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ABSTRACT OF DISSERTATION 
 

 

EXPLORING SPATIAL AND TEMPORAL VARIABILITY OF SOIL AND CROP 

PROCESSES FOR IRRIGATION MANAGEMENT 

 

Irrigation needs to be applied to soils in relatively humid regions such as western Kentucky to 
supply water for crop uptake to optimize and stabilize yields. Characterization of soil and crop 
variability at the field scale is needed to apply site specific management and to optimize water 
application. The objective of this work is to propose a characterization and modeling of soil and 
crop processes to improve irrigation management. Through an analysis of spatial and temporal 
behavior of soil and crop variables the variability in the field was identified. Integrative analysis 
of soil, crop, proximal and remote sensing data was utilized. A set of direct and indirect 
measurements that included soil texture, electrical conductivity (EC), soil chemical properties 
(pH, organic matter, N, P, K, Ca, Mg and Zn), NDVI, topographic variables, were measured in 
a silty loam soil near Princeton, Kentucky. Maps of measured properties were developed using 
kriging, and cokriging. Different approaches and two cluster methods (FANNY and CLARA) 
with selected variables were applied to identify management zones. Optimal scenarios were 
achieved with dividing the entire field into 2 or 3 areas. Spatial variability in the field is strongly 
influenced by topography and clay content. Using Root Zone Water Quality Model 2.0 
(RZWQM), soil water tension was modeled and predicted at different zones based on the 
previous delineated zones. Soil water tension was measured at three depths (20, 40 and 60 cm) 
during different seasons (20016 and 2017) under wheat and corn. Temporal variations in soil 
water were driven mainly by precipitation but the behavior is different among management 
zones. The zone with higher clay content tends to dry out faster between rainfall events and 
reveals higher fluctuations in water tension even at greater depth. The other zones are more stable 
at the lower depth and share more similarities in their cyclic patterns. The model predictions were 
satisfactory in the surface layer but the accuracy decreased in deeper layers. A study of clay 
mineralogy was performed to explore field spatial differences based on the map classification. 
kaolinite, vermiculite, HIV and smectite are among the identified minerals. The clayey area 
presents higher quantity of some of the clay minerals. All these results show the ability to identify 
and characterize the field spatial variability, combining easily obtainable data under realistic farm 
conditions. This information can be utilized to manage resources more effectively through site 
specific application. 
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Chapter 1 Introduction 

 

1.1 Irrigation Management  

Irrigation in humid areas has increased in recent years in the United States. The application 

occurs during short-term periods of drought in summer. Among the reasons, we find that 

irrigation is used to optimize and stabilize crop yield at times of water shortage during the 

growing period. Another reason is the relatively high abundance of water for irrigation in 

these regions. Whether or not irrigation is profitable depends on different aspects such as 

costs (installation of systems, environmental), crop revenue, and total field area (Boyer et 

al., 2014). Another aspect to consider is the extensive demands of water resources in 

agriculture, industry and households for different uses in goods and services. Due to the 

competition with other demands, the water needs to be managed with better efficiency. 

One of the concepts most commonly used to discuss about effectiveness is the water use 

efficiency (WUE), which is referring to a ratio between crop productivity and water applied 

(Evans and Sadler, 2008), although there is not a unique definition. On the other hand, 

WUE has been used in a more general context, with a connotation closer to water 

conservation rather than productivity, although WUE and water conservation should not 

be used as equals. This is one of the challenges when irrigation is applied, on one side is 

the objective to increase crop yield, which implies higher water consumption and 

evapotranspiration (ET), but on the other side it is also required to consume less water to 

improve its conservation.  
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One way to optimize irrigation is the site specific irrigation management, also called 

precision irrigation (Sadler et al., 2005). The concept refers to applying the right amount 

of water at the right time but also considering the locations in the field. Therefore, a 

variable-rate water supply should be applied in light of the characteristics of the field. 

Spatial differences in topography and soil physical and chemical properties can be found 

on the same field, thus the infiltration and soil water movement also varies when irrigation 

is applied. In the literature we found examples during different decades (Nielsen et al., 

1973, Wendroth et al., 1999) showing the spatial and temporal variability of soil water at 

field scale. Understanding spatial variation in soil hydraulic properties and its relation with 

other soil and crop properties can help to make better prediction of soil water dynamics 

and use it as a base for developing an appropriate site specific irrigation management (Li 

et al., 2014). 

 

1.2 Site specific management 

Precision Agriculture or site specific management is based on the concept of dividing a 

field in areas that share similar characteristics. Areas with the same characteristics may be 

managed in the same way, i.e., receive the same or similar input, however, inputs can vary 

between areas with different characteristics in order to optimize crop production and to 

obtain environmental benefits. The foundation of site specific management is the 

characterization of soil and crop properties at the field scale. The resulting maps of variable 

resource application are influenced by sampling scheme, measurement methods, support, 

scale, vegetation, local weather, and soil conditions used in the studies.  
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The spatial variability of soil and crop properties can be obtained from different sources 

(e.g. NRCS) or generated using field measurements. With the later one, maps can be 

generated using geostatistical interpolation (e.g. kriging, inverse distance weighting, 

regression kriging) of a grid sampling. For example, Mueller et al. (2001) mentioned that 

soil fertility condition maps are commonly generated from coarse sampling grids (100-m 

or more) and simple interpolation methods, but with concerns about its performance. In 

general, field scale measurements are cumbersome and infeasible to be performed in all 

fields of a farm at a resolution that would support a high-quality map. An alternative to 

increase the resolution and accuracy of field maps is the use of ancillary data, which should 

be easier to measure and possibly be collected at a finer resolution than the main variable. 

One example of ancillary data is the apparent electrical conductivity (ECa) obtained from 

proximal sensing tools such as electromagnetic induction sensors (EMI) or coulter-

electrode contact sensors (e.g. Veris system). This variable has been widely used to predict 

different variables including soil texture (Moral et al., 2010), soil drainage (Kravchenko et 

al., 2002), soil organic matter content (Kühn et al., 2009), soil water content (Peralta et al., 

2013), cation exchange capacity (Triantafilis et al., 2009), soil water drainage (Dadfar et 

al., 2011) and soil salinity (Goff et al., 2009).  

 

Soil variables and ancillary data can also be estimated from remote sensing techniques 

(Viscarra Rossel et al., 2011; Mohanty, 2013). The difference between proximal and 

remote sensing tools is the proximity with the measured variable; where proximal sensing 

tools are in direct contact or very close. On the other hand, images from drones and satellite 

are examples of remote sensing data but they present differences in the level of details and 
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coverage. While the satellite images can cover large areas they present a low spatial and/or 

temporal resolution, and atmospheric conditions could affect the image quality.  

Remote sensing methods should be validated with field measurements (Ochsner et al., 

2013). Remote sensing can complement field work and to observe spatial variation focus 

on relative spatial differences rather than a previse magnitude of values when the level of 

details is low. For example, satellite images can be used to monitor crop growth during the 

growing season and over different seasons by deriving different vegetation indices such as 

normalized difference vegetation index (NDVI) and leaf area index (LAI). 

 

Different approaches can be applied to delineate management zones. For example, the 

spatial variation of yield maps from different seasons can be used as criteria to identify 

areas with differences in crop productivity. Another approach is to use soil physical and 

chemical and crop variables, or a combination of them. Unsupervised classification 

algorithms with the field data are often used to divide the field in zones (Zhang et al., 2010). 

The general idea is that comparing dissimilarities in the data between locations, the optimal 

number of division can be determined. One challenge about using this method is that the 

numerical solution should provide a number and delineation of areas that could be used on 

real farm conditions. Another aspect to consider when performing a delineation is how to 

select variables to characterize the field. Variables should be representative of the field 

variation for a specific management and preferably, easy to obtain in a realistic scenario. 

Consequently, the use of proximal and remote sensing data is recommended to complement 

field measurements as independent variables or ancillary data. 
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1.3 Modeling soil water status using Agro-system models  

Agro-system models are important tools that are capable to integrate and synthesize 

information to describe relevant agro-ecological processes, including crop growth, soil 

water and nutrients balance and dynamics. They can help get better understanding of field 

conditions and identify adequate management alternatives under different scenarios that 

otherwise, may require large amount of data from field experiments, which may be not 

feasible for land managers (James et al., 2017). Several models have been developed to 

predict soil water balance and dynamics. The prediction of soil water status involves a 

characterization of several processes, including infiltration of precipitation or irrigation 

water, water movement and redistribution through the soil profile, and water losses by 

evapotranspiration and deep drainage.  

 

Among models with a module related with soil water predictions we found RZWQM2 (Ma 

et al., 2002), SWAP (Jiang et al., 2001), and HYDRUS 1D/2D/3D (Šimůnek et al., 2017). 

RZWQM2 (Root Zone Water Quality Model version 2), is one dimensional model with 

emphasis on effects of management on water quantity, water quality, and crop production. 

It integrates the interactions between weather, soil properties, hydrology, agricultural 

management practices, crop growth, and chemical transport (Ahuja et al., 2000). The 

models provide several ways to estimate hydraulic properties. For example, soil water 

retention curve (SWRC) described by the Brooks–Corey equations (Brooks and Corey, 

1964) can be estimated using the soil textural class parameters; saturated hydraulic 

conductivity can also be estimated based on the textural class and the effective 

macroporosity (Ma et al., 2012).  
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Agro system models are potential tools to support management practices including the 

optimization of water use. However, due to the complexity of modeling processes it 

requires a large quantity of input parameters, and the quality of the data should also be 

evaluated. For example, RZWQM2 requires parameters such as soil properties, weather, 

and management practices. In most of the cases, measuring all the input parameters is not 

possible, therefore it is needed to obtain data from alternatives such as neural networks, 

pedotransfer functions or estimations from the model itself. The experimental field data 

can be used to calibrate and evaluate the model. The model calibration can be performed 

manually (the most commonly method with RZWQ2) or by using computer-based 

automatic methods. In manual calibration, a trial-and-error parameter adjustment based on 

predicted versus measures values. This approach may be time consuming, considering that 

that several parameters could be modified and the scientist needs to have knowledge about 

the sensitive of parameters or perform a sensitivity analysis. With the automatic calibration, 

parameters are adjusted automatically according to a specified search scheme and 

numerical measures of the goodness-of-fit. On the other hand, an automatic procedure 

requires the selection of an objective function, a search algorithm, and a criterion by which 

to terminate the search (Gupta et a., 1999). The calibration is fast, and the confidences of 

model simulation can be stated. However, the automatic methods may not be transferable 

to other person due to different criteria to select an objective function, and the optimized 

parameter could not present physical or biological meanings (Boyle et al., 2000; Ma et al., 

2011). How to improve the procedure of obtaining good quality measured and estimated 

field data, and to optimize the process of model calibration are one of the first steps to get 
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accurate predictions to be applied on forecasting, and then be used as a decision support 

tool. 

 

1.4 Objectives of the study  

This study has the aim to improve irrigation management through a survey of soil and crop 

variables in a farmer’s field located in Western Kentucky. The specific objectives are a) to 

perform an integrative analysis of soil, crop and remote sensing variables to define 

management zones for irrigation; b) Synthesize information and develop processes for 

understanding soil water status through system models.  

 

In chapter 2 we are presenting a procedure to create a clay content map using ECa as 

secondary data. The purpose of the study is to answer questions about optimal sampling 

density, identify the spatial variability in the field, and the reliability of using ancillary data 

to increase the accuracy and the map resolution. Clay content is one of the key variables 

affecting the soil water status in the field, although field measurements are costly and time 

consuming. We present different scenarios changing the sampling density of clay content 

while maintaining all the ECa measurements. The data is coregionalized using cokriging; 

the models are fitted for each scenario and different validation procedures are presented.   

 

To perform a site specific management is necessary to delineate areas in the fields.  In 

chapter 3, an integrative analysis of soil, proximal and remote sensing data is used to 

delineate zones. The methodology includes different approaches to select variables: a) 

using maps derived from a principal component analysis, b) identifying key variables from 
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the PCA and c) selected variables that are both representative of field variability and easy 

to obtain. To divide the field a hard and soft cluster algorithms were used. The purpose of 

using different approaches was to observe how different the result will be when different 

criteria is used. To validate the field divisions, a comparison of crop yield and soil water 

dynamics in each area is presented. To compare the temporal variation of soil water 

dynamics at different zones and depths a wavelet analysis is presented. 

 

After delineating zones in the field in chapter 3, we study the soil water status at different 

zones and depths in chapter 4. In the chapter we compare differences in soil water tension 

between zones and study how it is related with other soil properties. We also evaluate the 

model prediction of soil water tension using the RZWQM2. We use field measurement and 

model derived parameters as inputs, and perform a calibration after the initial predictions. 

By predicting the soil water tension at different zones we can determine the right time to 

perform irrigation and also water amount and irrigation rate scenarios. 

 

Lastly, in chapter 5 we are presenting a complementary study to characterize the clay 

mineralogy variation in the field. Clay mineralogy is not commonly studied at field scale 

although it is intrinsically related with other soil properties and can affect the soil 

management. The purpose of this study was to observe if the clay mineralogy variation is 

significant at field scales, how it is related to other variables, and if the characteristics have 

concordance with actual soil classification provided by NRCS. The samples were taken at 

soil map units based on the NRCS classification. In the field, we found map units from the 

Crider soil (Alfisol) series and from the Nolin soil series (Inceptisol). Data is compared 
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with other soil properties and the mineralogical characterization was obtained using a x-

ray diffraction, a thermogravimetric analysis and Fourier-Transform-Infrared 

spectroscopy. 
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Chapter 2 Reliably Mapping Clay Content Coregionalized with EC 

 

Reproduced with permission from Reyes, J., O. Wendroth, C. Matocha, J. Zhu, W. 

Ren, A.D. Karathanasis. 2018. Reliably Mapping Clay Content Coregionalized with 

Electrical Conductivity. Soil Science Society of America Journal, 

doi:10.2136/sssaj2017.09.0327. Copyright © Soil Science Society of America 2018 

https://dl.sciencesocieties.org/publications/sssaj/abstracts/82/3/578 

 

2.1 Introduction  

Efficiency and environmental sustainability of crop production can be improved through 

precision agriculture that involves site-specific management of planting density, fertilizers 

and pesticides and recently irrigation (Yao et al., 2014; Peralta et al., 2015; Haghverdi et 

al., 2016). Knowing the spatial variability of soil textural composition across a farmer’s 

field is important for precision agriculture because of its strong influence on a large number 

of soil physical and chemical properties and processes. In many regions of the United 

States, soil texture can exhibit high spatial variability at the field scale, and thus cause 

spatial differences in crop growth and yield (Burke et al., 1989; Bronson et al., 2005; 

Sudduth et al., 2005). Special attention has been focused on soil clay content, which is the 

most active fraction participating in processes such as soil water retention, hydraulic 

conductivity, soil aggregation, and cation exchange behavior through mineralogy (Schulze, 

1989). The clay fraction is important for soil structure and fertility, but an excessive 

percentage of clay can negatively affect water infiltration and aeration of the soil. 
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The estimation of soil properties at the field scale is influenced by the measurement 

method, sampling scheme, scale, i.e., sample size, separation distance, domain size 

(Blöschl and Sivapalan, 1995), vegetation, and local soil conditions, and magnitude of 

variance. The appropriate spatial sampling resolution that provides a representative map of 

a variable remains unknown a priori; without any further information, application of the 

map for agricultural management remains uncertain as well (Frogbrook, 1999). Several 

geostatistical approaches can be applied to produce maps that represent spatial variation. 

One of those commonly used is ordinary kriging. Other methods are inverse distance 

weighting and universal kriging (Liu et al., 2006). For a meaningful map based on kriging 

it is necessary to obtain semivariogram models that represent the observed spatial structure 

(Nielsen and Wendroth, 2003; Kravchenko, 2003). On the other hand, interpolation based 

on inverse distance weighting does not depend on structured variability of observations but 

on an arbitrarily chosen coefficient that weighs measurements in the vicinity of the 

estimated location. For this reason, inverse distance interpolation produces less meaningful 

results than kriging (Kravchenko, 2003). In case of using universal kriging, trends 

underlying the data are removed and only the residuals are kriged. Then, the trend is added 

to the kriged residuals (Nielsen and Wendroth, 2003). Compared to univariate kriging, the 

estimation and map accuracy can be improved through cokriging by adding one or more 

secondary variables that are spatially associated with the primary variable. Cokriging 

requires a linear model of coregionalization and positive definiteness (Deutsch and Journel, 

1992; Nielsen and Wendroth, 2003). Triantafilis and Lesch (2005) and Weller et al. (2007) 

gave examples for soil clay content maps derived from univariate ordinary kriging. 

Cokriging and regression kriging have also been used to estimate clay content with 
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electrical conductivity as a covariate by, e.g., Triantafilis et al. (2001), Moral et al. (2010), 

and Heil and Schmidhalter (2012). In addition, Odeh and McBratney (2000), employed 

satellite images, and Odeh et al. (1994) applied digital elevation models as ancillary data 

in their multivariate geostatistical predictions of clay content.  

 

Geophysical techniques have increasingly been used to support the prediction of soil 

properties that are comparably expensive and time consuming to obtain at high spatial 

resolution (McBratney et al., 2003; Casa et al., 2013). One of the most common variables 

used to coregionalize soil clay content is apparent electrical conductivity (ECa) or its 

reciprocal value, i.e., electrical resistivity (Wendroth et al., 2006). While ECa has been used 

to predict clay content and other variables, we have to consider that ECa varies in time due 

to its relationship with soil water content (Corwin and Lesch, 2003; Sudduth et al., 2005). 

Therefore, depending on the time of measurement and the respective variability structure, 

not every mapping campaign of ECa may result in a pattern that supports a linear model of 

coregionalization with soil clay content. ECa has been intensively studied by using non-

invasive electromagnetic induction sensors (EMI) such as EM38 (Geonics limited), GEM-

2 (Geophex limited) and DUALEM-21S (DUALEM) (Doolittle and Brevik, 2014). In 

recent applications, EMI was used as ancillary variable to predict soil organic matter 

content (Kühn et al., 2009), soil water content (Peralta et al., 2013), cation exchange 

capacity (Triantafilis et al., 2009), soil water drainage (Dadfar et al., 2011) and soil salinity 

(Goff et al., 2009). Although not as widely used as EMI sensors, coulter-electrode contact 

sensors such as the Veris system (Veris technologies, 2016) can also be coregionalized 

with cation exchange capacity (Bishop and McBratney, 2001), soil drainage (Kravchenko 
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et al., 2002), and soil texture mapping (Moral et al., 2010). For further information, Corwin 

and Lesh (2005) and Doolittle and Brevik (2014) have provided comprehensive reviews of 

ECa applications. 

 

Several studies that include a secondary variable through cokriging or other interpolation 

methods present results for only one sampling resolution without quantifying the impact 

of spatial support. Not much is known about the behavior of coregionalization results 

obtained for primary data collected at different levels of spatial support (Mueller and 

Pierce, 2003). While the use of ancillary data has shown improvements in primary variable 

predictions compared to univariate kriging in general, the behavior of estimation quality 

for various sampling densities of the primary variable requires further study. Such 

investigations are of substantial relevance for on-farm conditions where a realistic and 

affordable density of soil samples for textural analysis is essential while it is relatively easy 

to obtain ECa as a secondary variable at a fine resolution. ECa correlation with different 

soil properties has been studied in Kentucky (Mueller et al., 2003) but not its use as a 

secondary variable to develop clay content maps. The objective of this work was to obtain 

a reliable soil clay content map in a farmer’s field in Western Kentucky by using clay 

content measurements coregionalized with apparent electrical conductivity data acquired 

from a Veris system. Ordinary kriging and cokriging of soil clay content using ECa should 

be employed to compare the map quality under various primary variable sampling support 

scenarios. Complementary, the effect of spatial clay sampling resolution on the consistency 

of estimation models and the accuracy of predictions should be examined for identifying 

how many samples would be needed to produce a clay map with appropriate accuracy. For 
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this purpose, scenarios with different spatial resolution of clay content measurements 

should be investigated while spatial density of ECa data remained the same in all scenarios. 

 

2.2 Material and Methods  

2.2.1 Site description 

The study was conducted at a field site of Hillview Farms (Figure 2.1) located in Princeton 

KY, Caldwell County (37° 1'58.02"N, 87°51'33.06"W, 142 m asl). At this location, the 

annual precipitation is 1312 mm, with a mean annual temperature of 15 °C. The maximum 

monthly mean temperature is 30°C (June) and the minimum monthly mean temperature is 

-5 °C (January) (US climate data, 2016).  

 

The soils belong mainly to the Crider series, and are described as Fine-silty, mixed, active, 

mesic Typic Paleudalfs; these soils are formed in a loess mantle and the underlying 

residuum from limestone. In some areas we found soils from the Nolin series, which are 

classified as Fine-silty, mixed, active, mesic Dystric Fluventic Eutrudepts; these soils are 

formed in alluvium derived from limestones, sandstones, siltstones, shales, and loess (Soil 

Survey Staff, 1999). The area covered by our measurements was approximately 27 ha. The 

field was cultivated with corn (Zea mays L.) under no till soil management during the 

growing seasons of 2014 and 2015.  
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Figure 2.1. Study area and sampling locations. Red and yellow bullets denote 96 sampling locations for soil 
texture while yellow bullets indicate the validation points. Blue bullets reflect the paths for ECa 
measurements. 
 

2.2.2 Soil sampling and ECa data collection 

Soil texture was sampled in a 50 by 50-m-grid of 96 points (Figure 2.1) at five 20-cm-

intervals from 0 to 100 cm depth, while only the upper 0-20 cm were considered for the 

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(
!(

!(

!(

!(

!(

!(
!(

!(

!(

!(

!(
!(

!(

!(

!(

!(
!(

!(

!(

Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus
DS, USDA, USGS, AEX, Getmapping, Aerogrid, IGN, IGP, swisstopo, and
the GIS User Community

423400

423400

423500

423500

423600

423600

423700

423700

423800

423800

423900

423900

424000

424000

424100

424100

40
98

30
0

40
98

30
0

40
98

40
0

40
98

40
0

40
98

5
00

40
98

5
00

40
9

86
00

40
9

86
00

4
09

87
0

0

4
09

87
0

0

4
09

8
80

0

4
09

8
80

0

4
09

8
90

0

4
09

8
90

0

0 100 200 300 40050
Meters

!( Validation points

!( Soil sampling

Electrical conductivity

¯
D

Content may not reflect
National Geographic's current
map policy. Sources: National



16 

spatial ECa-clay content relationship in this study. Sand fractions were separated by 

sieving, medium and fine silt (0.002-0.005 mm) and clay (< 0.002 mm) were measured 

with the pipette method (Gee and Or 2002). Coarse silt (0.05-0.02 mm) was calculated as 

the residual. 

 

Soil ECa was measured in the spring in April of 2015 using a Veris 3150. This device is a 

contact sensor that has six rolling coulters-electrodes and a width about 235 cm. On the 

field, it reach a maximum speed about 25 km h-1 (Veris Technologies, 2016). One pair of 

coulter-electrodes injects current to the soil and other is used to measure the voltage 

(Sudduth et al., 2005). The electrodes are configured with the Wenner array and we 

obtained cumulative measurements over a shallow depth (about 0-30 cm) and a deep depth 

(about 0-90 cm), which we define as ECas and ECad respectively. ECa was measured on the 

day before corn planting when soil conditions were appropriately moist for good coulter-

soil contact, but not too moist to prevent soil compaction. Corwin and Scudiero (2016) 

recommended to run ECa sensors under sufficient soil moisture (i.e., approximately 2/3 of 

field capacity) to establish a good contact between the coulters and the soil and to maintain 

continuous conductance to the depth of measurements (about 90 cm for Veris). ECa 

measurements were collected along several transects in the field (Figure 2.1). Transects 

were spaced approximately about 17 m to have 2 paths in between each grid line, and the 

spacing between points along each transect was approximately 2 m, generating a database 

of some 7350 points. To analyze clay content and ECa correlations and to perform a classic 

cross semivariogram analysis described in Nielsen and Wendroth (2003), we paired points 

of clay content with an average value of the nearest ECa points that were located within a 
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radius of 2 m around each clay sampling location. ECa and clay measurements could not 

be collected at exactly the same coordinates. The average distance between clay and ECa 

measurement location was 1.31 m (s.d. = 0.56 m). 

 

2.2.3 Sampling schemes 

Five scenarios were created to evaluate the consistency of clay content predictions (Figure 

2.2). In four scenarios the number of sampling points available for kriging and cokriging 

analysis was reduced compared with the original data (scenario 1, Figure 2.2A). In the 

different scenarios, the number of observations was reduced by 50 %, i.e., 96, 48, 24, and 

12 locations were considered. For scenarios 2 and 3 we investigated how two different 

spatial arrangements with the same number of observations affect the spatial predictions. 

In scenario 2 (Figure 2.2B), 48 locations were selected with a minimum distance of 70 m, 

while in scenario 3 (Figure 2.2C), 48 locations were arranged in pairs of points with the 

original lag distance of 50 m and in account of that, more pairs with lag distances larger 

than 70 m. In scenarios 4 and 5, grids were designed with equally spaced sampling points 

covering the entire field. In scenario 4 (Figure 2.2D) we used 24 points in a regular 100-

m-grid. For scenario 5 (Figure 2.2E), 12 points were arranged in a regular 150-m-grid. 
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Figure 2.2. Sampling schemes for each scenario. Number labels in (A) indicate the locations referred to in 
the 1-dimensional display of results in Figure 2.6. 
 

 

 

 



19 

2.2.4 Geostatistical Interpolation  

To apply kriging and cokriging as interpolation methods, parameters have to be identified 

that describe the spatial variance structure in semivariograms. In this study, experimental 

semivariograms were fitted to Spherical, Gaussian, or Exponential models (Journel and 

Huijbregts, 1978). Instead of a classical experimental cross semivariogram, the pseudo 

cross variogram (Myers, 1991) was applied for cokriging that is defined as: 

𝑔 ℎ
1

2𝑁 ℎ
 𝐴 𝑥 𝐵 𝑥 ℎ

   
 𝑒𝑞. 2.1  

 

where g(h) is the cross semivariance, A(xi) is the measured value at location xi, A (xi+h) is 

the measured value at location xi+h, h represents the lag distance between two locations, 

and N(h) is the number of paired points that are separated by a lag distance of h, B is the 

secondary variable value measured at location (xi+h). The model functions were fitted by 

a weighting factor (N(h)/ hi
2) of the squared residuals. Despite the fact that experimental 

pseudo and traditional cross semivariograms are calculated differently, the pseudo cross 

variogram is used in the same way as the traditional cross semivariogram in the cokriging 

computation. With the pseudo cross variogram all measurements of the secondary variable 

are included in the calculations whereas classical cross semivariograms only consider 

measurements of both variables that are obtained for the same location. The use of pseudo 

cross variograms has an advantage in cases where many observations for the secondary 

variable exist while only a limited number of samples for the primary variable are available, 

and identifying the spatial structure with the traditional cross semivariogram would 

therefore be difficult. On the other hand, concerns exist regarding the use of pseudo cross 
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variograms such as the effect of differences in variability or magnitude (different units) 

between variables (Myers, 1991). Moreover, when there is a large difference in sampling 

density between primary and secondary variables, the variability of the variable sampled 

at a higher density may dominate the variability structure. 

 

For each of the scenarios we recalculated the experimental semivariograms and cross 

semivariogram and their respective models based on the data considered for the particular 

scenario. To interpolate values at unsampled locations using only one variable ordinary 

kriging was used. To include a secondary variable in the interpolation, ordinary cokriging 

was applied. Nested semivariogram models were used in the cokriging analysis that include 

two empirical models as components and allow a better fit. The procedures and equations 

used to perform the geostatistical interpolation are explained in Nielsen and Wendroth 

(2003). 

 

2.2.5 Data Validation 

The estimation for each scenario was cross-validated with a leave-one-out approach. This 

method consists of removing each of the measured clay points one by one and estimate its 

value with the remaining points. To complement this approach, each scenario was validated 

with unused samples (48 points for scenarios 2 and 3, 72 points for scenario 4, and 84 

points for scenario 5) and Lin’s concordance correlation coefficient was computed (Lin, 

1989). In addition, an independent validation data set for the same 21 locations (Figure 2.1) 

was chosen to compare scenarios 2 – 5 directly with each other and results of this 

comparison were visualized in a Taylor diagram (Taylor, 2001).  
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The mean error (ME) is a criterion to evaluate the bias of model predictions. To identify 

the accuracy the root mean squared error (RMSE), and the RMSE-observation standard 

deviation ratio (RSR) were computed. A paired t-test (P < 0.05) allowed to compare mean 

differences of RMSE between ordinary kriging and cokriging for each scenario, and One-

way ANOVA with post-hoc LSD test (P < 0.05) was performed for multiple comparison. 

These indices were calculated according to: 

 

𝑀𝐸
1
𝑛

z′ i z i         𝑒𝑞. 2.2  

 

𝑅𝑀𝑆𝐸
1
𝑛

z′ i z i          𝑒𝑞. 2.3  

 

𝑅𝑆𝑅

1
𝑛 z′ i z i

𝑆𝐷 𝑧
           𝑒𝑞. 2.4  

 

where n is the number of samples, z(i) is the measured value at location i; z’(i) is the 

predicted value at location i, and SD z is the standard deviation of measured data.  

 

Our analysis was centered in the relationship between clay content at the surface layer (0-

20 cm) and ECas. Although ECad can also be used, we have to consider that it is a value that 

integrates soil properties down to 90 cm depth and it is difficult or even impossible to relate 
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it to properties in individual layers. Both variables were log-transformed, to normalize their 

distribution and homogenize their magnitude, the latter being recommended for pseudo 

cross variogram analysis (Myers, 1991). Shapiro’s test showed that log-transformed clay 

was normally distributed (P = 0.12) at a 95% confidence limit. Log-transformed ECas did 

not reveal a normal distribution (P < 0.05), which has to be expected due to the large 

number of samples considerably narrowing the confidence interval. However, a normal 

distribution for log-transformed ECas can be assumed considering that quantile-quantile 

plots showed a pattern of normal distribution and based on randomly subsampling a 

number of log-ECas observations similar to clay samples (n=100), that was obviously 

normally distributed (P > 0.05). 

 

Statistical analyses were performed using libraries included in the R environment (R Core 

Team, 2017). Semivariograms, pseudo cross variograms, ordinary kriging and cokriging 

were computed using Gstat (Pebesma, 2004), geoR (Ribeiro and Diggle, 2016) and sp 

(Roger et al., 2013) packages. Lin’s concordance correlation coefficient was performed 

using the epiR package (Stevenson et al., 2017). Maps were plotted with lattice (Sarkar, 

2008), and the Taylor Diagram was computed using the plotrix package (Lemon, 2006). 

 

2.3 Results and Discussion 

Descriptive statistics of each scenario are presented in Table 2.1. Clay content at 0-20 cm 

revealed values between 14 and 32 % with a mean of 20 % (s.d. = 4.6 %). Surface soil 

texture in the field was classified as silt loam, but at some locations measured particle size 

composition represented a silty clay loam because of higher clay content. While higher 
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clay contents are expected in deeper soil horizons, in some areas in the field surface 

material was eroded causing a high clay content even at the soil surface. Apparent electrical 

conductivity values were 4.6 mS m-1 (s.d. = 1.3 mS m-1) for ECas and 14.6 mS m-1 (s.d. = 

3.9 mS m-1) for ECad. The Pearson correlation of clay content was significant (P < 0.01) 

with both ECas (0.76) and ECad (0.67), and with the log-transformed data, it was 0.70 for 

ECas and 0.57 for ECad. The magnitude of these correlation coefficients are comparable to 

those found in other studies by Mueller et al. (2003) in soils of Kentucky and Sudduth et 

al. (2003) and Bronson et al. (2005) in different fields and regions of the United States, 

using a Veris 3100 to measure ECa. In those studies, ECas was the most correlated with 

surface clay content, since ECad measurements integrate electrical conductivity between 0 

and approx. 90 cm depth. To verify the spatial relationship, the classical cross 

semivariogram for log-transformed clay content and ECa data manifests an evident spatial 

structure that follows a Gaussian model (Figure 2.3). 

 

Table 2.1. Descriptive statistics of clay samples used in each scenario and the validation set (Clay val.) and 
the electrical conductivity at a shallow (ECas) and deep (ECad) depth. 

Parameter Clay sc.1 Clay sc.2 Clay sc.3 Clay sc.4 Clay sc.5 Clay val.  
 
ECas ECad 

   %     mS m-1 
N 96 48 48 24 12 21  7350 7350 
Mean 20.0 20.1 19.3 20.1 21.1 20.2  4.6 14.6 
Standard Deviation 4.7 4.5 4.0 4.7 5.6 5.7  1.3 3.9 
Kurtosis 0.53 -0.16 2.25 -0.04 -0.23 0.35  0.71 2.93 
Skewness 1.1 0.8 1.4 0.9 1.0 1.2  0.8 0.8 
Minimum 14.0 14.6 14.6 14.6 15.4 14.0  1.4 1.5 
Maximum 33.4 31.1 32.5 31.1 31.4 33.4  12.2 50.6 
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Figure 2.3. Classic cross variogram of Log Clay and Log ECa. 

 

2.3.1 Semivariograms based on all data 

The semivariogram and pseudo cross variogram models applied for kriging and cokriging 

in scenario 1 including all clay content data are presented in Figure 2.4. The Gaussian 

model was the best one to describe the spatial structure of clay content, with the 

semivariance having a parabolic behavior at the start before it reaches an inflection point 

at about 300 m lag distance (Figure 2.4A). ECas yields a semivariogram with a pattern 

closer to a spherical model in the range of 0-200 m and then variance increases again at 

larger lag distances (Figure 2.4C). To fit a common model of coregionalization a nested 

model was chosen based on nugget, Gaussian and Spherical components. The cross 

semivariograms between ECa and clay content, found in other studies (Carrol and Oliver 

2005; Heil and Schmidhalter, 2012), revealed a positive structure. Since all data from the 

secondary variable were used here, the pseudo crossvariogram structure (Figure 2.4D) 

exhibited a pattern similar to ECas (Figure 2.4C) over the first lag distances. Despite 

concerns regarding the use of a pseudo crossvariogram for large secondary observation 
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numbers, the spatial structure remains similar to the classic cross semivariogram presented 

in Figure 2.3 except for short lag distances. 

 

Figure 2.4. Scenario 1 with all data: semivariogram and model for ln-transformed clay content at 0-20 cm 
used for ordinary kriging (A); semivariograms and linear models of coregionalization for ln-transformed clay 
content at 0-20 cm (B), ln-transformed electrical conductivity at shallow depth (C) and pseudo cross 
variogram of ln-transformed clay content and electrical conductivity (D). Maps of clay content for scenario 
1 (all measurements) using kriging (E) and cokriging with apparent electrical conductivity at shallow depth 
(F). 
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2.3.2 Kriging and Cokriging predictions using all data 

Kriged and cokriged clay content maps are presented in Figure 2.4E and Figure 2.4F. In 

both cases high clay contents were found in the northeastern part of the field, and low clay 

contents in the center area. On the other hand, spatial differences in the representation of 

clay content were detected between both estimation methods. The maximum-minimum 

span of clay content values predicted with kriging was smaller than that obtained from 

cokriging. Also, cokriged clay content varied over shorter distances than kriged clay 

content due to the influence of ECas data and their fine resolution. Moral et al. (2010) 

observed similar patterns in an ECa map and a clay map using regression kriging with ECa. 

Given the relatively coarse resolution of clay content data, kriging remains a smoothing 

process. On the other hand, the cokriged map better represents the actual clay content 

variation because variability features are manifested by the secondary variable sampled at 

finer resolution.  

The Gaussian model with its wide effective range produced the relatively smooth spatial 

distribution of clay content presented in the kriged map in Figure 2.4E. To demonstrate the 

impact of semivariogram shape especially at short lag distances on the map contours, a 

spherical model was used for kriging the map displayed in Figure 2.5. Obviously, the 

semivariogram model fit is less precise than the one displayed in Figure 2.4A. The resulting 

map in Figure 2.5B reveals a similar overall trend as in Figure 2.4E but with more 

pronounced small-scale fluctuations introduced by the larger weight for close neighbors in 

the kriging matrix that was caused by the erroneously small semivariance at short lag 

distances (Figure 2.5A). 
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Figure 2.5. Semivariogram and semivariogram model for scenario 1 (A) and kriged map of clay content (B) 
based on the spherical model. 

To validate predictions a leave-one-out cross validation was performed (Figure 2.6). 

Cokriging decreased the prediction error significantly (P < 0.05) (RMSE: 3.16 %) 

compared to kriging (RMSE: 4.08 %). It is obvious from comparing the results presented 

in Figure 2.6, that kriging mainly smoothed the spatial process of clay content and the 

confidence interval of kriged values has a wider range compared with cokriging, the latter 

revealing a more specific and precise representation of clay content variation between 

locations. Heil and Schmidhalter (2012) found similar RMSE values (4 %) when predicting 

clay content using cokriging, a better result than that obtained from regression kriging in 

their study. 
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Figure 2.6. Cross validation of predicted clay content at 0-20 cm using kriging (A) and cokriging (B) with 
all measurements (scenario 1). 

2.3.3 Kriging and Cokriging scenarios 

Semivariogram models were computed for each scenario (Figs. 2.7 and 2.8). In scenarios 

2 and 3, the same numbers of samples was used but in different spatial arrangements that 

reflect different spatial variability structures of clay content, as obvious from the resulting 

semivariograms (Figure 2.7). In scenario 4 the semivariogram of clay content appears less 

structured than in scenarios 2 and 3. In scenario 5 the fitting of the semivariogram model 

for clay content is less accurate because positive definiteness has to be met. Although we 
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reduced the number of samples for clay content, the pseudo crossvariogram kept a similar 

spatial structure over the first lags while differences at large lag distances could be 

observed. Our results indicate changes in the spatial structure not only by reducing samples 

but also in the spatial arrangement of sampling points relative to each other as we observe 

with scenarios 2 and 3, where the scenario 3 is less structured. 

Maps obtained with kriging and cokriging are presented in Figure 2.9. Kriged maps exhibit 

spatial clay content patterns changing for each scenario. Interestingly, the kriged spatial 

clay pattern differed slightly between scenarios 2 and 3 – a result that can be addressed 

solely to the arrangement of observations because the number of observations was 

identical. Kriging predictions depend on observations and semivariograms models. 

Consequently, with less observations the predictions depend more on models, which 

increases the uncertainty. On the other hand, for cokriging maps each of the scenarios 

reveals similar clay content patterns. This result is manifested in the comparison between 

scenarios 4 and 5, which are both based on a coarse grid sampling distance similar to the 

one applied by Mueller et al. (2001). The similarity in shape of the cokriging maps is a 

consequence of the high ECa sampling density. As was mentioned, with cokriging we can 

use data from each ECa location, and predict clay content based on their spatial relationship. 

Moreover, some loss in resolution is observed in scenarios 4 and 5, and areas with extreme 

values are more clustered compared to scenarios 2 and 3. This behavior was probably 

caused by the reduction of clay samples and the semivariogram model fitting. 
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Figure 2.7. Scenarios 2: semivariogram and model for clay content at 0-20 cm used for ordinary kriging (A); 
semivariograms and linear models of coregionalization for clay content at 0-20 cm (B), electrical conductivity 
at shallow depth (C) and pseudo cross variogram of clay content and electrical conductivity (D). Scenario 3: 
semivariogram and model for clay content at 0-20 cm used for ordinary kriging (E); semivariograms and 
linear models of coregionalization for clay content at 0-20 cm (F), electrical conductivity at shallow depth 
(G) and pseudo cross variogram of clay content and electrical conductivity (H). 
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Figure 2.8. Scenario 4: semivariogram and model for clay content at 0-20 cm used for ordinary kriging (A); 
semivariograms and linear models of coregionalization for clay content at 0-20 cm (B), electrical conductivity 
at shallow depth (C) and pseudo cross variogram of clay content and electrical conductivity (D). Scenario 5: 
semivariogram and model for clay content at 0-20 cm used for ordinary kriging (E); semivariograms and 
linear models of coregionalization for clay content at 0-20 cm (F), electrical conductivity at shallow depth 
(G) and pseudo cross variogram of clay content and electrical conductivity (H). 
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Figure 2.9. Maps of clay content using kriging (A, C, E and G) and cokriging with apparent electrical 
conductivity at shallow depth (B, D, F and H) in scenarios 2, 3 (48 points each one), 4 (24 points) and 5 (12 
points). 
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Results of leave-one-out cross validations of clay samples in each kriging and cokriging 

scenario are presented in Table 2.2. This validation only compares the prediction on used 

measurements. Therefore, the number of samples differs in each scenario. The RMSE was 

lower with cokriging than kriging, showing significant differences (P<0.05) except for 

scenarios 3 and 5. The mean error for both kriging and cokriging presented a negative value 

in all scenarios, with the exception of the scenario when all measurements were used. This 

result indicates a trend to underestimate measured values, but the bias is low in all cases. 

On the other hand, a key outcome of this study is that even if the number of sampling points 

for clay content was decreased, the RMSE did not significantly increase.  

Table 2.2. Bias and prediction error of clay content (%) in each scenario using Leave-one-out cross 
validation. ME: mean error, RMSE: Root mean squared error (RMSE), RSR: RMSE-observation standard 
deviation ratio. ECas was used as secondary variable for cokriging. Notice, the number of predicted points 
differs between scenarios. 

*Significant differences (P<0.05) between kriging and cokriging for each scenario.

Kriging 
sc. 1 

Kriging    
sc.2 

Kriging 
sc. 3 

Kriging 
sc. 4 

Kriging 
sc. 5 

Predicted points 96 48 48 24 12
ME (%) 0.04 -0.06 -0.06 -0.12 -0.23
RMSE (%) 4.08* 3.85* 3.83 4.45* 4.25
RSR 0.86 0.85 0.95 0.94 0.76

Cokriging 
sc. 1 

Cokriging  
sc. 2 

Cokriging 
sc.3 

Cokriging 
sc. 4 

Cokriging 
sc. 5 

Predicted points 96 48 48 24 12
ME (%) 0.12 -0.11 -0.10 -0.19 -0.17
RMSE (%) 3.16* 3.14* 3.07 3.26* 4.19
RSR 0.67 0.69 0.76 0.69 0.76
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2.3.4 Sample validations 

The error in the prediction of discarded sampling points for each scenario is presented in 

Table 2.3. As observed in the prediction for measured and used samples (Table 2.2), the 

RMSE was decreased with significant differences (P < 0.05) by using cokriging, while 

maintaining comparable RSR values in each scenario. In Figure 10, the predictions and 

Lin’s correlation concordance correlation coefficient using both methods are shown. In 

general, all models have difficulties to predict high clay content values but the smoothing 

effect is more notorious with kriging (overestimating lower values and underestimating 

higher values) while cokriging represents the spatial variation at different locations with 

better accuracy and a higher correlation concordance coefficient. Luca et al. (2007) also 

observed better prediction quality of organic matter using cokriging with ECa compared to 

kriging, and similar quality to simple kriging with varying local means, when they reduced 

the sample set of organic matter observations. 

Table 2.3. Bias and prediction error of clay content (%) for unused samples in each scenario. ME: mean 
error, RMSE: Root mean squared error (RMSE), RSR: RMSE-observation standard deviation ratio. ECas was 
used as secondary variable for cokriging. 

*Significant differences (P<0.05) between kriging and cokriging for each scenario.

Kriging sc. 2 Kriging sc. 3 Kriging sc. 4 Kriging sc. 5 
Predicted points 48 48 72 84
ME (%) -0.16 1.49 0.31 0.10
RMSE (%) 4.35* 4.66* 4.05* 4.12*
RSR 0.87 0.88 0.85 0.89

Cokriging sc. 2 Cokriging sc. 3 Cokriging sc. 4 Cokriging sc. 5 
Predicted points 48 48 72 84
ME (%) -0.22 0.65 0.02 -0.09
RMSE (%) 3.33* 3.55* 3.37* 3.16*
RSR 0.67 0.67 0.71 0.69
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Figure 2.10. 1:1 plots of predicted and measured values. CCC: Lin’s concordance correlation coefficient. 
Dashed line shows the concordance line and solid line shows the linear model. 
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A validation using an independent data set (Figure 2.1) is presented in Table 2.4. In all 

cases the RMSE was significantly lower (P < 0.05) for cokriging as compared to kriging. 

In Table 2.5 and Figure 2.11, we observe the results of combining predictions from 

LOOCV and unused samples to compare the 96 predictions in all scenarios. All cokriging 

scenarios revealed values for RMSE significantly lower (P < 0.05) than kriging scenarios 

while non-significantly differing among them. The Taylor diagram (Figure 2.11) is a 

representation of different parameters (RMSE, standard deviation of the reference and 

predicted values, and correlation between the predicted and reference values) that are being 

considered simultaneously to compare models against a reference value. In this case, the 

measured data are the reference. The better the prediction the closer are the parameters to 

the reference value. This figure shows that the cokriging scenarios are closer to the 

measured data than kriging scenarios indicated by a smaller RMSE. All models result in 

lower values of standard deviation compared to measured data, the latter being represented 

by the quarter of a circle at STD = 4.74. However, these differences are more notorious 

when using ordinary kriging whereas STD of cokriged values came closer to STD of 

measured values. Although we could expect that the model with best performance was the 

one with a large number of measured values included (cokriging scenario 1), the other 

cokriging models are closer to its predictions. On the other hand, considering our different 

validations, when using 48 samples the arrangement in scenario 2 seems to be better than 

the one used in scenario 3 based on a larger STD of the former one while both result in 

similar magnitudes of correlation and RMSE. The difference is that in scenario 2 the 

shortest lag distance is larger (70 m) but more data pairs are available in the next closest 

lags. Our results furthermore suggest the potential to develop clay maps with reduced soil 
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sampling effort as long as it is accompanied by apparent electrical conductivity 

measurements. Based on the Taylor diagram, even the ordinary kriging scenario with the 

highest sampling density was not as good as the lowest sampling density cokriging 

scenario. This example could be applied and the results verified in fields with similar and 

differing soils and geographical conditions. 

Table 2.4. Bias and prediction error of clay content (%) using an independent validation data set for which 
locations are shown in Figure 1. ME: mean error, RMSE: Root mean squared error (RMSE), RSR: RMSE-
observation standard deviation ratio. ECas was used as secondary variable for cokriging. 

*Significant differences (P<0.05) between kriging and cokriging for each scenario.

Table 2.5. Bias and prediction error of clay content (%) of samples combining validation from LOOCV and 
unused samples in each scenario. ME: mean error, RMSE: Root mean squared error (RMSE), RSR: RMSE-
observation standard deviation ratio. ECas was used as secondary variable for cokriging. 

*different letters indicate significant differences (P<0.05) between scenarios.

Kriging sc. 2 Kriging sc. 3 Kriging sc. 4 Kriging sc. 5 
Predicted points 21 21 21 21 
ME (%) -0.38 -1.01 -0.46 -0.39 
RMSE (%) 4.35* 4.88* 4.83* 4.66* 
RSR 0.77 0.86 0.85 0.82 

Cokriging sc. 2 Cokriging sc. 3 Cokriging sc. 4 Cokriging sc. 5 
Predicted points 21 21 21 21 
ME (%) 0.02 -0.33 -0.20 -0.73 
RMSE (%) 3.23* 3.55* 3.55* 4.10* 
RSR 0.57 0.63 0.63 0.72 

Kriging 
sc. 1 

Kriging  
sc. 2

Kriging  
sc. 3

Kriging 
sc. 4

Kriging  
sc. 5 

Predicted 
points 

96 96 96 96 96 

ME (%) 0.04 0.05 -0.78 -0.26 -0.07 
RMSE (%) 4.08b 4..10b 4.26b 4.16b 4.14b 
RSR 0.86 0.87 0.90 0.88 0.87 

Cokriging 
sc. 1 

Cokriging 
sc. 2

Cokriging 
sc. 3

Cokriging 
sc. 4

Cokriging 
sc. 5 

Predicted 
points 

96 96 96 96 96 

ME (%) 0.12 0.06 -0.37 -0.06 0.11 
RMSE (%) 3.16a 3.24a 3.32a 3.34a 3.34a 
RSR 0.67 0.68 0.70 0.70 0.70 
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Figure 2.11. Taylor diagram comparing predictions of scenarios 1-5 by using predictions from LOOCV 
and unused samples at each scenario. The black arc is representing the measured standard deviation 

2.3.5 Utilization of ECa and cokriging 

Several studies have shown advantages of using cokriging or other methods that 

incorporate a secondary variable over ordinary kriging, but without changing the sampling 

distances of the primary variable. Mueller and Pierce (2003) presented examples of 

changing grid distance (30 m, 60 m and 100 m) to predict organic carbon by ordinary 

kriging, cokriging and kriging with external drift. They found small differences in the 

precision between methods with a 30 m grid, but the methods that include a secondary 

variable improved the estimation at larger sampling distances. By developing scenarios 

with a reduced number of samples of the primary variable, we can observe changes in the 
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estimation, and determine whether we can reduce the number of samples and still obtain a 

representative map where our estimations shows good accuracy. Although it is always 

preferred to have the largest number of samples possible, our study has demonstrated that 

the lower clay sampling density (equivalent to 0.5 samples ha-1) when combined with ECa 

has produced satisfactory results. This sampling density is certainly realistic to be used on 

farms at the field scale. 

 

In general, when we reduce the number of samples it becomes difficult to fit a suitable 

model for both the semivariogram of the first variable and the cross semivariogram, but 

with the use of a pseudo cross variograms one can rely more on secondary data. Lark (2002) 

mentioned that pseudo cross variograms may be used when there is not enough data to 

calculate the classic cross semivariogram. Otherwise, the cross semivariogram should be 

preferred. In general, the pseudo crossvariogram is a valid method when none or only few 

data is available for both variables at the same location or depth (Zhang et al., 1997). 

 

This systematic study proves the usefulness of ECa to estimate surface layer soil clay 

content. However, we have to bear in mind that the relationship between soil clay content 

and EC varies with different soil conditions. The ECa map by itself represents spatial 

differences of many different processes occurring in the field (Corwin and Scudiero, 2016). 

McCutcheon et al. (2006) observed a change from significant to non-significant correlation 

between clay content and ECa at different dates in a dryland. Moreover, lack of correlation 

between field measurements can always occur if one or both sets of data do not strongly 

vary.  
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Regarding the time when to measure ECa, we agree to Corwin’s and Scudiero’s (2016) 

recommendation to choose a time for ECa mapping when the soil is still moist enough to 

have good contact with the coulters, but not too wet to cause structural damage, compaction 

and smearing at the soil surface. Whether or not, such an EC data set can efficiently be 

used in a coregionalization procedure with clay content depends on the resulting spatial 

variability pattern, and the spatial variability structure. If no common spatial variability 

structure for clay and EC can be identified, and if there is no well-defined cross 

semivariogram, then this procedure becomes obsolete. Another consideration is the number 

of transects that we use to measure ECa. More transects will generate more data but it 

involves an increase in time and cost. Triantafilis et al. (2001) have studied the effect of 

changing transects distance using an EMI sensor to predict clay content. As we expected, 

the shortest transect distance (24 m) presented the best performance, but when increasing 

the transect distance it still produced satisfactory results with a quality, that is preferable to 

results based on univariate kriging of clay content. In addition, obtaining an EC data set 

can be considered a one-time measurement if conducted under appropriate soil conditions. 

 

2.4 Conclusions 

Spatial variation in clay content was identified at the field scale. Estimation of surface clay 

content through cokriging with ECas as secondary variable has superior quality over 

ordinary kriging, providing a high resolution map of clay content variation in the field. The 

use of a pseudo cross variograms for cokriging proves to be useful for small numbers of 

clay content observation points. 
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Clay maps derived from cokriging maintained a satisfactory precision even when the 

number of textural sampling points was reduced because the ECa data density was 

effective. The results suggest the potential of combining a reduced number of clay content 

samples (0.5 point ha-1), that is feasible and realistic for on-farm conditions. Considering 

the temporal variability of ECa, this variable should be utilized when soil conditions are 

appropriate and the spatial relationship with the primary variable is evident.  
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Chapter 3 Delineating site-specific management zones and evaluating soil water 

temporal dynamics in a farmer’s field in Kentucky 

 

3.1 Introduction  

Understanding and managing soil and crop yield variability remains a long-standing 

challenge. In agroecosystems and natural systems, soil properties such as clay content, pH, 

soil organic matter content, nutrient levels and profile depth can vary drastically even 

within the same field (Downes and Beckwith, 1951; Beckett and Webster, 1971; Koestel 

et al., 2013). Precision agriculture is an approach in agroecosystem management to 

distribute resources site-specifically according to this variability and associated varying 

input demands. The foundation of this concept is the spatial and temporal characterization 

of soil and crop processes through field measurements taken directly or remotely for 

maximizing local yield while minimizing environmental risk. Most of the research on 

management zone delineation has been focused on fertilization, particularly on nitrogen 

application (Kitchen et al., 2003; Ruffo et al., 2006; Peralta et al., 2015). In other studies, 

weeds (Peña et al., 2013) and irrigation (Landrum et al., 2014, Haghverdi et al., 2016) were 

managed site-specifically. 

 

The application of precision agriculture has increased with advances in remote (largely 

distanced from the object by using platforms such as towers, vehicles, aircrafts, or 

satellites) and proximal (in direct contact with the object or close to it) sensing tools 

(Vereecken et al., 2016). Nowadays, georeferenced data describing spatial and temporal 

variability of soil and crop state variables and related processes can be obtained for farmers’ 
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fields at high resolution. Yield maps, digital elevation models (DEM), maps of normalized 

difference vegetation index (NDVI) or other canopy reflectance indices and apparent 

electrical conductivity (ECa) are among the most frequently used sources for site-specific 

management decisions. Yield maps are obtained from yield-monitoring systems installed 

on combines (Schepers et al., 2004). DEMs can be derived from different sources, 

including existing soil maps, and at a finer resolution Light Detection And Ranging 

(LiDAR) (James et al., 2006). Many examples exist for utilizing ECa or electrical resistivity 

to define management zones based on their relationship with other important state 

variables, such as soil clay content (Corwin and Lesch, 2003; Sudduth et al., 2003; 

Schepers et al., 2004; Moral et al., 2010). NDVI can be obtained from different sources, 

such as proximal sensing (e.g. Greenseeker; Walsh et al., 2012), or remote sensing (e.g. 

LANDSAT, MODIS; Brown et al., 2006). NDVI is a canopy reflectance index that is 

strongly related to crop status and fitness. Because it reflects nitrogen demand over 

substantial parts of the growing period of many agricultural crops, NDVI has been 

frequently studied as a tool in site-specific nitrogen application decisions (Raun et al., 

2002). Informative data can be obtained through remote and proximal sensing approaches 

in a much cheaper way and higher spatial and in some cases temporal resolution than with 

collecting soil and plant samples in cumbersome field campaigns at several times during 

the growing season. It remains unclear, however, what soil and crop information obtained 

through remote or proximal sensing, including previous years’ yield maps, are helpful to 

understand present year spatial variability of soil and crop stand and to manage the field 

site-specifically in accordance with previous year information. 
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The challenge persists to manage field soils site-specifically to maximize biomass 

production efficiency and environmental benefits. Dividing a field into management zones 

is a promising strategy to overcome this challenge. Management zones are delineated by 

separating the field in different areas. Some of the areas have different while other areas 

have the same response behavior (Kitchen et al., 2005). Whether areas themselves can be 

considered to have homogeneous characteristics depends on the situation and is not well 

known yet. Whether or not an area is considered homogeneous depends on the variable 

selected. For example, the delineation of management zones can be based on crop yield 

maps. The spatial variability of crop yield has been reported to be related with variables 

such as soil organic matter content (Mann et al., 2002), clay content (Tremblay et al., 2012), 

and NDVI (Teal et al., 2006). However, spatial yield patterns vary among different years 

because different processes during the growing season influence them (Schepers et al., 

2004). Especially different weather conditions in different years can cause different spatial 

yield variability patterns even for the same crop growing in the same field. The key 

processes and their spatial effect may vary by season making the spatial biomass 

production and yield difficult to predict between different seasons. Electrical conductivity 

also varies in space and time, being strongly affected by soil moisture and salinity for 

instance of sodic soils, although EC can be used to predict other variables when a strong 

relationship exists (Corwin and Scudiero, 2016). Moreover, EC data behave spatially 

structured and can be combined in co-regionalization with other variables that remain 

stable in time such as topography, soil depth and clay content. 
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The delineation of management zones based on cluster analysis has been proven to be 

effective to combine impacts of different variables on the outcome (Johnson et al., 2003; 

Li et al., 2007; Vitharana et al., 2008; Cohen et al., 2012; Peralta et al., 2013). The analysis 

is centered on finding dissimilarities between observations by using a clustering algorithm 

through partitioning or hierarchical methods (Kaufman and Rousseeuw, 1990). These 

dissimilarities can be caused by different response behavior between a target variable and 

various underlying processes. In a partitioning method, k clusters (data organized in 

groups) are constructed and data are classified into k groups. Based on a selected index, 

the optimal number of clusters within a particular domain can be identified. For example, 

to work on site specific irrigation management (e.g., Sadler et al., 2005) the right amount 

of water should be applied at the right time but also considering locations and their specific 

behavior in the field. Spatial differences in topography and soil physical and chemical 

properties can be found within the same field. Thus, water infiltration and soil water 

movement also vary spatially when irrigation is applied. Over decades, examples found in 

the literature (Nielsen et al., 1973; Wendroth et al., 1999) illustrate the spatial and temporal 

variability of soil water at the field scale. Considering the spatial and temporal variability 

of soil water at field scale, it may be environmentally and agronomically advantageous to 

supply irrigation water at variable rates according to field soil water characteristics and the 

resulting temporal soil water dynamics. Therefore, variables that influence or correlate with 

soil hydraulic properties and soil water status and dynamics have to be considered in the 

delineation of areas. Dissimilar soil water temporal variation scales can be expected for 

different soil properties in different areas of the field. To analyze time-variable behavior at 

different zones, a wavelet analysis (Grinsted et al., 2004) is a worthy strategy, because it 
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decomposes a time series data in frequency and time simultaneously allowing to observe 

periodic variations at different scales and times. In addition, wavelet coherence analyzes 

and identifies the correlation of pairs of time series data at different time scales. Studies of 

spatial and temporal changes in soil water using a wavelet analysis are presented by Biswas 

and Si (2011), Biswas (2014), and Yang et al. (2016). 

 

The challenge of using numerical solutions to delineate management zones is to provide 

results that are appropriate to be used under farm conditions. Regarding the variable 

selection, it is essential to consider whether a specific variable represents the field variation 

of essential processes that underlies site-specific management or what other, indirect 

variable could provide similar information for site-specific management, while its 

collection is more affordable than another more directly related variable that may be 

cumbersome to measure. The objective of this study was to apply easily obtainable data 

using proximal and remote sensing tools to define management zones in a farmer’s field 

located in Western Kentucky, a typical crop production region in the southeastern United 

States. Variables should be identified based on different approaches and zones should be 

delineated by using fuzzy and hard clustering algorithms. Different approaches should be 

examined to evaluate whether or not they would result in different delineations. A second 

objective was to evaluate differences or similarities in process behavior among delineated 

management zones by comparing spatial differences in corn yield and in temporal 

dynamics of soil moisture.  
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3.2 Material and methods 

3.2.1 Site description and data sampling 

The study was conducted at Hillview Farms in Princeton KY, Caldwell County (37° 

1'58.02"N, 87°51'33.06"W, 142 m asl). According to the Köppen system, the climate is 

classified as humid subtropical. The annual precipitation is around 1312 mm (US climate 

data, 2017), and annual mean temperature is 15 °C. The maximum and minimum mean 

temperatures occur in June and January, respectively. 

 

The soil in this field belongs mainly to the Crider series (Typic Paleudalfs), while some 

areas are classified as Nolin series (Dystric Fluventic Eutrudepts) (Soil Survey Staff, 1999). 

In both cases, the soil texture is classified as silt loam in the surface layer. The experiment 

covers an area of approximately 27 ha. The field was cultivated with corn (Zea mays L.) 

during the 2014, 2015 and 2017 seasons.  

 

Soil texture at 0-20 cm and 20-40 cm depth and chemical properties at 0-15 cm depth were 

sampled across a grid of 96 points with a regular distance of 50 m (Figure 3.1). Sand (0.05-

2 mm) was separated by sieving, while medium (0.005-0.020 mm) and fine silt (0.002-

0.005 mm) and clay (< 0.002 mm) were measured with the pipette method (Gee and Or, 

2002) and coarse silt (0.020-0.050 mm) was calculated as residual. Soil organic matter and 

total nitrogen were determined by LECO combustion, extractable P, K, Ca, Mg, and Zn 

were measured by Mehlich III extraction. For pH determination, a glass electrode was used 

in 1:1 soil:water and Sikora buffer for Buffer pH (Jones, 2000). Apparent electrical 

conductivity (ECa) was measured in the spring of April 2015 using a Veris 3150 (Veris 
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Technologies, 2017). The electrodes are configured with a Wenner array and 

measurements that integrate EC over a shallow depth (about 0-30 cm) and a deep depth 

(about 0-90 cm) were obtained, defined as ECas and ECad respectively.  

 

Figure 3.1. Study area and sampling locations for soil texture and chemical properties as well as for electrical 
conductivity. 
  

A digital elevation model (DEM) was obtained at 1.5 m resolution from LiDAR, provided 

by the Kentucky Division of Geographic Information. From the DEM, slope and two 
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widely used topographic indices, i.e., the topographic wetness index (TWI) and the stream 

power index (SPI) (Moore et al., 1993) were derived. These two indices were computed by 

using SAGA GIS (Conrad et al., 2015). TWI and SPI were obtained with the following 

equations: 

 

𝑇𝑊𝐼 ln
𝐴

tan 𝛽
                    𝑒𝑞. 3.1  

𝑆𝑃𝐼 𝐴 tan 𝛽                𝑒𝑞. 3.2  

 

Where As is the contributing catchment area (m2 m-1) and β represents the steepest slope 

angle (degrees). The spatial pattern of TWI depicts areas that show local water 

accumulation and therefore high soil water saturation, while SPI indicates the potential 

erosional power as a result from the combined effect of slope and upstream flow.  

 

Normalized Difference Vegetation Index (NDVI) was obtained from Landsat 8 

Operational Land Imager (Level 2 product (SR), U.S. Geological Survey 2017) and was 

collected during the growing seasons of corn in 2014, 2015 and 2017. NDVI was derived 

from: 

 

𝑁𝐷𝑉𝐼
𝑁𝐼𝑅 𝑅𝐸𝐷
𝑁𝐼𝑅 𝑅𝐸𝐷

          𝑒𝑞. 3.3  

 

where NIR is the near infrared band (0.85 - 0.88 mm) and RED represents the red band 

(0.64 - 0.67 mm). High NDVI values are associated with high greenness of vegetation. 
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Therefore, NDVI indicates crop vigor and crop nitrogen status (Brown et al., 2006). 

Landsat 8 images are available at a spatial resolution of 30 x 30 m. Based on the image 

quality and representativeness of different growth stages, images from May 2014, August 

2014 and June 2015 were selected.  

 

3.2.2 Data analysis 

The statistical analysis was conducted in the R environment (R core team, 2017) and the 

maps for each variable were produced using RASTER (Hijmans, 2016) and LATTICE 

packages (Sarkar, 2008). The analysis included measures of central tendency and 

dispersion, and Pearson correlation using the CORRPLOT package (Wei and Simko, 

2016). Kriging and cokriging analysis as methods of interpolation were implemented to 

create maps by using GSTAT (Pebesma, 2004) and GEOR (Ribeiro and Diggle, 2016) 

packages. Variables were log-transformed if necessary or underwent Box-Cox 

transformation. Semivariogram and cross semivariogram models were fitted and applied 

for the interpolation. For obtaining maps at a fine resolution in a reasonable computing 

time, all variables were interpolated in a 4-m-grid. For soil texture, a cokriging analysis 

was previously performed by combining soil clay content with ECas (Reyes et al., 2018). 

Detailed steps of kriging and cokriging procedures are explained in Nielsen and Wendroth 

(2003). 

 

Principal component Analysis (PCA) using the FACTOMINER package (Le et al., 2008), 

was implemented to group the variables into statistical factors and to select key variables 

that explained variance in different dimensions. The sample size corresponds to the 96 soil 
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sampling points and the intersected NDVI and topographic attributes for the corresponding 

locations. PCA is recommended to reduce the dimensionality of multivariate data and to 

work with highly correlated data (Husson et al., 2010). The Bartlett test of Sphericity and 

the Kaiser-Meyer-Olkin test were performed to verify the adequacy of the data to be used 

in PCA. The obtained value was P< 0.01 for the Bartlett test of Sphericity and 0.75 for the 

Kaiser-Meyer-Olkin test suggesting that these data were applicable in PCA. 

 

To delineate management zones, two cluster analysis methods using the CLUSTER 

package (Maechler et al., 2017) were selected, i.e., a Fuzzy Analysis Clustering (FANNY) 

and a Clustering for Large Applications (CLARA). FANNY is an unsupervised soft 

clustering method focused on reducing the objective function defined as: 

 

∑ 𝑢 , 𝑢 , 𝑑 𝑖, 𝑗  ,

2 ∑ 𝑢 ,
    𝑒𝑞 3.4  

 

where n is the number of observations, k is the number of clusters, r is the membership 

exponent and d(i,j) is the dissimilarity between observations i and j.  

 

Each data point has a membership coefficient between 0 and 1 for each cluster and it is 

assigned to the cluster with higher membership coefficients. A membership exponent of 2 

could induce a complete fuzziness while values close to 1 reduce the fuzziness. For this 

study a conventional value of 1.35 (Odeh et al., 1992) was used and Euclidean distance.  
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CLARA is a hard clustering method. It is based on the same algorithm as the partitioning 

around medoid method (PAM) described in Kaufman and Rousseeuw (1990). However, in 

CLARA the data are divided in subsamples of fixed size. Then each subsample is 

partitioned in k clusters. The difference between the hard cluster and the fuzzy cluster is 

that the data are entirely assigned to one cluster in the hard cluster analysis; consequently, 

it is not possible to observe degrees of membership. 

 

To apply the cluster analysis, the attributes to be included have to be selected. For this 

purpose, all variables were standardized and three approaches were selected to be applied 

in the interpolated maps: 

 

a) Using maps of retained principal component factor scores. These factors are obtained 

by using the component score coefficient matrix and standardized variables (Yao et al., 

2014). The retained components were selected according to the percentage of variance 

explained. 

b) Selecting a key variable of each of the retained principal components. The selection 

was based on the factor loading scores obtained for each variable.  

c) Combining variables from field measurements with easily obtainable remote sensing 

data. The selection of these variables was based on factor loadings with high 

contribution in the first component. 
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The Silhouette width (Kaufman and Rousseeuw, 1990) was used to evaluate the most 

appropriate number of clusters. This method was chosen because it can be applied to both 

hard and soft clustering and is defined as: 

𝑠 𝑖
𝑏 𝑖 𝑎 𝑖

𝑚𝑎𝑥 𝑎 𝑖 , 𝑏 𝑖
    𝑒𝑞. 3.5  

 

where a(i) is the average dissimilarity between i and all other points of the cluster to which 

i belongs. For all other clusters C, d(i,C) is the average dissimilarity of i to all observations 

of C, then b(i) is the minimum of d(i,C), which can be seen as the dissimilarity between i 

and its “neighbor” cluster. The individual Silhouette and the average value for each cluster 

is obtained. The values are in the range between -1 and 1. Negative values indicate that the 

data was assonated to the wrong cluster while values closer to 1 indicate a very well 

clustered data. Consequently, the best number of divisions will be the number of clusters 

with the largest average silhouette width. 

 

To study the representativity of the management zones obtained, dissimilarities between 

clusters were quantified by observing two variables: crop yield and temporal dynamics of 

soil water tension. To evaluate yield differences among delineated areas, corn grain yield 

from the years 2014, 2015 and 2017 were used. ANOVA was performed to observe 

significant differences (p < 0.05) in corn yield. HDS Tukey test was used as post-hoc 

multiple comparison. 

 

Temporal dynamics of soil water tension at different locations were observed as well. 

These measurements were made during the spring season of 2016 using watermarks (Fisher 
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and Gould, 2012) connected to antennas at 4 locations for each delineated area. Data were 

collected each hour, and sensors were located at three depths: 20 cm, 40 cm, and 60 cm. 

The method of analysis was the wavelet transform (e.g., Wendroth et al., 2010) by using 

the BIWAVELET package (Gouhier et al., 2016). The wavelet transform is a technique 

that can be used to analyze time series to identify cyclic variations at different frequencies 

or scales. This analysis includes a continuous wavelet transform for individual variables 

and a bivariate analysis by performing a wavelet coherence analysis (Grinsted et al., 2004; 

Yang et al., 2016). The data had to be transformed with a wavelet function. In this study a 

Morlet wavelet was chosen as mother wavelet, which is defined as: 

 

𝜓 𝜂 𝜋 / 𝑒  𝑒               𝑒𝑞. 3.6  

 

where ω0 is the dimensionless frequency and η is the dimensionless time. The Morlet 

wavelet was selected because it provides a good resolution for scale and frequency. When 

ω0=6, the Fourier period is almost identical to the scale. The continuous wavelet transform 

with uniform time steps (δt) at different scales (s) of a data series xn is defined as: 

𝑊 𝑠  
𝛿𝑡
𝑠

    𝑥𝑛 𝜓 𝑛 𝑛  
𝛿𝑡
𝑠

              𝑒𝑞. 3.7  

 

The wavelet coherence can be considered as a correlation coefficient for common 

frequencies and locations. It is defined as: 

 

𝑅 𝑠
|𝑆 𝑠 𝑊 𝑠 |

𝑆 𝑠 |𝑊 𝑠 | 𝑆 𝑠 |𝑊 𝑠 |
     𝑒𝑞. 3.8  
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where S is a smoothing operator and 𝑊  represents the cross-wavelet of the individual 

wavelet transforms 𝑊 𝑠  and 𝑊 𝑠  calculated as WXY=WX*WY, where the asterisk 

denotes complex conjugation. 

 

A significance test (p < 0.05) was performed, contrasting the null hypothesis that the signal 

is generated by a stationary process with a given background power spectrum (Grinsted et 

al., 2004). In the BIWAVELET package, this test is available only for the Morlet function. 

 

3.3 Results and Discussion 

The descriptive statistics of all measured variables are summarized in Table 3.1. In general, 

the average values for soil properties are similar to what is expected for fields located in 

Kentucky (Karathanasis, 1987; Landrum et al., 2014). The silt fraction is predominant at 

both soil depths, but an increase in clay content is observed in the second layer. Some 

variables present a high coefficient of variation such as ECas and other chemical properties 

(P, K, Mg). On the other hand, the variables derived from topography (slope, TWI, SPI) 

also show a high coefficient of variation. The Pearson correlation (Figure 3.2) displays 

some significant relationships (p < 0.01): OM and N show the highest correlation. Clay 

content at both depths is strongly correlated with ECas, ECad, slope and Mg. NDVI obtained 

in June has significant correlations with soil properties, especially silt content in the surface 

layer. 
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Table 3.1. Descriptive statistics of all measured variables. Chemical properties correspond to the surface 
layer (0-15 cm). Sample size corresponds to the 96 soil samples and the intersected NDVI and topographic 
attributes for the corresponding locations. 

 
 
OM: organic matter, TWI: topographic wetness index, SPI: stream power index, SD: standard deviation, CV: 
coefficient of variation. 

 

 
Figure 3.2. Pearson correlation between measured variables. Colored cells represent significant correlation 
(p < 0.01). 
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3.3.1 Geostatistical interpolation 

Maps for each variable were interpolated using ordinary kriging or cokriging in a 4-m-grid. 

In Figure 3, maps of spatial distributions for selected variables are depicted: clay content 

0-20 cm, 20-40 cm, NDVI June 2015, soil organic matter, total soil nitrogen, extractable 

P, slope, TWI, and ECas. Each of these variables reveals high spatial variability across the 

field. Highest clay content values are observed in the northwest part of the field. 

Interestingly, this area also shows low NDVI values and a high slope percentage, similar 

to results reported by Odeh and McBratney (2000). On the other hand, the patterns 

observed between organic matter (OM) and total N content are analogous but differ from 

those of other variables (Figure 3.3). Both OM and N present the lowest values in the 

southeast and some parts of the northwest. A possible explanation for these differences 

could be the fact that in previous years the farmer had planted Burley tobacco (Nicotiana 

tabacum) in the southeast (this area can be observed in Figure 1), which corresponds to the 

area with the highest extractable P content. Tobacco has high nitrogen demand and requires 

more intensive management than other field crops (MacKown et al., 2000). On the other 

hand, TWI also reveals a high spatial variability, however, with a pattern different from 

those of other variables. In general, only small parts of the field show high TWI values 

implying the potential to have saturation overland flow (Quinn et al., 1991), therefore 

runoff can occur in case of substantial precipitation or excessive irrigation. On the other 

hand, areas with low TWI values will potentially dry up first. 
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Figure 3.3. Maps of spatial distribution of clay content at 0-20 cm (a), and 20-40 cm (b), NDVI June 2015 
(c), organic matter (d), total nitrogen (e), extractable phosphorous (f), slope (g), topographic wetness index 
(h), and apparent electrical conductivity (i) at a shallow depth (0-30 cm). Black dots represent the soil 
sampling grid. 

 

3.3.2 Principal components analysis 

After performing PCA, three first components were retained that explain 65% of the total 

variance. The factor loadings for the variables and the three retained components are 

displayed in Table 3.2. Figure 3.4 presents the factor loadings of the first three components. 

The factor loadings most associated with the first component, which explains 40 % of the 
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total variance, were clay and silt at both depths, apparent electrical conductivity (both 

depths) and slope. OM and total N strongly contributed to the second component which 

explained 15% of the total variance. In the third component, representing 10 % of the total 

variance, the highest contributions came from indices related to topography (TWI and SPI). 

It can also be observed in Figure 4 that clay content is grouped with slope, Mg content, and 

ECa. Silt content is grouped with NDVI measured in June 2015 and with P content. These 

results are consistent with the maps presented in Figure 3.3, where high spatial variability 

for all variables was evident, however, revealing different patterns. Contributions of the 

same variable to particular processes and their relationships vary for different fields and 

soil conditions. For example, the highest factor loadings for the first component were 

reported for different variables in other studies: pH, slope (Vitharana et al., 2008), and ECa 

(Van Meirvenne et al., 2016) in north-west Europe; elevation and soil depth in Argentina 

(Peralta et al., 2015); organic carbon and available N (Li et al., 2007) in East China. 

Furthermore, the relationships among variables varied between those studies.  

 

Figure 3.4. Principal component analysis map of variable for: a) PC1vs PC2 and b) PC1 vs PC3. 
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Table 3.2. Factor loadings of each variable for the first 3 components. In parenthesis is the percentage of 
explained variance for each component. Chemical properties correspond to the surface layer (0-15 cm). 
 

Variable PC1 (40 %) PC2 (15%) PC3 (10%)
OM  -0.23 0.88 0.12 
N -0.28 0.80 0.17 
pH 0.18 0.45 0.29 
P -0.65 -0.15 0.36 
K -0.33 0.59 -0.01 
Ca 0.71 0.40 0.21 
Mg 0.84 0.17 0.01 
Zn -0.67 0.45 0.21 
Clay upper (0-20 cm) 0.89 0.18 -0.01 
Silt upper (0-20 cm) -0.90 -0.19 0.01 
Clay lower (20-40 cm) 0.72 -0.09 0.18 
Silt lower (20-40 cm) -0.84 0.01 -0.14 
Slope 0.88 0.04 0.25 
ECas 0.70 0.21 -0.11 
ECad 0.80 -0.18 0.28 
TWI -0.12 0.07 -0.83 
SPI 0.34 0.29 -0.76 
NDVI August 2014 -0.39 0.52 0.02 
NDVI June 2015 -0.68 0.01 0.14 
NDVI May 2014 0.34 0.41 -0.31 

OM: soil organic matter content, ECas: apparent electrical conductivity shallow depth, ECad: apparent 
electrical conductivity deeper depth, TWI: topographic wetness index, SPI:  stream power index. 

 
3.3.3 Potential Management zone delineation  
A cluster analysis was established using the criteria described above: a) based on PCA 

maps of retained components (PC1, PC2 and PC3); b) based on one key variable for each 

retained component, where Clay at 0-20 cm, OM and TWI were selected; and c) selecting 

relevant variables for the first component. In c), clay content at two depths in combination 

with NDVI in June 2015 and slope were chosen. In Figure 3.5, the average silhouette width 

for a different number of clusters by using FANNY and CLARA is displayed. In both cases, 

results are similar and the optimal number of divisions is 2 when the analysis is based on 

criteria a) and b). On the other hand, 3 divisions are optimal for criterion c). According to 

Kaufman and Rousseeuw (1990), the results found for Maximum Average Silhouette 

Width can be considered as reasonably structured clusters (in the range of 0.5-0.7). 
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Therefore, results presented here can be considered appropriate to provide a well-structured 

division of the field. The resulting cluster zone maps are presented in Figure 3.6. 

Similarities between the maps based on criteria a) (Figure 3.6a and 3.6b) and b) (Figure 

3.6c and 3.6d) by using both cluster methods are obvious. Criterion c) (Figure 3.6e and 

3.6f) presents a zone in the northwest part (area 3) that has resemblance with area 2 

observed for a) and b). The additional division resulting from criteria in c) can be 

considered as a transitional zone in the middle part of the field. Nevertheless, all the criteria 

and methods result alike with respect to the Northwest area having strong dissimilarities 

with the rest of the field. As the farmer’s and our own field observations confirmed, this 

area is characterized as more eroded and the soils in this area reveal higher clay contents 

and slopes than the rest of the field. Combining both effects, it is understandable that a soil 

with high clay content and steep slope, exhibits lower water infiltration and more run-off 

compared to a soil with only high slope or only high clay content.  

 

 

Figure 3.5. Average silhouette width for different number of cluster using FANNY and CLARA. 
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Figure 3.6. Maps of delineated management zones. Based on maps of principal components factor scores by 
using a) FANNY and b) CLARA; based on Clay content at 0-20 cm, Organic matter content and Topographic 
wetness index by using c) FANNY and d) CLARA; based on Clay at 0-20 cm and 20-40 cm, NDVI at June 
2015, and Slope by using e) FANNY and f) CLARA. 
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Other studies have demonstrated the capability of using PCA maps for cluster analysis (Li 

et al., 2007; Yao et al., 2014). Moreover, this implies that either all measured variables 

involved need to be used or a preselection has to be made using another method (e.g., 

stepwise regression). On the other hand, the selection of one key variable for each retained 

component resulted in maps comparable to using all variables, so it could be more 

appropriate and sufficient to use the concept of choosing key variables as a criterion. 

Nevertheless, it remains challenging to identify one key variable without any a priori 

evaluation of different variables from a data set. The same criteria can be applied for other 

fields in case their characteristics are comparable.  

 

In farmers’ fields in this part of the south-eastern U.S., differences in local topography, as 

those observed in the field of this study are typical, and they have a great influence on the 

spatial variability of soil properties and, consequently, on the spatial variability of crop 

yield. In Figure 3.7, a cross section of an elevation profile from this experimental field is 

displayed with a division of the three management zones as based on criterion c). Zones 1 

and 2 behave not so different with regard to slope, although zone 2 is higher in clay content 

(Figure 3.3a-b). On the other hand, zone 3 clearly reveals the steepest convex slope, which 

tends to cause frequent and more severe runoff and erosion events.  
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Figure 3.7. Elevation profile along a transect from NW to SE of the field. 

 

In general, many different processes occur in a field at different scales. Some of them are 

permanently visible, others only temporally. Consequently, even if the desire is to classify 

the field in different zones, different variables can have some degree of pertinence to 

another. For this reason, fuzzy cluster analysis is preferred over the hard clustering method 

for data presented in a continuum. Moreover, the CLARA algorithm is a promising tool to 

perform a cluster analysis at the field scale with few divisions and using large data sets 

from high-resolution sources or generated by interpolation. By performing cluster analysis 

with R, memory limitations can cause a problem with larger datasets, while techniques 

with reduced memory usage such as CLARA could be more convenient. Nevertheless, free 

source software to delineate management zones by using clustering analysis is available 

and has been presented in other studies (Li et al., 2007; Moral et al., 2010). 
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The delineation of management zones is based on a numerical solution that separates the 

field according to data dissimilarities. However, the results will not always be suitable for 

practical use. In Figure 3.8, the result of dividing the field in two areas using the FANNY 

algorithm only based on ECas as a variable is displayed. ECa has been proven to be a useful 

variable for defining management zones (Johnson et al., 2003; Fleming et al., 2004; Moral 

et al., 2010; Peralta et al., 2013). Based on this map, it may appear difficult to apply a 

differentiated management in isolated sectors classified as zone 1 or 2 because it would 

require highly precise variable-rate technology. However, data can be further processed. 

For example, point data could be spatially aggregated, or combined with data from other 

relevant variables to perform a clustering. In this study, ECas was not directly applied in 

the delineation procedure but as ancillary data to produce the clay content maps presented 

in Figure 3.3i.  

 

Figure 3.8. Management zones obtained from a FANNY analysis by using apparent electrical conductivity 
at a shallow depth (0-30 cm). 
 

3.3.4 Evaluating management zones 

Table 3.3 provides average corn yields for 2014, 2015 and 2017 at each of the delineated 

zones presented in Figure 3.6. In all cases, significant differences (p < 0.05) were found 
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when comparing areas. This result indicates that the yield was different for each zone even 

when the field was divided in 3 zones. As expected, the zone with low yield was the one 

with highest clay content, largest slopes and lowest NDVI in June. Spatial yield patterns 

can turn out differently caused by each year’s specific weather conditions (Eghball and 

Varvel, 1997; Schepers et al., 2004). Despite this fact, these results manifest consistent 

zonal differences across this field that could be evaluated for site-specific management. 

Table 3.3. Average corn yield among different management zones by using different variables and cluster 
algorithms. 

Variables 
selected 

Cluster 
zones 

Corn Yield 2014 
Mg ha-1 

Corn Yield 2015 
Mg ha-1 

Corn Yield 2017 
Mg ha-1 

FANNY CLARA FANNY CLARA FANNY CLARA 

PC1 + PC2 + 
PC3  

1 12.5 a 12.5 a 12.5 a 12.5 a 13.3 a 13.3 a 

2 11.5 b 11.4 b 11.6 b 11.5 b 12.8 b 12.6 b 

Clay 0-20 cm + 
OM + TWI 

1 12.5 a 12.5 a 12.4 a 12.4 a 13.3 a 13.3 a 

2 11.6 b 11.4 b 11.9 b 11.8 b 12.8 b 12.7 b 
Clay 0-20 cm + 
Clay 20-40 cm 
+Slope + NDVI 
June 2015 

1 12.6 a 12.6 a 12.6 a 12.5 a 13.4 a 13.4 a 

2 12.2 b 12.2 b 12.1 b 12.1 b 13.2 b 13.2 b 

3 11.4 c 11.5 c 11.6 c 11.6 c 12.7 c 12.5 c 
PC: principal component, OM: soil organic matter, TWI: topographic wetness index. *different letters 
indicate significant differences (P<0.05) between clusters zones. 

 

Another aspect to consider is the temporal stability of processes occurring in the delineated 

areas. In other words, the delineation presented above stands only for a time span that is 

represented by the underlying variables of the respective delineation. Would the same 

variables measured at a different time have resulted in the same delineation zones? 

Variables such as clay content, slope or TWI maintain rather stable over time but others 

such as NDVI could vary during a growing season and even between different years. NDVI 

is an indicator of crop vigor (Teal et al., 2006) and, in case of corn in south-eastern US, 

spatial differences of NDVI can appear during growth stages with a high demand of water 

and nutrients (June-July). Due to its nature, this variable is affected by seasonal effects, 
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weather conditions and soil and crop nutrient status. Anyway, NDVI has been shown to be 

a useful crop yield predictor (Wendroth et al., 2003). An example of how the delineation 

zones change when they are based on different NDVI data sets is presented in Figure 3.9, 

where zones were delineated using criterion c, but replacing NDVI in June 2015 with 

NDVI in June 2017. Figure 3.9a shows some differences compared with Figure 3.3c, 

although the northwest zone still exhibits lower values. When using the FANNY algorithm 

to divide the field in 3 areas, the patterns in Figure 3.9b and Figure 3.6e are similar. In this 

example, some differences in NDVI were identified during different years, manifested as 

extreme values in certain areas. Nevertheless, these differing NDVI data in addition to 

other rather stable variables resulted in similar delineation zones. 

 

 

Figure 3.9.  a) NDVI map of June 2017. b) Delineated zones using FANNY and based on Clay at 0-20 cm 
and 20-40 cm, Slope and NDVI at June 2017. 

 

Regarding soil moisture, it was expected in this study, that the soil textural composition in 

different zones of the field affects the temporal dynamics of soil water tension. For 

example, in a zone with relatively low clay and high silt content, changes in tension at a 
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given depth as a consequence of rainfall or evapotranspiration would occur at a slower rate 

than in a zone with a higher clay and lower silt content due to the different shape of the soil 

water retention curve and hydraulic conductivity function in the different zones. Therefore, 

the question addressed here was whether the three different delineated zones would reveal 

differences in temporal soil water tension dynamics and whether these differences would 

depend on the similarity or diversity between different zones. For this purpose, soil water 

tension at three depths during the spring season of 2016 was monitored at different 

locations, distributed across the different zones at 1-hour intervals. This variable and the 

experimental set-up used here is widely applied for scheduling irrigation (Liang et al., 

2016). Due to similarities in the delineation derived from different approaches, this analysis 

was centered on the comparison of three areas using FANNY (Figure 3.6e). In Figure 3.10, 

the soil water tension at different depths for each area and daily precipitation are presented. 

Between rainfall events soil water tension increases as a consequence of 

evapotranspiration, however, with different behavior in each zone. Zone 3.3, identified 

with high clay content and slope shows the steepest tension increase during drying, not 

only at 20 cm depth near the surface but also at 40 and 60 cm. On the other hand, during 

days with precipitation tension reaches lower values than the other two areas. Values in 

zone 1 are less fluctuating but more alike to zone 2. This behavior is interpreted as a 

consequence of higher silt content and higher water capacity than in the clay soil. 
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Figure 3.10. Soil water tension and precipitation at different cluster areas over time. 

 

In the following, the temporal dynamics of soil water tension and their variability at 

different scales should be analyzed in order to detect similarities or differences in their 

dynamics, and to understand how different temporal behavior over the time period is 

manifested in wavelet spectra. Results of wavelet analysis for each zone and depth are 

presented in Figure 3.11. This analysis allows identifying cyclic patterns at different 

frequencies and at different points or periods in times, here represented in periods of 1 hour 

with temporal scales that range from hours to several days. Furthermore, time-specific 

periodic features become apparent. Results show that temporal fluctuation behavior shows 

some differences among zones and depths. High spectral density values were found for a 
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frequency equivalent to 5-10 days, which coincides with the occurrence of rainfall events. 

In addition, a significant cyclic pattern at lower frequencies during rainfall periods was 

identified. 

 

 
Figure 3.11. Continuous wavelet transform at different depths for each cluster zone. Period resolution is 1 
hour. Significant differences (p < 0.05) against red noise is shown as a thick contour. The light shade 
represents the area outside of the cone of influence.  
 

The wavelet coherence between time series observed at the same location but at different 

depths is presented in Figure 3.12. As expected, the coherence is significant (p < 0.05) at 

frequencies of 5-10 days between layers for the same zone. In zone 3, a strong coherence 

for frequencies of 1-2 days is found. The phase represented by arrows presents mainly an 

in-phase behavior, which means that changes in soil water tension occur synchronously or 
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without a substantial lag at different depths. The coherence is higher when layers of 20 and 

40 cm are compared, and decreases when other combinations (20 vs 60 cm or 40 vs 60 cm) 

are contemplated owing to the fact that redistribution of rain water and removal of water 

through evapotranspiration occurs faster in shallow layers than at greater depths monitored 

here. This finding can also be attributed to the fact that results at 60 cm represent the wettest 

soil conditions with small fluctuations (Figure 3.10).  

 

Figure 3.12. Wavelet Coherence between depths for individual cluster zones. Period resolution is 1 hour. 
Significant differences (p < 0.05) against red noise is shown as a thick contour. The light shade represents 
the area outside of the cone of influence. Arrows indicate the relative phase relationship: Right: in-phase; 
Left: anti-phase; Down: first series leading second series by 90°; Up: second series leading first series by 
90°. 
 

Wavelet coherence for soil water tension between areas is presented in Figure 3.13. 

Significant values (p < 0.05) were observed primarily when comparing zones 1 and 2 at 20 
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and 40 cm. On the other hand, zone 3 in general does not have high coherence with the 

other two zones. This result shows that clusters 1 and 2 at 20 and 40 cm depth are zones in 

which the soil water temporal dynamics are significantly correlated. On the other hand, the 

temporal variation presents differences in space when we compare the other possible 

combinations (i.e. 1 vs. 3 and 2 vs. 3 at each depth and 1 vs. 2 at 60 cm). The phase 

relationship shows that arrows mainly point downward, indicating that at the same depth, 

there is a lag in the process of soil water tension between zones, i.e., the first series leads 

the second by a phase shift of 90 degrees. This shows that temporal changes in soil water 

tension do not occur synchronously although the patterns present high correlation, which 

is caused by the delay due to different soil hydraulic properties in the different textural 

zones. Yang et al. (2016) also found high coherence during rainfall events. Moreover, when 

comparing different zones, dissimilarities in temporal variability were observed: Zone 3 

(Northwest part of the field) reveals the most severe changes in time. Between rainfall 

events, the soil dries out faster in zone 3 than the other zones. On the other hand, when 

high precipitation amounts are received, soil water tension can reach values closer to 

saturation within a shorter time. This result manifests what commonly occurs in clayey 

soils, and it is due to their water retention characteristics. Combined with the fact that this 

is the area with the highest slope, it is not recommended to manage zone 3 in the same way 

as zones 1 and 2 for its limited water capacity and infiltrability. In case of irrigation, the 

optimal time, frequency and rate of water application has to differ among management 

zones in this field. For example, the clayey zones should be irrigated more frequently with 

low rates compared with the other zones in order to apply the required amount of water at 

a rate that would not cause runoff but that can be taken up by the soil.  
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Figure 3.13. Wavelet Coherence between cluster zones at different depths. Period resolution is 1 hour. 
Significant differences (p < 0.05) against red noise is shown as a thick contour. The light shade represents 
the area outside of the cone of influence. Arrows indicate the relative phase relationship: Right: in-phase; 
Left: anti-phase; Down: first series leading second series by 90°; Up: second series leading first series by 
90°. 

 

3.4 Conclusions 

Spatial differences in local topography are a key driver of spatial variability in the studied 

field. Areas with high slope were eroded, resulting in higher clay content closer to the soil 

surface. This might explain lower crop productivity as reflected by NDVI and crop yield, 

and influenced the soil organic matter and total nitrogen content in the soil. 
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Cluster analysis resulted in a division of 2 or 3 areas depending on the underlying criteria. 

A method based on PCA maps revealed a similar delineation compared to selected key 

variables, which in this study were clay content, soil organic matter content and 

topographic wetness index. For larger data sets, CLARA proves to be as good as the 

FANNY clustering and for being used appropriately in fields with large data sets and a 

small number of divisions. 

 

Delineated areas changed when different variables were selected, but showed concordance 

at identifying the most restrictive zone for agricultural practices. With all the different 

delineation approaches, crop yields significantly differed between delineated zones. Soil 

water dynamics were affected by precipitation and their behavior contrasted among zones, 

possibly due to site-specific soil hydraulic properties. The results from this study 

emphasize the need for delineating functional subunits in farmers’ fields and the 

methodology manifests a feasible way to delineate site-specific management zones to 

improve the productivity of this field as shown in the various ways to evaluate the 

delineation. The method of dividing this field into different functional and management 

units obtained in this study are suitable for practical use. 

 

 

 

 

 

 

 

Copyright © Javier Reyes 2018  
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Chapter 4 Evaluating and Predicting Soil Water Status in a Farmer’s Field in 

Western Kentucky 

 

4.1 Introduction 

Spatial and temporal variation of soil processes occurs at different scales. At the field scale, 

the spatio-temporal variation of soil water in the vadose zone is one of the key variables to 

be considered for soil and crop process dynamics and management. Several works have 

shown how soil moisture varies at different locations in the field (Nielsen et al., 1973; Bell 

et al., 1980; Wendroth et al., 1999; Weihermüller et al., 2007). Several factors affect this 

spatial variation, including landscape topography, agricultural management, variability in 

soil texture and structure, lateral flow and water distribution in the soil profile (Vereecken 

et al., 2014). Soil water also varies in time. Regarding its behavior, Vachaud et al. (1985) 

proposed the concept of temporal stability of spatial variability. This means that the driest 

locations in the field tend to maintain as the driest spots at different times and so do the 

wet spots. Several works have corroborated this pattern (Wendroth et al., 1999; Grant et 

al., 2004; Hu et al., 2010). If a temporal stability is found in a field, it is possible to identify 

sampling locations that can be used to improve the sampling efficiency while maintaining 

a good accuracy. On the other hand, the temporal variability could be stationary or non-

stationary depending on the time scale and crop and soil attributes; thus, further work is 

required to have better understanding of soil water dynamics at the field scale.  

 

The development of computer technology and simulation algorithms of ecological 

processes has brought several numerical and analytical agroecosystem models used to 

simulate agricultural, soil and crop processes (Vereecken et al., 2016). These models 
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provide the opportunity of developing management scenarios and predict relevant variables 

which would make the model useful as a decision-support tool. Different models have been 

developed to study soil-water dynamics such as RZWQM2 (Ma et al., 2002), SWAP (Jiang 

et al., 2001), and HYDRUS 1D/2D/3D (Šimůnek et al., 2017). The Root Zone Water 

Quality Model (RZWQM2) is a one dimensional model that has been widely used. The 

model reflects the current state of knowledge on the interactions between weather, soil 

properties, hydrology, agricultural management practices, crop growth, and chemical 

transport (Ahuja et al., 2000). Studies on water balance (Cameira et al., 2005), crop growth 

(Anapalli et al., 2005), nitrogen fertilization (Qi et al., 2012) and climate change (Wang et 

al., 2016) describe some of the model applications. 

 

This study is located in a relatively humid region of the south-eastern United States, 

however, the water use for practices such as irrigation has increased in recent years (Boyer 

et al., 2014). The application occurs mainly during short-term periods of drought in the 

summer. Irrigation is primarily used to optimize and stabilize crop yield at times of water 

shortage during the growing period. The timing of irrigation depends on the soil water 

status, although due to the spatial variation of soil moisture at the field scale, there can be 

zones that indicate sufficient water while other zones reflect the need to initiate irrigation 

at the same time. To increase water use efficiency, spatial differences should be studied 

and concepts for site-specific irrigation management be derived (Evans and Sadler, 2008).  

The objectives of this study were therefore: 1) to study the soil water temporal dynamics 

in different zones of a field grown with wheat and corn thereafter in a farmer’s field located 
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in Western Kentucky and 2) to evaluate the accuracy of RZWQM2 in predicting soil water 

tension dynamics in different field zones and soil depths. 

 

4.2 Material and Methods 

4.2.1 Site description and data sampling 

The study was conducted at Hillview Farms located in Princeton KY, Caldwell County 

(37° 1'58.02"N, 87°51'33.06"W, 142 m asl). According to the Köppen system, the climate 

is classified as humid subtropical. The annual precipitation is around 1312 mm (US climate 

data, 2017), and mean annual temperature is 15 °C. The maximum and minimum mean 

temperatures occur in June and January, respectively. The soil in this field belongs mainly 

to the Crider series (Typic Paleudalfs), while some areas are classified as Nolin series 

(Dystric Fluventic Eutrudepts) (Soil Survey Staff, 1999); both soil series are classified as 

silt loam in the surface layer. The experiment covers an area of approximately 27 ha. The 

field was cultivated with double crop soybean (Glycine max) - winter wheat (Triticum 

aestivum L) in 2015/2016 and with corn (Zea mays L.) in 2017 seasons. Yield maps were 

obtained for each crop after harvesting. 

 

Disturbed soil samples were obtained at 5 depths (0-20, 20-40, 40-60, 60-80, and 80-100 

cm) for particle size analysis. Soil texture was separated in sand (0.05-2 mm), silt (0.002-

0.05 mm) and clay (< 0.002 mm) using the pipette method (Gee and Or, 2002); procedures 

are explained in Reyes et al. (2018).  Soil chemical properties were obtained in the upper 

four layers (0-80 cm depth). Soil organic matter and total nitrogen were determined by 

LECO combustion. Extractable P, K, Ca, Mg, and Zn were measured by Mehlich III 
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extraction. For pH determination, a glass electrode was used in 1:1 soil:water and Sikora 

buffer for Buffer pH (Jones, 2000). Soil samples where obtained at 96 locations in a 50x50 

m grid. Soil water tension was measured at 48 locations and at three depths (20, 40, 60 cm) 

per location (Figure 4.1). Soil water tension measurements were made during the spring 

season of 2016 under wheat and in summer 2017 under corn by using watermarks (Fisher 

and Gould, 2012) connected to wireless radio network of antennas. Data were collected 

each hour. 

 

A digital elevation model (DEM) was obtained at 1.5 m resolution from LiDAR, provided 

by the Kentucky Division of Geographic Information. From the DEM, topographic 

parameters such as elevation and slope were obtained. Satellite Images from Landsat 8 

Operational Land Imager (Level 2 product (SR), U.S. Geological Survey 2017) were 

collected during the growing seasons of wheat (2016) and corn (2017). Different variables 

were obtained from Landsat images, including leaf area index (LAI), normalized 

vegetation index (NDVI), Evapotranspiration (ET). Their values were computed using the 

WATER package (Olmedo et al., 2017) under the R environment. Equations are based on 

the METRIC model (Allen et al., 2007).  
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Figure 4.1. Study area and sampling locations. Soil textural and chemical properties measurements were 
done at both red and yellow bullets. 
 

Combining field, proximal sensing and remote sensing data, the field was divided in three 

zones that represent spatial variability of soil and crop processes (Figure 4.2). The criteria 

and parameters used are explained in chapter 3, where zone 1 represents an area with better 

soil and topographic characteristics for crop production than zone 3 which is an area with 

restricted growing conditions. Zone 3 is an eroded area with a pronounced slope, while 
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zone 2 represents a transitional area. Considering this field division, the analysis was 

centered on evaluating the soil water dynamics at different zones and depths under wheat 

and corn crops. 

Figure 4.2. Topographic model of the delineated zones in the field. The area corresponds to the red rectangle 
showed on Figure 4.1.  
 

4.2.2 Model evaluation and calibration 

The Root Zone Water Quality model (RZWQM 2.0, Ma et al., 2000) was used in this study 

to simulate the soil water status. This model uses numerical one-dimensional approaches 

and modified forms of the Brooks-Corey equations (Brooks and Corey, 1964) to describe 

the soil hydraulic property functions, i.e., the water retention curve and the hydraulic 

conductivity function. The Green-Ampt equation is applied for infiltration during rainfall 

or irrigation and the Richards equation is used for redistribution between rainfall or 

irrigation events. The crop water uptake can be simulated using DSSAT modules (Ahuja 

et al., 2000, Ma et al., 2011). Complementary to the soil data, hourly weather data was 



81 

obtained from a weather station (located about 2 km distance) during 2015-2017. The lower 

boundary was set as unit gradient with a depth of 1.5 m. Spatially averaged data of 

representative locations with data of soil water tension and soil properties at each zone 

(Figure 3.2) and depth was used as input in the model. Soil water retention curve and 

hydraulic parameters were estimated based on soil textural class parameters. Measured soil 

water tension on the first day of simulation were setup as initial conditions. Calibration to 

predict soil water tension at each zone was done manually, while trying to minimize the 

difference between simulated and observed soil water tension values. As it was 

recommended by Ma et al. (2011), changes were focused on the physical parameters, 

including saturated hydraulic conductivity, total porosity and macroporosity, soil water 

content at 33 and 1500 kPa suction and lateral hydraulic flow. Input and output parameters 

were checked to have a physical meaning according to the literature.  

 

Statistical indices were used to evaluate the model predictions. The mean error (ME) is a 

criterion to evaluate the bias. To identify the accuracy, the root mean square error (RMSE) 

and Nash-Sutcliffe model efficiency (NSE, Nash and Sutcliffe, 1970) were applied. These 

indices were calculated according to: 

 

𝑀𝐸
1
𝑛

𝑝 𝑜         eq.  4.1  

 

𝑅𝑀𝑆𝐸
1
𝑛

𝑝 𝑜          eq. 4.2  
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𝑁𝑆𝐸 1
𝑜  𝑝

𝑜 ō
         eq. 4.3  

 

where pi and oi are the predicted and observed values at location i, ō is average of observed 

values, and n represents the total number of observations.  

 

4.3 Results and discussion  

4.3.1 Soil properties and crop yield 

Soil properties at different depths and zones are presented in Table 4.1. In general, these 

values have similarity with other studies performed in this region, although the pH is 

slightly more acidic relative to what is commonly observed on the surface layer of a Crider 

soil series (Karathanasis and Wells, 1990; Mueller et al., 2004). As expected, available 

nutrients and soil pH decreased with depth. An increase in clay content was found as well. 

When comparing the management zones presented in Figure 4.2, some differences were 

detected. As mentioned before, zone 3 presents the most restrictive conditions for crop 

growth. The restrictive conditions in this zone are reflected in a clay content that is higher 

than in the other two zones and also higher than expected for a Crider soil series. Soil 

organic matter, available phosphorous and potassium contents are lower compared with 

the other two zones, while calcium and magnesium concentrations are higher. Average 

wheat and corn yields obtained from a combine harvester map for each of the three zones 

are provided in Table 4.2. A one-way ANOVA test was performed to compare crop yield 
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among zones. It showed that grain yield presented significant differences (p> 0.05) 

between each zone. Although crop yield variation is strongly affected by seasonality, as a 

result, yield even for the same crop can vary in different years (Eghball and Varvel, 1997; 

Schepers et al., 2004). This information has concordance with the spatial variability of 

several properties in the field. 

 

Table 4.1.  Soil Properties at different zones and depths.  

Zone Depth   OM N   P K Ca Mg   Silt Clay   pH 

 cm  % kg ha-1  %   

1 0-20  1.9 0.10 87 378 3627 151 79.6 18.7 5.6 

 20-40  0.8 0.06 25 278 3552 205 72.1 25.9 5.5 

 40-60  0.6 0.05 20 277 3665 340 68.4 28.9 5.3 

 60-80  0.4 0.04 36 254 3010 522 68.6 28.4 4.9 

  80-100                   68.2 28.0     

2 0-20   1.7 0.10   76 306 3656 152   77.4 20.3   5.6 

 20-40  0.8 0.06 16 248 3958 222 72.4 24.2 5.4 

 40-60  0.5 0.06 7 230 3967 324 69.1 27.5 5.2 

 60-80  0.4 0.05 9 216 3812 462 68.5 27.2 4.7 

  80-100                   67.1 28.3     

3 0-20   1.6 0.09   27 262 4425 244   67.5 27.1   5.4 

 20-40  0.6 0.05 8 219 4520 285 63.2 29.9 5.6 

 40-60  0.4 0.04 7 210 4234 458 63.4 31.4 5.0 

 60-80  0.3 0.03 6 206 3465 623 62.1 31.5 4.6 

  80-100                   61.1 32.5     
 

Table 4.2. Wheat and corn yield in each field zone.  

Field Zone Wheat-2016 Corn-2017 
 kg ha-1 

1 5087 a 12644 a 

2 4861 b 12268 b 
3 4657 c 11445 c  

Different letters indicate significant differences (p<0.05). 

 

Measured soil water tension in different zones and depths is depicted in Figure 4.3. Under 

both crops (wheat in 2016 and corn 2017), it is observed that the soil water tension varies 
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between zones. This is consistent with the differences detected with the other soil 

properties. Soil water tension values and variations are higher in surface layer and less 

pronounced in deeper layers. When rainfall occurs, the soil water tension decreases. Yang 

et al. (2016) have mentioned that precipitation is one of the main driving force in temporal 

changes and its impact decreases at deep layers compared to shallow soil depths. On the 

other hand, low rainfall amounts are barely recognized with regard to soil water tension 

fluctuations in some periods. This behavior can be caused by drying of the surface soil. At 

some level of drying, the water infiltration and transport through the soil profile becomes 

extremely slow and the amount of rainfall may not have been sufficient to reach the 

uppermost sensor at 20 cm depth. Results presented in chapter 3 showed that temporal 

variation of soil water tension among different zones and depths do not present good 

correlation when a wavelet coherency analysis was performed. Zone 3 behaves particularly 

different compared with the others zones and presents more restrictions for crop growth. 

This is caused by higher clay content, higher slope among other variables and expressed in 

lower crop yield than in the remaining zones in this field.  
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Figure 4.3. Soil water tension at 20, 40 and 60 cm depth and daily precipitation under wheat (2016) and corn 
(2017) crops.  
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4.3.2 Predicted soil water status 

The measured and RZWQM2-predicted soil water tension is presented in Figure 4.4 for 

the wheat growing season and in Figure 4.5 during the corn growing season. The error of 

predictions of soil water tension after performing the calibration are presented in Table 4.3. 

The model predictions follow the pattern of soil water tension dynamics in time. On the 

other hand, the bias in the prediction do not presents a trend in different zones and layers 

under both crops. The NSE values reflect the efficiency of model predictions. A value close 

to 1 indicates that the prediction is accurate and close to measured data; a value of 0 implies 

that the accuracy of the prediction is close to using the overall average, and negative values 

denote that the use of the overall average for the entire time series is better than using 

model predictions. (Nash and Sutcliffe, 1970). Ma et al. (2011) indicate that with a NSE 

value of > 0.7 the model prediction could be considered acceptable. Table 4.3 shows that 

only under wheat at 20 cm depth simulations reach NSE values > 0.7 and under corn come 

close to this value only at 20 cm depth. 



87 

 

Figure 4.4. Predicted and measured soil water tension under wheat crop (2016) at different zones and depths. 
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Figure 4.5. Predicted and measured soil water tension under corn crop (2017) at different zones and depths.
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Comparing soil water tensions under the two different crops considering ME, RMSE and 

NSE, reveals that predictions turned out better under wheat than corn. This result could be 

due to the difference in number of measurements per location rather than to a crop/season 

issue. Differences in accuracy can also be observed between zones. The predictions were 

less accurate in zone 3 than in the other zones, especially in 2016. This result could be due 

to the topography of this area, considering that the slope does not affect surface runoff 

simulation in RZWQM2 (Ma et al., 2011), and to problems in describing water infiltration 

and redistribution in the clayey soil of this zone.  

 

The model reveals special sensitivity to changing physical parameters, including the soil 

water content at 33 and 1500 kPa suction, macroporosity and lateral hydraulic flow (Ma et 

al., 2007). Our results were adequate to estimate predictions in the surface layer but the 

accuracy decreased in deeper layers, consequently, further calibration is needed to better 

predict soil water tension at 40 and 60 cm depth. The prediction of soil water tension at 

lower layers depend on the accuracy in the estimation of water movement from upper 

layers. Wu et al. (1999) observed that soil water predictions were more dynamic than 

observations in lower layers and the predictions were less dynamic than measurements in 

upper layers. We need to consider that temporal dynamics decrease with increasing depth. 

Consequently, it is more difficult to predict minor fluctuations. The range of fluctuations 

is lower at 60 cm depth which results in lower RMSE despite a lower NSE when compared 

with the upper layers. 
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Table 4.3. Bias and prediction error of calibrated soil water tension predictions using RZWQM2 under wheat 
and corn at each zone. 

  Wheat 2016 
Zone Parameter 20 cm depth 40  cm depth 60 cm depth 
Zone 1 ME (KPa) 4.43 -3.17 -0.85 

 RMSE (Kpa) 7.43 7.90 2.65 
 NSE 0.78 0.69 0.15 

Zone 2 ME (KPa) -1.61 1.14 -1.83 
 RMSE (Kpa) 6.98 4.58 5.68 
 NSE 0.85 0.86 0.45 

Zone 3 ME (KPa) 7.28 1.51 1.37 
 RMSE (Kpa) 14.63 6.17 6.25 
 NSE 0.75 0.60 0.49 

  Corn 2017 
Zone Parameter 20 cm depth 40  cm depth 60 cm depth 
Zone 1 ME (KPa) 4.19 2.97 -0.04 

 RMSE (Kpa) 10.19 5.95 3.34 
 NSE 0.68 0.66 0.40 

Zone 2 ME (KPa) -0.09 2.19 3.27 
 RMSE (Kpa) 12.27 7.81 4.95 
 NSE 0.67 0.64 0.27 

Zone 3 ME (KPa) -0.03 1.89 -2.08 
 RMSE (Kpa) 14.26 7.28 7.63 
 NSE 0.67 0.63 0.14 

  

  

4.3.3 Potential use of model predictions 

The use of agro-system models as a decision-making tool is one of the potential 

applications. Several experiments have shown the potential of applying RZWQM2 to 

support decisions (Ma et al., 2009; Saseendran et al., 2014; Kisekka et al., 2017). In our 

study, the calibration shows the impact of accurate soil and hydraulic properties in 

predicting the soil water status.  As expected, reliable field measurements are required to 

provide accurate process descriptions and to reflect field spatial variability. While accurate 

field data could require high sampling density, it could be reduced when combined with 

ancillary variables (i.e., proximal and remote sensing information). On the other hand, soil 

water content can be estimated from remote and proximal sensing data (Lambot et al., 

2006; Hong and Shin, 2011, Adams et al., 2013), but due to the resolution, depth level and 
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spatio-temporal variation, these are mainly punctual observations at specific dates so it 

should be only used as reference of spatial field variability.  If we obtain a good prediction 

of soil water status, it can be used for practices such as irrigation or fertilization.  For 

example, Liang et al. (2014) shows the use of soil water tension to estimate volumetric 

water content using the van Genuchten (1980) model to schedule irrigation. In summary, 

potential application of models such as RMZWQ2 for site specific management, relies on 

obtaining appropriate data and field characterization combined with appropriate model 

calibration. 

 

4.4 Conclusions 

Soil water status varies between delineated zones. When RZWQM2 model was applied, 

the predictions presented better accuracy under wheat compared to corn. Better accuracy 

to predict soil water tension was observed at the surface depth (20 cm depth) compared 

with the 40 and 60 cm depths. Similarly, the accuracy of predictions decreased in the most 

restricted area (zone 3) compared to the other zones. The differences observed in both soil 

water status measured and  predicted can be attributed to spatial differences in topography 

and soil characteristics. The prediction improved after calibrating the model by adjusting 

soil physical parameters, having NSE > 0.7 in surface layers, but further calibration is 

needed to improve the simulation result in deeper layers. RZWQM2 shows the potential to 

estimate soil water status and predict spatial differences at the field scale. With accurate 

field measurements, this model can be used as decision-making tool to apply site specific 

management of water resources.  

Copyright © Javier Reyes 2018  
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Chapter 5 Spatial Variability of Clay Mineralogy in a Farmer’s Field in Kentucky 

 

5.1 Introduction 

Soil minerals are important to provide physical support for plant growth, as they affect the 

formation of aggregates and therefore their air and water capacity. Through weathering 

processes, secondary minerals are formed which are mainly present in the clay fraction size 

(<2 μm). Minerals in the clay fraction are the most relevant ones participating in physical 

and chemical processes occurring in the soil (Schulze, 1989).  

 

Several methods have been used to identify and characterize clay minerals, including x-ray 

diffraction, thermal analysis, scanning electron microscope (SEM), and Fourier Transform 

Infrared Spectroscopy. X-ray diffraction (XRD) is the most widely applied technique in 

the literature. It is a direct identification of crystalline soil minerals produced by 

bombarding a metal foil with electrons. In this process, some x-rays pass through a sample, 

some others are diffracted. The diffracted x-rays are associated to a specific 

crystallographic structure, allowing to identify specific minerals using different treatments 

(i.e. Mg, Mg, Glycerol, K). In the case of phyllosilicates, the peaks in the x-ray diffraction 

spectrogram are generated by spacing between layers (Essington, 2004). Other methods 

are the thermal analysis including thermogravimetry (TG), differential thermal analysis 

(DTA), and differential scanning calorimetry (DSC) (Karathanasis and Harris, 1994). 

Thermal analyses can be more useful than x-ray diffraction when the minerals present poor 

crystallinity. Another approach is the Fourier Transform Infrared Spectroscopy (White, 
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1971; Baes and Bloom, 1989). FTIR can be used complementary to x-ray diffraction, 

because different IR bands can be associated with clay minerals (Russel, 1987).  

 

The dominant soil orders in Kentucky correspond to Alfisol and Ultisol, although Mollisols 

and Inceptisols can also be found (Soil Survey Staff, 1999). In general, soils in Kentucky 

are well developed and their soil mineralogy is widely found in the literature (Karathanasis, 

1985; Karathanasis, 1991; Karathanasis et al., 1991; Zhang and Karathanasis, 1997; 

Karathanasis, and Macneal 1994; Karathanasis and Johnson, 2006). Minerals such as 

kaolinite and vermiculite are commonly dominant in these soils. Similarly, a significant 

presence of hydroxyl interlayered vermiculite (HIV) or smectite in case of fragipans 

(Karathanasis, 1987) has been identified.  

 

Soil properties can vary drastically even within the same field (Beckett and Webster, 1971; 

Koestel et al., 2013), although the spatial variability of clay mineralogy has not been 

commonly studied at the field scale.  By knowing spatial differences in clay mineralogy, 

we can obtain a better understanding about spatial variation of soils, and help to manage 

the field site-specifically. The purpose of this study was to determine if we can find spatial 

differences in soil mineralogy at the field scale in a silt loam soil located in Western 

Kentucky, and to evaluate these differences with other soil properties (i.e. soil texture, 

organic matter, total nitrogen, available nutrients). We hypothesize that spatial differences 

in clay mineralogy will be identified within the field and consequently, this differences will 

be observed in other soil properties as well. 
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5.2 Material and Methods 

5.2.1 Site description and data sampling 

The study was conducted at Hillview Farms located in Princeton KY, Caldwell County 

(37° 1'58.02"N, 87°51'33.06"W, 142 m asl). According to the Köppen system, the climate 

is classified as humid subtropical. The annual precipitation is around 1312 mm (US climate 

data, 2017), and annual mean temperature is 15 °C. The maximum and minimum mean 

temperatures occur in June and January, respectively.  

 

The soil classification map is presented in Figure 5.1. The dominant soil series in the field 

is Crider, belonging to fine-silty, mixed, active, mesic Typic Paleudalfs; these soils are 

formed in a loess mantle and the underlying residuum from limestone. In some areas we 

found soils from the Nolin series, i.e., fine-silty, mixed, active, mesic Dystric Fluventic 

Eutrudepts; these soils are formed in alluvium derived from limestones, sandstones, 

siltstones, shales, and loess (Soil Survey Staff, 1999). The study area was approximately 

27 ha. The field has been cultivated with corn (Zea mays L.), wheat (Triticum aestivum L) 

double crop soybean (Glycine max L), and tobacco (Nicotiana tabacum L) under no till 

soil management. To study the soil mineralogy, we took samples at the four locations 

indicated in Figure 5.1 at two depths: 0-20 cm and 20-40 cm. The locations are assigned 

as Nolin (map unit: Np), Crider I (map unit: CrA), Crider II (map unit: CrB2), and Crider 

III (map unit: CrC3). 
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Figure 5.1. Study area and soil classification. Red bullets indicate the soil sampling location. The locations 
are assigned as Nolin (map unit: Np), Crider I (map unit: CrA), Crider II (map unit: CrB2), and Crider III 
(map unit: CrC3). Map units were obtained from Sol Survey Staff (2017). 
 

5.2.2 Mineralogical characterization  

For each location, we sampled 25 g of soil (< 2 mm). These samples were fractionated into 

particles of sand (50–2000 μm), silt (2–50 μm), and clay (< 2 μm) following the procedures 

described by Jackson (1974) and Karathanasis and Hajek (1982). To remove organic 

carbon, we applied continuous doses of 30% H2O2 under Na acetate buffer solution, until 

the sample stopped reacting. The removal of free iron oxide was omitted. The x-ray 



96 

diffraction analyses was applied to the clay fraction using PANalytical X’pert Pro as 

diffractometer and the anode material utilized was Cu. The step size was 0.07 2θ and the 

step time was 4 s. The samples were mounted on glass slides and saturated with Mg, Mg-

glycerol, and K at 25 °C and 550 °C. PANalytical’s XRD software suite was used for x-

ray diffraction peak identification. A thermogravimetric analysis was applied to the clay 

fraction using a TGA Q50 (TA instruments) using glass slides saturated with Mg. The 

increasing temperature rate was 20 ºC per minute until reaching 1000 ºC.   

 

Complementarily, an FTIR analysis was performed. Samples of 500 mg of spectroscopic 

grade KBr were mixed with 30 mg of clay and were analyzed using a Nicolet 6700 Fourier 

Transform Infrared (FTIR) spectrometer equipped with a Thermo Fisher Smart Collector 

Diffuse Reflectance accessory. The FTIR spectra were collected over a range of 4000 to 

600 cm−1 with continuous nitrogen purge. Two hundred scans were co-added together at a 

spectral resolution of 4 cm−1.  

 

5.2.3 Soil properties 

Soil texture and chemical properties were taken at each location and depth (0-20 cm and 

20-40 cm), with five measurements for each location. The procedures used to quantify soil 

textural composition are described in Reyes et al. (2018). Soil organic matter and total 

nitrogen were determined by LECO combustion. Extractable P, K, Ca, Mg, and Zn were 

measured by Mehlich III extraction. For pH determination, a glass electrode was used in 

1:1 soil:water and Sikora buffer for Buffer pH (Jones, 2000).  

 



97 

5.3 Results and Discussion 

5.3.1 Clay Mineralogy 

X-ray diffraction patterns of the clay fraction are presented in figures 5.2 and 5.3. In all 

cases, the appearance of an asymmetric 1.4 nm peak with the Mg treatment was observed 

which could reflect a combination of different minerals such as vermiculite, smectite and 

chloritized vermiculite or smectite (HIV or HISM).  The XRD peak at 1.2 nm is indicative 

of mixed-layer minerals, perhaps illite interstratified with vermiculite.  Peaks at 1.0, 0.49 

and 0.33 nm could indicate the presence of illite.  The Mg-glycerol treatment was employed 

to identify the presence of expanding smectitic minerals.  This treatment resulted in a 

reduction in intensity of the 1.4 nm peak and some noisy peaks were observed in the range 

of 1.4-1.8 nm; specifically in the Crider III at both depths.  The lower signal to noise ratio 

in glycerol-treated clay slides made it difficult to clearly identify a peak at 1.8 nm attributed 

to smectite. Thus, possible 2:1 expandable minerals are vermiculite, smectite, HIV/HISM, 

and mixed-layer minerals, although due to the noise in the signal it cannot be clearly stated 

what specific mineral is present in each area. 

 

After applying the K at 25 °C and 550 °C treatments, we observe other differences among 

locations (Figure 5.3). In the K 25 °C treatment, a collapse of the 1.4 nm peak was evident. 

The 0.71 nm peak found with the Mg treatment which collapsed after the K 550 °C 

treatment is an indicator that kaolinite is present. It is interesting that there still were peaks 

between 1.0 and 1.4 nm, attributed to the resistant HIV/HISM minerals that cannot totally 

collapse to 1.0 nm. The TA analysis is presented in Figure 5.4. The differential weight loss 

causes peaks around 25 °C, 250 °C, 400 °C and 500 °C, which could be attributed to 
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smectite/vermiculite, gibbsite, goethite and kaolinite, respectively. Regarding the peak 

around 250 °C, it could be caused by the hydroxyl-Al layer of HIV/HISM minerals, 

considering that a characteristic peak for gibbsite was not detected with the x-ray 

diffraction analysis. A mineral quantification using TA (Karathanasis and Harris, 1994) is 

presented in Table 5.1. We found that the kaolinite and goethite percentage are higher in 

the eroded area (Crider III) compared with other locations. A similar trend is observed with 

smectite/vermiculite at the 20-40 cm depth. A reason for this behavior could be the fact 

that erosion has been occurring in this zone of the field, and a part of the original surface 

layer has been lost.  

 

Table 5.1. Quantitative mineralogical composition of the clay fraction using Thermogravimetric analysis. 

Location 
 

Kaolinite 
Smectite/Vermiculite/ 

HIV/HISM 
Al- 

hydroxyl interlayer Goethite 

 %  

Nolin (0-20 cm) 29.3 21.9 3.0 6.7 
Crider I (0-20 cm) 28.5 19.4 2.1 7.8 

Crider II (0-20 cm) 31.2 19.5 3.2 5.0 

Crider III (0-20 cm) 37.3 21.3 2.3 11.8 

Nolin (20-40 cm) 29,1 18.1 1.9 5.2 

Crider I (20-40 cm) 32.8 25.6 2.6 15.8 
Crider II (20-40 cm) 42.6 25.3 3.9 11.2 
Crider III (20-40 cm) 38.6 31.6 4.3 18.3 
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Figure 5.2. X-ray diffraction patterns of clay fractions for Mg and Mg glycerol treatments at different 
locations and depths. 
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Figure 5.3. X-ray diffraction patterns of clay fractions for K 25 °C and K 550 °C treatments at different 
locations and depths. 
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Figure 5.4. Thermal analysis of clay fractions at different locations and depths. 
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Results of the FTIR analysis are presented in Figure 5.5. The patterns obtained for the 

different locations share more similarity compared to the results that were obtained with 

the x-ray diffraction, while it helps to corroborate minerals identified with the x-ray 

diffraction. The IR band 3695 cm-1 is an indicator of Kaolinite, IR bands at 3620 cm-1 and 

914 cm-1 could indicate the presence of vermiculite and illite as well as kaolinite (Russell, 

1987, Matocha et al., 2016). 

 

In addition, a peak near 1430 cm-1 was observed. It could be associated to the N-H bending 

mode of NH4
+ in 2:1 phyllosilicates (Stone and Wild, 1978; Matocha et al., 2016). This 

peak increased in intensity at the 20-40 cm depth especially at the Crider II and Crider III 

locations.  This peak has been assigned to NH4
+ bound in either illite and/or vermiculite 

minerals.  Matocha et al. (2016) observed this peak in a soil clay from an agroecosystem 

receiving nitrogen fertilizer, however, NH4
+-illite can also occur naturally during 

weathering and diagenesis (Šucha et al., 2001). In our field, this particular peak was more 

marked in the eroded area and the subsurface (20-40 cm) than in other zones and depths, 

probably because the accessibility of plant roots to NH4
+ and its oxidation to NO3

- is more 

restricted here. 

 

On the other hand, although organic matter was removed prior to the mineralogical 

characterization, peaks were observed in the range 1500-1700 cm-1 (i.e. C-H bend, Aromatic 

C=C stretch, Amide groups) and 2800-3000 cm-1 (i.e. CH3 stretching mode) that can be 

associated with organic compounds; especially around 1570 cm-1 in Crider II and Crider 

III at 20-40 cm depth. This behavior could be due to tightly bound organic compounds in 
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the interlayer of 2:1 minerals (Skiba et al., 2011; Matocha et al., 2016) which can affect 

the observed x-ray diffraction peaks.  

 

Figure 5.5. Fourier transform infrared (FTIR) spectra of clay fractions at different locations and depths. 
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5.3.2 Soil properties at each location 

Soil properties measured at each of the selected locations are presented in Table 5.2. In 

general, the shallow soil presents more silt and soil nutrients compared with the 20-40 cm. 

In Crider III, the percentage of clay content is higher at 0-20 cm, with a texture 

corresponding to silty clay loam, although the soil surface is classified as silt loam across 

the entire field.  Another characteristic in the Crider III area is the lower amount of 

exchangeable K and P. The larger amount of clay, including smectite, vermiculite and 

kaolinite minerals, could induce a higher fixation in this area. On the other hand, we 

observe that exchangeable C and Mg increase in the Crider III. The increase of Mg could 

be caused due to the weathering of vermiculite and HIV minerals (also increasing the 

presence of kaolinite). A lower C:Mg ratio (Haghnia and Pratt, 1988) in Crider III could 

cause a lower structural stability compared with other areas.   

 

Table 5.2. Soil properties obtained at different locations and depths. 

Location Silt Clay OM N   P K Ca Mg Zinc   pH 

  %       kg ha-1         
Nolin (0-20 cm) 77.3 20.9 1.3 0.07 122.6 261.9 3000.2 171.7 3.2 5.2 
Crider I (0-20 cm) 77.1 19.1 1.2 0.07 194.5 281.6 3103.6 124.9 3.9 5.3 
Crider II (0-20 cm) 74.5 23.1 1.8 0.10 89.0 432.4 4053.4 191.3 4.9 5.5 
Crider III (0-20 cm) 68.3 27.8 1.5 0.08 21.7 259.4 5368.0 288.9 1.5 5.7 
Nolin (20-40 cm) 69.7  25.4  0.7 0.06 36.8 175.0 3175.5 172.8 1.4 5.5 
Crider I (20-40 cm) 69.6 27.7 0.9 0.06 102.7 211.8 3431.7 125.5 2.9 5.7 
Crider II (20-40 cm) 68.2 29.1 0.9 0.07 32.8 293.7 3486.3 187.2 1.9 5.8 
Crider III (20-40 cm) 64.8 29.5 0.6 0.05   3.5 204.2 4367.0 315.8 2.8   5.4 

 

According to the official soil survey, a large percentage of the field is classified as an 

Alfisol (Crider series) and another section is classified as Inceptisol (Nolin). Nevertheless, 
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we found higher differences in mineralogy and soil properties in the eroded area compared 

with the rest of the field than between Nolin and Crider I-II areas. Soil classification maps 

are informative tools to obtain a general approach of the soil characteristics, but 

considering the scale resolution (generally around 1:12,000-1:25,000) it may not reveal a 

sufficient accuracy for various purposes at the field scale. Nevertheless, we found that soil 

properties vary in areas classified with different levels of erosion. Further mineralogy-

based soil survey is required if the intention is to base site-specific management decisions 

on knowledge about mineralogy. In this study, the soil mineralogy varies at the field scale 

and it is related to other soil properties. Knowledge of field scale differences should be 

considered for soil management.  

 

5.4 Summary 

A clay mineralogical characterization was performed in a farmer’s field. X-ray diffraction, 

thermogravimetric analysis and Fourier infrared spectroscopy (FTIR) were the methods 

applied. Observations were compared with soil physical and chemical properties. 

Kaolinite, vermiculite and HIV, were among the identified minerals over the entire field, 

and possibly, smectite was also observed within the most eroded zone (Crider III). Crider 

III also presents most distinct differences in soil properties, and the highest kaolinite and 

goethite quantity at both depths (0-20 cm and 20-40 cm). FTIR analysis shows a 

wavenumber (1430 cm-1) that could be related with NH4
+ fixation in some areas of the 

field. This information can help to have better understanding of spatial variability of other 

soil properties such as soil structure, CEC, nutrient fixation and soil water movement. 

Copyright © Javier Reyes 2018  
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Chapter 6 Conclusions 

A field scale investigation was performed to explore spatial and temporal relationships to 

improve irrigation management in a farmer’s field located in Western Kentucky. Several 

methods were applied to characterize and map soil and crop variables. A study of mapping 

clay content coregionalized with apparent electrical conductivity was conducted. Soil 

sampling density was reduced from 96 to 48, 24, and 12 data points under different 

scenarios. Clay content maps estimated with cokriging utilizing high-density ancillary ECa 

information were more precise than maps derived from ordinary univariate kriging and 

maintained a satisfactory precision when the sampling density was reduced to 1 sample per 

2 hectares.  This result shows that using apparent electrical conductivity as ancillary data 

is satisfactory to map clay content, even with low soil textural sampling density. 

 

A set of direct and indirect measurements including soil clay content, apparent electrical 

conductivity, soil chemical properties (pH, organic matter, total nitrogen, P, K, Ca, Mg and 

Zn), satellite-based NDVI, topographic indices were used to delineated management zones.  

Cluster analyses revealed that 2 to 3 zones were the optimal number of classes when based 

on different criteria. Delineated zones were evaluated and revealed significant differences 

in corn yield and different patterns in temporal dynamics of soil moisture.  

 

Soil water status was studied at different zones, based on the division presented on chapter 

3. Root Zone Water Quality Model (RZWQM2) was used to predict temporal variation of 

soil water tension. The results indicated spatial differences of soil water tension at different 

depths and delineated zones. This behavior of soil water tension has concordances with the 



107 

spatial variation of other soil properties. Soil water tension predictions were better in the 

surface layer under both wheat and corn, while being more accurate under wheat. After 

model calibration, the estimation improved and satisfactory results were obtained in the 

surface layer. Our study demonstrates differences in soil water dynamics at the field scale 

that indicate the requirement for site-specific management. RZWQM2 shows to be an 

appropriate tool to identify differences in soil water status at different zones of the field. 

Predicted soil water tension could be utilized for irrigation management to decide when to 

turn on the irrigation water, and the amount of water to be applied could also be derived 

from model estimations.  

 

A characterization of spatial differences in clay mineralogy was performed in the field. 

Sampling locations were based on the soil survey map divisions. Dominant minerals found 

were kaolinite, vermiculite and HIV, whereas smectite was also identified in the most 

eroded zone. Differences in mineral composition quantities were found when comparing 

areas. In the area severely eroded the presence of kaolinite was higher; also this sector 

presented low organic matter and high clay content. This result has concordance with the 

differences observed in soil water status in the eroded area in chapter 4, where the soil 

tended to dry faster between rainfall events. Results of the FTIR analysis were consistent 

with those obtained with the other methods. Moreover, a wavenumber peak that could be 

related with NH4
+ fixation (1430 cm-1) was found in some areas of the field. Spatial 

differences found in clay mineralogy could be considered as helpful guidance for precision 

agriculture management decisions. 
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The study shows the ability of the presented methods to identify and characterize field 

spatial variability, combining easily obtainable data to be applied for revealing soil and 

crop processes and their spatial variability under real-world farm conditions.  
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