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Recent advances of Internet and microelectronics technologies have led to the concept of smart grid which has been a widespread
concern for industry, governments, and academia. The openness of communications in the smart grid environment makes the
system vulnerable to different types of attacks. The implementation of secure communication and the protection of consumers’
privacy have become challenging issues.The data aggregation scheme is an important technique for preserving consumers’ privacy
because it can stop the leakage of a specific consumer’s data. To satisfy the security requirements of practical applications, a lot
of data aggregation schemes were presented over the last several years. However, most of them suffer from security weaknesses
or have poor performances. To reduce computation cost and achieve better security, we construct a lightweight data aggregation
scheme against internal attackers in the smart grid environment using Elliptic Curve Cryptography (ECC). Security analysis of
our proposed approach shows that it is provably secure and can provide confidentiality, authentication, and integrity. Performance
analysis of the proposed scheme demonstrates that both computation and communication costs of the proposed scheme are much
lower than the three previous schemes. As a result of these aforementioned benefits, the proposed lightweight data aggregation
scheme is more practical for deployment in the smart grid environment.

1. Introduction

By providing bidirectional communications of electricity and
information, the smart grid performs real-time monitoring
of power usage [1]. Based on the real-time information, the
providers can monitor the power generation and consump-
tion and get immediate power demand of each area. Then,
they can take prompt action to optimize the power supply.
The consumer can also get the current power price and adjust
his/her behavior to lower expenses. Therefore, the smart grid
can achieve efficient, economical, and reliable power services.
Due to such advantages, the smart grid was a widespread
concern for governments, industry, and academia in the last
decade and is considered as the most promising candidate of
the next generation power system [2].

The National Institute of Standards and Technology
(NIST) presents a model and describes seven important
domains of the smart gird [3]. As shown in Figure 1 [4], a
smart gird consists of seven important domains, that is, the
power generation (PG) domain, the power transmission (PT)
domain, the power distribution (PD) domain, the power cus-
tomer (PC) domain, the power operation (PO) domain, the
power market (PM) domain, and the power service provider
(PSP) domain [5, 6]. After being generated, transmitted, and
distributed in the PG domain, the PT domain, and the PD
domain, respectively, the customers in the PC domain can
enjoy wonderful life based on the power.The PO domain, the
PM domain, and the PSP domain manage the power flow,
the participants, and all third-party operations, respectively
[7, 8].
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Figure 1: The model of the smart grid.

The smart meters in the smart grid collect the consumers’
power consumption data and other information and send
them to the remote control center. Generally speaking, the
smart meter is installed outside the door of a consumer and
an attacker is in charge of the communication channel easily
due to its openness. The attacker may maliciously modify the
power consumption data to increase/decrease the consumer’s
power expense. He/she also can get the daily routine of the
consumer in order to commit crimes. For example, he/she
knows that the consumer goes out when there is no power
consumption and sneaks into the house to steal expensive
things.

To address the above problems, how to achieve secure
communications in the smart grid becomes an issue that
needs to be addressed. In particular, ensuring the data’s
integrity and confidentiality is even more important. Several
cryptographic schemes can be applied for secure communi-
cations in the smart grid. Many key management schemes
[9–11], key distribution schemes [12–14], and key agreement
schemes [15–17] were presented in recent years. However,
many of these schemes cannot implement the integrity and
confidentiality simultaneously. To address this challenge,
data aggregation schemes have been proposed by several
researchers and applied in the smart grid. However, most
of them are vulnerable to attacks from internal attackers.
Although several data aggregation schemes against internal
attackers were proposed to enhance security, their compu-
tation or communication costs are too high for practical
smart grid applications. In addition, the smart meter has very
limited computation and communication capabilities. It is
therefore necessary to design lightweight data aggregation
schemes for practical deployment.

1.1. Our Contributions. To reduce both computation and
communication costs, we propose a lightweight data aggrega-
tion scheme based on the Elliptic Curve Cryptography (ECC)
[18, 19], which can obtain the same security level but with a
much shorter key size. The main contributions of our paper
are demonstrated as follows:

(i) First, we propose a lightweight data aggregation
scheme based on Schnorr’s signature scheme [18].

(ii) Second, we prove that the proposed lightweight data
aggregation scheme is secure and is able to satisfy
security requirements.

(iii) Finally, we analyze the performance of the proposed
lightweight data aggregation scheme to demonstrate
its high performance.

1.2. Organization of the Paper. In Section 2, we briefly
review related papers about data aggregation schemes. In
Section 3, we give some preliminaries, including backgrounds
of ECC, networkmodel, and security requirements of the data
aggregation scheme. In Section 4, we present our lightweight
data aggregation scheme based on ECC. In Section 5, we
describe a security model for the data aggregation scheme
and present the security analyses of our scheme. In Section 6,
we present the computation and communication analyses of
our data aggregation scheme.

2. Related Works

To guarantee secure communication in open environments,
a lot of authentication schemes [20–22], encryption schemes
[23–26], and secure outsourcing schemes [25, 27, 28] have
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been constructed in last several years. Li et al. [29] andGarcia
and Jacobs [30] designed two data aggregation schemes using
Paillier’s encryption scheme [31]. To improve performance,
Lu et al. [32] designed an improved data aggregation scheme
using Paillier’s encryption scheme and the super-increasing
sequence. However, the above three schemes [29, 30, 32]
cannot protect consumers’ privacy because none of them can
provide anonymity. To protect consumers’ privacy, Zhang
et al. [33] designed a security-enhanced data aggregation
scheme based on the Chinese Remainder Theorem and
Paillier’s encryption scheme. Chen et al. [34] also designed
a security-enhanced data aggregation scheme with fault
tolerance based on Paillier’s encryption scheme.

Unfortunately, internal attacks are not considered in the
above data aggregation schemes [29, 30, 32–34] thereby
allowing internal attackers to access the consumers smart
grid data. To address this weakness, Fan et al. [35] designed
the first data aggregation scheme that can withstand attacks
from internal attackers by using blinding technology. Unfor-
tunately, Bao and Lu [36] demonstrated that Fan et al.’s
data aggregation scheme cannot guarantee the integrity of
transmitted data. To enhance security, He et al. [4] designed
an improved data aggregation scheme based on Boneh et
al.’s encryption scheme [37]. The performance of Fan et al.’s
data aggregation scheme [35] and He et al.’s data aggregation
scheme [4] is not good enough because they use bilinear
pairing operations.

3. Preliminaries

3.1. Elliptic Curve. Given a prime number 𝑝, we say that the
equation 𝑦2 = 𝑥3 + 𝑎 ⋅ 𝑥 + 𝑏mod𝑝 defines an elliptic curve𝐸(𝐹𝑝), where 𝑎, 𝑏 ∈ 𝐹𝑝 and Δ = 4𝑎3 + 27𝑏2 ̸= 0mod𝑝 [38]. It
is well known that all points on 𝐸(𝐹𝑝) and the infinite point
Omake an additive groupG. Given a generator point 𝑃 with
a prime order 𝑞, the scale multiplication operation is defined
as 𝑛 ⋅ 𝑃 = 𝑃 + 𝑃 + ⋅ ⋅ ⋅ + 𝑃𝑛 times, where 𝑛 is a positive integer.

Previous researches have showed that the following prob-
lems in the group G are suitable for the design of public
key cryptography because no probabilistic polynomial time
algorithm can solve them efficiently [38].

Discrete Logarithm (𝐷𝐿) Problem. Given an element 𝑄 ∈ G,
the DL problem is to extract an element 𝑥 ∈ 𝑍∗𝑞 such that𝑄 = 𝑥 ⋅ 𝑃.
Computational Diffie-Hellman (𝐶𝐷𝐻) Problem. Given two
elements 𝑥 ⋅ 𝑃, 𝑦 ⋅ 𝑃 ∈ G with two unknown elements 𝑥, 𝑦 ∈𝑍∗𝑞 , the CDH problem is to extract the element 𝑄 = 𝑥 ⋅ 𝑦 ⋅ 𝑃.
3.2. Network Model. As shown in Figure 2 [4], there are
three participants in the system of a data aggregation scheme,
namely, a trusted third party (TTP), an aggregator (Agg), and
a smart meter (SM𝑖) [4, 35]. The functions of the above three
participants are presented as below.

(i) TTP: it is a trusted third party and its function is
to generate blinding factors to withstand the internal
attackers.

Blinding factor

Con
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Blinding factor

Agg

TTPSMi

Figure 2: The registration phase.

(ii) Agg: it is the manager of the smart grid and its
function is to generate the system parameters and the
private keys of smart meters.

(iii) SM𝑖: it is a smart meter and its function is to collect
consumers’ electricity consumption data and send it
to Agg.

The workflow of the system is presented as follows. (1)
Agg produces the system parameters and the mast private
key; (2) SM𝑖 registers in Agg and gets its private key; (3)
TTP generates the blinding factors for Agg and SM𝑖; (4) SM𝑖
collects the electricity consumption, produces a ciphertext,
and sends it to Agg; (5) after collecting all ciphertexts, Agg
checks their validity and extracts the sum of all electricity
consumption data.

3.3. Security Requirements. Based on recently works, we
know that a data aggregation scheme for the smart grid
should meet the below security requirements [4, 35].

(i) Confidentiality. The consumer’s power consumption data
indicates his/her habit and its leakage may be used by an
attacker to commit a crime. To ensure the consumer’s safety, a
data aggregation scheme should provide confidentiality; that
is, both the external attackers and the internal attackers can-
not extract the electricity consumption data from intercepted
messages.

(ii) Authentication. The malicious attacker may forge a mes-
sage and impersonate the consumer. To ensure if the received
message is transmitted by a legal SM𝑖, a data aggregation
scheme should provide authentication; that is, Agg can check
the legality of the received message.

(iii) Integrity. All messages are transmitted over open com-
munication channels and the malicious attacker may modify
them to break regular transactions. To protect the rights
and interests of all participants in the smart grid, a data
aggregation scheme should provide integrity; that is, Agg can
detect any modification of the received data.

(iv) Resistance against Attacks. Due to the openness of
communication channels in the smart grid, the system is
vulnerable tomany types of attacks. To obtain secure commu-
nications in the smart grid, a data aggregation scheme should
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supply resistance against attacks; that is, it can withstand the
replay attack, themodification attack, theman-in-the-middle
attack, and the impersonation attack.

4. The Proposed Data Scheme

We describe our proposed lightweight data aggregation
scheme, which consists of three phases, namely, the initializa-
tion phase, the registration phase, and the aggregation phase.

Initialization Phase. In this phase, Agg executes some steps
to produce the system parameters. TTP and Agg execute
some other steps to produce the blind factors against internal
attackers.

Agg runs the following steps to produce the system
parameters.

(1) Agg selects an elliptic curve 𝐸(𝐹𝑝) determined by the
equation 𝑦2 = 𝑥3 +𝑎 ⋅ 𝑥+𝑏mod𝑝, where 𝑝 is a prime
and 𝑎, 𝑏 ∈ 𝑍𝑞.

(2) Agg selects an element 𝑃 with the order 𝑞 existing on𝐸(𝐹𝑝), where 𝑞 is a prime.

(3) Agg selects an element 𝑠 ∈ 𝑍∗𝑞 and calculates 𝑃pub =𝑠 ⋅ 𝑃.
(4) Agg selects three cryptographic hash functions ℎ𝑖 :{0, 1}∗ → 𝑍∗𝑞 (𝑖 = 1, 2, 3).
(5) Agg publishes params = {𝑝, 𝑎, 𝑏, 𝑞, 𝑃, 𝑃pub, ℎ1, ℎ2, ℎ3}

and saves 𝑠 secretly.
TTP and Agg execute the following steps to produce the

blinding factors.

(1) TTP randomly selects a group of elements 𝜃1, 𝜃2,. . . , 𝜃𝑛 ∈ 𝑍∗𝑞 and computes 𝜃 = ∑𝑛𝑖=1 𝜃𝑖mod 𝑞. At last,
TTP sends 𝜃 to Agg and also sends 𝜃𝑖 to SM𝑖, where𝑖 = 1, 2, . . . , 𝑛.

(2) Agg computes 𝜃0 = −𝜃mod 𝑞 and keeps it secretly.

Registration Phase. In this phase, SM𝑖 registers in Agg. After
registration, SM𝑖 receives its private key and becomes a legal
smart meter. As demonstrated in Table 1, SM𝑖 and Agg run
the following processes to finish the registration.

(1) SM𝑖 randomly chooses an element 𝑥𝑖 ∈ 𝑍∗𝑞 , computes
𝑋𝑖 = 𝑥𝑖 ⋅ 𝑃, and transmits {id𝑖, 𝑋𝑖 } to Agg secretly.

(2) Agg randomly chooses an element 𝑥𝑖 ∈ 𝑍∗𝑞 and
computes𝑋𝑖 = 𝑥𝑖 ⋅𝑃, 𝑋𝑖 = 𝑋𝑖+𝑋𝑖 , 𝛼𝑖 = ℎ1(id𝑖, 𝑋𝑖),
and 𝑠𝑖 = 𝑠+𝛼𝑖 ⋅ 𝑥𝑖 mod 𝑞. At last, Agg sends {𝑠𝑖 , 𝑋𝑖 }
to SM𝑖 secretly.

(3) SM𝑖 computes 𝑋𝑖 = 𝑋𝑖 + 𝑋𝑖 , 𝛼𝑖 = ℎ1(id𝑖, 𝑋𝑖), 𝑠𝑖 =𝑠𝑖 + 𝑥𝑖 ⋅ 𝛼𝑖mod 𝑞 and checks if the equation 𝑠𝑖 ⋅𝑃 = 𝑃pub + 𝛼𝑖 ⋅ 𝑋𝑖 holds. If not, SM𝑖 rejects the ses-
sion; otherwise, SM𝑖 stores {𝑠𝑖, 𝑋𝑖} and finishes the
registration.

Table 1: The registration phase of our scheme.

SM𝑖 Agg
Generate 𝑥𝑖 ∈ 𝑍∗𝑞 ;𝑋𝑖 = 𝑥𝑖 ⋅ 𝑃

{id𝑖 ,𝑋𝑖 }→
Generate 𝑥𝑖 ∈ 𝑍∗𝑞 ;𝑋𝑖 = 𝑥𝑖 ⋅ 𝑃;𝑋𝑖 = 𝑋𝑖 + 𝑋𝑖 ;𝛼𝑖 = ℎ1(id𝑖, 𝑋𝑖);𝑠𝑖 = 𝑠 + 𝛼𝑖 ⋅ 𝑥𝑖 mod 𝑞

{𝑠
𝑖
,𝑋
𝑖
}←

𝑋𝑖 = 𝑋𝑖 + 𝑋𝑖 ;𝛼𝑖 = ℎ1(id𝑖, 𝑋𝑖);𝑠𝑖 = 𝑠𝑖 + 𝛼𝑖 ⋅ 𝑥𝑖 mod 𝑞;
check 𝑠𝑖 ⋅ 𝑃 ?= 𝑃pub + 𝛼𝑖 ⋅ 𝑋𝑖;
store {𝑠𝑖, 𝑋𝑖}

Due to the fact that 𝑋𝑖 = 𝑥𝑖 ⋅ 𝑃, 𝑋𝑖 = 𝑥𝑖 ⋅ 𝑃, 𝑋𝑖 =𝑋𝑖 + 𝑋𝑖 , 𝑠𝑖 = 𝑠 + 𝛼𝑖 ⋅ 𝑥𝑖 mod 𝑞, and 𝑠𝑖 = 𝑠𝑖 + 𝑥𝑖 ⋅ 𝛼𝑖mod 𝑞,
then we have

𝑠𝑖 ⋅ 𝑃 = (𝑠𝑖 + 𝑥𝑖 ⋅ 𝛼𝑖) ⋅ 𝑃 = (𝑠 + 𝛼𝑖 ⋅ 𝑥𝑖 + 𝛼𝑖 ⋅ 𝑥𝑖) ⋅ 𝑃
= (𝑠 + 𝛼𝑖 ⋅ (𝑥𝑖 + 𝑥𝑖 )) ⋅ 𝑃
= 𝑠 ⋅ 𝑃 + 𝛼𝑖 ⋅ (𝑥𝑖 + 𝑥𝑖 ) ⋅ 𝑃
= 𝑃pub + 𝛼𝑖 ⋅ (𝑥𝑖 ⋅ 𝑃 + 𝑥 ⋅ 𝑃)
= 𝑃pub + 𝛼𝑖 ⋅ (𝑋𝑖 + 𝑋𝑖 ) = 𝑃pub + 𝛼𝑖 ⋅ 𝑋𝑖.

(1)

Therefore, the correctness of the registration phase is
demonstrated.

Aggregation Phase. In this phase, SM𝑖 extracts the power
consumption data and sends it toAgg. Agg checks the validity
of the received messages and aggregates all the received data.
As demonstrated in Table 1, the steps below are executed by
SM𝑖 and Agg.

(1) SM𝑖 gets the power consumption data 𝑚𝑖, randomly
chooses an element 𝑦𝑖 ∈ 𝑍∗𝑞 , and computes 𝑌𝑖 = 𝑦𝑖 ⋅𝑃, �̂�𝑖 = 𝑦𝑖 ⋅ 𝑃pub, 𝑐𝑖 = 𝑚𝑖 + 𝜃𝑖 + ℎ2(�̂�𝑖)mod 𝑞, 𝛽𝑖 =ℎ3(id𝑖, 𝑋𝑖, 𝑌𝑖, 𝑐𝑖, 𝑡), and 𝑑𝑖 = 𝑠𝑖 + 𝛽𝑖 ⋅ 𝑦𝑖mod 𝑞. At last,
SM𝑖 transmits {𝑋𝑖, 𝑌𝑖, 𝑐𝑖, 𝑑𝑖, 𝑡} to Agg.

(2) Agg checks if 𝑑𝑖 ⋅ 𝑃 = 𝑃pub + 𝛼𝑖 ⋅ 𝑋𝑖 + 𝛽𝑖 ⋅ 𝑌𝑖,
where 𝛼𝑖 = ℎ1(id𝑖, 𝑋𝑖) and 𝛽𝑖 = ℎ3(id𝑖, 𝑋𝑖, 𝑌𝑖, 𝑐𝑖, 𝑡). To
improve performance, we use the small exponent test
technology [39] to achieve the batch verification. Agg
randomly chooses a group of integers 𝑧1, 𝑧2, . . . , 𝑧𝑛 ∈[1, 2𝑤] and checks if the equation (∑𝑛𝑖=1 𝑧𝑖 ⋅ 𝑑𝑖) ⋅ 𝑃 =(∑𝑛𝑖=1 𝑧𝑖)𝑃pub + ∑𝑛𝑖=1(𝑧𝑖 ⋅ 𝛼𝑖 ⋅ 𝑋𝑖 + 𝑧𝑖 ⋅ 𝛽𝑖 ⋅ 𝑌𝑖) holds.
Agg computes 𝑐 = ∑𝑛𝑖=1(𝑐𝑖 − ℎ2(𝑠 ⋅ 𝑌𝑖)) and extracts
the sumof the power consumption data by computing𝑚 = 𝑐 + 𝜃0mod 𝑞.
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Due to the fact that 𝑠𝑖 ⋅ 𝑃 = 𝑃pub +𝛼𝑖 ⋅ 𝑋𝑖, 𝑌𝑖 = 𝑦𝑖 ⋅ 𝑃, �̂�𝑖 =𝑦𝑖 ⋅𝑃pub, 𝑐𝑖 = 𝑚𝑖+𝜃𝑖+ℎ2(�̂�𝑖)mod 𝑞 and 𝑑𝑖 = 𝑠𝑖+𝛽𝑖 ⋅ 𝑦𝑖mod 𝑞,
we can derive

𝑑𝑖 ⋅ 𝑃 = (𝑠𝑖 + 𝛽𝑖 ⋅ 𝑦𝑖) ⋅ 𝑃 = 𝑠𝑖 ⋅ 𝑃 + 𝛽𝑖 ⋅ 𝑦𝑖 ⋅ 𝑃
= 𝑃pub + 𝛼𝑖 ⋅ 𝑋𝑖 + 𝛽𝑖 ⋅ 𝑌𝑖

( 𝑛∑
𝑖=1

𝑧𝑖 ⋅ 𝑑𝑖) ⋅ 𝑃 = ( 𝑛∑
𝑖=1

𝑧𝑖 ⋅ (𝑠𝑖 + 𝛽𝑖 ⋅ 𝑦𝑖)) ⋅ 𝑃

= ( 𝑛∑
𝑖=1

𝑧𝑖 ⋅ (𝑠𝑖 + 𝛽𝑖 ⋅ 𝑦𝑖)) ⋅ 𝑃

= 𝑛∑
𝑖=1

(𝑧𝑖 ⋅ 𝑠𝑖 ⋅ 𝑃 + 𝑧𝑖 ⋅ 𝛽𝑖 ⋅ 𝑦𝑖 ⋅ 𝑃)

= 𝑛∑
𝑖=1

(𝑧𝑖 ⋅ (𝑃pub + 𝛼𝑖 ⋅ 𝑋𝑖) + 𝑧𝑖 ⋅ 𝛽𝑖 ⋅ 𝑌𝑖)

= ( 𝑛∑
𝑖=1

𝑧𝑖) ⋅ 𝑃pub + 𝑛∑
𝑖=1

(𝑧𝑖 ⋅ 𝛼𝑖 ⋅ 𝑋𝑖 + 𝑧𝑖 ⋅ 𝛽𝑖 ⋅ 𝑌𝑖) ,

(2)

𝑐 + 𝜃0 = 𝑛∑
𝑖=1

(𝑐𝑖 − ℎ2 (𝑠 ⋅ 𝑌𝑖)) + 𝜃0
= 𝑛∑
𝑖=1

(𝑚𝑖 + 𝜃𝑖 + ℎ2 (�̂�𝑖) − ℎ2 (𝑠 ⋅ 𝑦𝑖 ⋅ 𝑃)) − 𝜃

= 𝑛∑
𝑖=1

(𝑚𝑖 + 𝜃𝑖 + ℎ2 (�̂�𝑖) − ℎ2 (𝑦𝑖 ⋅ 𝑠 ⋅ 𝑃)) − 𝜃

= 𝑛∑
𝑖=1

(𝑚𝑖 + 𝜃𝑖 + ℎ2 (�̂�𝑖) − ℎ2 (𝑦𝑖 ⋅ 𝑃pub)) − 𝜃

= 𝑛∑
𝑖=1

(𝑚𝑖 + 𝜃𝑖 + ℎ2 (�̂�𝑖) − ℎ2 (�̂�𝑖)) − 𝜃

= 𝑛∑
𝑖=1

𝑚𝑖 + 𝑛∑
𝑖=1

𝜃𝑖 − 𝑛∑
𝑖=1

𝜃𝑖 = 𝑛∑
𝑖=1

𝑚𝑖.

(3)

According to the above equations, the correctness of the
aggregation phase of our scheme is demonstrated.

5. Security Analysis

The security of the proposed lightweight data aggregation
scheme is analyzed in this section. First, we present a
security model for the data aggregation scheme. Second, we
demonstrate that the proposed lightweight data aggregation
scheme is provably secure in the security model. Finally, we
demonstrate that the proposed lightweight data aggregation
scheme can meet the security requirements presented in
Section 3.

5.1. Security Model. Based on security models [40] for sign-
cryption schemes, we presented a security model for data

aggregation schemes. The security of confidentiality and
unforgeability is formally defined by two games executed by
an attacker A and a challenger C. A is allowed to make the
following queries.

(i) ℎ𝑖(𝑚): for such a query made by A, C randomly
selects 𝑟 ∈ 𝑍∗𝑞 , sends 𝑟 to A, and stores (𝑚, 𝑟) in the
table 𝐿ℎ𝑖 , where 𝑖 = 1, 2, 3.

(ii) CreateSM(id𝑖): for such a query made by A, C
generates SM𝑖’s secret key and blinding factor and
stores them in the table 𝐿SM.

(iii) CorruptSM(id𝑖): for such a querymade byA,C sends
SM𝑖’s private key and blinding factor toA.

(iv) Signcrypt(id𝑖, 𝑚𝑖): for such a query made by A, C
generates a ciphertext {𝑋𝑖, 𝑌𝑖, 𝑐𝑖, 𝑑𝑖, 𝑡} corresponding
to the message𝑚𝑖.

(v) Designcrypt(id𝑖, 𝑋𝑖, 𝑌𝑖, 𝑐𝑖, 𝑑𝑖, 𝑡): for the query made
by A, C checks the validity of the ciphertext and
decrypts it to get the plaintext.

Definition 1. A data aggregation scheme is able to provide
confidentiality [indistinguishability against adaptive chosen
ciphertext attacks (IND − CCA)] if no attacker can win the
following game with a nonnegligible advantage.

Setup.C produces system parameters and transmits them to
A.

Phase 1. A is able to adaptively make ℎ𝑖, CreateSM, Cor-
ruptSM, Signcrypt, and Designcrypt queries.

Challenge. A picks a challenging identity id∗𝑖 , chooses two
messages 𝑚0 and 𝑚1, and sends them to C. C picks a
random element 𝑏 ∈ {0, 1}, produces a signcrypted ciphertext{𝑋𝑖, 𝑌𝑖, 𝑐𝑖, 𝑑𝑖, 𝑡}, and sends it toA.

Phase 2. In this phase, A can adaptively make ℎ𝑖, CreateSM,
CorruptSM, and Signcrypt queries except that it cannotmake
a CorruptSM query with id∗𝑖 or a Designcrypt query with{𝑋𝑖, 𝑌𝑖, 𝑐𝑖, 𝑑𝑖, 𝑡}.

Finally, A gives its guess 𝑏 ∈ {0, 1} about the value of 𝑏
selected byC.

The advantage of A is defined by the equation
AdvIND−CCA

A = |2 ⋅ Pr[𝑏 = 𝑏] − 1|.A wins in the above game
if it guesses the value of 𝑏 correctly.
Definition 2. A data aggregation scheme is able to provide
unforgeability [existential unforgeability against adaptive
chosen messages attacks (EUFCMA)] if no attacker wins the
following game with a nonnegligible advantage.

Setup. C produces the system parameters and sends them to
A.

Qurey. In this phase, A picks a challenging identity id∗𝑖
and is able to adaptively make ℎ𝑖, CreateSM, CorruptSM,
Signcrypt, and Designcrypt queries except that it cannot
make a CorruptSM query with id∗𝑖 .
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Forgery. In this phase,A outputs a ciphertext {𝑋𝑖, 𝑌𝑖, 𝑐𝑖, 𝑑𝑖, 𝑡}
corresponding to the challenging identity id∗𝑖 .

We sayAwins in the above game if {𝑋𝑖, 𝑌𝑖, 𝑐𝑖, 𝑑𝑖, 𝑡} is valid
and it is not generated by executing a Signcrypt query.

5.2. Security Analysis

Theorem 3. The proposed data aggregation scheme is able to
provide confidentiality if the CDH problem is hard.

Proof. Assume that an attacker A wins the game defined in
Definition 1 with a nonnegligible advantage 𝜖. Based on A’s
capability, we can construct a challenger to solve the CDH
problem with a nonnegligible advantage. Given an instance
(𝑃,𝑄1 = 𝑎⋅𝑃, 𝑄2 = 𝑏⋅𝑃) of the CDHproblem,C sets𝑃pub ←𝑎⋅𝑃 and sends params = {𝑝, 𝑎, 𝑏, 𝑞, 𝑃, 𝑃pub, ℎ1, ℎ2, ℎ3} toA.C
randomly picks up an identity id𝐼 as the challenging identity
and answers queries fromA according to the rules below.

(i) ℎ𝑖(𝑚): C keeps a table 𝐿ℎ𝑖 of the form (𝑚, 𝑟), where𝑖 ∈ {1, 2, 3}. Upon receiving such a query, C checks
if 𝐿ℎ𝑖 contains a tuple (𝑚, 𝑟). If so, C sends 𝑟 to A;
otherwise, C randomly selects an element 𝑟 ∈ 𝑍∗𝑞 ,
stores (𝑚, 𝑟) into 𝐿ℎ𝑖 , and sends 𝑟 toA.

(ii) CreateSM(id𝑖): C keeps a table 𝐿SM of the form(id𝑖, 𝜃𝑖, 𝑠𝑖, 𝑋𝑖). Upon receiving such a query,C checks
if 𝐿SM contains a tuple (id𝑖, 𝜃𝑖, 𝑠𝑖, 𝑋𝑖). If so, C sends𝑋𝑖 toA; otherwise,C randomly selects three integers𝜃𝑖, 𝛼𝑖, 𝑠𝑖 ∈ 𝑍∗𝑞 and sets𝑋𝑖 ← 𝛼−1𝑖 ⋅(𝑠𝑖 ⋅𝑃−𝑃pub).C stores
(id𝑖, 𝑋𝑖, 𝛼𝑖) and (id𝑖, 𝜃𝑖, 𝑠𝑖, 𝑋𝑖) into 𝐿SM, respectively.

(iii) CorruptSM(id𝑖): C checks if 𝐿SM contains a tuple
(id𝑖, 𝜃𝑖, 𝑠𝑖, 𝑋𝑖). If not, C makes CreateSM-query with
the identity id𝑖. After that,C returns (id𝑖, 𝜃𝑖, 𝑠𝑖, 𝑋𝑖) to
C.

(iv) Signcrypt(id𝑖, 𝑚𝑖): C checks if 𝐿SM contains a tuple
(id𝑖, 𝜃𝑖, 𝑠𝑖, 𝑋𝑖). If not, C makes CreateSM-query with
the identity id𝑖. After that, C gets the tuple (id𝑖, 𝜃𝑖,𝑠𝑖, 𝑋𝑖) from 𝐿SM and uses it to produce a ciphertext{𝑋𝑖, 𝑌𝑖, 𝑐𝑖, 𝑑𝑖, 𝑡}. At last,C sends {𝑋𝑖, 𝑌𝑖, 𝑐𝑖, 𝑑𝑖, 𝑡} toA.

Given the power consumption data𝑚0 and𝑚1,C extracts
(id𝐼, 𝜃𝐼, 𝑠𝐼, 𝑋𝐼) from 𝐿SM and selects a random element 𝑏 ∈{0, 1}. C sets 𝑌𝐼 ← 𝑏 ⋅ 𝑃, randomly selects three elements𝛽𝐼, 𝑐𝐼, 𝑑𝐼 ∈ 𝑍∗𝑞 , stores (id𝐼, 𝑋𝐼, 𝑌𝐼, 𝑐𝐼, 𝑡, 𝛽𝐼) into 𝐿ℎ3 , and sends{𝑋𝐼, 𝑌𝐼, 𝑐𝐼, 𝑑𝐼, 𝑡} toA.

After that, A can make ℎ𝑖, CreateSM, CorruptSM, and
Signcrypt queries and get the corresponding responses.Then,
A outputs 𝑏 as his/her guess against the confidentiality. C
selects a random tuple (𝑅, 𝑟) from 𝐿ℎ2 and outputs 𝑅 as the
solution of the given CDH problem.

Let 𝑞ℎ2 denote the number of ℎ2-query involved in the
game. The probability thatC can solve the given CDH prob-
lem is 𝜂 = 𝜖/𝑞ℎ2 . Because of the nonnegligibility of 𝜖, we know
that 𝜂 is nonnegligible. This contradicts with the hardness
of the CDH problem. Thus, the proposed data aggregation
scheme is able to provide confidentiality.

Theorem 4. The proposed data aggregation scheme is able to
provide unforgeability if the DL problem is hard.

Proof. Assume that an attacker A wins the game defined
in Definition 1 with a nonnegligible advantage 𝜖. Based on
A’s capability, we can construct a challenger to solve the DL
problem with a nonnegligible advantage. Given an instance
(𝑃,𝑄1 = 𝑎 ⋅ 𝑃) of the DL problem,C picks a random integer𝑠 ∈ 𝑍∗𝑞 , computes 𝑃pub = 𝑠 ⋅ 𝑃, and sends params = {𝑝, 𝑎, 𝑏,𝑞, 𝑃, 𝑃pub, ℎ1, ℎ2, ℎ3} to A. C randomly selects an identity
id𝐼 as the challenging identity and answers queries from A
according to the rules below.

(i) ℎ𝑖(𝑚): C keeps a table 𝐿ℎ𝑖 of the form (𝑚, 𝑟), where𝑖 ∈ {1, 2, 3}. Upon receiving such a query, C checks
if 𝐿ℎ𝑖 contains a tuple (𝑚, 𝑟). If so, C sends 𝑟 to A;
otherwise, C randomly picks up an element 𝑟 ∈ 𝑍∗𝑞 ,
stores (𝑚, 𝑟) into 𝐿ℎ𝑖 , and sends 𝑟 toA.

(ii) CreateSM(id𝑖): C keeps a table 𝐿SM of the form(id𝑖, 𝜃𝑖, 𝑠𝑖, 𝑋𝑖). Upon receiving such a query,C checks
if 𝐿SM contains a tuple (id𝑖, 𝜃𝑖, 𝑠𝑖, 𝑋𝑖). If so, C sends𝑋𝑖 toA; otherwise,C answers the query through the
rules below:

(1) If id𝑖 = id𝐼, C randomly picks two integers𝜃𝑖, 𝛼𝑖 ∈ 𝑍∗𝑞 and sets 𝑋𝑖 ← 𝑎 ⋅ 𝑃. C stores (id𝑖,𝑋𝑖, 𝛼𝑖) and (id𝑖, 𝜃𝑖, ⊥, 𝑋𝑖) into 𝐿SM, respectively.
(2) Otherwise (id𝑖 ̸= id𝐼),C randomly selects three

integers 𝜃𝑖, 𝛼𝑖, 𝑠𝑖 ∈ 𝑍∗𝑞 and sets 𝑋𝑖 ← 𝛼−1𝑖 ⋅ (𝑠𝑖 ⋅𝑃−𝑃pub).C stores (id𝑖, 𝑋𝑖, 𝛼𝑖) and (id𝑖, 𝜃𝑖, 𝑠𝑖, 𝑋𝑖)
into 𝐿SM, respectively.

(iii) CorruptSM(id𝑖): C checks if 𝐿SM contains a tuple
(id𝑖, 𝜃𝑖, 𝑠𝑖, 𝑋𝑖). If not, C makes CreateSM-query with
the identity id𝑖. After that,C returns (id𝑖, 𝜃𝑖, 𝑠𝑖, 𝑋𝑖) to
A.

(iv) Signcrypt(id𝑖, 𝑚𝑖):C checks if id𝑖 and id𝐼 are equal. If
they are not, C extracts the tuple (id𝑖, 𝜃𝑖, 𝑠𝑖, 𝑋𝑖) from𝐿SM and uses it to produce a ciphertext {𝑋𝑖, 𝑌𝑖, 𝑐𝑖, 𝑑𝑖, 𝑡}
according to the description of the proposed data
aggregation; otherwise,C randomly selects two inte-
gers 𝑑𝑖, 𝛽𝑖 ∈ 𝑍∗𝑞 and computes 𝑌𝑖 = 𝛽−1𝑖 ⋅ (𝑑𝑖 ⋅ 𝑃 −𝑃pub − 𝛼𝑖 ⋅ 𝑋𝑖) and 𝑐𝑖 = 𝑚𝑖 + 𝜃𝑖 + ℎ2(𝑠 ⋅ 𝑌𝑖). C stores
(id𝑖, 𝑋𝑖, 𝑌𝑖, 𝑐𝑖, 𝑡) into 𝐿ℎ2 and sends {𝑋𝑖, 𝑌𝑖, 𝑐𝑖, 𝑑𝑖, 𝑡} to
A.

(v) Designcrypt(id𝑖, 𝑋𝑖, 𝑌𝑖, 𝑐𝑖, 𝑑𝑖, 𝑡): for the query made
by A, C checks the validity of the ciphertext and
decrypts it to get the plaintext using the systems secret
key 𝑠.

At last,A outputs a forged ciphertext (id𝑖, 𝑋𝑖, 𝑌𝑖, 𝑐𝑖, 𝑑𝑖, 𝑡).
C stops the game if the equation id𝑖 = id𝐼 holds. Based on the
forking lemma [41], C can output another valid ciphertext
(id𝑖, 𝑋𝑖, 𝑌𝑖, 𝑐𝑖, 𝑑𝑖 , 𝑡) by choosing a different hash function ℎ1.
Since both ciphertexts are valid, we can derive the following
two equation:

𝑑𝑖 ⋅ 𝑃 = 𝑃pub + 𝛼𝑖 ⋅ 𝑋𝑖 + 𝛽𝑖 ⋅ 𝑌𝑖,
𝑑𝑖 ⋅ 𝑃 = 𝑃pub + 𝛼𝑖 ⋅ 𝑋𝑖 + 𝛽𝑖 ⋅ 𝑌𝑖. (4)
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Based on the above two equations, we can derive the
equation below:

(𝑑𝑖 − 𝑑𝑖) ⋅ 𝑃 = 𝑑𝑖 ⋅ 𝑃 − 𝑑𝑖 ⋅ 𝑃
= (𝑃pub + 𝛼𝑖 ⋅ 𝑋𝑖 + 𝛽𝑖 ⋅ 𝑌𝑖)

− (𝑃pub + 𝛼𝑖 ⋅ 𝑋𝑖 + 𝛽𝑖 ⋅ 𝑌𝑖)
= (𝛼𝑖 − 𝛼𝑖) ⋅ 𝑋𝑖 = (𝛼𝑖 − 𝛼𝑖) ⋅ 𝑎 ⋅ 𝑃.

(5)

C outputs (𝑑𝑖 −𝑑𝑖 ) ⋅ (𝛼𝑖 −𝛼𝑖 )−1 as the solution of the given
DL problem. To compute the probability thatC solves the DL
problem, three related events are listed below.

(i) 𝐸1: id𝑖 equals id𝐼.
(ii) 𝐸2:C is able to forge a legal ciphertext.

Let 𝑞ℎ1 denote the number of ℎ1 involved in the game. It
is easy to get that Pr[𝐸1] = 1/𝑞ℎ1 and Pr[𝐸2|𝐸1] = 𝜖.Then, the
probability thatC solves the DL problem is 𝜂 = Pr[𝐸1∧𝐸2] =
Pr[𝐸2|𝐸1] ⋅ Pr[𝐸1] = 𝜖/𝑞ℎ1 . Because of the nonnegligibility
of 𝜖, we know that 𝜂 is nonnegligible. This is in contradiction
with the hardness of theDL problem.Thus, the proposed data
aggregation scheme is able to provide unforgeability.

5.3. Analysis of Security Requirements. We will show that the
proposed lightweight data aggregation scheme is able tomeet
security requirements presented in Section 3.

(i) Confidentiality. The internal attacker against the proposed
data aggregation scheme can compute 𝑐 = ∑𝑛𝑖=1(𝑐𝑖 − ℎ2(𝑠 ⋅𝑌𝑖)). Without the blinding factor 𝑐, he/she cannot extract
the sum of the power consumption data by computing 𝑚 =𝑐 + 𝜃0mod 𝑞. Besides, Theorem 4 shows that the proposed
lightweight data aggregation scheme can supply confidential-
ity against any external attacker. Thus, our lightweight data
aggregation scheme can supply confidentiality.

(ii) Authentication.Theorem 3 shows that any attacker cannot
forge a legal ciphertext. Then, Agg can verify the legality of
received messages by verifying if the equation (∑𝑛𝑖=1 𝑧𝑖 ⋅ 𝑑𝑖) ⋅𝑃 = (∑𝑛𝑖=1 𝑧𝑖)𝑃pub + ∑𝑛𝑖=1(𝑧𝑖 ⋅ 𝛼𝑖 ⋅ 𝑋𝑖 + 𝑧𝑖 ⋅ 𝛽𝑖 ⋅ 𝑌𝑖) holds.
Therefore, the proposed data aggregation scheme can provide
authentication.

(iii) Integrity. Theorem 3 demonstrates that any attacker
against the proposed data aggregation scheme cannot forge
a legal ciphertext. Agg can detect any modification of the
received data by verifying if the equation (∑𝑛𝑖=1 𝑧𝑖 ⋅ 𝑑𝑖) ⋅ 𝑃 =(∑𝑛𝑖=1 𝑧𝑖)𝑃pub + ∑𝑛𝑖=1(𝑧𝑖 ⋅ 𝛼𝑖 ⋅ 𝑋𝑖 + 𝑧𝑖 ⋅ 𝛽𝑖 ⋅ 𝑌𝑖) holds. Therefore,
the proposed data aggregation scheme can provide integrity.

(iv) Resistance against Attacks. The proposed lightweight
data aggregation scheme can resist the replay attack, the
modification attack, the man-in-the-middle attack, and the
impersonation attack. The reason is analyzed below.

(1) Replay Attack. The timestamp 𝑡 is involved in the cipher-
text. Agg can find any reply of previous message by verifying

𝑡’s freshness.Thus, the proposed lightweight data aggregation
scheme can resist the replay attack.

(2) Modification Attack. Theorem 3 demonstrates that any
attacker against the proposed data aggregation scheme can-
not forge a legal ciphertext. Agg can detect any modification
of the received data by verifying if (∑𝑛𝑖=1 𝑧𝑖 ⋅ 𝑑𝑖) ⋅ 𝑃 =(∑𝑛𝑖=1 𝑧𝑖)𝑃pub + ∑𝑛𝑖=1(𝑧𝑖 ⋅ 𝛼𝑖 ⋅ 𝑋𝑖 + 𝑧𝑖 ⋅ 𝛽𝑖 ⋅ 𝑌𝑖) holds. Thus, the
proposed lightweight data aggregation scheme can resist the
modification attack.

(3) Man-in-the-Middle Attack. The above analysis demon-
strates that the proposed lightweight data aggregation scheme
can supply authentication; that is, Agg can authenticate SM𝑖
by checking if 𝑑𝑖 ⋅ 𝑃 = 𝑃pub + 𝛼𝑖 ⋅ 𝑋𝑖 + 𝛽𝑖 ⋅ 𝑌𝑖 holds. Thus, the
proposed lightweight data aggregation scheme can resist the
man-in-the-middle attack.

(4) Impersonation Attack. Theorem 4 shows that any attacker
cannot forge a legal ciphertext without SM𝑖’s secret key.Then,
Agg can detect any impersonation by verifying the validity of
the received ciphertext. Therefore, the proposed lightweight
data aggregation scheme can resist the impersonation attack.

6. Performance Analysis

We analyze both computation and communication costs of
our lightweight data aggregation scheme in this section. We
also compare its performance with two of the most recently
proposed data aggregation schemes to show its lightweight
costs.

To achieve a fair comparison, we compare recently pro-
posed aggregation schemes under the same security level. In
the BGN encryption scheme [37], two 512-bit prime numbers𝑝 = 2 ⋅𝑝 +1 and 𝑞 = 2 ⋅ 𝑞 +1 are applied in our experiments,
where 𝑝 and 𝑞 are also large prime numbers. In schemes
based on bilinear pairing, a Tate pairing based on a Type A
elliptic curve 𝐸 : 𝑦2 = 𝑥3 + 1mod𝑝 with a prime order 𝑞 is
applied in our experiments, where the lengths of 𝑝 and 𝑞 are
512 bits and 160 bits, respectively. In schemes based on ECC,
an elliptic curve 𝐸 : 𝑦2 = 𝑥3 + 𝑎 ⋅ 𝑥 + 𝑏mod𝑝 with a prime
order 𝑞 is applied in our experiments, where the lengths of 𝑝
and 𝑞 are 160 bits.
6.1. Analysis of Computation Costs. Based on the well-known
cryptographic library MIRACL [42], we have implemented
all related operations on a personal computer with an Intel
I5-3210M 2.50GHz Center Processor Unit (CPU), an 8
Gbyte Random Access Memory (RAM), and the Windows 7
operation system. Table 3 presents the operations’ notations
and runtime results.

Each SM𝑖 in the Fan et al.’s scheme [35] runs one BGN
encryption operation, one exponentiation in BGN algorithm,
two multiplications related to BGN algorithm, one HTP𝐺1
operation, one PM𝐺1 operation, and one general hash func-
tion. Therefore, SM𝑖’s runtime is 𝑇ENCBGN

+ 𝑇EXPBGN
+ 2 ×𝑇MULBGN + 𝑇HTPBP

+ 𝑇PMBP
+ 𝑇GH = 8.315 + 8.096 + 2 ×0.032+14.293+5.485+0.001 = 36.254ms. Agg in Fan et al.’s

scheme [35] runs one BGN decryption, one exponentiation
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Figure 3: Runtime comparisons of related schemes.

related to the BGN algorithm, 𝑛 − 1multiplication related to
BGN algorithm, 𝑛 hash-to-point, 𝑛 + 1 bilinear pairing, 2𝑛
pointmultiplication related to the bilinear pairing, 𝑛−1 point
multiplication with a short exponent related to the bilinear
pairing, 𝑛 − 1 exponentiation related to the bilinear pairing,
and one general hash function. Therefore, Agg’s runtime is𝑇DECBNG

+ 𝑇exp−BNG + (𝑛 − 1) ⋅ 𝑇MULBNG + 𝑛 ⋅ 𝑇HTPBP
+ (𝑛 + 1) ⋅𝑇BP + (2𝑛) ⋅ 𝑇PMBP−𝑠

+ (𝑛 − 1) ⋅ 𝑇PABP
+ (𝑛 − 1) ⋅ 𝑇EXPBP

+ 𝑇GH
= 4.056 + 8.096 + (𝑛 − 1) × 0.032 + 𝑛 × 14.293 + (𝑛 + 1) ×17.001 + (2𝑛)×0.343+(𝑛−1)×0.023 + (𝑛−1)×0.874+0.001
= (32.909 ⋅ 𝑛 + 28.225) microseconds.

Each SM𝑖 in the proposed scheme executes two point
multiplication operations related to ECC and two general
hash functions. Therefore, SM𝑖’s runtime is 2 × 𝑇PMECC

+ 2 ×𝑇GH = 2 × 0.986 + 2 × 0.001 = 1.974 microseconds. Agg in
the proposed scheme executes 3 × 𝑛 + 2 point multiplication
related to ECC, 2 × 𝑛 point addition related to ECC, and3 × 𝑛 general hash functions. Therefore, Agg’s runtime is(3 × 𝑛 + 2) × 𝑇PMECC

+ 2 × 𝑛 × 𝑇PAECC
+ 3 × 𝑛 × 𝑇GH = (3 ×𝑛 + 2) × 0.986 + 2 × 𝑛 × 0.004 + 3 × 𝑛 × 0.001 = 2.969 ⋅ 𝑛+1.972.

Table 4 and Figure 3 show the runtime comparisons
among Fan et al.’s data aggregation scheme [35], He et al.’s
scheme [4], and the proposed scheme. From Tables 4 and
2, the proposed scheme incurs a lower computation cost as
compared to Fan et al.’s scheme and He et al.’s scheme at both
sides of SM𝑖 and Agg.

6.2. Analysis of Communication Costs. Since the sizes of 𝑝1,𝑞1, 𝑝, 𝑞, 𝑝, and 𝑞 are 512 bits, 512 bits, 512 bits, 160 bits, 1024
bits, and 160 bits, respectively, we can determine that the sizes
of elements in 𝑍∗𝑛 , 𝐺1, 𝐺2, 𝑍∗𝑞 , 𝑍∗𝑝, and 𝑍∗𝑞 are 1024 bits, 1024
bits, 1024 bits, 160 bits, 1024 bits, and 160 bits, respectively.We
assume that the size of both the timestamp and the identity

are each 32 bits. The communication costs of the related data
aggregation schemes are shown below.

In Fan et al.’s data aggregation scheme [35] SM𝑖 sends the
message (𝛿𝑖,CT𝑖, 𝑡) to Agg, where 𝛿𝑖 ∈ 𝐺1, CT𝑖 ∈ 𝑍∗𝑛 , and 𝑡 is
the timestamp. Therefore, the communication cost of Fan et
al.’s data aggregation scheme is 1024 + 1024 + 32 = 2080 bits. In
He et al.’s data aggregation scheme [4] SM𝑖 sends the message(ID𝑖, 𝑅𝑖, 𝛿𝑖,CT𝑖, 𝑡) to Agg, where 𝑅𝑖 ∈ 𝐺1, 𝛿𝑖 ∈ 𝑍∗𝑞 , CT𝑖 ∈ 𝐺1,
ID𝑖 is SM𝑖’s identity, and 𝑡 is the timestamp. Therefore, the
communication cost of He et al.’s data aggregation scheme is
32 + 1024 + 160 + 1024 + 32 = 2272 bits. In the proposed data
aggregation scheme, SM𝑖 sends the message (𝑐𝑖, 𝑑𝑖, 𝑒𝑖, 𝑡) to
Agg, where 𝑐𝑖 ∈ 𝑍∗𝑛 , 𝑑𝑖 ∈ 𝑍∗𝑝, 𝑒𝑖 ∈ 𝑍∗𝑞 , and 𝑡 is the timestamp.
Therefore, the communication cost of the proposed data
aggregation scheme is 1024 + 1024 + 160 + 32 = 2240 bits.

Based on the above evaluation, we note that the proposed
data aggregation scheme incurs lower communication cost
than He et al.’s data aggregation scheme. The proposed data
aggregation scheme incurs a higher communication cost
than Fan et al.’s data aggregation scheme. Security is most
important for a data aggregation scheme. Therefore, it is
reasonable to address serious security weaknesses in Fan et
al.’s data aggregation scheme at the cost of increasing the
communication cost slightly.

7. Conclusion

To ensure security and protect privacy in the smart grid
environment, several data aggregation schemes have been
proposed in recent years. However, most of them are not
secure against internal attackers. To address the problem, Fan
et al. [35] proposed a data aggregation scheme to mitigate
internal attacks.Unfortunately, their data aggregation scheme
suffers from serious security weaknesses. To enhance secu-
rity, He et al. [4] proposed an improved data aggregation
scheme using bilinear pairing. However, the performance
of He et al.’s scheme is not very suitable for the smart grid
environment because the smart meter has limited computa-
tion capability. In this paper, we have proposed a novel data
aggregation scheme that can thwart internal attacks for the
smart grid environment. The security analysis shows that the
proposed scheme is provably secure and canmeet the security
requirements. Besides, performance evaluation results show
that the proposed scheme incurs lower communication costs.
The stronger security and better performance of the pro-
posed scheme demonstrate that it is more suitable for smart
grids.

With the fast development of quantum computing, the
traditional mathematical problems (such as the DL problem
and the CDH problem) are likely to be solved in polynomial
time by quantum computers. Subsequently, all the above data
aggregation schemes for the smart grid will not be secure
at all. The lattice has been widely used to construct many
cryptographic schemes that can provide resistance against the
strong capabilities of quantum computers. However, no data
aggregation scheme based on the lattice has been proposed
yet. To improve security, it is worthwhile to consider the
design of a data aggregation scheme for the smart grid based
on the lattice approach.
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Table 2: The aggregation phase.

SM𝑖 Agg
Extract𝑚𝑖;
generate 𝑦𝑖 ∈ 𝑍∗𝑞 ;𝑌𝑖 = 𝑦𝑖 ⋅ 𝑃;�̂�𝑖 = 𝑦𝑖 ⋅ 𝑃pub;𝑐𝑖 = 𝑚𝑖 + 𝜃𝑖 + ℎ2(�̂�𝑖)mod 𝑞;𝛽𝑖 = ℎ3(id𝑖, 𝑋𝑖, 𝑌𝑖, 𝑐𝑖, 𝑡);𝑑𝑖 = 𝑠𝑖 + 𝛽𝑖 ⋅ 𝑦𝑖mod 𝑞

{𝑋𝑖 ,𝑌𝑖 ,𝑐𝑖 ,𝑑𝑖 ,𝑡}→
𝛼𝑖 = ℎ1(id𝑖, 𝑋𝑖);𝛽𝑖 = ℎ3(id𝑖, 𝑋𝑖, 𝑌𝑖, 𝑐𝑖, 𝑡);
generate 𝑧1, . . . , 𝑧𝑛 ∈ [1, 2𝑤];
check ( 𝑛∑

𝑖=1

𝑧𝑖 ⋅ 𝑑𝑖) ⋅ 𝑃 ?= ( 𝑛∑
𝑖=1

𝑧𝑖) ⋅
𝑃pub + 𝑛∑

𝑖=1

(𝑧𝑖 ⋅ 𝛼𝑖 ⋅ 𝑋𝑖 + 𝑧𝑖 ⋅ 𝛽𝑖 ⋅ 𝑌𝑖);
𝑐 = 𝑛∑
𝑖=1

(𝑐𝑖 − ℎ2 (𝑠 ⋅ 𝑌𝑖));
𝑚 = 𝑐 − 𝜃0

Table 3: Notations about related operations and runtime results
(microseconds).

Notation Description Runtime
ENCBGN BGN encryption 8.315
DECBGN BGN decryption 4.056

EXPBGN
Exponentiation related to BGN

algorithm 8.096

MULBGN Multiplication related to BGN algorithm 0.032
BP Bilinear pairing 17.001
HTP Hash-to-point 14.293

PMBP
Point multiplication related to the

bilinear pairing 5.485

PMBP−𝑠
Point multiplication with a short

exponent related to the bilinear pairing 0.343

PABP
Point addition related to the bilinear

pairing 0.023

EXPBP
Exponentiation related to the bilinear

pairing 0.874

MULBP
Multiplication related to the bilinear

pairing 0.005

EXPDLP
Exponentiation related to the DL

problem 1.295

EXPDLP−𝑠
Exponentiation with a short exponent

related to the DL problem 0.081

MULDLP
Multiplication related to the DL

problem 0.012

PMECC Point multiplication related to ECC 0.986

PMECC−𝑠
Point multiplication with a short

exponent related to ECC 0.061

PAECC Point addition related to ECC 0.004
GH General hash function 0.001

Table 4: Runtime comparisons (microseconds).

Fan et al.’s scheme He et al.’s scheme The proposed scheme
SM𝑖 36.254 20.145 17.751
Agg 32.909𝑛 + 28.225 6.264𝑛 + 48.249 2.969n + 1.972
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