 2.33 (N), respec-
tively, correlation coefficient of prediction (rp) and RMSEP 
of 0.88 and 4.26 (N), respectively, and RPD of 2.25. The pa-
rameters of the LS-SVM model optimized by leave-one-out 
cross-validation were σ2 = 0.24 and γ = 9.32. Acoustic sig-
nals are transmitted mainly by the fruit cell walls due to their 
elastic properties and ability to generate elastic waves; there-
fore, it was expected that the fruit firmness and structural 
properties would correlate highly with acoustic parameters. 

For color parameter prediction, LS-SVM has good results 
for b*, with rc and RMSEC of 0.98 and 0.08, respectively, rp 
and RMSEP of 0.81 and 5.17, respectively, and RPD of 1.80. 
The optimized LS-SVM model using leave-one-out cross-
validation method had kernel parameters of σ2 = 0.82 and γ = 

606.5. However, the model had poor performance in predict-
ing the a* and L* parameters, as indicated by the high 
RMSEP and low RPD values. 

Table 3 shows that the AE technique was moderately suc-
cessful for TSS prediction, with rc and RMSEC of 0.81 and 
0.75 (°Brix), respectively, rp and RMSEP of 0.76 and 0.60 
(°Brix), respectively, and RPD of 1.77 by MLR, and rc and 
RMSEC of 0.75 and 0.62 (°Brix), respectively, rp and 
RMSEP of 0.74 and 0.64 (°Brix), respectively, and RPD of 
1.68 by LS-SVM. 

Figure 5 shows the predicted values for firmness, TSS, 
and color parameters of the apples obtained by the MLR and 
LS-SVM models versus the measured values. The overall 
prediction results for LS-SVM were better than those for 
MLR. However, the two modeling methods yielded similar 
predictions for TSS, with rp values between 0.76 and 0.76. 

PREDICTING APPLE QUALITY ATTRIBUTES  
USING HYPERSPECTRAL IMAGING 

Table 4 summarizes the quality attribute predictions for 
the apples by the PLS model with the most promising pre-
processing methods and using all spectral wavelengths. Sim-
ilarly, table 5 presents the predictions using the PLS model 
with selected wavelengths using IPLS. As shown in tables 4 
and 5, good firmness and color value predictions were ob-
tained, whereas relatively poor results were obtained for TSS 
(rp = 0.34, RMSEP = 1.86 (°Brix), and RPD = 1.04 using all 
wavelengths, and rp = 0.41, RMSEP = 1.78 (°Brix), and RPD 
= 1.09 using selected wavelengths). This is in agreement 
with other studies, proving that HSI in reflectance and scat-
tering modes shows better performance for firmness and 
color prediction than for TSS prediction, and the presence of 
skin defects and bruises on intact samples negatively influ-
ences the prediction of TSS (Lu and Peng, 2007; Mendoza 
 

Table 2. Descriptive statistics of the calibration and prediction data sets. 

Quality 
Parameter 

Sample 
Set 

Acoustic Emission Test 

 

Hyperspectral Imaging 
No. of 

Samples 
Range of 

Measured Data Mean ±SD 
No. of 

Samples 
Range of 

Measured Data Mean ±SD 

Firmness (N) 
Calibration 100 28.00 to 56.87 41.71 ±9.68  113 28.00 to 59.78 34.34 ±12.53 
Prediction 30 31.50 to 55.75 42.74 ±9.36  37 17.75 to 52.90 34.87 ±10.75 

TSS (°Brix) 
Calibration 100 11.20 to 16.1 13.70 ±1.13  132 11.11 to 17.12 14.13 ±4.03 
Prediction 30 11.20 to 14.85 13.49 ±1.07  43 11.10 to 16.25 13.81 ±1.12 

L* 
Calibration 100 48.99 to 72.23 60.61 ±5.73  108 46.76 to 74.34 62.21 ±5.87 
Prediction 30 51.98 to 68.91 61.11 ±5.49  36 52.74 to 73.12 63.00 ±5.77 

a* 
Calibration 100 -18.70 to -8.37 -14.38 ±2.69  108 -27.17 to -1.33 -11.18 ±5.37 
Prediction 30 -18.41 to -10.66 -14.65 ±2.29  36 -18.42 to -0.95 -11.19 ±4.55 

b* 
Calibration 100 24.88 to 55.43 35.21 ±10.15  108 23.36 to 61.74 39.26 ±12.44 
Prediction 30 26.58 to 50.70 34.63 ±10.00  36 27.08 to 59.90 39.00 ±12.46 

Table 3. Results of quality attribute prediction of apples using AE by two models. 
Quality 

Parameter 
Prediction 

Model 
Calibration Set 

 
Prediction Set 

rc RMSEC rp RMSEP RPD 

Firmness (N) 
MLR 0.83 5.32  0.74 5.76 1.66 

LS-SVM 0.97 2.19  0.88 4.26 2.25 

TSS (°Brix) 
MLR 0.81 0.75  0.76 0.60 1.77 

LS-SVM 0.75 0.62  0.74 0.64 1.68 

L* 
MLR 0.70 4.86  0.10 5.60 0.97 

LS-SVM 0.86 2.76  0.34 4.69 1.16 

a* 
MLR 0.43 2.88  0.04 2.48 0.92 

LS-SVM 0.56 2.17  0.37 1.80 1.27 

b* 
MLR 0.80 7.24  0.20 9.48 1.10 

LS-SVM 0.98 0.08  0.81 5.17 1.80 
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Figure 5. Measured versus predicted (a) firmness, (b) TSS, (c) L*, (d) a*, and (e) b* for prediction sets using AE by MLR and LS-SVM regression.
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et al., 2011; Wang et al., 2015). Moreover, changes in other 
factors, such as relative water content, might affect TSS pre-
diction due to absorption at the same wavelengths (Zude et 
al., 2006). However, spectroscopy and HSI combined with 
other techniques might perform well in the prediction of 
TSS. For instance, Xiaobo et al. (2010) combined near-in-
frared spectroscopy, a machine vision system, and an elec-
tronic nose to classify ‘Fuji’ apples based on sugar content, 
reducing the classification error by 17%. 

HSI and spectroscopy in the near-infrared region have 
been widely used for firmness prediction of fruits based on 
the differences in scattering and absorption caused by 
changes in cell wall composition and cell collapse as a result 
of decreased moisture content (Louw and Theron, 2010). 
Among many fruits, apples have gained great attention in 
firmness prediction using HSI (Pu et al., 2015). As shown in 
tables 4 and 5, the PLS model for firmness prediction of ap-
ples in this study achieved high performance for both the 
training set and the prediction set (rc = 0.95, rp = 0.89, and 
RPD = 1.81 using all wavelengths, and rc = 0.95, rp = 0.92, 
and RPD = 2.49 using selected wavelengths), and these re-
sults are comparable to those reported in other studies (Men-
doza et al., 2011; Wang et al., 2012; Zhu et al., 2013). 

Measured values of the quality attributes from the refer-
ence destructive tests and the predicted values from the PLS 
models using all wavelengths and selected wavelengths are 
shown in figure 6. Good correlation was observed between 
measured and predicted firmness and the L*, a*, and b* 
color indices for the prediction set of the apples. Given that 
both the Minolta Chromameter and the HSI system measure 
light reflectance in the visible region, strong correlation be-
tween these measurements was expected (figs. 6c to 6e). 

CONCLUSION 
This research evaluated HSI and a novel acoustic emis-

sion (AE) technique for the prediction of some quality attrib-
utes of ‘GoldRush’ apples by developing prediction models. 
The AE technique showed high correlations with firmness 
(rc and RMSEC of 0.97 and 2.33 (N), respectively, and rp and 
RMSEP of 0.88, and 4.26 (N), respectively) and b* color in-
dex (rc and RMSEC of 0.98 and 0.08, respectively, and rp 
and RMSEP of 0.80 and 5.17, respectively), which suggests 
a promising application for simple and effective monitoring 
of apple quality. On the other hand, HSI had good prediction 
results for firmness (rc and RMSEC of 0.95 and 5.66 (N), 

Table 4. Results of PLS using all wavelengths (483 wavelengths out of 512, others are noise). 
Quality 

Parameter 
Spectra 

Preprocessing 
Calibration Set Number of 

Latent Variables 
Prediction Set 

rc RMSEC rp RMSEP RPD 
Firmness (N) SNV correction 0.95 5.64 12 0.89 5.94 1.81 
TSS (°Brix) No preprocessing 0.63 1.11 5 0.34 1.86 1.04 

L* Normalization 0.85 3.06 9 0.82 3.39 1.70 
a* Median center 0.91 3.44 2 0.90 2.06 2.21 
b* Smoothing, 2nd derivative 0.98 2.50 3 0.96 3.85 3.23 

 
Table 5. Results of PLS using selected wavelengths using IPLS. 

Quality 
Parameter 

Spectra 
Preprocessing 

Calibration Set Number of 
Latent Variables 

Prediction Set 
rc RMSEC rp RMSEP RPD 

Firmness (N) Median centering 0.95 5.66 21 0.92 4.32 2.49 
TSS (°Brix) Normalization 0.67 1.06 15 0.41 1.78 1.09 

L* Smoothing, 2nd derivative 0.83 3.90 11 0.83 3.41 1.69 
a* No preprocessing 0.87 2.92 8 0.87 2.28 1.99 
b* MSC 0.94 5.17 16 0.94 4.29 2.91 

(a) (b) 

Figure 6. Measured versus predicted (a) firmness, (b) TSS, (c) L*, (d) a*, and (e) b* for prediction sets using HSI by PLS regression (continued 
on next page). 

All wavelengths             rp = 0.89
Selected wavelengths  rp = 0.92

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70 80

All wavelengths

Selected wavelengths

All wavelengths

Selected wavelengths

Pr
ed

ic
te

d 
Fi

rm
ne

ss
 (N

)

Measured Firmness (N)

All wavelenghts              rp = 0.34
Selected wavelengths   rp = 0.41

7

9

11

13

15

17

19

7 9 11 13 15 17 19

All wavelengths
Selected wavelengths
All wavelengths
Selected wavelengths

Pr
ed

ic
te

d 
TS

S 
(o B

rix
)

Measured TSS (oBrix)



60(4): 1391-1401  1399 

respectively, and rp and RMSEP of 0.92 and 4.32 (N), re-
spectively), and it was relatively better in predicting the 
color parameters of apples than the AE technique. In addi-
tion, AE performed relatively better than HSI for TSS deter-
mination. Because the two methods are based on different 
measurement principles, they can be complementary; thus, a 
sensor fusion approach could achieve superior prediction re-
sults. These findings can be advantageous for the develop-
ment of grading and sorting systems for quality control in 
the handling and marketing of apples. 
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