
University of Kentucky University of Kentucky 

UKnowledge UKnowledge 

Theses and Dissertations--Agricultural 
Economics Agricultural Economics 

2018 

THREE ESSAYS ON THE APPLICATION OF MACHINE LEARNING THREE ESSAYS ON THE APPLICATION OF MACHINE LEARNING 

METHODS IN ECONOMICS METHODS IN ECONOMICS 

Abdelaziz Lawani 
University of Kentucky, abdelawani@uky.edu 
Digital Object Identifier: https://doi.org/10.13023/etd.2018.312 

Right click to open a feedback form in a new tab to let us know how this document benefits you. Right click to open a feedback form in a new tab to let us know how this document benefits you. 

Recommended Citation Recommended Citation 
Lawani, Abdelaziz, "THREE ESSAYS ON THE APPLICATION OF MACHINE LEARNING METHODS IN 
ECONOMICS" (2018). Theses and Dissertations--Agricultural Economics. 68. 
https://uknowledge.uky.edu/agecon_etds/68 

This Doctoral Dissertation is brought to you for free and open access by the Agricultural Economics at UKnowledge. It 
has been accepted for inclusion in Theses and Dissertations--Agricultural Economics by an authorized administrator 
of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Kentucky

https://core.ac.uk/display/232589755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu/
https://uknowledge.uky.edu/agecon_etds
https://uknowledge.uky.edu/agecon_etds
https://uknowledge.uky.edu/agecon
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT: STUDENT AGREEMENT: 

I represent that my thesis or dissertation and abstract are my original work. Proper attribution 

has been given to all outside sources. I understand that I am solely responsible for obtaining 

any needed copyright permissions. I have obtained needed written permission statement(s) 

from the owner(s) of each third-party copyrighted matter to be included in my work, allowing 

electronic distribution (if such use is not permitted by the fair use doctrine) which will be 

submitted to UKnowledge as Additional File. 

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and 

royalty-free license to archive and make accessible my work in whole or in part in all forms of 

media, now or hereafter known. I agree that the document mentioned above may be made 

available immediately for worldwide access unless an embargo applies. 

I retain all other ownership rights to the copyright of my work. I also retain the right to use in 

future works (such as articles or books) all or part of my work. I understand that I am free to 

register the copyright to my work. 

REVIEW, APPROVAL AND ACCEPTANCE REVIEW, APPROVAL AND ACCEPTANCE 

The document mentioned above has been reviewed and accepted by the student’s advisor, on 

behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of 

the program; we verify that this is the final, approved version of the student’s thesis including all 

changes required by the advisory committee. The undersigned agree to abide by the statements 

above. 

Abdelaziz Lawani, Student 

Dr. Michael Reed, Major Professor 

Dr. Carl R. Dillon, Director of Graduate Studies 



 

 

 

THREE ESSAYS ON THE APPLICATION OF MACHINE LEARNING METHODS 
IN ECONOMICS 

 

 

DISSERTATION  

 

A dissertation submitted in partial fulfillment of the  
requirements for the degree of Doctor of Philosophy in the  

College of Agriculture, Food and Environment  
at the University of Kentucky  

By  

Abdelaziz Lawani 

Lexington, Kentucky 

Co-Directors: Dr. Michael Reed, Professor of  
International Trade and Agricultural Marketing 
and Dr. Yuqing Zheng, Associate Professor of  

Food Marketing and Policy Analysis 

Lexington, Kentucky  

2018  

Copyright © Abdelaziz Lawani 2018 

 

 



 

 

 

 

ABSTRACT OF DISSERTATION 

 

 

THREE ESSAYS ON THE APPLICATION OF MACHINE LEARNING METHODS 
IN ECONOMICS 

 

 

Over the last decades, economics as a field has experienced a profound transformation 
from theoretical work toward an emphasis on empirical research (Hamermesh, 2013). 
One common constraint of empirical studies is the access to data, the quality of the data 
and the time span it covers. In general, applied studies rely on surveys, administrative or 
private sector data. These data are limited and rarely have universal or near universal 
population coverage. The growth of the internet has made available a vast amount of 
digital information. These big digital data are generated through social networks, sensors, 
and online platforms. These data account for an increasing part of the economic activity 
yet for economists, the availability of these big data also raises many new challenges re-
lated to the techniques needed to collect, manage, and derive knowledge from them. 

The data are in general unstructured, complex, voluminous and the traditional software 
used for economic research are not always effective in dealing with these types of data. 
Machine learning is a branch of computer science that uses statistics to deal with big data. 
The objective of this dissertation is to reconcile machine learning and economics. It uses 
threes case studies to demonstrate how data freely available online can be harvested and 
used in economics. The dissertation uses web scraping to collect large volume of unstruc-
tured data online. It uses machine learning methods to derive information from the un-
structured data and show how this information can be used to answer economic questions 
or address econometric issues.  

The first essay shows how machine learning can be used to derive sentiments from re-
views and using the sentiments as a measure for quality it examines an old economic the-
ory: Price competition in oligopolistic markets. The essay confirms the economic theory 
that agents compete for price. It also confirms that the quality measure derived from sen-
timent analysis of the reviews is a valid proxy for quality and influences price. The sec-
ond essay uses a random forest algorithm to show that reviews can be harnessed to pre-



 
 

dict consumers’ preferences. The third essay shows how properties description can be 
used to address an old but still actual problem in hedonic pricing models: the Omitted 
Variable Bias. Using the Least Absolute Shrinkage and Selection Operator (LASSO) it 
shows that pricing errors in hedonic models can be reduced by including the description 
of the properties in the models.  

KEYWORDS: Machine Learning, Hedonic Price Model, Sentiment Analysis, Random 
Forest, Omitted Variable Bias, LASSO 
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CHAPTER 1 : GENERAL INTRODUCTION  

 

Other the last two decades, the web 2.0 has reshaped the structures and conditions 

of diverse markets such as transportation, travel, books, banking, energy, and healthcare. 

Contrary to the first generation of static web pages on the internet, the web 2.0 refers to 

dynamic pages such as social media or online platforms where the users can interact. 

Online platforms such as Amazon, Netflix, eBay, Alibaba, Uber, LinkedIn, Zipcar, and 

Airbnb are now household names. They create value by facilitating the transaction of 

products and services between two or more economic agents who would otherwise have 

difficulty finding each other (Evans et al. 2011). Online platforms offer the possibilities 

for different agents to interact and record the nature and content of the billions of interac-

tions and transactions that occur on the platforms. They are disrupting major industries, 

and the volume of transactions on these platforms is consistently increasing. According to 

the U.S. Census Bureau (2017), online sales accounted for 8.2 percent of total sales in the 

second quarter of 2017 and rose by 16.3 percent compared to the second quarter of 2016; 

total retail sales increased by only 4.4 percent during the same period. As the volume of 

transactions for online platforms increases, so do the number of people using these plat-

forms and the size of data generated by the platforms. However, applied research on plat-

forms in the economics literature has not followed the same growth.  

The development of online platforms has made available a considerable volume of data. 

Social networks, geo-location, impressions through tweets, online purchases, and mobile 

phone data, are a few examples of data sources that can allow novel research in social 

science. For economists, the availability of this amount of data is an opportunity to ob-
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serve consumers’ revealed preferences through their behavior online. These data can also 

address some econometrics issues (e.g., omitted variable bias and instrumental variables) 

faced when estimating causal relationships in non-experimental designs. The availability 

of these big data also raises many new challenges related to the techniques needed to col-

lect, manage, and derive knowledge from them. These challenges can be overcome by 

borrowing the techniques and skills needed to deal with big data from other disciplines 

such as statistics and computer science. Machine learning combines computer science 

and statistics to handle and derive relevant information from big data, and the present dis-

sertation offers three essays on the application of machine learning methods in econom-

ics.  

The first essay examines the relationship between guests reviews, used as a proxy for 

quality, and the price set by hosts on the Airbnb platform in Boston. Using sentiment 

analysis to derive the quality from the reviews and a hedonic spatial autoregressive model 

applied to rental room prices on Airbnb, the finding of this essay suggest that prices are 

strategic complements and are influenced by the review score, the characteristics of the 

room, and the features of the neighborhood. The marketing implication is that consumers 

respond to the contents of online reviews, in addition to customer ratings. The results of 

this essay show that policies that improve the quality of the room for one host will have a 

spillover effect on the price of rooms offered by other hosts.   

The second essay uses text categorization and random forest to predict beer preferences. 

It compares six text categorization procedures: frequency terms of unigrams, bigrams, 

trigrams, and their inverse frequency terms.  With data scrapped from BeerAdvocate, an 

online network of independent consumers and professionals in the beer industry, this es-
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say shows that the words used in the reviews can predict consumer’s preferences. Moreo-

ver, it indicates that the use of less frequent terms in the predictive models outperforms 

the use of more frequent terms, confirming Sparck Jones (1972)’s heuristics results. 

However, low-level combinations of the words in the reviews better predict consumers’ 

preferences compared to high-level combinations, even though the latter better represent 

the complexity of human languages.  

The third essay addresses the omitted variable bias problem in hedonic pricing models 

using unigram text categorization. The presence of omitted variables is a source of bias 

for the estimates of hedonic models. The solutions adopted in the real estate literature 

have struggled to deal effectively with this issue.  This essay uses textual analysis to ad-

dress the omitted variable bias problem. It explores a method of proxying the variables 

omitted in the hedonic regression models with the words used in the description of the 

rental units.  The results show that this solution reduces the pricing error in the hedonic 

models and can be useful in accounting for omitted quality measures in hedonic price 

models.   
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CHAPTER 2 : IMPACT OF REVIEWS ON PRICE: EVIDENCE FROM 
SENTIMENT ANALYSIS OF AIRBNB REVIEWS IN BOSTON  

2.1. Abstract  

There is a growing interest in deriving value from user-generated comments and reviews 

online. For businesses and consumers using online platforms, the reviews serve as quality 

metrics and influence consumers purchasing decision. This study examines the 

relationship between guests reviews, used as a proxy for quality, and the price set by 

hosts on the Airbnb platform in Boston. Using sentiment analysis to derive the quality 

from the reviews and a hedonic spatial autoregressive model applied to rental room prices 

on Airbnb, we find that prices are strategic complements and are influenced by the 

review score, the characteristics of the room, and the features of the neighborhood. The 

marketing implication is that consumers respond to the contents of online reviews, in 

addition to customer ratings. Policies that improve the quality of the room for one host 

will have a spillover effect on the price of rooms offered by other hosts.   

2.2. Introduction 

Many platforms allow customers to write a review for the sellers they use or for 

the products (or services) they purchase (e.g., eBay, Amazon, Priceline). This allows po-

tential consumers to go through multiple reviews about products or services before mak-

ing their purchasing decisions. They use the opinions in the reviews to form their own 

opinion about the quality of the product or service they want to purchase. Reviews are 

becoming even more important for experience goods such as hotel rooms and rental 

houses, which are purchased at distance (Viglia, et al., 2016) with the quality being hard 

for travelers to assess before consumption (Klein, 1998). 
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Researchers have shown increasing interests in understanding the opinions and 

feelings hidden in the millions of reviews left by consumers online (Liu, et al., 2005, 

Pang and Lee, 2008). Reviews, scored or rated in terms of satisfaction by customers, in-

fluence purchase probability of online shoppers (Kim and Srivastava, 2007). Different 

schemes of rating are used on online platforms. They commonly vary from bimodal, 

thumbs up or thumbs down, to scale from one to five stars (Sarvabhotla, et al., 2010). 

According to Archak, et al. (2011), numerical or bimodal ratings do not accurately cap-

ture the information embedded in the reviews and may not express precise details to pro-

spective shoppers. Using predictive modeling, they show the effect of different product 

features in the reviews on sales, confirming the importance of the words used in the 

reviews to evaluate the products. Chevalier and Mayzlin (2006) show that customers rely 

more on the reviews than the rating scores.   

In the hotel industry literature, the presence of consumer reviews and ratings are 

found to drive sales (Blal and Sturman, 2014, Floyd, et al., 2014, Ye, et al., 2009).  Most 

of the studies use star ratings and customer ratings as a proxy for the quality in the re-

views but not the words in the reviews. Yet, there is no agreement on i) the relationship 

between hotel reviews and quality, and ii) the impact of reviews on price. For examples, 

Öğüt and Onur Taş (2012), using star ratings and customer ratings, find that these quality 

metrics increase hotels price and online sales. Contrary, a recent study by Viglia, et al. 

(2016), finds a positive association between review scores and hotel occupancy rates, but 

not a significant relationship between reviews and star ratings, suggesting that these two 

measures involve two different concepts of quality, contrary to the existing literature on 

reviews and quality.  
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The present study contributes to the online marketing literature on the relationship 

between guests’ reviews and quality, and their impact on price.  Unlike previous research 

that uses review score such as the number of reviews, star rating and customer rating, this 

study derives the constructs of quality from the opinions in the reviews with sentiment 

analysis. Sentiment analysis is a methodology, often used in computer science, to extract 

value, opinions or attitudes toward products or services from reviews (Bautin, et al., 

2008, Hu and Liu, 2004, Pang and Lee, 2008, Ye, et al., 2009). Using data collected from 

Airbnb in Boston and a spatial autoregressive hedonic model, the analysis shows that the 

price of a room on the platform depends not only on the intrinsic characteristics of the 

room and its location, but also on the price set by other hosts in the neighborhood. The 

price of a room is also correlated with the quality score derived from sentiment analysis 

of its reviews. The spatial nature of the estimation method implies that the quality 

measure, derived from the reviews of a room, has not only a direct effect on the room 

price but also a spillover effect on the price of rooms in its neighborhood.   

The remainder of this paper is organized as follows. In section 2 we give an 

overview of the relevant literature. Section 3 presents the conceptual framework. Section 

4 introduces the data and the spatial autoregressive estimation method, including a 

detailed description of the sentiment analysis methodology. Results of the spatial hedonic 

pricing model are presented in section 5. Finally, section 6 concludes.  
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2.3. Literature review  

The importance of word-of-mouth (WOM) on consumer purchasing decision has 

been widely examined in the economic literature (Brooks, 1957, Kozinets, et al., 2010, 

Liu, 2006). WOM contents are user-generated comments, reviews, ratings, and other 

communications and are perceived to be more credible than advertising (Mauri and 

Minazzi, 2013, Ogden, 2001) since they are real user experiences and not paid ads. 

Litvin, et al. (2008) stresses the importance of the independence of the source of the mes-

sage for WOM to be considered as a reliable source of information by customers. This is 

well illustrated by Mauri and Minazzi (2013) experimental study where hotel guests re-

views are positively correlated with customers’ hotel purchasing intention, but the pres-

ence of hotel managers’ responses to the guest's reviews leads to a negative correlation 

with their purchasing intention. Zhang, et al. (2010) confirm this finding. Using data col-

lected from Dianping.com on restaurants, they compare the popularity of consumers’ re-

views with professional editors’ reviews. Their study shows that consumers-created re-

views are more popular than editors’ reviews, as indicated by the number of page views.   

There is a substantial number of studies in economics on the effect of reviews on 

sales.  De Vany and Walls (1999), Dellarocas, et al. (2007) and Liu (2006) show the im-

pact of reviews on box office revenue. In the service industry, reviews are considered as a 

primary source of information on quality (Hu, et al., 2008) as they reduce information 

asymmetry, and allow consumers to have better information about the attributes of the 

service they want to purchase (Nicolau and Sellers, 2010). Luca (2016), studying the im-

pact of reviews and reputation on restaurant revenue in Washington, finds that a one-star 

increase in Yelp’s rating increases a restaurant’s revenue by 5-9 percent. Zhang, et al. 
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(2013), studying the determinants of camera sales, finds that the average online customer 

review, as well as the number of reviews, are significant predictors of digital camera 

sales.   

In the hotel industry, reviews affect hotel room purchase intention, sales, and 

price. According to O’Connor (2008), increasing numbers of travelers consult feedback 

left by other customers while planning their trip. Gretzel and Yoo (2008) estimate that 

75% of travelers use the feedback of other consumers whilst making travel arrangements. 

Vermeulen and Seegers (2009), through an experimental study in the Netherlands, con-

firm that online reviews affect consumers’ choice in the hotel industry, but this effect is 

asymmetric. Results from their study indicate that positive and negative reviews do not 

have the same impact on a consumer’s behavior. Positive reviews have a positive impact, 

but negative reviews have a smaller impact in absolute value than positive reviews. With 

regard to sales and price, Ye, et al. (2011), exploiting data from a major travel agency in 

China, show that a 10 percent increase in traveler rating increases the volume of online 

reservations by more than 5 percent. Öğüt and Onur Taş (2012) also find that more posi-

tive online customer ratings increase hotel room prices and online sales.  

Quality has many dimensions and measures and customer ratings might only cap-

ture a small part of it. During the rating process, customers may refer not only to the 

quality of the product or service but also to its price, or both. Even when referring to the 

quality, some features of the product or service are considered more important than oth-

ers, depending on the taste of the customer. Zhang, et al. (2011) show a heterogeneous 

impact of rating on hotel room prices. They found the impact to be only noticeable for 

economy and midscale hotels and not for luxury hotels where location and the quality of 
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services are the most important factors that determine consumers’ willingness to pay. 

They use different ratings such as cleanliness, quality of room, location, and service and 

found different impacts of these ratings on price. The findings of Li and Hitt (2010) con-

firms the results of Zhang, et al. (2011). According to Li and Hitt (2010) both quality and 

price influence purchase decision. Their empirical analysis on digital cameras shows that 

ratings, being in general unidimensional, are biased by prices and are more closely corre-

lated with the product value than its quality. More recently, Viglia, et al. (2016) find a 

positive association between review score and hotel occupancy rate. They use diverse 

categories of hotels and various online review platforms and find that a one point increase 

in the review score increases the hotel occupancy rate by 7.5 percentage points. However, 

they did not find any association between review score and star rating. For Viglia, et al. 

(2016) review score and star rating might reflect different measures of quality.  

There is a need to clarify the relationship between reviews and price. Most of the 

studies on the impact of reviews on price and sales in the hotel industry literature use 

rating or single review scores that might not represent the complexity of the customer 

opinion or sentiment about a good or service accurately. Allowing for a methodology, 

such as sentiment analysis, that mines the client's opinion in the reviews is more likely to 

depict correctly the quality of the good or service he/she receives. Using sentiment 

analysis, this study examines the role of opinions derived from reviews in consumer 

valuation and prices. It uses data collected in the short-term apartment rental market on 

Airbnb in Boston. The sentiment expressed by the reviews on the platform serves as an 

intrinsic indicator of the quality of the service offered by the hosts. The indicator is then 

used to empirically test if reviews affect price and if multidimensional ratings have 
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identical effects on price. Our contribution is twofold. First, we use sentiment analysis to 

examine how the contents of online reviews could affect prices, rather than relying on 

customer ratings. Second, with a unique dataset, we test whether rental rooms’ prices are 

spatially correlated, and if so, whether rental prices are strategic complements or 

substitutes.  

2.4. Conceptual framework  

An interesting feature of online platforms, such as Airbnb, is the possibility for 

both hosts and guests to learn about each other before accepting the transaction. By facili-

tating direct interaction between participants on two sides, these platforms offer partici-

pants the possibility to control the terms of their interaction; the intermediary does not 

take control of these terms (Hagiu and Wright, 2015). On the Airbnb platform, hosts de-

cide on the bundle of services they will offer (bed, couch or sofa, shared bed, Wi-Fi, etc.) 

and the price of their service. Guests have the possibility to define the nature and quality 

of the services they desire. For hosts, this has direct implications on their competitive-

ness. The quality of reviews left by guests can impact their business positively (if the 

review is positive) or negatively (if the review is negative). Hosts can also learn from 

their competitors and adjust their price and quality accordingly. This type of interaction 

where participants on one side of the network compete is referred to as inside competition 

or a same-side negative effect (Eisenmann, et al., 2006).  

Unlike studies that rely on a platform economics framework to analyze same-side 

network effects, this study uses the vertical product differentiation model to describe 

competition in the quality and price space on the Airbnb platform. The product differenti-

ation literature has benefited from the early work of Hotelling (1929) who sets up the 
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foundation for product and price competition in oligopolistic industries. Hotelling (1929) 

uses the model of a linear city to study horizontal product differentiation. In the model, 

the location represents the different varieties of a product. Consumers incur a linear 

transportation cost that increases with the distance that separates them from their ideal 

product.  

Two consumers who value the products differently will be at different locations, 

but if the prices are identical, they will buy from the “closest” firm.  A key contribution 

of  the Hotelling (1929) model is that a duopoly will locate at the center of the linear 

market creating a minimum differentiation and offer similar products. In this setup, if 

each duopolist sets the same price for their products, both of them will have positive de-

mand and the products are said to be horizontally differentiated.  

The assumption of a linear transportation cost is revised by d'Aspremont, et al. 

(1979). They considered a quadratic transportation cost function and their model yields, 

at the equilibrium, a dispersion of firms instead of the Hotelling (1929) principle of min-

imum differentiation. The assumptions on the cost function have significant implications 

on the final result of the model.  

Building on the model of horizontal differentiation, many authors have considered 

the case where even though the two products are offered at the same price, one captures 

the whole demand because of its better quality. This case is referred to as vertical differ-

entiation and has been examined by Mussa and Rosen (1978), Gabszewicz and Thisse 

(1979), Shaked and Sutton (1983), and Motta (1993). The conceptual framework used in 

this study builds on the vertical product differentiation models of Wauthy (1996) and 
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Motta (1993). Although there are a number of hosts on Airbnb in a city, most of them 

compete with a small number of competitor(s) within a range, e.g., one or two miles. We 

therefore consider the following two-stage game based on duopolistic competition. Hosts 

choose the quality of their room in the first stage, and in the second stage, they compete 

for the price given these qualities. We suppose costs are fixed 𝑐𝑐(𝑠𝑠𝑖𝑖) =  𝑠𝑠𝑖𝑖
2

2
 and are in-

curred during the first stage of the game. At the second stage, as in Motta (1993), firms 

incur a constant production cost. The cost for quality development in the first stage is 

considered as a sunk cost in the second stage.   

Guests have an identical indirect utility function with the following preferences:  

𝑢𝑢 = �𝜃𝜃𝑠𝑠 − 𝑝𝑝 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑔𝑔𝑢𝑢𝑒𝑒𝑠𝑠𝑡𝑡 𝑟𝑟𝑒𝑒𝑟𝑟𝑡𝑡𝑠𝑠 𝑡𝑡ℎ𝑒𝑒 𝑎𝑎𝑝𝑝𝑎𝑎𝑟𝑟𝑡𝑡𝑎𝑎𝑒𝑒𝑟𝑟𝑡𝑡 𝑜𝑜𝑖𝑖 𝑞𝑞𝑢𝑢𝑎𝑎𝑞𝑞𝑖𝑖𝑡𝑡𝑞𝑞 𝑠𝑠 𝑎𝑎𝑡𝑡 𝑝𝑝𝑟𝑟𝑖𝑖𝑐𝑐𝑒𝑒 𝑝𝑝
0                               𝑖𝑖𝑖𝑖 ℎ𝑒𝑒 𝑑𝑑𝑜𝑜𝑒𝑒𝑠𝑠 𝑟𝑟𝑜𝑜𝑡𝑡 𝑟𝑟𝑒𝑒𝑟𝑟𝑡𝑡                                          (2.1) 

where 𝜃𝜃 ∈ �𝜃𝜃,𝜃𝜃�  is a taste parameter uniformly distributed with unit density. The 

mass of guests is ∫ 𝑑𝑑𝑑𝑑1
0 = 1 − 0 = 1 and the cumulative distribution 𝐹𝐹(𝜃𝜃) = ∫ 𝑑𝑑𝑑𝑑𝜃𝜃

0  is the 

fraction of guests with a taste parameter lower than 𝜃𝜃. Guests with higher taste parame-

ters are willing to rent (pay for) a room of higher quality.   

the s term represents the quality and the higher the quality of the room, the higher 

the utility reached by the guest. We have a high-quality host 𝑠𝑠2 and a low-quality one 𝑠𝑠1 

with 𝑠𝑠2 > 𝑠𝑠1 and quality differential  ∆𝑠𝑠 = 𝑠𝑠2 − 𝑠𝑠1 > 0     (2.2) 

There is a lower bound to the level of quality since hosts need to meet a minimum 

quality standard before posting their room on the platform. Using backward induction, we 

will solve for the sub-game perfect Nash equilibrium.  
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A guest is indifferent between quality 1 and quality 2 if he has a taste parameter 

that satisfies:  𝜃𝜃�𝑠𝑠1 − 𝑝𝑝1 = 𝜃𝜃�𝑠𝑠2 − 𝑝𝑝2        =≫       𝜃𝜃� = 𝑝𝑝2−𝑝𝑝1
∆𝑠𝑠

     (2.3) 

A guest is indifferent between renting on Airbnb and not renting at all if he has a 

taste parameter that satisfies: 𝜃𝜃�𝑠𝑠1 − 𝑝𝑝1 = 0       =≫       𝜃𝜃� = 𝑝𝑝1
𝑠𝑠1

   (2.4) 

From (2.3) and (2.4) we derive that a guest with a taste parameter 𝜃𝜃 ≥ 𝜃𝜃� rents the 

apartment of quality 2 and the proportion of guests who rent the room of quality 2 is:  

∫ 𝑖𝑖(𝑥𝑥)𝑑𝑑𝑥𝑥𝜃𝜃
𝜃𝜃� = 𝐹𝐹�𝜃𝜃� − 𝐹𝐹�𝜃𝜃�� = 𝜃𝜃 − 𝑝𝑝2−𝑝𝑝1

∆𝑠𝑠
      (2.5)      

and guests who rent the room of quality 1 have a taste parameter  𝜃𝜃� > 𝜃𝜃 ≥  𝑝𝑝1
𝑠𝑠1

 and their 

proportion is:    

 ∫ 𝑖𝑖(𝑥𝑥)𝑑𝑑𝑥𝑥𝜃𝜃�
𝜃𝜃� = 𝐹𝐹�𝜃𝜃�� − 𝐹𝐹�𝜃𝜃�� = 𝑝𝑝2−𝑝𝑝1

∆𝑠𝑠
− 𝑝𝑝1

𝑠𝑠1
     (2.6) 

We derive the demands for high and low qualities hosts:  

�
𝑞𝑞1(𝑝𝑝1,𝑝𝑝2) = 𝑝𝑝2−𝑝𝑝1

∆𝑠𝑠
− 𝑝𝑝1

𝑠𝑠1

𝑞𝑞2(𝑝𝑝1,𝑝𝑝2) = 𝜃𝜃 − 𝑝𝑝2−𝑝𝑝1
∆𝑠𝑠

      (2.7) 

In Nash equilibrium, firms choose their price to maximize their profit given by: 

∏ = [𝑝𝑝𝑖𝑖 − 𝑐𝑐)]𝑞𝑞𝑖𝑖𝑖𝑖          (2.8)  

with 𝑐𝑐 the constant unit production cost. We can set the constant unit cost to 0 and 

the first order condition gives   

  𝑞𝑞𝑖𝑖 + 𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝑝𝑝𝑖𝑖

𝑝𝑝𝑖𝑖 = 0       (2.9) 
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Solving for prices in the first order conditions and using results from equation 

(2.7) give the following reaction functions: 

�
𝑝𝑝1𝑅𝑅 = 𝑝𝑝1 = 1

2
𝑠𝑠1
𝑠𝑠2
𝑝𝑝2

𝑝𝑝2𝑅𝑅 = 𝑝𝑝2 = 1
2

(𝑝𝑝1 + 𝜃𝜃∆𝑠𝑠)
      (2.10) 

From equation (2.10) we can derive the equilibrium prices set by the high and 

low-quality hosts:              �
𝑝𝑝1∗ =  𝑠𝑠1∆𝑠𝑠𝜃𝜃

4𝑠𝑠2−𝑠𝑠1

𝑝𝑝2∗ =  2𝑠𝑠2∆𝑠𝑠𝜃𝜃
4𝑠𝑠2−𝑠𝑠1

      (2.11)  

Motta (1993) shows that these are Nash equilibrium prices. We can also derive:  

𝑝𝑝2∗ − 𝑝𝑝1∗  = ∆𝑠𝑠(2𝑠𝑠2−𝑠𝑠1)𝜃𝜃
4𝑠𝑠2−𝑠𝑠1

> 0      (2.12) 

Equation (2.12) implies that, in equilibrium, high-quality hosts set higher prices 

compared to low-quality hosts.  

Substituting (2.12) into (2.7) gives the equilibrium demand:  

 �
𝐷𝐷1∗ = 𝑠𝑠2𝜃𝜃

4𝑠𝑠2−𝑠𝑠1

𝐷𝐷2∗ = 2𝑠𝑠2𝜃𝜃
4𝑠𝑠2−𝑠𝑠1

        (2.13) 

Since we are interested in the effect of the rival’s price on the host 𝑖𝑖 price, we can 

derive: 

�

𝜕𝜕𝑝𝑝1𝑅𝑅

𝜕𝜕𝑝𝑝2
= 1

2
𝑠𝑠1
𝑠𝑠2

> 0
𝜕𝜕𝑝𝑝2𝑅𝑅

𝜕𝜕𝑝𝑝1
= 1

2
> 0

       (2.14) 
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This predicts that prices are strategic complements. When a host increases its 

price, its rival also increases his price. When the low-quality host price increases his 

price, the response of the high-quality host is stronger than the reaction of the low-quality 

host following an increase in price by the high-quality host:  

𝜕𝜕𝑝𝑝1𝑅𝑅

𝜕𝜕𝑝𝑝2
= 1

2
𝑠𝑠1
𝑠𝑠2

< 1
2

= 𝜕𝜕𝑝𝑝2𝑅𝑅

𝜕𝜕𝑝𝑝1
        (2.15) 

 

2.5. Data and Methods  

2.5.1. Data  

The data used in this study are from the Airbnb platform for Boston and were 

retrieved from Inside Airbnb1 during the month of September 2016. Airbnb is a short-

term rental platform that offers lodging to travelers. It connects individuals who want to 

rent their apartment to temporary visitors. Airbnb charges both the host and the guest a 

service fee by facilitating the transaction between the two parties.  

We have data for 2,051 individual hosts on Airbnb in our sample, which is 

concatenated with data from other sources. The Airbnb data contains the characteristics 

of the apartment offered, its geographic coordinates, the price per night, and the reviews 

by previous guests. Using sentiment analysis, the opinions in the reviews are mined, and 

                                                       
1 Inside Airbnb is an independent, non-commercial set of tools that collects and facilitates the access to 
publicly available information about a city's Airbnb listings. 
 



16 
 

a score is derived. The mean score of the reviews for each room is used as a proxy for the 

quality of the room2.   

The Airbnb data is combined with economic data for the Boston area derived 

from the American Community Survey at the tract level. Shapefiles of the parks, trans-

portation system and central business district are joined to the Airbnb data set using 

ArcGIS. Table 2.1 presents a detailed description and the summary statistics of the varia-

bles utilized in this study. We include several key characteristics of an apartment (that is 

price, number of persons a room can accommodate, number of bathrooms and bedrooms 

in the apartment, score derived from a sentiment analysis of reviews, and the number of 

reviews the room received) and some neighborhood variables including the distances to 

the nearest convention center and train station and measures of income and education 

level. 

 

                                                       
2 Details on the opinion mining using sentiment analysis are presented in the next section.  
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 Table 2.1: Description and summary statistics of the variables 

Variable  Description  Size  Mean Std Dev Minimum Maximum 

 
Structural Variables 

Price  Apartment rental price (dependent variable)  2,051 165.19 114.49 20 1300 

Accommodate  Number of persons the room can accommodate   2,051 3.11 1.86 1.00 16.00 

Bathroom  Number of bathrooms in the apartment  2,051 1.18 0.49 0.00 6.00 

Bedrooms  Number of bedrooms in the apartment  2,051 1.26 0.79 0.00 5.00 

Review score   The score derived from sentiment analysis of the 
reviews 

2,051 10.81 4.75 -8 47 

Number of reviews  Number of reviews per rooms rented on Airbnb  2,051 10.96 12.74 1 82 
 

Neighborhood variables 

Convention Euclidian distance (in feet) to the closest conven-
tion center  

2,051 8,247.94 7,716.91 73.97 41,733.11 

MBTA Euclidian distance (in feet) to the closest train sta-
tion   

2,051 1,782.66 2,128.51 35.07 17,950.10 

Income Per capita income at the closest census tract  2,051 51,282.59 29,310.81 7,011.00 120,813.00 

Graduate Percentage of the tract median family with at least 
a bachelor’s degree  

2,051 60.43 23.98 5.40 88.90 



 

2.5.2. Derivation of quality scores with sentiment analysis of the reviews 

Natural language processing and linguistic techniques provide the foundation for 

sentiment analysis, which has been used in recent years to derive opinions from texts (Hu 

and Liu, 2004, Popescu and Etzioni, 2007, Ye, et al., 2009). This approach is used here to 

mine the opinions in the reviews left by guests on Airbnb and derive a quality score from 

those reviews. AFINN’s general purpose lexicon helped extract the sentiments from the 

words used by the reviewers. AFINN was developed by Nielsen (2011) and is a lexicon 

based on unigrams (single words). The lexicon contains English words where each uni-

gram is assigned a score that varies between minus five (-5) and plus five (+5). The nega-

tive scores indicate negative sentiments and positive scores indicate positive sentiments. 

The newest version of the lexicon, AFINN-111, which contains 2,477 words and phrases, 

is used. To perform the analysis on sentiment, the words used in each review are assigned 

an opinion score, and the total score of a review is given by the sum of the scores of the 

words in that review. Specifically, the following procedure is followed: 

- The reviews are cleaned of punctuation, numbers, extra spaces and non-textual 

contents.  

- Irrelevant words are removed using “stopwords” with English as the language of 

reference. Stopwords are words such as “I,” “the,” “a,” “and” that do not add 

value to a review.  

- Each word is replaced by its stem (the root of the word).  

- Each stem is then matched with a word or unigram in the list of sentiment words 

in the AFINN lexicon. If a match is found in the lexicon, the stem is attributed the 

score of the match.  
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- The final score of a review is the sum of the sum of the scores of positive and 

negative matches.  

Table 2.2 presents a sample of the reviews and the scores associated with them. 

Airbnb estimates that 70% of the guests provide a review on their experience. Only the 

reviews written in 2016 were used for our analysis since customers on online platforms 

focus on more recent comments (Pavlou and Dimoka, 2006). Our algorithm is built to 

detect sentiment in reviews written in English, we use Cavnar and Trenkle (1994) N-

gram-based approach for text categorization to retrieve the reviews written in English. 

The N-gram-based approach has been shown to achieve a 99.8% correct classification 

rate when used to classify articles written in different languages on the Usernet news-

group (Cavnar and Trenkle, 1994). We use the texcat package (Feinerer, et al., 2013) for 

the review categorization. This package replicates and reduces redundancy in the Cavnar 

and Trenkle (1994) approach. Figure 2.1 presents the frequency of the languages that ap-

peared in the reviews; notice that almost all the reviews are written in English. On 

Airbnb, an automatic review is generated when hosts cancel the booking prior to arrival. 

Those reviews are dropped from the dataset. In total, 22,651 reviews were mined and the 

average of the review score per room is used as a proxy for the room quality.  

 



 

Table 2.2: Sample of reviews and their score 

Reviews3  Score  

Check-in/check-out was easy and it waa easy to get to the house from the metro station which took me only 5 mins or 

even less. The house was clean but only problem was that there was only one bathroom but other than, the house is a 

perfect place to stay. 

5 

We stayed at Alex place for 2 nights and are totally happy that we have chosen it. The bed was comfy, the room was 

very nice and the host and her husband are super friendly. 

11 

This place was a great little place to stay and call you own for how ever long you need. only a few minute walk to the 

Boston Commons and public transportation. A lot of great little shops just around the corner. I highly recommend this 

place if you just need a little get away for a few days!!! Thanks again Paige 

10 

The apartment was perfect for our family. Check in and check out was easy, the apartment was clean and quiet, decent 

sized kitchen. Location is awesome. We had a great time. 

14 

                                                       
3 The reviews are presented as written on Airbnb; we did not correct the typos.  
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Figure 2.1: Frequency of the languages used to write the reviews on Airbnb in Boston 

 

2.5.3. Empirical estimation procedure: The Spatial Autoregressive Model 

The Moran’s I statistic and the Lagrange multiplier are used to test for the pres-

ence of spatial effects in the price data.  Results of the tests in tables 2.3 and 2.4 indicate 

the presence of spatial dependence through the spatial lagged price.  
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Table 2.3: Moran I test 

Weights matrix threshold  Moran I p-value  

1 mile  0.19 0.000 

3 miles  0.07 0.000 

5 miles 0.007 0.000 

 

Table 2.4: OLS regression diagnostic test for spatial dependence 

Test Value and significance per weigh matrix  

 1 mile 3 miles  5 miles  

Spatial autocorrelation (error)  0.009*** -0.0009***  0.0004*** 

Lagrange Multiplier (SARMA) 67.53*** 5.98*  3.58 

Lagrange Multiplier (error) 10.28*** 0.74  0.36 

Lagrange Multiplier (lag) 66.76*** 4.70**  3.49* 

Robust LM (error) 0.77** 1.27  0.09 

Robust LM (lag) 57.25*** 5.23**  3.22** 
Note: * denotes that the estimates are significant at 10% and ** and *** denote that they are significant at 5% and 1% 
level. 

Ordinary Least Squares (OLS) is known to produce biased, non-consistent and in-

efficient estimates in the presence of spatial association in the form of spatial dependence 

or spatial autocorrelation (Anselin, 1988, Anselin and Bera, 1998), so a spatial hedonic 

price model is used for estimation. The spatial autoregressive model (SAR) accounts for 

the presence of a spatial lag dependent variable. The model is specified as follows:  

𝑃𝑃 =  𝜌𝜌𝜌𝜌𝑃𝑃 +  𝑋𝑋𝑋𝑋 + 𝜀𝜀         (2.16) 

where the dependent variable P is the n by 1 vector of the renting prices. The Box-Cox 

transformation suggests a log transformation of the price variable as the functional form 

that best fits the data. W is an n by n spatial distance matrix. We use 1 mile as the dis-
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tance threshold. X is an n by k matrix of exogenous explanatory variables with a constant 

term vector. It includes the structural characteristics of the apartment such as the number 

of bathrooms, the number of people it can accommodate, the type of room, the 

cancellation policy, the number of reviews, and the quality of the apartment (sentiment 

score). It also includes neighborhood characteristics such as the distance to the nearest 

convention center, distance to the nearest bus or train stop, the area’s unemployment rate, 

and level of education.  

the 𝑋𝑋 term is a k by 1 vector of coefficients of the explanatory variables; 𝜀𝜀 is the 

independent error term which follows a normal distribution with zero mean (0𝑛𝑛 𝑥𝑥 1) and a 

constant variance (𝜎𝜎2); 𝜌𝜌 is the price spatial lag (WP) coefficient. Mobley, et al. (2009) 

and Mobley (2003) show that the coefficient 𝜌𝜌 on the spatial lag price variable identifies 

strategic response of hosts to price changes. Price complementarity corresponds to a posi-

tive spatial lag coefficient while substitutability corresponds to a negative spatial lag 

coefficient. If the prices are strategic complements, the expectation is that the sign of 𝜌𝜌 is 

positive. 

According to Anselin (1988), estimating equation (2.16) with maximum likeli-

hood will produce consistent and efficient estimates. Contrary to the OLS model, the co-

efficients on the regressors in equation (2.16) are not the marginal impacts of a one unit 

increase in their value on the dependent variable (Gravelle, et al., 2014, Le Gallo, et al., 

2003, Lesage, 2008). The reduced form of the equation (2.16) gives the intuition behind 

this result: 

(𝐼𝐼 − 𝜌𝜌𝜌𝜌)𝑃𝑃 =  𝑋𝑋𝑋𝑋 +  𝜀𝜀         (2.17) 
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Which can be rearranged as 

   𝑃𝑃 =  (𝐼𝐼𝑛𝑛 − 𝜌𝜌𝜌𝜌)−1𝑋𝑋𝑋𝑋 +  (𝐼𝐼𝑛𝑛 − 𝜌𝜌𝜌𝜌)−1𝜀𝜀       (2.18) 

This is useful in examining the partial derivative of 𝑃𝑃𝑖𝑖 with respect to change in 

the 𝑗𝑗, 𝑟𝑟th variable 𝑥𝑥𝑗𝑗𝑗𝑗: 

𝜕𝜕𝑃𝑃𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗𝑗𝑗

= (𝐼𝐼𝑛𝑛 − 𝜌𝜌𝜌𝜌)−1(𝐼𝐼𝑛𝑛𝑋𝑋𝑗𝑗)𝑖𝑖𝑗𝑗          (2.19) 

 The partial derivative here is different from the usual OLS scalar derivative ex-

pression 𝑋𝑋𝑗𝑗. Instead, the partial derivative is an n-by-n matrix. The partial derivative on 

off-diagonal elements (𝑗𝑗 ≠ 𝑖𝑖) are different from zero (which would be the case with 

OLS). This shows that changes in the explanatory variable of any host on Airbnb can af-

fect the price of all the hosts on the platform. The own partial derivative is referred to as 

the direct effect and is captured by the diagonal element of (𝐼𝐼𝑛𝑛 − 𝜌𝜌𝜌𝜌)−1(𝐼𝐼𝑛𝑛𝑋𝑋𝑗𝑗)𝑖𝑖𝑖𝑖. The 

indirect or spillover effect corresponds to the off-diagonal elements of the matrix (when 

𝑗𝑗 ≠ 𝑖𝑖).  Averaged over all observations, these measures give the average direct effect, the 

average indirect effect and the average total effect (Lesage, 2008). Changes in the quality 

variable are used to illustrate each of these effects. If a host 𝑖𝑖 improves the quality of his 

room, the average direct effect measures the average impact on price for host 𝑖𝑖 (averaged 

other all observations). The impact of the change in room quality by all the other hosts on 

host 𝑖𝑖’s price (averaged over all observations) is given by the average indirect effect. Fi-

nally, the total average effect measures the impact on price of changes in all hosts quality. 

It is equal to the average direct effect plus average indirect effect.     
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2.6. Econometric results and discussion 

Four models were estimated: Model I uses Ordinary Least Squared (OLS); Model 

II uses the Spatial Autoregressive (SAR) model with 1 mile as the distance threshold 

weight matrix and the spatial lag as the only explanatory variable; Model III is also a 

SAR, but with the quality variable added to the spatial lag; and finally, model IV uses all 

the explanatory variables. We use the package spdep (Bivand, et al., 2013, Bivand and 

Piras, 2015) in R (R Core Team, 2017) for estimations. We also conduct a series of sensi-

tivity tests. First, we perform a linear mixed effects analysis by including a random effect 

at the census tract level. Second, we vary the spatial weight matrix by increasing it to 3 

and 5 miles. Third, we use a unidimensional measure of quality and six disaggregated 

alternative measure of quality.  

Results of the OLS regression and maximum likelihood estimation of the Spatial 

Autoregressive (SAR) models are presented in Table 2.5. The sign and significance level 

of the estimates are consistent across the four models. The AIC is lower in the SAR mod-

els compared to the OLS model, indicating a better fit. The Lagrange Multiplier test on 

spatial error dependence in the SAR models does not reveal a spatial dependence in the 

residual errors and we use robust standard errors for our estimates.  

Results of the theoretical model predict that hosts will compete for prices in the 

short-term rental market; prices are expected to be strategic complements. The spatial 

autoregressive coefficient is positive and highly significant (e.g., a parameter of 0.33 in 

the last SAR specification). This indicates that room prices are strategic complements on 

Airbnb in Boston. A price increase by one host leads to a price increase by its neighbors. 
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Table 2.5: Estimates of the spatial lag regressions with 1 mile as weight matrix  

Variables 
Dependent variable: lnPrice 

OLS SAR 
I II III IV 

W_LnPrice  0.92*** 
(0.02) 

0.92*** 
(0.02) 

0.33*** 
(0.08) 

Intercept  4.59*** 
(0.19) 

0.35*** 
(0.11) 

0.21*** 
(0.02) 

2.60*** 
(0.19) 

Accommodate  0.12*** 
(0.01) 

  0.12*** 
(0.01) 

Accommodate^2 -0.006*** 
(0.001) 

  -0.006*** 
(0.001) 

Bathroom 0.08*** 
(0.01) 

  0.08*** 
(0.01) 

Bedroom 0.17*** 
(0.01) 

  0.17*** 
(0.01) 

Review score   0.01*** 
(0.001) 

 0.013*** 
(0.002) 

0.01*** 
(0.001) 

Number of reviews  -0.002*** 
(0.0005) 

  
 

-0.002*** 
(0.0005) 

Room_type Private Room  -0.43*** 
(0.01) 

  -0.41*** 
(0.02) 

Shared Room -0.68*** 
(0.04) 

  -0.68*** 
(0.04) 

Cancellation Poli-
cy 

Moderate  0.05*** 
(0.02) 

  0.06** 
(0.06) 

Strict  0.02 
(0.01) 

  0.03 
(0.01) 

Super-strict  0.25*** 
(0.06) 

  0.27*** 
(0.03) 

Log Distance  Convention -0.15*** 
(0.008) 

  -0.07*** 
(0.008) 

MBTA -0.003 
(0.009) 

  -0.005 
(0.009) 

Log Education 0.09*** 
(0.01) 

  0.06** 
(0.02) 

Log Income 0.06*** 
(0.01) 

  0.05** 
(0.02) 

AIC 1158 3097.2 3064.3 1104.2 
LM test for residual autocorrelation  0.77*** 0.21 0.44 0.13 
Note: * denotes that the estimates are significant at 10% and ** and *** denote that they are significant at 5% and 1% 
level. Robust standard errors are in parenthesis  



27 
 

The SAR estimates are not the partial derivatives as shown by equation (2.19); 

Table 2.6 decomposes the total effect for variables into its direct and indirect compo-

nents.  

Table 2.6: Direct, indirect and total effects of the impact of the regressors on room price 

Variables Impacts  

Direct Indirect Total 
Accommodate  0.126*** 0.061*** 0.188*** 

Accommodate^2 -0.006*** -0.003*** -0.009*** 

Bathroom 0.082*** 0.040*** 0.122*** 

Bedroom 0.170*** 0.083*** 0.253*** 

Review score   0.010*** 0.004*** 0.015*** 

Number of reviews  -0.002*** -0.001*** -0.003*** 

Room_type Private Room  -0.420*** -0.205*** -0.626*** 

Shared Room -0.682*** -0.334*** -1.016*** 

Cancellation Policy Moderate  0.063*** 0.031*** 0.094*** 

Strict  0.031 0.015 0.046 

Super-strict  0.273*** 0.134*** 0.407*** 

Log Distance  Convention -0.076*** -0.037*** -0.114*** 

MBTA -0.005 -0.002 -0.008 

Education 0.063*** 0.031*** 0.094*** 

Income 0.052*** 0.025*** 0.078*** 
Note: * denotes that the estimates are significant at 10% and ** and *** denote that they are significant at 5% and 1% 
level.  

 

The results of the estimation show that the coefficients of the structural variables 

such as the number of persons the room can accommodate, the number of bathrooms, and 

the number of bedrooms are positive and statistically significant. Listings with more bed-

rooms, more bathrooms and that can accommodate more persons tend to set higher pric-
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es. This is consistent with the previous literature on the hotel industry (Cirer Costa, 2013, 

de Oliveira Santos, 2016, Espinet, et al., 2003). When a quadratic term for the number of 

persons a room can accommodate is included, this variable exhibits a diminishing mar-

ginal effect on price. Changes that increase the number of persons a room can accommo-

date has a larger impact on price for hosts whose rooms accommodate fewer persons than 

for hosts whose room accommodate larger number of guests up to the turning point of 10 

(0.188/(-2*-0.009)) persons. The number of bedrooms in the apartment has a larger im-

pact on price (25.3) than the number of bathrooms (12.2 percent).  

The theoretical model predicts that hosts with high-quality rooms will set a higher 

price compared to hosts with low-quality rooms. The coefficient on the review score var-

iable allows us to test if price is affected by room quality. As in the hotel marketing lit-

erature, our estimation result confirms expectation. Review score has a highly significant, 

positive and similar coefficient across all the regression models (a parameter of 0.01 in 

all specifications in table 5), implying that quality impacts room price. Based on table 6, 

the result suggests that a one point increase in review score will increase room price by 

1.5 percent. A third of this impact on price comes from the indirect impact from hosts 

located nearby (as they increase their prices in response).  This confirms the existence of 

a spillover effect. The number of reviews also is relevant in explaining price. Airbnb es-

timates that 70% of guests provide a review on their host. The number of reviews is used 

to approximate the demand for rooms. The negative sign for the coefficients largely 

reflects the law of demand; the demand for higher price rooms is smaller.   

Estimates of the impact of the room type on price show that shared rooms and 

private rooms, compared to entire homes, are cheaper. A shared room is the cheapest 
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among all three. The coefficients for the dummy variables associated with these variables 

are significant and negative. Shared rooms are 68.2 percent cheaper than entire homes 

while private room are only 42.0 percent cheaper.   

The coefficients on the dummies for cancellation policies show that, compared to 

a flexible cancellation policy, hosts who use moderate, strict and super-strict cancellation 

policies set higher prices. The cancellation policy can be seen as a segment differentiation 

strategy by hosts. As figure 2 shows, average price increases with stricter cancellation 

policies.  

 
Figure 2.2: Boxplot of price by cancellation policy 

 

To test if the impact of review varies by lodging segment, the SAR model was run 

for each segment. Results in table 2.7 indicate that, except for moderate cancellation poli-

cy, the impact of quality on room price decreases as we move from flexible to super-strict 

cancellation policy. The impact of quality on price for super-strict cancellation policy 
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segment is not significant at 5% confidence level. Zhang, et al. (2011) found similar re-

sults when studying the determinants of hotel room prices. When considering lodging 

segments, they found a positive impact of quality on room price for economy and mid-

scale hotels. However, for luxury hotels, quality does not affect room price. For the high-

er lodging segment, quality is no longer a differentiation factor. In Boston, all the hosts 

who use a super-strict cancellation policy offer an entire home or apartment for rent on 

the Airbnb platform. For these hosts, the quality of their room is already embedded in the 

type of room they offer.  

Table 2.7: Decomposition of the impact of review score for flexible, moderate, strict and 
super strict cancellation policies  

Segments  Impacts of review score  

Direct Indirect Total 

Flexible  0.015*** 0.001*** 0.016*** 

Moderate  0.003*** 0.001*** 0.005*** 

Strict  0.010*** 0.001*** 0.012*** 

Super strict  0.007* 0.000* 0.007* 
Note: * denotes that the estimates are significant at 10% and ** and *** denote that they are significant at 5% and 1% 
level.  

 

Proximity to amenities has been shown to affect the price in hedonic price models 

in previous studies. Our results indicate that only the distance to the nearest convention 

center has the sign and significance level as expected. Participation in conferences for a 

short-term period is among the reasons guests book rooms on Airbnb. The results of our 

estimation support why hosts that are located closer to convention centers set higher pric-

es compared to hosts that are located further away from them. A one percent decrease in 

the distance that separates a room from the nearest convention center leads to a 0.11 per-
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cent increase in price. The distance to the closest train station does not affect price, as ev-

idenced by the non-significance of its coefficient.  

Among the socioeconomic variables, the coefficients for education and income 

per capita are positive and significant. We attribute the result to the theory of demand for 

housing (Green and Hendershott, 1996). Neighborhoods with higher education and 

income levels are more desirable, increasing the demand for houses in those 

neighborhoods. High demand leads to high rental prices and consequently high prices for 

the rooms rented on Airbnb. A one percent increase in the percentage of families with at 

least a bachelor degree in the census tract where the room is located leads to a 0.09 

percent increase in the room price. A similar change in income leads to a 0.07 percent 

increase in price.  

2.7. Sensitivity analysis   

A series of alternative specifications are estimated for robustness checks. The es-

timation procedure is replicated with a linear mixed effects model. The same controls are 

used as fixed effects variables. A random effect at the census tract level is added to char-

acterize idiosyncratic variation that is due to census tract differences. The census tract 

might be a source of non-independence that needs to be considered within the model. We 

test for the significance of the spatial lag price and review score variables using likeli-

hood ratio tests. P-values are obtained, and a likelihood ratio test is performed on the full 

model with respect to the spatial lag price and with respect to the review score against the 

model without these variables.  The lme4 package (Bates, et al., 2015) is used in the es-

timation of the linear mixed model estimation. Table 2.8 presents the log-likelihood ratio 

test results.  
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Table 2.8: Likelihood ratio tests for the statistical significance of price lag and quality 

variables in the linear mixed effects models 

  Estimates   AIC BIC LogLik Deviance Chi-
square 

Test for lag 

price 

Model without price lag  1069 1170 -516 1033  

Model with price lag  0.25 1039 1146 -500 1001 31.82*** 

Test for quali-

ty  

Model without quality  1083 1184 -523 1047  

Model with quality  0.007 1039 1146 -500 1001 45.92*** 

Note: * denotes that the estimates are significant at 10% and ** and *** denote that they are significant at 5% and 1% 
level.  

 

The results of the linear mixed effects models confirm the spatial autoregressive 

model results. The spatial lag price affects price (χ2 (1) = 31.82, p=0.000), increasing it 

by about 0.33 ± (0.05). The review score also affects room price (χ2 (1) = 45.92, 

p=0.000) increasing it by 0.01 ± (0.001). The coefficients for both review score and lag 

prices are consistent with our assumption. Prices are strategic complements, and hosts 

with rooms of high-quality set higher prices compared to hosts of low-quality rooms.  

The full SAR specification regression is also estimated with 3 and 5 miles as 

weight matrices. Increasing the threshold of the weight matrix allows the hosts to have a 

larger number of competitors. The results of the estimates are presented in table 2.9. The 

sign of the estimates for both the review score and the spatial lag price is consistent with 

the results obtained using 1 mile as a weight matrix. The size of the spatial lag coefficient 

estimates in the 3 and 5 miles weight model are lower than its size in the 1-mile weight 

model, indicating, not surprisingly, that competition between hosts decreases as we in-

crease the distance between them. Hosts located further away from each other compete 

less.  
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Finally, for a sensitivity check, other measures of quality are considered. First, we 

use a unidimensional measure of quality that measures the overall satisfaction of the 

guests. The unidimensional measure is similar to the single rating score commonly used 

on many online platforms. Second, we consider six disaggregated measures of quality, 

which are ratings by guests of specific aspects of the services provided by their hosts. 

These measures are accuracy, cleanliness, check-in, communication, location and the 

value of the apartment. The quality measure related to the accuracy of the listing reflects 

how accurate the description of the apartment on the Airbnb platform is compared to the 

guest’s experience. The quality rating cleanliness evaluates the cleanliness of the property 

including the rooms, bathrooms and common areas. The quality of the check-in relates to 

how welcome the guest felt when he/she first arrived.  

Communications with the hosts as a quality measure provides an evaluation of 

how long it takes the host to respond and the accuracy and usefulness of the host’s re-

sponses. A quality variable for the satisfaction of the guest about the location of the 

apartment in the neighborhood and its proximity to amenities is also considered. The last 

quality measure used for sensitivity check is related to the value of the listing, which 

evaluates the guest satisfaction with paying the room rate for the service received.  
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Table 2.9: Estimates of the spatial lag regression with 3 and 5 miles as weight matrix   

Variables SAR 
3 miles 5 miles 

W_LnPrice 0.09** 
(0.05) 

0.14** 
(0.05) 

Intercept  3.86*** 
(0.56) 

3.86*** 
(0.56) 

Accommodate  0.12*** 
(0.01) 

0.12*** 
(0.01) 

Accommodate^2 -0.006*** 
(0.00) 

-0.006*** 
(0.00) 

Bathroom 0.08*** 
(0.01) 

0.08*** 
(0.01) 

Bedroom 0.17*** 
(0.01) 

0.17*** 
(0.01) 

Review score   0.01*** 
(0.00) 

0.01*** 
(0.00) 

Number of reviews  -0.002*** 
(0.00) 

-0.002*** 
(0.00) 

Room_type Private Room  -0.43*** 
(0.01) 

-0.43*** 
(0.01) 

Shared Room -0.68*** 
(0.05) 

-0.68*** 
(0.05) 

Cancellation Policy Moderate  0.06*** 
(0.02) 

0.05*** 
(0.02) 

Strict  0.03 
(0.01) 

0.02 
(0.01) 

Super-strict  0.26*** 
(0.06) 

0.25*** 
(0.06) 

Log Distance  Convention -0.14*** 
(0.00) 

-0.15*** 
(0.00) 

MBTA -0.002 
(0.01) 

0.001 
(0.01) 

Education 0.09*** 
(0.01) 

0.09*** 
(0.01) 

Income 0.06*** 
(0.01) 

0.06*** 
(0.01) 

AIC 1121 1123 
LM test for residual autocorrelation  7.26*** 0.15 
Note: * denotes that the estimates are significant at 10% and ** and *** denote that they are significant at 5% and 1% 
level. Robust standard errors are in parenthesis  

 



35 
 

Results of the coefficients of these variables in the OLS and SAR regressions 

(specified as in model IV with all the explanatory variables) are presented in table 2.10. 

The results of the regressions of price on each of the different measures of quality show 

consistent, positive and significant coefficients providing substantial evidence to support 

the theoretical hypothesis that quality affects the price. The average impact of each of the 

quality variables on the price was decomposed into its direct, indirect and total effect. 

The results presented in table 2.11 show that for all the quality variables the average di-

rect effect on room price is higher than the indirect effect. Policies that provide an incen-

tive for hosts to improve the quality of their room have a direct positive impact on the 

price of their room on Airbnb but also an indirect positive impact on the other hosts in 

their neighborhood.  

The size of the unidimensional measure of quality is significantly lower compared 

to the other measures. Among the disaggregated measures of quality, cleanliness has the 

highest impact on price (6.8 percent) followed by accuracy (4.9 percent). Value has the 

lowest impact (3.2 percent). The impact of the unidimensional measure of quality on 

price is less than one-third of the impact of value, the lowest disaggregated measure of 

quality. This confirms Li and Hitt (2010) results where the unidimensional measure of 

quality has been shown to be more associated with the product value than to its quality. 

All the impacts (direct, indirect, and total) of the review score generated through senti-

ment analysis are closer to the impacts of the disaggregated measures of quality com-

pared to the unidimensional measure. This result suggests that sentiment analysis of the 

reviews will better approximate quality than the unidimensional measure of quality and 
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using the unidimensional measure of quality will create a downward bias of the estimate 

of the impact of quality on price.   

Table 2.10: Impact of alternative measures of quality on price  

Quality Variables  OLS  SAR 
Review score  0.01*** 

(0.00) 
0.01*** 
(0.000) 

Unidimensional measure of quality  0.007*** 
(0.00) 

0.006*** 
(0.00) 

Accuracy  0.04*** 
(0.00) 

0.04*** 
(0.00) 

Cleanliness  0.06*** 
(0.00) 

0.06*** 
(0.00) 

Check-in  0.04*** 
(0.00) 

0.04*** 
(0.00) 

Communication  0.04*** 
(0.00) 

0.04*** 
(0.00) 

Location  0.03*** 
(0.00) 

0.03*** 
(0.00) 

Value  0.03*** 
(0.00) 

0.03*** 
(0.00) 

Note: * denotes that the estimates are significant at 10% and ** and *** denote that they are significant at 5% and 1% 
level. Robust standard errors are in parenthesis  

 

Table 2.11: Decomposition estimates of the direct and indirect effects of quality variables 

on rooms' prices 

Quality Variables  Direct   Indirect  Total  
Review score  0.010*** 0.004*** 0.015*** 

Unidimensional measure of quality 0.006*** 0.003*** 0.010*** 

Accuracy  0.049*** -0.000*** 0.049*** 

Cleanliness  0.068*** -0.000*** 0.068*** 

Check-in  0.043*** -0.000*** 0.043*** 

Communication  0.043*** -0.000*** 0.043*** 

Location  0.036*** -0.000*** 0.036*** 

Value  0.032*** -0.000*** 0.032*** 

Note: * denotes that the estimates are significant at 10% and ** and *** denote that they are significant at 5% and 1% 
level. 
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Among the quality variables, cleanliness has the strongest effect on the price of 

the rooms, followed by accuracy.  Cleanliness seems to be the most important quality 

variable that affects price. This result is consistent with de Oliveira Santos (2016) who 

studies more than 8000 hostels worldwide and identifies cleanliness, location, and facili-

ties as the main characteristics that explain accommodation prices. With the growth of 

online platforms, where reviews can inform prospective guests, these qualities can affect 

demand for hosts’ rooms.  
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2.8. Conclusion  

Online reviews and ratings are largely recognized to impact consumers’ purchase 

decisions especially on online platforms where they serve as proxy for quality of products 

and services. Many studies in the hotel industry literature use rating or single review 

scores to examine the relationship between quality and price. However, evidence from 

the existing literature suggests that single rating measure can lead to biased conclusions 

on the relationship between reviews rating and price since the single measure might not 

represent the complexity of the customer opinion or sentiment about a good or service 

accurately. 

This article contributes to the literature on the impact of quality on price in the 

hospitality industry. Contrary to the existing literature, where unilateral rating review as 

scored by the guest is used as proxy for quality, this study relies on a novel approach to 

derive the score in the reviews. With sentiment analysis, the opinions in the reviews are 

extracted and scored to derive the total score of the review. This study also uses a spatial 

hedonic price model to account for the spatial correlation of price data. Using data from 

Airbnb platform, the results of the empirical analysis suggests that scores derived from 

the sentiment analysis of the reviews are better indicators of quality than single rating 

scores.  

Although disaggregated multidimensional components of quality such as cleanli-

ness, accuracy, communication, location, are better predictors of the listing price than the 

reviews, the latter is still a better proxy for quality than unidimensional rating scores. Re-

views reveal information about the intrinsic quality of the hosts and these reviews affect 

the demand on the Airbnb platform. The reviews affect not only the host price but also 



39 
 

the price of other neighboring hosts. The policy implication for Airbnb is to create incen-

tives or policies for hosts to improve the quality of their listings. This will have spillover 

effects on the price set by other hosts. Cleanliness of the property and accuracy of the 

listing are the two most important quality measures that affect price and the policies 

should be directed towards improving those qualities. 

The theoretical model suggests that when a host increases its price, its rivals also 

increase their price, making them strategic price complements. The results of the 

empirical analysis support the theoretical framework. Other factors, such as the number 

of bedrooms and bathrooms, as well as the number of people a room can accommodate, 

also have a positive effect on the price set by the owners.  
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CHAPTER 3 CHAPTER 3. TEXT-BASED PREDICTIONS OF BEER 
PREFERENCES BY MINING ONLINE REVIEWS  

3.1. Abstract: 

There is an increasing interest in categorizing texts using the words used to write 

the text. The process involves decomposing the texts into the words composing them and 

using the frequency of those words to predict the text polarity. The text categorization 

approach may use single words composing the texts or longer combinations of the words. 

Longer combinations of the words have the advantage of better representing the complex-

ity of human language compared to single words. Moreover, less frequent terms may also 

better discriminate between reviews than more common words.  

This study tests these two hypotheses in the context of beer reviews. It shows that 

the words used in the reviews can be used to predict consumer’s preferences for beer. 

Moreover, it shows that the use of less frequent terms in the predictive models outper-

forms the use of more frequent terms. This confirms Sparck Jones (1972)’s heuristics re-

sults. However, low-level combinations of the words in the reviews better predict con-

sumers’ preferences compared to high-level combinations even though the latter better 

represent the complexity of human languages.  

 

3.2. Introduction  

With the advent of the web 2.0, user-generated-content (UGC) such as reviews 

and comments for online products and services are being generated at an increasing rate 

and are accessible to a large audience on the internet. On online platforms, consumers are 

encouraged to share their experience about various aspects of the products or services 
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(Yu, et al., 2011).  The multiple reviews, comments, and rating left by the consumers car-

ry important about their opinions of the products. Prospective consumers consider this 

information as a form of collective evaluation of products and services quality by previ-

ous consumers (Chen, et al., 2008). They search the reviews for specific features of the 

products and form their opinion based on the evaluation of the features by previous con-

sumers. The presence or absence of specific features in reviews can affect consumers’ 

purchasing decision, suggesting an underlying relationship between the features and the 

perceived quality of online products or services.  

In the last few years, UGCs have received a lot of interest in economics. Senecal 

and Nantel (2004) show that online product recommendations influence consumers’ 

choice. Chen, et al. (2008) show that reviews that are found more helpful have a stronger 

effect on consumers’ choice. Zhang, et al. (2013), Luca (2016), and Floyd, et al. (2014) 

examine the positive influence of online reviews on product sales. These studies rely on 

methods that can extract value from the UGCs and their relationship with product charac-

teristics. For example Schumaker and Chen (2009) use a combination of linguistic, finan-

cial and statistical techniques to predict stock prices. Archak, et al. (2011) uses textual 

representation or text categorization to identify the product features that influence prices. 

In recent years, using text categorization, many studies have investigated the association 

between the features in the reviews and the other measures of quality such as numeric 

rating, thumbs up or thumbs down, and star rating.  

Text categorization relies on unigram or n-gram representations of the reviews to 

predict the review score. A unigram is the result of the decomposition of text into the sin-

gle words used to write the text. Bigrams, trigrams, and n-grams correspond to a decom-
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position of the text into two, three and n-words, respectively. Bigrams correspond to a 

higher-level representation of the text compared to unigram and a lower-level representa-

tion compared to trigram. Low-level n-gram representations do not account for the com-

plexity of the human language. For example, unigrams cannot capture the relationship 

between two words such as a word and its negation (i.e., “good” vs. “not good”) or a 

word and its modifier (i.e., “flavored” vs. “barely flavored”). Bigrams can capture these 

relationships but not the meaning of larger expressions. Conversely, larger n-grams can 

effectively represent longer expressions but do not occur as often in many reviews. A 

word such as “flavor” or an expression such as “best flavor” are more likely in reviews 

than an expression such as “certainly the best-flavored beer. “  

For an n-gram representation of an expression such as “certainly the best-flavored 

beer” different combinations of the words in the expression will be examined. Few ex-

amples of these combinations for a quad-gram are: “certainly best-flavored beer”, the 

original sentence, but also “best-flavored beer certainly”, “certainly beer best-flavored”, 

etc. Only the original sentence is likely to be present in only one review. Its frequency for 

that review is one and zero for the other reviews. The use of larger expressions in an n-

gram representation of the reviews introduces sparsity in the data generated from decom-

posing all the reviews into n-grams. In such sparse data, some reviews have zero occur-

rences for the n-gram representation. Text categorization tasks with sparse data require 

computationally intensive methods capable of identifying and extracting relevant features 

capable of predicting reviews’ scores or polarity (positive or negative reviews). This pa-

per addresses the problem of predicting consumers’ preferences for beer using n-grams 

representation of the reviews left by the consumers online. The n-grams represent the 
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beer features associated with consumers’ preferences expressed as rating scores (consum-

ers rate the products on a scale ranging from 0 to 5). Using a machine learning algorithm, 

the random forest, we examine the performance of unigrams, bigrams, and trigrams in 

predicting consumers’ preferences. We compare two approaches. One uses the frequency 

of the most frequent n-grams (unigrams, bigrams, and trigrams) to predict consumers’ 

preferences. The second uses the least frequent n-grams representations of the reviews 

(inverse frequency). The results show that inverse frequency method better discriminates 

between the reviews in predicting consumers’ preferences.  

The remainder of the paper is organized as follows. Section 2 presents the litera-

ture review of text categorization. Section 3 provides the methodology used to extract the 

features, select the relevant ones and perform the preferences’ prediction using random 

forest. The results are presented in section 4, and section 5 concludes.  

3.3. Literature review  

Text categorization consists of using text contents to identify predefined catego-

ries. This method has received a lot of interest in many fields such as machine learning 

and computational linguistics (Lewis, et al., 2004). In machine learning, text categoriza-

tion involves building a learner capable of identifying the class of a specific text among 

many predefined categories (Zhang and Zhou, 2006). A couple of decades ago, text cate-

gorization tasks were performed manually. Han, et al. (2001) reports that in 1999 a com-

pany such as Yahoo used human experts to categorize online documents. Manual catego-

rization of online texts is time-consuming and prone to errors. The growth of the internet 

has limited the volume of materials that can be manually categorized. Online contents are 

growing in size and diversity. Businesses collect trillions of bytes of data on their ser-
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vices (Domingos and Hulten, 2000, Sati, 2017). IBM (2017) reports that 2.5 quintillion 

bytes of data are created every day. The growth of the internet has also eased the release 

online of published information by millions of content creators (Larson, 2010).  Handling 

these volumes of online contents manually as Yahoo did in 1999 (Han, et al., 2001) 

would be challenging.  

Several computational based methods have been explored to perform the text cat-

egorization task. The methods, which vary from machine learning to numerical methods, 

consider the text as semi-structured data. Some methods use variations that are statistical-

ly detectable in style to classify documents based on their source style (Biber, 1991).  

Other methods exploit the features in the texts to identify their genres (Finn, et al., 2002). 

A conventional approach consists of using the bag of words (BOW) representation of 

texts. In the BOW, the words in the texts represent features so that each text is evaluated 

depending on the presence or absence of the word. The frequency of the occurrence of a 

word in the texts is used to assign them to predefined classes. The words are the attributes 

of the text and the basis for the categorization task. The vector resulting from the decom-

position of a text into the single words used to write the text is called unigram. Bigrams, 

trigrams and n-grams correspond to the vectors equivalent to the decomposition of the 

text into two, three and n-words, respectively. For example, a review that contains an ex-

pression such as “best-flavored beer” would be decomposed into the following unigrams: 

“best”, “flavored”, and “beer”. For each of the unigrams, the reviews will be scored 1 if 

the unigram is present and 0 otherwise. Reviews that have two occurrences of the uni-

gram “beer” have a frequency equals to 2 for this unigram. A bigram representation will 

examine the presence or absence of the two-words combinations of the words used in the 
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expression in each review. The two-word combinations are "best flavored”, “flavored 

best”, “best beer”, “beer best”, “flavored beer”, and “beer flavored”. Each review is eval-

uated based on the frequency of the bigrams.  

The BOW approach applied to reviews poses two main problems. First, the words 

do not appear equally in all the reviews since the online content creators write the re-

views independently from one another. This generates large sparse matrices where some 

words appear only once or a few times in the reviews. Categorization of text in large 

sparse matrices is a computationally intensive task. The second problem related to low-

level BOW approach is the complexity of human language that is not captured by the 

low-level n-gram representations. A single word outside of its context can be ambiguous 

regarding its polarity. Yet, combinations of words tend to be less ambiguous and better 

capture the polarity of the sentences (Bespalov, et al., 2011). For example, it is difficult to 

identify the polarity of a unigram such as “impressive” compared to a bigram such as 

“not impressive” that is composed of the previous unigram and a modifier. High-level n-

gram representations have been shown to perform better than low-level representations in 

text categorization (Cui, et al., 2006). Cui, et al. (2006) indicate that text classifier algo-

rithms that use high-level n-grams representation (n=3,4,5,6) outperform algorithms that 

use unigrams and bigrams. However, high-level n-gram representations exacerbate the 

matrix sparsity problem since longer combinations of words are less frequent in the re-

views than each of the words of the combinations.  

The sparsity of the BOW approach can be addressed by reducing the number of n-

grams used to perform the text categorization task. Yet the features selection method can 

result in the suppression of features relevant for the classification task. Sparck Jones 
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(1972) shows that terms that occur in many documents are less effective in discriminating 

between the documents than less frequent terms. He proposes a method that allocates 

more weight to less frequent terms: the inverse document frequency weighting. Inverse 

document frequency, which has its origins in heuristics (Balinsky, et al., 2010), is com-

monly used in information retrieval Metzler (2008). This weighting method handles 

sparse matrices by stressing discriminative features and reducing the influence of irrele-

vant ones (Meyer, et al., 2008). Discriminative terms or features are the ones that do not 

appear in many documents and whose inverse document frequencies are high (De Vries 

and Roelleke, 2005). Greiff (1998) uses the relationship between document frequency 

and the mutual information between relevance and term occurrence to sketch a theoretical 

explanation of the improved retrieval performance of inverse document frequency for 

term weighting. The inverse frequency weighting method can also be effective in finding 

relevant small sets of terms that can be effective in building predictive models.   

Text categorization applications have also been used in economics research. 

Haag, et al. (2000), Goodwin, et al. (2014), and Nowak and Smith (2017) use textual in-

formation to address the omitted variables bias problem that plagues many hedonic pric-

ing models. Schumaker and Chen (2009), Schumaker and Chen (2009), and Hagenau, et 

al. (2013) show the importance of textual representation of news in predicting stock pric-

es. Text categorization techniques can also be effective in marketing for brand position-

ing, or product development. Yu, et al. (2011) for example, use this method to identify 

the most important product features to consumers. They use this approach to develop an 

aspect-ranking algorithm that extracts the important aspects of 11 popular products. Ap-
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plied to document categorization this approach improves the classification performance 

considerably.    

Due to the importance of text categorization in classifying reviews, this study ex-

amines its use in the food industry to identify consumers’ preferences or perform task 

such as sensory analysis. In the food and beverage industry, sensory analysis is often used 

to evaluate a product based on its perceived sensory characteristics (Murray, et al., 2001). 

It requires the selection, training, and maintenance of a panel of judges that assess prod-

ucts by evaluating their qualitative and quantitative sensory components (Murray, et al., 

2001, Stefanowicz, 2013). The panel decides the features of products that best represents 

their similarities and dissimilarities, agree on the assessment method of the features, pro-

ceed to training on a sample of products before assessing the group of products of interest 

through a randomized experiment (Varela and Ares, 2012). In the last decade, various 

methodologies and techniques have been developed to overcome the time and complexity 

of classic sensory analysis techniques (Varela and Ares, 2012). This study proposes a 

novel approach: text categorization. It evaluates how product features in online reviews 

and comments can be used to predict consumers’ preferences for beer.  

3.4. Methodology  

We decompose the problem of predicting consumers’ preferences for beers with 

the content of the reviews as a three-step procedure. First, we use the bag-of-words 

(BOW) approach to extract the terms or features in each review. Second, we remove fea-

tures that would be irrelevant for the predictive model. Third, we use a random forest as a 

supervised machine-learning algorithm to predict consumers’ preferences with the ex-

tracted features.  



48 
 

3.4.1. Feature extraction 

Reviews were collected between September and October 2017 from BeerAdvo-

cate (BA), an online community of beer enthusiasts and professionals. The members of 

the community share their opinion and experience about beers through reviews and 

comments on this online platform. Reviewers also rate each of the beers based on their 

satisfaction. The rating score ranges from one to five. The Python programming language 

was used to scrape the reviews and the scores from the website. A total of 5500 unique 

reviews were scrapped from BeerAdvocate. A BOW feature extraction approach is ap-

plied to the reviews.  

The BOW approach, commonly used in natural language processing models, 

identifies and extracts features in a set of documents or corpus. Here, the collection of 

reviews constitutes the corpus. Punctuations, unnecessary words and characters are re-

moved from the corpus. The corpus is then decomposed into its unique words to form a 

vocabulary. The occurrence of each word in the vocabulary for each review is scored to 

form a term-document matrix. In the term-document matrix, the rows correspond to the 

reviews in the corpus and the columns to the words or terms in the vocabulary. The cell 

values are the frequency attached to the word or term in the review. For example, the cell 

(i, j) is the frequency of occurrence of the term i in the review j.  

Two datasets are derived from the term-document matrix: one dataset with the 

most frequent terms (the term-document matrix) and another with the less frequent terms 

(the inverse term-document matrix). More frequents terms in multiple reviews might not 

convey enough information to discriminate between the reviews contrary to less frequent 

(Popescu and Etzioni, 2007). Less frequent words can be specific to certain categories. 
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Their presence in reviews can better contribute indicate similarities between those re-

views compared to words that are more frequent. For example, a word such as “malt” is 

more likely to be present in most beer reviews since most beers are made out of malt. 

Contrary, a word such as “citrus” is less common to all beer. Few beers have a citrus 

taste. Thus, in addition to the frequency of the term in the cell, we also use the inverse of 

the frequency for comparison. The inverse weighting technique assigns more weight to 

less frequent terms.  

We also use higher-level n-grams in the vocabulary. This method has the ad-

vantage of capturing meaningful terms or expressions in the predictive models. For ex-

ample, even though malt is used in most beer, the origins of the grains used as malt can 

affect the percentage of alcohol, the flavor, and aroma. Barley is the most common grain 

used for malting. Malt can also be derived from wheat and rye. Instead of using a uni-

gram such as “malt’, bigrams such as “malt barely”, “malt wheat” and “malt rye” are bet-

ter at categorizing the different types of beers. Three different types of datasets are de-

rived based on the vocabulary used: unigrams, bigrams, and trigrams. Unigrams corre-

spond to a dictionary with single words or terms. Bigrams and trigrams correspond to re-

spectively two and three terms. Through the combination of the three types of n-grams 

dictionaries and the two types of term-document matrices six datasets were generated.  

3.4.2. Feature selection  

The feature extraction procedure described above produces sparse datasets since 

some terms appear in only a few reviews. These terms or features, referred to as zero var-

iance predictors or near-zero variance predictors, do not perform well in predictive mod-

els and might create errors in the computation (Kuhn and Johnson, 2013). Some of the 
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features might not be relevant in explaining the consumers’ preferences or might be re-

dundant. Moreover, when the number of variables introduced in a machine-learning 

model is too large, many machine learning algorithms loose accuracy. This issue is com-

monly known as the minimal-optimal problem (Nilsson, et al., 2007). A feature selection 

solution helps deal with the minimal-optimal problem by selecting the minimum number 

of relevant features needed to yield the best predictive models.  

To address the minimal-optimal problem, many algorithms have been developed. 

According to Fonti and Belitser (2017) these algorithms can be classified into three gen-

eral categories: filter methods, wrapper methods, and embedded methods. Filter methods 

use a statistical measure to rank the features and select high scoring features for model-

ing. Some examples of filter methods are ANOVA tests, Chi-squared tests, and correla-

tions. Wrapper methods work on the feature selection as a search task. They build differ-

ent subsets of the features and use the subsets to perform a predictive task. The subset 

that yields the best performance for the predictive task contains the selected features. The 

search task may be heuristic (forward, backward, or recursive with features elimination), 

or based on a particular methodology (best-first search), or even randomly determined 

(hill-climbing algorithm). Finally, embedded methods are a combination of the two pre-

vious methods.  

To select the minimal features that will give the best prediction results among the 

set of n-grams explanatory variables, the Boruta algorithm (Kursa and Rudnicki, 2010) is 

implemented. This algorithm is a wrapper method that is based on recursively finding all 

relevant variables while getting rid of the features that don’t perform well. Table 3.1 

summarizes the number of features selected with the Boruta algorithm.  
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Table 3.1: Number of features selected with the Boruta algorithm  

  Number 

of reviews 

Number of attributes con-

firmed important 

Number of attributes 

confirmed unim-

portant 

N-

grams 

Unigram 5500 107 663 

Bigram 5500 27 253 

Trigram 5500 6 26 

     

N-

grams 

inverse  

Unigram 5500 116 654 

Bigram 5500 24 256 

Trigram 5500 6 21 

 

3.4.3. Predictive model: the random forest  

The objective is to classify consumers’ preferences based on the features repre-

sented by the words used in their reviews. To solve this supervised4 classification prob-

lem, an ensemble learning algorithm, the random forest introduced by Breiman (2001) is 

used on the six n-grams datasets. The random forest model was compared to other ma-

chine learning models such as the linear discriminant analysis, the support vector ma-

chines, and the K nearest neighbors (KNN). The random forest performs better than the 

other models in predicting consumers’ preferences. Ensemble learning algorithms such as 

random forest are a collection of single classifiers, tree-based classifiers in the case of the 

random forest, combined into one model. Ensembles often perform better than individual 

                                                       
4 Machine learning that uses input data (independent variables) to predict an output (dependent varia-
bles) are supervised machine learning models. Those that use and input with no corresponding output are 
unsupervised machine learning models. 
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classifiers. Breiman (1996) shows that ensembles have a lower variance relative to the 

single classifiers that compose them. Each of the single classifiers is selected inde-

pendently of the others, which makes ensembles more accurate and robust to noise than 

single classifiers (Breiman, 1996, Breiman, 2001, Dietterich, 2000). This accuracy and 

robustness to noise explain the interest they have received in the literature. The main 

steps to build the RF classifier are summarized as follows: 

Step1  

The rating scores are binned into two categorical variables. Reviews scores of 4 

and below (included) are categorized as “Good” reviews; those greater than 4 are catego-

rized as “Very Good” reviews. We do not attribute the good and very good attributes to 

the two categories, and these attributes are not understood as such. The choice of the two 

categories is for simplicity and to ensure that the dataset is balanced. The “good” and 

“Very Good” categories represent, respectively, 51.59% and 48.41% of the dataset. The 

5500 observations in the dataset are split into two sets: a training sets and a test set. For 

each of the n-gram dataset, the training set, composed of 80% of the observations, is used 

to train the classifier. The remaining 20% of the observations comprises the test set, 

which is used to evaluate the performance of the classifier. Since the test set is unknown 

to the random forest classifier, we can assess the capacity of the classifier to predict the 

class of the observations in the test set correctly. Each random forest classifier is trained 

with a training set but tested on the test set.  

The random forest creates ntree using recursive partitioning of the initial training 

data, D = {Xi;  Yi}i=1…n, and combines their results. Each tree contains a sample Dj (ran-
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domly selected with replacement) of the initial data D. In other words, the tree j is a sub-

set of the initial training set which contains a randomly selected Dj = �Xj;  Yj� sample of 

D. Because the random selection is with replacement, without deletion of the data select-

ed from the training data set, some data may be part of many trees while other might nev-

er be used in any tree.  

Step 2 

Each tree j with a sample Dj of the training set performs its classification inde-

pendently. Each decision tree is in itself a classification task. At each node in a tree, fj ≪

F features are randomly selected among the F features available. At that node, the best 

binary split is used to partition the node. Each “parent” node is split into two homogenous 

“child” nodes. Gini impurity I (Menze, et al., 2009) measures node homogeneity. It is 

given by: 

I = 1 −  ∑ (nc
n

)22
c=0   with nc the number of objects in class c at node n.   

The lowest Gini impurity value computed among the f features will guide the choice of 

the splitting criterion at the node. Each decision-tree classification task j is associated 

with a classification error Errj that measures the misclassification rate.  

Errj =
1

|Dj
c|
� I(yi ≠ y�i)
i∈Dj

c

 

Dj
c is the remaining dataset in D not selected in the bootstrap samples Dj. The subset Dj

c is 

called out-of-bag (OOB) and is defined as D = Dj
c ∪ Dj. |Dj

c| is the size of the jth OOB 



54 
 

subset, y�i is the predicted class using the tree j classification on an observation i not in the 

random bootstrap sample selected Dj.  

The same process is repeated for each of the bootstrap samples (trees) in the training data 

D. The trees are combined to form the random forest classification model. To predict the 

class of an observation, the model uses the vote of each decision tree for each class. The 

final predicted class will be the class that will obtain the majority of the votes.  

10-fold cross validation is also used to reduce the model overfitting using the model ac-

curacy as a control metric. The training set is divided into ten reduced sets. The model is 

trained using nine of the reduced sets as training data, and the subsequent model is evalu-

ated on the remaining part.  

Step 3 

Once step 2 is used to grow each decision tree, then the random forest model is 

tested with the test set to assess the performance of the random forest classifier. By using 

the test set, which was not used to train the random forest classifier, we can evaluate the 

capacity of the classifier to correctly predict the class of observations in the test “never 

seen” by the classifier. To predict the class, “Good” or “Very Good,” of an observation 

(review), the model relies on the vote of each decision tree. The class that obtains the ma-

jority of votes is retained by the random forest classifier as the predicted class. However, 

the classifier may wrongly classify the classes. Models that accurately predict the classes 

of the reviews are preferred to those with large misclassifications errors.  

Three performance criteria serve for the evaluation of the models. These criteria 

depend on the number of correctly classified observations, true positives (reviews that are 
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“Good” and correctly predicted by the model as such), denoted by TP, and true negatives 

(reviews that are “Very Good” and correctly predicted as such), denoted by TN. There 

are also false positives (reviews that are “Very Good” but falsely predicted as “Good”), 

denoted by FP and false negatives (reviews that are “Good” but falsely predicted to be 

“Very Good”), denoted by FN.  

The first performance criterion is the accuracy, the percentage of correctly pre-

dicted “Good” and “Very Good” preferences. The accuracy criterion reflects the capacity 

of the model to predict the “true” class of the reviews correctly based on the n-grams. It is 

given by the formula: 

Accuracy =  
TP + TN

TP + TN + FP + FN
 

The second performance criterion is Cohen (1960)’s Kappa statistic which helps 

evaluate each model, but also compares the models amongst themselves. The Kappa sta-

tistics compares observed accuracy with the expected accuracy that might occur by 

chance if the classes were randomly guessed. The Kappa statistic is given by: 

Kappa =
Observed Accuracy − Expected Accuracy

1 − Expected Accurary 
 

Kappa values vary between zero (0) and one (1). Kappa values greater than zero indicate 

a classifier that achieves a rate of classification that exceeds chance levels.   

The third performance criterion that is used is the Area Under the Curve (AUC). 

It is a function of the sensitivity or true positive rate (TPR) and specificity or false posi-

tive rate (FPR) of the model.  
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True Positive Rate =  
TP

TP +  FN
 

False Positive Rate =  
TN

TN + FP
 

The sensitivity or true positive rate measures the proportion of “Good” reviews 

that are correctly predicted to be “Good” among all “Good” reviews. Conversely, the 

false positive rate measures the proportion of “Very Good” reviews that are wrongly pre-

dicted to be “Good” among all “Very Good” observations. A model with a high TPR is 

less likely to misclassify “Good” observations. However, a model with a high FPR is 

very likely to misclassify “Very Good Observations”.  

What is the probability that the random forest model ranks a random sample of 

“Good” observations better than a randomly chosen sample of “Very Good” observa-

tions? A graph of the TPR against the FPR at different probability thresholds gives the 

Receiver Operating Characteristic (ROC) curve. A ROC graph that fits exactly on the di-

agonal corresponds to a random predictor and the model that generates such graph is as 

good as a coin toss. In contrast, a model that would yield at different probability thresh-

old settings TPR=1 and FPR=0 will have a ROC at the left corner of the graph (coordi-

nate (0,1)). A model with such ROC has 100% TPR and 0% FPR. Such a model corre-

sponds to a perfect classification model. In practice, such models are rare but the closer 

the models are to the left corner, the better they predict, and the distance that separates 

the model from the diagonal represents how well the model is at the classification task 

compared to a random guess. The area under the ROC curve (AUC) is used as the second 

criteria to evaluate the model's performance. The AUC gives the probability that a ran-
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domly chosen “Good” observation is classified as a “Good” observation, rather than a 

randomly chosen “Very Good” observation. The diagonal corresponds to an AUC of 0.5 

and the perfect classification model corresponds to an AUC of 1. Most models will have 

an AUC between 0.5 and 1.  

3.5. Results and discussions  

3.5.1. N-grams representation  

To predict consumers’ preferences for beer using an n-grams representation of the 

review, we apply the proposed methodology of a random forest classification algorithm 

to the six datasets. The six models represent the use of six different n-grams dependent 

variables. The rf-unigram model is the algorithm related to the dataset represented by the 

most frequent unigrams. The rf-unigram-inv is the algorithm related to the dataset that 

contains the less frequents unigrams. Similarly, rf-bigram, rf-trigram, and rf-bigram-inv, 

and rf-trigram-inv are the algorithms related to more frequent bigrams, trigrams and less 

frequent bigrams and trigrams, respectively. Figure 3.1 compares the models based on 

their accuracy to predict consumers’ preferences and the Kappa statistic. Table 3.2 pro-

vides the details of the accuracies and Kappa values.  
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Figure 3.1: Performance comparison of the unigram, bigram, trigram models and their 
inverse 

 

Table 3.2: Models accuracy and Kappa statistic 

 

Models  Accuracy Kappa 

Uni-gram  0.72 0.44 

Bi-gram  0.63 0.26 

Tri-gram 0.51 0.01 

Uni-gram-inverse 0.73 0.46 

Bi-gram-inverse 0.59 0.21 

Tri-gram-inverse 0.52 0.02 

 

Examination of the model's accuracies indicates that almost all the random forest 

models perform better than the random choice baseline of 50%. Only the trigram and the 

trigram-inverse models, with an accuracy of 51% and 52%, respectively, have a predic-

tive power almost identical to the random choice baseline of 50%. With accuracies of 
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72% and 73%, the unigram and unigram-inverse models perform well in comparison to 

the other n-gram models. The bigram and bigram-inverse models follow. The model ac-

curacy is reduced by 9 percentage points when we move from a unigram to a bigram 

model and by 21 percentage points when we use a trigram instead of a unigram.  Contra-

ry to our expectation, the unigram model, which is a low-level n-gram representation of 

the reviews, has a better predictive power than higher representations such as the bigram 

and trigram models. Even though high-level n-gram representations account for the com-

plexity of the human language, their use to predict consumers’ preferences is less accu-

rate than low-level n-gram representations in the case of beer reviews. Contrary to the 

rest of the literature, our result is consistent with Pang, et al. (2002)’s sentiment classifi-

cation study using machine learning. They also report a decline in accuracy when switch-

ing from unigram to bigram models suggesting that bigram models are not that effective 

in accounting for the reviews’ context. However, a common characteristic of Pang, et al. 

(2002)’s study and ours is the small size of our dataset. Pang, et al. (2002) use 2053 re-

views for their classification and we use 5500 reviews. Chu, et al. (2012) shows that larg-

er sample sizes improve classification accuracies. Our result might have been different 

with a larger sample size. Cui, et al. (2006) segments use 100,000 product reviews in 

classifying text. Their result confirms the higher performance of models that use high-

level n-grams representations.  

3.5.2. Term frequency vs inverse document frequency  

The second objective of this study is to evaluate the performance of the predictive 

models when using less frequent terms to discriminate between the reviews. From figure 

1 and table 2, except for the bigram models, the use of the inverse document frequencies 
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in the unigram and trigram models improve the model's accuracies by 1 percentage point. 

Although the accuracy gain is not substantial, this result confirms that in two out of the 

three of the n-gram models considered in this study, the prediction of similar consumers’ 

preferences for beer can be improved with the use of inverse document term frequency.  

Analysis of the Kappa statistics is consistent with the analysis of the accuracy 

values. The remaining results and discussion are centered around the performance of the 

best predictive model, the random forest with the unigram inverse document frequency.   

3.5.3. Performance analysis of the random forest classifier for the unigram-inv model  

The final random forest model built with the unigram inverse document frequency 

uses 500 trees and achieves an OOB error rate estimated at 27.33%. To examine the pre-

dictive performance of this model, we tested the model on the 1099 observations (re-

views) in the test set. By construction, the test set is “unseen” by the random forest classi-

fication model since it is independent from the training set used to build the model. Table 

3.3 displays the confusion matrix.  

Table 3.3: Confusion matrix of the unigram-inverse random forest model 

 

 Reference 

Prediction  Good Very Good 

Good 478 195 

Very Good 89 337 
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The unigram-inverse random forest model reaches a sensitivity or positive rate of 

84.30% and specificity or false positive rate of 63.45%. These results indicate that the 

unigram inverse random forest model is better at identifying the reviews classified as 

“Good.” However, the approach used when binning the data could lead to this difference 

in class prediction. Data categorized as “Good” cover a larger interval ([0, 4]) compared 

to data categorized as “Very Good” (]4, 5]).  

The Operating Receiving Characteristics (ROC) curve (figure 3.2) derived from 

the sensitivity and the specificity values confirms that the unigram inverse random forest 

model built performs better than a random strategy in separating “Good” preferences 

from “Very Good” ones. The ROC curve showing the trade-off between sensitivity and 

specificity also identifies the best threshold for separating the “Good” and “Very Good” 

preferences. This threshold is the value that maximizes the Youden’s index independently 

from the percentage of the two preferences classes.   

Youden’s index = sensitivity + specificity -1.  

For the unigram inverse random forest model, the threshold is given by the point 

that corresponds to a specificity of 73.9% and a sensitivity of 77.4%.  



62 
 

 

Figure 3.2: Receiver Operator Curve (ROC) and Area Under the Curve (AUC) for the 
unigram-inverse random forest model 

 

3.5.4. Effect of number of trees on the model accuracy  

In step 2 of the random forest classifier, each decision tree constitutes a classifica-

tion task. The out-of-bag (OOB) sample is used as a test set to evaluate the error generat-

ed by each decision tree classification task. The OOB error rate estimate is the percentage 

of wrong classifications. Recall that the OOB observations are not used to build the tree. 

They constitute valid test sets for the trees. The error of each tree in predicting the OOB 

observations averaged over all trees give an estimate of the OOB error rate. By construc-

tion, this OOB error rate is an unbiased estimate of the random forest model. Figure 3.3 

presents the effect of the number of trees on the OOB error rate estimate. The figure 

shows that as the number of trees grows the OOB error rate decreases, flattens out and 

converges around 200 trees. Additional trees beyond 200 trees do not improve the mod-

el’s error rate. The two other graphs show the error in classifying the “Good” and “Very 
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Good” classes.  The effect of the number of trees on the error rate with these two classes 

follows the same pattern as the effect of the number of trees on the OOB error rate. This 

result suggests that we can reduce the computational time of our model by using approx-

imately 200 trees.  

 

 

Figure 3.3: Effect of the number of trees on Out of Bag, Good, and "Very Good" catego-
ries error rate estimates 

 

  

3.5.5. Identification of the most important features in the reviews  

To decide whether or not a feature will be used in a tree to partition a node, the 

random forest algorithm uses the Gini Impurity Index I (Breiman, 2017). When a split is 

made at a node, the parent node has a higher Gini index compared to its two descendants. 

The importance of a feature is evaluated by adding the decreases in the Gini index at all 

the nodes in the forest where the nodes are partitioned using that feature. Figure 4 pre-
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sents the most important features based on their mean decrease for Gini. Examination of 

figure 3.4 shows that the features that better discriminate consumers’ preferences are re-

lated to the smell or taste (vanilla, oak, citrus, grapefruit), look (clear, juicy), and overall 

quality of the beer (great, good, perfect).  
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Figure 3.4: Importance of the features in the unigram inverse predictive random forest model 

 



 

3.6. Conclusion  

This study presents a machine learning method to predict consumers’ preferences 

for beer using text categorization of consumer reviews. Text categorization is commonly 

used in many fields such as computational linguistics, economics, and finance. For prod-

uct development and brand positioning, marketers are interested in product features that 

can better express consumers’ preferences for their products. They usually refer to senso-

ry analyses that can be costly and time-consuming. This study examines how product fea-

tures in online reviews and comments can be used to predict consumers’ preferences.  

The study compares two approaches. First, it evaluates the performance of low-

level n-grams representation of reviews compared to high-level n-gram representations. 

Contrary to low-level n-gram representations, higher-level representations can capture the 

relationship between different words accounting for the complexity of the human lan-

guage. Second, the study tests whether the use of less frequent terms in reviews better 

discriminates between the reviews than more common terms. Using the random forest 

algorithm, our analysis shows that in the case of beer reviews posted by beer enthusiasts 

on an online platform, low-level n-gram representation of the reviews outperforms higher 

levels n-gram representations. Model accuracy is reduced as higher-level ones replace 

low-level representations. However, our analysis confirms Sparck Jones (1972)’s heuris-

tics results that terms which occur in multiple documents are less effective in discriminat-

ing between the documents than less frequent terms. By allocating more weight to the 

less frequent terms in our models, we are able to increase their predictive performance. 

Finally, our analysis identifies beer attributes related to the smell or taste, look, and over-
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all quality of the beer as the most important features in predicting consumers’ prefer-

ences.  

This study shows that there is a value in online reviews and there are ways to use 

those reviews beyond simple numerical ratings. Important product features in evaluating 

consumers’ preferences for the product can be extracted from online reviews written 

about the product. Improving models for predicting consumers’ preferences with the re-

views online, can significantly contribute to product development and brand positioning 

by marketers.  
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CHAPTER 4 : TEXTUAL ANALYSIS AND OMITTED VARIABLE BIAS IN 
HEDONIC PRICE MODELS APPLIED TO SHORT-TERM APARTMENT 
RENTAL MARKET.  

4.1. Abstract  

Omitted variable bias is a common issue that affects the reliability of the esti-

mates of most hedonic price models, especially in real estate research. To address this 

issue, many studies take advantage of the panel nature of the data to control for omitted 

hidden variables. Other studies use different functional forms as suggested by Cropper, et 

al. (1988). However, real estate studies have struggled to resolve the omitted variable bias 

issue (Bayer, et al., 2007), suggesting the need to develop novel approaches or methodol-

ogies. This paper follows the methodology proposed by Nowak and Smith (2017). Using 

textual analysis, it addresses the omitted variable bias problem in hedonic price models 

by including the words used in the description of the rental unit as a proxy for the fea-

tures omitted in the regression analysis. Applied to the short-term apartment rental mar-

ket on Airbnb, this study shows that including the words extracted from the description of 

the rental units in the regression model reduces pricing errors and can be useful in ac-

counting for omitted quality measures in hedonic price models.   

4.2. Introduction  

The hedonic pricing model evaluates consumers’ valuation of differentiated prod-

ucts or services by relating the price of the products or services to their characteristics. 

Developed by Rosen (1974), the hedonic price model has been applied to value amenities 

and disamenities that are not traded in markets. In the real estate literature, the hedonic 

model is used to evaluate the impact of policies, environmental characteristics, and even 

house attributes on house prices. Grislain-Letrémy and Katossky (2014) use a hedonic 
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model to assess households’ willingness to pay to avoid hazardous industrial risks. 

Davlasheridze, et al. (2017) examine the reduction of property losses following FEMA 

ex-ante expenditures on mitigation and planning projects with a hedonic price model. 

Sander, et al. (2010) rely on this model to value urban tree cover. Nazir, et al. (2015) uses 

it to examine the impact of green infrastructure on house price trends. Harrison and 

Rubinfeld (1978), Chay and Greenstone (1998), and Bayer, et al. (2009) investigate the 

relationship between housing prices and air quality with the hedonic model. Seo, et al. 

(2014) also use the hedonic model to analyze the positive and negative relationships be-

tween housing prices and proximity to light rail and highways in Phoenix, Arizona.   

Hedonic models have experienced significant improvements with regards to the 

methodology and econometric estimation techniques (Palmquist, 2005). One aspect that 

has received considerable attention is the omitted variable bias (OVB) problem. Unob-

served characteristics, location characteristics, and environmental attributes of houses are 

unobserved to the researcher and difficult to approximate due to their variation in time 

and space. Yet these factors are expected to be associated with the property characteris-

tics of interest (Bayer, et al., 2009, Chay and Greenstone, 2005). The omission of these 

unobserved variables in the hedonic regression can yield inaccurate estimates of the he-

donic prices and the size of the pricing errors can affect the conclusions about the re-

search implication on consumer welfare. Cropper, et al. (1988) addresses the functional 

form of hedonic price functions. They find that using simple functional forms, such as 

linear, log-linear, log-log, and Box-Cox transformation, improves the model performance 

in the presence of OVB. The majority of research in the hedonic price literature relies on 

this solution as an attempt to address the OVB problem (Kuminoff, et al., 2010). Taking 
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advantage of the flexibility offered by panel and large cross-section data, other studies in 

the hedonic literature often add spatial fixed effects to the price specification or use qua-

si-experimental designs to correctly identify the variables of interest in the hedonic model 

(Kuminoff, et al., 2010). Bayer, et al. (2007)’s comment on not being aware of “any pa-

per in the literature that has been able to deal with this issue” (p. 593) confirms the limita-

tion of the solutions proposed in addressing the OVB problem in real estate research.   

Some studies have examined the value of real estate agent remarks (Haag, et al., 

2000) or the impact of broker vernacular (Goodwin, et al., 2014) on house prices. They 

show that brokers convey information on property quality through the description of the 

properties in the multiple listing services (MLS) and these descriptions can improve list-

ing performance. Recently, Nowak and Smith (2017) use textual analysis to show that 

including the text found in the comments section of the MLS in the hedonic price model 

reduces pricing error. Application of textual analysis in economic research has grown 

significantly, especially with the development of the internet, which has led to a prolif-

eration of user-generated contents such as online comments, reviews, and ratings. Many 

recent studies examine the value of textual analysis in economics. For instance, Hagenau, 

et al. (2013) and Schumaker and Chen (2009) use textual analysis to predict stock prices. 

Chevalier and Mayzlin (2006), Yu, et al. (2012), and Zhang, et al. (2013) employ textual 

analysis to predict sales performance.  Research in the hospitality industry has also expe-

rienced a growth in the use of textual analysis in predicting hotel room prices and con-

sumer preferences (Mauri and Minazzi, 2013, Sparks and Browning, 2011, Ye, et al., 

2009). Most of the research in the hospitality industry uses a hedonic price model but 

none of them, to our knowledge, control for OVB using textual analysis.  
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The present research addresses the pricing error problem due to OVB in the hos-

pitality industry. Using room prices on Airbnb in San Francisco, this research builds a 

“bag of word” (BOW) hedonic price model by adding to a well-specified hedonic model 

the unigram representation of the words found in the description of the rooms rented on 

the website.  With the presence of large unigrams in the hedonic model, conventional 

least squares estimation procedures are not easily implementable due to the likelihood of 

rank failure. This study uses a penalized regression, the Least Absolute Shrinkage and 

Selection Operator (LASSO) regression model, which simultaneously performs model 

selection and coefficient estimation, to show that including the BOW in the hedonic price 

reduces the pricing error significantly. It also shows that the LASSO model performs bet-

ter than the time and location fixed-effect model. This result suggests that hosts on 

Airbnb have valuable information or knowledge about the quality of their apartment. 

Their information is not captured by the standard characteristics such as the number of 

rooms, bathrooms, and guests included. It is rather captured by the description of the 

rental unit by the host on the online platform, and this description has an economic value.  

The remainder of the paper proceeds as follows. Section 2 contains a brief de-

scription of the data used and outlines the estimation procedure. Section 3 presents and 

discusses the results, and section 4 concludes.  

4.3. Data and estimation procedure 

4.3.1. Data  

The data was collected from Inside Airbnb, which is a non-commercial, open 

source data tool on Airbnb. Airbnb is an online hospitality platform that matches guests 

and hosts of short-term lodging. We consider the San Francisco hospitality market on 



72 
 

Airbnb for this study. The dataset is a balanced panel composed of 5300 rental rooms for 

the month of July during two consecutive years, 2016 and 2017. Information on the char-

acteristics of the rooms such as the number of bedrooms, bathrooms, beds, the number of 

reviews, and the rental price was collected. The description of the room to be rented by 

the hosts was also collected. The description and summary statistics of these variables are 

presented in table 4.1.  

Table 4.1: Description and summary statistics for Airbnb data in San Francisco 

 

Variable  Description  Mean  Std.Dev  Min  Max 

Price  Rental price  269.1 4.35 10 10000 

Accommodates  Number of persons that can be ac-

commodated  

3.27 0.02 1 16 

Bathrooms  Number of bathrooms  1.27 0.005 1 7 

Bedrooms  Number of bedrooms  1.39 0.008 1 9 

Beds  Number of beds  1.76 0.01 1 16 

Square feet  Square footage of the rental unit  924.31 44.31 100 3000 

Deposit  Security deposit  475.94 7.41 0 5000 

Cleaning Cleaning fee  84.70 0.70 0 1000 

Nights  Number of minimum nights  4.43 0.12 1 50 

Reviews  Number of reviews  29.89 0.49 0 20 

Reviews_scores  The review scores  94.74 0.07 512 100 

 

The hypothesis of this study assumes that the hosts have more information about 

the room they rent and including this information in the hedonic pricing model will re-

duce the pricing error. Table 4.2 presents a sample of the description of three rental units 

on the Airbnb platform in San Francisco.  



 

Table 4.2: Sample of description of the rental units on Airbnb in San Francisco  

Listing URL Description Rental 

Price 

Zip 

code 

https://www.airbnb.co

m/rooms/958  

 

Our bright garden unit overlooks a grassy backyard area with fruit trees and native plants. It is an oasis in a big 

city. The apartment comfortably fits a couple or small family. It is located on a cul de sac street that ends at lovely 

Duboce Park. Newly remodeled, modern, and bright garden unit in historic Victorian home. *New fixtures and 

finishes. *Organic cotton sheets and towels. *Zero VOC and non-toxic Yolo paint. *Organic and fair-trade teas, 

fresh local ground coffee. *Local art on walls. *Sofa bed and Queen bed are in the same room. More of a petite 

apartment with a separate room for dining and kitchen. *Full access to patio and backyard *Beautiful garden with 

fruit trees, native plants and lawn *Washer and dryer *Children's toys *Charcoal grill A family of 4 lives upstairs. 

Normally we are able to meet guests, but we like to give people their privacy and mostly leave them alone. We are 

always available if anything is needed or questions need to be answered. *Quiet cul de sac 

170 94117 

https://www.airbnb.co

m/rooms/1935521  

 

In sunny Potrero hill, this delightful 2 bedroom 2 bathrooms is ideal for a fun stay in San Francisco. Easy street 

parking, safe and quiet neighborhood in, many restaurants and cafes within walking distance. Close to SoMa and 

Mission. Really spacious condo, a rare find in San Francisco. Someone will meet you for exchanging keys, and 

explaining the place. Sunny, quiet, easy access to major freeways, lots of restaurants and cafes close by, big green 

park one block away, Whole Foods 5 minutes walk, easy street parking. There are 3 Muni lines within 2 blocks. 

300 94107 

https://www.airbnb.co

m/rooms/7259985  

 

Floor-to-ceiling windows, skylights, city views & modern / full amenities. 2 living rooms, 2 full baths, Cal King 

bed in loft bedroom and a new baby nook. :) Located in Mission District - short walk to restaurants, BART/public 

transit. We will be out of town. We are looking to rent the space the whole time we are out of town. 

180 94103 

https://www.airbnb.com/rooms/958
https://www.airbnb.com/rooms/958
https://www.airbnb.com/rooms/1935521
https://www.airbnb.com/rooms/1935521
https://www.airbnb.com/rooms/7259985
https://www.airbnb.com/rooms/7259985


 

 

4.3.2. Estimation procedure  

The estimation procedure follows Nowak and Smith (2017).  The price Pit of 

room i in time t on Airbnb is regressed on control variables Xit (number of bathrooms, 

beds, etc.) and the bag of words BOWi (unigrams) with time αt and census tract γz fixed 

effects: 

Pit =  αt + γz + θXit +  ρBOWi +  εi      (4.1) 

The random error term εi is assumed to be normally distributed. The bag of words 

BOWi is composed of many regressors (features or unigrams in the bag of words)5. Using 

Ordinary Least Squares (OLS) to estimate this model will over-fit the data. OLS can even 

be infeasible as the number of regressors can be larger than the number of observations 

due to the presence of the large unigrams. Moreover, recovering the implicit price of each 

unigram is challenging with OLS. The estimation method used for this study relies on the 

Least Absolute Shrinkage and Selection Operator (LASSO) regression model, which 

simultaneously performs model selection and coefficient estimation. LASSO is a penal-

ized regression procedure that minimizes penalized least squares. We use a 10-fold cross-

validation algorithm to determine the model performance. Details of the LASSO and uni-

gram decomposition of the room description are presented in the following sections.  

4.3.3. Unigram representation of the description of rental rooms  

Representation of documents by the different sequence of words in the docu-

ments, also called n-grams representation, goes back to the seminal paper of Shannon 
                                                       
5 Details of how the BOW is generated is explained in the following section  
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(1948). Unigrams identify the representation of the document by the single words in the 

document. Similarly, bigrams, trigrams, and n-grams correspond to the representation of 

the document by a combination of respectively two, three, and n words. The unigram rep-

resentation of the description of the rooms rented on Airbnb consists of a series of suc-

cessive steps. First, for each room, the words used in the description are converted into 

lower cases; this ensures that we have a unique copy of each word. Punctuations, special 

characters, and stop words (commonly used words such as “the,” “a,” “is,” “am,” “of,” 

etc.) are removed from each description since they do not add information to the descrip-

tion. After the description is cleaned of noises it is tokenized. The tokenization corre-

sponds to separating a text into tokens, which are the combination of the words in the 

text. In our study, we are interested in the single words or unigrams. Each description is 

decomposed into the single words in the cleaned description, and the frequency of each 

of the words in the description is also reported. Figure 1 illustrates the word cloud de-

rived from the description of the units rented on Airbnb in San Francisco. The word cloud 

is composed of the images of the words used in the description, and the size of each word 

indicates its frequency of importance in the dataset.  
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Figure 4.1: Word cloud representation of the rental unit description on Airbnb in San 
Francisco 

 

Our final dataset contains not only the room characteristics but also the frequency 

of the words used by the hosts while posting the room description on the Airbnb 

platform. In the dataset, the words reflect the room features which might not be captured 

by the room characteristics. Because the rooms differ in quality, localization, and other 

characteristics, and the hosts use different language to describe their place, the words do 

not occur equally in all the descriptions. Consequently, some words are not present in the 

description of certain rooms. This corresponds to a zero frequency for the column repre-

senting these words in the dataset, which creates sparsity in the dataset. OLS regression 

with a sparse dataset can be infeasible (undetermined) if the number of features is larger 

than the number of observations. The OLS estimates of many features can also be un-

traceable. However, penalized regressions such as the LASSO and ridge regressions are 

effective in dealing with such datasets.  
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4.3.4. Penalized regression: The Least Absolute Shrinkage and Selection Operator 

(LASSO) 

When the assumptions of the OLS are met, the OLS estimates are unbiased and 

have the lowest variance. OLS estimates are consequently called best unbiased linear es-

timates (BLUE). They produce the smallest mean squared error (MSE) which is a combi-

nation of the variance and bias. The MSE measures the performance or predictive capa-

bilities of a given model. According to Kuhn and Johnson (2013), models that are able to 

approximate precisely the pattern of the data tend to over-fit. They have small biases but 

very high variances and are in general complex. In contrast, simple models do not ap-

proximate well the true relationship in the data. They produce higher bias but lower vari-

ance. Moreover, when the predictors are correlated, the variance consequently increases.  

Including unigrams from the room description in an OLS regression is likely to 

lead to collinearity issues, making the OLS estimates no longer BLUE. The estimates can 

be inflated and the variances very large. Regularization methods control the inflation of 

the estimates by adding a penalty on the sum of the squared residuals (SSR). Various 

regularization methods have been developed to address the parameter estimates inflation. 

The Ridge regression developed by Hoerl and Kennard (1970) reduces multicollinearity, 

and thus variance, by shrinking the parameter estimates. OLS minimizes the following 

cost function: 

SSROLS = ∑ (Pi − P�i)2n
i=1          (4.2) 

The cost function of the Ridge regression is 

SSRRidge = ∑ (Pi − P�i)2 +  λ∑ βj2P
j=1  n

i=1       (4.3) 
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The Ridge cost function adds a penalty term to the OLS cost function. This pa-

rameter function controls the trade-off between the bias and variance. It uses an L2 regu-

larization technique which means that it applies a second-order penalty, the square, on the 

parameter estimates (Kuhn and Johnson, 2013). The Ridge regularization method allows 

large parameter estimates only if there is a proportional reduction of the SSR and shrinks 

the estimates towards 0 otherwise. It does not set the estimates to zero, which means that 

using Ridge regression on models with many predictors will produce estimates for all the 

predictors, keeping a certain complexity in the model.  

An alternative regularization method that reduces further the model complexity 

and multicollinearity is the Least Absolute Shrinkage and Selection Operator (LASSO) 

(Tibshirani, 1996). The cost function of the LASSO is given by: 

SSRLASSO = ∑ (Pi − P�i)2 +  λ∑ |βj|P
j=1  n

i=1       (4.4) 

By penalizing the absolute value of the parameter estimates, the LASSO will re-

duce the estimates of some parameters to 0 and select only some features. In other words, 

in addition to shrinking some parameters, it also proceeds to a feature selection. The fea-

ture selection property is important in models where there is a very large number of fea-

tures and multicollinearity among the features. This is the case of the hedonic pricing 

model examined in this study with almost 10,000 features.  

A penalty equal to 0 in both the Ridge and LASSO regressions yields the OLS 

cost function and the parameters estimates are equivalent to the OLS estimates. Even 

though LASSO performs both feature selection and produces estimates with desirable 

properties, the choice of the λ parameter can affect the estimate properties (bias and vari-
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ance) (Nowak and Smith, 2017). We use a 10-fold cross-validation to select the optimal λ 

parameter that balances both bias and regularization. The cross-validation is a statistical 

method used to evaluate and compare models based on performance criteria.  The method 

divides the dataset into two subsets. One subset constitutes the training set, which is used 

to train the model. The second subset, the test set, is used to evaluate the performance of 

the model. In the 10-fold cross-validation, the dataset is partitioned into 10 folds or sub-

sets of equal size. The model performs 10 iterations of training and validation. For each 

iteration, 9 folds among the 10 folds of the data set is used to train the model and one (1) 

fold is held-out for out-of-sample performance. The λ parameter that minimizes the lasso 

cost function SSRLASSO in the 10-fold cross-validation is chosen as the optimal λ. 

 

4.4. Results and discussion 

4.4.1. Comparison of the regression models  

We ran several models in evaluating the contribution of using tokens in hedonic 

pricing models to account for unobserved attributes. Model I is the naïve model, the tradi-

tional pooled OLS without the BOW. Model II, III, and IV add, respectively, time fixed 

effects, location fixed effects, and both to the naïve model. Model I to IV takes advantage 

of the panel nature of the data and uses ordinary least squares as the estimation proce-

dure. However, model V to VII use the LASSO as the estimation procedure since OLS is 

infeasible due to the large number of features represented by the BOW included in the 

regression. Model V adds to model I the BOW. Model VI adds to the naïve model the 

BOW and time fixed effects. It evaluates the capacity of the BOW to approximate the 

quality information captured by the location fixed effects. Finally, Model VII, the full 
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model, captures the contribution of using description of rental apartments in reducing 

pricing errors. Model VII uses all the explanatory variables, BOW and time and location 

fixed-effects to estimate the room prices. Table 4.2 presents a comparison of the different 

regression models based on the mean squared errors (MSE).  

 Table 4.3: Comparison of the regression models based on the MSE 

Models  I II III IV V VI VII 

 Naïve 

model  

Naïve 

model + 

Time fixed 

effects  

Naïve 

model + 

Location 

fixed ef-

fects  

Naïve mod-

el + Time 

and location 

fixed effects  

Naïve 

model + 

BOW 

Naïve mod-

el + Time 

fixed ef-

fects + 

BOW 

Naïve model 

+ Time and 

location 

fixed effects 

+ BOW 

MSE 16800.49 16774.64 15447.69 15447.25 12049.06 10843.94 10175.41 

 

Analysis of table 4.2 shows that time and location heterogeneity affect the prices 

of the apartment rented on Airbnb in the study area. Including the time and location spe-

cific effects in the naïve model reduce the MSE by 0.15% and 8%, respectively. The F-

tests in annex 1 support that there is a significant difference between the naïve model (I) 

and the models with time (II), location (III), and time and location (IV) fixed effects. This 

result aligns with most studies in the hedonic price literature where location is shown to 

drive properties price (Abbott and Klaiber, 2011, Kuminoff, et al., 2010).  

Including the description of the rental properties represented by the BOW (models 

V, VI, and VII) decreases significantly the MSE. Including just the BOW into the naïve 
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specification decreases the MSE by 28.2%. Models IV and VI differ only by the variables 

location fixed-effect and the BOW. Model VI, which adds the BOW to the naïve + time 

fixed effect specification, reduces the MSE of the naïve + time fixed-effect model by 

35.4%. Meanwhile model IV, which adds the location fixed effect to the naïve + time 

fixed effect specification, reduces the naïve model’s MSE by only 7.9%. The difference 

of reduction in the MSE between the addition of the BOW and the addition of the loca-

tion fixed effect indicates that there might be a difference between the features represent-

ed by these two set of variables. They might be capturing different information. The 

BOW might also capture the information explained by the location fixed effects. The 

magnitude of the reduction in MSE induced by the addition of the BOW is larger (4 

times) the magnitude of the reduction induced by the addition of the location fixed effect. 

This difference in magnitude indicates that the i) BOW better accounts for the variation 

of prices compared to the location fixed effect.  

The addition of the location fixed effect to a model with the BOW (model VI to 

VII) contributes to a reduction of the MSE similar in magnitude (6%) to the reduction of 

the MSE (7.9%) observed when adding the location fixed effects to the naïve model + 

time fixed effect (model III to IV). If the variation of information captured by the location 

fixed effect was included in the variation of information captured by the BOW, the addi-

tion of the location fixed effect to a model that already contains the BOW should not re-

duce significantly the MSE. This result is an indication that ii) the location fixed effect 

and the BOW accounts for different set of information. The similitude in the magnitude 

of the MSE reductions observed when adding the location fixed effect in the two cases 

(model III to IV and model VI to VII) further supports this result.  These results are simi-
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lar to Nowak and Smith (2017)’s results when examining textual analysis in real estate. 

Nowak and Smith (2017) show that including textual information in hedonic pricing 

model reduces pricing errors by more than 25%. In this study, adding the BOW to the 

panel model with location and time fixed effects (model IV to model VII) reduces the 

pricing error by more than 34%.  

The remainder of this section covers the results of the estimation using LASSO 

with the BOW and time-location fixed-effects.  

4.4.2. LASSO estimates of the BOW-time-location fixed effects hedonic pricing model  

Model VII represents the ideal model because it has better predictive power com-

pared to the other models. LASSO minimizes the sum of squares of the residual and adds 

a shrinkage penalty term. The estimates of some parameters in the LASSO model are set 

to zero. Figure 4.2 illustrates the number of non-zero variables in the model at the top 

along the logarithm of the λ (lambda) parameter. Each curve represents each variable in 

the model and shows the path of the coefficient against the lambda parameter.  
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Figure 4.2: Number of features selected by the LASSO model as function of the Lambda 
parameter 

 

As anticipated, low values of lambda allow more variables in the model than high 

values. Recall that a value of lambda that equals zero corresponds to the OLS with all the 

explanatory variables in the model since there is no penalty on them.  

Figure 4.3 illustrates the mean estimates of the MSE as a function of the lambda 

parameter. The upper and lower standard deviations (error bar) of each mean estimate are 

also illustrated. At the top of the graph, we have the number of features selected in the 

model. The two vertical black dotted lines indicate the two selected lambda values (the 

minimum value and the one-standard-error value) obtained via cross-validation. The un-

regularized model performs well with approximately 1360 variables. This corresponds to 

the minimum value of lambda of 1.083. The unregularized model is the model that corre-
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sponds to the minimum value of lambda that gives the minimum mean cross-validated 

error. However, the most regularized model, with the optimal variance-bias trade-off, is 

achieved with a lambda value of 3.158. This value is associated with the model with an 

error within one standard error of the minimum error and select 257 features.   

 

Figure 4.3: Cross-validated mean estimates of the MSE as a function of the Lambda pa-
rameter 

 

4.4.3. Pricing value of the features.  

Among the 9917 variables, the LASSO regression selects 257 features that have a 

predictive power in explaining room price on Airbnb in San Francisco. Figure 4.4 pre-

sents the 15 most important significant positive and negative variables with their esti-

mates. The figure shows that the LASSO regression produces estimates that are con-

sistent with the hedonic price literature. Location affects rental price since the price in 
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certain areas (zip codes 94112 and 94134, for example) are significantly lower compared 

to other areas. Private rooms are also priced lower compared to entire homes or apart-

ments (the base variable for room type). 

 

Figure 4.4: Estimates of the most important significant positive and negative variables 

 

Tokens such as “redesign”, “rust”, and “subleas” are associated with lower rental 

prices, implying these tokens have a negative effect on price. These tokens suggest, re-

spectively, that the rental unit has been redesigned, is rustier, and is being subleased. All 

these suggestions can be associated with poor quality or at best an improvement or reno-

vation of the rental unit. An association with poor quality explains the negative estimates. 

These tokens might capture unobserved time-unvarying characteristics of the rental (con-

struction materials, for example). An improvement or renovation of the rental unit by the 
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owner still suggests an initial poor quality of the rental unit and might imply that the to-

kens are related to time-varying attributes of the rental unit. These time-varying and time-

unvarying attributes are unobservable by the econometrician but are known by the host. 

Information in the description section on the Airbnb platform can be used to approximate 

the features that might be omitted in the hedonic model. This explains the reduction in 

price errors observed when including, through the unigrams, information that might be 

omitted in regression models.  

A similar analysis can be conducted for the tokens with positive estimates. To-

kens such as “restaur”, “view”, “dog” “neighbor”, associated with higher rental prices, 

imply that these tokens have a positive impact on the price. “restaur” and “neighbor” 

suggest attributes such as the presence of restaurants or a good neighborhood which are 

related to the location of the rental unit. The positive coefficient of a token such as “dog” 

might be related to hosts allowing the presence of dogs in the premises. When features 

related to the location (restaurant, and neighborhood) are commonly included in hedonic 

models, those related to dogs are rarely accounted for. The use of textual analysis offers 

the advantage to circumvent the pricing error that might be introduced by not including 

such features. However, the use of tokens in the LASSO regression presents a limit: the 

interpretability of the tokens. Not all the tokens have an intuitive interpretation, and the 

interpretation is also subjective to the researcher. Methodologies that improve the textual 

analysis to derive interpretable tokens will significantly increase its use in econometric 

models.   
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4.5. Conclusion  

This paper examines the effect of including features in the description of rooms 

rented through Airbnb on the pricing error in a hedonic model. Hedonic models have 

been widely used in real estate research to help evaluate consumers’ valuation of non-

market goods and services. Developed by Rosen (1974), this model has experienced con-

siderable improvements both theoretically and methodologically regarding its economet-

ric estimation. The omitted variable bias problem is one of the econometric issues that 

has received a lot of attention. There are many variables that are related to the property 

quality but that are unobserved by the econometrician. Omitting these variables in the 

regression models will create inaccurate estimates of the price.  

Nowak and Smith (2017) address the omitted variable bias problem using textual 

analysis in the real estate literature. This study is the first to examine the same issue in the 

hospitality literature. Using data on Airbnb in San Francisco, we augment a well-

specified hedonic model with a unigram representation of the words used to describe the 

rental unit on the online platform. We test the hypothesis that the characteristics of the 

rental units on the online platforms do not account for all the features needed to estimate 

the price of those units in a hedonic price model correctly. However, the owners of the 

rental units have information about the quality that they share through the description of 

those units on the platform. Including those descriptions in the hedonic price model can 

reduce the pricing error.  

We test this hypothesis with a textual analysis methodology and the LASSO re-

gression. The textual analysis helps to decompose the text in the description into the sin-

gle words that compose it. Including the resulting large number of words into a standard 
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OLS regression would be infeasible due to the rank condition. We rely on the LASSO 

regression that performs simultaneously shrinkage and feature selection. Results of our 

analysis show that the LASSO performs well compared to a well-specified panel regres-

sion with time and location fixed effects. Including a unigram representation of the words 

found in the description of the rooms reduces pricing error by more than 34%. Examina-

tion of the features selected by the LASSO suggests that including the BOW in the he-

donic model might address the OVB problem by accounting for time-varying and time-

unvarying quality features. However, the combination of LASSO and textual analysis in 

the hedonic model do not produce easily interpretable estimates. Due to the importance of 

including the BOW in the hedonic model, its potential to address the OVB problem, and 

the increasing availability of user-generated contents online, future studies should ad-

vance the methodology needed to produce interpretable estimates generated by the com-

bination of textual analysis and hedonic price models.  
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CHAPTER 5 : GENERAL CONCLUSION  

Machine learning and big data are intertwined concepts that refer fundamentally 

to the same area of study. These concepts have gained in popularity in the recent years 

thanks to the growth of the internet. Nowadays, consumers have access to a large assort-

ment of smart objects that collect a variety of data (sensory, location, behavior, texts, au-

dio, videos, etc.). These data, also referred to as big data, can be structured or unstruc-

tured and are generated in near real-time thus their important volume which gives them 

the “big” attribute. Dealing with these big data require high-performance analytics and 

machine learning is the branch of computer science that uses statistics to examine hiding 

patterns in these big data. The use of big data and machine learning have found their ap-

plication in industries such as healthcare, transportation, online retail, government, travel, 

and hospitality. Can the success observed in these industries be replicated in economics? 

The present dissertation examines this question with three essays on the application of 

machine learning in economics.  

The first essay uses sentiment analysis to derive the sentiments hidden in the re-

views left by customers on the Airbnb in Boston. Using the sentiment as a measure of 

quality, it explores the relationship between the reviews and the price set by guests on the 

online platform. The results of the hedonic spatial autoregressive model applied to rental 

room prices on Airbnb in the study area show that prices are influenced not only by the 

characteristics of the room, and the features of the neighborhood, but also by the reviews 

left by hosts. The second essay predicts consumer preferences by mining beer reviews 

posted by enthusiasts on an online platform. It uses a text categorization approach to dis-

cuss the predictive capability of the words used in the reviews by customers to express 
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their preferences. Relying on the random forest algorithm, this essay shows that the 

words used in the reviews can help predict consumers’ preferences and the words which 

occur in multiple reviews do not effectively categorize the reviews than the less frequent 

terms. The essay also identifies from the reviews the beer attributes, such as those related 

to the smell or taste, look, and overall quality of the beer, as the most important features 

in predicting consumers’ preferences. The third and last essay addresses an issue that af-

fects the reliability of estimates in hedonic price models: the omitted variable bias. It 

shows that by using the words in the description of the rental properties in the estimation 

procedures of the model, we can reduce significantly the bias created by omitted varia-

bles. The description can account for variables that are not readily measurable but that are 

important in getting reliable estimates in the hedonic model. This essay also emphases a 

limitation of certain machine learning methods: the difficulty in interpreting some results 

derived from the models. The interpretation of certain variables of the LASSO regression 

model can be subjective to the econometrician.  

Big data and machine learning can advance economics in various ways. They can 

make available large volume of data that represents the real behavior of economic agents 

in non-hypothetical situations. They can advance applied research in economics by ad-

dressing some limitations such as the omitted variable bias encountered in econometrics. 

However, the effective use of big data will also require the training of the next generation 

of economists in the techniques, tools, and skills needed to derive value from it. To en-

courage the adoption of machine learning methods in economics, it is also necessary to 

encourage scholarly activities on the development or adaptation of existing machine 

learning methodologies to causal inference studies.  
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GLOSSARY  

Accuracy: The number of correct predictions from all the predictions made by a machine 

learning algorithm.  

Area under the curve (AUC): Likelihood that a classifier will rank a randomly drawn 

positive higher than a uniformly drawn random negative.   

Bag of words (BOW): Model of representation of text data used in natural language pro-

cessing and which consists on extracting words from a raw text and recording their occur-

rence in the text.  

Cross validation: Resampling method to evaluate predictive models that consists on 

running the model on different subsets of the data  

Decision tree: Machine learning method that map the possible outcomes against one an-

other based on values that minimizes a loss function. The result is a tree-like decision 

rule.  

False negatives: Proportion of positive outcomes wrongly predicted as negative out-

comes 

False positives: Proportion of negative outcomes wrongly predicted as positives out-

comes  

K nearest neighbors (KNN): Approach that predicts the class of an object using its K-

closest neighbors. Closeness is based on a distance defined by the user. Euclidian dis-

tance is the most commonly used distance metric. 

Kappa statistic: Metric used to evaluate the performance of a classifier by comparing the 

accuracy achieved by the classifier with its expected accuracy (random chance).  

Linear discriminant analysis (LDA): Classification method that uses a mathematical 

path to predict the probability of an object to belong to a group based on the predictor 

characteristics 
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Machine learning: Branch of artificial intelligence that uses computational methods to 

learn from data, identify patterns, and make decisions. Machine learning methods are 

generally categorized into supervised and unsupervised learning algorithms. Supervised 

learning algorithms use know input and output data to train a model that best approxi-

mates the relationship between them so that it will predict future outputs. Unsupervised 

learning algorithms task consists of finding hidden patterns or the underlying structure 

present in a set of input data. As part of machine learning algorithms are also Semi-

supervised learning which borrows from supervised and unsupervised technics and rein-

forcement learning algorithms which learn through trials and errors which actions attain a 

complex objective or goal.   

Natural language processing (NLP): Field of artificial intelligence that deals with help-

ing computers understand, interpret, and manipulate human language text or speech.  

N-gram: set of contiguous sequence of n words in a text data. Unigram, bigram, and tri-

gram correspond to a decomposition of the text into the single words, pairs or words, or 

sequence of three words.  

Random forest: machine learning method for classification and regression that uses an 

ensemble of decision trees 

Sentiment analysis: Area of Natural Language Processing that consists on identifying 

and extracting subjective sentiments or opinions from textual contents.  

Stemming: In natural language processing, the task of reducing a word (inflected or deri-

vationally related) to its root or base also called stem.   

Support vector machines (SVMs): Ordinary Least Squares (OLS) regressions estimates 

parameters that minimize the sum of squared of residuals (SSR). These estimates are sen-

sitive to the presence of outliers. However, minimization metric such as the Huber func-

tion performs better than the SSR when the data contains influential observations. The 

Huber function uses the absolute residuals for residuals whose values are large but uses 

the squared residuals when the values of the residuals are small. SVMs minimize the ef-

fects of the residuals using the Huber function and within a threshold ε defined by the 
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user. Only data points with absolute difference greater than the threshold contributes to 

the regression fit. This approach ensures that large outliers have less influence on the re-

gression (since the squared residuals are not used).  

Text categorization: Automatic assignment or classification of texts into predefined cat-

egories.   

Tokenization: In natural Language processing, the tokenization is the task of decompos-

ing text data into the pieces of words or terms, also called tokens, composing the text.  

True negatives: proportion of negative outcomes correctly predicted by a machine learn-

ing algorithm  

True positives: proportion of positive outcomes correctly predicted by a machine learn-

ing algorithm  
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