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ABSTRACT OF THESIS 
 
 
 
 

THE IMPACTS OF HONEY BEE QUEEN STRESS 
ON WORKER BEHAVIOR AND HEALTH 

 
 

Pesticides, poor nutrition, parasites and diseases work synergistically to 
contribute to the decline of the honey bee. Heritable sub-lethal behavior/immune 
effects may also contribute to the decline. Maternal stress is a common source of 
heritable immune/behavior deficits in many species. A stressed honey bee queen has 
the potential to pass such deficits on to worker bees.  Using a repeated measures 
design, this study will determine whether the health of worker bee is reduced by a cold 
stress on the queen by analyzing egg hatch rate and protein content, emergence rate, 
and adult aggression and immune function for offspring laid before and after the 
stressor.  Results show that queen stress influences egg hatching rate and emergence 
rate but does not impact egg protein content, adult offspring immune function or 
aggressive behavior.  
 
KEYWORDS: honey bee, worker bee health, worker bee behavior, maternal stress, 
queen stress 
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Chapter 1.  Introduction 

The decline of the honey bees populations around the world is mostly attributed 

to synergistic effects of pesticides, parasites, pathogens and poor nutrition (Smith et al. 

2013, Goulson et al. 2015, McMenamin and Genersch 2015). In addition to these 

factors, colony survivorship is strongly influenced by the health and productivity of one 

critical member, the queen (Amiri et al. 2017).  The main role of the queen is egg laying, 

up to 1500 eggs daily (Winston 1987), at a rate that replaces the entire worker 

population of the hive every 25-35 days (Amdam and Omholt 2002).  A queen typically 

lives up to 3-4 years (Amiri et al. 2017); however a colony can detect the failure of a 

queen and will replace her when her pheromone production diminishes, she is injured 

or diseased, or when she is laying an insufficient number of fertilized eggs or a large 

amount of unfertilized eggs (Winston 1987).  An apiculturist may also detect this failure 

and choose to remove the queen and replace her with a queen of a specific age and 

characteristic to maintain honey production.  When a queen fails, colonies or the 

apiculturist must quickly replace her to maintain the necessary workforce and 

performance that contributes to colony survival (Tarpy et al. 2012, Pettis et al. 2016).  

Queenlessness for an extended period of time may result in one or more laying worker 

honey bees which can only lay unfertilized eggs.   

Currently, honey bee queens are failing at record levels, with apiculturist 

replacing them at rates as high as every six months (Pettis et al. 2016, Amiri et al. 2017).  

Research shows that many of the factors that contribute to colony decline, such as 

pesticides (Williams et al. 2015),  parasites and pathogens (Amiri et al. 2017), also affect 
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queen longevity.  In addition to decreased fecundity, queen stress and poor health could 

also impact the quality of worker offspring.  This type of indirect environmental effect 

on worker phenotypes is critical to consider, because it could have cumulative impacts 

on subsequent worker that are cared for by unhealthy sisters. Such a pattern would 

increase the probability of colony death over multiple worker cohorts. 

An effect of queen health or stress on worker phenotype is a type of maternal 

effect.  Maternal effects are a when the phenotype (and sometimes genotype) of a 

female affects the phenotype of her offspring (Räsänen and Kruuk 2007, Wolf and Wade 

2009), and they can contribute greatly to offspring fitness.  In some cases, maternal 

effects are adaptive and allow offspring to adjust to current environmental conditions; 

for example, in highly variable environments, the capacity for phenotypic plasticity of 

offspring in response to maternal experience may be a strong target of selection 

(Kuijper and Hoyle 2015). However, maternal effects can also reflect offspring response 

to maternal stressors or maternal genetic variation without clear adaptive value 

(Räsänen and Kruuk 2007).  Evidence for maternal effects have been found across the 

animal kingdom including fish, reptiles, birds, mammals and insects (Räsänen and Kruuk 

2007, Rowiński and Rogell 2017).   

Adaptive maternal effects can involve a variety of environmental factors 

including temperature, photoperiod, predation risk, nutritional resource availability, and 

other influences (Mousseau and Fox 1998, Räsänen and Kruuk 2007, Sgrò et al. 2016) 

that impact offspring phenotype.  For example, temperature and photoperiod, which 

signal the onset of winter, may induce a female to lay diapausing offspring, or switch to 
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winged offspring if conditions require dispersal in species such as aphids or 

grasshoppers (Mousseau and Fox 1998, Marshall and Uller 2007).  Researchers have also 

documented that females can manipulate the sex of their offspring in relation to food 

availability or changes in temperature and photoperiod. Notably, in social Hymenoptera 

species, females may control the sex ratio of a colony by choosing whether or not to 

fertilize eggs, which is possible because of haplodiploid sex determination (Mousseau 

and Fox 1998).  Additionally, predation and nutritional resources can influence where 

females oviposit and what resources her offspring will use early in life (Boggs 2009). 

Moreover, nutritional resources available to the female throughout her life can 

influence breeding time and quantity and size of eggs (Boggs 2009). 

In honey bees, the relevance of maternal effects is unclear because of the nature 

of the social insect nest.  First, the honey bee queen generates the entire colony and 

spends much of her mated life contained within the colony with optimal food, 

temperature, humidity and in constant darkness, and therefore gains little direct 

information from the external environment that she could transmit to worker offspring 

(Remolina and Hughes 2008).  It is important to note, however, that few studies (if any) 

have investigated whether and how the queen could receive indirect information about 

the environment in the form of social interactions with workers.  Second, queens play a 

relatively minimal role in rearing offspring after eggs are laid, as a specialized caste of 

worker bees (the nurse bee) is responsible for offspring rearing (Remolina and Hughes 

2008), the mature forager worker bees interact with the environment and communicate 

to the colony perceived environmental changes.  Several studies have shown that the 



 

 4 

developmental environment controlled by adult worker bee influences the phenotype 

of larval and pupal bees.  Thus, in the case of the honey bee, information transfer 

between workers and offspring may be more relevant than transfer between queens 

and offspring.  

Several studies have shown how the immature environment can alter the adult 

honey bee.  For example, Rittschof et al. (2015) found that the colony aggression level 

experienced during larval development has lasting effects on adult behavior and health.  

Colony aggression is a property of worker bees inside the colony who appear to transfer 

these characteristics to subsequent offspring (Rittschof et al. 2015).  Additionally, the 

decrease of larval food provisioning by worker bees can have lasting effects on the 

subsequent cohort through a reduction in adult longevity, foraging activity, the 

communication of food location (Scofield and Mattila 2015), metabolic rate, respiration 

rate, and an increase in blood sugar preservation during adult starvation (Wang et al. 

2016).  Immature care is important to consider in the overall health of the colony; 

however, the queen may be contributing more than genetics to her offspring.  

In addition to genetics, honey bee queens may also be providing non-adaptive 

effects to their offspring.  While the queen does not directly communicate 

environmental conditions, queen stress from disease, aging, and apicultural practices 

(pathogen and parasite treatment or shipment) can still have an effect on her offspring 

and may change the dynamic of the workers and lead to cascading changes within the 

colony (Barron 2015).  Some properties of the queen are known to impact worker 

viability and health, regardless of the adaptive value of these effects. For example, 
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maternal age is negatively correlated with embryo size, embryo viability, and early larval 

development (Al-Lawati and Bienefeld 2009), and there is evidence of similar effects in 

other insects such as the house fly (McIntyre and Gooding 2000).  While egg size is 

generally used to document maternal effects and likelihood of embryo survival in most 

species, egg provisioning (the quantity and ratio of three key macronutrients, protein, 

lipids, and carbohydrates) can vary within eggs of the same size (McIntyre and Gooding 

2000, Al-Lawati and Bienefeld 2009), and in some cases may be a better predictor of 

offspring survival in the context of maternal effects.  Other egg components may also be 

under maternal influence.  For example, transgenerational immune priming (TGIP) 

refers to a phenomenon where offspring from a mother exposed to a pathogen are 

prepared via maternal effects to mount an immune response (Salmela et al. 2015).  

There is evidence of TGIP in honey bees: the yolk protein vitellogenin, binds to a 

pathogen within the queen, and as vitellogenin accumulates in the eggs during 

oogenesis, the pathogen is taken into the egg.  As a result, offspring show decreased 

susceptibility to the pathogen (Salmela et al. 2015).  Thus it is possible that a queen's 

status, e.g., disease state or age, directly impacts certain aspects of offspring 

phenotypes. However, no study has evaluated whether queen stress generally impacts 

health and behavior of adult offspring. 

This study utilizes a repeated-measures design to compare the health and 

behavior of a queen's offspring before and after she experiences a two hour, 4°C cold 

stress treatment.   I selected the cold stress from a study where the quality of sperm in 

the spermatheca of a honey bee queen was assessed after exposure to temperatures 



 

 6 

that mimic the effects of shipping queens overnight in the mail (Pettis et al. 2016), a 

common apiculture practice.  This test determined that the cold treatment decreased 

stored sperm viability by ~40%.  This cold exposure likely exceeds stress experienced by 

a queen in a natural context, but it is a paradigm with proven biological impacts on 

queens, and thus provides an assessment of the potential impact of other more realistic 

queen stressors on offspring phenotypes.  

To assess the offspring from before and after queen cold exposure, I selected 

tests to look for treatment effects at different life stages of the offspring.  

Developmental stages including egg hatching rate, egg protein content, and emergence 

rate were selected for their documented effects in maternal effects literature (Al-Lawati 

and Bienefeld 2009).  To address permanent effects from cold stressed queens, adult 

offspring were assessed for immune function and behavior.  It is often unclear how 

variation in behavior at the colony level predicts colony survivorship or health (Cremer 

2018); however, worker aggression is a general indicator of health resilience in the 

honey bee.  At the colony level, aggression is a strong positive predictor of foraging 

activity, honey and brood production, and overwintering success, as well as a negative 

predictor of Varroa mite loads (Wray et al. 2011; Rittschof et al. 2015).  On the 

individual level, aggression predicts increased starvation and pesticide tolerance 

(Rittschof et al. 2015).  Moreover, aggression appears to be a socially inherited behavior 

across worker generations (Rittschof et al. 2015), suggesting this behavior could be used 

to study how queen stress propagates throughout worker cohorts over time.  To 

measure impacts of queen cold stress, I assessed offspring development rate (egg 
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hatching probability and emergence time), egg composition, adult immune gene 

expression, and adult aggressive behavior.  

 
Chapter 2.  Materials and Methods 
 
Overview 

 The unit of replication within this study is the honey bee queen as only one 

queen is present in a honey bee colony.  To limit the effects of this study on colonies 

within the apiary, I set up experimental colonies that I continuously reused.  With the 

monthly replacement of the queen and removal of offspring, I anticipated that the 

experimental colonies would be greatly weakened and may not contain adequate nurse 

bees to successfully rear offspring if the ratio of brood to nurse bees declined below 2:1 

(Amdam and Omholt 2002) as the study progressed.  To mitigate the effects of the 

experimental colony, I randomized placement of offspring from each queen into strong 

foster colonies within 24 hours of ovipositing where they were allowed to mature. 

Honey bee sources 

Honey bee queen breeders can be a source of variation in queen quality.  

Although a large amount of variation can exist among queens within one breeder (Tarpy 

et al. 2012), I purchased same age mated queens from a single supplier (Guthries 

Naturals, Frankfort, KY, USA) at the start of each replicate to minimize the effect of 

queen breeder on the study.  The Rittschof lab formed experimental colonies from splits 

of research colonies of mixed genotypic origin of A. m. carnica and A.m. ligustica, 

supplemented with a package of bees (Guthries Naturals, Frankfort, KY, USA).  I allowed 

colonies to increase in population size to >10 frames of brood in 2 10-frame boxes for 4 
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weeks prior to the start of the experiment.  Eight foster colonies were >1 year old, 2 10-

frame box colonies containing a large number of bees, with >8 frames of brood 

(overwintered at the University of Kentucky or purchased from Hosey Honey, Midway, 

KY, USA). 

 

Experimental Set-up  

Between April and August 2017, I completed this study in 4 blocks of 8 queens. 

Start dates for each block were separated by 4-week time intervals.  To test stress 

impacts on a queen of known age and origin (see below), I installed her into a pre-

existing experimental colony, for practical reasons.  Similarly, because behavioral assays 

had a strict timeline (see below), I started queens in pairs at 2-day intervals within each 

block (Fig 1).  Since honey bee workers develop at a fairly uniform rate, staggering the 

start date across the different queens ensured that at least some offspring in all 

treatments would be assessed for behavior on the same phenological day (in case day of 

assay impacts behavioral expression). Having different treatments represented on 

overlapping days also allowed me to perform behavioral analyses blind to the treatment 

identity of the offspring (see below). 

Within and among blocks, queens were identical in age on the block start date. 

To begin the experiment for a given queen, I located and removed the queen heading 

the experimental colony, and allowed the colony to remain queenless for two days. This 

allowed the colony to recognize the absence of the queen, which increases the 

likelihood the new queen will be accepted (Perez-Sato et al. 2015).  After two queenless 
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days, I placed the queen within a wooden cage inside the colony, wedged between two 

frames to hold it in place, for four days until the workers of the colony were no longer 

aggressive (Graham 2015).  During this period, workers can sense and feed the caged 

queen, but are unable to sting her.  I then manually released the queen and left the 

colony undisturbed for the next 14 days in order to allow the queen to begin laying 

eggs.  Honey bee worker eggs hatch within 72hrs (Winston 1987). Thus, due to the time 

that elapsed since removal of the original queen from the experimental colony, I could 

be sure that any eggs in the colony following this 14-day period were laid by the newly 

introduced queen.  

 

Establishing treatment groups 

To determine impacts of queen stress, I assessed three different sets of 

offspring. First, 14 days following queen installation, and prior to any additional 

disturbance to the queen or colony, I located a frame containing eggs that were 

approximately 24-hour old (I estimated age based on the vertical orientation of the egg 

within the honeycomb cell (Winston 1987)).  I designated these eggs as the ‘handling 

control’, to control for the impacts of queen handling just prior to laying eggs (compared 

to my 'control' group described below), I then located the queen and caged her against 

an empty frame with drawn honeycomb using a 'push-in cage'.  This cage (40.5cm long 

by 19cm wide by 3cm tall) consisted of hardware cloth (#8, Amazon.com, Seattle, WA, 

USA) around the perimeter of the cage and a plastic queen excluder (35cm long by 15cm 

wide, 0.5cm opening) glued into the center of the cage capable of cover 80% of one side 
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of frame (Fig. A1).  This design trapped the queen so that I could collect eggs of a known 

age (compared to the handling control above), but also allowed workers access to the 

queen and the eggs.  I caged the queen for 24 h and designated these eggs as 'Control'.  

After the control caging period, the queen was also removed using a queen clip 

catcher (Dadant and Sons Inc., Hamilton, IL, USA) and placed into a refrigerator at 4°C 

for 2 hours (following previously published methods in (Pettis et al. 2016)).  The queen 

entered into a light chill coma during treatment, and revived within minutes of removal 

from the refrigerator.  After the cold treatment, I placed the queen, still inside the 

queen clip, back into the experimental colony.  I allowed the queen to recover from the 

treatment for one hour.  Due to the design of the queen clip, workers were able to 

access the queen during this time.  After 1 hour, I re-caged the queen under the push-in 

cage on a new frame with drawn out honeycomb.  As with the control, I left the queen 

for 24 hours to lay eggs.  Pilot studies during Summer 2016 showed that eggs laid during 

the first 24-hr following treatment often fail to hatch (25%, N=4 queens).  Despite the 

cold stress decreasing the sperm viability within the queen, dead sperm will not alter 

the embryogenesis but will yield haploid eggs that are capable of hatching (Mackensen 

1951, Baer et al. 2016), therefore the eggs from first 24-hr following treatment may fail 

to hatch due to the fragile state of the immature egg entering late stage of meiosis I, 

prior to fertilization and chorion formation (Yu and Omholt 1999, Rinderer 2008) during 

the cold stress.  Eggs laid within the next 24 h period; however, were more likely to 

hatch (100%, N=4 queens).  Therefore, I re-caged the queen for an additional 24 hours, 
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designating these offspring as "Cold treatment".  Following this final 24 h caging period, 

I removed the queen from the colony to initiate the next block of the experiment.  

I removed each frame of eggs (the handling-control, the control, and cold 

treatment frames) from the colony as soon as the 24-hour queen-caging period had 

lapsed (or in the case of the handling control, upon finding the appropriate frame in the 

colony).  Within 30 minutes of removing a queen, I collected 20 eggs using a grafting 

tool (Mann Lake LTD, Hackensack, MN, USA) and stored them in pairs in microcentrifuge 

tubes at -20°C for later assessment of egg protein content.  In my pilot study, eggs were 

evaluated for size differences to align my data collection to traditionally measured 

maternal effects.  Egg size is variable, within queen (Q1 N=15 eggs, mean length ± s. e. = 

1.5±0.2 and mean width ± s. e. = 0.3±0.1; Q2 N=18 eggs, mean length ± s. e. = 1.4±0.1 

and mean width ± s. e. = 0.3±0.05) and among queens (N=2 queens, mean length ± s. e. 

= 1.4±0.2 and mean width ± s. e. = 0.3±0.07); however, the variation is not a function of 

treatment (Table A1) and I did not evaluate egg size in the larger study.  I randomized all 

study frames into strong foster colonies to alleviate any experimental colony effects.  

Within 30 minutes of removal of experimental colonies, I introduced each frame of 

remaining eggs into a foster colony for the duration of development.  Using a random 

number generator (Random.org c1998-2018), I assigned frames evenly across the eight 

colonies (3 frames per colony for each block).  Using a prior established procedure 

(Rittschof et al. 2015), I placed frames in the brood nest in the lower box, placed a 

queen excluder between the bottom and top box, and moved the foster colony queen 

to the top box to prevent egg laying on study frames.  Four days after I added the last 
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study frame to the foster colony (at which point all eggs from study frames would have 

hatched), I removed the queen excluder from the hive to allow the queen to move 

freely.  

 

Assessments 

Six days after each queen caging period (handling-control, control, cold 

treatment), I observed offspring for the presence for eggs or larvae (honey bee eggs 

typically hatch in 3 days after laying).  I assessed hatching success, which was all or none 

for a given frame of eggs, as a binary response (Yes/No, N=20 queens).  Other than this 

check, I allowed brood to develop undisturbed until one day prior to adult emergence 

(17 days after the queen was removed from the frame).  On this day, I removed the 

frame and placed it in a circulated air incubator kept at 33.5±0.5°C and constant 

darkness.  Twice a day, the morning and afternoon, I checked frames for one-day-old 

bee emergence following removal from the foster colony.  Once the bees started to 

emerge, I recorded the number of bees that emerged from each frame each day.  Some 

frames took multiple days to emerge.  I report emergence time as the number of days 

between laying (the day the queen was released after 24 h of caging was day 1) and 

emergence. 

As bees emerged (0-24h old), I placed them into Petri dishes (100mm x 15mm, 

Thermo Scientific, Waltham, MA, USA) modified with an entrance hole (4 bees/dish, 25 

dishes/frame) and provisioned with 50% sucrose solution in a microcentrifuge tube 

(VWR International, Radnor, PA, USA) modified with two feeding holes.  I labeled each 
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dish with a random number (Random.org c1998-2018).  Once I transferred bees into 

their dishes, I returned dishes to the incubator until bees were 7 days old, at which point 

I assessed aggressive behavior using the Intruder Assay (described below).  I placed an 

additional 25 emerging bees into 8 cm x 9.5 cm X 6.5 cm plexiglass boxes with 

ventilation holes, provisioned with 50% sucrose in a microcentrifuge tube (see above), 

to be used for immune competence testing (see below). 

 

Egg Composition 

I thawed samples (N=10 samples, 2 eggs/sample) on ice, added 200µL of distilled 

water and homogenized with a micro-pestle (Wegener et al. 2010, Foray et al. 2012).  

Utilizing 50 µL of homogenate, I quantified the protein with a Micro BCA Protein Assay 

kit following the manufactures protocol (Thermo Scientific, Waltham, MA, USA).   

 

Adult Immune Competence - Fat Body Gene Expression Analysis 
This study involves the comparison of immune competence of offspring exposed 

to a maternal cold stress. I used the fat body to allow for a more generalized analysis of 

immune competence.  The fat body of an insect produces are variety of proteins 

including vitellogenin (Amdam and Omholt 2002) and antimicrobial peptides (Richard et 

al. 2012), functions as a part of the humoral immune system (Wilson-Rich et al. 2008) 

and is analogous to the liver and white adipose tissue of vertebrates (Nunes et al. 2013). 

The goal of my gene expression analysis is to determine if cold stress on a queen effects 

the immune competence of her offspring.   Using the unbiased meta-analysis of a 19-

transcriptome dataset (Doublet et al. 2017), I selected genes with the criteria that 1.) 
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that they are associated with the canonical immune system of the bee and 2.) their 

regulation is generalized across a range of pathogens and stressors (including Varroa 

mite feeding, viruses, and bacteria) because the direct nature of queen stress response 

is not known.  The 8 candidate genes are described below. 

From the genes selected for this study, I selected two of these genes from the 

prophenoloxidase genes that catalyze melanization in nodulation and encapsulation 

immune responses (Steinmann et al. 2015) of the Imd/JNK pathway (Doublet et al. 

2017) and have been found to be up-regulated in a natural infection (Evans et al. 2006).  

I selected vitellogenin for its role in immune response (by transporting zinc throughout 

the worker bee to minimize pycnosis in the haemocytes (Amdam et al. 2004)).  The 

other five candidate genes (abaecin, defensin-1, hymenoptaecin, lysozyme-2, and 

apidaecin) are known as antimicrobial peptides and are directly associated with the Toll 

pathway of insect immunity (Evans et al. 2006, Doublet et al. 2017).   

Fat body dissection, RNA extraction, and gene expression quantification was 

completed in collaboration with an undergraduate student and Joseph Palmer, the 

Rittschof laboratory technician.   The student dissected the abdomen to remove the fat 

body from frozen adult offspring in RNAlater (Thermo Scientific, Waltham, MA, USA) 

chilled on ice in order preserve the RNA.  After dissecting the fat body, attached to the 

sclerite, from abdomen, the student extracted the RNA using E.Z.N.A. HP Total RNA kit 

(Omega Bio-Tek, Norcross, Georgia, USA), following the manufactures protocol, after 

homogenization in lysis buffer (from RNA kit) with four 0.7mm zirconia/silica beads (Bio-

spec, Bartlettesville, OK, USA) in a bench top homogenizer (MP Biomedicals, Santa Anna, 
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CA, USA).  The student quantified the RNA using a CLARIOstar microplate reader with 

LVis plate (BMG Labtech, Cary, NC, USA), synthesized cDNA using 200ng RNA and 

SensiFAST cDNA Synthesis Kit (Bioline, Taunton, MA, USA) and performed qPCR on a 

Quanta Studio 6 (Thermo Scientific, Waltham, MA, USA) with 10µL reactions (in 

triplicate) in 384-well plates using PerfeCTa SYBR green supermix (Quanta Bio, Beverly, 

MA, USA).  The Rittschof laboratory technician and student assessed gene titers using 

previously published primers (Evans et al. 2006) and quantified against a DNA curve 

generated from whole DNA from a honey bee, with the exception of the target gene 

apidaecin (see below).  To obtain a relative quantity, I normalized sample titers to the 

geometric mean of 2 continuously expressed control genes gapdh (GB50902) and rp49 

(AF41189).  I selected these two controls based on preliminary data showing low 

expression variation in the fat body and I verified that these two endogenous controls 

had a coefficient of variation across all samples that was less than or equal to 20%, and 

that the controls were not differentially expressed across treatments.  Due to the short 

exons, it was not possible to design primers to amplify the standard curve for the target 

gene apidaecin; therefore, I used the delta delta CT method to assess relative quantity. 

 

Intruder Assay 

 To form a social group, I allowed bees to age together in dishes for 7 days.  When 

bees were the appropriate age, I removed dishes to a temperature controlled ventilated 

laboratory space (25-30°C) with no light.  I divided dishes from each treatment group on 

a given day evenly across observers (typically 2 observers per day), placed on a table top 
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in random order and I allowed bee to acclimate for 1 hour undisturbed prior to testing.  

Using the previously established Intruder Assay (Li-Byarlay et al. 2014, Rittschof et al. 

2015, Rittschof 2017), I assessed aggression.  At the start of the assay, one intruder bee 

(forager from a different colony) is marked on the thorax with a paint pen (Elmer’s, High 

Point, NC, USA) for identification and introduced into the dish of 4 bees.  Over 1 minute, 

I scored the following behaviors:  antennation (scored as 1 point), movement of the 

antenna of the treatment group bee toward or on the intruder bee; antennation with 

mandibles open (scored as 2 points), similar to antennation but mandibles of the 

treatment group bee are open, possibly to release a pheromone to threaten intruder; 

biting (scored as 3 points), the mandibles of a group member clamp down or pull on the 

intruder bee; abdominal flexion (scored as 4 points), a group bee mounts or clings to 

intruder flexing its abdomen but not extruding stinger; sting (scored as 5 points per 

attempt or per 10 second duration), a group bee mounts or clings to intruder flexing its 

abdomen, extruding its stinger, and actively trying to sting the intruder. After behavioral 

assays, I examined dishes for Varroa mites.  I calculated scores for each individual 

behavior as well as a total score (using individual behaviors with either sting attempt or 

duration) for each dish and then I divided each calculation by the total number of bees 

per dish for a final score.  With stinging behavior, some bees may attempt to sting the 

intruder for a brief period of time and then return to the stinging behavior a few 

seconds later, while others may spend the entire 1 min test stinging the intruder.  It is 

difficult to determine which stinging calculation (attempt or duration) best describes 
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stinging behavior; therefore, I will utilize individual behaviors for multivariate behavior 

analysis and both total scores (separately) will be used for any post-hoc anaylsis. 

 

Statistical Analysis 

All statistics were analyzed using JMP Pro 13.2 software package (JMP 2018).  

 The handling-control was difficult to obtain for each queen due to the variation 

of ages of offspring available and the detrimental effect of removing too much offspring; 

therefore, queen sample size of the handling-control group is much lower for egg 

hatching, larval development time, and behavior.  To increase the power of my 

statistical tests, I analyzed the handling-control against the control and then I analyzed 

the control against the cold treatment for hatching success, emergence time, and 

behavior.  I did not utilize the handling-control for egg protein content or immune 

competence testing due to low sample sizes and unreliable age when offspring were 

removed from the experimental colony (see results). 

I treated hatching success (yes/no) as a nominal response variable, which I 

analyzed using a McNemar’s Test, paired for queen.  Handling-control vs control has a 

sample size of N=9 queens per treatment.  Control vs. cold treatment has a sample size 

N=20 queens per treatment. 

On a per-offspring basis, I calculated emergence time and treated it as a 

continuous response variable. For each data set, I used a linear mixed model to analyze 

emergence time with queen (random, categorical), treatment (categorical) and their 
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interaction as factors.  Handling-control vs control has a sample size of N=4 queens.  

Control vs. cold treatment has a sample size N=11 queens. 

 I assessed egg protein content as a continuous response variable and 

constructed a mixed effect model using queen (random, categorical), treatment 

(categorical), and their interaction as factors.   

 Using the offspring from 3 queens (chosen at random), I assessed the immune 

competence of the offspring using the relative quantity of each target gene as a 

continuous variable.  I analyzed each queen individually because cDNA was not 

synthesized at one time and used a non-parametric Wilcoxon/Kruskal-Wallis test with 

treatment as a categorical variable. 

The observer of the intruder assay has an effect on the duration total score for 

behavior (N=3 observers; 18.4 ±0.2, 9.9 ±1.5, 11.8 ±1.0 scores; ANVOA, F(2, 230) = 5.4, P = 

0.005).  Since this total score also accounts for individual scores, I transformed all 

individual and total scores into z-scores to account for the variability of the observer and 

to preserve power of my testing.  I constructed a MANOVA model with individual 

behavior scores as continuous response variables with queen (categorical), treatment 

(categorical), and the interaction of queen and treatment as the predictor variables.  

Additionally, I also developed a linear mixed model with total scores (attempt or 

duration as z-scores) continuous response variable with queen (categorical), treatment 

(categorical), and the interaction of queen and treatment as the predictor variables.  

Handling-control vs control has a sample size of N=3 queens.  Control vs. cold treatment 

has a sample size N=11 queens.  
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Figures for Methods 
 

 
Figure 1. Experimental arrangement of treatments within a block. 
Each experimental block is subdivided into four sections.  Each section of colonies was 
then started every two days to allow for overlap of control/treatment brood 
development and eclosion. 

 

  

Colonies	5	and	6

Started	fifth	
day	of	block

Colonies	3	and	4

Started	third	
day	of	block

Colonies	1	and	2

Started	first	
day	of	block

Colonies	7	and	8

Started	seventh	
day	of	block
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Chapter 3.  Results 

 I found no evidence that queen handling alone impacted egg hatching success of 

the offspring (N=9 queens, 9 sets of handling-control eggs hatched, 8 sets of control 

eggs hatched, McNemar test, X2
(1). = 0, P=1, Table 1).  Cold stress significantly decreased 

egg hatching success relative to the control (N=20 queens, 17 sets of control eggs 

hatched, 13 sets of cold treatment eggs hatched, McNemar test, X2
(1). = 4, P<0.046, Table 

2).  Cold stress also significantly impacted offspring emergence time. Queen identity, 

cold treatment, and their interaction all significantly impacted offspring emergence 

time, a measure of developmental rate (LMM: queen: Wald P = 0.03, treatment:  F(1, 

2183.1)= 10.4, P = 0.001, interaction of queen and treatment: F(10, 2177.2)= 123.0, P <0.0001). 

Control bees took less time to develop into adults compared to cold treatment (N=11 

queens, control: 20.8 ±0.7 days versus cold treatment: 21.3 ±0.5 days, Fig 2). Offspring 

from 8 of 11 queens showed evidence of extended emergence time following cold 

stress.  I found some evidence of an effect of handling on emergence rate (N=4; 

handling-control: 19.7 ±0.4 days versus control: 20.3 ±0.7 days; LMM: queen: Wald P = 

0.2, treatment: F(1, 836.8) = 3713.3, P <0.0001, interaction of queen and treatment: F(3, 

836.4) = 772.3, P <0.0001; Fig. A2), but I observed a strong queen by treatment interaction 

effect that reflects variable patterns for two of the four queens. Thus, while emergence 

time differs across my controls, unlike for the cold treatment and control comparison, 

there is no clear pattern in the direction of this effect. 

 Despite variation in egg hatching success and emergence time, offspring egg 

protein content showed no effect of queen cold treatment (N=8, control: 6.1 ±2.7µg 
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versus treatment: 6.0 ±2.1µg, LMM: queen: Wald P = 0.09, treatment: F(1, 141.1) = 0.4, P = 

0.5, interaction of the queen and treatment: F(7, 141.0)= 1.8, P = 0.09, Fig. 3). There were 

also no consistent significant impacts of queen cold stress on offspring immune gene 

expression for any of the 8 target genes tested. Results for the statistical analyses are 

listed in Table 3.  

 The queen variation found in the emergence time of the offspring is continued 

with the comparison of six individual behaviors between control and cold treatment 

eggs.  The MANOVA model is significant for queen (N=11 queens; MANOVA overall 

model: F(21, 333) = 2.6, P = 0.002; sphericity: X2
(14) = 391.1, P < 0.001; queen: Pallai’s Trace 

F(50, 1665) = 2.0, P < 0.001).  With further analysis of univariate models for queen, using 

ANOVA, the following behaviors are significantly influenced by queen identity: 

antennation (F(10, 344) = 3.31, P = 0.004), bite (F(10, 344) = 2.10, P < 0.02), flexion (F(10, 344) = 

3.00, P = 0.001), sting attempt (F(10,344) = 4.86, P < 0.001), and sting duration (F(10,344) = 

4.85, P < 0.001).  The control and cold treatment samples sizes (listed by queen) for are 

list in Table A2.  Multivariate and univariate statistics for control and cold treatment 

behaviors are listed in Table A3.  I found some evidence that handling impacts adult 

behavior with the comparison of the handling-control and control using MANOVA model 

with a significant treatment (N=3 queens; MANOVA overall model: F(5, 118) = 3.0, P = 

0.01; treatment: F(1, 118) = 5.5, P = 0.02). For the 6 individual behaviors analyzed for 

handling-control and control, univariate models using an ANOVA for treatment, 

mandibles open is the only significant response (F(1, 122) = 5.4, P = 0.02; treatment: t(1, 122) 

= 2.3, P = 0.02).  The control for the individual mandibles open behavior shows a 
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consistent increased score compared to the handling-control for all three queens (mean 

z-score ±s.d., control: 0.3±1.1 versus handling-control: -0.1 ±0.9).  Multivariate and 

univariate statistics for handling-control and control behaviors are listed in Table A4.  

For the aggression attempt total score, the handling-control versus the control shows of 

individual behaviors (N=3 queens, score, handling-control: 0.2 ±1.0 versus control: -0.1 

±0.6, LLM:  queen: Wald P = 0.9, treatment: F(1, 118.7) = 5.6, P = 0.02, interaction of the 

queen and treatment: F(2, 118.5)= 2.5, P = 0.09).  The aggression duration total score 

shows very similar results to the aggression attempt total score.  

Additionally, I observed a significant negative correlation between both 

aggression attempt total score (z-score averaged by queen, R2=0.49, LMM: F(1,8) = 9.75, 

P<0.014; Fig. 4) and a similar correlation for duration total score (z-score averaged by 

queen) for behavior and egg protein content, averaged by queen.  

Tables and Figures for Results 
 
Table 1.  Egg hatching rate of offspring before and after caging queen. 

  N = 9 queens 

  No Hatch Hatch 

Handling-
control 

0 9 

Control 1 8 

McNemar's test p-value 1.0   
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Table 2. Egg hatching rate of offspring from queen before and 48-hr after temperature 
stress. 

  N = 20 queens 

  No Hatch Hatch 

Control 3 17 

Cold 
Treatment 

6 14 

McNemar's test p-value 0.046 
 
Table 3.  Mean immune competence target gene expression among offspring produced 
by different honey bee queens before and 48-hr after cold treatment. 

 
 

Queen bees/treatment
Mean	

expression	±	s.d.
bees/treatment

Mean	

expression	±	s.d.
X 2 P -value

1 9 0.7	(±0.9) 6 26.6	(±36.5) 2.35 0.13

2 9 0.4	(±0.6) 9 0.07	(±0.2) 0.02 0.89

3 8 1.9	(±5.2) 10 0.4	(±0.9) 0.03 0.86

1 9 1.7	(±3.6) 6 6.4	(±8.9) 0.35 0.56

2 9 0.2	(±0.2) 9 0.3	(±0.4) 0.02 0.89

3 8 2.5	(±2.5) 10 1.5	(±2.7) 1.55 0.21

1 9 9.3	(±24.3) 6 70.9	(±99.3) 0.35 0.56

2 9 0.2	(±0.2) 9 1.0	(±2.2) 0.44 0.51

3 8 27.0	(±37.3) 10 20.1	(±29.0) 0.96 0.33

1 9 0.06	(±0.03) 6 0.06	(±0.03) 0.07 0.79

2 9 0.1	(±0.04) 9 0.07	(±0.04) 1.87 0.17

3 8 0.04	(±0.02) 10 0.03	(±0.01) 0.2 0.66

1 9 0.05	(±0.02) 6 0.06	(±0.01) 0.06 0.81

2 9 0.04	(±0.01) 9 0.03	(±0.02) 1.03 0.31

3 8 0.03	(±0.02) 10 0.03	(±0.01) 0.2 0.66

1 9 0.4	(±0.4) 6 0.1	(±0.2) 1.39 0.24

2 9 0.4	(±0.3) 9 0.5	(±0.4) 0.1 0.76

3 8 0.06	(±0.03) 10 0.2	(±0.2) 1.33 0.25

1 9 4.1	(±0.9) 6 0.9	(±1.3) 2.34 0.12

2 9 2.5	(±2.1) 9 7.1	(±15.2) 0.002 0.96

3 8 273.4	(±770.7) 10 1.4	(±1.9) 0.23 0.63

1 9 0.06	(±0.4) 6 0.5	(±0.4) 0.68 0.41

2 9 0.06	(±0.04) 9 0.2(±0.2) 1.22 0.27

3 8 0.5	(±0.3) 10 0.3	(±0.2) 2.02 0.15

Apidaecin

Lysozyme-2

Wilcoxon/Kruskal-

Wallis
Control Cold	Treatment

Abaecin

Defensin-1

Queen	and	cold	treatment	of	queen	have	no	effect	on	normalized	gene	expression	of	offspring.		

Relative	gene	expression	by	queen.

Hymenoptaecin

Prophenoloxidase

Prophenoloxidase	

activator

Vitellogenin
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Figure 2.  Emergence time of honey bee workers laid by queens increased following cold 
exposure. 
For 8 of 11 queens, the control offspring took less time to emerge than the offspring 
following queen cold stress.  Queen (Wald p = 0.04), cold treatment (p = 0.01), and their 
interaction (p <0.0001) all impacted emergence time. 
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Figure 3. Offspring egg protein content did not differ as a function of queen cold stress. 
Protein content did not differ as a function of queen identity (Wald p = 0.08) or queen 
cold treatment (p-value 0.5). 
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Figure 4.  Worker aggression is negatively correlated with egg protein content. 
Mean aggressive behavior attempt (z-score, averaged by queen) is significantly 
negatively correlated with mean egg protein concentration (averaged by queen) and 
significant (p = 0.01). 
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Chapter 4.  Discussion 

Over all of the tests conducted to measure the impacts of queen stress on honey 

bee workers, egg hatching rate and emergence time were affected by the queen cold 

treatment.  Offspring analyzed for gg protein content, adult immune competence, and 

adult aggressive behavior did not show an effect of the queen stress; however, the 

immune competence and behavior of the offspring did vary by queen.  

Cold treatment impacted early developmental processes, including egg hatching 

success and offspring emergence time, but it did not impact behavior or immune 

function during the offspring adult stages. These results suggest that while queen stress 

impacts the early life stages, surviving adults show no lasting effects. One implication of 

this finding is that queen stress impacts adult worker bee quantity but not quality. 

Decreased egg hatching success and emergence delay could affect the overall health of 

the colony by reducing the population over time with a smaller number of adults per 

worker cohort, and a delay in worker turnover. Inviable female eggs may make it more 

difficult for the colony to replace the stressed queen, or expend more effort attempting 

to do so, because there are fewer viable choices among female offspring. Given a strong 

enough deficit in productivity, queen replacement is essential to colony survival without 

the intervention of the apiculturist.  

The cold stress effects I observed could be a direct result of egg exposure to cold 

temperatures, as opposed to an indirect effect of queen stress on some feature of egg 

provisioning or development.  Studies determining the cryopreservation temperatures 

of honey bee embryos found that embryos (less than 2hr after laying) have a low 
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survival rate following cold (0°C) temperature exposure, because they are in the pre-

cellular, syncytial state (Collins and Mazur 2006).  Though this study evaluated embryos 

(2 hours following oviposition) while I exposed offspring to cold prior to oviposition, the 

sensitivity to direct cold exposure may also extend to the late stage oocytes within the 

queen prior to fertilization.  Additionally, I observed high egg hatching failure for eggs 

laid during the 24 h directly following queen cold stress suggesting eggs closer to 

oviposition are relatively more sensitive to cold than less developed eggs.  I did not track 

offspring beyond 48 h following the queen cold temperature stress; it is possible that 

over a longer time frame and turnover of eggs directly exposed to temperature stress, 

offspring would return to normal. Nonetheless, even a temporary decrease in worker 

number could have lasting impacts on the colony.      

 In addition to environmental factors, genotype affects several characteristics I 

measured in this study, including developmental pacing (Amdam et al. 2010) and 

behaviors including aggression (Guzmán-Novoa and Page Jr. 1999).  Thus unsurprisingly, 

I observed substantial variation in several measured variables as a function of queen 

identity. Queen identity affected offspring emergence time, and it had consistent effects 

on aggressive behavior regardless of treatment.  The consistent queen effect suggests 

that my behavioral analysis was sensitive enough to identify genetic differences in 

behavior, despite no evidence of additional treatment effects. Though there was a non-

significant trend for an effect of queen on egg protein content, and the strong 

correlation between aggression and egg protein content provides additional evidence of 

a genetic basis for two factors.  
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The strong, negative correlation between total aggressive behavioral scores and 

egg protein content was an unanticipated result of this study. In the gypsy moth, low 

egg protein content is correlated with small adult body size (Diss 1996); a similar 

relationship could exist for honey bees. Comparing highly aggressive Africanized sub-

species of honey bees to the more docile European-derived sub-species, adult body size 

(forewing length) is negatively correlated with aggression (Guzmán-Novoa and Page Jr. 

1999), further suggesting that egg protein content may be serve as a predictive measure 

for aggression within a colony.  More research needs to be completed on the 

relationship between egg content, adult body size and behavior, across several 

genotypes, determine the definitive relationship. 

 While the relationship of treatment within emergence time and egg protein 

content is fairly consistent across most queens, some queens did not follow the same 

relationship leading to an interaction between queen and treatment.  Although the 

control emerged 3% faster than the treatment day 2 for emergence time of the 

offspring (9 of 11 queens), this trend was not consistent across all queens (2 of 11 

queens).  The trend continues with egg protein content where the control has an 

average of higher mean protein (3%) than the treatment day 2 (6 of 8 queens).  Factors 

outside the scope this study may be the source variation between the treatment and 

the queens. 

Contrary to the results of environmental impact and genotype, there was no 

detected impact on worker innate immune competence from cold stress to the queen.  

The selected genes for this study did not measure the direct response to cold stress in 
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the worker, rather I selected them to measure baseline immune activity.  It may be that 

the effect of queen cold stress is only evident on her offspring's immune function when 

the immune system is activated.  A potential way to activate these pathways in future 

studies would be to use an immune challenge with yeast (Di Prisco et al. 2013) and 

compare the target gene activation for challenged and non-challenged bees. 

 In addition to the environment and genotypic effects on offspring, queen caging 

has an effect on emergence time and aggressive behavior.  While the act of caging the 

queen may be producing a stress that is detectable in the offspring, an alternative 

explanation to the caging effect is that the sample size of this portion of my study is too 

low to adequately estimate the population mean and the selection of the handling-

control was imprecise in the age estimation of the eggs.  Further replication of this 

portion of the study would be needed to draw conclusive determination of the 

treatment effects between the handling-control and control but any effect of caging is 

standardized across my study due to the repeated measures experimental design and I 

feel that the results between the control and treatment groups is valid. 

The role of maternal effects is debated in honey bees with the queen not 

conveying information about the environment to her offspring, however queen stress 

can be transmitted to her offspring.  Cold stress on the queen affects the early life 

stages of her offspring, which will have a lasting effect in the colony.  Once the offspring 

matures to an adult, however queen cold stress does not appear to have an effect on 

the health of the colony because the behavior and immune competence of her offspring 

does not change.  Healthy sisters are still raising healthy sisters, although the reduced 
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colony population may still result in the collapse of the colony.  To mitigate the effect of 

queen cold stress, the colony must quickly replace the effected queen to maintain a 

minimal population level within the colony. 
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Appendix 
 
Table A1.  Morphometric egg measurement. 

 
 
Table A2.  Aggressive behavior sample sizes among offspring produced by different 
honey bee queens before and 48-hr after cold treatment. 

 
 
 
  

Queen	 Control Treatment Control Treatment Control Treatment Control Treatment

1 6 9 1.4±0.2 1.5±0.2 0.3±0.05 0.3±0.1 0.2±0.02 0.2±0.07

2 8 10 1.3±0.1 1.4±0.1 0.3±0.04 0.3±0.05 0.2±0.04 0.2±0.03

Overall 14 19 1.4±0.1 1.4±0.2 0.3±0.05 0.3±0.09 0.2±0.03 0.2±0.05

mean	µg	±	sd mean	µg	±	sd mean	µg	±	sd

Ratio	width:length

Morphometric	egg	measurement.

Number	of	egg	measured

Length Width

Queen Control

Cold	

Treatment

1 20 12

2 20 20

3 20 12

4 20 15

5 20 6

6 20 21

7 13 11

8 17 10

9 18 19

10 7 18

11 16 20

Overall 191 164

N	=	11	queens

Behavior	mean	z-score	±	s.d.	for	significant	univariate	tests	for	control	and	treatment.

assays/	queen
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Table A3.  Aggressive behavior of adult offspring from queen before and 48-hr after cold 
stress, a. multivariate, b. univariate models. 

 
 
 
  

Exact	F	value df Error	df p-value

All	Between 2.6123 21 333 0.0002

Queen 4.4015 10 333 <0.0001

Treatment 1.2087 1 333 0.2724

Queen*Treatment 0.7272 10 333 0.6988

Within	Subjects Chi-square Df P-value

Sphericity 391.09 14 <0.0001

Pallai’s	Trace df Error	df p-value

All	Within 1.3431 105 1665 0.0179

Behavior 1.02341 5 329 0.4033

Behavior*Queen 1.9557 50 1665 <0.0001

Behavior*Treatment 1.1652 5 329 0.326

Behavior*Queen*Treatme 0.7017 50 1665 0.9437

Exact	F	value p-value df

Overall	model 3.31 0.0004 10

Queen	effect 3.31 0.0004 10

Overall	model 1.01 0.43 10

Queen	effect 1.01 0.43 10

Overall	model 2.1 0.02 10

Queen	effect 2.1 0.02 10

Overall	model 3 0.001 10

Queen	effect 3 0.001 10

Overall	model 4.86 <0.0001 10

Queen	effect 4.86 <0.0001 10

Overall	model 4.85 <0.0001 10

Queen	effect 4.85 <0.0001 10

Mandibles	Open

Bite

Flexion

	Sting	Attempt

	Sting	Duration

a.		Behavior	MANOVA	results	for	control	and	cold	treatment.

b.		Behavior	univariate	results	for	control	and	cold	treatment.

Antennation
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Table A4.  Aggressive behavior of adult offspring from queen before and after caging, a. 
multivariate, b. univariate models. 

 
 
 
  

Exact	F	value df Error	df p-value

All	Between 3.02 5 118 0.01

Queen 2.03 2 118 0.14

Treatment 5.54 1 118 0.02

Queen*Treatment 2.62 2 118 0.08

Within	Subjects Pallai’s	Trace df df	of	error p-value

All	Within 1.41 25 590 0.09

Behavior 1.06 5 114 0.38

Behavior*Queen 1.45 10 230 0.16

Behavior*Treatment 2.2 5 114 0.06

Behavior*Queen*Treatment 1.08 10 230 0.37

Behavior Effect F	Ratio P-value Df

Overall	model 2.28 0.13 1

Treatment	effect 1.51 0.13 1

Overall	model 5.41 0.02 1

Treatment	effect 2.33 0.02 1

Overall	model 0.008 0.93 1

Treatment	effect 0.09 0.093 1

Overall	model 2.88 0.09 1

Treatment	effect 1.7 0.09 1

Overall	model 2.12 0.15 1

Treatment	effect 1.46 0.15 1

Overall	model 0.35 0.55 1

Treatment	effect -0.6 0.55 1

b.		Behavior	univariate	results	for	handling-control	and	control.

Antennation

Mandibles	Open

Bite

a.		Behavior	MANOVA	results	for	handling-control	and	control.

Flexion

Sting	Attempt

Sting	Duration



 

 35 

 
 

 
Figure A1.  ‘Push-in cage’ made of hardware cloth and plastic queen-excluder. 
This cage restrained queen to one frame to allow age of eggs to be known, but allowed 
the workers to enter the cage to care for queen and eggs. 
 

 
Figure A2.  Mean emergence time of honey bee workers laid by queens before and after 
caging. 
Emergence time of offspring for handling-control and control did not varied by queen 
(Wald P = 0.2), but the caging of the queen did have an effect on the emergence time of 
the offspring (P <0.0001) and an interaction of queen and treatment (P <0.0001). 
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