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ABSTRACT OF DISSERTATION 

INSULIN-LIKE GROWTH FACTOR-1 OVEREXPRESSION MEDIATES 

HIPPOCAMPAL REMODELING AND PLASTICITY FOLLOWING TBI 

Every year over 2.5 million traumatic brain injuries (TBI) occur and are 

the leading cause of death and disability among adolescents. There are no approved 

treatments for TBI. Survivors suffer from persistent cognitive impairment due to 

posttraumatic tissue damage and disruption of neural networks which significantly detract 

from their quality of life. Posttraumatic cognitive impairment depends in part on the 

brain's limited ability to repair or replace damaged cells. Immature neurons in the 

hippocampus dentate gyrus, a brain region required for learning and memory, are 

particularly vulnerable to TBI. Insulin-like growth factor-1 (IGF1) is a potential 

therapeutic for TBI because it is a potent neurotrophic factor capable of mediating 

neuroprotection, neuro-repair, and neurogenesis. We hypothesized that conditional IGF1 

overexpression in the mouse hippocampus following experimental controlled cortical 

impact injury (CCI) would enhance posttraumatic neurogenesis chronically. To this end, 

conditional astrocyte-specific IGF1 overexpressing mice (IGFtg) and wild-type (WT) 

mice received CCI or sham injury. The proliferation marker BrdU was used to label 



neurons born the first week after injury. Six weeks after injury, when surviving 

posttrauma-born neurons would be fully developed, we counted proliferated cells 

(BrdU+) and the subset expressing a mature neuronal marker (NeuN+/BrdU+) in the 

hippocampus. We also assessed cognitive performance during radial arm water-maze 

reversal (RAWM-R) testing, a neurogenesis-sensitive assay. IGF1 promoted end-stage 

maturity and decreased mis-migration of neurons born after trauma. These effects 

coincide with IGF1 induced improvements in performance on neurogenesis sensitive 

cognition following TBI. 

Mammalian target of rapamycin (mTOR), an early signaling molecule 

downstream of IGF1, has been identified as a potential target for TBI interventions 

because of its regulatory role in neuronal plasticity and neurogenesis. However, recent 

studies have also reported maladaptive plasticity and recovery associated with 

posttraumatic mTOR activation. It is imperative to elucidate the mechanism of action of 

IGF1 during pre-clinical evaluations. We hypothesized that IGF1 mediates posttraumatic 

neurogenic effects through IGF1 induction of mTOR activation. We injured cohorts of 

IGFtg and WT mice and harvested their brains for immunohistochemistry to assess IGF1 

overexpression effects on posttraumatic mTOR activation at 1, 3, and 10 days post-injury 

(dpi). We found that IGF1 upregulated mTOR activation following TBI in a region-

specific manner at 1 and 3dpi. To determine if IGF1 regulated differentiation and 

arborization through the mTOR pathway, injured WT and IGFtg mice received daily i.p. 

injections of rapamycin (10mg/kg), the inhibitor of mTOR, or its vehicle for 7 days. 

Vehicle and rapamycin administration began 3dpi, after the cells dividing at the peak of 



posttraumatic proliferation were labeled with BrdU. IGF1 enhancement of posttraumatic 

neurogenesis was not dependent on mTOR activation.  

In summary, IGF1 directs newborn neuron localization, promotes end-stage 

maturation, and chronically improves cognition. IGF1 can stimulate posttraumatic 

neurogenesis and plasticity independent of mTOR activation. These data suggest that 

IGF1 can stimulate neuron replacement following trauma-induced hippocampal neuron 

loss and cognitive improvement. Further studies should investigate IGF1 and mTOR 

inhibition as a combination therapy for neurorehabilitation.    

KEYWORDS:  Neurogenesis, Insulin-like Growth Factor-1, mTOR, Traumatic 

Brain Injury, Cognitive Recovery, Dentate Gyrus 
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CHAPTER 1: Introduction 

Traumatic Brain Injury 

Prevalence and etiology 

Traumatic brain injury (TBI) is the disruption of brain function caused by the 

application of force to the brain. Pathological force can result from intentional and 

unintentional impact on the head. Nearly 2.8 million TBI are reported annually 

(Coronado et al. 2012, Taylor et al. 2017), which is still an underestimate since many 

mild injuries go unreported (Meehan et al. 2013). Nearly 9 billion US dollars are spent 

annually on hospitalization and rehabilitative care for TBI survivors, representing an 

alarming economic burden to society (Faul et al. 2015).  

Common mechanisms of TBI include being struck by an object, motor-vehicle 

accident, intentional self-harm, assault, and falls. Injuries can range from mild to severe. 

Different populations are disproportionately affected by different mechanisms of injury. 

The elderly and toddlers have a higher frequency of falls, while people 15-44 years of age 

are disproportionately receiving TBI from motor-vehicle incidents (Taylor et al. 2017). 

Blast-related head trauma disproportionately affects military personnel (Reneer et al. 

2011). While legislation has mandated safer driving precautions, improving TBI 

surveillance and evidence-based guidelines of care have been shown to lessen TBI 

prevalence and improve patient outcomes (Jagger et al. 1987, Coronado et al. 2012).  

However, there are still no FDA approved pharmacological treatment options for TBI. 
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Lack of treatment options is due in part to the neurological complexity of the brain 

pathology (Marklund et al. 2011). 

There is a high mortality rate associated with hospitalization for severe TBI. More 

than 25% of patients suffering from severe TBI die (Taylor et al. 2017). Multiple discrete 

and often overlapping neuroanatomical pathologies present as severe TBI in the clinical 

setting (Saatman et al. 2008). Injuries can encompass any combination of pathologies not 

limited to skull fractures, epidural hemorrhage, subdural hemorrhage, subarachnoid 

hemorrhage, intraventricular hemorrhage, axonal injury and brain contusion.  The 

heterogeneity of severe injury makes it difficult to classify and well as challenging to 

manage treatment (Morales et al. 2005, Hawryluk et al. 2015).  

 Clinical manifestations of TBI 

Annually, there are approximately 5.3 million people receiving rehabilitative care 

for head trauma that suffer from persistent cognitive impairments and disabilities 

(Langlois et al. 2006). Early evaluations used during emergency room visits can inform 

clinicians of potential motor, cognitive, and behavioral impairments associated with TBI. 

Three common indices that can predict outcomes are the Glasgow Coma Scale (GCS), 

duration of loss of consciousness, and duration of posttraumatic amnesia. The Glasgow 

Coma Scale (GCS) is a crude physical and cognitive evaluation that predicts disability 

following TBI (Husson et al. 2010). Patients receiving very low GCS scores within 24 

hours of injury are predictive of poor outcomes (Hart et al. 2014). Survivors of TBI can 

enter the hospital in a coma, a deep state of unconsciousness and are unresponsive to the 

environment. The duration of an individual’s coma can also be reliably used to predict 

future impairments (Sherer et al. 2008). A coma duration of fewer than two weeks is 
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rarely associated with severe long-term disabilities (Hart et al. 2014). The length of 

posttraumatic amnesia is a powerful predictor of outcomes and disability following 

trauma. Amnesia is most commonly experienced as a transient cognitive impairment 

following injury (Nakase-Richardson et al. 2009, Friedland et al. 2016). Posttraumatic 

amnesia is the inability to retrieve memories stored prior to the injury (Whiting et al. 

2006). Posttraumatic amnesia that resolves within a month of injury correlates with a low 

likelihood of disability (Nakase-Richardson et al. 2009).  

While all evaluations have limitations to their power of predicting outcomes, the 

GCS, duration of loss of consciousness, and posttraumatic amnesia are all strong 

predictors of future disabilities. No one method is more predictive than the other (Konigs 

et al. 2016). The multifactorial nature and complexity of TBI create difficulty in 

predicting cognitive disability since many measures rely on the neuro-responsiveness of 

the patient. Many studies measure the extent of disability by measuring the time to return 

to work. Time to return to work is correlated with widely used measures like GSC, 

duration of loss of consciousness, and duration of posttraumatic amnesia (Cifu et al. 

1997). The interpretation of these types of outcomes can be confounded by factors like an 

injury to other organ systems, access to rehabilitative care, and socioeconomics (Holland 

et al. 2003, Forslund et al. 2014). The ability to predict outcomes is further complicated 

in the case of mild to moderate TBI injuries. Patients with mild to moderate injuries 

rarely have poor GCS, loss of consciousness, or amnesia upon admission to the 

emergency room (Konigs et al. 2016).  

Although controversy surrounds the best measures to predict and rate cognitive 

disability, there is a consensus that brain trauma can initiate, contribute to, and exacerbate 
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cognitive impairment. Over 65% of patients suffering from moderate to severe TBI self-

report long-term cognitive impairments (Whiteneck et al. 2004). Common cognitive 

disabilities at all severity levels include memory and executive function deficits 

(Rabinowitz et al. 2014). Memory deficit is an important factor underlying the inability to 

perform activities of daily living. Impairment of short recall interferes with planning, 

decision making, and executing decisions and is often a precursor to dementia (Shively et 

al. 2012). Damage to structures including but not limited to cortex, brainstem, and 

hippocampus interrupt neuronal conduction, contributing to impairment of new memory 

formation (Watson et al. 1995, Cantu 2001). Damage to the hippocampus producing 

hippocampal atrophy is associated with chronic memory impairment following TBI 

(Ariza et al. 2006). Over 43% of all moderate to severely injured patients have 

posttraumatic executive function disorders that last for 6 months or longer (Selassie et al. 

2008). Executive function impairment describes limited control and direction of lower 

level cognitive function like learning and memory, planning, decision making, 

motivation, self-control and emotion-related behavior. Memory disruption affecting 

executive function is primarily due to the limited ability to organize information 

effectively for encoding and retrieval (Dikmen et al. 2009). These impairments affect 

daily activities ranging from making a grocery list, carrying out plans with friends, to 

performance at work. Two primary types of injury to the frontal cortex result in executive 

function deficits: 1) shearing of axons (diffuse axonal injury) from acceleration and then 

rapid deceleration and 2) focal cortical contusion from contact with the head. Both types 

of injury result in deep brain damage that not only affects the frontal cortex but also its 

areas of projection like the hippocampus (Cicerone et al. 2006). Aging studies suggest 
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that prefrontal cortex atrophy can reduce hippocampus-prefrontal cortex connectivity 

resulting in impaired long-term episodic memory formation (Mander et al. 2013). 

Damage to multiple brain regions together contributes to cognitive impairment following 

TBI.  

The National Institute of Health’s National Institutes for Neurological Disorders 

and Stroke has impacted policy and supplied funding to centralize clinical study design 

and protocols for posttraumatic assessment of long-term cognitive disabilities and 

reporting (Cicerone et al. 2006, Maas et al. 2007).  The International Mission on 

Prognosis and Clinical Trial Design in TBI (IMPACT) study was initiated in 2003 to 

create a database for all TBI clinical trial datasets from Trauma Centers all over the 

western world. Transforming Research and Clinical Knowledge in Traumatic Brain 

Injury (TRACK-TBI) is a multicenter clinical trial that is currently enrolling patients 

from all over the US. Through these databases, scientific investigators and clinicians will 

have access to shared patient tomography, cognitive assessments, and samples, increasing 

the power of the scientific study and promoting collaboration.  These initiatives will 

provide organization and centralization of TBI clinical data that can inform TBI 

neurocritical care management, provide evidence-based treatment recommendations and 

guide experimental models of TBI.  

Experimental models 

Introduction 

 Due to the heterogeneity of brain damage observed in TBI (Saatman et al. 2008),  

it is unlikely that a single target treatment will be able to attenuate cognitive deficits 
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caused by a combination of TBI pathologies that could include any combination of 

diffuse axonal injury, epidural/sub-epidural hematoma, intraventricular hematoma, and 

focal contusion. Because of the heterogeneous nature of human TBI, researchers 

primarily use models that replicate combined trauma pathologies. The most common 

injury models are controlled cortical impact injury (CCI), fluid percussion injury (FPI), 

acceleration injury (weight-drop), blast injury, and closed head injury (CHI). Less 

common models include those that combine hematoma and tissue penetration. Animal 

models of TBI give the power to isolate specific pathophysiology and develop targeted 

treatments.  Rodents are the most widely used animal model because of their cost, 

standardized outcome measures and small size. As preclinical treatments move closer to 

clinical trial phase, drugs are sometimes screened in larger animals. The development of 

animal models has been essential to understanding the mechanisms underlying neural 

network disruption and cognitive impairment. Each injury model targets specific aspects 

of pathology and its associated cognitive impairment parameters of human TBI. 

Focal contusion models 

In humans, focal contusion injuries occur as a result of blunt force trauma from 

motor vehicle incidents, falls, assaults, and combat. Contusion injuries are amongst the 

more severe brain injuries and are present in the majority of TBI-related hospitalizations 

that result in death and in long-term cognitive disability (Kurland et al. 2012). Lateral FPI 

and CCI are the most common models used to produce moderate to severe TBI. These 

injury models have been adapted to rodents, ferrets, swine, and monkeys (Johnson et al. 

2015). In addition to contusion, these models can be scaled to concurrently produce 
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additional aspects of TBI including subdural hematoma, axonal injury, and intracerebral 

hematoma (Xiong et al. 2013).  

In the lateral FPI model, a craniotomy is generated midway between bregma and 

lambda suture, at the intersection of the parietal and temporal bones. The dura is left 

intact, and water pressure is used to displace the exposed brain tissue. This model was 

designed to incorporate the contrecoup effects of TBI that are often seen in human TBI 

(Eakin et al. 2015). Lateral FPI predominantly models moderate to severe injury and 

generates cortical cell death, intracerebral hematoma and edema. Within a week after 

injury, distant structures like the hippocampus and the thalamus undergo neuronal 

damage in rats (Cortez et al. 1989). Lateral FPI results in progressive cortical damage that 

continues beyond 6 months after injury (Pierce et al. 1998). Lateral FPI produces acute 

motor deficits and chronic long-term deficits in memory. This model has several 

limitations including limited control of parameters like pressure and dwell time. Water 

pressure levels are typically set by adjusting the drop height of the pendulum that hits the 

fluid reservoir. Additionally, while the lateral FPI severity is scalable, small fluctuations 

in craniotomy size can produce vast differences in pathology (Vink et al. 2001). The skull 

is rarely left without fracture following severe TBI in humans (Yellinek et al. 2016). the 

lateral FPI model is widely used in rats, its application to mice is technically challenging 

and has limited its use in this species. This is unfortunate because the majority of 

transgenic animal models are generated in mice. 

CCI can be used to model moderate to severe injury very reliably. CCI is a TBI 

model in which a portion of the brain is exposed, and a pneumatically or 

electromagnetically driven piston impacts the intact dura. Parameters such as speed, 
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depth of tissue displacement and dwell time can be adjusted increasing the flexibility of 

this model to study specific parameters of injury. The injuries are controlled with 

precision, and there is no opportunity for rebound injury since control of the impact is 

computerized. CCI lesions are generated to typically target the pre-frontal cortex, 

midline, or parietal cortex. Parasagittal CCI is associated with decreased bleeding from 

sagittal sutures as compared to other impact locations (Osier et al. 2016), making it an 

optimal location for surgery. This model produces aspects of human injury including 

cortical tissue cell death, subdural hematoma, axonal injury, the decline in cerebral blood 

flow and blood-brain barrier disruptions (Osier et al. 2016). CCI can produce acute motor 

impairment and long-term memory and learning deficits beyond 1 year after injury 

(Dixon et al. 1999).  

Studies have shown that adjusting the measures of impact depth and speed of 

impact can each independently be used to cause the graded severity of cognitive 

dysfunction (Washington et al. 2012).  Because the piston makes direct contact with the 

exposed tissue, the piston shape can be adjusted to produce distinctly different injury 

pathologies (Pleasant et al. 2011). Severe CCI generated with a flat impactor tip produces 

more cortical tissue strain and a faster rate of neurodegeneration compared to CCI injury 

produced with a rounded tip (Pleasant et al. 2011). Compared to a rounded tip, the flat 

impactor tip produced more neocortical hemorrhage and hippocampal cell death acutely 

after injury (Pleasant et al. 2011). The geometry of the tip may play a role in the 

development of posttraumatic seizures. Studies that have reported that 9% to 15% of 

rodents develop injury-induced seizures following severe CCI injury have used a flat tip 
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was used (Hunt et al. 2010, Bolkvadze et al. 2012). Researchers developing studies to 

investigate posttraumatic epilepsy should consider tip selection carefully.   

The CCI injury model has been essential to studying the pathophysiology that 

underlies acute and chronic posttraumatic behavior impairment and cognitive disability. 

Rodents are most often used for CCI, primarily due to low cost, ease of surgery, and 

standardization of outcomes across research labs. Behavior outcomes are sensitive to the 

location of the craniotomy and impact. Injury to the frontal cortex following CCI has 

been associated with impairments in emotional behaviors, executive function, and 

reversal learning (Morales et al. 2005, Chou et al. 2016, Osier et al. 2016). CCI injury 

over the parietal cortex has been associated with impaired spatial learning, reversal 

learning, novel object recognition, cognitive flexibility, and anxiety (Washington et al. 

2012, Zhao et al. 2012, Bondi et al. 2014). Grading injury severity of CCI is associated 

with a graded degree of cognitive dysfunction (Yu et al. 2009, Rabinowitz et al. 2014).  

Trauma disrupts learning and memory  

CCI: A preclinical model of learning and memory impairment  

The sequelae of cognitive dysfunction resulting from TBI depends on the specific 

pathology and location of TBI. Trauma to the brain that causes degeneration of the 

hippocampus has the potential to impact a wide range of functions, behaviors, and 

cognitive abilities. Hippocampi receive and send information to the cingulate cortex, 

entorhinal cortex, septal nuclei, ventral striatum, hypothalamus, and thalamus (Shah et al. 

2012, Lovblad et al. 2014). Damage to the temporal lobe producing atrophy of the 

hippocampus and its major aspect of axonal output, the fornix, contribute to learning and 
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memory impairment (Tate et al. 2000, Ariza et al. 2006). A majority of severe TBI 

survivors suffer from chronic learning and memory impairments that dramatically inhibit 

the daily activities of living (Rabinowitz et al. 2014). Damage to the hippocampus can 

produce hippocampus-dependent impairments in spatial learning and memory in both 

human TBI and animal models (Miller et al. 2013, Vorhees et al. 2014). A study showed 

that caudate putamen and hippocampus interact in a compensatory manner to update 

spatial recognition memory when subjects are navigating an environment (Voermans et 

al. 2004). TBI leads to progressive damage to axons of neurons that project to the 

thalamus and hippocampus, orbital-frontal cortex damage and temporal pole degeneration 

(Warner et al. 2010, Leunissen et al. 2014). It is well established that the hippocampus 

plays an important role in retrieving spatial memories that encode space, place, time, and 

context. Place cells in the human hippocampus activate when people navigate an 

environment. These place cells reactivate when a person must recall and retrieve 

memories related to the environmental context to complete a task (Miller et al. 2013). 

TBI patients have limited ability to ignore old misleading cues, update current 

information and adjust responses according to new cue rules. The ability to adapt one’s 

behavior in response to changes in the environment is called cognitive flexibility (Dajani 

et al. 2015). Cognitive flexibility impairment has been correlated with caudate putamen 

volume loss and change of shape after trauma (Leunissen et al. 2014).  

Experimental CCI has been used to study motor deficits, alterations in anxiety, 

aggression, depression, and learning and memory (Lyeth et al. 1990, Dixon et al. 1999, 

Washington et al. 2012). Lesion to the hippocampus following CCI causes deficits in 

learning and memory (Dixon et al. 1999). There is widespread cell death throughout the 
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hippocampus. Many treatments that enhance hippocampal cell survival also attenuate 

learning and memory deficits following trauma (Patel et al. 2010, Barha et al. 2011, 

Madathil et al. 2013). The Morris Water Maze (MWM) is a standardized test that is 

reliably used to assess learning and memory following severe CCI injury. The MWM test 

is designed to test an animal’s spatial working memory and reference memory and  

requires episodic memory function to form memories about space and distance in 

relationship to its training (Vorhees et al. 2014). The rodents are trained to perform the 

MWM task in a circular pool. Aversion to water motivates the animals to use context 

cues to learn to locate the escape platform that is hidden beneath the surface of the water. 

underwater in a circular pool. When investigators ran batteries of test to determine which 

assay was most sensitive to CCI injury severity, MWM consistently revealed a TBI 

induced learning and memory deficits that persisted from 7 to 90 days after injury (Scheff 

et al. 1997, Washington et al. 2012, Zhao et al. 2012). Like path learning in humans, the 

MWM is a hippocampus-dependent task (Vorhees et al. 2014).  

The hippocampus is also required to for generating declared episodic memory; 

retrievable memories developed from a lived event that represent a past place and time. 

Modification of the traditional MWM gives the ability to test different aspects of 

learning. After an animal learns the platform location, the escape platform can be moved 

to a novel location to test reversal learning. During reversal learning, the animal must 

extinguish the old memory and use working memory to adopt a new strategy to find the 

platform. The flexibility to replace a previously learned spatial with a new spatial strategy 

is impaired by hippocampal volume loss (Kleinknecht et al. 2012). Experimental TBI 
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produces deficits in reversal learning and cognitive flexibility that are detectable using 

MWM assessments (Yu et al. 2009, Vorhees et al. 2014, Taib et al. 2017).  

Primary and secondary injury to the hippocampus  

CCI causes pronounced acute and chronic hippocampal neurodegeneration 

beneath the site of injury as well as damage in regions the hippocampus projects to (Hall 

et al. 2005, Osier et al. 2016). It is well established that the integrity of the hippocampal 

circuit is required for appropriate learning and memory function (Dixon et al. 1999, 

Xavier et al. 1999, Ariza et al. 2006). The hippocampus can be segmented into three 

major regions, the CA1, CA3, and dentate gyrus (DG) (Dillon et al. 2017). Place cells, 

pyramidal cells of the CA1, CA3, and DG, are used to make a map of the environment. 

The DG is a sub-region of the hippocampus and is required for aspects of spatial learning 

in rodents (Garthe et al. 2009, Aimone et al. 2010). The DG is essential to the ability of 

the hippocampus to create spatial-temporal context by which it can retrieve stored 

memories and apply the information to a new situation. Studies have shown that the DG 

is required to separate similar patterns by creating distinct representations of information 

(Knierim 2015). Following trauma, the hippocampus undergoes edema, decreased blood 

vessel density, free-radical damage, deafferentation and glutamate toxicity resulting in 

neuron loss and hippocampal atrophy (Bareyre et al. 1997, Ariza et al. 2006, Greve et al. 

2009, Atkins 2011, Hayward et al. 2011). A major source of input to the DG is from 

axons of the entorhinal cortex and hippocampal nuclei that synapse onto dendrites of 

neurons residing in the granule cell layer (GCL). Axons of granule cells travel through 

the polymorphic layer (hilus) and terminate at divergent locations (Amaral et al. 2007). 



13 
 

In rodents, hippocampal neurons begin expressing markers for cell-mediated 

apoptosis within hours after injury in the CA1, CA3, GCL, and hilus (HL) and continue 

apoptosis throughout the first week after injury (Schoch et al. 2012). Inhibiting 

posttraumatic apoptosis has been shown to improve behavior 7d after CCI and increase 

cell survival in the DG (Yang et al. 2016). The DG houses the HL and GCL and is the 

only hippocampal site where new neurons are produced throughout adulthood. Dentate 

hilar neurons and newborn neurons in the GCL are the most vulnerable populations of 

hippocampal neurons following TBI (Witgen et al. 2005). The population of hilar 

GABAergic interneurons and mossy cells undergo cell death following injury 

(Lowenstein et al. 1992). These two inhibitory neuronal subtypes relay and filter 

information from the GCL by mediating excitation of distant granule cells and inhibiting 

GCL excitation (Amaral et al. 2007). Within the GCL there are three populations of 

neurons altered by TBI; basket neurons, granule neurons and immature neurons. The 

basket cell is a local GABAergic interneuron at the polymorphic border of the GCL that 

regulates granule cell excitation. GABAergic interneurons have a similar susceptibility to 

injury as the other inhibitory cells in the DG (Jinde et al. 2013). The principal cell of the 

GCL is the granule cell; its presence in the GCL is 100:1 compared to basket cells. 

Granule cells are organized to form a cell layer 60-100µm thick which is bordered by the 

HL and ML. The majority of the granule cells in the adult GCL neurons were generated 

during development; they express mature neuron marker (NeuN) and generate 

glutamatergic output (Amaral et al. 2007). Studies have shown that while there are 

dramatic apoptosis and degeneration in the GCL after injury, only a small proportion the 

degenerating cells are NeuN positive following injury (Zhou et al. 2012). Rather, most of 
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the degenerating cells in the GCL express markers for newly born neurons (Gao et al. 

2008). Preferential immature neuron death is a conserved phenotype in multiple 

experimental models of TBI irrespective of TBI severity. 

Trauma alters hippocampal neurogenesis 

Adult neurogenesis 

It is widely known that CNS is comprised primarily of post-mitotic cells and that 

neurons do not undergo cell division. For many years, it was thought that neurons are 

generated during development and that mammals lose the capacity to generate new 

neurons once they enter the postnatal period of life. Joseph Altman and colleagues 

discovered proliferation and neuron generation in the brain (Altman et al. 1967). The 

discovery that humans have adult hippocampal neurogenesis (Spalding et al. 2013) 

localized to a region of the brain essential for recovery from learning and memory 

impairment has generated a high volume of research regarding this form of plasticity 

(Kempermann et al. 2015). Neurogenesis is still a relatively new research field, and the 

functional role of human adult neurogenesis is not well understood.   

Adult neurogenesis is a multistep process that includes neuron generation and 

end-stage maturation. During early survival, neural stem cells (NSC) in the adult 

neurogenic niche proliferate and differentiate into neurons. Depending on environmental 

stimuli and context, newborn neurons can proceed through development to end-stage 

maturation and integrate into the environment (Kempermann et al. 2015). There are two 

primary locations where mammals generate new neurons throughout adulthood: along the 

lateral ventricles and in the dentate gyrus. New neurons generated in the subventricular 
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niche migrate along the rostral migratory stream to the olfactory bulb. The olfactory bulb 

has a high rate of neuron turnover and this population of new neurons continuously 

repopulates the olfactory bulb (Conover et al. 2017). The second well-characterized 

location resides within the dentate gyrus. The subgranular zone (SGZ) is the microregion 

of the GCL where it borders the polymorphic layer. This neurogenesis permissive region 

contains neural progenitors and their progeny, as well as endothelial cells, astrocytes, 

interneurons, and axon terminals from the ventral tegmental area, the septum and local 

interneurons (Palmer et al. 2000, Kempermann et al. 2015). The glia and interneurons 

present in the SGZ play an important role in maintaining the neurogenic niche. The SGZ 

is heavily vascularized to meet the metabolic needs of neurodevelopment and deliver 

humoral and endothelial cell-derived growth factors including FGF, VEGF and IGF1 

(Palmer et al. 2000, Ryu et al. 2016). Local and humoral growth factors are required to 

mediate proliferation, differentiation, and survival of progenitor cells and immature 

neurons (Anderson 2002; Pickel 2016; Ryu). The astrocytes in the SGZ have a dual role 

in regulating neurogenesis. SGZ astrocytes serve as niche regulating cells by delivering 

factors that mediate neuronal differentiation through cell to cell contact (Song et al. 2002, 

Alvarez-Buylla et al. 2004, Ashton et al. 2012). Specialized astrocytes in the SGZ, Type-

1 radial glia, serve as NSCs that can proliferate and become neural precursors. These 

progenitors can transition into immature neurons or astrocytes and exit the SGZ. The 

interneurons in the SGZ are responsible for maintaining the quiescence of the stem cell 

population. Without local GABA tone, radial glial stem cells exit quiescence and divide 

(Song et al. 2012).  
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NSCs are primarily a quiescent population in the SGZ that express the stem cell 

marker nestin. The morphology of Type-1 radial glia is distinct from other progenitors. 

They have apical processes that extend through the GCL and have GABA and AMPA 

neurotransmitter receptors to sense external stimuli prompting division.  These cells have 

division programs to divide asymmetrically (keep stem-ness) and symmetrically (both 

cells differentiate). These NSCs divide and produce Type-2 a/b precursors which have a 

high capacity to divide, but a completely different morphology. Type-2a cells still 

express some astrocyte markers, but they are horizontal cells and do not possess apical 

processes that extend through the GCL. These cells still express the stem cell marker 

nestin, but they also express the Eomes transcription factor (Tbr2). These are cells 

capable of transitioning between proliferation and cell fate selection. Type-2b cells are 

Type-1 progeny that develop from Type-2a and select a neuronal fate. At this stage, they 

no longer express astrocyte markers, and they begin to express the immature neuron 

markers Prox1 and Dcx. When nestin is down-regulated in Dcx positive cells (Type-3) 

they have exited the cell cycle and typically have little to no capacity to proliferate 

(Jessberger et al. 2005). These cells begin neuronal maturation, a process that lasts 3 

weeks. During neuronal maturation, Type-3 neurons primarily receive synaptic 

GABAergic somatic and dendritic input, which is excitatory because of their high 

internal chloride gradient (Ge et al. 2008). Between 2-3 weeks of age, the Type-3 

immature neurons undergo GABA receptor synapse dependent and NMDA receptor-

dependent competitive survival to proceed to end-stage maturity (Tashiro et al. 2006, Ge 

et al. 2007, Ge et al. 2008). Only 30-70% of Dcx positive neurons survive to the end-

stage development, due in part to programmed cell death. Postnatally generated neurons 
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only account for 30% of the mature granule cells in the GCL (Kempermann et al. 2015, 

Ryu et al. 2016). The adult GCL maintains a relatively constant number of granule cells 

(Amaral et al. 2007), revealing a role for programmed cell death. During development, 

type-3 neurons that fail to integrate synaptically undergo Bax-mediated cell death 

(Oppenheim (Sun et al. 2004). During the Type-3 stage, immature neurons migrate to 

positions within the GCL where they will localize permanently. Reelin released by 

interneurons of the niche and HL acts as a guidance cue which directs the new granule 

cells away from the HL and further into the GCL (Gong et al. 2007). As new neurons exit 

the Type-3 phase, they begin to express the mature neuron marker NeuN. These mature 

neurons are morphologically and functionally similar to developmentally born granule 

cells. 

Adult neurogenesis following TBI 

Trauma dramatically disrupts the process of neurogenesis. Several methods are 

used to trace the lineage and fate of a cell in vivo. Assessment of endogenous protein 

expression is a means to study neurons at the different stages of neurogenesis following 

injury. However, the majority of the classical NSC markers are also markers of reactive 

astrocytes (Gotz et al. 2005, Robel et al. 2011). Ki67 is a well characterized marker of 

cell division that labels cells that have exited the cell cycle within 2-3 days of assessment. 

Reactive astrocyte proliferation occurs in the hippocampus after injury, presenting 

difficulty in interpretation when using markers of cell division to target SGZ 

neurogenesis following injury (Borges et al. 2006). PSA-NCAM and POMC are neuronal 

proteins that are expressed during the first 3 weeks of neuron birth (Kempermann et al. 

2015). These markers label a heterogeneous population of neurons. To accurately 
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birthdate a cell, cells can be labeled at the time of their division using 

Bromodeoxyuridine (BrdU) or retroviral labeling. BrdU is a thymidine analog that 

replaces the thymidine nucleoside during DNA replication (s-phase) of a cell undergoing 

division. Retroviruses are used to label cells undergoing cell division because the virus 

can integrate into the DNA only when the nuclear envelope dissolves during late 

prophase. BrdU labeling is much more widely used because of the cost, ease of delivery, 

and reliability of the labeling. However, BrdU labeling of dividing precursors can be 

diluted as precursors continue to divide. This should be taken into consideration when 

quantifying BrdU positivity using immunoreactivity. There are also methods of genetic 

labeling that harness the cell’s upregulation of neurogenesis markers to drive fluorescent 

protein production during the developmental stage of interest. Of course, the use of these 

tools is dependent on the scientific question being asked.  

Type-3 immature neurons are extremely vulnerable to TBI. Within the first week 

after injury, markers for cell degeneration predominantly localize to immature neurons 

compared with other cell types in the DG (Zhou et al. 2012). However, TBI transiently 

increases proliferation of Type-1 and Type-2a cells in rodents (Yu et al. 2008, Gao et al. 

2013). Trauma findings are consistent with studies that show that stressors like ischemia 

and seizure stimulate hippocampal stem cell proliferation (Yagita et al. 2001, Jessberger 

et al. 2005). TBI causes a transient increase in the number of Type-3 immature neurons 

within the first 2-3 weeks following injury (Dash et al. 2001, Rola et al. 2006). Reactive 

neurogenesis is not a robust means to replace the lost neurons. Many of these new cells 

do not survive the final stages of development to become mature neurons (Kernie et al. 

2001, Gao et al. 2013, Wang et al. 2016). Additionally, the type-3 neurons present after 
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TBI have severely stunted dendritic arbors compared to the same neuron population in 

uninjured animals (Carlson et al. 2004, Villasana et al. 2015).  

Injury causes the mislocalization of a subset of Type-3 neurons into the hilus 

(Villasana et al. 2015, Ibrahim et al. 2016, Shapiro 2017). New neurons may mislocalize 

before their transition into Type-3 neurons (Yu et al. 2008). The time frame of 

mislocalization coincides with the trauma-induced loss of HL interneurons. HL 

interneurons express migratory factors that prevent neuroblasts from migrating into the 

HL (Lowenstein et al. 1992, Butler et al. 2016).  Developing adult-born neurons typically 

migrate radially away from the SGZ and localize a short distance away in the inner third 

of the GCL (Cameron et al. 2001). Injury potentiates radial migration of neuroblasts, 

resulting in their localization toward the outer edge of the GCL where much older granule 

cells localize (Villasana et al. 2015). Nonetheless, posttrauma-born neurons can survive 

to end-stage maturity and may functionally integrate wherever they are localized 

(Scharfman et al. 2003, Myers et al. 2013, Villasana et al. 2015).  

While the functional consequence of altered neurogenesis is not fully understood, 

an increase in the number of neurons that stably integrate into the circuit may be 

beneficial in attenuating cognitive impairment. The specific role of immature neurons 

following injury is controversial. Several studies have noted that increases in immature 

neuron density are associated with reduced learning deficits (Griesbach et al. 2004, 

Scharfman et al. 2005, Bekinschtein et al. 2013, Bekinschtein et al. 2014, Meng et al. 

2014, Jacotte-Simancas et al. 2015). Studies have shown that Type-3 neurons are 

important for distinguishing between two similar patterns (pattern separation), even 

though they are not synaptically mature (Ge et al. 2008, Clelland et al. 2009). Adult-born 
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neurons that reach end-stage maturity have also been shown to contribute to cognitive 

improvement. Increasing the number of postnatal-born end-stage neurons by inhibiting 

BAX-mediated apoptosis of NSCs and neuroblasts is sufficient to improve the ability to 

discriminate between similar contexts in rodents (Sahay et al. 2011). Decreasing the 

number of mature neurons impairs cognitive flexibility, the ability to ignore a previously 

learn strategy and replace it with a new strategy as needed (Garthe et al. 2009, Anacker et 

al. 2017). Decreasing the number of posttrauma-born neurons that reach end-stage 

maturity using a genetic ablation model impairs recovery of DG dependent spatial 

learning following CCI (Blaiss et al. 2011). Further studies are required to elucidate the 

role of posttraumatic neurogenesis in pattern separation and cognitive flexibility 

following injury. 

IGF1 in development and injury 

IGF1 introduction 

Growth factors act on different tissue systems of the body to promote growth, 

development, and survival. They are upregulated during prenatal development and 

dramatically down-regulated postnatally as mammals age. Several growth factors are 

essential to mammalian development, including insulin-like growth factor 1 (IGF1). 

Studies have shown that IGF1 is required for normotypic brain growth across species, 

including humans (Anlar et al. 1999). The majority of IGF1 is produced by the liver 

under control of growth hormone. IGF1 is also locally produced in organs like the brain 

and can be expressed independently of growth hormone regulation (Nieto-Estevez et al. 

2016). Because of its ability to cross the blood-brain barrier, both locally produced IGF1 

and humoral IGF1 regulate brain growth. Global brain expression of IGF1 in the adult 
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brain is only 4% of its developmental concentration with production limited to select 

regions (Olfactory bulb, cortex, hippocampus) (Ye et al. 1997). While the IGF1 receptor 

is ubiquitously expressed on all neural cell types, it is enriched in neuron dense regions 

like the hippocampus (Bondy et al. 1992). IGF1 can act in an endocrine, paracrine or 

autocrine fashion to mediate growth signaling. Both IGF1 and insulin bind to both the 

IGF1 receptor. However, IGF1 binds to the IGF1 receptor with 100x greater affinity than 

does insulin (Ocrant et al. 1988, Pomerance et al. 1988, Schumacher et al. 1991). The two 

growth factors activate nearly identical signaling mechanisms for metabolism and 

plasticity (Pomerance et al. 1988, Zheng et al. 2004, Muhic et al. 2015, Nieto-Estevez et 

al. 2016). Insulin signaling is well characterized in fat, muscle and liver tissue and we 

have learned much about the function of IGF1 through IGF1/insulin signaling studies. 

IGF1 is a member of the insulin family of peptides and peptide hormones. Its 

binding is regulated by IGF1 binding proteins which prevent its degradation while in 

circulation and mediate IGF1 availability to its receptor. Neurotrophic factor stimulation 

of the receptor tyrosine kinase (RTK) activates the PI3K/AKT pathway in CNS tissue. 

Free IGF1 binds to the membrane-bound IGF1 RTK to initiate a trophic response 

cascade. Upon activation the IGF1 RTK dimerizes and auto-phosphorylates internal 

tyrosine residues that serve as a docking site for insulin response substrate (IRS) and Src 

homology and Collagen (SHC) adapter kinase (Thirone et al. 1998, Zheng et al. 2004). 

IRS and SHC interact in a competitive manner for pathway selection (Sasaoka et al. 

2001). IRS activates the phosphatidylinositide 3-kinases (PI3K) and protein kinase B 

(AKT), PI3K-AKT signaling pathway. SHC activates the mitogen-activated protein 

kinase (MAPK) and extracellular signal-regulated kinase (ERK) kinase signaling 
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pathway, MAPK-ERK. These pathways regulate different aspects of proliferation, 

growth, differentiation, and survival (D'Ercole et al. 2008), but the PI3K-AKT pathway 

predominates in mediating IGF1 actions in CNS.  

IGF1 and mTOR signaling in neural development 

IGF1 is upregulated during development in regions undergoing neurogenesis and 

is dramatically downregulated days after birth. IGF1 has a distinct role in neurogenesis 

during development. Studies have shown that during development IGF1 stimulates 

proliferation of neuroblasts. The IGF1 receptor is required for maintenance of the DG 

stem cell (Type-1 and Type-2a) population during development. Developmental IGF1 

receptor deletion in nestin-expressing NSCs causes them to undergo caspase-3 mediated 

apoptosis, resulting in progressive postnatal brain atrophy (Liu et al. 2009).  

Multiple key effectors mediating the role of IGF1 in neural development have 

been identified.  One of the most well-studied effectors of IGF1 actions in the brain is 

mTOR, the mammalian target of rapamycin. In 1972 the antibiotic rapamycin was 

discovered and, in addition to antifungal and antibacterial properties, it was found to 

inhibit antigen-induced proliferation of T-cells and B-cells (Abraham et al. 1996). It was 

later found to inhibit cancer cell proliferation, which led to the discovery of its target 

mTOR (Seto 2012). In addition to mTOR being a downstream target of IGF1 receptor 

signaling, many cell growth, cancer, and development studies have shown that IGF1 

receptor signaling and mTOR activation produce similar physiological outcomes, 

suggesting that IGF1 mediates these functions through mTOR signaling. For example, 

chronic treatment with rapamycin increases lifespan in rodents (Garza-Lombo et al. 

2016), as does developmental inhibition of the IGF1 receptor (Kappeler et al. 2008). 
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However, developmental inhibition of IGF1 or mTOR can cause small birth weights, 

brain atrophy, and retardation (Liu et al. 2009, Lee 2015). During brain development both 

IGF1 signaling and mTOR signaling mediate neuronal proliferation and differentiation. 

Hyperactivation of mTOR through developmental deletion of its suppressor TSC1 causes 

CNS tumors due to unchecked expansion of NSCs and their premature differentiation 

(Magri et al. 2013). Postnatal deletion of PTEN, an inhibitor of IGF1/PI3K signaling, in 

nestin-expressing cells resulted in NSC expansion and premature neuronal differentiation 

(Zhu et al. 2012). Drugs that inhibit mTOR activation inhibit NSC proliferation (Park et 

al. 2012). This often makes it difficult for researchers to address whether IGF1 signaling 

mediates the induction of neuronal differentiation through mTOR activation since no new 

neurons are left to analyze.  Both IGF1 signaling and mTOR activation promote dendritic 

and axonal process outgrowth. When effectors downstream of IGF1 receptor signaling 

(PI3K and AKT) are constitutively active in neuronal cultures, dendritic arbor length and 

complexity increase in a mTOR dependent manner (Jaworski et al. 2005). 

IGF1 and mTOR signaling in trauma 

Growth factors may play an essential role in regulating neuronal survival, 

oxidative stress, neural plasticity, and cognitive recovery after TBI (Zhou et al. 2003, 

DeKosky et al. 2004, Griesbach et al. 2004, Mahmood et al. 2007, Chiaretti et al. 2008, 

Ning et al. 2011). Following brain injury in humans, a transient increase in VEGF, nerve 

growth factor (NGF), and IGF1 are detectable in the plasma or cerebral spinal fluid of 

TBI patients (Wildburger et al. 2001, Chiaretti et al. 2008, Matsuo et al. 2013, 

Larpthaveesarp et al. 2015, Feeney et al. 2017). This is consistent with experimental 

injury models that show transient upregulation of several growth factors, not limited to 
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erythropoietin, VEGF, NGF, and IGF1, in the hippocampus of injured rodents (DeKosky 

et al. 2004, Lee et al. 2010, Madathil et al. 2010, Schober et al. 2010). Increased serum 

levels in human TBI and increased levels of exogenous IGF1 in experimental TBI are 

associated with improved memory (Saatman et al. 1997, Feeney et al. 2017). When rats 

were treated with IGF1 following fluid percussion injury, IGF1 attenuated the injury-

induced special memory deficit (Saatman et al. 1997). Increasing brain levels of IGF1 

following injury using a transgenic overexpression model attenuated memory impairment 

acutely after injury (Madathil et al. 2013). 

IGF1 protein upregulation is detectable ipsilateral to injury within 1hr after injury 

(Madathil et al. 2010), most noticeably in the peri-contusion area. Protein detection is 

limited by the rapid turnover of IGF1. However, increases in posttraumatic IGF1 receptor 

activation are still detectable in the hippocampus 24h after injury (Rubovitch et al. 2010). 

IGF1 has also been shown to promote survival and decrease the number of degenerating 

hippocampal cells in the CA3 and DG of the dentate gyrus (Madathil et al. 2013).  

Increasing brain levels of IGF1 following injury by transgenic overexpression or central 

infusion enhances posttraumatic neurogenesis in the DG (Carlson et al. 2014, Carlson et 

al. 2018). IGF1 restored the dendritic arbor complexity and length of new neurons 

following injury (Carlson et al. 2014). It is important to investigate IGF1 as a potential 

therapeutic target for brain injury. 

How IGF1 regulates neuroprotection and neuroplasticity following injury is less 

well understood. After brain injury, PI3K/AKT activity is transiently upregulated within 

hours after injury in the cortex and hippocampus (Jenkins et al. 2002, Park et al. 2012). 

Additionally, AKT activity has been shown to be potentiated in response to posttraumatic 
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increases of IGF1 in the cortex and hippocampus (Madathil et al. 2013). Within 48h of 

brain injury mTOR, a factor that mediates the upregulation of protein translation 

downstream of PI3K/AKT activity in the injured cortex and hippocampus is transiently 

activated (Chen et al. 2007, Park et al. 2012, Guo et al. 2013). S6K and S6, substrates 

directly activated by mTOR signaling, have been shown to be upregulated for the first 3 

days after injury in the cortex and hippocampus (Park et al. 2012).  

The effect of mTOR activation on posttraumatic cognitive recovery has been 

incongruent. Chronic mTOR inhibition by central infusion of rapamycin impairs long-

term spatial memory storage in naïve rats (Dash et al. 2006). Pretreatment with centrally 

infused mTOR inhibitors worsened spatial memory and learning after mild closed head 

injury (Zhu et al. 2014). A single injection of rapamycin delivered to the ipsilateral 

ventricle immediately before moderate CCI reduced activation of S6 in the hippocampus, 

but did not alter posttraumatic spatial learning (Park et al. 2012). Intraperitoneal injection 

of rapamycin at 1hr after moderate CCI prevented injury-induced mTOR activation of S6 

in the hippocampus and attenuated acute spatial learning deficits (Nikolaeva et al. 2016). 

Inhibition of mTOR with an AMPK-dependent mTOR inhibitor, metformin, after 

moderate CCI also attenuated TBI induced memory deficits in rodents (Hill et al. 2016). 

In experimental models of posttraumatic epilepsy, mTOR inhibition by rapamycin 

reduced the development of posttraumatic seizures (Guo et al. 2013, Butler et al. 2015). 

Posttraumatic induction of mTOR activation may have to reach a threshold level to 

impair cognition. Mice that are haploinsufficient for the endogenous mTOR inhibitor, 

TCS1/2, have impaired learning only after mild closed head injury (Rozas et al. 2015). It 

is clear that dysregulation of mTOR activity may impair posttraumatic recovery.  
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 Like IGF1 signaling, mTOR activation can regulate cell survival following 

trauma. mTOR regulates apoptosis and survival during CNS development (Magri et al. 

2013, Lee 2015).  The basic function of mTOR activity is to regulate homeostasis. Cells 

undergoing stress can save energy by downregulating mTOR activity to prolong survival. 

However, when mTOR activation levels are reduced too low, programmed cell death can 

be induced (Feng et al. 2010, Hung et al. 2012).  Following injury, mTOR is activated in 

NSCs, neurons, and reactive glia in the cortex and hippocampus after injury (Chen et al. 

2007, Park et al. 2012, Wang et al. 2016). Inhibiting mTOR activation following weight 

drop injury reduced trauma induced caspase activation and apoptosis markers (Wang et 

al. 2017). Inhibiting posttraumatic mTOR activation also inhibits injury-induced NSC 

proliferation and neurogenesis in the hippocampus (Butler et al. 2015, Wang et al. 2016). 

Posttraumatic rapamycin treatment inhibits axonal process outgrowth, inhibiting injury-

induced aberrant sprouting after severe TBI (Guo et al. 2013, Butler et al. 2015).  It is 

unclear whether and to what extent IGF1 alters mTOR activation and its regulation of 

posttraumatic neuronal survival and neurogenesis in the hippocampus. 

Summary  

TBI is a devastating disease associated with a billion-dollar economic burden and 

the potential for long-term disability. There are currently no approved pharmacological 

treatments for TBI. IGF1 attenuates injury-induced deficits in hippocampus-dependent 

learning and memory tasks. Following injury, IGF1 also confers hippocampal 

neuroprotection and stimulates neurogenesis and dendritic arbor recovery. However, the 

long-term fate of posttrauma-born neurons following IGF1 intervention and their 
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contribution to neurogenesis dependent behaviors after injury is not known. This study 

elucidates the long-term effects of IGF1 on posttraumatic neurogenesis and behavior.  

The IGF1 signaling pathway confers neuroprotection and stimulates 

neuroplasticity following trauma. This study tests the hypothesis that mTOR activation is 

critical to the enhancement of hippocampal neurogenesis by IGF1 after injury. This 

dissertation provides new insights into the mechanism of post-traumatic IGF1 signaling 

in plasticity.  
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CHAPTER 2: IGF1 increases long-term survival of posttrauma-born neurons 

while inhibiting ectopic localization in the hippocampus 

Introduction 

TBI is the leading cause of death among people under 40 and is predicted to be 

the leading cause of death in the world by 2020 (Fleminger et al. 2005, Popescu et al. 

2015). Survivors of mild to severe cases of TBI can suffer from a progressive decline in 

cognition and from long-term disability (Watson et al. 1995, Ratcliff et al. 2005, 

Flanagan 2015, Schachar et al. 2015). Cognitive impairment is due in part to the brain’s 

limited capacity to repair and replace lost neurons. 

Throughout adulthood, neural stem cells in the subgranular zone (SGZ) of the 

hippocampal dentate gyrus can proliferate and differentiate into new principal granule 

neurons of the granule cell layer (GCL) (Amaral et al. 2007). During the normal 

progression of adult neurogenesis, nearly 80% of newly born neurons undergo apoptosis 

within four weeks of proliferating (Cameron et al. 2001, Dayer et al. 2003, Kempermann 

et al. 2003, Ryu et al. 2016). Surviving neurons form synapses and are functionally 

integrated into the local hippocampal circuitry (van Praag et al. 2002, Jessberger et al. 

2008). Although the function of surviving adult-born neurons is not completely 

understood, they have been shown to contribute to contextual fear memory and extinction 

(Snyder et al. 2009, Ishikawa et al. 2016),  spatial memory (Farioli-Vecchioli et al. 2008) 

(Lu et al. 2007), pattern separation (Sahay et al. 2011), and cognitive flexibility ) 

(Burghardt et al. 2012, Sahay et al. 2011). Increasing the number of new adult-born 

neurons that survive to maturity has been shown to be sufficient to increase cognitive 

flexibility in naïve mice (Sahay et al. 2011).  
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Trauma has a pronounced impact on immature hippocampal neurons and their 

development following injury. Contusive brain injury results in the selective death of 

immature neurons in the GCL within the first week of injury (Rola et al. 2006, Gao et al. 

2008). While brain insults transiently stimulate a period of proliferation, resulting in 

recovery of immature neuron numbers (Rola et al. 2006, Carlson et al. 2014), the 

majority of post-trauma-born immature neurons do not survive to maturity after TBI (Lu 

et al. 2005, Bye et al. 2011, Ning et al. 2011, Gao et al. 2013, Wang et al. 2016). Injury 

results in a minimal increase in end-stage mature neurons, diminishing the potential long-

term impact of stable posttraumatic neurogenesis. Within the injured hippocampus 

posttrauma-born neurons develop with atypical and stunted dendritic arbors (Carlson et 

al. 2014, Villasana et al. 2015, Ibrahim et al. 2016), which may inhibit synapse-

dependent maturation and survival (Tashiro et al. 2006, Ge et al. 2008, Deng et al. 2010). 

Brain injury also increases the number of newly born neurons that migrate ectopically 

from the GCL into the molecular layer (ML) and hilar layer (HL) (Parent et al. 1997, 

Scharfman et al. 2000, Niv et al. 2012, Villasana et al. 2015, Shapiro 2017).  

Mislocalization and aberrant development may interfere with the function and survival of 

neurons born following TBI.  

Insulin-like growth factor-1 (IGF1) is a potent growth factor that is expressed at 

high levels during neuronal development and at lower levels in the adult CNS (Ocrant et 

al. 1988, Nieto-Estevez et al. 2016). IGF1 stimulates neurite outgrowth (Kim et al. 1997), 

is required for appropriate migration of neural progenitors during development (Hurtado-

Chong et al. 2009), and promotes newborn neuron survival (Baker et al. 1999). In the 

context of injury, we have shown that IGF1 increases the number of immature neurons 
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born after trauma and restores their dendritic arborization to the levels of uninjured 

controls (Carlson et al. 2014).  Additionally, IGF1 has been shown to attenuate acute 

posttraumatic cognitive dysfunction (Saatman et al. 1997, Rubovitch et al. 2010, 

Madathil et al. 2013). 

Here, we utilized a transgenic mouse model in which conditional overexpression 

of IGF1 by astrocytes results in increased hippocampal levels of IGF1 acutely after 

contusive brain injury (Madathil et al. 2013).  At six weeks post-injury, a time point 

beyond the window of maturation-dependent survival of adult-born dentate gyrus granule 

cells (Dayer et al. 2003), we examined the effects of IGF1 overexpression on the survival 

and localization of matured granule neurons born within the first week after TBI.  IGF1 

overexpression increased the number of posttrauma-born neurons that survived to end-

stage maturity and reduced ectopic migration following injury. IGF1 overexpression 

improved radial-arm water maze reversal learning during the 6-week period 

corresponding to enhanced stable neurogenesis. We show that IGF1 promotes cognitive 

flexibility six weeks after TBI. 

Materials and Methods 

Animal Care 

Transgenic mice with astrocyte-specific conditional overexpression of IGF1 were 

described previously (Ye et al. 2004, Madathil et al. 2013).  The mice were bred in-house 

by crossing heterozygous tTAGFAP mice with heterozygous IGF1pTRE mice, yielding 

double transgenic mice carrying both transgenes (tTAGFAP/IGF1pTRE ) (Madathil et al. 

2013, Carlson et al. 2014). IGF1 double transgenic mice (IGFtg) and their wildtype (WT) 
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littermates were fed doxycycline supplemented chow (200mg/kg) to suppress IGF1 

expression from birth until 2 weeks prior to surgery, after which they received standard 

chow. The mice were provided with food and water ad libitum at the University of 

Kentucky Medical Center animal vivarium. They were housed in temperature controlled 

rooms (23 ± 2°C) with a 14/10-h light/dark cycle. All procedures involving animals were 

approved by the University of Kentucky’s Institutional Animal Care and Use Committee 

(approval # 2013-1156). 

Controlled Cortical Impact Injury 

Controlled cortical impact (CCI) injury was performed as previously described 

(Madathil et al. 2013, Carlson et al. 2014). Briefly, isoflurane-anesthetized mice received 

a 5-mm diameter craniotomy over the left parietal cortex. For sham-injured mice, a 

cranioplasty was placed over the exposed cortex and the incision was closed. In CCI-

injured mice, a cortical contusion was produced using a pneumatically driven impactor 

device (Precision System Instruments) or a stereotaxic electromagnetic impactor (Leica 

Biosystems). A rounded 3mm diameter impactor tip was used to deliver a 0.8mm 

(pneumatic) or 1.1mm (electromagnetic) depth impact at a velocity of 3.5m/s. A cohort of 

male and female mice 8-12 weeks old were randomized for CCI or sham injury groups 

for GCL immunohistochemical analysis (8-9 CCI and 3 shams per genotype) and a 

second cohort was used for behavioral analysis (9-11 CCI per genotype). 

 



32 
 

BrdU Administration  

Beginning 24h after CCI or sham injury each animal received two i.p. injections 

of 5-Bromo-2′-deoxyuridine (BrdU; 50 mg/kg in saline; Fisher Scientific) at an 8h 

interval each day until 7 days post-injury (dpi).  Proliferating cells were labeled from one 

to seven days after injury to capture the majority of the proliferative phase triggered by 

TBI (Rola et al. 2006, Carlson et al. 2014). 

Histology and Immunohistochemistry 

Animals were deeply anesthetized by sodium pentobarbital (Fatal-Plus Solution, 

Vortech Pharmaceuticals) and transcardially perfused with heparinized saline followed 

by 10% buffered formalin 42d after injury. Brains were removed 24h after post-fixation 

in 10% formalin, cryoprotected using 30% sucrose solution, and snap frozen in cold 

isopentanes (≤ -25° C). Frozen brains were cut in a coronal plane at 40µm thickness.  A 

series of 9-10 sections taken at 400 µm intervals spanning the entire cerebrum were 

stained with 0.5% Cresyl Violet (Acros Organics).  

Immunofluorescence was performed using published protocols for free-floating 

sections (Madathil et al. 2013, Carlson et al. 2014) on three tissue sections selected at 400 

µm intervals spanning the injury epicenter (between -1.5 to -2.5mm bregma). To expose 

BrdU epitopes, the tissue was incubated in 2N HCl (Fisher Scientific) at room 

temperature with agitation for 1h, followed by 100mM borate for 10 minutes to neutralize 

residual HCl.  The tissue was rinsed overnight in TBS at 4ºC prior to a 30 min room 

temperature incubation in TBS with 0.1% Triton-X-100 and 5% Normal Horse Serum 

(NHS). Primary antibodies were diluted in TBS with 0.1% Triton-X-100 and 5% NHS 

and tissue was incubated overnight at 4ºC with agitation. Primary antibodies used were 
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anti-NeuN (rabbit, 1:500, Millipore Sigma), anti-GFAP (rabbit polyclonal, 1:1000, 

Millipore Sigma), anti-Iba1 (rabbit polyclonal,1:1000, Wako), and anti-BrdU (rat 

monoclonal,1:1000, Abcam). Secondary antibodies were conjugated with Alexa-488, Cy-

3 or Alexa-594 (Invitrogen). The omission of primary antibody served as a negative 

control. Sections damaged during processing were omitted from analysis for one mouse 

because the tissue was.  

Image Acquisition  

Images were taken on a confocal epifluorescence microscope (C2 Tie Nikon 

confocal microscope) capturing the dentate gyrus for each section per animal. BrdU+ and 

BrdU+NeuN+ cells in the densely packed GCL of the hippocampus ipsilateral to impact 

were imaged at 100x magnification under oil and at 0.75 µm step intervals through a 25 

µm depth. Maximum intensity projection images of glia labeled with BrdU in the ML 

were generated from confocal images taken at 1.5 µm step intervals through 20 µm of 

each section. Colocalization of markers was confirmed using 3D reconstructions of the 

cells of interest to avoid false positives. 

Region of Interest Analysis 

To control for possible differences in cell counts due to variations in region size 

as a function of the anatomical location of section counted, injury or genotype, the 

volume of the region was determined. In a profile image of each section, the region of 

interest (ROI) was outlined. The GCL area was auto-detected using NIS-Elements’ ROI 

area function. The ML region of interest, which had a sparse distribution of labeled 

proliferated cells compared to the GCL area of interest, was manually traced. The 

outlined ML ROI contained at least 225 DAPI-labeled cells per section in the lateral 2/3 
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aspect above the upper blade (0.044mm2 to 0.059mm2 sample area range) (Guzowski et 

al. 1999, Orozco et al. 2001, Nixon et al. 2008). The depth of the region imaged on the 

confocal microscope was multiplied by the area to determine the volume, expressed as 

mm3.  

Cell Quantification 

To evaluate the effect of IGF1 on adult-born neuronal survival in the GCL, the 

number of BrdU+ and BrdU+NeuN+ cells were manually counted in the GCL, ML, and 

hilus (HL). Cells were determined to reside in the GCL if they were within one cell 

distance (0-10µm) of the GCL border and the soma was adjacent to other NeuN+ cells 

along the border (Villasana et al. 2015). As principal granule cells are the only type of 

neuron generated by adult neurogenesis in the dentate gyrus, BrdU+NeuN+ neurons 

located in the HL and ML are considered ectopic (Amaral et al. 2007, Scharfman 2016).  

Colocalization of markers was confirmed by making 3D reconstructions of the cells of 

interest to avoid false positives. To determine if IGF1 increased the survival of 

posttrauma proliferated glial cells, BrdU+, BrdU+Iba1+, and BrdU+GFAP+ cells were 

counted in the ML. The following criteria were used to identify BrdU+ cells in the ML 

for automated counts: colocalization of BrdU with DAPI, spherical cell shape, and a 

nucleus 5-16 µm in diameter (NIS-elements software). To ensure an unbiased approach, 

BrdU+ cells were counted and annotated before evaluation of co-labeling with either cell 

type marker (GFAP or Iba1). Cell counts are expressed as density, cells per volume 

(mm3).  
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Neuronal Positioning Analysis 

To localize posttrauma proliferated neurons (BrdU+NeuN+) in the GCL at 42dpi, 

the position of the center of the cell in relation to the GCL/HL border was determined as 

previously described (Han et al. 2016, Ibrahim et al. 2016). The center of the soma of 

BrdU+NeuN+ cells within the GCL was annotated using NIS-elements, and cells were 

binned into the inner 1/3 of the GCL (iGCL) or outer 2/3 of the GCL (oGCL).  

Radial Arm Water Maze 

The water maze behavior assessment describes a spatial learning test in which 

animals are trained to locate a fixed platform hidden beneath the surface of a pool. The 

water component serves as an aversive motivator that encourages rodents to escape 

quickly. Decreased exploration of areas that do not contain the platform over contiguous 

trials indicates learning. The reversal paradigm introduces a novel platform location after 

animals have learned to find the original location. How quickly rodents decrease 

preference for the old location is an indicator of improved cognitive flexibility (Garthe et 

al. 2009). Cognitive flexibility has been linked to an increase in the number of mature 

adult-born neurons (Garthe et al. 2009).  

To measure spatial reference memory and learning, mice were tested using an 

established 2-day radial arm water maze (RAWM) protocol (Alamed et al. 2006, 

Morganti et al. 2015) beginning 39 days after injury by an observer blinded to animal 

genotype. We utilized a six-arm maze with an arm length of 30 cm and a common 

circular swim diameter of 40 cm within a 160 cm diameter pool. The pool was filled with 

20-21°C water,  made opaque using tempura paint (Rich Art Co., Northvale, NJ), to a 

level approximately 2 cm above a clear (hidden) circular platform. The platform was 
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placed at the end of an arm approximately 7 cm away from the side and back walls. 

During visible trials, a cue was placed on the edge of the platform. The pool was enclosed 

by a black curtain on which four unique geometric extra-maze visual cues were affixed. 

On day 1 (acquisition day), mice were trained over four blocks of 3 trials to 

identify the platform location, alternating between visible and hidden platform trials 

(Morganti et al. 2015). Block 5 on day 1 consisted of 3 hidden platform trials, yielding a 

total of 15 trials. On day 1, mice unable to locate the platform within 60 seconds were 

gently guided to it. On day 2, reference memory was tested using 15 hidden platform 

trials, conducted in 5 blocks of 3 trials each (blocks 6 to 10). Mice received a third day of 

testing, during which the platform was moved to a novel location, at least 1 arm away 

from the original location (Alamed et al. 2006, Selenica et al. 2014). On day 3, mice 

received 15 hidden platform trials in the novel location performed in five blocks. Mice 

were tested in groups of 4-5 and never entered the same start arm as the previous trial. A 

mouse was considered to have entered the arm if its whole body crossed the threshold of 

the arm. Animals received an error point if they entered the wrong arm or did not make 

an arm choice for more than 15s. Entries into the goal arm were not counted as errors 

even if the platform was not located. The error data is presented as the average error of 

hidden platform trials per block. 

Upon completion of RAWM testing visual and swimming deficits were evaluated 

using an open pool visible platform test (Alamed et al. 2006). The latency to find the 

visible flagged platform in an open pool divided into 4 equal quadrants was assessed over 

5 blocks of 3 trials (15 trials total trials). The start position remained constant throughout 

the testing, while the goal quadrant varied each trial. Animals were excluded from 



37 
 

analysis for failing the visible platform test (Alamed et al. 2006) by receiving a latency of 

>20 seconds in the last block of the test and ≥45 seconds latency across all 15 open pool 

trials (1 WT and 1 IGFtg).  Two visually competent mice were excluded from analyses 

for non-participation, failing to reach the platform in every trial during the 3 days of 

testing (1 WT and 1 IGFtg).   

All trials were recorded with a digital camera using EthoVision XT 8.0 video 

tracking software (Noldus Information Technology). The error and latency to platform 

data was analyzed offline from video analysis by blinded observers. Activity heat-maps 

were generated by video analysis using Anymaze software (Stoelting Co.).  

Statistical Analyses 

Data was assembled by an individual blinded to genotype and injury conditions. 

Statistical analyses and graph generation was performed using GraphPad Prism software 

6.0. Cell counting and localization assays revealed no differences across bregma levels 

within groups. Therefore data was combined across tissue sections for a given animal. 

Cell counts and cell positioning data were analyzed using a one-way analysis of variance 

(ANOVA), followed by post-hoc Bonferroni's multiple comparison t-tests where 

appropriate.  Post-hoc comparisons were limited a priori to four, to test for genotype 

effects across sham groups and across injured groups, and injury effects (sham versus 

CCI) for WT mice and for IGFtg mice. RAWM and RAWM reversal data were analyzed 

for each day using a two-way ANOVA with repeated measures.  For all comparisons 

p<0.05 was considered statistically significant. All data are presented as mean + standard 

error of mean (SEM).   
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Results 

Dentate gyrus cells that proliferate acutely after trauma survive 6 weeks 

To determine the effect of IGF1 on long-term survival of cells that proliferate 

after TBI, we labelled cells dividing within the first seven days after injury with BrdU 

and quantified the number of BrdU+ cells persisting until 42dpi after injury. Proliferated 

cells were distributed throughout the dentate gyrus but were more abundant in mice with 

TBI (Figure 2.1A). Quantification in the GCL (Figure 2.1B) and the ML (Figure 2.1C) 

confirmed a significant increase in the density of acutely proliferated cells (BrdU+) that 

survived six weeks in both injured WT and IGFtg mice compared to sham controls.  

However, overexpression of IGF-1 did not alter the density of proliferated cells in either 

region of the hippocampus.   

IGF1 selectively promotes end-stage fate maturation of immature neurons resulting in 

stable neurogenesis 6wks post-injury   

We identified three major neural cell types represented among the surviving 

BrdU+ posttrauma-born cells in the dentate gyrus: neurons, astrocytes, and microglia 

(Figure 2.2). We previously showed that IGF1 stimulates an increase in numbers of 

immature neurons in the GCL early after CCI brain injury by promoting neuronal 

differentiation (Carlson et al. 2014). To determine if overexpression of IGF1 supported 

long-term survival of neurons and glia born acutely after trauma, we quantified the 

density of proliferated neurons, astrocytes, and microglia at 42 dpi (Figure 2.3). We 

observed no significant difference in the number of BrdU+ neurons in the GCL of brain-

injured WT mice compared to WT shams, suggesting no notable difference in long-term 

neurogenesis. In contrast, brain-injured IGFtg mice displayed a marked increase in 
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BrdU+NeuN+ cell density compared to IGFtg shams (Figure 2.3A). The density of 

surviving posttrauma-born neurons in brain-injured mice overexpressing IGF1 was also 

significantly higher than that in injured WT mice. Proliferated astrocytes and microglia 

were counted in the ML of the dentate gyrus, a region predominantly populated by glial 

cells. Brain injury resulted in a similar increase in the density of proliferated astrocytes 

present in the ML for WT and IGFtg mice (Figure 2.3C), suggesting that IGF1 

overexpression did not enhance the persistence of proliferated astrocytes in the ML. 

Injury resulted in an increase in the density of posttrauma proliferated microglia present 

in the ML at 6 weeks post-injury, but this was statistically significant only in WT mice 

(Figure 2.3E).  

While TBI has been shown to increase the number of posttrauma-born cells in the 

GCL, the proportion of proliferating cells that become mature neurons declines (Lu et al. 

2007, Gao et al. 2013, Chen et al. 2016). Consistent with these reports, we found that 

over 60% of BrdU+ cells co-label as mature neurons in the GCL of sham controls at 6 

weeks after surgery, while mature neurons only account for 30% of BrdU+ cells in brain-

injured WT mice (Figure 2.3B). IGF1 overexpression significantly increased the 

proportion of proliferated cells that exhibited a mature neuronal phenotype following 

injury (Figure 2.3B), restoring the balance of proliferated neurons to over 60%, a level 

equivalent to sham controls. In contrast, the proportion of posttrauma proliferated cells in 

the ML that were co-labelled with either glia marker, GFAP or Iba1, was similar for 

IGFtg and WT brain-injured mice (Figures 2.3D,F).  

Measurement of the area of GFAP and Iba1 immunostaining revealed that IGF1 

overexpression promoted an increased area of GFAP and Iba1 labeling in the ML 
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compared to uninjured controls (Figure 2.4A). Together these data suggest that while 

IGF1 strongly promoted the long-term survival of posttrauma-born neurons, it did not 

alter the density or proportion of acutely proliferated astrocytes and microglia in the 

dentate gyrus after CCI brain injury. Astrocyte-specific IGF1 overexpression, however, 

may stimulate astrocyte hypertrophy, as reported in our previous study of acute responses 

to brain trauma (Madathil et al. 2013). 

IGF1 enhances outward migration of posttrauma-born neurons in the GCL  

Earlier studies that characterized the development and migration of newborn 

neurons within the GCL identified two different regions, the inner and outer zones 

(Altman et al. 1990, Martin et al. 2002, Kempermann et al. 2003, Zhao et al. 2006). 

Neural progenitors proliferate in the inner 1/3 of the GCL (iGCL) and migrate toward the 

outer 2/3 of the GCL (oGCL) as they mature (Kempermann et al. 2003, Schmidt-Hieber 

et al. 2004, Heigele et al. 2016). Neurons born during development and older granule 

neurons are preferentially localized in the outer zones in the adult. Newborn neurons 

migrate further following brain injury (Villasana et al. 2015). A study showed that injury 

increases the proportion of posttrauma proliferated neurons that localize to the oGCL 

(Ibrahim et al. 2016). We examined the relative proportions of posttrauma-born neurons 

localized to the oGCL to determine if IGF1 altered outward migration within the GCL 

(Figure 2.5A). The majority of the neurons born the first week after surgery localized to 

the iGCL in all groups (Figure 2.5D). Injury induced a modest increased the number of 

posttrauma-born neurons that localized to the oGCL. The density and proportion of 

posttrauma-born neurons localized to oGCL was only significantly higher than control 

levels in injured IGFtg mice (Figure 2.5E, Figure 2.6A).  
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IGF1 attenuates ectopic localization of posttrauma-born neurons in the dentate gyrus 

Granule neurons born after brain injury have an increased probability of 

mislocalization to the HL or ML (Parent et al. 1997, Scharfman et al. 2000, Jessberger et 

al. 2007, Villasana et al. 2015, Shapiro 2017). Ectopic localization of granule cells may 

also be stimulated by neurotrophic factors such as BDNF (Scharfman et al. 2005). 

Therefore, we sought to determine whether increased hippocampal neurogenesis in IGF1 

overexpressing mice with brain injury was associated with heightened risk for ectopic 

localization of adult-born neurons.  Ectopically localized new neurons (Figures 2.5B,C) 

were observed in both groups of brain-injured mice, but not in sham controls. WT injured 

animals had a significantly higher proportion of proliferated neurons localized to the ML 

and HL than WT sham mice (Figure 2.5G). Despite increasing the number of proliferated 

neurons 3-fold (Figure 2.3A), IGF1 overexpression did not significantly increase the 

number of ectopic neurons in the ML and HL of brain-injured mice compared to injured 

WT (Figure 2.6B). Compared to WT injured mice, IGF1 overexpression reduced the 

proportion of proliferated neurons that were ectopically localized following injury 

(Figure 2.5G).  

IGF1 improves reversal learning in RAWM 6 weeks after CCI 

Cognitive flexibility describes the process of distinguishing between two similar 

contexts and then extinguishing a preference for one and replacing it with a novel 

preference (Anacker et al. 2017). Water maze platform reversal studies show that adult-

born hippocampal neurons contribute to cognitive flexibility (Garthe et al. 2009, Garthe 

et al. 2013). Increasing the number of mature adult-born neurons in the GCL was 

sufficient to improve pattern separation and cognitive flexibility in naïve animals (Sahay 
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et al. 2011). To determine if IGF1 overexpression improved hippocampal dependent 

learning ability or cognitive flexibility, mice were evaluated in a 3d RAWM test that 

included two days of task acquisition (learning) followed by one day with platform 

reversal. On days 1 and 2, the numbers of errors did not differ significantly between 

injured WT and IGFtg mice, indicating similar ability to learn the initial platform location 

(Figure 2.7A). During day 3 RAWM reversal testing, the platform was moved to a novel 

goal arm, requiring mice to change their strategy and identify the new platform location. 

Injured WT and IGFtg mice initially made similar numbers of errors during the first 

block of day 3 and both learned to find the new platform by the last block of day 3 

(Figure 2.7A). Injured IGFtg mice showed an earlier decrease in errors over blocks 10-11 

while WT injured mice were more delayed in learning the new location, but this 

difference was not statistically significant.   

Learning a novel goal location after an initial goal location has been established is 

neurogenesis dependent (Garthe et al. 2009, Burghardt et al. 2012, Garthe et al. 2013). A 

decrease in time spent in the old (original) location is reflective of the animals’ ability to 

extinguish prior memory and learn a new strategy (Garthe et al. 2009, Saha et al. 2017). 

Activity maps from day 3 RAWM trials illustrate that injured WT mice had more activity 

in the vicinity of the old goal arm in blocks 9, 10 and 11 than did injured IGFtg mice 

(Figure 2.7B).  Therefore, we quantified the time spent in the old goal arm during 

reversal learning on day 3 of the RAWM. Injured IGFtg mice spent significantly less 

time in the old arm during day 3 of RAWM testing compared to injured WT mice (Figure 

2.7C). Our data provides evidence that IGF1 overexpression enhances posttraumatic 

cognitive flexibility, enabling injured mice to more quickly extinguish their memory of 
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the old strategy and replace it with a new one. Both WT and IGFtg mice performed 

similarly on the visual platform test (Figure 2.7D), indicating that behavioral differences 

between groups are not due to motor or visual deficits (Alamed et al. 2006, Bromley-

Brits et al. 2011). 

Discussion 

Summary 

The fate, localization, and function of posttrauma-born neurons in the dentate 

gyrus six weeks following brain injury were examined in IGF1 overexpressing and WT 

mice. Three key findings from the studies are presented here. First, of the hippocampal 

cell types that proliferate after trauma, the population of posttrauma-born neurons that 

survive to maturity is selectively increased by elevated brain levels of IGF1. IGF1 

significantly increased the number of mature posttrauma-born neurons but not the 

number of astrocytes or microglia proliferated within the first week of injury. Second, we 

show for the first time that IGF1 regulates migration of adult-born neurons following 

trauma. Brain-injured IGF1 mice had significantly more newly born neurons localized 

deep within the GCL. Although IGF1 promoted migration within the GCL, it did not 

potentiate injury-induced ectopic granule cell localization to the HL and ML. Third, we 

present a novel effect of IGF1 on cognitive flexibility following trauma. At six weeks, 

injured IGF1tg mice had improved performance on the day of RAWMR testing, when the 

hidden platform was moved to a novel location. This data compels further evaluation of 

IGF1 for its therapeutic potential to promote hippocampal neurogenesis and cognitive 

flexibility following trauma. 
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Survival 

We show IGF1 overexpression support survival of posttrauma-born neurons to 

end-stage maturity. Consistent with previous studies, the proportion of acutely 

proliferated cells that differentiated into neurons and survived to late-stage maturity in 

injured WT mice was diminished compared to sham controls (Lu et al. 2007, Gao et al. 

2013). Posttraumatic IGF1 overexpression stimulated a 3-fold increase in numbers of 

mature neurons 6 weeks after injury. IGF1 overexpression following injury restored the 

proportion of proliferated cells that became end-stage mature neurons to sham levels at 6 

weeks post-CCI. Posttraumatic IGF1 overexpression dramatically increases neuronal 

differentiation of SGZ NSCs within 10d of injury (Carlson et al. 2014). Data from in 

vitro studies and developmental studies suggest that IGF1 is largely increasing the 

density of neurons that survive to end-stage maturity by inhibition of programmed cell 

death and enhanced integration of developing neurons (Baker et al. 1999, Jaworski et al. 

2005, Kim et al. 2006, Miltiadous et al. 2011, O'Kusky et al. 2012, Carlson et al. 2014, 

Huat et al. 2014, Nieto-Estevez et al. 2016, Nieto-Estevez et al. 2016). Injury drives 

extensive cell death of immature neurons and, to a lesser extent, mature neurons in the 

GCL (Rola et al. 2006, Gao et al. 2008, Gao et al. 2013). Additional posttrauma-born 

neurons will die during the process of maturation. A critical step in the process of adult 

neurogenesis is pruning, which maintains a consistent number of principal granule cells 

in the GCL as mammals age. The majority of 2-3 week old adult-born neurons do not 

reach end-stage maturity; as many as 80% of these neurons undergo apoptosis during 

synapse-dependent competitive survival (Cameron et al. 2001, Dayer et al. 2003, 

Kempermann et al. 2003, Ryu et al. 2016). IGF1 has been shown to prevent apoptosis in 
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the hippocampus and increase immature neuron dendritic arborization (Miltiadous et al. 

2011, Madathil et al. 2013, Rong et al. 2015). We found no difference in the numbers of 

proliferated cells in the GCL of injured WT and IGFtg mice. By 1-month post-injury only 

10-50% of acutely proliferated cells in the GCL of WT mice are mature neurons (Lu et 

al. 2005, Wang et al. 2016). Gao and colleagues argue that the reduction in mature 

neurons is not merely due to slowing of the maturation process after TBI, as BrdU+ cells 

that are NeuN- do not label with the immature neuron marker doublecortin (Gao et al. 

2013). Future long-term studies examining the effect of IGF1 overexpression on the rate 

of proliferated neuron apoptosis in the GCL are necessary to directly elucidate the 

mechanism that produces increased mature neurons after trauma. In any event, IGF1 

overexpression following injury provides a pool of mature neurons that can potentially be 

recruited to overcome deficits caused by injury.  

Although the IGF1 receptor is ubiquitously expressed on all neural cell types 

(Ocrant et al. 1988, Muhic et al. 2015), our data suggests that IGF1 is selectively 

enhancing stable neurogenesis after TBI. Our data corroborates existing studies that show 

that injury stimulates acute glial proliferation in the ML that persists for months after 

injury (Kernie et al. 2001). However, IGF1 overexpression did not increase the number of 

proliferated astrocytes or microglia localized to the ML 6 weeks after TBI. Our data 

contrasts ischemic brain injury findings, that IGF1 treatment stimulates gliosis, producing 

an increase in astrocytes, microglia and oligodendrocytes in the white matter tracts of 

fetal sheep (Cao et al. 2003). Although we examined neurons, astrocytes, and microglia, 

further studies are needed to examine alterations in proliferated oligodendrocyte 

densities.  
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In our model, IGF1 overexpression is driven by GFAP, an astrocyte-enriched 

structural protein. IGF1 overexpressing mice exhibited a significant increase in GFAP 

immunoreactive area at 6 weeks after injury in the ML compared to uninjured controls 

and injured WT mice, even though neither the density nor proportion of proliferated 

astrocytes was increased. This is consistent with our previous finding, that IGF1 

overexpression increases GFAP levels in hippocampal homogenates at 24 and 72hrs after 

CCI compared to WT injured animals (Madathil et al. 2013). Astrocytes play many 

potentially important roles in the injured brain, including regulating synaptic strength of 

DG granule cells, attenuating cognitive impairment through hippocampal S100B growth 

factor release, reducing glutamate excitotoxicity, and mediating immature neuron 

migration along their processes (Deller et al. 1997, Chen et al. 2003, Kleindienst et al. 

2005, Becker et al. 2013, Robinson et al. 2016, Jinnou et al. 2018). An increase in GFAP 

immunoreactive area was also observed in the GCL and SGZ of injured IGFtg mice 

compared to WT and sham controls (data not shown).  Increased GFAP in close 

proximity to the GCL and neurogenic niche suggest that astrocytes and possibly GFAP-

positive progenitors in the DG may play a role in mediating IGF1 effects on 

neurogenesis.  

Migration 

Mature neurons generated by posttraumatic neurogenesis may play an important 

role in replacing mature granule neurons lost after injury. For the first time, we show that 

IGF1 can regulate outward migration of posttrauma-born neurons, consistent with a 

developmentally born phenotype. Although neurogenesis is an ongoing process, the 

approximate number of adult-born neurons in the GCL is maintained and does not 
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increase over time (Cameron et al. 2001, Dayer et al. 2003, Kempermann et al. 2003, 

Amaral et al. 2007). Developmentally born granule neurons, localized to the oGCL of 

adults, continue to die over time. Adult neurogenesis provides a pool of new neurons that 

can replace dying hippocampal granule neurons (Dayer et al. 2003). In naïve animals, a 

subset of adult-born neurons migrate from the neurogenic niche of the SGZ and into the 

iGCL and oGCL within the first 4 weeks of their birth (Kempermann et al. 2002, 

Kempermann et al. 2003). 

In addition to immature neurons, injury results in a loss of mature granule cells 

(Zhou et al. 2012, Wang et al. 2016). Mature granule neurons localized to the oGCL were 

found to colocalize with Caspase-3 (a marker for apoptosis) after injury (Zhou et al. 

2012). Although injury promotes a modest increase in the number of posttrauma-born 

mature neurons that localize to the oGCL, these neurons maintain their injury-induced 

aberrant dendritic arbors into maturity at 5 weeks post-trauma (Ibrahim et al. 2016). This 

suggests that although injury has been shown to increase posttrauma-born neurons 

localized to the oGCL, they may not productively integrate. At 10d post-injury IGF1 

overexpression restores immature neuron dendritic arbor length and complexity to 

uninjured levels (Carlson et al. 2014). We show here that IGF1 increases the density and 

proportion of mature posttrauma-born neurons that migrate to the oGCL. Futures studies 

will examine the architecture and function of these cells. 

As immature neurons develop in the postnatal brain, they are rarely found 

localized to the hilus. During the process of adult neurogenesis, immature neurons that 

mislocalize the HL undergo Bax-mediated apoptosis before they are able to mature 

(Stallock et al. 2003, Myers et al. 2013). Several models of brain injury, including TBI, 
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cause adult-born granule neurons to ectopically localize to the HL (Parent et al. 1997, 

Scharfman et al. 2007, Myers et al. 2013, Shapiro 2017). Consistent with other studies, 

we show that injury increases the density of ectopically localized posttrauma-born 

granule cells. However, we are the first to show that IGF decreases the proportion of new 

neurons that migrate ectopically into the HL. Large numbers of ectopically localized 

neurons are generated in the epileptic brain and these mislocalized neurons are implicated 

in seizure development (Parent et al. 1997, Scharfman et al. 2003). Ectopically localized 

mature granule cells integrate into the hilus are suggested to lower seizure threshold 

(Scharfman et al. 2003). It was recently reported that IGF1 treatment decreased seizure 

severity in a kainic acid model of temporal lobe epilepsy (Miltiadous et al. 2011). The 

magnitude of brain injury induced ectopic localization of neurons is much lower than that 

observed in models of seizure (Scharfman et al. 2000, Ibrahim et al. 2016), so the role of 

ectopic hilar neurons is less clear in TBI. IGF1 may be a potential therapeutic for 

posttraumatic epilepsy. 

IGF1 regulates known factors of neuronal migration including GSK3B, PSA-

NCAM, CDK5 and reelin (Wang et al. 1999, Jessberger et al. 2008, Hurtado-Chong et al. 

2009). Signaling studies have also revealed that inhibiting the activity of GSK3B, a 

protein inactivated downstream of IGF1 signaling, is sufficient to increase the number of 

adult-born neurons localized to the oGCL (Ng et al. 2016). During development, IGF1 

regulates reelin expression and distribution, as well as reelin-dependent neuron migration 

levels in naïve mice (Hurtado-Chong et al. 2009). There is also evidence that IGF1 may 

regulate immature neuron migration indirectly through its effects on other neural cell 

types. Reelin is a migratory stop signal for dentate granule cells that is expressed by hilar 
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basket cells (Myers et al. 2013), preventing granule cells from migrating ectopically into 

the hilus (Gong et al. 2007). While injury causes degeneration of hilar neurons 

(Lowenstein et al. 1992, Hall et al. 2005, Hunt et al. 2011), IGF1 mediates survival of 

hilar neurons following trauma (Madathil et al. 2013). 

IGF1 and cognitive flexibility 

Increasing the number of mature adult-born neurons was sufficient to improve 

discrimination between two similar contexts, extinguish a learned strategy, and replace it 

with a new strategy when a novel location goal arm was introduced (Idris et al. 2010, 

Sahay et al. 2011). Further reinforcing the contribution of posttrauma-born neurons to 

cognitive flexibility, ablating adult neurogenesis has been shown to impair pattern 

recognition and cognitive flexibility (Clelland et al. 2009, Burghardt et al. 2012). 

Inhibiting adult neurogenesis using the anti-proliferation drug temozolomide caused a 

strong and lasting preference for the old goal arm during Morris water maze testing when 

the goal arm was moved to a novel location (reversal testing) (Garthe et al. 2009). This 

study provides evidence that enhancement of neurogenesis through posttraumatic IGF1 

overexpression supports long-term cognitive flexibility. Here, WT and IGFtg mice 

learned to find a hidden platform similarly on days 1-2. The ability to learn where the 

constant platform goal arm is in the RAWM is dependent on the prefrontal cortex and 

striatum function of working memory and reference memory (Hyde et al. 1998, Shukitt-

Hale et al. 2004). Functional neurogenesis is recruited for the reversal learning aspect of 

water maze spatial learning tests (Horster et al. 2017). Injured IGFtg mice had a higher 

density of mature posttrauma-born neurons and learned a new strategy more quickly that 

WT mice during RAWM reversal. This is consistent with other neurogenesis studies 



50 
 

(Bekinschtein et al. 2013, Bekinschtein et al. 2014, Horster et al. 2017), in which the 

modification of adult neurogenesis did not interfere the ability to learn a strategy. 

However, the ability of mice to choose a new strategy when a novel goal location is 

introduced has been shown to be hippocampus and dentate gyrus dependent (Day et al. 

1999, Xavier et al. 1999). When a novel platform location was introduced on day 3, 

injured IGFtg mice learned to find the new platform earlier and spent significantly less 

time in the old goal arm compared to injured WT mice. IGFtg mice have a 3-fold 

increase in the number of mature posttrauma-born neurons at six weeks after injury, a 

time which parallels their improved cognitive flexibility. This study provides evidence 

that post-traumatic IGF1 overexpression enhances neurogenesis-sensitive cognition 

including cognitive flexibility.  

Our novel data show that posttraumatic increases in IGF1 are sufficient to 

improve neurogenesis-sensitive cognitive flexibility. These data have important 

implications for long-term posttraumatic cognitive impairment. Although frontal lobes 

are known to dominate directing these functions in human, a role for the hippocampus in 

cognitive flexibility has been recently defined (Rubin et al. 2014). Over 65% of moderate 

to severe TBI patients report long-term cognitive deficits (Rabinowitz et al. 2014).  

Executive function disabilities include impairments in high-level cognition: the ability to 

plan, make decisions, social behaviours, goal-setting and cognitive flexibility. 

Modulation of adult hippocampal neurogenesis is potentially a therapeutic target for TBI 

recovery. 
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Figure 2.1: Hippocampal cells that proliferate acutely after injury persist long-term 
in the dentate gyrus.  
  (A) Cells dividing within seven days following surgery were detected in the 
dentate gyrus of sham controls, injured wild-type (WT), and injured IGF1-overexpressing 
(IGFtg) mice at 42d after injury using bromodeoxyuridine (BrdU, red) immunoreactivity. 
DAPI labeling is shown in blue. Scale bar represents 50µm. Controlled cortical impact 
(CCI) stimulates proliferation in both WT and IGFtg mice. Quantification of BrdU+ cells 
in (B) the granule cell layer (GCL) and (C) the molecular layer (ML) shows that WT and 
IGFtg injured mice have increased numbers relative to their respective sham controls. 
Data presented as mean + SEM (mm3/1000); sham n=3/genotype, CCI n=8-9/genotype; 
One-way ANOVA, followed by post-hoc Bonferroni's selected comparisons t-tests; 
*p<0.05 and ** p<0.01, compared to respective sham groups.  
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Figure 2.2: End-stage fate maturation of cells proliferated during the first week 
after injury results in long-term neurogenesis and gliogenesis.  

(A) Representative microphotographs from confocal imaging of immunoreactivity 
of mature neuron-specific protein, Neuronal Nuclei (NeuN, green) with proliferation 
reporter, bromodeoxyuridine (BrdU, red). Mature posttrauma-born neurons were detected 
in the granule cell layer (GCL) of sham controls, wild-type (WT) injured, and IGF1-
overexpressing (IGFtg) injured mice at 42d after injury. (B) Posttrauma-born astrocytes 
were co-labeled with glial fibrillary acidic protein (GFAP, green) and BrdU in the 
molecular layer (ML). (C) Posttrauma-born microglia were co-labeled with ionized 
calcium binding adaptor molecule 1 (Iba1, green) and BrdU in the ML. The phenotype of 
posttrauma proliferated cells was confirmed by 3D reconstruction of confocal images. 
(D) A high-magnification image in the x, y, and z planes of the BrdU+NeuN+ area 
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indicated by the red box in (A). Figure A-C, scale bar is 10µm. Figure D, scale bar is 
5µm. DAPI is blue; BrdU is red.  
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Figure 2.3: IGF1 selectively enhances long-term neurogenesis but not gliogenesis.  

Following injury, IGF1 (A) increased the density of surviving posttrauma-born 
neurons in the granule cell layer (GCL) without increasing the density of posttrauma-born 
(C) astrocytes or (E) microglia in the molecular layer (ML) compared to injured WT. (B) 
Injured WT mice exhibited a reduction in the proportion of proliferated progenitors that 
mature into end-stage neurons, while IGF1 restored this proportion to sham levels. IGF1 
overexpression did not increase the proportion of proliferated cells that differentiated into 
(D) astrocytes or (F) microglia compared to injured WT mice. Data presented as mean + 
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SEM (1000/mm3). Sham n=3/genotype, CCI n=6-9/genotype; One-way ANOVA, 
followed by Bonferroni's selected comparisons post-hoc t-tests *p<0.05; **p<0.01; and 
***p<0.001 compared to respective sham group. &&p<0.01 and &&&p<0.001 compared 
to injured WT. 
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Figure 2.4: IGF1 overexpressing mice had increased glial marker immunolabeling 
in the ML 6weeks post-CCI.  

IGF1 overexpression increased the area of (A) GFAP and (B) Iba1 positive 
immunoreactivity in the ML following injury compared to IGFtg sham controls. Data 
presented as mean + SEM (mm2); sham n=3/genotype, CCI n=5-9/genotype; One-way 
ANOVA, followed by Bonferroni's selected comparisons post-hoc t-tests; *p<0.05 and 
** p<0.01, compared to respective sham group. 

. 
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Figure 2.5: IGF1 increases the proportion of new mature neurons that migrate deep 
within the granule cell layer but decreases the proportion that localizes ectopically 
to the hilus and molecular layer after injury. 

Examples of mature neurons localized to (A) the inner granule cell layer (iGCL) 
and the outer 2/3rd region of the granule cell layer (oGCL), (B) the molecular layer 
(ML), and (C) the hilar layer (HL) after controlled cortical impact (CCI) using confocal 
imaging of Neuronal Nuclei (NeuN, green) and the proliferation reporter, 
bromodeoxyuridine (BrdU, red). (D) IGF1 overexpression potentiates injury-induced 
migration of new neurons to the oGCL; (E) IGF1 overexpression increased proportion of 
mature posttrauma-born GCL neurons localized to the oGCL compared to sham controls. 
(F) Injury increased ectopic migration of new neurons into the ML and HL. (G) IGF1 
overexpression reduced the proportion of recently born mature neurons that ectopically 
localized to the ML and HL. Figures A-C, scale bar represents 10µm. Figures D-G, data 
presented as mean + SEM. Sham n=3/genotype, CCI n=8-9/genotype; One-way 
ANOVA, followed by Bonferroni's selected comparisons post-hoc t-tests. *p<0.05; 
**p<0.01; and ***p<0.001 compared to respective sham group; &p<0.05 compared to 
injured WT. SGZ, subgranular zone  
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Figure 2.6: IGF1 overexpression increased the density of outward migrating 
NeuN+BrdU+ in the GCL, but not the density of ectopically localized neurons.  

(A) At six weeks after injury, IGF1 overexpression increased the density of 
proliferated neurons localized to the oGCL compared to sham controls and injured WT. 
(B) At six weeks after injury, ectopically localized neurons were observed in the ML and 
HL. Data presented as mean + SEM (1000/mm3). Sham n=3/genotype, CCI n=8-
9/genotype; One-way ANOVA, followed by Bonferroni's selected comparisons post-hoc 
t-tests. *p<0.05 compared to respective sham group. &p<0.05 compared to injured WT.  
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Figure 2.7: Injured mice extinguish memory of old goal arm earlier following IGF1 
overexpression.  

(A) WT and IGF1 mice learned to find the hidden platform during radial-arm 
water maze (RAWM) testing and RAWM-reversal. Both WT and IGFtg mice show a 
decrease in numbers of errors over training days. (B) Maps show activity of 
representative WT and IGFtg mice during the first three blocks of RAWM reversal 
testing. IGFtg mice  extinguish memory of the old goal arm sooner, after the platform 
was moved from the original training location (green square) to a novel location (red 
asterisk) during day 3 RAWM reversal testing. (C) WT mice consistently spent more 
time in the previous platform location than the IGFtg mice during RAWM reversal 
testing. (D) Differences between groups were not due to sensory or motor dysfunction. 
Injured WT and IGFtg mice have similar times to locate the platform at 6 weeks after 
CCI. Heatmap blue to red coloration indicates increasing amount of time. Data presented 
as mean + SEM. CCI n=9-11/genotype; Repeated measures ANOVA, p values reported 
in image.  

 

  



62 
 

CHAPTER 3: IGF1 posttraumatic hippocampal remodeling is independent of 

mTOR 

Introduction 

A 2006 study showed that approximately 5 million people who sustained 

traumatic brain injuries (TBI) are suffering from long-term cognitive impairment and 

disability (Langlois et al. 2006). The disruption of neural networks resulting from axonal 

degeneration, neuronal cell death and a limited ability to replace and repair lost cells 

contributes to cognitive disability (Mander et al. 2013). In response to injury, the brain 

upregulates signaling that activates developmental plasticity programs which are 

typically downregulated in adulthood (Anlar et al. 1999). Many forms of adaptive 

plasticity occur following TBI including cellular reorganization, neural cell-type 

proliferation, angiogenesis, altered neurotransmitter release, and neurogenesis (Lyeth et 

al. 1990, Osier et al. 2016)  

Hippocampal adult neurogenesis begins with proliferation of neural stem cells 

(NSCs) in the subgranular zone (SGZ), a unique neurogenic niche in the dentate gyrus 

that is capable of generating new neurons throughout adulthood (Kempermann et al. 

2015).  Adult neurogenesis is upregulated in the hippocampal dentate gyrus following 

TBI in humans (Zheng et al. 2013), primates (Perera et al. 2011) and rodents 

(Kempermann et al. 2015). The extent and duration of injury-induced neurogenesis is 

sensitive to injury severity (Wang et al. 2016) and animal model (Snyder et al. 2009). 

Although upregulation of neurogenesis appears to be a conserved response to brain 

injury, whether it is beneficial or harmful to recovery remains controversial. Stimulating 

hippocampal neurogenesis in a healthy brain using growth factors and exercise improves 
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memory and learning (Deng et al. 2010). Posttraumatic neurogenesis supports spatial 

learning, reference memory and pattern separation (Sahay et al. 2011, Burghardt et al. 

2012, Washington et al. 2012, Bekinschtein et al. 2014). However, it is also a hallmark of 

posttraumatic seizure activity (Parent et al. 1997, Jessberger et al. 2005, Butler et al. 

2015). While the functional role of neurons born following trauma is unclear, ablating 

posttraumatic neurogenesis can impair cognitive recovery (Blaiss et al. 2011). Further, 

the environment of trauma alters immature neuron development. Neurons born after 

trauma develop with stunted dendritic arbors (Carlson et al. 2014) and maintain this 

aberrant phenotype as they mature (Villasana et al. 2015, Ibrahim et al. 2016). Trauma 

alters migration of immature neurons within the granule cell layer (GCL) (Ibrahim et al. 

2016) and promotes ectopic migration of new neurons to the hilus (HL) (Shapiro 2017). 

A subset of posttrauma-born neurons develop into mature neurons capable of synaptic 

integration with their local environment (Scharfman et al. 2003, Villasana et al. 2015).  

Insulin-like Growth factor 1 (IGF1) is an endogenous growth factor that promotes 

neural plasticity. In the absence of injury, cultured dorsal root ganglia neurons treated 

with IGF1 had increased process growth (Jones et al. 2003). During development IGF1 

stimulates neurogenesis and process outgrowth and mediates immature neuron migration 

(Hurtado-Chong et al. 2009, Nieto-Estevez et al. 2016). We previously showed that IGF1 

overexpression increases immature neuron differentiation and rescues immature neuron 

dendritic arborization from a stunted injury-induced phenotype (Carlson et al. 2014). 

Two well described pathways by which IGF1 mediates neuronal growth and survival are 

the RAS/MAPK/ERK pathway and the PI3K/AKT/mTOR pathway (Kim et al. 1997, 

Harrington et al. 2004, Zheng et al. 2004, Huat et al. 2014, Nieto-Estevez et al. 2016, 
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Rhim et al. 2016).  In the nervous system PI3K/AKT signaling predominates in 

mediating many functions of IGF1, including precursor proliferation and differentiation. 

AKT activity is transiently induced by injury (Park et al. 2012) and increased 

brain levels of IGF1 potentiate injury-induced AKT activity in the hippocampus 

(Madathil et al. 2013). AKT is known activator of the mammalian target of rapamycin 

(mTOR). A plethora of PI3K/AKT developmental plasticity events are mediated through 

mTOR signaling including differentiation, migration, process growth and survival of new 

neurons (Jaworski et al. 2005, Wahane et al. 2014). mTOR activity is transiently 

increased at 24h to 72h after injury in mature neurons, astrocytes and microglia of the 

hippocampus (Chen et al. 2007, Park et al. 2012).   

 It was recently found that injury also activates mTOR activity in NSCs in the 

neurogenic niche of the hippocampus (Wang et al. 2016). Rapamycin, the specific 

inhibitor of mTOR, decreases posttraumatic neurogenesis by preventing injury-induced 

proliferation of NSCs (Butler et al. 2015, Wang et al. 2016). In addition to regulating 

posttraumatic proliferation, mTOR activation can also mediate maladaptive plasticity. 

Treatment with rapamycin has been shown to attenuate aberrant sprouting of mossy 

fibers and seizure activity in models of posttraumatic epilepsy (Butler et al. 2015).  It is 

unclear whether IGF1 overexpression is mediating its effect on posttraumatic 

neurogenesis through mTOR signaling. 

To this end we utilized conditional IGF1 overexpressing animals to determine 

whether 1) IGF1 overexpression enhanced posttraumatic mTOR activation following 

moderate or severe controlled cortical impact (CCI) injury and 2) if the neurogenic 
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effects of IGF1 overexpression in the injured brain are mediated through the mTOR 

pathway. 

Materials and Methods 

Animals 

We took advantage of injury-induced reactive astrocytosis to conditionally elevate 

IGF1 levels after injury using a tetracycline inducible mouse model of IGF1 

overexpression driven by the glial fibrillary acidic protein (GFAP) promoter. To generate 

astrocyte-specific IGF1 transgenic mice with conditional overexpression, heterozygous 

tTAGFAP mice were bred with heterozygous IGF1pTRE mice as previously described 

(Ye et al. 1997, Madathil et al. 2013). Briefly, by crossing tTAGFAP mice with 

IGF1pTRE mice, double transgenic mice carrying both the transgenes 

(tTAGFAP/IGF1pTRE) were generated. In the absence of doxycycline, human IGF1 

(hIGF) overexpression expression is astrocyte-specific. IGF1 double transgenic (IGFtg) 

mice and their wild-type (WT) littermates were fed with doxycycline supplemented 

mouse chow (200mg/kg) ad libitum until two weeks prior to surgery to block hIGF1 

transcription. They received standard mouse chow for at least two weeks to allow 

transgene expression prior to surgery/injury. The mice were provided with food and 

water ad libitum at the University of Kentucky Medical Centre animal vivarium where 

they were housed at a constant temperature (23 ± 2°C) with a 14/10-h light/dark cycle. 

All procedures involving animals were approved by the University of Kentucky’s 

Institutional Animal Care and Use Committee. 
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Controlled Cortical Impact Injury 

Both male and female littermates were randomly assigned to CCI or sham injury 

groups once they reached sexual maturity (>8 weeks of age). Surgeons blinded to mouse 

genotypes and treatments performed moderate or severe CCI on IGFtg (n=47) and WT 

(n=42) mice. Surgeries were performed as previously described (Madathil et al. 2013). 

Briefly, anaesthesia was induced using 3% isoflurane. After securing the head of the 

animal in a stereotaxic frame (David Kopf Instruments, CA), anaesthesia was maintained 

using 2.5% isoflurane delivered through a nose cone. A midline scalp incision was made, 

and a 5-mm diameter craniotomy was performed over the left parietal cortex, lateral to 

the sagittal suture (2.5mm lateral) midway between Bregma and lambda (approximately -

1.9 mm). Cortical contusion was produced using a stereotaxic electromagnetic impactor 

(Leica Biosystems) with a 3mm diameter rounded impactor tip, with a velocity of 3.5m/s 

to produce moderate (1.0-1.1mm depth) or severe (1.5mm depth) brain injury (Figure 

3.1A). IGFtg (n=5) and WT (n=7) sham-injured mice received a craniotomy under 

isoflurane anaesthesia.  After CCI or sham injury, a circular disk made from dental 

cement was glued over the craniotomy to protect the brain surface, and the scalp was 

sutured. Mice were placed on a Hova-Bator Incubator (model 1583, Randall Burkey Co., 

TX) to maintain body temperature until they regained consciousness, after which they 

were returned to their home cages. 

Rapamycin administration 

Rapamycin (LC Laboratories, Woburn, MA) was dissolved in 100% ethanol 

(30mg/ml) and stored at -20°C until use. Immediately before injection, rapamycin was 

diluted (1:10) into vehicle (5% Tween80, 5% PEG400, 5% EtOH in 1x PBS). Moderately 
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injured IGFtg and WT mice in a 3-day survival cohort (Figure 3.1B) and in a 10-day 

survival cohort (Figure 3.1C) were randomly assigned to either vehicle or rapamycin 

treatment groups for each experiment. The 3-day survival cohort received daily i.p. 

injections of 10mg/kg rapamycin (n=3/genotype) or vehicle (n= 3/genotype) beginning 

1h after CCI. The 10-day survival cohort mice received a daily i.p. injection of 10mg/kg 

rapamycin (n=8/genotype) or vehicle (n= 6-7/genotype) beginning 4h after the last BrdU 

injection. 

BrdU Administration  

5-Bromo-2′-deoxyuridine (BrdU) (Fisher Scientific, Hampton NH) was stored at -

20°C until use. The moderate injury 10-day survival cohort of IGFtg and WT mice 

received 3 intraperitoneal injection (i.p.) injections of BrdU (50 mg/kg in saline) at 4h 

intervals beginning 72hr after injury (Figure 3.1C). Intraperitoneal BrdU typically 

incorporates into dividing cells within 4h after injection (Taupin 2007).  

Immunohistochemistry and histology 

Animals were deeply anesthetised by sodium pentobarbital (FATAL-PLUS 

SOLUTION V.P.L. 9373 0298-9373-68) and transcardially perfused with heparinised 

saline followed by 10% buffered formalin. Brains were removed 24h after post-fixation 

in 10% formalin, then cryoprotected using 30% sucrose solution, and snap frozen in cold 

isopentanes (≤ -25°C). The tissue was cut in a coronal plane at 40µm thickness. Free-

floating immunohistochemistry was performed as previously described on three tissue 

sections (between -1.5 to -2.5mm bregma) selected at 400 µm intervals spanning the 

injury epicentre (Madathil et al. 2013, Carlson et al. 2014).  
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To quantify the extent of mTOR activation, sections were immunolabeled for 

phosphorylated ribosomal protein S6 (pS6), a well characterized downstream effector of 

mTOR (Chen et al. 2007). Antigen retrieval was performed using 10mM citric acid pH 

6.0 at 60°C. Following three washes in TBS, the sections were incubated in blocking 

solution (5% normal horse serum in 0.1% Triton X-100 TBS) for 1h. The tissue was then 

incubated with primary antibody at 4°C overnight. Tissue was immunolabeled for the 

microtubule protein doublecortin (Dcx), a commonly used immature neuron marker. 

Posttrauma-born immature neurons were identified by co-immunolabeling the tissue for 

Dcx and BrdU. To expose BrdU epitopes, the tissue was incubated in 2N HCl (Fisher 

Scientific) at room temperature with agitation for 1h, followed by 100mM borate for 10 

minutes to neutralize residual HCl. The tissue was rinsed overnight in TBS at 4ºC prior to 

a 1h incubation in blocking solution. The tissue was then incubated with primary 

antibody at 4°C overnight. Primary antibodies used were anti-phospho-S6 (1:100, rabbit, 

Cell Signalling), anti-Dcx (rabbit monoclonal, 1:2000, Abcam) and anti-BrdU (rat). 

Secondary antibodies were conjugated with Alexa-488, Cy-3 or Alexa-594 (Invitrogen, 

CA). Omission of primary antibody served as a negative control. 

Microscopy image analysis 

All image acquisition and the subsequent analysis was completed by an 

investigator blinded to the genotype and treatment status of each animal. 

Positive immunoreactive area imaging and analysis 

For all pS6 analyses, image acquisition software (NIS-Elements software, C2 Tie 

Nikon confocal microscope) was used to identify the center of the section (tissue depth 

that contained the maximum area under the curve in the histogram of voxels at each 
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intensity level). Profile images were then taken at 20x magnification using an 

epifluorescence microscope (C2 Tie Nikon confocal microscope) capturing the dentate 

gyrus. All images had identical laser and camera setting, area/pixel (1.23µm) and pixel 

intensity range (0–4095 pixel intensity per 12 bit image). Once all animal sections were 

imaged, pS6 immunoreactivity was measured using semi-automated image analysis.  

The area of pS6 immunoreactivity in the respective region of interest (ROI: GCL, 

ML, and HL) was identified using thresholding. The binary mask labelled the soma of 

positively stained cells. For each ROI, the area (mm2) of positive pixels was quantified 

and normalized to the ROI area. Positive pS6 data was averaged from 3 sections per 

animal from sham (IGFtg n=5 and WT n=7), moderate CCI (IGFtg n=21 and WT n=18), 

and severe CCI (IGFtg n=18 and WT n=16) experimental groups.   

Cell counting imaging and analysis 

For all BrdU+ and BrdU+Dcx+ analyses, images were taken on a confocal 

epifluorescence microscope (Nikon A1R inverted confocal microscope, Galvano scanner) 

capturing the epicentre of injury in the dentate gyrus for each animal. The entire 

ipsilateral DG was imaged at 100x magnification under oil and at 0.75 µm step intervals 

through a 20 µm depth to ensure optical resolution to assess the densely packed 

BrdU+Dcx+ cells in the GCL. To evaluate the effect of IGF1 on proliferated cells, the 

number of BrdU+ and BrdU+Dcx+ cells were manually counted in the GCL, HL and 

ML. Cells were determined to reside in the GCL if they were within one cell distance (0-

10µm) of the GCL border and the soma was adjacent to other Dcx+ cells along the border 

(Villasana et al. 2015). Colocalization of markers was confirmed by making 3D 

reconstructions of the cells of interest to avoid false positives. The volume (mm3) of the 
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respective ROI (GCL, ML, and HL) was quantified in each section. Cell counts are 

expressed in density. 

Cell localization 

Images obtained for BrdU+Dcx+ cell counts were used to assess posttraumatic 

cell localization. The distance from the hilar border of the SGZ to the center of the cell 

soma was measured for BrdU+Dcx+ cells in the upper blade of the GCL. The inner GCL 

(iGCL) layer is defined as the GCL area emanating 0 to 50µm from the SGZ (Ibrahim 

2016). The outer GCL (oGCL) describes the location of cells residing outward, beyond 

the iGCL range. Cells localized to the HL, greater than 0-10µm from the GCL border 

were considered ectopic (Villasana et al. 2015). Cell counts and distances were manually 

quantified. 

Sholl analysis 

Images obtained for BrdU+Dcx+ cell counts were used to assess dendritic 

morphology. The Dcx channel immunolabeled hippocampi were acquired as a z-stack 

(0.75 μm step size) at 100x magnification using a confocal microscope (Nikon A1R 

inverted confocal microscope, Melville, NY) from a randomly selected subset of mice 

(n=4 mice per genotype/treatment). Confocal images were obtained of 8 Dcx-positive 

immature neurons randomly selected from the DG GCL within a section at the epicenter 

of injury (−1.9 mm Bregma). BrdU positivity was not assessed during the random 

selection of neurons. The neuron was not utilized if dendritic processes could not be 

traced through the confocal z-stack images. Dendritic processes of Dcx-expressing 

hippocampal granular neurons were semi-manually traced in z-stack images using Image 

J Simple Neurite Tracer (NIH). The dendritic length was automatically quantified from 
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trace files by Simple Neurite Tracer. The number of dendritic intersections was 

quantified for each Dcx-positive neuron by a series of concentric circles (10μm intervals) 

drawn from the center of the cell body using a Sholl analysis plug-in for NIH ImageJ.  

Statistical Analyses 

Data acquisition was performed by a blinded observer. Graphs were generated 

and data was analyzed using GraphPad Prism software 5.0. Data presented as mean + 

standard error of the mean (SEM). Unless otherwise noted, statistical analysis was 

performed using a one-way analysis of variance (ANOVA) followed by Bonferroni 

selected comparisons post-hoc tests where appropriate. Sholl analysis and cell 

localization quantified in relationship to distance from the cell soma were analyzed by 

two-way ANOVA followed by Bonferroni post-hoc tests where appropriate. For all 

comparisons p<0.05 was considered statistically significant.  

Results 

IGF1 overexpression potentiates injury-induced mTOR activation in predominantly 

neuronal sub-regions of DG  

To determine if posttraumatic overexpression of IGF1 potentiates injury-induced 

mTOR activation in the hippocampal DG following injury, we quantified the expression 

of pS6, a well characterized downstream target of mTOR. The DG of WT (Figure 3.2A-

C) and IGFtg (Figure3.2D-F) brain-injured mice and their sham controls were 

immunostained for pS6 24h and 72h after moderate (1.0mm) injury. Although pS6 

immunoreactivity in WT mice was modestly elevated in the GCL, ML, and HL at 24h 

after injury,  areas within these sub-regions were not significantly different than sham 
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controls (Figure 3.2G, I, K). At 72h after injury pS6 expression in the DG of injured WT 

mice was indistinguishable from WT controls (Figure 3.2H, J, L). Injury significantly 

increased pS6 in the GCL and HL of IGF1 overexpressing mice at 24h after injury in 

moderately injured mice compared to sham controls (Figure 3.2G, K). The area of pS6 in 

the GCL of IGFtg mice was also significantly higher than injured WT mice at 24h. Like 

injured WT mice, pS6 immunoreactivity in the ML of IGFtg mice was not significantly 

different than sham controls 24h after moderate injury (Figure 3.2I). In IGF1 

overexpressing mice, mTOR activity remained elevated in predominantly neuronal 

regions of the DG at 72h after moderate injury. Both the GCL and HL of IGFtg mice had 

significantly more pS6 than injured WT and sham controls at 72h after moderate injury 

(Figure 3.2H, I).  

We also examined pS6 immunoreactivity in the DG of WT (Figure 3.3A-C) and 

IGFtg (Figure 3.3D-F) mice at 24h and 72h after severe injury (1.5mm). Following 

severe CCI, pS6 immunoreactivity in the GCL of WT mice was indistinguishable from 

sham controls at 24h and 72h after injury (Figure 3.3G, H). In contrast, severe injury 

stimulated a robust increase in pS6 expression in the ML of WT mice at 24h and 72h 

after injury (Figure 3.3I, J) and a transient increase in the HL (Figure 3.3K) compared to 

sham controls. pS6 in the ML, a predominantly non-neuronal layer, co-labeled with the 

glial marker for astrocytes (Figure 3.4A). As with moderate injury, IGF1 overexpression 

resulted in significantly increased pS6 signal in the GCL following severe injury. At 24h 

after severe injury, pS6 immunoreactivity in IGFtg mice was significantly elevated 

compared to shams controls only in the GCL (Figure 3.3G), whereas at 72h pS6 was 

significantly increased in the GCL, ML and HL compared to sham controls (Figure 3.3H, 
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J, L). In the predominantly neuronal regions of the DG (GCL and HL), pS6 

immunoreactivity was also significantly higher than injured WT mice (Figure 3.3H, L). 

Taken together, injury-induced mTOR signaling in the DG is sensitive to injury 

severity. pS6 immunoreactivity is increased at 24h following moderate injury and 72h 

following severe injury in IGFtg mice. By 10d after injury pS6 expression in the DG of 

WT and IGFtg mice is indistinguishable from sham controls (data not shown). 

Interestingly, regardless of severity, injury strongly induces mTOR activation in the GCL 

of IGF1 overexpressing mice. IGF1 is such a potent activator of mTOR that 72h after 

moderate injury, even the contralateral GCL and HL displayed increased mTOR activity 

in IGF1 overexpressing mice compared to injured WT mice and shams (Figure 3.5).  

Based on these initial findings that 1) IGF1 overexpression sufficiently potentiated 

mTOR activation after moderate CCI and 2) moderate injury produced selective effects 

on neuronal regions of the DG of IGFtg mice, the remaining cohorts (Figure 3.1B, C) 

received moderate injury.  

Potentiation of mTOR activation by IGF1 overexpression does not enhance early 

posttraumatic proliferation 

To first validate that the selected and well characterized dose of rapamycin 

(10mg/kg) (Butler et al. 2015, Butler et al. 2016) was sufficient to inhibit mTOR activity, 

injured WT and IGFtg mice were treated with daily injections of rapamycin or its vehicle 

for 3d beginning 1h after CCI (Figure 3.1B). At 72h after moderate injury, S6 activity 

was effectively silenced in both rapamycin treated WT and IGFtg mice compared to 

vehicle treated mice (Figure 3.6). This dose was used then to examine the effect of 

mTOR inhibition on posttraumatic neurogenesis following IGF1 overexpression. 
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Three days after moderate injury, at the peak of trauma-induced proliferation 

(Rola et al. 2006), dividing cells in WT (n= 15) and IGFtg (n=14) mice were labeled with 

BrdU (Figure 3.7A-D). To prevent rapamycin-induced inhibition of posttraumatic NSC 

proliferation (Paliouras et al. 2012, Butler et al. 2015, Wang et al. 2016), we delayed 

rapamycin treatment until the labeling of cells proliferated 3dpi had been completed. 

Although IGF1 overexpression potentiates mTOR activation in the DG within the first 3 

days after TBI, both vehicle treated WT (n=7) and IGFtg (n=6) mice had similar densities 

of proliferated cells in the DG at 10dpi (Figure 3.7E). Similarly, rapamycin did not alter 

the density of proliferated cells that survived to 10 days in the DG of WT (n=8) and 

IGFtg (n=8) mice. All four injury groups had similar BrdU+ cell densities throughout the 

DG (Figure 3.7E) and between DG sub-regions (GCL, ML and HL) (Data not shown). 

Injured WT mice irrespective of treatment tended to have a higher proportion proliferated 

DG cells residing in the ML compared to injured IGFtg (1-way ANOVA, p=0.09). Taken 

together, IGF1 overexpression did not promote increased acute proliferation and the 

survival of these proliferated cells was not altered by delayed rapamycin treatment. We 

next examined the role of mTOR signaling in posttraumatic neural differentiation, 

migration, and growth in these mice. 

Rapamycin administration increases posttraumatic neural differentiation in IGF1 

overexpressing mice. 

The pathway by which IGF1 stimulates neuronal differentiation in the context of 

injury is unknown. To determine whether mTOR signaling is important for cell fate 

determination in posttrauma proliferated progenitors following IGF1 overexpression, we 

quantified the numbers of pretreatment-proliferated (BrdU+) cells that expressed 
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immature neuron marker (Dcx+) at 10dpi in WT and IGFtg mice following vehicle or 

rapamycin administration (Figure 3.8A-D). The density of posttrauma proliferated 

immature neurons in injured WT mice was not altered by rapamycin treatment (Figure 

3.8E). IGF1 overexpression did not induce a significant increase in the density of 3dpi 

proliferated immature neurons (15 ± 1.2 1000/mm3)  when compared to WT mice (8 ± 

1.3 1000/mm3) following vehicle treatment. However, following rapamycin treatment the 

density of 3dpi proliferated immature neurons in IGFtg mice (27 ± 3.8 1000/mm3) was 

2.5 fold higher than in WT mice (11 ± 2.6 1000/mm3) and nearly 2-fold higher that 

vehicle-treated IGFtg mice. Rapamycin treatment increased the proportion of BrdU+ 

cells that commit to a neuronal fate in IGF1 overexpressing mice (78 ± 6%) compared to 

WT mice (42 ± 8 %) (Figure 3.8F). The proportion of proliferated cells that had 

differentiated into immature neurons by 10dpi was similar for both groups of vehicle-

treated mice and for WT mice treated with rapamycin. Taken together, rapamycin 

treatment increased neuronal differentiation in IGF1 overexpressing mice. 

Rapamycin treatment does not alter posttraumatic positioning of immature neurons 

Injury stimulates migration of SGZ generated immature neurons radially, deeper 

into the GCL (Villasana et al. 2015, Ibrahim et al. 2016), and ectopically, aberrantly into 

the hilus (Shapiro 2017). The signaling governing this process is not well understood. 

Endogenous signaling of both IGF1 and mTOR has been implicated in the regulation of 

adult-born neurons in the uninjured brain (Garza-Lombo et al. 2016, Nieto-Estevez et al. 

2016). At 10dpi the positioning of posttrauma proliferated immature neurons (BrdU+ 

Dcx+) within the DG of WT and IGFtg mice following mTOR inhibition was examined. 

The majority of 7-day old neurons in the GCL of both WT and IGFtg mice migrated 
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within 30µm of the SGZ and localized to iGCL irrespective of treatment group (Figure 

3.9B). Similar numbers of posttrauma-born immature neurons localized to the iGCL in 

vehicle-treated WT and IGFtg mice, as well as in rapamycin-treated WT mice (Figure 

3.9B). Reflective of the dramatic increase in posttraumatic neural differentiation, the 

number of 7-day old neurons localized to the iGCL in rapamycin-treated IGF1 

overexpressing mice was significantly increased compared to all other groups (Figure 

3.9B). Similar numbers and proportion of 7-day old immature neurons migrated deep 

within the GCL and localized to the oGCL in all injury groups (Figure 3.9C). The 

population of oGCL-positioned, posttrauma-born immature neurons at 10dpi was not 

altered by IGF1 overexpression or inhibition of mTOR activation.  

To investigate the effect of mTOR activation on injury-induced ectopic migration, 

the number of 7-day old BrdU+Dcx+ neurons in the HL was quantified. A small number 

of posttrauma-born neurons localized to the HL in all injury groups (Figure 3.9A). IGF1 

overexpressing mice had an increased density of ectopically localized 7-day old neurons 

(2.4 ± 0.95 1000/mm3) compared WT mice (0.22 ± 0.15 1000/mm3) following vehicle 

treatment (Figure 3.9D). Rapamycin treatment had no significant effect on injury-induced 

ectopic localization of 3dpi proliferated neurons in WT (0.62 ± 0.25 1000/mm3) or IGFtg 

(2.3 ± 0.33 1000/mm3) mice at 10dpi (Figure 3.9D). While IGFtg mice had an increased 

density of ectopically localized 3dpi proliferated neurons compared to WT mice, ectopic 

neurons represented a similar proportion of the total number of 3dpi proliferated neurons 

in the DG for all four groups at 10dpi (Figure 3.9E). Although rapamycin increased the 

proportion of proliferated cells that became neurons in IGF1 overexpressing animals, it 

did not alter the proportion of proliferated neurons that localized ectopically. 
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IGF1 overexpression confers resistance to rapamycin sensitive posttraumatic arbor 

development in immature neurons 

To determine if IGF1 overexpression stimulates dendritic outgrowth in an mTOR 

dependent manner following injury, we used Sholl analysis to measure length and 

complexity of dendritic arbors of immature neurons 10dpi in rapamycin and vehicle 

treated WT and IGFtg mice (Figure 3.10A-D). Consistent with our previous study 

(Carlson et al. 2014), we found that in vehicle treated mice IGF1 overexpression 

increased dendritic length of immature neurons compared to WT mice at 10dpi (Figure 

3.10E). mTOR inhibition did not significantly alter immature neuron arbor length in 

either WT or IGFtg mice compared to their respective vehicles groups (Figure 3.10E). 

Since neither genotype’s arbor length was altered by rapamycin treatment, rapamycin-

treated IGFtg mice still had significantly longer dendrites than the rapamycin-treated WT 

mice. 

We also averaged the sum of concentric ring intersections per immature neuron 

for each group to elucidate the effect of mTOR inhibition and IGF1 overexpression on 

dendritic complexity. In vehicle-treated cohorts, IGF1 overexpression did not 

significantly increase the total number of arbor crossings of immature neurons compared 

to WT (Figure 3.10F). mTOR inhibition dramatically diminished arbor complexity in WT 

mice. Rapamycin reduced total dendritic shell intersections 1.5-fold in WT mice 

compared to their vehicle-treated controls (5.6 ± 0.5 vs 8.9 ± 0.6 intersections; Figure 

3.10F). Immature neurons in IGF1 overexpressing mice were resistant to rapamycin 

induced impairment of arbor complexity. Total dendritic shell intersections following 

injury for vehicle (11.4 ≤ 0.9 intersections) and rapamycin (11.5 ≤ 0.6 intersections) 
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treated IGFtg mice were similar (Figure 3.10F). The total arbor crossings of immature 

neurons in the two rapamycin-treated groups were significantly different from each other, 

and the reduction in WT arbor complexity made the IGF1 enhancement of arbors even 

more pronounced (Figure 3.10F).   

To understand the relationship between dendritic length and complexity, we 

analyzed the intersections per shell in relation to the dendritic distance from the soma 

(two-way ANOVA; significant interaction, F (51, 2052) = 4.18, p= 0.0001). With 

vehicle-treated groups, IGF1 overexpression significantly increased immature neuron 

dendritic complexity at 60-80µm from soma compared to WT mice (Figure 3.10G).  

mTOR inhibition caused a dramatic downward-shift in dendritic complexity at 50µm 

from the cell in WT mice compared to vehicle treatment (Figure 3.10G). IGF1 

overexpressing mice were completely protected from rapamycin-induced reduction of 

dendritic complexity. At no distance was complexity different between vehicle- and 

rapamycin-treated IGFtg cohorts. In the presence of rapamycin, IGFtg arbor complexity 

was significantly higher than WT at 40-90µm from soma (Figure 3.10G). IGF1 

overexpression relieves posttraumatic dendritic development in immature neurons from 

mTOR activity dependence. 

Discussion 

Summary of findings 

The key findings of this study determine if IGF1 overexpression modulates 

posttraumatic neurogenesis through mTOR activation. We first investigated the sub-

regional changes in DG mTOR activity and found that while trauma preferentially 
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induced mTOR activation in the ML layer, IGF1 selectively potentiated acute trauma-

induced mTOR activity in the GCL and HL. Next, we found that potentiation of mTOR 

activation by IGF1 overexpression did not enhance proliferation and that mTOR 

activation is not required for survival of posttrauma proliferated cells. mTOR activation 

is not required for posttraumatic neuronal differentiation of NSCs, but its inhibition 

potentiates IGF1-induced neuronal differentiation. Finally, we found that mTOR 

activation is required for posttraumatic dendritic arborization. However, the IGF1 

overexpression enhances dendritic arborization and prevents rapamycin-induced 

reduction of dendritic complexity following trauma.  

mTOR activation 

IGF1 overexpression potentiated injury-induced mTOR activation in the 

predominantly neuronal regions of the DG. We show that severe injury significantly 

increases mTOR activation in the ML at 24h and 72h after injury.  This is consistent with 

hippocampal homogenate studies that show that AKT/mTOR/S6K activity is increased 

between 24h to 72h after injury (Jenkins et al. 2002, Chen et al. 2007, Park et al. 2012). 

Similar to previous studies, we found that mTOR is predominantly activated in glia of 

WT mice following injury (Park et al. 2012, Zhu et al. 2014). While the IGF1 receptor is 

expressed on glia and essentially all neural cell types, neurons and NSCs have very high 

expression of IGF1 receptor (Ocrant et al. 1988). We found that IGF1 potentiates injury-

induced mTOR activation at 24h and 72h after injury in the GCL and HL. IGF1 can 

signal through the MAPK/ERK pathway, but predominantly signals through the 

IRS1/PI3K/AKT pathway (Nieto-Estevez et al. 2016) in the CNS. Both the mTOR 

pathway and the ERK pathway can stimulate aspects of neurogenesis. Injury itself 
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upregulates IGF1 receptor signaling, as well as AKT/mTOR and MAPK/ERK signaling 

in the hippocampus (Mori et al. 2002, Chen et al. 2007, Madathil et al. 2010, Rubovitch 

et al. 2010). We previously showed that IGF1 overexpression potentiates injury-induced 

AKT activation in the hippocampal homogenates (Madathil et al. 2013). This expands 

our previous understanding of IGF1 overexpression signaling in the context of injury and 

reveals preferential IGF1 signaling in predominantly neuronal regions.   

Proliferation and early survival 

IGF1 overexpression does not enhance early (3d) posttraumatic cell proliferation 

and inhibiting mTOR does not alter their  survival. IGF1 overexpressing and WT mice 

had a similar densities of 3dpi proliferated cells in the DG and similar densities 

distributed in the GCL, ML, and HL DG sub-regions cells at 10dpi.  Brain injury 

stimulates proliferation throughout all layers of the DG that peaks 3dpi (Dash et al. 2001, 

Rola et al. 2006, Gao et al. 2008). Consistent with our previous study, IGF1 

overexpression does not potentiate the density of newly divided cells generated by injury-

induced proliferation (Carlson et al. 2014).  

When quantifying the magnitude of proliferation using BrdU labeling, both cell 

division and programmed cell death must be taken into consideration. Particular attention 

is given to the SGZ, a proliferative sub-region of the DG that can generate GCL neurons 

throughout adulthood.  In the uninjured adult brain, Bax-mediated apoptosis plays an 

important role in eliminating proliferated progenitors in the SGZ, as 29% die within 10d 

after division (Dayer et al. 2003, Sun et al. 2004). Additionally, expression of pro-

apoptotic mediators of programmed cell death is upregulated during the first 14d after 

injury (Schober et al. 2010).  During CNS development and in NSC cultures IGF1 can 
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increase the density of proliferated neural progenitors through several PI3K dependent 

mechanisms including regulation of cell division and cell death (Otaegi et al. 2006, Han 

et al. 2008, Ye et al. 2010, O'Kusky et al. 2012, Zhu et al. 2012, Huat et al. 2014, Wahane 

et al. 2014). Whether or not IGF1 increases the population of proliferated progenitors and 

by what mechanism is regulated in part by the neurogenic environment and 

developmental stage (Cao et al. 2003, Joseph D'Ercole et al. 2008, Liu et al. 2009, 

Mairet-Coello et al. 2009, Wahane et al. 2014). In the postnatal brain, IGF1 

predominantly promotes survival by upregulating expression of anti-apoptotic genes like 

BCL-2, which suppresses programmed cell death (Baker et al. 1999, Cao et al. 2003, Kim 

et al. 2006). Taken together, IGF1 is not enhancing the density of proliferated cells 

directly or indirectly in the context of trauma. It is possible that IGF1 signaling does not 

synergistically increase proliferation following injury due to ceiling effect caused by 

decreased NSC availability. The dramatic spike in NSC division caused by trauma 

reduces the pool of NSC available for future proliferation (Neuberger et al. 2017). Our 

study suggests that IGF1 does not potentiate injury-induced cell division, which is 

consistent with our previous report (Carlson et al. 2004). 

Rapamycin does not modulate early survival of proliferated cells in the DG. At 

10dpi vehicle-treated and rapamycin-treated mice had similar densities cells which 

proliferated at 3dpi, prior to rapamycin onset. Rapamycin was recently shown to reduce 

numbers of degenerating neurons in the DG following TBI (Gao et al. 2008, Nikolaeva et 

al. 2016). Our study suggests that posttrauma-born cells are not a population of DG cells 

that are protected following rapamycin treatment. 
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Differentiation 

IGF1 signaling has a well-defined role in stimulating NSC neuronal 

differentiation (Otaegi et al. 2006). Further, insulin-induced neuronal differentiation of 

cultured rat NSCs was diminished by mTOR inhibition (Han et al. 2008). Our previous 

study showed that IGF1 overexpression robustly stimulates injury-induced neuronal 

differentiation in NSCs following severe TBI (Carlson et al. 2014). We hypothesized that 

IGF1 overexpression would stimulate neuronal differentiation through mTOR activation. 

However, in our current study, we found that IGF1 overexpression did not significantly 

enhance neuronal differentiation in vehicle-treated mice following moderate injury. The 

degree of neurogenesis induced was likely abrogated due to severity; the extent of injury 

induced neurogenesis has been shown to be injury severity dependent (Wang et al. 2016).   

Nonetheless, we found that mTOR activity is not required for neuronal 

differentiation of proliferated NSCs after injury.  This is the first study to investigate the 

role of posttraumatic mTOR activation in NSC neuronal differentiation in the context of 

injury. When mTOR activation is genetically inhibited by knocking out its activator Rheb 

or inhibited by rapamycin in the uninjured brain, neuronal differentiation of NSCs is 

inhibited (Hartman et al. 2013, Wahane et al. 2014, Garza-Lombo et al. 2016). However, 

the function of mTOR signaling is sensitive to cell context, available resources, and 

cellular stress (Gunn et al. 2008, Laplante et al. 2009, Hung et al. 2012). We found that 

mTOR inhibition by rapamycin does not inhibit neuronal differentiation in the context of 

injury. 

Interestingly, inhibiting mTOR activation following posttraumatic overexpression 

IGF1 increased NSC neuronal differentiation after injury compared to vehicle-treated 
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IGFtg and rapamycin-treated WT mice. A plausible explanation is that mTOR negatively 

feeds-back on IGF1 receptor signaling. Studies have shown that mTORC1 signaling 

provides negative feedback on IGF1/Insulin signaling by inhibitory phosphorylation of 

Insulin receptor substrate-1 (IRS-1) (Carlson et al. 2004, Harrington et al. 2004, Um et al. 

2004).  There is evidence that mTOR inhibition can stimulate hypersensitivity to 

IGF1/insulin signaling by blocking inhibitory feedback of mTOR on IGF1/Insulin 

signaling, resulting in increased activation of IRS1/PI3K/AKT signaling (Veilleux et al. 

2010). Alternatively, hypersensitivity to IGF1 can potentially redirect signaling through 

the alternative MAPK pathway. Studies have shown that rapamycin treatment induces 

both AKT activation and ERK activation (Carracedo et al. 2008, Rastogi et al. 2013). Our 

study provides evidence that IGF1 overexpression can enhance neuronal differentiation in 

the presence of mTOR inhibition. 

Migration 

We found that neither IGF1 overexpression nor mTOR inhibition altered outward 

migration of posttrauma-born immature neurons into the oGCL or ectopic migration into 

the HL. Injury increases localization of posttrauma-born neurons to the oGCL, where 

more mature neurons reside (Villasana et al. 2015, Ibrahim et al. 2016). Consistent with 

these studies, we found that a small number of immature neurons localized to the outer 

2/3 layer of the GCL in all injured animals. We found no increase in the proportion of 7-

day old immature neurons that migrated into the oGCL related to treatment or genotype. 

This was surprising, considering that both IGF1 signaling and mTOR activation can 

modulate immature neuron migration in an uninjured brain. When the IGF1 receptor is 

knocked-out during development, SVZ immature neurons fail to migrate to the olfactory 
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bulb and prematurely accumulate en route (Hurtado-Chong et al. 2009).  Conversely, 

hyperactivation of AKT or mTOR can accelerate newborn neuron dendritic development, 

integration, and radial migration into the oGCL (Duan et al. 2007, Kim et al. 2009). Both 

AKT and mTOR increase the proportion of immature neurons that localize to the oGCL 

in the naïve adult brain, and rapamycin abolishes these effects (Duan et al. 2007, Kim et 

al. 2009, Zhou et al. 2013). It is likely that the lack of effect of IGF1 overexpression or 

mTOR inhibition in our study is attributed to the immaturity (7-days old) of the 

posttrauma proliferated neurons. Duan and colleagues directly hyperactivate mTOR in 

newborn neurons of the GCL by silencing Disrupted-In-Schizophrenia 1 protein (Disc1), 

an upstream inhibitor of mTOR (Duan et al. 2007). Compared to controls, when neurons 

are only 7-days old there is no increase in the proportion that localized to the oGCL 

(Duan et al. 2007). However, by 2 weeks of age nearly 50% of immature neurons are 

localized to the oGCL (Duan et al. 2007). We have shown that 6 weeks after 

proliferation, the proportion of posttrauma-born neurons localized to the oGCL is 

increased in injured IGF1tg mice compared to controls (Figure 2.6).  

Posttraumatic ectopic migration is not dependent on mTOR activation. At 10dpi, 

7-day old posttrauma-born neurons were ectopically localized to the HL in all injured 

groups. Neither IGF1 overexpression nor mTOR inhibition altered the distribution of 7-

day old posttrauma-born neurons that ectopically localized to the HL after injury. 

Compared to WT mice, both IGF1 overexpressing treatment groups had a higher density 

of 3dpi proliferated neurons in the DG, and both had a significantly higher density of 

these 7-day old neurons localized to the HL. The increase in ectopically localized 

immature neurons is consistent with a recent moderate injury study. In the fluid 
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percussion model of TBI, the density of immature neurons of heterogenous age (1 to 3 

weeks old) that ectopically localized to the HL at 7dpi were increased compared to sham 

controls (Shapiro 2017). The function of these ectopic immature neurons remains 

unclear, and many of them will not survive to maturity. Adult-born, immature neurons 

position within 1-2 weeks of their birth (Kuhn et al. 1996, Kempermann et al. 2003, 

Myers et al. 2013). The majority of ectopically placed immature neurons undergo 

programmed cell death within this time frame (Sun et al. 2004, Buss et al. 2006, Kim et 

al. 2007, Ryu et al. 2016). A subset of ectopically localized neurons survive to maturity 

following injury (Figure 2.6).  

It was surprising that mTOR inhibition did not alter ectopic migration of 3dpi 

proliferated neurons. When the function of mTOR suppressor TSC1 is lost, mTOR 

activation increases and ectopic migration of adult-born neurons increase (Meikle et al. 

2007). Both, mTOR and ectopic neuron localization have been associated with seizure 

development (Parent et al. 1997, Butler et al. 2015). Rapamycin inhibition of 

posttraumatic seizure development may not be associated with HL ectopic localization 

(Guo et al. 2013, Butler et al. 2015). Our study provides evidence that injury does not 

mediate ectopic localization of immature neurons via the mTOR pathway. The density of 

posttrauma-born neurons localized to the HL was not altered by rapamycin treatment in 

either genotype.  

Dendritic arbor development 

We found that mTOR activity is required for posttraumatic arbor development of 

immature neurons. The dendritic arbor complexity of immature neurons in rapamycin-

treated WT animals was severely stunted compared to that of vehicle-treated WT mice.  
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Dendritic arbors of immature neurons in the DG are shorter and less complex following 

severe injury (Carlson et al. 2014, Ibrahim et al. 2016). Many studies examining adult 

neurogenesis in uninjured animals have shown that mTOR activity regulates dendritic 

arborization of developing neurons (Jaworski et al. 2005, Tavazoie et al. 2005, Kim et al. 

2009, Feliciano et al. 2012). This is the first study to show that posttraumatic dendritic 

arborization is dependent on mTOR activation. 

We show that IGF1 overexpression increases dendritic length and complexity of 

immature neurons after injury. This is consistent with a previous study that showed that 

IGF1 overexpression enhanced dendritic length and arbor complexity of immature 

neurons, restoring them to uninjured levels (Carlson et al. 2014). Interestingly, IGF1 

overexpression did not mediate enhancement of immature neuron dendritic arborization 

through mTOR activation. It was surprising the mTOR inhibition did not alter IGF1-

induced arbor enhancement. PI3K activation, a major signaling molecule downstream of 

IGF1 receptor stimulation, was shown to increase arbor development in neuronal cell 

cultures in an mTOR-dependent fashion (Jaworski et al. 2005). Similarly, increased 

activity of AKT, which signals downstream of PI3K, increases dendritic arbor length and 

complexity in an mTOR dependent manner (Kim et al. 2009). Trauma upregulates mTOR 

activation in the hippocampus and in DG neural progenitors (Chen et al. 2007, Wang et 

al. 2016). Although PI3K/AKT signaling predominates in mediating IGF1 signaling in 

the CNS, the other major arm of IGF1 signaling pathway is still viable. However, very 

little data exists about the role of RAS/MAPK/ERK in posttraumatic neurogenesis. Both 

AKT/mTOR and MAPK/ERK can mediate dendritic growth.  In neuronal cultures it was 

shown that MAPK/ERK inhibitors could block exogenous IGF1 induced dendritic arbor 
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length and complexity (Kim et al. 1997). IGF1 overexpression is likely mediating 

posttraumatic dendritic enhancement through an alternative pathway. We show here for 

the first time that posttraumatic IGF1 overexpression mediates outgrowth independent of 

mTOR activation. The function of enhanced dendritic development may underlie the 

ability of IGF1 to improve posttraumatic cognitive recovery in DG dependent 

assessments (Saatman et al. 1997, Madathil et al. 2013). IGF1 can expand the dendritic 

field, possibly enhancing integration of adult-born neurons. Our study provides evidence 

that IGF1 can be used in combination with posttraumatic treatments like rapamycin, and 

prevent seizure development and simultaneously support proper arbor development. 

Considerations 

Our study provides evidence that enhancement of posttraumatic neurogenesis by 

IGF1 is independent of mTOR activation. This has far reaching implications. In 

chemically induced seizure models and trauma induced seizure models, immature neuron 

numbers increase. However, whether increased neurogenesis participates in the etiology 

of seizure development or is a byproduct of seizure activity remains controversial. 

However, there is consensus that treatment with rapamycin reduces seizure development. 

Rapamycin inhibits neurogenesis, prevents aberrant sprouting of recurrent mossy fibers, 

and reduces seizure behavior (Buckmaster et al. 2011, Butler et al. 2015, Butler et al. 

2016, Butler et al. 2017). This study suggests that IGF1 treatment could be administered 

with rapamycin as a preclinical therapeutic. This work significantly enhances the body of 

knowledge regarding the role of mTOR activation and IGF1 in posttraumatic 

neurogenesis. 

. 



88 
 

 
 
Figure 3.1: Experimental design.  

(A) To assess posttraumatic mTOR activity, cohorts of mice were sacrificed 24h 
or 72h after moderate or severe controlled cortical impact (CCI) injury. Sham mice were 
sacrificed 72h after receiving a craniotomy. (B) A second cohort of moderately injured 
mice were treated daily with 10mg/kg rapamycin (Rapa) or vehicle (Veh) beginning 1hr 
after injury for 3 days to validate effective mTOR inhibition by rapamycin. (C) A third 
cohort of mice were treated daily with 10mg/kg rapamycin or vehicle beginning 3d after 
injury and continuing until euthanasia at 10d after injury to examine the contribution of 
mTOR signaling on posttraumatic neurogenesis. These mice received three injections of 
BrdU (50mg/kg) 4hrs apart beginning on day 3 post-CCI.  Dpi, days post-injury. 
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Figure 3.2: IGF1 selectively potentiates injury-induced mTOR activity in the 
dentate gyrus GCL and HL after moderate injury.  

Representative microphotographs from confocal imaging of immunoreactivity of 
phospho-S6 Ribosomal Protein (pS6, white), a well characterized marker of mTOR 
activity, in wildtype (WT; A-C) and insulin-like growth factor 1 transgenic (IGFtg; D-F) 
mice following (A,D) sham injury and (B,E) 24h and (C,F) 72h after moderate controlled 
cortical impact (CCI) injury. In the granule cell layer (GCL), IGFtg mice exhibit a 
significantly greater area of pS6 staining at (G) 24h and (H) 72h after CCI when 
compared to sham IGFtg mice or injured WT mice.  In the molecular layer (ML), neither 
moderate CCI or IGF1 overexpression altered pS6 levels at (I) 24h or (J) 72h post-injury.  
In the hilus (HL), the area of pS6 labeling was significantly elevated in injured IGFtg 
mice at (K) 24h and (L) 72h.  Data are presented as mean + SEM. ; One-way ANOVA, 
followed by Bonferroni's selected comparisons post-hoc, *p<0.05; **p<0.01; and 
***p<0.001 CCI vs Sham. #p<0.05 and ##p<0.01 injured IGFtg vs. injured WT. Scale 
bar is 100µm. DAPI is purple  

. 



91 
 

 



92 
 

 
Figure 3.3: IGF1 selectively potentiates injury-induced mTOR activity in the 
dentate gyrus GCL and HL after severe injury.  

Representative microphotographs from confocal imaging of immunoreactivity of 
phospho-S6 Ribosomal Protein (pS6, white) in wildtype (WT; A-C) and insulin-like 
growth factor 1 transgenic (IGFtg; D-F) mice following sham (A,D) injury and (B,E) 24h 
and (C,F) 72h after severe controlled cortical impact (CCI) injury. In the granule cell 
layer (GCL), IGFtg mice exhibit a significantly greater area of pS6 staining compared to 
IGFtg sham mice at (G) 24h and (H) 72h after CCI. At 72h after CCI, pS6 levels in the 
GCL of IGFtg mice are also increased when compared to injured WT mice.  In the 
molecular layer (ML), severe CCI increased pS6 levels at (I) 24h post-injury in injured 
WT mice, but not injured IGFtg mice compared to their sham controls. (J) Severe injury 
increased the levels of pS6 staining in the ML of injured WT and injured IGFtg mice 
compared to their sham controls. In the hilus (HL), severe CCI increased the area of pS6 
labeling at (K) 24h after CCI in injured WT mice, but not injured IGFtg mice compared 
to their sham controls. IGFtg mice exhibit a significantly greater area of pS6 staining at 
(I) 72h after CCI when compared to sham IGFtg mice or injured WT mice. Data are 
presented as mean + SEM. One-way ANOVA, followed by Bonferroni's selected 
comparisons post-hoc, *p<0.05; **p<0.01; and ***p<0.001 CCI vs. Sham. #p<0.05, 
##p<0.01 and ###p<0.001 injured IGFtg vs. injured WT. Scale bar is 100µm. DAPI is 
purple.  
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Figure 3.4: Following injury pS6 is activated in astrocytes and progenitors in the 
DG. 

(A) Confocal imaging of astrocyte immunoreactivity for phospho-S6 Ribosomal 
Protein (pS6, green) and Glial Fibrillary Acidic Protein (GFAP, magenta) in the 
molecular layer (ML) 72h after severe injury. Dapi is blue (B) Microphotographs depict 
immunolabeling of pS6 positive cells in the granule cell layer (GCL) and its subgranular 
zone that are also immunoreactive for the cell division marker Ki67 (red) and the 
progenitor marker Nestin (red). Arrows are white. 
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Figure 3.5: Moderate injury is sufficient to isolate IGF1 overexpression induced 
mTOR activation in neuronal layers of contralateral hemisphere.  

Photomicrographs of phospho-S6 Ribosomal Protein (pS6, white) 
immunoreactivity in the contralateral dentate gyrus (DG) of injured WT (left panels) and 
injured insulin-like growth factor 1 transgenic (IGFtg; right panels) mice 72h after 
moderate injury (3 representative animals per group). Posttraumatic upregulation of 
mTOR activity 72hr after moderate injury, is observed contralateral to injury in the (A) 
granule cell layer (GCL) and (C) hilus (HL) of injured IGFtg mice compared to IGFtg 
shams. Moderate injury does not induce mTOR activation in the (B) molecular layer 
(ML) of the DG contralateral to injury. Data are presented as mean + SEM. One-way 
ANOVA, followed by Bonferroni's selected comparisons post-hoc,  **p<0.01; and 
***p<0.001 CCI vs. Sham. ###p<0.001 injured IGFtg vs. injured WT. DAPI is purple. 
Scale bar is 100µm.  
  



95 
 

 
 
Figure 3.6: Daily administration of rapamycin inhibits posttraumatic mTOR 
activation 72hr following injury.  

Representative images of phospho-S6 Ribosomal Protein (pS6, white) 
immunoreactivity in the ipsilateral dentate gyrus following daily i.p. injections of (A) 
vehicle (veh) and (B) 10mg/kg rapamycin (Rapa) for 3 days after moderate injury (3d 
post-injury survival). Scale bar is 50µm. 

  



96 
 

 
 
Figure 3.7: The density of proliferated cells in the DG is not altered by IGF1 
overexpression or rapamycin treatment at 10 days after injury.  

Mice received 3 intraperitoneal injections of bromodeoxyuridine (BrdU) at the 
peak of trauma-induced proliferation (3 days post-injury) at 4h intervals, ending 4h 
before the onset of vehicle or 10mg/kg rapamycin administration. Representative images 
of BrdU (yellow) immunoreactivity in the dentate gyrus (DG) of vehicle-treated (A) 
Wildtype (WT) and (B) IGF1 transgenic (IGFtg) and 10mg/kg rapamycin-treated (C) WT 
and (D) IGFtg at 10 days after moderate injury. (E) Injured WT and IGFtg mice had 
similar densities of proliferated cells in the granule cell layer (GCL), molecular layer 
(ML) and hilar layer (HL) irrespective of treatment. Data presented as mean + SEM.; 
One-way ANOVA, p = not significant.  Scale bar is 100µm. DAPI is white. Rapa, 
rapamycin. Veh, vehicle. 
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Figure 3.8: Rapamycin administration increases posttraumatic neuronal 
differentiation in IGF1 overexpressing mice.  

Representative images of co-immunoreactivity of doublecortin (Dcx, green), a 
marker for immature neurons, and the proliferation marker BrdU (red) in the granule cell 
layer (GCL) of (A,B) vehicle treated and (C,D) rapamycin treated wildtype (WT; A, C) 
and IGF1 transgenic (IGFtg; B, D) mice 10d after injury. Rapamycin treatment (E) 
increased the density of BrdU+Dcx+ neurons as well as (F) the proportion of progenitors 
that differentiated into neurons in IGFtg mice compared to vehicle treatment and  
compared to rapamycin treatment in WT mice following moderate injury. Data are 
presented as mean + SEM. One-way ANOVA, followed by Bonferroni's selected 
comparisons post-hoc t-tests, &p<0.05 IGFtg vehicle vs. IGFtg rapamycin. ###p<0.001 
rapamycin WT vs. rapamycin IGFtg. Figure A-D, scale bar is 100µm. Rapa, rapamycin. 
Veh, vehicle. 
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Figure 3.9: Rapamycin does not influence radial migration within the GCL or 
ectopic hilar migration or following IGF1 overexpression.  

(A) Confocal imaging of doublecortin (Dcx, green) with proliferation reporter, 
bromodeoxyuridine (BrdU, red) in examples of immature neurons localized to the inner 
granule cell layer (iGCL), the outer 2/3rd region of the granule cell layer (oGCL) and the 
hilus (HL, white arrow) at 10 days after moderate injury. (B) Quantification of numbers 
of 3 days post-injury (dpi) proliferated immature neurons as a function of their distance 
from the subgranular zone (SGZ) as they localize radially toward the oGCL by 10dpi. 
Rapamycin treated IGFtg mice have significantly more proliferated immature neurons 
localized to the iGCL compared to vehicle treated controls and rapamycin treated WT 
mice. (C) However, the proportion of proliferated GCL immature neurons localized to the 
iGCL or oGCL is consistent across all groups. Rapamycin did not alter outward 
migration. (D) The density of proliferated immature neurons ectopically localized to the 
HL is significantly higher in rapamycin-treated IGFtg mice compared to rapamycin-
treated WT mice. (E) However, rapamycin does not increase ectopic migration to the HL 
in IGFtg mice compared WT mice. Data presented as mean + SEM. (B) Two-way 
ANOVA with Bonferroni post-hoc,  &&p<0.01 and &&&p<0.001 IGFtg vehicle vs. 
IGFtg rapamycin. ##p<0.01 and ###p<0.001 rapamycin, WT vs. IGFtg. (C,D,E) One-
way ANOVA, followed by Bonferroni's selected comparisons post-hoc t-tests, !p<0.05 
vehicle, WT vs. IGFtg. #p<0.05 rapamycin, WT vs. IGFtg. Scale bar is 10µm. Rapa, 
rapamycin. Veh, vehicle. 
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Figure 3.10: IGF1 overexpression increases dendritic arbor length and complexity 
and provides resistance to rapamycin induced dendritic pruning following moderate 
injury.  

Representative image of doublecortin (Dcx, green) immunoreactive immature 
neurons following (A,B) vehicle or (C,D) rapamycin treatment in wildtype (WT; A, C) 
and IGF1 transgenic (IGFtg; B, D) mice 10  days after moderate injury. (E) Irrespective 
of treatment, IGFtg mice had increased dendritic length compared to WT mice. (F) 
Vehicle-treated IGFtg mice had more complex arbors than vehicle-treated WT mice. 
Rapamycin-treated WT mice had a reduction in dendritic complexity compared to 
vehicle-treated WT controls. Rapamycin-treated IGFtg mice had significantly more 
dendritic complexity than rapamycin-treated WT mice, while rapamycin had no effect on 
the dendritic arbor complexity of IGFtg mice compared to their vehicle-treated controls. 
(G) Sholl analysis displays dendritic complexity over distance from the cell soma, 
reflecting a rapamycin-induced reduction in complexity in WT mice, and resistance to 
rapamycin-mediated pruning in IGFtg mice. Data presented as mean + SEM. (E,F) One-
way ANOVA with Bonferroni selected pairs post-hoc, *p<0.05 WT vehicle vs. WT 
rapamycin. #p<0.05 and ### p<0.001  rapamycin, WT vs. IGFtg. !p<0.05 vehicle, WT 
vs. IGFtg. (G) Two-way ANOVA with Bonferroni post-hoc, **p<0.01 and ***p<0.001 
WT vehicle vs. WT rapamycin. !!!p<0.001 vehicle, WT vs. IGFtg. #p<0.05 and 
###p<0.001 rapamycin, WT vs. IGFtg. Scale bar is 10µm. White is overlay of traced Dcx 
arbor.  
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CHAPTER 4: Discussion and Conclusions 

Review of major findings 

IGF1 overexpression drives the fate, localization, and function of posttrauma-born 

neurons in the dentate gyrus following injury. Conditional overexpression of IGF1 

increased the population of posttrauma-born neurons that survive to late state maturity 

and localize with developmentally born neurons in the GCL. Although IGF1 dramatically 

increased numbers of posttrauma-born neurons, it did not potentiate injury-induced 

ectopic migration. Injured IGF1 overexpressing mice had improved performance on the 

third day of RAWM testing compared to injured WT mice, when the hidden platform was 

moved to a novel location. When we investigated the signaling mechanism underlying 

IGF1 enhancement of neurogenesis, we found that IGF1 selectively potentiated trauma 

induced mTOR activity in the GCL and HL acutely after injury. However, the effects of 

IGF1 on posttraumatic neurogenesis were not dependent on mTOR activation. Inhibiting 

mTOR activation did not impair posttraumatic differentiation of neurons after trauma. In 

fact, only in injured animals overexpressing IGF1 was DG neuronal differentiation 

sensitive to rapamycin. Treating injured mice with rapamycin in the presence of IGF1 

overexpression increased neuronal differentiation 2-fold. In WT mice mTOR activation is 

required for immature neuron dendritic arborization following trauma. IGF1 

overexpression increased dendritic arborization and length and conferred resistance to 

rapamycin-induced inhibition of arbor complexity and length.  This is the first evidence 

that uncouples IGF regulation of neurogenesis from down-stream mTOR signaling 

events. This compelling data support that IGF1 should be further evaluated for its 

therapeutic potential.   



102 
 

Posttraumatic neuronal differentiation  

Injury stimulates proliferation in the hippocampal DG of rodents (Rola et al. 

2006). IGF1 overexpression enhanced recovery of the immature DGGC population at 10d 

after injury without increasing proliferation within the GCL compared to injured WT 

mice (Carlson et al. 2014). In the current work we show that at 6 weeks after injury, the 

density of acutely proliferated cells in the GCL remained elevated compared to sham 

controls. Hippocampal DG cells proliferated acutely after trauma have been reported to 

persist for months after injury (Kernie et al. 2001). Although injured WT and IGFtg mice 

had similar numbers of acutely proliferated cells localized to the GCL, IGF1 

overexpression increased the proportion that colocalized with a mature neuron marker. 

These data suggest that IGF1 overexpression increases posttraumatic neurogenesis 

through NSC differentiation and not NSC proliferation. Although IGF1 overexpressing 

mice have increased neuronal differentiation, IGF1 does not appear to deplete the NSC 

population after injury. Immunolabeling with the stem cell marker nestin revealed that 

Type-1 and Type-2a NSCs were present in the SGZ of both WT and IGFtg mice 10d after 

injury (Carlson et al. 2014). 

Only 40% of proliferating cells in the DG SGZ of an uninjured rodent are NSCs 

(Palmer et al. 2000). Majority of these proliferated cells disappear within four weeks of 

their division; the remaining proliferated cells are largely neurons (~70%) (Palmer et al. 

2000, Kempermann et al. 2003). Experimental TBI potentiates proliferation of the NSC 

population in the SGZ acutely after injury compared to controls (Kernie et al. 2001, Gao 

et al. 2013, Wang et al. 2016). It is unclear what proportion of acutely proliferated cells in 

the injured DG SGZ are NSCs or what proportion of those become neurons. Direct 
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assessment of the effect of TBI on NSC neuronal differentiation requires continuous 

sampling of posttrauma-proliferated NSC expression of markers of neuronal fate and 

degeneration for at least 1 month. Researchers interested in TBI and plasticity must 

further elucidate the impact and functional consequences of trauma on DG NSC 

differentiation. 

Impact of posttraumatic IGF1 overexpression on SVZ neurogenesis 

IGF1 is expressed in abundance in the developing rodent brain and its levels 

dramatically decline during postnatal development (Ye et al. 1997). IGF1 and the IGF1 

receptor are ubiquitously expressed in all CNS cell types (Popken et al. 2005, Joseph 

D'Ercole et al. 2008, O'Kusky et al. 2012).   In the postnatal brain, IGF1 expression is 

highest in neurons (Bartlett et al. 1991). Subregion examination of the postnatal rodent 

brain revealed that in the DG, IGF1 and the IGF1 receptor mRNA levels are 100x higher 

in immature neurons and NSCs than in mature granule cells (Zhang et al. 2007).  

In addition to the SGZ, the subventricular zone (SVZ) of the lateral ventricle is 

highly enriched in NSCs in the adult brain. Newly born neurons from the SVZ migrate 

along the rostral migratory stream (RMS) to the olfactory bulb (OB) throughout 

adulthood. The regular supply of new neurons may explain why the OB maintains a 

relatively high level of IGF1 expression that does not dramatically decline with aging like 

most regions (Ye et al. 1997, Lee et al. 2018). When IGF1 expression is genetically 

eliminated from the postnatal brain, immature neuron exit from the SVZ niche is 

impaired, neuroblast misposition, and the OB number of new neurons is reduced 

(Hurtado-Chong et al. 2009). IGF1 has an important role in regulating SVZ adult-

neurogenesis. 
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In our studies, we focus on the fate and functional consequence of posttraumatic 

SGZ DG neurogenesis. Our model is dependent on injury-induced hippocampal astrocyte 

proliferation and hypertrophy since IGF1 overexpression is coupled to GFAP production. 

However, following CCI and FPI, an increase in GFAP mRNA and protein levels was 

observed at the site of the contusion and near the lateral ventricle aspect that is proximal 

to the site of injury (Dietrich et al. 1999, Madathil et al. 2013). Within the first week after 

severe CCI, NSC proliferation is stimulated in the SVZ (Radomski et al. 2013). One-

month post-CCI, those rodents had reduced numbers of new neurons in the olfactory bulb 

and impaired olfactory discrimination compared to shams (Radomski et al. 2013). 

Following aspiration injury to the somatosensory cortex, SVZ neuroblasts exit the RMS 

and migrate to the injured cortex (Saha et al. 2013). IGF1 overexpression may regulate 

SVZ derived neuroblast migration after injury. We must take into consideration that IGF1 

overexpression may also have a functional effect in progenitor-enriched brain regions and 

locations undergoing reactive astrocytosis. 

Mature posttrauma-born neuron integration 

While IGF1 increases the number of posttrauma-born granule cells that survive to 

late-stage maturity, our design does not allow us to examine their function. The 

morphology of the limited number of posttrauma-born neurons that survive to late-stage 

maturity in the absence of IGF1 overexpression is atypical compared to age-matched 

neurons in sham controls (Villasana et al. 2015). Only one study has investigated the 

function of mature posttrauma-born DGGCs compared to controls and these data suggest 

that post-trauma born DGGCs can receive input from the circuit. Mature post-trauma 

born DGGCs and mature DGGCs in controls had similar frequency and amplitude of 
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spontaneous and miniature excitatory synaptic events and evoked potentials (Villasana et 

al. 2015).  The study also showed that the mature posttrauma-born neurons had similar 

paired-pulse facilitation (PPF) responses compared to controls, suggesting similar 

presynaptic release. IGF1 can increase expression of NMDA receptor subunits, NMDA 

receptor trafficking and potentiation via PI3K/AKT/GS3Kb signaling (Liu et al. 1995, 

Skeberdis et al. 2001, Le Greves et al. 2005, Le Greves et al. 2006, Molina et al. 2012, Li 

et al. 2017). Future studies should employ electrophysiology to investigate the 

spontaneous and evoked responses in new neurons in mice with post-traumatic IGF1 

overexpression to determine if the new neurons are appropriately integrated.  

A conditional DcxIGF1-eGFP overexpressing mouse would be extremely useful 

for accurate and long-term fate mapping and performing cellular recording in the DG. 

Our studies show that posttraumatic IGF1 has a dramatic effect on Type-3 neurons in the 

DG after injury (Carlson et al. 2014, Carlson et al. 2018). There is no Dcx or PSA-

NCAM conditional tetracycline trans-activator line currently on the market. But with 

CRISP/CAS9 precision gene editing the line could be developed in C57 mice. Dr. 

Saatman and colleagues have been using a posttraumatic model of conditional IGF1 

overexpression using tetracycline mediated expression for over 5 years (Madathil et al. 

2013). A Dcx driven overexpression model would allow researchers to narrow the 

hypothesis and selectively address IGF1 overexpression effects on immature neurons 

after injury. This model has advantages over a nestin driven model because one specific 

stage of neurogenesis can be isolated. Directly examining the role IGF1 overexpression 

actions on immature neurons will help elucidate the role of IGF1 in posttraumatic 

neurogenesis. 
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IGF1 and posttraumatic hippocampal remodeling  

The ionotropic glutamate receptor, N-methyl-D-aspartate receptor (NMDAr), has 

a very important role in facilitating learning and memory. Long-term potentiation (LTP) 

and long-term depression (LTD) are opposing mechanisms of NMDAr-dependent 

synaptic plasticity. There is evidence from CA1 experiments in the uninjured 

hippocampus that IGF1 can regulate LTP and LTD by direct and indirect synapse 

remodeling.  An increase in the ratio of NMDAr subunits NR2B to NR2A increases 

NMDAr activity, lowers the threshold for LTP in the forebrain, and enhances learning 

and memory (Bliss et al. 1993, Tang et al. 1999). IGF1 administration has been shown to 

increase the ratio of NR2B to NR2A mRNA levels in the hippocampus of juvenile and 

aged rats (Le Greves et al. 2005, Le Greves et al. 2006). In the rodent hippocampus, 

Glycogen synthase kinase-3 beta (GSK3β) mediates LTP induced inhibition of LTD in a 

PI3K/AKT dependent manner (Peineau et al. 2007). When LTP generation is impaired in 

a mouse model of Autistic Spectrum Disorder, IGF1 treatment rescues LTP generation in 

hippocampal CA1 pyramidal cells (Bozdagi et al. 2013).  

IGF1 overexpression may affect postsynaptic remodeling of hippocampal neurons 

after injury. This is especially crucial when we considered how glutamate receptor 

remodeling could affect competitive survival of new neurons. NMDAr activity is 

required to increase spine density and, thereby, LTP in CA1 neurons in the developing 

hippocampus (Collin et al. 1997). In the CA1, IGF1 infusion was shown to increase the 

spine density in aging mice (Shi et al. 2005). The availability and activity of NMDA 

receptors is critical to the NMDAr-dependent competitive survival that takes place when 

adult-born DG neurons are 2-3 weeks of age (Tashiro et al. 2006). The effect of IGF1 on 
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spine density during the development of adult-born immature neurons in the DG is 

unknown. 

Studies have also shown that IGF1 has a role in axonal sprouting and guidance. 

mTOR activation is heavily implicated in the development of epilepsy and posttraumatic 

epilepsy (Guo et al. 2013, Butler et al. 2015, Butler et al. 2016, Butler et al. 2017). This 

was a primary driver for initiating a study design to elucidate the role and requirement for 

mTOR activation in mediating the effects of IGF1 on posttraumatic hippocampal 

plasticity. A common phenotype of the epileptic hippocampus is the presence of mossy 

fiber collaterals aberrantly synapsed onto neighboring granule cells (Hunt et al. 2010). In 

a model of posttraumatic epilepsy, 8-13 weeks of rapamycin treatment attenuated the 

presence of these aberrant fibers (Butler et al. 2015). Future experiments should 

investigate the effect of IGF1 on axonal sprouting after injury. 

Studies have shown that astrocytes have important interactions with neuroblasts. 

Astrocytes release extracellular matrix (ECM) proteins that regulate synaptogenesis 

(Frischknecht et al. 2009). ECM proteins create the perineural net which is thought to 

prevent aberrant process growth. During development, restrictive ECM proteins are 

released after the critical period of neuronal maturation. ECM proteins play a very 

important role in regulating neurite outgrowth of developing neurons. In the adult 

hippocampus, aggrecan is selectively expressed in the granule cell layer and the 

molecular layer of the dentate gyrus and is a potent regulator of process outgrowth 

(Dauth et al. 2016). When aggrecan is genetically increased in the molecular layer and 

granule cell layer, adult-born neurons have dramatically reduced dendritic complexity 

and length compared to controls (Bolos et al. 2018). IGF1 acutely increases reactive 
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astrocytosis in the molecular after injury (Madathil et al. 2013) and can regulate aggrecan 

expression in non-neural tissues (Wang et al. 2003). IGF1 may indirectly regulate 

dendritic arborization through ECM regulation following injury.  

A role for adult-born neurons in emotion-related behavior 

While learning and memory deficits are of great concern to clinicians and 

patients, there is a growing need to understand the effect trauma is having on emotion-

related behavior. Blast-related injury accounts for over 50% of munition related injuries 

amongst military personnel (DeWitt et al. 2009). TBI is associated with an increased rate 

of suicide and expression of posttraumatic stress disorder symptoms including depression 

and aggression (Nakase-Richardson et al. 2009, Brenner et al. 2011, Brenner et al. 2011, 

Hart et al. 2011, Walter et al. 2012, Hart et al. 2014). A study showed that over 80% of 

inmates report incurring a TBI prior to incarceration (Slaughter et al. 2003). A link is 

beginning to emerge between emotional related behavior and trauma. There may be a role 

for IGF1 in treating these disorders. Experimental TBI causes chronic atrophy of the 

hippocampus and fear conditioning impairment at 3 months post-injury in rodents (Titus 

et al. 2016). Studies have shown that neurogenesis is important for fear conditioning and 

fear extinction (Snyder et al. 2009, Seo et al. 2015). We show data that IGF1 

overexpression increased numbers of posttrauma-born neurons in the dorsal (septal) 

GCL. We focus on the septal hippocampus because it is the epicenter of injury. Studies 

have shown that the dorsal hippocampus is more important for spatial memory (Moser et 

al. 1993) and the ventral (temporal) hippocampus is more important for fear and anxiety 

related activities (Kjelstrup et al. 2002). In future studies, we could examine the DG and 

immature neurons in the ventral hippocampus, which sends direct input about fear to the 
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amygdala (Fanselow et al. 2010).  IGF1 may mediate fear associated behavior following 

trauma by promoting stable neurogenesis.  

A clinical study reported that approximately 26% of TBI patients receiving GCS 

scores ranging from 3-15 within 24h of injury reported that they suffered from major 

depressive disorder by the 1-year follow up (Hart et al. 2011). Mood disorders affect the 

ability to socialize, interact at work and at home and perform daily activities. Decreased 

serum levels of nerve growth factor (NGF) and BDNF are implicated in depression and 

suicide risk, while increased levels of BDNF and IGF1 are associated with improved 

mood in depressed patients (Chen et al. 2001, Evans et al. 2004, Kopczak et al. 2015, 

Wiener et al. 2015, Zhang et al. 2018). Exercise is currently a recommended treatment to 

reduce depression symptoms and it is associated with increased neurotrophic factors 

(Kishi et al. 2017, Phillips 2017). Growth factors may play an important role in mood 

enhancing treatments for depression.  There has been difficulty establishing rodent 

models of human depression because of the nuance and complex features of 

psychological health diseases (Krishnan et al. 2011). Rodents assays that examine 

depression-like behaviors including motivation, social interaction, and despair have been 

developed (Krishnan et al. 2011).  Like clinical data, it is well established in rodents that 

one mechanism by which exercise attenuates depression-like behavior is through BDNF 

upregulation (Vaynman et al. 2004, Marais et al. 2009, Sleiman et al. 2016). The forced 

swim test is a measure of despair behavior in rodents. The forced swim test is an 

assessment of how quickly animals give up trying to escape a pool of water (Can et al. 

2012, Tucker et al. 2017). In the context of brain injury, mice show depressive-like 

behavior during the forced swim behavior test at three weeks after CCI (Washington et 



110 
 

al. 2012). The forced swim assessment could be used to assess if IGF1 overexpression 

could attenuate injury-induced depression-like behavior.   

IGF1 and mTOR: posttraumatic signaling relationship in neurogenesis  

mTOR is a common downstream target of numerous neurotrophic factors (Feng et 

al. 2010, Sengupta et al. 2010, Laplante et al. 2012). Growth factor signaling and mTOR 

activation support neuroplasticity in the brain. Depending on the context, both have been 

associated with pathogenesis and recovery in neurodegenerative diseases (Buch 2014, 

Perluigi et al. 2015). These findings raise concern about the efficacy and safety of 

targeting neurotrophic factors as potential therapeutics. IGF1 and mTOR signaling are 

extremely complex and dynamic dependent on the physiological context. Subtle 

variability between experiments, not limited to species selection, disease state, in vivo 

versus in vitro, tissue type, and temporal factors, are likely to contribute to paradoxical 

reports about IGF1/mTOR signaling, fueling controversy among investigators (Wrigley 

et al. 2017). Although IGF1 stimulation and mTOR activation may produce the same 

effect, this does not necessarily mean that IGF1 is mediating that effect through its 

downstream target mTOR. We found that dendritic arbor development of immature 

neurons in injured IGF1 overexpressing mice was enhanced compared to injured WT 

mice. mTOR inhibition impaired dendritic outgrowth in recovering WT mice, while the 

effects of IGF1 on arbor development were insensitive to mTOR inhibition. Rapamycin 

treatment stimulated neuronal differentiation in IGFtg mice compared to vehicle-treated 

controls and injured WT mice. Our data suggest that varying pathways of IGF1 signaling 

mediate distinct aspects of neural development within immature neurons after injury. 
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Two well-characterized pathways that stimulate growth, differentiation, survival, 

and neurogenesis downstream of IGF1 signaling include IRS1/PI3K/AKT/mTOR and 

SHC/RAS/MAPK/MEK (Joseph D'Ercole et al. 2008, Liu et al. 2009). Both pathways 

have been shown to stimulate dendritic growth in neurons (Jaworski et al. 2005, Kumar et 

al. 2005, Karelina et al. 2012). Cross talk between the two pathways may also mediate 

effects of IGF1 signaling in trauma. A role for crosstalk between RAS and PI3K 

signaling is well described in tumorigenesis (Castellano et al. 2011, Mendoza et al. 

2011). Recently, a study showed crosstalk between these pathways in neuronal cultures 

of dissociated CA1 and CA3 neurons (Kumar et al. 2005). mTOR inhibition blocked 

RAS/MAPK/MEK dendritic outgrowth but not RAS/PI3K mediated outgrowth (Kumar 

et al. 2005). Expression of RAS-L16S35 (constitutively active Ras that activates the PI3K 

pathway) or RAS-L16S40 (constitutively active Ras that activates the MAPK/MEK 

pathway) in these neurons stimulated dendritic complexity compared to controls. 

Rapamycin impaired dendritic outgrowth in control neurons and in RAS-MAPK neurons, 

but not RAS-PI3K expressing neurons (Kumar et al. 2005).  

Compensatory signaling between the IRS1/PI3K/AKT/mTOR and 

SHC/RAS/MEK/ERK pathway has been described in insulin insensitivity studies. When 

the IRS1 arm is inactivated by negative feedback, the SHC arm can become more 

sensitive to stimulation. Hyperactivation of the insulin receptor by prolonged growth 

hormone (GH) administration prior to insulin treatment prevents further activation of 

IRS1 by insulin in rat hindlimbs (Thirone et al. 1998). Meanwhile, SHC activation 

sensitivity to insulin treatment was dramatically increased following chronic GH 

administration (Thirone et al. 1998).  
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Studies suggest that hyperactivation insensitivity of the IGF1 receptor to IGF1 

and the insulin receptor to insulin is mediated by posttranslational negative feedback on 

IRS1 by mTOR (Um et al. 2004, Shah et al. 2006, Copps et al. 2012). A study showed 

that IGF1 treatment stimulates migration and enhanced survival of cultured fibroblast 

(Harrington et al. 2004). TSC1/2 mutation (TSC1/2-) in cultured fibroblasts resulted in 

constitutively active RHEB, which directly activates the mTORC1 complex (Harrington 

et al. 2004). The IRS1 substrate was downregulated in TSC1/2- fibroblasts and they were 

unresponsive to IGF1 treatment. Rapamycin treatment restored sensitivity to IGF1 

treatment, enhancing survival in fibroblast from TSC1/2 mutants (Harrington et al. 2004). 

Activated mTOR/S6 has been shown to directly downregulate IRS1 activity in response 

in fibroblasts with a mutation in TSC1/2 (Shah et al. 2006). 

mTOR can also provide negative feedback on the IGF1/PI3K/AKT signaling 

through IRS1 independent mechanisms (Wan et al. 2007). mTOR inhibition can 

potentiate IGF1 signaling when IGF1 effects are not mediated through an mTOR-

dependent mechanism. These studies challenge the dogma of insulin and IGF1 signaling. 

These studies and the data presented here suggest looking at insulin/IGF1 signaling from 

a holistic view. The overarching purpose of growth factors is to balance homeostasis. 

Narrowly focusing on isolated effects of individual substrates risks losing sight of 

compensatory shifts that take place elsewhere and oversimplifying mechanisms. 

The data presented here expands the understanding of the mechanisms underlying 

enhanced plasticity in the posttraumatic DG following IGF1 overexpression. Our goal 

was to identify the effects of mTOR inhibition on the IGF1-induced enhancement of 

neurogenesis. IGF1 may enhance posttraumatic differentiation and dendritic outgrowth in 
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immature neurons following trauma by two different mechanisms. Neuronal 

differentiation was increased following mTOR inhibition in IGF1 overexpressing mice. 

Follow-up studies should examine if posttraumatic IGF1-induced neuronal differentiation 

is dependent on IRS1/PI3K signaling. Studies should investigate the effect of 

posttraumatic IGF1 overexpression on hippocampal IRS1 substrate phosphorylation and 

expression and if rapamycin treatment prevents alteration of the substrate. This would 

suggest that mTOR is a negative regulator of posttraumatic IGF1 action. There is also 

evidence that the mTOR effector, S6 kinase (pS6K) may downregulate IRS1 activity. 

pS6K negatively regulates IRS1 activity in response to insulin stimulation. In the absence 

of S6K insulin sensitivity is increased (Um et al. 2004) and increased S6K activation 

inhibits IRS1 activation of PI3K (Draznin 2006). S6K hyper-phosphorylates IRS1 

inhibitory serine sites and inhibits the ability of IRS1 to bind and activate PI3K.  It was 

recently shown in cultured fibroblasts that constitutively active mTORC1 causes 

inhibitory phosphorylation and mRNA downregulation of IRS1 (Harrington et al. 2004). 

Insulin and IGF1 could not activate AKT because constitutively active mTOR/pS6K was 

negatively feeding back on IRS1 (Harrington et al. 2004). The phenotype was rescued by 

mTOR inhibition by rapamycin and S6K mRNA silencing. 

Dendritic arborization of immature neurons was enhanced by IGF1 

overexpression following injury; this effect was insensitive to mTOR inhibition. Our 

interpretation of the signaling underlying enhanced posttraumatic dendritic arborization 

following IGF1 overexpression is limited. While mTOR inhibition does not inhibit the 

arborization effects of IGF1 overexpression on immature neurons, it is unclear if these 

effects are independent of mTOR activation. mTOR activity may enhance dendritic 
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arborization in IGFtg mice. However, IGF1 may stimulate dendritic outgrowth through 

an alternative pathway when IRS1/PI3K/AKT/mTOR signaling is inhibited. Rapamycin 

diminished dendritic outgrowth in cultured neurons expressing constitutively activated 

PI3K (Jaworski et al. 2005). However, rapamycin treatment only partially blocked the 

dendritic outgrowth induced by cultured neurons expressing constitutively activated RAS 

(Kumar et al. 2005). The inhibition of MAPK or PI3K was able to diminish the enhanced 

dendritic outgrowth stimulated by Glial Cell-derived Neurotrophic Factor (GDNF) in 

cultured striatal neurons (Garcia-Martinez et al. 2006). Overactivation of the IGF1 

receptor following posttraumatic IGF1 overexpression may lead to downregulation of the 

IRS1/PI3K/AKT/mTOR and increased activation of the SHC/RAS/MAPK pathway. It is 

well known that prolonged IGF1 stimulation of the IGF1 receptor can induce 

PI3K/mTOR dependent downregulation of IRS1/PI3K activation and upregulation of 

compensatory pathway activation (Rozengurt et al. 2014). As prolonged IGF1 treatment 

continues to activate the IGF1 receptor, cultured melanoma cells shift to upregulation of 

the SHC/RAS/MAPK/ERK when IRS1 activity is lost (Reuveni et al. 2013). The 

incorporation of IRS1 and SHC inhibitors into future studies could elucidate the signaling 

underlying IGF1 overexpression effects on dendritic outgrowth following trauma.  

Considerations 

The function of adult neurogenesis in human diseases of the brain is not well 

understood. The persistence and extent of hippocampal neurogenesis in the uninjured 

human brain is a continuing point of controversy (Eriksson et al. 1998, Knoth et al. 2010, 

Dennis et al. 2016, Boldrini et al. 2018, Sorrells et al. 2018). Gerd Kempermann and 

colleagues have shown that like rodents, neurogenesis in humans dramatically declines 
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with age (Knoth et al. 2010). Variation between specimen collection protocols and patient 

history may contribute to conflicting data regarding the degree of adult neurogenesis 

between studies. The adult brain tissue from studies reporting nearly no persistent adult 

neurogenesis was acquired from patients with a variety of causes of death including 

cancer, epilepsy, brain injury, and chronic illness (Dennis et al. 2016, Sorrells et al. 

2018). Gage and colleagues controlled for the cause of death confounders by examining 

brain specimen from a population of patients with squamous carcinoma of the tongue, 

larynx, and pharynx (Eriksson et al. 1998). This study also controlled for drugs that may 

inhibit neurogenesis, and possibly confound results. Proliferation assessments in the DG 

of the specimens from the Gage study were from patients who did not receive anti-cancer 

proliferation drugs (Eriksson et al. 1998). When Rene Hen and colleagues designed their 

experiments to exclude specimen from patients with a history of chronic disease, mental 

illness, drugs-use for mental illness, and brain injury, they found persistent adult-

neurogenesis in the DG (Boldrini et al. 2018). Variations in tissue preservation protocols 

between studies using human tissue can dramatically influence the interpretation of 

findings. Studies find that increasing the amount of time between patient death and 

chemical tissue preservation, postmortem interval (PMI) can decrease brain tissue 

immunoreactivity for many antigens (Shiurba et al. 1998, Unal-Cevik et al. 2004, Birdsill 

et al. 2011). Studies that found little to no adult neurogenesis in the DG examined 

specimen from patients with a PMI of less than 35h in less than 35% of cases, or they did 

not directly report PMI (Dennis et al. 2016, Sorrells et al. 2018). Studies that support 

persistent adult neurogenesis collected specimens from patients with a PMI of less than 

35h in approximately 78% to 100% of cases (Eriksson et al. 1998, Boldrini et al. 2018). 
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Future studies elucidating the pattern and extent of human adult neurogenesis in the DG 

are prerequisites to determining the implications of neurogenesis on recovery from TBI. 

The potential clinical value of IGF1 in treating brain injury should not be limited 

to its effects on adult neurogenesis.  IGF1 has been shown to be an effective therapeutic 

in treating TBI-induced metabolic dysfunction (Hatton et al. 2006). Clinical studies that 

have shown promising IGF1 treatment outcomes have often administered IGF1 with 

factors that prolong its systemic circulation and effectiveness. IGF1 was administered 

with growth hormone (GH) within 72h of moderate to severe brain injury to reduce 

hypercatabolic metabolism in patients after trauma (Hatton et al. 1997). All patients had 

improved protein metabolism within 1 week of treatment (Hatton et al. 1997). Patients 

receiving moderate GCS scores but not poor GSC scores had improved outcomes 6 

months following IGF1 treatment (Hatton et al. 1997).  A clinical malnutrition study and 

an efficacy study in TBI patients found that administering growth hormone with IGF1 

increased serum levels of IGF1 and the IGF1 binding protein 3 (IGFBP-3) (Rockich et al. 

1999, Justova et al. 2001).  Circulating IGF1 is often found in complex with IGFBP-3, 

IGFBP-3 extends IGF1 activity by 20hr (4hrs of action) (Rosenfeld 2006). The 

combination of IGF1 and GH was sufficient to improve protein metabolism within 24h of 

treatment onset in TBI patients (Hatton et al. 2006). However, using GH in clinical 

treatment is controversial, since several studies have reported that GH increases mortality 

rate long-term (Divall et al. 2013). IGF1 is now commercially available and prescribed 

under the brand name Mecasermin in combination with IGFBP-3 (Cohen et al. 2014). 

Future preclinical models elevating effects of IGF1 overexpression should incorporate 

IGFBPs into the study design, considering their effect on IGF1 half-life. IGF1 needs 
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further preclinical evaluation to determine the best mode of delivery and what binding 

protein to accompany it.  

The goal of investigating the effects of IGF1 modulation of hippocampal 

plasticity and understanding the mechanisms underlying those changes is to further 

evaluate IGF1 as a potential treatment TBI. Drugs that stimulate the 

IRS1/PI3K/AKT/mTOR pathway are a safety concern because activation of the pathway 

is contraindicated in diabetes, cancer development, and aspects of seizure development 

(Mendoza et al. 2011, Tolcher et al. 2015, Wheless 2015, Patnaik et al. 2016). Seizures 

are a common feature of the human disease Tubular Sclerosis. Tubular sclerosis is a 

disease caused by an inherited mutation to TSC1/2.  The mutation is thought to 

profoundly affect neurogenesis during development (Rosset et al. 2017). More than 50% 

of children with TSC mutations die from brain tumors while those that survivor develop 

seizures, symptoms of autism, and suffer from a low IQ (Joinson et al. 2003, Feliciano et 

al. 2012, Kotulska et al. 2014). Patients with a TSC mutation frequently have seizures; 

many have not been responsive to treatment. Recent clinical trials have shown that 

mTOR inhibition is effective in reducing seizures in children and juveniles with TSC 

mutations (Wheless 2015, Samueli et al. 2016, Kilincaslan et al. 2017).  

Patients with TSC may benefit from IGF1 driven plasticity combined with 

inhibition of mTOR induced maladaptive plasticity. A recent study has shown that the 

hippocampi of patients suffering from temporal lobe epilepsy have significantly high 

mTOR activity compared to controls (Talos et al. 2018). Seizure development has also 

been reported in TBI patients (Ferguson et al. 2010, Bramlett et al. 2015). It is unclear 

whether mTOR contributes to the etiology of these forms of epilepsy or if its inhibition 
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would reduce seizure activity. The data presented here is essential to the preclinical 

evaluation of IGF1 for TBI because it introduces the impact of combining IGF1 with 

mTOR inhibitor. Further studies should be done to evaluate the effect of combining IGF1 

and mTOR to treat human diseases of the brain. 
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