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ABSTRACT OF DISSERTATION 

 

 

FACTORS INFLUENCING PHOSPHORUS EXCRETION BY HORSES 

Excessive phosphorus (P) excreted by animals can affect water quality and cause 
eutrophication. Better understanding of factors that influence P utilization and excretion in 
horses may reduce the environmental impact of P. Two animal experiments were 
conducted that examined P excretion by horses. The efficacy of titanium dioxide as an 
external marker to calculate digestibility was studied concurrently with both animal 
experiments. Additionally, pasture P concentrations were evaluated over the growing 
season using near-infrared spectroscopy (NIRS). Experiment 1 examined P excretion by 
post-lactational mares fed a low P diet immediately prior to weaning compared to non-
lactating controls fed an adequate P diet. Post-lactational mares excreted more P compared 
to controls. Experiment 2 compared P excretion in horses fed to lose, maintain, or gain 
weight. Horses fed to lose weight tended to excrete more fecal P compared to horses fed to 
gain weight and had increased markers of bone turnover. The efficacy of titanium dioxide 
for estimating fecal output from limited fecal grab samples was variable. Titanium dioxide 
may be useful in situations where many fecal samples are collected over 5 d, but may not 
be as accurate if one fecal grab sample is expected to be representative of fecal output. 
Experiment 3 focused on examining the changes in pasture mineral concentration over the 
season using NIRS. A discussion of how these results may inform equine P 
supplementation programs is included. Overall, the work in this dissertation suggests that 
factors that influence P excretion in the horse include the dietary availability of P, 
physiological status, and active weight change. These variables can be incorporated into 
feeding programs to meet horses’ needs more closely while minimizing P excretion in the 
environment. 
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CHAPTER 1: INTRODUCTION 

Phosphorus is an essential nutrient for livestock. However, excess P excretion by 

animals affects water quality and causes eutrophication. Therefore, emphasis in livestock 

feeding has been placed on minimizing P excretion while maintaining animal 

performance.  

There are two likely contributing causes of excess P excretion. The first is feeding 

large amounts of unavailable P that the animal cannot absorb so it passes out in the feces. 

The second reason for excessive P excretion is the provision of P in amounts above the 

animal’s physiological need. Because organic P has been suggested to have low 

availability for monogastrics (including horses), inorganic P is often added to diets to 

ensure that enough P is available for optimal animal performance. However, if available 

P is underestimated, this practice results in overfeeding P and increasing P excretion.  

In order to provide diets that meet but do not exceed P requirements, an 

understanding of P availability in all feed ingredients is necessary. Currently, true 

digestibility of P in diets fed to horses is estimated to be 35% in diets containing organic 

P and 45% in diets containing a combination of inorganic and organic P (NRC, 2007). 

However, these estimates of true P digestibility appear to be low in comparison to values 

applied in other species (NRC, 2005). The current true digestibility estimates for horse 

feeds appear to have originated from research conducted in the 1970’s as the value of 

35% first appeared in “The Nutrient Requirement of Horses” in 1978 (NRC, 1978) and 

the value of 45% appeared 11 years later (NRC, 1989). In previous editions of the 

publication, the true digestibility of P was estimated at 50% in mature animals and either 

60% or 80% in growing horses (NRC, 1966; NRC, 1973). Furthermore, in the equine 
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literature, a wide range of true digestibility values have been reported for P (-10 to 

79%)(Kichura et al., 1983; Lavin et al., 2009). There is little understanding of why such a 

broad range of values has been observed, but if true P digestibility is underestimated then 

the current dietary P recommendations will result in higher P intake and P excretion than 

necessary. The goal of this dissertation is to gain an understanding of the factors that 

might contribute to this large variability in P availability in order to ensure that rations 

fed to horses provide adequate but not excessive P.  
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CHAPTER 2: LITERATURE REVIEW 

Phosphorus digestibility 

Why digestibility is important  

To calculate mineral requirements, one needs to know the digestibility of the 

mineral, the amount needed to replace endogenous losses, and the amount needed for 

production. The amount of nutrient needed to replace endogenous losses is usually the 

amount needed for maintenance. Products include milk during lactation, fetal tissue 

during pregnancy, and tissue accretion during growth. Dietary mineral requirements are 

calculated by dividing the amount of nutrient needed for maintenance and production by 

the true digestibility of the mineral in the diet. It has been suggested that the digestibility 

component has more influence on the calculated requirement than any other variable in 

the equation (NRC, 2001), emphasizing the importance of obtaining an accurate value for 

true digestibility.  

Phosphorus digestibility in horses 

 Across the equine literature, true P digestibility ranges from -10 to 79%. 

Differences in physiological state, diet composition, environment, and methodology 

could all account for the wide range of values. Level of dietary P accounts for some of 

the differences seen in P digestibility. Pagan (1994) reported that the R2 for the 

relationship between P intake and digestibility of 120 observations across a wide range of 

P intakes was 0.33, indicating that P intake accounted for 33% of the variability seen in P 

digestibility.  
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Source of P (organic or inorganic) has also been suggested as a factor that 

influences P digestibility. In order to calculate P requirements for horses, NRC (2007) 

used a true digestibility of 35% for mature, non-lactating horses and 45% for growing 

and lactating animals. Mature horses are assumed to only be consuming P from plant 

sources, while growing and lactating animals are typically supplemented with inorganic 

P, which is assumed to have a higher availability of P than organic (plant) sources of P 

(NRC, 2007). However, the P digestibility of a diet containing only organic P was 

estimated to be 42% (Fowler et al., 2015), indicating that organic P may be more 

available than previously believed.  

Phosphorus need may also influence P digestibility. Cymbaluk (1990) reported 

greater P digestibilities by 8-mo old horses than by 12-mo old horses with lower P 

requirements. Additionally, pasture that provided sufficient P for requirements of 

lactating mares was reported to have an apparent digestibility of 43%, which would 

calculate to a true digestibility of 57% assuming endogenous losses of 10 mg/kg BW 

(Grace et al., 2002). Thus, lactating mares have the ability to efficiently digest plant 

sources of P without inorganic P supplementation. These results indicate the greater true 

digestibility values (45%) suggested by the NRC (2007) for lactating mares and growing 

horses can be achieved without inorganic P added to the diet. 

Phosphorus metabolism in horses 

Dietary P is absorbed mainly in the large intestine with some P absorbed in the 

small intestine (Schryver et al., 1972). Phosphorus can be absorbed by enterocytes via an 

active Na+-dependent transporter or by paracellular passive diffusion (Muscher-Banse et 
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al., 2017). The majority of P absorbed in the small intestine is through passive diffusion, 

which is a relatively slow process and is dependent on P concentration in the gut lumen 

(Mushcer-Banse et al., 2017). Possibly diets that result in higher concentrations of 

soluble P in the small intestine will promote P absorption in this section of the GI tract. In 

the colon, P is actively transported, which implies that this is a process that can be 

regulated and saturated (Muscher-Banse et al., 2017). Phosphorus is also secreted into the 

GI tract of horses (Schryver et al., 1972; Cehak et al., 2012; Muscher-Banse et al., 2017). 

Active secretion of P from the equine jejunum was observed in an in vitro study, 

suggesting that P secretion into the gut is also able to be regulated (Muscher-Banse et al., 

2017).  

Secretion of P into the GI tract plays an influential role in maintaining P 

homeostasis, as urinary P in horses is relatively low when P is fed near the requirement 

(Schryver et al., 1971). While urinary P does somewhat increase when dietary P 

increases, the relationship is curvilinear, with significant amounts of P being excreted in 

the urine only when P intakes exceed 100 mg/kg BW (Figure 2-1), which is about 3.5 

times the current maintenance requirement of mature horses. Combined with the 

knowledge that secretion into the GI tract in horses can be regulated, recycling of P into 

the GI tract is likely a major way that horses maintain homeostasis.  

Hormones that regulate P homeostasis include parathyroid hormone (PTH), 1,25-

hydroxyvitamin D, and fibroblast growth factor-23 (FGF23). Parathyroid hormone is 

released when serum Ca is low. Parathyroid hormone stimulates a release of Ca (and P) 

from bone mineral in an attempt to maintain Ca homeostasis. It also increases Ca 

reabsorption in the kidney and inhibits P reabsorption, resulting in an increase in urinary 
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P. Parathyroid hormone also acts in the kidney to increase production of the active form 

of vitamin D, 1,25-dihydroxycholecalciferol, which also influences P metabolism 

(discussed below) (Murayama et al., 1998). As demonstrated from Figure 2-2, at low 

dietary Ca:P ratios, urinary P excretion is greater than when Ca:P increases to 2:1 and 

above. Because the Ca:P ratio can influence Ca absorption in the small intestine, horses 

fed inverted Ca:P ratios have the potential to become Ca deficient, leading to stimulation 

of the PTH system and subsequent urinary excretion of P. 

Nutritional secondary hyperparathyroidism (NSH) is a disease involving PTH that 

occurs in horses chronically fed a diet with an inverted Ca:P ratio (Krook and Lowe, 

1964). Due to the lowered amounts of Ca in the blood over long periods of time, the 

parathyroid gland becomes hypertrophied, producing increased quantities of PTH. 

Parathyroid hormone increases bone resorption, particularly from the flat bones. The 

bone lesions are filled in with fibrous tissue, resulting in irregularly shaped bones and 

shifting lameness. Because of this symptom, NSH is also known as “bighead” disease, as 

horses suffering from this disease often develop soft, cartilage-like swellings on their 

facial bones.  

Vitamin D can also influence P homeostasis. Unlike other species, the 

digestibility, renal excretion, and plasma concentration of Ca is not affected by vitamin D 

in horses (Harrington and Page, 1983; Bourdeau et al., 1986; Boass and Toverud, 1996). 

Additionally, circulating levels of Ca in horses are much higher than observed in other 

species and 1,25-dihydroxycholecalciferol levels are much lower (Breidenbach et al., 

1998b). However, the digestibility, renal excretion, and plasma concentration of P is 

increased with large amounts of vitamin D in horses (Breidenbach et al., 1998a). Vitamin 
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D increases P absorption from the small intestine by acting on active P-transporters, as 

demonstrated in rodents (Katai et al., 1999). Thus, while vitamin D may not have the 

same effects on Ca metabolism as in other species, vitamin D status may influence both 

active absorption and excretion of P in the horse. 

Fibroblast growth factor-23 is produced by osteoclasts and osteoblasts and is 

released in response to high circulating levels of P or active vitamin D (Jüppner, 2011). 

In other species, FGF23 has been shown to reduce blood P levels by decreasing 

reabsorption of P in the kidney (Bergwitz and Jüppner, 2010). It is unknown if the role of 

FGF23 is similar in horses, especially as urinary excretion of P is low.  

Endogenous P losses  

Endogenous P losses are composed of P contained in sloughed enterocytes, 

digestive secretions, and also P that is actively secreted into the GI tract by transporters. 

The NRC (2007) uses an estimate of 10 mg P/kg BW for endogenous fecal P losses for 

mature horses based on a study by Schryver et al. (1971). Schryver et al. (1971) used 32P, 

an isotope of P, that was injected into the horse (intravenously or intramuscularly) and 

then measured in the feces. In this study, endogenous P losses were 9.4 mg/kg BW and 

were constant across P intakes ranging from 43 to 200 mg P/kg BW (16 total 

observations). However, fecal P increased with P intake, which may be due to absorbed 

dietary P being recycled back into the GI tract as this P would not be labeled, but still 

may be considered part of endogenous losses. Thus, the actual digestibility of dietary P 

may be higher than that observed in this study (40 to 47%). Conversely, Kichura et al. 

(1983) reported that endogenous P losses measured using 32P were 3.3 mg P/kg BW in 

eight ponies averaging 12 yr old and that losses were not significantly affected by P or Ca 
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intake (whereas in yearling ponies Ca intake did influence endogenous P losses; 

discussed below). Using data from 18 studies using mature horses, P excretion was 

plotted against P intake (Figure 2-3). Using the equation for the relationship between 

intake and excretion, at a P intake of 0, fecal excretion would be 8.2 mg P/kg BW. This 

value represents the fecal endogenous P loss estimated from these studies, which is 

relatively close to the value obtained by Schryver et al. (1971).  

For growing horses, the NRC (2007) uses an endogenous loss estimate of 18 mg 

P/kg BW, based on one study performed by Cymbaluk et al. (1989) using 18 growing 

horses.  In that study, endogenous P loss was calculated as the y-intercept of an equation 

that included P intake and fecal Ca as variables to predict fecal P excretion. However, 

that study fed Ca in excess of requirements (range from 41 to 203% of Ca requirement) 

and Kichura et al. (1983) found that high amounts of dietary Ca (200% of requirement) 

increased endogenous fecal P losses in yearling horses. It is possible that the high levels 

of Ca fed by Cymbaluk et al. (1989) caused an increase in endogenous fecal P losses. In 

fact, other studies have suggested that endogenous P losses of growing horses may be 

more similar to that of mature horses (10 mg/kg BW). Ogren et al. (2013) used a 

regression equation based on P intake levels and excretion levels and suggested that fecal 

endogenous losses of growing horses are around 10 mg/kg BW. Oliveira et al. (2008) 

used radiolabelled P isotopes and suggested fecal endogenous losses are around 8.42 mg 

P/kg BW. Furtado et al. (2000) estimated endogenous fecal losses to be 10.3 mg P/kg 

BW in growing horses. However, using data from 8 studies using growing horses, 

endogenous P losses were estimated to be 19 mg/kg BW (Figure 2-4), which is more 

similar to NRC (2007) estimates. However the relationship between P intake and fecal P 
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excretion is only moderate (R2 = 0.5), suggesting that other factors influence fecal P 

excretion and potentially endogenous P losses in growing horses. If endogenous P losses 

are truly lower for growing horses than the value used by NRC (2007), then current P 

requirements for growing horses may be overestimated.  

Recycled P 

 One reason for the discrepancy in measured endogenous fecal P losses and the 

broad range of true P digestibility estimates could be due to the P being recycled into the 

GI tract. In reviewing studies that have measured fecal and urinary P excretion it 

becomes apparent that P is almost entirely excreted in feces, rather than urine. If all of the 

fecal P is perceived to be from undigested P, it would lead to assumptions of very low P 

digestibility. As noted previously P can be secreted into the GI tract, or essentially 

recycled post-absorption. In other species, it is recognized that total endogenous fecal 

excretion is composed of a minimum endogenous fecal loss and a variable endogenous 

loss (Ammerman, 1995). The minimum endogenous loss is the inevitable loss that occurs 

as a part of digestion while the variable fraction consists of endogenous losses that differ 

depending on other dietary or physiological factors. The minimum endogenous fraction 

likely consists of P contained in sloughed intestinal cells, secretions involved in digestion 

(bile, pancreatic secretions, etc) as well as P contained in microbial cells that are excreted 

in the feces. The variable fraction would also include recycled P, or P that is absorbed 

and then secreted back into the GI tract. Increases in P intake cause increases in variable 

endogenous losses because P absorbed in excess of requirements is resecreted into the GI 

tract for excretion (NRC, 2001, 2012). Studies that measure endogenous losses via 32P are 

only measuring endogenous P secretions originating from the body and do not include 
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microbial P (part of minimum endogenous losses) or P that is recycled (variable 

endogenous P fraction). Unfortunately, unless P is labelled, the minimum and variable 

fractions cannot be chemically separated and only exist in theory. However, the 

maintenance requirement of P is only the minimum endogenous P loss when dietary P 

meets the actual P requirement (NRC, 2001). By feeding P over the actual requirement, 

the variable fraction of endogenous P increases, and thus increases the amount of P 

excreted in the feces. By not accounting for microbial P or recycled P, estimates of P 

availability from feed will be underestimated due to an increase in fecal P.   

Figure 2-5 demonstrates how the origins of excreted P can change with intake. As 

P intake increases, the minimum endogenous loss stays the same and the variable 

endogenous fraction increases, leading to an increase in total endogenous losses. The 

variable fraction is increasing with increasing P intake because at higher intakes more P 

is being absorbed than is required by the body and so excess P is resecreted into the GI 

tract. While this figure just demonstrates how P intake can affect composition of excreted 

P, other factors may affect variable endogenous losses. In dairy and swine, the minimum 

endogenous loss fraction has been shown to be dependent on DM intake (Conrad et al., 

1956; Preston and Pfander, 1964; Almeida and Stein, 2010) and this is likely the case in 

other species as well. If we can better understand what the minimum endogenous losses 

in horses are, we can then begin to build our knowledge base of how the variable fraction 

is affected and therefore make better calculations of P requirements.  

 Calcium intake or the Ca:P ratio can affect endogenous losses. One study reported 

that high levels of dietary Ca increased endogenous fecal P in yearlings, but dietary Ca 

had no effect for weanlings or mature ponies (Kichura et al., 1983). Schryver et al. (1972) 
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fed ponies either an alfalfa-based or corn-based diet and measured the amount of P 

secreted into the GI tract. While a detailed diet composition was not given for this study, 

it is assumed that the alfalfa diet would have greater Ca and a larger Ca:P than the corn 

diet. These authors observed that ponies fed the alfalfa-based diet had greater amounts of 

P secreted into the GI tract compared to the corn-based diets. Therefore, it is possible that 

the higher Ca content in the alfalfa diets resulted in greater endogenous P secretions, 

although there are other confounding factors, such as dietary P intake and diet 

composition. In contrast, chickens appear to decrease endogenous losses in response to 

increasing Ca levels in the diet. Broiler chicks fed increasing levels of Ca with a constant 

P intake exhibited a decrease in endogenous P losses (Al-Masri, 1995). The reason for the 

different results seen in horses compared to chickens is unclear, but may be related to 

differences in GI anatomy and location of P absorption. 

Physiological state may also impact endogenous P losses. Different physiological 

states may influence quantities of hormones produced (as discussed above), which can 

alter P excretion. During periods of increased Ca need (e.g. late pregnancy and early 

lactation), bone is resorbed to supply Ca to the animal as needed for fetal growth and 

lactation. However, for every 10 parts Ca released, 6 parts P are also released (NRC, 

2001), indirectly increasing P in the blood. One study fed ewes the required amount of Ca 

and P during pregnancy and lactation and then measured endogenous P losses and 

resorption of P from bone during pregnancy and also at the onset of lactation when 

requirements increase (Braithwaite, 1983). At the onset of lactation, dietary Ca was 

observed to be inadequate to supply the demand for Ca during peak lactation and bone 

was mobilized to maintain milk Ca concentrations. As a result, the amount of P resorbed 
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from bones increased by 100% and endogenous losses of P also increased by 30%. 

Because P requirements for lactation were being met, the surplus P mobilized from bone 

was excreted as endogenous losses.   

In addition to P secretions in the small and large intestine, salivary P could be 

involved in the secretion of P into the horse’s GI tract. Ruminants rely on salivary P 

secretions to maintain P homeostasis by secreting excess P from the blood into the saliva 

(Horst, 1986). Horses do not secrete nearly the quantity of salivary P as ruminants (1 to 3 

g P/d in horses compared to 30 to 40 g P/d in cattle), but it has been suggested that horses 

may secrete up to 24% of their daily P intake in their saliva (Fowler, 2013), which could 

influence homeostasis and estimates of subsequent P digestibility. Differences in salivary 

P secretion may cause differences in P availability in the gut and alter measured P 

digestibility values, as most salivary P is in the form of readily absorbable inorganic P. 

By definition, the P requirement for an animal at maintenance should be 

calculated using minimum endogenous P losses (NRC, 2001, 2012) as well as the actual 

digestibility of dietary P. However, it is likely that the current maintenance requirement 

was calculated using minimum endogenous losses plus recycled P, which would result in 

maintenance P requirement that is actually greater than the actual P needed by the animal. 

By feeding horses more than their actual P requirement, P continues to be recycled, 

resulting in measurements of P digestibility that may be lower than they truly are. Figure 

2-5 demonstrates the current model of how P is absorbed and excreted in a horse at 

maintenance, based on NRC (2007) estimates of endogenous losses at 10 mg P/kg BW 

and true P digestibility of 35%. In this scenario, the horse is being fed exactly the amount 

of P that is required by the body to replace endogenous losses and corrected for a P 
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digestibility of 35%. The resulting P requirement calculated from this scenario is 28 mg 

P/kg BW. However, Figure 2-6 shows an example of what could happen if P digestibility 

was actually 70% and how P would be recycled into the GI tract. In this scenario, more P 

is being absorbed than what is needed to replace endogenous losses of 10 mg P/ kg BW, 

so the additional P is recycled and excreted in the feces. The observed fecal excretion is 

the same in both scenarios, but in the second case, P is being overfed. In this situation 

where true P digestibility is really 70%, the P intake could be reduced to 14 mg P/kg BW 

to avoid recycling of P into the GI tract while still feeding to replace minimum 

endogenous P losses.  

If P intakes were reduced from 28 to 14 mg P/kg BW for ten horses over a year, 

the difference in yearly fecal P excretion would be around 18 kg of P. Reducing fecal P 

excretion by reducing P intakes would not only reduce the P in runoff to surface waters, 

but would also reduce the feed cost for horse owners. Inorganic P is often added to 

commercial concentrates to increase P concentrations to ensure adequate P consumption 

by horses. The cost of adding inorganic forms of P to the diet could be substantial, 

considering that P is a limited resource and world reserves of P are declining (McGill, 

2012). Unsupplemented feeds would likely easily meet the reduced P requirement of 14 

mg P/kg BW. If a horse is consuming 10 kg of DM, it would only require 0.14% of P in 

the diet. This concentration is met or exceeded in most feeds fed to horses (NRC, 2007). 

Overall, reducing P intakes will reduce environmental impacts, is economical, is 

practical, and will likely not impact horse health, especially if true P digestibility is 

greater than 35%.  
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In vivo models to evaluate P endogenous recycling  

One method to accurately elucidate minimum endogenous losses and estimate 

true digestibility would be to create a situation where P retention is high enough, and P 

intake low enough, that essentially all of the available P is retained by the animal. Young 

et al. (1966) performed a study with growing sheep that employed a period of P 

depletion. Lambs were either fed a P-depletion diet that was deficient in P but adequate in 

Ca, or a control diet adequate in both for 4.5 mo. A 21-d fecal collection period followed 

in which total endogenous P losses were measured using 32P. Lambs fed the P-depletion 

diet had lower endogenous P losses than lambs fed a normal P diet. Because the depleted 

lambs had a greater need to retain P than control lambs, they were absorbing and 

retaining more P rather than resecreting absorbed P back into their GI tract. These results 

suggest that the physiological state of the animal has the potential to influence fecal 

endogenous P losses due to changes in P recycling within the gut.  

In mature animals, another approach to understanding variation in P digestibility 

and excretion would be to create a weight change model. Weight gain and weight loss in 

horses during digestibility studies may account for variability in some estimates of P 

digestibility by possibly altering endogenous P losses. The NRC (2007) suggests that 

mature horses at maintenance should not be retaining P and should have a P balance of 0, 

but many studies have found that mature horses retain significant amounts of P (Schryver 

et al., 1971; Hintz et al., 1973; Schryver et al., 1987; Morris-Stoker et al., 2001; Patterson 

et al., 2002; van Doorn et al., 2004a). The location of the retained P has not been 

evaluated, but it is possible horses in these studies were gaining weight and that the 

positive P balance reflects P in accreted tissue.  
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Weight gain occurs when calorie intake exceeds calorie use. In digestibility 

studies when feces are being collected, horses are typically confined. Confinement and 

subsequent lack of voluntary exercise may reduce caloric expenditure. Also, diets that are 

higher in concentrates have increased caloric density. For example, Hintz et al. (1973) 

reported that mature ponies retained significant amounts of P (up to 24 mg P/kg BW/d), 

however the ponies were confined to metabolism crates and were fed a low forage/high 

concentrate diet. It is possible that the ponies were gaining weight during the period of 

their confinement and high concentrate intake, leading to retention of P in the weight that 

was being gained. Conversely, some horses could lose weight during a study, particularly 

as it is difficult to feed mature horses at maintenance a diet that does not exceed P 

requirements but meets DE needs. Phosphorus could be secreted into the gut during 

periods of weight loss, contributing to endogenous P losses. Weight gain and loss are not 

typically reported in digestibility studies in horses but these gains and losses may be 

important when investigating P balance and digestibility.  

Weight change and nutrient balance: Could it affect endogenous P losses? 

 As discussed above, weight change is one potential model to study P recycling in 

horses. However, an understanding of the composition of the horses’ body and what the 

composition of the weight change might be is important for evaluating this question. 

Additionally, knowledge of the P content of body components is also essential.  

Body composition of horses 

In other species, body composition varies among breeds within a particular 

species (Lohman, 1971), and it appears horses are no exception (Kearns et al., 2002a). 
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Differences in body composition are probably due to genetic differences based on the 

desired purpose of the horse. For example, Arabians were bred for endurance, Quarter 

Horses for speed, and draft horses for power and strength. In addition to genetics, 

differences in nutrition, physical conditioning, age, gender, and physiological class also 

contribute to differences in body composition.  

Of all the body components, body fat is the most variable and fat-free mass 

(FFM) is relatively more constant (Lohman, 1971). As such, there are many methods 

described in the literature for measuring or estimating body fat, including body condition 

score (BCS), morphometric measurements, ultrasound assessment of fat depots, 

measurement of total body water (TBW), and carcass analysis. Table 2-1 shows body fat 

of horses as measured by a variety of techniques. Body fat was quite variable among 

studies, ranging from 1 to 24%. Body fat seemed to be influenced by apparent body 

condition of the animals, with thin or lean animals having less body fat than animals 

described as fleshy. Differences in breeds used among the studies also suggests that body 

fat is influenced by breed as well. Additionally, the method used to calculate body fat 

could also impact the differences seen among studies, as Ferjak et al. (2017) reported that 

body fat measured by deuterium oxide dilution was consistently lower than body fat 

measured by ultrasound.  Thus, method of estimating body fat is important to consider. 

Each method has advantages and disadvantages, and will be discussed below.  

Body condition scoring system 

The BCS system was first introduced in the 1980’s and was adapted from a 

similar scoring system used in cattle (Henneke et al., 1983). This system assigns a score 
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(1 to 9) to animals based on palpable fat deposits on the neck, shoulder, ribs, loin, and 

tailhead. A score of 1 is considered poor where the animal is emaciated, while a score of 

9 is extremely fat. Typically, a range of 4 to 6 is desired, depending on the horse’s 

purpose. This system requires minimal training to use and no equipment or supplies are 

needed. Consequently, it is widely used in the equine community, and allows for accurate 

and consistent descriptions across research and management situations when describing 

the body condition of horses. However, the BCS system is only qualitative and does not 

provide quantitative data regarding fat content of the animals. It is also relatively 

subjective and even experienced observers may score the same animal differently (Mottet 

et al., 2009). Additionally, small changes in body fatness are not detected by the BCS 

system as well as they would be using more objective techniques (Mottet et al., 2009).  

Morphometric measurements 

Morphometric measurements may provide a more objective assessment of body 

fat, although results differ among studies. Morphometric measurements include 

circumference of the neck at various locations, heart girth and belly girth circumference, 

and height. One study reported that neck and heart girth circumference were not related 

to measurement of body fat by deuterium dilution or ultrasonic techniques (Ferjak et al., 

2017), suggesting that morphometric measurements may not be useful in predicting 

actual body fat percentages. Conversely, another study reported that heart girth 

circumference, normalized for height, was strongly correlated (r2 = 0.91) with total 

chemically-extracted lipid of the body (Dugdale et al., 2011a).  



 

18 
 

Frank et al. (2006) reported that neck circumference was greater in horses with 

BCS equal to or above 7 compared to horses with BCS between 4 and 6, while heart girth 

circumference was not different between the groups. Another study found that individual 

morphometric measurements were not useful, but heart girth:height ratio had the 

strongest correlation to BCS in horses (r2=0.64) and in ponies (r2=0.83) (Carter et al., 

2009).  

Morphometric measures may be useful for tracking changes in body fat. Fat 

horses (BCS 7) subjected to regular exercise exhibited no changes in heart girth or neck 

circumferences, but did show a decrease in abdominal circumference compared to control 

horses (Carter et al., 2010). Horses gaining weight and increasing BCS exhibited a 

concurrent increase in heart girth, belly, and neck circumferences, while horses not 

changing BCS showed no changes in morphometric measurements (Dugdale et al., 

2011c). Fat ponies (BCS 7.8) losing weight exhibited a decrease in heart girth and belly 

girth circumference in a linear or curvilinear manner, respectively (Argo et al., 2012).  

While morphometric measurements are inexpensive and easy to obtain, lack of 

consistent results among studies suggest that other factors, such as how fat or thin the 

animal is, breed, or person performing the measurements, may affect the usefulness of 

this tool.  

Ultrasonic measurement of subcutaneous fat depots 

Westervelt et al. (1976) reported that ultrasonic measurements of subcutaneous fat 

depth at the rump (defined as 5 cm lateral from the midline at the center of the pelvic 

bone) could predict actual body fat percentage (as determined by chemical composition 
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of the ground carcasses). Actual rump fat thickness, as measured after slaughter, was 

relatively similar to values obtained using ultrasound (1.30 cm using ultrasound 

compared to 1.53 cm actual depth in ad libitum fed ponies; 0.44 cm using ultrasound 

compared to 0.46 cm actual depth in limit fed ponies). Ultrasonic measurement of rump 

fat could also track changes in body fat relatively well as horses gained BW. However, 

another study demonstrated that the equation to predict body fat differed depending on 

the location along the rump that was measured (Kane et al., 1987), indicating that 

consistency in anatomical location is important for an accurate prediction of body fat.  

Other sites of subcutaneous fat deposition have been evaluated using ultrasound, 

including the neck, withers, shoulder, ribs, and tailhead (Westervelt et al., 1976; Gentry 

et al., 2004; Quaresma et al., 2013; Martin-Gimenez et al., 2016). These studies have 

found fat depth is greatest at the rump and tailhead compared to other sites. Furthermore, 

fat thickness increases from the croup proceeding down towards the tailhead, with actual 

and ultrasonic measurements being more similar in sites closer to the tailhead, where fat 

was thickest (Kane et al., 1987). Thus, some researchers have chosen to use the area in 

which fat is thickest along the rump for estimating body fat (Kearns et al., 2006). The 

tailhead, or area in which fat depth is greatest, may very well be more useful than 

measurements taken in other locations. In mares undergoing drastic changes in BCS (7 to 

3), fat thickness at the tailhead changed more than thickness at the crown of the rump 

(Gentry et al., 2004). Additionally, fat thickness at the tailhead better predicted BCS than 

fat thickness at the rump in Andalusians (Martin-Gimenez et al., 2016). Tailhead fat 

thickness had a better relationship with body fat percentage as calculated TBW than rump 

fat thickness in ponies (Dugdale et al., 2011c).  
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The use of ultrasound to estimate body fat through measurements of subcutaneous 

fat depth is a relatively quick procedure and is non-invasive. While the average horse 

owner does not own an ultrasound machine, the portability of the machine means that 

many veterinarians would have one and could monitor changes in subcutaneous fat depth 

at the tailhead for horses undergoing weight loss treatments. However, in order to be 

useful as a tool to assess and monitor body fat, the ultrasound technique requires a trained 

technician, consistency in anatomical locations used, and accurate analysis of the 

ultrasound image (Quaresma et al., 2013).  

Use of deuterium oxide to calculate body fat  

Calculation of body fat by measuring total body water (TBW) has become more 

common in equine research in recent years (Carter et al., 2010; Dugdale et al., 2011b; 

Dugdale et al., 2011c; Dugdale et al., 2012). Total body water is measured by dilution of 

deuterium oxide, tritiated water, alcohol, or urea in the body, however deuterium oxide 

has been used most frequently in the literature. Fat-free mass is calculated assuming that 

fat is anhydrous and lean tissue is 73.2% water. Fat mass can then be calculated by 

subtracting fat-free mass from total body mass. This procedure has the potential to 

provide a more quantitative measure of total body fat than any of the previous methods, 

however, some issues have been raised as to the accuracy of this method. Only one study 

has validated the use of deuterium oxide for calculating body fat in horses by comparing 

it to body fat measured by chemical analysis of the carcass (Dugdale et al., 2011b). This 

study reported a high correlation between deuterium-derived estimates of body fat and fat 

measured by chemical analysis of the carcass (R2 = 0.99). In the studies from the same 

lab that validated the technique, deuterium-derived calculations of body fat have been 
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reported to be correlated with BCS (Dugdale et al., 2012), although the strength of the 

relationship decreases above a BCS of 6 (Dugdale et al., 2011c; Argo et al., 2012).  

Measuring TBW is still only an indirect way to estimate fat content and relies on 

a number of assumptions. First, the hydration status of the horse can impact TBW content 

(Kearns et al., 2002a), thus a similar hydration status of all horses is assumed.  Second, 

differences in gut water content can influence measurements of TBW. Horses with more 

gut fill and gut water (e.g. horses on a high-forage diet) will have greater TBW content, 

and thus body fat can be underestimated. In the study that validated deuterium oxide for 

use in horses, digesta water varied widely among horses (6.7 to 17.8% of body weight) 

(Dugdale et al., 2011b). One thin pony had a negative value for body fat measured by 

TBW and this pony also had a relatively large amount of water in the digesta, which was 

suggested to be the source of error in calculating fat based on TBW. Third, the equation 

to calculate fat from TBW assumes that fat is anhydrous and lean tissue contains 73% 

water based on work in guinea pigs (Pace and Rathbun, 1945). In reality, the water 

content of fat-free body varies among species (Reid et al., 1968), ranging from 73.8% in 

goats to 77% in sheep (Sheng and Huggins, 1979). These values are greater than the 

assumed 73% lean hydration factor, and underestimation of this value could result in 

inaccurate estimates of body fat. Fourth, this procedure assumes that the tracer is being 

equilibrated throughout the body and no tracer is lost outside the body. Deuterium losses 

in feces and urine have been suggested to influence estimates of TBW (Houseman et al., 

1973). Respiratory water may also contain some deuterium, and has been considered to 

influence estimation of TBW (Burkholder and Thatcher, 1998). Additionally, the 

calculation for estimating body fat using deuterium contains a correction factor of 4% to 
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account for isotopic exchange with readily exchangeable non-water hydrogens, such as 

those associated with proteins or carbohydrates (Dugdale et al., 2011b). However, this 

correction factor comes from work in humans, which may or may not be accurate for use 

in horses as body composition may differ (Racette et al., 1994).  

Chemical analysis of carcass 

Finally, chemical analysis of the carcass provides the most accurate and 

quantitative measurement of total body fat. Most of the knowledge regarding actual body 

composition of the horse has been derived using carcass analysis (Robb et al., 1972; 

Westervelt et al., 1976; Webb and Weaver, 1979; Gunn, 1987; Kane et al., 1987). 

Additionally, techniques described above, such as ultrasound and TBW, have been 

validated using carcass analysis as the gold standard (Westervelt et al., 1976; Dugdale et 

al., 2011b). However, there are several limitations in applying this method. First, 

longitudinal studies on the same animals cannot be performed. Second, horses are large 

and the methods needed to grind a carcass to obtain a whole body sample for chemical 

analysis are time consuming and intensive. If dissection methods to separate body 

components such as muscle, fat, and bone are used, considerable expertise is necessary. 

In all cases, there is potential for the carcass to lose moisture prior to the chemical 

analysis. Third, slaughter of horses is objectionable to some individuals as horses are 

viewed as companion animals compared with other animals that are viewed as food.  

Achieving weight change in horses 

 There are two ways to achieve weight change in horses. One method is to change 

the amount of DE the horse is consuming, either by changing feed intake or changing diet 
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composition. The other method is to change the energy expenditure. For the purpose of 

this review, the following section will focus on changing DE intake. 

 Feeding DE below a horse’s need will result in weight loss, while feeding DE 

above a horse’s need will result in weight gain. To simplify the following section, the 

discussion will focus on describing weight gain, however the opposite effects are 

expected to be seen during weight loss. The NRC (2007) suggests that a total of 16 to 24 

Mcal of DE above maintenance are required to achieve a weight gain of 1 kg in mature 

horses. The amount of DE required to achieve a kg of weight gain depends on dietary 

composition as well as composition of the gain and the individual animal’s voluntary 

activity, as demonstrated by the range in DE values required for 1 kg of weight gain. For 

example, the net energy derived from 5 Mcal of DE from vegetable oil will be much 

higher than the net energy from 5 Mcal of DE provided by grass hay. Consequently, 

horses fed a high fat diet may require less DE to achieve weight gain than horses fed a 

high-forage diet (NRC, 2007). For a mature horse to change one unit of BCS (within the 

middle of the BCS range), it has been suggested that 16 to 20 kg of weight needs to be 

gained (Lawrence, 2000). This estimate is based on a study where mature horses gained 

33 to 45 kg and increased two condition scores (4 to 6) (Heusner, 1993). Therefore, using 

the assumptions that 1 kg of gain requires 20 Mcal of DE above maintenance and 16 to 

20 kg results in a change of one condition score, 5.3 to 6.7 Mcal DE over maintenance 

(32 to 41% over maintenance) needs to be fed each day in order for the change to be 

achieved in 60 d (NRC, 2007).  
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The composition of gain is also important. The caloric density of fat is higher than 

the caloric density of lean tissue. Thus, if weight gain is predominantly lean, it may cost 

fewer calories than if weight gain is primarily fat.  

Phosphorus content of the body 

As P is contained in every cell of the body, P would be contained in the weight 

gained or lost. However, the amount of P in fat differs from the amount of P in bone or 

muscle. Most of the P in the body is found in the bones (~80%) and the rest is distributed 

among the muscle (~16%), adipose, organs (2.5%), blood (0.2%), and skin (0.2%) (Grace 

et al., 1999). Mature horses that are gaining weight may be increasing their body stores of 

adipose tissue, but are also likely increasing their muscle mass and bone density to 

support the increased weight load.  

There are limited data evaluating P concentration in dissected equine tissues, but 

there are plentiful data in animals raised for meat. In Holstein-Friesan bulls, muscle P 

concentration was about 0.22% of fresh weight (around 0.63% P if tissue DM assumed to 

be 35%) (Czerwonka and Szterk, 2015). Muscle P concentration in beef cattle fed 

different levels of P ranged from 0.44 to 0.50% (DM basis) (Williams et al., 1991). 

Camel meat contained almost twice the concentration of P compared to cattle meat (P 

was 1.2% of DM) (Ebadi, 2015). There is a lack of research examining P muscle content 

in mature animals; all of the above studies were conducted in young animals (< 2 yr old) 

and these animals are probably still growing. However, the concentration of P in the 

dissected soft tissue of growing pigs (18 to 54 kg) remained relatively constant as pigs 

grew (0.17% P of fresh weight) (Pettey, 2004). A constant P concentration in growing 
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tissue indicates P concentration remains relatively stable throughout growth when fed a 

P-adequate diet and will likely stay constant in mature animals that are gaining or losing 

weight.  

However, there is some evidence that muscle P concentration can change in 

certain circumstances. In dogs fed a diet deficient in P, muscle P concentration decreased 

from 28 to 22 mmol P/100 g (Fuller et al., 1976). The decrease in muscle P concentration 

was reversed upon P repletion. Additionally chronic, severe alcoholism in humans is 

associated with an approximately 50% decrease in muscle P concentration (Knochel et 

al., 1975; Knochel, 1980). Similar results have been observed in dogs fed ethanol 

(Ferguson et al., 1984). While there is evidence that tissue P can decrease, there may also 

be opportunities for tissue P concentration to increase. In humans, phosphate loading 

(high intakes of P) has been shown to improve performance (Horswill, 1995). The 

proposed mechanism is that by increasing the intake of phosphate salts, muscle 

concentrations of phosphocreatine and ATP will go up and the buffering capacity of 

intracellular phosphate in the muscle will reduce muscle acidosis during exercise 

(Horswill, 1995). However, no studies have examined muscle P concentration in 

phosphate-loaded humans. One study did report that creatine loading increased the 

concentration of phosphocreatine in the muscle of sedentary men and the authors 

suggested that muscle phosphate uptake occurs in conjunction with creatine uptake 

(Hultman et al., 1996). Other studies have shown than insulin administration decreases 

serum P concentrations (Perlzweig et al., 1923), while at the same time increasing muscle 

P content (Harrop and Benedict, 1924).  
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Bone contains the most P out of all the tissues in the body. In young, growing 

horses (≤ 2 yr old), P concentration in the ash of limb bones was 16% (Schryver et al., 

1974). In foals (150 d of age), concentrations of P in limb bones averaged 8.6% on a DM 

basis, while rib P concentration was 7.0% (Grace et al., 1999). In lactating dairy cattle, 

concentration of P in rib bone was around 10% of dry bone (Ferris et al., 2010), while in 

beef cattle, rib bone P concentration was 16.5 to 17.5% of bone ash (Williams et al., 

1991). In growing pigs, concentration of P in whole body bone ranged from 7 to 8% of 

dry bone on a fat-free basis (Pettey, 2004). Differences in the basis in which bone P 

content was reported (ash, dry, fat-free dry) as well as the type of bone studied (limb, rib, 

whole body) makes it difficult to compare bone P concentration among species.  

Relationship between weight change and P balance 

Because P is contained in every tissue in the body, weight change can influence P 

retention. In growing yellowtail fish, increasing lipid content of the diet while 

maintaining P content resulted in an increase in feed-conversion-ratio, a numerically 

greater weight gain, and reduced P excretion (Satoh et al., 2004). In growing rainbow 

trout, diets differing in protein content and quality but containing similar P, resulted in 

different weight gains and fish with the greatest weight gain also had the lowest soluble-P 

excretion (Cheng et al., 2003). In preterm human infants, P retention was significantly 

correlated with daily weight gain (Trotter and Pohlandt, 2002). Many of these studies are 

in growing animals and the composition of the gain is likely different compared to mature 

animals gaining weight. However, these studies do demonstrate that P does accumulate in 

the body during periods of weight gain, which may be similar in mature animals.  
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A 500-kg horse gaining 0.5 kg/d would be retaining about 1 g P/d if the 

assumption is that the 0.5 kg of gain is 100% muscle and that muscle P concentration is 

0.2%. The P concentration of adipose tissue in horses is not well studied, but may be less 

than 0.2%, as adipose tissue is primarily composed of triglycerides (> 80%) with less 

than 1% of the tissue composed of phospholipids (Chartrin et al., 2006). In an adult 

human, P concentration in adipose tissue was measured at 0.048% (Mitchell et al., 1945). 

If the 0.5 kg of weight gained is assumed to be all adipose tissue with a P concentration 

of 0.048%, then horses will be expected to retain 0.25 g P/d. Additionally, increased bone 

density due to greater weight placed on the skeleton is a possibility (Holbrook and 

Barrett-Connor, 1993), further increasing P retention in the skeleton. If a horse increased 

bone weight by 0.5 kg over time, then an additional 43 g of P would be stored in bone 

mineral (assuming bone P concentration to be 8.6% based on Grace et al., 1999). The 

growing horse deposits 8 g P/kg BW gain (Schryver et al., 1974), which suggests that P 

accretion in gained tissue of the growing animal is a mix of bone and soft tissue in the 

growing animal. This is also likely the case for mature animals gaining weight, although 

the ratio of bone to soft tissue in the gained tissue is likely lower than that seen in 

growing animals.  

A retention of at least 1 g P/d has been observed in many studies using mature 

sedentary horses (Kapusniak et al., 1988; Cymbaluk et al., 1989; Cymbaluk, 1990; 

Patterson et al., 2002; van Doorn et al., 2004a; Lavin et al., 2009). The location of the 

retained P has not been elucidated to date, however it is possible that these horses were 

gaining weight and the retained P accumulated in the gained tissue. Realistically, 

composition of gain may not be uniform and increases in muscle, adipose, and bone mass 
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during weight gain could contribute to P retention. Thus, P retention may be different for 

a horse gaining mostly adipose or mostly muscle or mostly bone. Altogether, weight gain 

(or loss) has the potential to influence P retention in horses. 

Summary and conclusions 

Based on the literature, factors that may influence endogenous P losses and 

estimates of true P digestibility include P intake, P required by the body due to 

physiological state, as well as dietary Ca. Probably the most important relationship that 

influences P recycled into the GI tract is the relationship between dietary P and P 

required by the body. The variation in estimates of true P digestibility in horses likely 

arises from experimental conditions rather than the form of P in the diet. Thus, if recycled 

P into the GI tract can be minimized, actual true P digestibility of feeds can be measured.  

When the estimates of true P digestibility in the Nutrient Requirements of Horses 

were first reduced to less than 50% in the 1970’s and 1980’s, the main focus was 

ensuring that horses received adequate P for physiological needs. Little attention was 

given to the potential effect of underestimating true digestibility on the environment. 

Today, the detrimental effects of P on water quality are better understood. In addition, 

world P reserves are diminishing and P is not a renewable resource. Thus, good 

environmental stewardship includes reducing inorganic P use in animal agriculture. 

After reviewing the literature, it appears that the current true digestibility 

estimates for P in horse feeds may be low. However, obtaining a better estimate is 

problematic because of P recycling. Therefore, the goal of this dissertation is to better 

understand factors that may influence P recycling and fecal P excretion by horses. 
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Tables and Figures 

Table 2-1. Review of average percent body fat in the horse (Adapted from Kearns et al. 

(2002a) and updated to include recent publications) 

Author (year) n Breed Body 
condition 

Method % Fat, 
average 

Julian et al. 
(1956) 

6 
4 

Hot blooda 

Percheron 
N/A Calculated from 

body water 
12.8 
24.5 

Robb et al. 
(1972) 

11 Pony N/A C.C. 6.6 – 18.9 

Westervelt et al. 
(1976) 

8 
12 

N/A N/A C.C./ultrasound 15.9 
10.7 

Webb and 
Weaver (1979)  

17 Thoroughbred 
Pony 

Emaciated-
thin; Poor- 
lean 

Dissection 5.1 

Elser et al. 
(1983) 

10 Pony N/A Urea dilution 8.1b 

Lawrence et al. 
(1986) 

10 N/A N/A Urea dilution 15.4 

Gunn (1987) 9 
5 

Thoroughbred 
Otherc 

Lean 
 

Dissection 1.1 
2.1 

Kane et al. 
(1987) 

6 N/A N/A C.C./ultrasound 13.0 

Webb et al. 
(1989) 

6 N/A Fleshy-
moderate 

Ultrasound 10.1 
7.4 

Lawrence et al. 
(1992) 

38 Arab & Arab-
cross 

Moderate Ultrasound 7.8 

Kearns et al. 
(2001) 

23 Standardbred Moderately 
fleshy 

Ultrasound 22.3 

Kearns et al. 
(2002b) 

19 Standardbred Lean Ultrasound Male: 6.9 
Female:10.3 

(Znamirowska, 
2005) 

107 N/A N/A Dissection 7.85 

Carter et al. 
(2010) 

12 Arab & Arab-
cross 

BCS 7 D2O 19.4 

Dugdale et al. 
(2011b) 

7 Welsh pony BCS 1.25-9 C.C. 
D2O 

12.6 
12.1 

Dugdale et al. 
(2012) 

77 Variedd BCS 3-9 D2O 19.6 

Brinkmann et 
al. (2013) 

10 Shetland BCS 3-4 D2O 16.1b 

De Palo et al. 
(2013) 

18 Italian heavy 
draught 

N/A Dissection 16.3 
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Table 2-1 (continued) 
Ferjak et al. 
(2017) 

18 Stock-type BCS 4-6 D2O  
Ultrasound 

6.62 
10.0 

 
aHot-blooded horses included Thoroughbred, Quarter Horse, Arabian, and American 
Saddlebred 
bValues calculated from author’s data 
cOther breeds included Welsh Mountain Pony, Shetland, Clydesdale, and Thoroughbred-
cross 
dBreeds included: 5 Shetland, 1 Dartmoor, 45 Welsh Pony, 5 mixed ponies, 17 cob, 2 
Warmbloods, 2 Thoroughbred-cross 
C.C.: chemical composition of carcass 
D2O: calculated from body water using deuterium oxide 
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Figure 2-1. Relationship between P intake and urinary P excretion from 16 studies using 

growing and mature horses. Data from: Schryver et al. (1971); Hintz and Schryver 

(1972); Kichura et al. (1983); Hoyt et al. (1995); Nielsen et al (1998a, 1998b); Buchholz-

Bryant et al. (2001); Morris-Stoker et al. (2001); Patterson et al. (2002); van Doorn et al. 

(2004a, 2004b); Oliveira et al. (2008); Weir (2012); Lavin et al. (2013); Ögren et al. 

(2013); van Doorn et al. (2014). 
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Figure 2-2. Urinary P excretion as a function of dietary Ca:P ratio from 12 studies using 

growing and mature horses. Data from: Schryver et al. (1971); Hintz and Schryver 

(1972); Kichura et al. (1983); Hoyt et al. (1995); Nielsen et al (1998a, 1998b); Buchholz-

Bryant et al. (2001); Morris-Stoker et al. (2001); Patterson et al. (2002); van Doorn et al. 

(2004a, 2004b); Oliveira et al. (2008); Weir (2012); Lavin et al. (2013); Ögren et al. 

(2013); van Doorn et al. (2014). 
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Figure 2-3. Intake and fecal excretion of P from 18 studies using mature horses (age > 2 

yr). Data from: Schryver et al. (1971); Hintz and Schryver (1972); Hintz et al. (1973); 

Kichura et al. (1983); Schryver et al. (1987); Kapsuniak et al. (1988); Cymbaluk et al. 

(1989); Buchholz-Bryant et al. (2001); Morris-Stoker et al. (2001); Patterson et al. 

(2002); van Doorn et al. (2004a, 2004b); Lavin et al.. (2009); van Doorn et al. (2011); 

Weir (2012); Lavin et al. (2013); Fowler et al. (2015); Skurupey et al. (2015). 
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Figure 2-4. Intake and fecal excretion of P from 8 studies using growing horses (age ≤ 2  

yr). Data from: Schryver et al. (1971); Kichura et al. (1983); Cymbaluk et al. (1989); 

Cymbaluk (1990); Hainze et al. (2004); Oliveira et al. (2008); Ögren et al. (2013); Fowler 

et al. (2015). 
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Figure 2-5. Total fecal P excretion and its components. As intake increases, so does 

excretion, but the origin of the excreted P changes (minimum endogenous, variable 

endogenous and unabsorbed). Adapted from Ammerman (1995). 
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Figure 2-6. Demonstration of the current accepted model for estimation of true P 

digestibility and P requirement based on a fixed value of endogenous P losses of 10 

mg/kg BW in a horse at maintenance and true P digestibility of 35% (NRC, 2007).  

 

 

 

 

 

 

 

28 mg P/kg BW 
Intake 

28 mg P/kg BW 
Feces 

10 mg P/kg BW 
Absorbed 10 mg P/kg BW 

Endogenous 

True P digestibility, % = 
𝟐𝟐𝟐𝟐 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊−(𝟐𝟐𝟐𝟐 𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇𝒇−𝟏𝟏𝟏𝟏 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆.)

𝟐𝟐𝟐𝟐 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊
 = 35.7% 

P requirement = 𝟏𝟏𝟏𝟏 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆.
𝟎𝟎.𝟑𝟑𝟑𝟑 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅

 = 
28.5 mg P/kg BW 
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Figure 2-7. Demonstration of how recycled P may influence measurement of true P 

digestibility and P requirement in a horse at maintenance, assuming 10 mg P/kg BW is 

the minimum endogenous loss but dietary P digestibility is actually 70%. Measured true 

P digestibility is still 35% due to recycled P. However, P requirement calculated using a 

true digestibility of 70% is 14 mg/kg BW. Feeding at this amount would eliminate 

recycled P. 
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𝟎𝟎.𝟕𝟕𝟕𝟕 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅

 = 
14 mg P/kg BW 
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CHAPTER 3: PHOSPHORUS DIGESTIBILITY IN POST-LACTATING MARES 

Introduction 

Dietary phosphorus requirements for horses are calculated using estimates of true 

digestibility (NRC, 2007). However, in the equine literature true P digestibility values 

have been reported to range from -10 to 79% (Kichura et al., 1983; Lavin et al., 2013). 

The NRC (2007) uses estimates of true P digestibility of 35 and 45% depending on the 

form of P in the diet. However, if true P digestibility is higher than these estimates, then 

horses are receiving more P than necessary. The excretion of P by animals can affect 

water quality. One way to reduce P excretion is to meet but not exceed P requirements. 

By better understanding the factors that have caused such large variation in reported P 

digestibility among studies, more accurate P requirements can be calculated and diets can 

be more precisely formulated to avoid excess P intake and excretion. 

In the horse, P excreted in the feces consists of undigested P as well as 

endogenous P and recycled P. Undigested P travels through the GI tract without being 

digested and absorbed. In many other species, the form of P influences digestibility, with 

phytate-P being relatively unavailable (Adedokun and Adeola, 2013). However in horses, 

phytate-P is 95% degraded by the time it is excreted in the feces, suggesting that phytate-

P is relatively available to the horse (Lavin et al., 2013; Fowler et al., 2015).  

In addition to undigested P, feces also contain P that is recycled into the GI tract. 

If P is absorbed, but not retained in the body, it is recycled into the small intestine and 

cecum to be excreted in the feces. In mature horses that are retaining minimal amounts of 

P, essentially all absorbed P will be excreted in the feces. As a result, when P digestibility 
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is calculated, very low estimates are likely to result, which may not accurately represent 

the actual amount of digested and absorbed P by the animal. Horses secrete different 

amounts of P into their digestive tract depending on the diet they are fed (Schryver et al., 

1971). These researchers also reported that P excretion in urine is very low under most 

circumstances. We hypothesized that when fed similar amounts of P, horses that are 

retaining more P in the body will secrete (recycle) less P in their GI tract. 

In sheep, a depletion model was used to evaluate endogenous P secretions. 

Researchers observed an increase in P retention and a reduction in the amount of 

endogenous P secreted into the digestive tract in P-depleted animals (Young et al., 1966). 

Similarly, we hypothesized that feeding mares a low P diet at the end of lactation would 

deplete body P and reduce P recycling.  

The objective of the study was to develop a model in horses that minimizes P 

recycling using post-lactating mares fed a low P diet prior to weaning and an adequate P 

diet post-weaning compared to control (non-lactating) mares. The hypothesis was that 

when fed similar amounts of P, depleted mares would recycle less P, have reduced fecal 

P excretion and thus have increased estimates of P digestibility.   

Materials and Methods 

 All procedures were approved by the Institutional Animal Care and Use 

Committee at the University of Kentucky. 

Animals 

 Four mares in the fifth month of their lactation (12 ± 5.7 yr; 576 ± 26 kg) and four 

non-lactating mares (11 ± 4 yr; 570 ± 35 kg) were used. Prior to the study, horses were 
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kept in pastures containing cool-season grasses and were fed commercially available 

concentrate to meet their requirements (lactating mares fed 2.5 kg of concentrate and 

control mares fed 1 kg of concentrate). The experiment was conducted in two blocks with 

two lactating mares and two control mares in each block. Each block consisted of a 22-d 

adaptation followed by a 4-d total fecal collection.  

Diets and Feeding Management 

All mares were fed timothy cubes, a pelleted concentrate and soybean oil (Table 

3-1). The amounts of the feeds were adjusted during the experiment to alter P intake as 

described below. On d 1 of adaptation, mares were moved to small paddocks with 

minimal available forage and the transition to the experimental diet was initiated twice a 

d when mares were fed in individual stalls. On d 3 of adaptation, mares were muzzled 

during the day to encourage complete consumption of their meals. By d 8 of adaptation, 

all horses were receiving the same diet, which met the requirements for all nutrients for 

mares in the fifth month of lactation (NRC, 2007). Foals were fed their meal in a feed bag 

while the mares ate so that foals would not consume the experimental diets. On d 9 of 

adaptation, mares and foals were brought into stalls overnight and turned out during the 

day. From d 9 to d 12 of adaptation, feed amounts were adjusted to provide 26 mg P/kg 

BW, which was 55% of the lactating mares’ P requirement and 100% of the non-lactating 

mares’ P requirement. The forage to concentrate ratio was 85:15. All other nutrients met 

or exceeded requirements (NRC, 2007). All horses received this diet from d 12 to 22 of 

adaptation as well as during total fecal collections. Lactating mares were weaned on d 14 

of adaptation; thus they were fed P in amounts below their requirement from d 9 through 

d 14 in order to create a P depletion period. Once mares were weaned they continued on 
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the same diet which provided adequate P for mature mares at maintenance (NRC, 2007). 

Total fecal collections were conducted from d 23 through d 26. Two d before total fecal 

collections began, mares were kept in stalls for 24 h/d and hand-walked for 15 min twice 

daily. Also starting 2 d before fecal collections began, they were fed half of their daily 

ration every 12 h. Horses had ad libitum access to water at all times. Horses were 

weighed three times per wk throughout the adaptation period and were also weighed at 

the beginning and end of the fecal collection period.   

Sample collection 

Horses were fitted with fecal collection harnesses (Bun-bag, Sagle, ID) on d 1 of 

the collection period and monitored closely during the 4-d period to ensure that all feces 

were collected in the bags. To ensure that urine did not enter the fecal collection bag, a 

plastic shield was attached under the tail of the mare that blocked urine from entering the 

fecal collection bag, but allowed feces to fall into the bag.  

During the fecal collection period, daily output of feces was compiled for each 

horse and then thoroughly mixed at the end of each 24 h period.  A subsample, 10% of 

the total fecal weight per d, was collected and frozen for later analysis to measure and 

calculate digestibility of DM, P, Ca, and Mg. 

Horses were given ad libitum access to water and consumption from the water 

bucket was measured daily. Water buckets were weighed at least every 12 h to record the 

weight of the water consumed. Water was added as needed throughout the collection 

period and the weight was always recorded. Water volume was estimated assuming that 1 

kg water = 1 L water.   
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Blood was collected from the jugular vein into plain tubes and tubes containing 

sodium heparin on d 13 (pre-weaning), and d 22 of adaptation (post-weaning). Tubes 

containing sodium heparin were centrifuged within 1 h of collection at 1,500 x g for 20 

min at 4 ⁰C for collection of plasma. Plain tubes were centrifuged at 1,500 x g for 20 min 

at 16⁰C after a clot had formed to obtain serum. The serum or plasma supernatant was 

pipetted into 1.5 ml microcentrifuge tubes and frozen at -20 ⁰C within 2 h of collection. 

Long term storage of plasma and serum occurred at -80 ⁰C.  

Sample analysis 

 Feed and daily composite feces were analyzed for total P using a gravimetric 

method (Shaver, 2008), and Ca and Mg using atomic absorption spectroscopy (Bowers Jr 

and Rains, 1988). Samples were re-analyzed if the CV between duplicates exceeded 10%. 

To determine plasma P concentrations, plasma samples were first deproteinated 

by adding 1 ml of serum to 5 ml of 6% trichloroacetic acid (TCA), centrifuged at 1,700 x 

g for 10 min and then the supernatant was used to determine P concentrations using a 

colorimetric assay (Fiske and Subbarow, 1925). Plasma Ca was determined by diluting 

plasma samples with a La2O3 and HCl solution and then using atomic absorption to 

determine Ca concentration (Bowers Jr and Rains, 1988). No samples were re-run as CVs 

between duplicates were below 6% for both P and Ca. 

Serum samples were analyzed for bone alkaline phosphatase (BAP) and cross-

linking C-terminal telopeptides of type I collagen (CTX-1) using immunoassays 

(Microvue BAP EIA Kit, San Diego, CA; Immunodiagnostic Systems Serum Crosslaps® 

[CTX-1] ELISA, Tyne & Wear, United Kingdom).  All samples were analyzed in 
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duplicate. Values for BAP and CTX-1 were within the standard curve limits and all CV’s 

between duplicates were less than 15%. No samples were re-run. 

Calculations & statistical analysis 

Apparent absorption of Ca, P, and Mg was calculated as intake – fecal excretion. 

Apparent digestibility was calculated as [(nutrient intake – fecal nutrient 

excretion)/nutrient intake] × 100%. True digestibility of P, Ca and Mg was calculated as 

[(nutrient intake – [fecal nutrient excretion – fecal nutrient endogenous loss])/nutrient 

intake] × 100%. Estimates of fecal endogenous losses were obtained from NRC (2007). 

Because of the logistical difficulty in collecting urine from mares, urine was not 

collected. Urinary P is very low (< 2 mg P/kg BW) when P intake is less than 100 mg/kg 

BW (Figure 2-1; Schryver et al., 1971). Nutrient intake and excretion are expressed on an 

mg/kg BW basis. The BW from d 11 of adaptation was used to make these calculations, 

to formulate diets, and calculate requirements.  

The effect of physiological status on nutrient balance data was determined using 

ANOVA with repeated measures (SAS 9.4; SAS Institute, Inc, Cary, NC). Each block of 

four horses (two control and two lactating) that were collected at the same time was 

treated as a block. Physiological status (control or lactating) was the main effect, block 

was the random effect, and day of fecal collection was the repeated measure. Day was not 

a significant variable in any of the models. Pre-weaning and post-weaning blood values 

were analyzed using ANOVA with repeated measures with physiological status as the 

main effect and block as the random effect. When main effects or interactions were 

significant, means were separated using an LSD test. Data are presented as least squares 
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means. Results were considered significant when P < 0.05 and were considered a trend 

when 0.05 < P < 0.10. 

Results and Discussion 

 There were no feed refusals during the fecal collection periods. Total fecal output 

for the first day of fecal collections was lost for 1 control mare, but the fecal output from 

the remaining days of fecal collection for this mare were collected and the data was 

included in the analysis. 

Phosphorus intake was 23.36 mg P/kg BW for both groups and was not different 

between groups (P > 0.10; Table 3-2). Despite similar P intakes, fecal P excretion tended 

to be greater in post-lactational mares compared to control (P = 0.0821), which was 

contrary to the hypothesis. Apparent amount of P absorbed as well as apparent P 

digestibility was negative for both groups but tended to be more negative for post-

lactational mares (P = 0.0863). True P digestibility, which accounts for endogenous P 

losses as estimated by NRC (2007), was positive for both groups and tended to be greater 

in the control mares (35.12%; P = 0.0849) that in post-lactating mares (22.45%). These 

data indicate that P metabolism within post-lactational mares was different than that 

within control mares.  

There are two possible explanations for the increased fecal P in post-lactational 

mares. First, these mares may have had decreased P absorption compared to control 

mares. However, other measures of digestive capacity were not affected by treatment, as 

DMD, Ca and Mg digestibility were not different between groups (Table 3-2 and 3-3). 

Additionally, there is no reason to believe that the two main factors that influence P 



 

45 
 

absorption at the transporter level (dietary P intake and vitamin D status) were different 

among treatments. Phosphorus is actively transported from the large intestine, the main 

site of P absorption, into the blood via a Na+-dependent mechanism (Bai et al., 2000; 

Cehak et al., 2012; Muscher-Banse et al., 2017), with small amounts of P being passively 

absorbed in the small intestine. Increases in Na+-dependent P transporter activity and 

subsequent increases in P absorption are observed when low P diets are fed and when 

1,25-dihydroxyvitamin D3 is administered to vitamin D-deficient animals (Katai et al., 

1999). Both control and post-lactating horses were fed the same diet and housed in 

similar conditions with the same access to sunlight, so these two factors should have been 

the same for both groups of mares and thus should not have contributed to the differences 

in P excretion observed in the current study. Overall, it seems unlikely that the increase in 

fecal P excretion was due to a decrease in P absorption in post-lactational mares. 

Alternatively, it is possible that the higher fecal P in post-lactating mares was not 

dietary in origin, but rather part of variable endogenous losses, or P secreted into the GI 

tract. Regulated secretion of P in the GI tract would cause elevated fecal P. According to 

Schryver et al. (1972), P is both absorbed and secreted into the equine GI tract. Factors 

that influence the amount of P secreted into the GI tract are not well studied. However, in 

pigs, regulated secretion of P in the gut occurs once requirements for P retention in the 

body are met (Rodehutscord et al., 1999). Thus, if an animal has a low requirement for 

retention, more of the absorbed P would be secreted into the gut. Because the lactating 

mares were fed a diet below their P requirement during late lactation and were expected 

to be depleted, our hypothesis was that requirements for retention would be greater in 

post-lactational mares, resulting in less regulated P secretion into the gut. However, 
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because post-lactational mares had greater fecal P than control mares, our model did not 

increase retention and decrease recycling in post-lactational mares.    

Bone represents the largest store of Ca and P in the body (NRC, 2007) and could 

be a source of P secreted into the gut. Parathyroid hormone acts to regulate Ca and P 

homeostasis in the body. Parathyroid hormone is secreted in response to low serum Ca 

and acts to increase serum Ca via a few mechanisms, one of which is bone resorption. 

However, as bone mineral is released in order to increase blood Ca, P is also released 

from bone, increasing blood P levels. In most species, PTH acts in the kidney to increase 

P excretion, as most species rely on renal P excretion to maintain homeostasis (Agus et 

al., 1973). However in the horse, urinary P concentrations are relatively low and the 

majority of P is excreted via the feces (Schryver et al., 1971). According to the equation 

shown in Figure 2-1, for horses consuming 23 mg P/kg BW, urinary P excretion would 

be 1.78 mg P/kg BW, or about 1 g P/d for these mares (570 kg BW). Transport of P into 

the intestine appears to be the primary way that horses excrete unneeded P instead of 

maintaining homeostasis through the kidney. In fact, active transport of P into the equine 

intestine has been recently documented (Muscher-Banse et al., 2017), suggesting that P 

secretion into the intestine can be regulated. Therefore, horses that are resorbing bone to 

maintain blood Ca levels, may be excreting unneeded P from the bone into the intestine, 

rather than the urine, for excretion.  

When diets were altered to decrease P intake for lactating mares, Ca was also 

decreased in order to keep the Ca:P ratio close to 2:1 and to ensure similar Ca intakes for 

the control mares. As a result, lactating mares were also consuming less Ca than required 

for mares in late lactation (requirement = 74.8 mg Ca/kg BW; intake in current study = 
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55.8 mg Ca/kg BW). This low Ca intake may have stimulated PTH release in post-

lactational mares. Serum Ca in post-lactating mares tended to increase from pre- to post-

weaning (Table 3-4; P = 0.0950) and CTX-1, a marker of bone resorption, also 

numerically increased from pre- to post-weaning (Table 3-4). Together, these data could 

indicate that post-lactating mares were increasing bone resorption after weaning to 

improve blood Ca levels due to low Ca intakes during late lactation. The excess P 

released from the bone may have been secreted into the intestine for excretion, causing 

post-lactating mares to have greater fecal P excretion compared to controls.  

 Another potential source of recycled P could be resorbed and recycled milk 

components. Total fecal collections began only 9 d after weaning and full mammary 

gland involution can take close to 30 d (Holst et al., 1987). During involution of the 

mammary gland, components of the milk, including Ca and P, are resorbed into the body, 

causing increases in blood concentrations of these milk components (Hurley, 1989). 

These milk components can either be used by the body or excreted. In support of this 

hypothesis, there was a trend for an interaction between physiological state and time for 

blood Ca levels, with post-lactational mares increasing blood Ca while control mares 

stayed the same (Table 3-4; P = 0.0950). Unlike Ca, there were no differences in blood P 

concentrations between the groups, but it is possible that the resorbed milk P was 

secreted into the gut for excretion. A mare in the fifth month of lactation is expected to 

produce 0.02 kg milk/kg BW containing 0.5 g P/kg milk (NRC, 2007). This level of milk 

production equates to approximately 5.5 g of P in the milk per day for a 550-kg mare. 

The difference in fecal P excretion between control and post-lactational mares was 1.56 g 
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P/d, suggesting that resorbed milk P could provide more than enough P to account for the 

greater fecal P excretion in post-lactational mares.    

 Another factor that could contribute to P secretion into the gut would be P from 

mobilized tissue when horses are in a state of weight loss. Because P is present in all 

cells, mobilization of fat, protein, and bone during weight loss could contribute to an 

increase in fecal P excretion. Although the horses consumed diets that contained 

recommended amounts of DE (NRC, 2007), they all exhibited some weight loss. Figure 

3-1 shows the relationship between horses’ weight change over the dietary treatment 

period and fecal P excretion. When all 8 horses are included, the negative relationship 

between weight loss and P excretion is not significant and the R2-value is only 0.3550. 

However, if one horse is removed (weight change of -46.25 kg and 14.28 g P excreted), 

then the relationship becomes significant (P = 0.0153) and the R2-value improves to 

0.7229 (Figure 3-2). Therefore, weight change has the potential to influence P excretion 

due to differences in endogenous P losses. 

The y-intercepts of Figures 3-1 and 3-2 indicate P excretion when weight is being 

maintained (weight change = 0 kg). According to the graphs, these mares would excrete 

between 12.8 and 13.6 g P/d if their weights were being maintained and they were fed the 

same diet. The NRC (2007) estimates that mares of this weight (570 kg) at maintenance 

would excrete approximately 16 g P if endogenous losses of 10 mg P/kg BW and a true 

digestibility of 35% are used. These mares would be excreting less P than predicted by 

the NRC (2007), suggesting that endogenous losses in these mares are less than 

previously predicted. Figure 2-1 suggests that endogenous losses of mature horses are 8.2 

mg P/kg BW. If this lower estimate of endogenous losses is used instead of 10 mg P/kg 
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BW as suggested by the NRC (2007), these mares would be expected to excrete 13.3 g 

P/d, which is very similar to the expected P excretion for mares maintaining weight based 

on Figures 3-1 and 3-2.  

 In conclusion, even though the current study was unable to elucidate true P 

digestibility by minimizing P secretion into the gut, this study supports the hypothesis 

that fecal P excretion and presumably endogenous losses in horses vary depending on 

physiological status. The assumption that all mature horses have the same endogenous 

losses may be inaccurate, leading to incorrect calculation of daily P requirements. 

Another interesting finding from this study was that weight loss has the potential to 

influence P excretion due to P mobilized from tissue being secreted into the gut for 

excretion. It would be of interest to further explore the impact that weight loss as well as 

weight gain has on P excretion. Horses gaining weight would theoretically be retaining 

more P than horses losing weight, and weight gain might be another useful model with 

which to minimize P secretion into the gut. Overall, it is possible that some of the low P 

digestibility values in the literature have occurred because of P recycling in combination 

with increased endogenous losses with weight loss, while higher estimates result in 

studies where P retention is increased by weight gain in mature horses or growth in 

immature horses.  
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Tables and Figures 

Table 3-1. Nutrient composition of the forage and concentrate components of the diet 

(DM basis)1 

Nutrient2 Timothy cubes3 Pelleted concentrate4 

DE, Mcal/kg 2.20 2.97 
CP, % 11.7 14.4 
NDF, % 57.6 35.4 
ADF, % 38.0 23.6 
Ca, % 0.58 0.66 
P, % 0.24 0.32 
Mg, % 0.21 0.25 
K, % 1.95 1.30 
Na, % 0.024 0.287 
Fe, ppm 495 300 
Zn, ppm 31 91 
Cu, ppm 8 29 
Mn, ppm 57 77 
Mo, ppm 0.9 0.8 

1Forage to concentrate ratio was 85:15. Horses in the first period were fed 0.33 kg 
soybean oil per day and horses in the second period were fed 0.54 kg soybean oil per day. 
2Nutrient analysis and DE calculation performed by DairyOne Forage Lab (Ithaca, NY). 
These values were used to formulate diets 
3Premium Timothy Cubes (Ontario Dehy Inc., Ontario, Canada) 
4Custom mixed at McCauley Bros., Versailles, KY. The concentrate was formulated 
without any added inorganic P sources.  
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Table 3-2. Phosphorus, calcium, and magnesium balance data for control and post-

lactating mares1 

 
Item Control 

mares2 
Post-
lactating 
mares2 

SEM P-value 

Phosphorus     
     Intake, mg/kg BW 23.36 23.36 0.02 0.8669 
     Fecal excretion, mg/kg BW 25.15 28.11 3.06 0.0821 
     Apparent absorbed, mg/kg BW3 -1.79 -4.75 3.09 0.0852 
     Excreted as % of intake, % 107.67 120.36 13.2 0.0863 
     Apparent digestibility, % -7.68 -20.36 13.2 0.0863 
     True digestibility, %4 35.12 22.45 13.2 0.0849 
Calcium     
     Intake, mg/kg BW 55.79 55.79 0.065 0.9123 
     Fecal excretion, mg/kg BW 32.80 34.80 4.2 0.2508 
     Apparent absorbed, mg/kg BW3 23.01 20.99 4.2 0.2539 
     Excreted as % of intake, % 58.79 62.39 7.6 0.2525 
     Apparent digestibility, % 41.21 37.61 7.6 0.2525 
     True digestibility, %5 77.05 73.46 7.5 0.2515 
Magnesium     
     Intake, mg/kg BW 15.97 15.97 0.019 0.9123 
     Fecal excretion, mg/kg BW 10.39 10.45 1.18 0.8824 
     Apparent absorbed, mg/kg BW3 5.59 5.52 1.2 0.8667 
     Excreted as % of intake, % 65.05 65.45 7.4 0.8731 
     Apparent digestibility, % 34.95 34.55 7.5 0.8731 
     True digestibility, %6 72.50 72.12 7.4 0.8789 

1Mineral concentrations in the diet were from in-house lab analysis and used to calculate 
mineral intakes 
2n=4 
3Amount apparently absorbed was calculated as nutrient intake minus fecal excretion 
4Calculated using estimates of endogenous fecal P losses of 10 mg P/kg BW (NRC, 
2007) 
5Calculated using estimates of endogenous fecal Ca losses of 20 mg Ca/kg BW (NRC, 
2007) 
6Calculated using estimates of endogenous fecal Mg losses of 6 mg Mg/kg BW (NRC, 
2007) 
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Table 3-3. DM intake, water intake, fecal excretion and DM digestibilities for control and 

post-lactating mares 

 
Item Control 

mares 
Post-lactational 
mares 

SEM P-value 

DM intake, kg/d 5.81 5.76 0.15 0.6904 
DM intake, g/kg BW 10.00 10.00 0.011 0.9622 
Water intake, L/d 16.41 18.28 2.35 0.7599 
Water intake, ml/kg BW 28.12 31.65 3.42 0.5767 
Fecal DM excretion, kg/d 2.79 2.62 0.15 0.5423 
Fecal DM excretion, g/kg BW 4.86 4.56 0.36 0.7451 
DM digestibility, % 51.46 54.43 3.69 0.7464 
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Table 3-4. Concentrations of Ca, P, Ca;P, BAP1, CTX-12, and BAP:CTX-1 in control and post-lactating mares pre-weaning and post-

weaning 

Item Control Post-lactation Pooled 
SE 

P-value 
 Pre Post Pre Post Treatment Time Interaction 
Ca, mg/dl 11.35 11.08 10.81 11.18 0.23 0.4673 0.7740 0.0950 
P, mg/dl 3.87 3.67 4.19 4.05 0.23 0.2181 0.4392 0.8775 
Ca:P 2.96 3.03 2.66 2.76 0.19 0.1756 0.6422 0.9147 
BAP, ng/ml 53.43a 42.05b 52.89 52.32 3.41 0.3054 0.0286 0.0409 
CTX-1, ng/ml 0.269 0.281 0.185 0.271 0.039 0.3614 0.1326 0.2445 
BAP:CTX-1 208.06 155.34 386.72 211.90 77.71 0.2347 0.1277 0.3798 

abMeans within a treatment differ between timepoints (P < 0.05) 
1BAP; bone alkaline phosphatase 
2CTX-1; cross-linking C-terminal telopeptides of type I collagen 
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Figure 3-1. Relationship between weight change (kg) and P excretion (g). Weight change 

is measured as the difference between the average of 2 d of consecutive BW (d 11 and d 

13) when dietary treatments were imposed and the average BW over the total fecal 

collection period. Excreted P is the average fecal P excreted over the 4 d of fecal 

collections.   
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Figure 3-2. Relationship between weight change (kg) and P excretion (g) with one horse 

removed. Weight change is measured as the difference between the average of 2 d of 

consecutive BW (d 11 and d 13) when dietary treatments were imposed and the average 

BW over the total fecal collection period. Excreted P is the average fecal P excreted over 

the 4 d of fecal collections.   

y = -0.1083x + 12.831
R² = 0.7229
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CHAPTER 4: CHANGE IN BODY WEIGHT INFLUENCES MINERAL 
DIGESTIBILITY AND MARKERS OF BONE METABOLISM 

Introduction 

 With the increased prevalence of obesity in the equine population, weight loss 

diets are being prescribed more frequently for many horses. While the main goal of 

weight loss programs is to reduce the amount of adipose tissue, other tissues such as 

muscle and bone may also be impacted inadvertently. Macrominerals are widely 

distributed in many body tissues, and the tissue that is lost or gained during weight 

change contains some amount of these minerals. Thus, during weight loss or gain, 

mineral balance may be impacted.  

 Phosphorus is found in every cell of the body, with the majority of P located in 

bone (75 to 80%) and the remaining P located in soft tissues and blood (NRC, 2007). If 

an animal is gaining or losing weight, P contained in the soft tissue will be retained or 

excreted, respectively. Therefore, weight change may affect P balance. Many studies that 

have examined P digestibility have observed positive P retention in mature horses at 

maintenance, suggesting that these horses may have been gaining weight during the study 

and thus retaining P in the new tissue. Conversely, horses losing weight may be secreting 

P from lost tissue into their GI tract for excretion, leading to an increase in fecal excretion 

and low apparent and true P digestibilities. A lower observed value for P digestibility 

would cause an overestimation of the P requirement. 

 As discussed above, during weight change, adipose tissue as well as muscle and 

bone are impacted. Therefore, measuring changes in total BW is not informative about 

changes in body composition. Changes in body composition would be more helpful in 
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evaluating differences in mineral balance as concentrations of minerals vary among tissue 

types. There are many methods to evaluate adiposity in horses, with the body condition 

scoring system (BCS) being the most prevalent and easiest to use (Henneke et al., 1983). 

However, this method is subjective and variable even among trained scorers and the 

ability of this system to detect modest changes in adiposity over time is poor (Mottet et 

al., 2009). Changes in morphometric measurements, such as the circumferences of heart 

girth, belly girth, and mid-neck, have also been used to track changes in body fat 

(Dugdale et al., 2011c). However, morphometric measures do not distinguish between 

adipose and muscle tissue, nor do they account for differences in body size. 

Subcutaneous fat depth has been successful at estimating overall adiposity as well as 

tracking changes in adiposity (Westervelt et al., 1976; Gentry et al., 2004; Dugdale et al., 

2011c; Martin-Gimenez et al., 2016). Additionally, measurement of total body water 

(TBW) and subsequent calculation of body fat has also been validated in horses (Dugdale 

et al., 2011b), and may allow for the most accurate calculation of overall adiposity in 

horses.  

 The objectives of this study were to (1) evaluate digestibility of Ca, P, and Mg in 

horses fed to lose, maintain or gain weight, (2) examine markers of bone, muscle, and fat 

metabolism, and (3) evaluate relationships between different measures of adiposity.  

Materials and Methods 

 All procedures were approved by the Institutional Animal Care and Use 

Committee at the University of Kentucky.  
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Animals and housing 

Fifteen mature horses (9.4 ± 3.9 yr; 554.9 ± 8.3 kg) were used; nine geldings and 

six mares, 14 of which were Thoroughbreds and one Thoroughbred-cross. Horses were 

housed in 3.6 x 3.6 m stalls overnight and turned out in paddocks in groups of three (one 

horse per treatment) during the day (approximately 0900h to 1530h). They were muzzled 

to prevent ingestion of pasture during turnout. Horses were fed individually in their stalls 

and had access to water at all times.  

Experimental design 

 Horses were blocked by age and sex and then randomly assigned to one of three 

treatments: weight gain (GA), weight maintenance (MA), and weight loss (LO). The 

study was divided into two phases. During Phase 1, horses were fed a diet to achieve a 

steady body weight. Horses were weighed three times per week during this phase. This 

phase lasted for at least 3 wk while diets were adjusted and a stable weight was achieved. 

During Phase 2, horses were fed their assigned treatment diets designed to cause weight 

gain, weight maintenance or weight loss. The goal was to achieve approximately 0.5 kg 

of weight change per day for the GA and LO treatments. Horses were weighed daily 

during this phase and diets were adjusted as needed in order to achieve a steady rate of 

weight gain or weight loss in the GA and LO horses, respectively. Phase 2 lasted 3 to 4 

wk, depending on the rate of weight change. 

Diets 

 During Phase 1, the diet was formulated to closely meet DE and P requirements 

and to meet or exceed all other requirements based on initial BW (NRC, 2007). 



 

59 
 

Digestible energy for dietary formulation was calculated based on DE values provided 

from a laboratory analysis (DairyOne, Ithaca, NY). Diets were adjusted as needed to 

achieve a stable weight for each horse while maintaining similar intakes. The diet for 

weight maintenance consisted of 35.1% timothy cubes, 37.7% chopped timothy hay, 

14.2% beet pulp, 5.7% oats, 2.2% soybean oil, and 4.9% of a balancer pellet to meet 

protein and mineral requirements. Sodium chloride was added to meet Na and Cl 

requirements. Table 4-1 shows the nutrient composition of the feeds used to formulate 

diets. 

Once a stable weight was achieved, Phase 2 began and weight change treatments 

were imposed. The GA and LO diets were formulated to contain 145 and 75%, 

respectively, of each horse’s maintenance DE requirement determined during Phase 1. 

Horses assigned to the MA treatment continued to receive the maintenance diet fed 

during Phase 1. Table 4-2 shows the composition of the diets for each treatment. The GA 

diet consisted of 44.6% forage (timothy hay and cubes), 24.9% beet pulp, 16.3% oats, 

9.3% soybean oil, and 4.6% balancer pellet. The LO diet was mainly forage-based, 

consisting of 94.7% forage (timothy cubes and hay), and a balancer pellet. Sodium 

chloride was added as needed to meet Na and Cl requirements for each horse. Although it 

would have been desirable to keep the ingredient profile consistent across treatment diets 

and manipulate DE by changing total DM intake, that method would have resulted in 

different P intakes. Consequently, ingredient profiles of each diet were manipulated to 

achieve the desired DE intake while keeping P intake and DMI similar among treatments. 

Table 4-3 shows nutrient intakes for each treatment compared to nutrient requirements 

for a horse at maintenance.  
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The horses’ daily rations were split into two equal meals fed at 0700 h and 1530 h 

during Phase 1 and the beginning of Phase 2. All feed ingredients for each meal were 

combined into one bucket and thoroughly mixed together, resembling a total mixed 

ration. At least 12 d prior to the beginning of total fecal collections, the daily ration was 

split into three equal meals fed at 0700 h, 1500 h, and 2300 h.  

Sample collection 

 Whole blood was collected via jugular venipuncture into separate tubes 

containing no additive (serum) and tubes containing sodium heparin additive (plasma). 

Blood samples were collected at the end of Phase 1 after horses achieved a stable body 

weight but before weight change treatments were imposed and a second sample was 

collected at the end of Phase 2 (weight change period). Plasma was used to measure non-

esterified fatty acids (NEFA), triglycerides (TG), and urea-N (PUN). Serum was used to 

measure creatinine, Ca, P, bone alkaline phosphatase (BAP), and C-terminal telopeptides 

of type I collagen (CTX-1). 

 Saliva samples were collected on three separate days for each horse in the week 

preceding the fecal collection period to measure salivary P concentration. Salivary P was 

averaged across the three sample days for each horse. Prior to the 1500 h meal, horse’s 

mouths were rinsed with water to wash out any residual feed. A cotton swab containing 

citric acid (Salivette, Sarstedt, Germany) was attached to a bit using zip ties and placed in 

the horse’s mouth for 5 minutes to ensure saturation of the swab. Swabs were then 

centrifuged to collect saliva and the saliva was frozen until analysis. 
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Morphometric measurements were taken weekly. These measurements included 

BCS (Henneke et al., 1983), wither height, and circumferences of the heart girth, belly 

girth, mid-neck, and lower neck as described previously (Carter et al., 2009). 

Measurements were taken by the same person blinded to previous measurements. 

Morphometric measurements were made with a plastic measuring tape reinforced with 

nylon to resist stretching. Horses were measured while standing square and efforts were 

made to position the horse the same way for each measurement. Heart girth 

circumference was modified from the method described by Carter et al. (2009) in that the 

circumference was measured around the tallest point of the withers with the measuring 

tape perpendicular to the ground instead of behind the slope of the withers. Differences in 

wither slope may affect location of the measurement, whereas wither height is relatively 

consistent among horses. Belly girth was measured around the widest part of the belly 

with the measuring tape perpendicular to the ground. Mid-neck circumference was 

measured at a point half-way between the poll and the tallest point of the withers. Lower 

neck circumference was measured at the widest point of the neck, directly in front of the 

shoulder.  

Ultrasound was used to measure subcutaneous fat depth at specific locations at the 

end of Phase 1 and just prior to total fecal collections at the end of Phase 2. Ultrasound 

measurements were taken on two consecutive days and measurements were averaged. 

The settings on the ultrasound machine (Aloka, Hitachi Medical Systems, Switzerland) 

were near gain set to 28, far gain set to 4.6 and overall gain set to 86. Horses were 

brushed to remove any dirt on the skin before measurement and vegetable oil was used as 

a conductor. Measurements were taken with the horses standing square with all four 
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hooves flat on the ground. Subcutaneous fat depth (cm) was measured on the neck 

midway between the poll and the tallest point of the withers perpendicular to the top of 

the neck, at the shoulder behind the scapula, between the 12th and 13th rib, on the rump 

midway between the tuber coxae and the tuber ischii, and at a point located 10 cm cranial 

from the tail-head root. Unless otherwise specified, measurements were made with the 

ultrasound probe perpendicular to the ground and depth of fat was measured 5 cm from 

the midline.  

 Total body water (TBW) was measured at the end of Phase 1 and just prior to 

total fecal collections in Phase 2. A deuterium oxide (D2O) dilution technique was used 

that has been previously validated in ponies (Dugdale et al., 2011b). A catheter was 

placed in the left jugular vein of each horse on the morning of the procedure. Horses were 

weighed and a pre-dose blood sample was collected in a heparin tube. The BW was used 

to calculate the dose of D2O to be given (0.12 mg D2O/kg BW). To calculate the exact 

amount of D2O given, a syringe and needle were weighed to obtain a tare weight. Sterile 

D2O was then drawn from a bottle and the syringe, needle, and D2O were re-weighed to 

obtain the exact weight of D2O to be administered to each horse. The isotope was 

administered via the catheter over approximately 60 sec and then was allowed to 

equilibrate into all body water compartments for 4 h. During this time period, food and 

water were withheld from the animals and attempts were made to keep horses cool with 

fans, as needed, to reduce any sweat losses. After the 4-h equilibration period, a post-dose 

blood sample was collected from the right jugular vein into a tube containing heparin. 

Horses were weighed again. Pre-dose and post-dose plasma samples were used to 

determine TBW.   
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 A 5-d total fecal collection was performed at the end of Phase 2. Geldings were 

fitted with collection harnesses (The Horse Diaper, Equisan Marketing Pty Ltd., Victoria, 

Australia; Nappy, Stablemaid Horse Hygeine and Waste Management, Australia) that 

allowed for the capture of all feces and urine. Mares were fitted with fecal collection 

harnesses (Bun-Bag, Sagle, ID) to allow for capture of all feces. A voluntarily voided 

spot sample of urine was collected on d 5 for mares, but complete collection of urine was 

not performed for mares. Urine from one mare on the MA diet was not collected.  

Horses were adapted to the collection harnesses for at least 2 wk prior to the 

collection period. During the collection period, horses remained in stalls and were hand-

walked for 15 min twice daily. Horses were monitored throughout the collection period. 

Feces were composited for each horse over each 24-h period. At the end of a 24-h period, 

feces were thoroughly mixed, weighed, and a 10% subsample was saved for analysis. 

Spot samples of feces (approximately 250 g each) were taken every 4 h for indirect 

determination of digestibility by measuring TiO2, which will be discussed in Chapter 5. 

Total daily fecal output was calculated by adding the weight of composite feces and the 

weights of all the spot samples of feces in the 24-h period.  

Urine from the geldings for each 24-h period was thoroughly mixed using a paint 

mixer, weighed, and a 10% subsample was acidified according to O’Connor and Nielsen 

(2006) and frozen at -20°C. Any spilled urine was absorbed by pre-weighed absorbent 

pads to obtain weight, but this urine was not combined with uncontaminated urine. 

Volume of urine was calculated by dividing the weight of the urine by the density. 

Density was obtained by weighing 100 ml of urine.  
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Sample analysis 

 Digestibility of DM, OM, NDF, ADF, energy, Ca, P, and Mg were determined by 

analyzing samples of feed, refusals, and feces. Dry matter was determined by drying 1 g 

of wet sample in a 55 °C forced-air oven for 24 h and reweighing to obtain the dry 

weight. Organic matter was determined by ashing samples in pre-weighed crucibles at 

600°C overnight and reweighing to determine ash content. Organic matter was calculated 

as dry feed weight minus ash weight.  Samples were analyzed for NDF and ADF using 

the Ankom 200 Fiber Analyzer (Ankom Technology, Macedon, NY). Gross energy (GE) 

was measured using a bomb calorimeter and used to calculate actual DE intake. Ether 

extract of the feeds was analyzed by boiling feeds in petroleum ether and weighing 

extracted fat (AOAC method 920.39).  

 Phosphorus in feed, composite feces, and refusals was determined by a 

gravimetric quimociac technique (Shaver, 2008). Serum, salivary, and urinary P were 

determined using a colorimetric assay (Fiske and Subbarow, 1925). Calcium in serum, 

urine, feed, feces, and refusals was determined via atomic absorption (Bowers Jr and 

Rains, 1988). Magnesium in urine, feed, feces, and refusals was also determined via 

atomic absorption (Bowers Jr and Rains, 1988).   

 Bone alkaline phosphatase (BAP) in serum was measured using an EIA 

(MicroVue BAP EIA; Quidel, San Diego, CA). Concentration of cross-linking C-

terminal telopeptides of type I collagen (CTX-1) was measured in serum using an ELISA 

previously validated in horses (Carstanjen et al., 2004; Serum CrossLaps CTX-1 ELISA; 

Immunodiagnostic Systems Limited, Tyne & Wear, UK). Plasma non-esterified fatty acid 
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(NEFA) concentration was determined colorimetrically (Free Fatty Acid Quantitation 

Kit; Sigma-Aldrich, St. Louis, MO). Plasma triglyceride (TG) concentration was 

determined enzymatically (Serum Triglyceride Determination Kit; Sigma-Aldrich, St. 

Louis, MO). Serum creatinine was determined colorimetrically (Creatinine Assay Kit; 

Sigma-Aldrich, St. Louis, MO). Plasma urea-N (PUN) was analyzed using a colorimetric 

assay as previously described (Urschel et al., 2007). Urinary creatinine was analyzed 

using a chemistry analyzer (Konelab; Thermo-Scientific, United States). All samples 

were analyzed in duplicate and concentrations were calculated using appropriate 

standards included in the kit or described in the procedure. Samples were diluted as 

needed to ensure results were in the middle of the standard curve. For BAP and CTX-1, 

quality control samples provided in the kit were analyzed on the same plate as the 

samples and concentrations fell within the acceptable range of expected concentrations. If 

more than one plate was needed to analyze samples for any assay, control samples from a 

donor horse were included on each plate for quality control. Samples were rerun if the 

CV for duplicates was greater than 10%. 

 Plasma samples for determination of D2O were analyzed by a commercial 

laboratory (Metabolic Solutions Inc., Nashua, NH) as follows. Plasma was deproteinated 

using zinc sulfate and then analyzed for D2O using wavelength-scanned cavity ring-down 

spectroscopy. Plasma D2O abundance was used to calculate total body fat as described by 

Dugdale et al. (2011b). Briefly, the difference in D2O concentration pre- and post-dosing 

was used to calculate TBW in kg and was then corrected using a 4% correction factor for 

isotopic exchange between D2O and non-water body components. Total body water was 

converted to a percentage using BW (average of pre-dose BW and post-dose BW) and 
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then fat-free mass (FFM) was calculated using a lean tissue hydration factor of 0.732 

(Pace and Rathbun, 1945). Body fat was calculated as: body fat, % = 100 – FFM (%). 

Calculations and statistics 

Apparent absorption of minerals was calculated by subtracting fecal losses from 

dietary intake. Retention of Ca, P, and Mg was calculated by subtracting fecal and 

urinary losses (geldings only) from dietary intake. Apparent digestibility of DM, NDF, 

ADF, Ca, P, and Mg were calculated as follows: (intake – feces)/intake x 100. In the case 

of feed refusals, the nutrient concentration of the feed refusal was analyzed and the 

amount of nutrient in the feed refusal was subtracted from the amount of nutrient offered 

per day in order to calculate actual intake. True digestibilities of Ca, P, and Mg were 

calculated by correcting for fecal endogenous losses; 10 mg P/kg BW, 20 mg Ca/kg BW, 

and 6 mg Mg/kg BW (NRC, 2007). Fractional urinary excretions of Ca, P, and Mg were 

calculated using the following equation: urine mineral conc ×serum creatinine conc
serum mineral conc ×urine mineral conc

. Serum for 

fractional excretion calculations was taken 2 d prior to the collection period and urine 

was collected on d 5 of collection for the mares and on all days of collection for the 

geldings.  

Actual DE intake was measured by subtracting fecal GE from feed GE. Digestible 

energy intake estimated from values obtained from commercial analysis (DairyOne, 

Ithaca, NY) and from two other equations were compared to actual DE intakes. The first 

equation is from Pagan (1998) and is as follows: DE, kcal/kg DM = 2,118 + (12.18 x 

CP%) – (9.37 x ADF%) – (3.83 x hemicellulose%) + (47.18 x fat%) + (20.35 x NFC%) – 

(26.3 x ash%); where hemicellulose = NDF – ADF and where non-fiber carbohydrate 
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(NFC) = 100 – NDF% - fat% - ash% - CP%.  The second set of equations is from NRC 

(2007) and they are as follows. For forages and roughages, DE, Mcal/kg DM = 4.22 – 

(0.11 x ADF%) + (0.0332 x CP%) + (ADF%2); for energy feeds and protein supplements, 

DE, Mcal/kg DM = 4.07 – 0.055 x (ADF%). The difference between calculated DE from 

all three sources (commercial laboratory, Pagan (1998) and NRC (2007)) and actual 

measured DE for each treatment were evaluated using paired t-tests.  

Digestibility and balance data were analyzed using an ANOVA with repeated 

measures with treatment as the main effect, block as the random effect, and day of 

collection as the repeated measure (SAS 9.4; SAS Institute, Inc, Cary, NC). Day of 

collection was not significant in any of the models.  

Blood constituents were analyzed in two ways. First concentrations in the final 

blood samples (end of Phase 2) were analyzed with an ANOVA using baseline values 

(end of Phase 1 samples) as co-variants to examine differences in final concentrations. 

Then they were analyzed using repeated measures ANOVA to ensure there were no 

differences in pre-treatment (end of Phase 1) concentrations. Treatment was the main 

effect and block was the random effect. For salivary P, values for each horse were 

averaged across the three days of saliva collection to obtain one value per animal and 

then data were analyzed using an ANOVA with treatment as the main effect and block as 

the random effect.  

Body weight, BCS, body fat, morphometric and ultrasonic measurements were 

analyzed using an ANOVA with repeated measures. Treatment was the main effect, 
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block was the random effect, and time (beginning or end of Phase 2) was the repeated 

measure.  

When effects were found to be significant, means were separated using an LSD 

test. Significance was considered when P < 0.05 and a trend when 0.05 < P < 0.10. All 

data are presented as LS means. 

Relationships between all BW, BCS, morphometric, ultrasonic, and TBW 

measurements were evaluated using simple linear regression. Simple linear regression 

was also used to evaluate the relationships between P excretion and blood variables.  

Results and Discussion 

 All horses completed all phases of the study including the total fecal collection 

period. The results will be divided into three sections: (1) mineral digestibility and 

balance; (2) energy intake, BW change, and changes in measures of body composition; 

and (3) the effect of energy restriction and BW loss on mineral metabolism. 

Mineral digestibility and balance 

As planned, P intake was not different among treatments (Table 4-4; P > 0.10), 

however, fecal excretion of P tended to be greatest in LO horses and lowest in GA on a 

BW basis (P = 0.0853). As a result, apparent P absorption tended to be greater in GA 

horses compared with LO horses, with MA being intermediate (P = 0.0662). 

Additionally, apparent and true P digestibilities tended to be greatest in GA, lowest in LO 

and intermediate in MA (P = 0.0672 for apparent digestibility and P = 0.069 for true 

digestibility). True P digestibilities calculated using estimates of endogenous losses 

(NRC, 2007) ranged from 25.4% in LO to 35.6% in GA horses.  
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In this study, the GA horses were close to P balance. When endogenous P losses 

of 10 mg P/kg BW are assumed (NRC, 2007) true digestibility was 35% for GA horses, 

which is the same as the 35% true P digestibility used by the NRC (2007) to calculate 

daily P requirements. This result is not surprising, as the NRC (2007) calculated the P 

requirement using estimated endogenous losses of 10 mg P/kg BW. Horses were fed the 

NRC (2007) requirement and used NRC (2007) estimated amounts of endogenous losses 

to calculate true P digestibility. By these calculations, a 500-kg horse at maintenance 

would be excreting approximately 10 g of “undigested” P (10 mg P/kg BW = 5 g P of 

endogenous origin; 15 g P excreted – 5 g P endogenous = 10 g P “undigested”). 

However, if some of the assumed “undigested” P is actually P that was recycled post-

absorption, then horses that are retaining more P would exhibit greater P digestibilities 

due to reduced P recycling. The GA horses did tend to absorb more P and excrete less P 

and as a result tended to have a greater true P digestibility of 35%. On the other end, 

horses losing weight had lower true P digestibilities (25%), potentially due to increased P 

recycling caused by P being mobilized from tissue during weight loss. These results 

supported the hypothesis that horses losing weight would excrete more P in their feces 

than horses gaining weight, due to P secretion into the GI tract. 

On a BW basis, MA horses consumed more Ca than GA horses and LO consumed 

an intermediate amount (Table 4-5; P = 0.0427), however fecal excretion was not 

different among treatments (P > 0.10). As a result, apparent Ca absorption was lower in 

GA horses compared with MA (P = 0.0210), but was not different than LO (P > 0.10). In 

addition, there was a tendency for GA to have a lower apparent Ca digestibility compared 

to LO and MA (P = 0.0683). True Ca digestibility ranged from a low of 76.8% for GA 
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horses and a high of 83.0% for MA horses and was not different among treatments (P > 

0.10). The NRC (2007) estimates true Ca digestibility to be 50%, but Pagan (1994) has 

reported true Ca digestibilities of 75% by mature horses over many trials, which would 

be closer to the values observed in this study (77 to 83%; Table 4-5). Additionally, 

previous research in this lab have reported true Ca digestibility to be 70% for mature 

horses fed close to their Ca requirement (Fowler et al., 2015). The NRC (2007) does 

contend that a conservative estimate of true Ca digestibility was used to calculate 

requirements for all horses in order to ensure appropriate absorption for bone health, 

particularly in growing animals. Thus, the large values observed here for true Ca 

digestibility are not unusual.  

Simple linear regression was used to examine the relationship between dietary 

Ca:P ratio and fecal Ca and P excretion, as there were slight differences in Ca intake but 

not in P intake among groups. However, there were no relationships between dietary 

Ca:P ratio and fecal P excretion or fecal Ca excretion (P > 0.10; data not shown). 

Magnesium intake was greater in MA and GA horses compared to LO horses 

(Table 4-6; P =0.0044), but fecal excretion was not different among treatments (P > 

0.10). As a result, MA and GA horses apparently absorbed more Mg compared to LO (P 

=0.0226). However, apparent and true digestibilities of Mg were not different among 

treatments (P > 0.10). True Mg digestibilities ranged from 60.1% in LO to 62.5% in MA. 

The NRC (2007) estimates true Mg digestibility to be 40%, although values in the 

literature range from 40 up to 67% (Schryver et al., 1987; Fowler et al., 2015).   
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For the geldings (n = 3 per diet), mineral balance could be calculated due to the 

collection and analysis of urine. Tables 4-7, 4-8, and 4-9 show mineral balance data for 

the geldings only, with the inclusion of urinary mineral concentration and overall mineral 

retention. There were no differences in P intake, excretion, digestibility or retention 

(Table 4-7) among dietary treatments. Daily urinary P excretion was low for all 

treatments (< 2 mg P/kg BW), further supporting the notion that the primary route of P 

excretion is in the feces. Urinary P concentrations ranged from a low of 0.000054% in the 

LO treatment to 0.000163% in the GA treatment (P = 0.0169). Urinary P concentrations 

were intermediate in MA horses, but were not significantly different from the 

concentrations in the LO treatment. Horses receiving all treatments were in negative P 

balance, but the LO treatment was the only group of horses that had P retention that was 

different from zero (P < 0.05). Fecal P excretion as a percentage of intake ranged from 

100% in GA to 110% in LO, but was not different among treatments (P > 0.10). Urinary 

P excretion was very low as a percentage of intake and did not exceed 0.058% of intake. 

Despite no statistical differences for P excretion, digestibility, or retention, numerically 

the geldings P data followed a similar pattern to P data with all horses. A power test 

reveals that 5 observations per treatment are needed to observe differences in P 

digestibility among treatments, so it is likely that the reduced number of horses (n=3) in 

the gelding-only dataset decreased the ability to detect significant differences. 

On a BW basis, Ca intake by geldings was lowest for GA compared to LO and 

MA (Table 4-8; P = 0.0081). In addition, MA horses apparently absorbed more Ca than 

GA, and LO was intermediate to MA and GA (P = 0.0216). Urinary Ca concentrations 

ranged from 0.074 to 0.14%, with the lowest concentrations observed in the LO treatment 
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and the largest concentrations observed in the GA and MA treatments (P < 0.05). 

However, urinary Ca excretion (mg Ca/kg BW) and overall Ca retention were not 

different among treatments (P > 0.10). All treatment groups were in positive Ca balance 

and Ca retention was greater than zero for all treatments (P < 0.05). Apparent Ca 

digestibility tended to be greatest in MA and lowest in GA (P = 0.0688), but true 

digestibility was not different among treatments (P > 0.10). Fecal Ca excretion as a 

percentage of intake tended to be greatest in GA and LO and lower in MA (P = 0.0688) 

and ranged from 50% to 64%. Urinary Ca excretion as a percentage of intake ranged 

from 29% to 35% and was not different among treatments (P > 0.10).  For the geldings 

only, Ca balance data appeared similar to data when all 15 animals are included. 

For the geldings only, Mg intake and fecal excretion were not different among 

treatments (Table 4-9; P > 0.10). Apparent Mg absorption was less for horses receiving 

the LO diet than horses receiving MA or GA (P = 0.0498). However LO horses excreted 

less Mg in their urine than MA and GA horses (P = 0.0536), leading to no differences in 

overall Mg retention among treatments (P = 0.4081). All horses were close to Mg balance 

and Mg retention was not different from zero for any treatment (P > 0.10). Neither 

apparent nor true Mg digestibility were different among treatments (P > 0.10). Fecal Mg 

excretion ranged from 61% to 69% of intake but was not different among treatments (P > 

0.10) and urinary Mg excretion ranged from 32% to 41% of intake, but again was not 

different among treatments (P > 0.10).  

 Table 4-10 shows fractional urinary excretion of Ca (FECa) and P (FEP) 

calculated using a spot sample from the mares (n = 5) as well as daily urine samples 

collected from the geldings (n = 9). Fractional Ca excretion followed a similar pattern 
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among treatments for mares and geldings, with GA having numerically lower FECa and 

LO having numerically higher values, although there were no statistical differences. 

Fractional Ca excretion ranged from a low of 10.9% to 23.2%. There were no statistical 

differences for FEP among treatments for mares or geldings and FEP was below 1% for 

all horses.  However, patterns of FEP were different for mares and geldings among 

treatments. Both mares and geldings in LO had numerically greater FEP, but GA mares 

had numerically lower FEP, while MA geldings had the numerical lowest FEP. This 

difference between mares and geldings, while not significant, may have been due to 

differences in the method of urine collection between mares and geldings. 

Dry matter digestibility, energy intake, changes in BW and measures of body composition  

Dry matter intake was similar between GA and MA horses, but lower in LO 

horses (Table 4-11). Despite similar DMI, DMD was greater in the GA horses compared 

to MA and was lowest in the LO horses (Table 4-11; P < 0.0001), consistent with 

differences in diet composition and expected digestibility of ingredients. There was a 

significant positive relationship between actual DE intake (measured using feed and fecal 

GE values) and DMD (P < 0.001) and DMD explained approximately 86% of the 

variation in actual DE intakes (R2 = 0.8561; Figure 4-1), indicating that horses 

consuming more digestible diets were able to digest more energy from the diets. This 

relationship may be useful as a tool to estimate DE of feeds based on their DMD, either 

in vitro or in vivo. 

Diets were formulated using DE values calculated from a feed analysis provided 

by a commercial laboratory and actual DE intake was measured using collected fecal 
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samples. Table 4-11 shows the DE intakes estimated from commercial feed analysis as 

well as those calculated from intake and fecal excretion. Additionally, DE values 

calculated from equations reported by Pagan (1998) and NRC (2007) are also included in 

this table. For all calculated and measured DE values, the LO treatment consumed the 

least amount of DE, the MA treatment consumed an intermediate amounts, and the GA 

treatment consumed the most DE (P < 0.0001).  

Because there were differences in DE intake among treatments, changes in BW, 

BCS, TBW, body fat, morphometric and ultrasonic measurements in each treatment from 

the beginning (Pre) to the end (Post) of the weight change phase (Phase 2) of the 

experiment were examined (Table 4-12). The time period in which the horses were 

expected to gain, maintain or lose weight was relatively short (3 to 4 wk) and the goal 

was to have GA and LO horses in a state of weight change during the total fecal 

collection period. From the beginning to the end of Phase 2, LO horses went from a BW 

of 566.10 to 555.05 kg (P < 0.05), MA horses went from 558.30 to 548.95 kg (P < 0.05), 

and GA horses went from 550.55 to 556.80 kg (P < 0.05).  

During Phase 2, horses fed the GA diet had the smallest weight change of 6.25 kg, 

but this weight change was significantly different from horses fed MA and LO (P < 0.05). 

Despite being fed diets with greater DE, horses fed MA lost a similar amount of weight 

as horses fed LO (-9.35 kg and -11.05 kg, respectively; P > 0.10). The reason that MA 

horses lost weight is not known. Figure 4-2 shows the comparison of actual DE intake 

versus calculated DE intake using equations based on commercial laboratory analysis, 

NRC (1989) and Pagan (1998). The actual DE in the MA diet was slightly lower than 

estimated, which could account for the unexpected weight loss. However, the MA horses 
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received the same diet in Phase 2 as in Phase 1, when weight was maintained. Actual DE 

was lower than all calculated DE values for the GA treatment (P < 0.05). For the LO 

treatment, actual DE was accurately calculated by some equations, but tended to be 

overestimated by the NRC (2007) equation (P < 0.10).  

There was a significant relationship between DMD and weight change (P < 0.05; 

Figure 4-3), with horses losing weight having lower DMD values compared with horses 

gaining weight, although this relationship may be confounded with DE intake. 

Accordingly, actual DE intake is positively related to weight change (P < 0.05; Figure 4-

4) with horses consuming more DE showing greater weight gain than horses consuming 

less DE. Using the relationship between actual DE and weight change, the amount of 

actual DE needed to maintain weight (weight change = 0) is 39.71 kcal/kg BW. While the 

elevated estimate of DE required for weight maintenance as suggested by the NRC 

(2007) is 36.3 kcal/kg BW, Barth et al. (1977) reported that 39.5 kcal/kg BW was 

required to maintain the BW of pony stallions, which is similar to the value generated 

from the equation in this study. Greater DE values needed for maintenance may be a 

result of individual variation or may be affected by breed. 

Subjective measures of body fatness (i.e. BCS) as well as objective measures 

(i.e.morphometric measurements) are being used by horse owners to estimate body 

composition of horses, so they were included here (Table 4-12). Despite significant 

weight changes, only LO horses had a significant change in BCS from 5.20 to 4.85 on a 

9-point scale (P < 0.05). Numerically, heart girth circumference and belly girth 

circumference values changed in the expected directions for each treatment based on BW 

changes, but the only significant change was for MA horses’ heart girth circumference to 
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decrease over time. Mid-neck and low-neck circumferences did not change in the 

expected directions and the only significant difference was for MA horses to have an 

increase in mid-neck circumference over time.  

 It was of interest to understand the tissue changes that occur with weight gain and 

weight loss; so measurements to estimate body fat, such as subcutaneous fat depth and 

body fat as measured by TBW, were employed. There were no significant differences in 

subcutaneous fat depth at the neck, shoulder, ribs, or rump sites (Table 4-12). However, 

subcutaneous tail-head fat depth was decreased in LO and MA horses during Phase 2 (P 

< 0.05). Body fat percentage was calculated based on subcutaneous rump fat depth as 

described by (Westervelt et al, 1976). Body fat percentages within treatments did not 

change during Phase 2 and calculated values ranged from 11.1% in LO to a high of 

13.3% in GA at the end of Phase 2.  

Subcutaneous fat depth at the tailhead was the ultrasonic measurement that was 

most related to BCS (P < 0.05), although the R2 was very low (R2 = 0.143; data not 

shown). Other studies have found similar results. In 5-mo old Thoroughbred foals, 

tailhead fat depth measured 10 cm cranial to the tailhead and 4 cm from midline 

explained 71% of the variation in body fat mass measured by chemical analysis post-

euthansia (Gee et al., 2003). Tailhead fat depth was the strongest predictor of BCS in 

donkeys in moderate condition (Quaresma et al., 2013) as well as in horses that had low 

BCS (3 to 3.5) and high BCS (8 to 8.5) (Gentry et al., 2004). Rump fat thickness 

measured in these studies was not as good at predicting BCS as tailhead fat thickness and 

in horses losing weight rump fat thickness changed less than tailhead fat thickness 

(Gentry et al., 2004).  
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Other studies have argued that rump fat thickness is a good predictor of body fat. 

Westervelt et al. (1976) demonstrated that ultrasonic rump fat thickness measured at the 

center of the pelvic bone and 5 cm from midline explained 86% of the variation in ether 

extractable body fat in horses and 64% of the variation in Shetland ponies. In Andalusian 

horses, tailhead fat thickness and rump fat thickness were highly correlated to obesity 

status, but tailhead fat thickness was dependent on sex and age, while rump fat thickness 

remained highly correlated independent of sex and age effects (Martin-Gimenez et al., 

2016).  

Differences in average subcutaneous fat depth was evaluated between sexes. 

Subcutaneous fat depth at each measured site was averaged for each horse and geldings 

were compared to mares using a t-test. Despite having similar BCS (5.2 and 5.4 for mares 

and geldings, respectively), mares tended to have greater fat depth at the neck than 

geldings (1.16 versus 0.85 cm, respectively; P = 0.0529) and had greater fat depth at the 

ribs than geldings (0.78 versus 0.40 cm, respectively; P < 0.05). Differences in fat 

deposition sites between sexes is well documented in human literature (Karastergiou et 

al., 2012) and some information is also available for horses. Racing Standardbred 

geldings have been reported to have less total body fat than mares of similar BW and 

athletic capability (Kearns et al., 2002b). In Andalusians, mares had greater fat thickness 

at the ribs compared to stallions, but in contrast with the current study, stallions had 

greater fat deposition along the neck (Martin-Gimenez et al., 2016). However, the current 

study used geldings and differences in fat deposition between intact and castrated males 

have yet to be investigated.  Because BCS is a holistic scoring system which accounts for 

fat at multiple locations on the animal (including the neck and ribs), it is possible that 
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BCS may not be different among sexes, but individual fat depots might differ. However, 

due to differences in how the two sexes carry fat, care may be necessary when using 

scoring systems that focus on one anatomical location of body fat, such as the cresty neck 

scoring system (Carter et al., 2009).  

Table 4-13 shows relationships between BCS and morphometric measurements. 

Body weight, belly girth:height, heart girth:height, heart girth:BW, and belly girth:BW 

were all significantly related to BCS. However, all R2 values were low, with the highest 

significant R2-value being 0.3885 for heart girth:height. Another study measuring 

relationships between BCS and similar morphometric measurements also found that the 

significant relationships were weak to moderate, with R2-values ranging from 0.35 for 

BW:height to 0.68 for belly girth:height (Carter et al., 2009). Carter et al. (2009) found 

the relationship between BCS and heart girth:height ratio was also significant and the 

authors stated that this measurement was the most useful measure to predict body 

condition, as belly girth circumference may be impacted by gut fill or pregnancy. 

However, based on observations from the current study, heart girth circumference 

measurements may have its limitations as well. Heart girth circumference may be useful 

for horses with a BCS greater than a 5, when fat is being deposited across the ribs, but at 

BCS below a 5 when fat disappears from the ribs, the circumference of the rib cage limits 

further changes in heart girth circumference and thus may become less useful as a 

measurement of body condition. Overall, morphometric measures in the current study 

were not strongly related to measures of TBW or BCS and were also not sensitive enough 

to detect changes in body composition during the treatment period.  
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 Measurements of TBW were performed on all horses before and after the weight 

change phase. However, TBW was not able to be accurately measured in 1 gelding in GA 

before the weight change phase due to a malfunction of the syringe used to dose the D2O. 

Therefore, only 29 observations of TBW were collected.  

 Overall, there was a positive linear relationship between TBW (kg) and BW, with 

heavier horses having more TBW (Figure 4-5; P < 0.05; R2 = 0.8075). Total body water 

percentage was not related to any of the individual morphometric measurements (neck 

circumference, heart girth, or belly girth; P > 0.05), but there were some relationships 

between TBW (%) and ratios of morphometric measurements (Table 4-14). The largest 

R2-value was observed for the relationship was between heart girth:BW and TBW (P < 

0.05; R2-value = 0.242), although the R2-value was low.  

Additionally, TBW (%) tended to be related to subcutaneous fat depth at the 

tailhead (P = 0.0749), although the R2-value was low (R2 = 0.113; data not shown). 

However, if only horses with a BCS ≥ 5 are included in the regression, the relationship 

between tailhead fat depth and TBW becomes significant (P < 0.05) and the R2-value 

increases (R2 = 0.5475; Figure 4-6). No other relationships existed between TBW (%) 

and subcutaneous fat depth. The non-linear relationship between tailhead fat depth and 

TBW demonstrates that tailhead fat depth loses accuracy in predicting TBW when horses 

have BCS < 5. Exponential relationships have also been described between measures of 

fat and BCS, with measurements being less useful in horses with higher BCS (fleshy to 

extremely fat) (Dugdale et al., 2011a; Dugdale et al., 2012; Quaresma et al., 2013; 

Martin-Gimenez et al., 2016).  
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It appears that above a BCS of 5, horses begin to deposit more fat subcutaneously 

at the tailhead compared to horses that are thinner. In growing sheep, subcutaneous fat is 

one of the last fat depots to develop, suggesting that development of other internal fat 

depots are prioritized over subcutaneous fat (Butler-Hogg, 1984). While the horses in the 

current study were not growing, it is likely that in thinner horses, internal fat is also 

prioritized over subcutaneous fat and thus, the depth of the subcutaneous fat at the 

tailhead only increases when horses reach a certain body condition where internal fat 

depots are sufficient.  

There was a significant curvilinear relationship between TBW (%) and BCS (P < 

0.05; R2 = 0.5104; Figure 4-7), which is similar to what has been observed in other 

studies (Martin-Rosset et al., 2008; Dugdale et al., 2011a). When only horses between a 

BCS of 4 and 5.5 were included in the regression, the relationship was linear and 

significant (Figure 4-8). There was no relationship between TBW (%)  and BCS for 

horses with BCS above 5.5 (P > 0.10; data not shown). Others have also suggested that 

the sensitivity of BCS to detect changes in body fat declines above BCS of 5 to 6 

(Dugdale et al., 2011a). Therefore, other measurements of body fatness, such as 

subcutaneous tailhead fat depth, may be more useful as BCS increases above 5.5. 

 Total body water (kg) was not affected by treatment or time of sampling (Table 4-

12; P > 0.10). Measurements of TBW were used to calculate body fat for each horse. 

Individual calculated values for body fat ranged from -3.2 to 10.7%. Body fat percentage 

decreased from pre- to post-treatment for LO and MA, while remaining unchanged for 

GA (Table 4-12; P < 0.05). Two LO horses had negative values for body fat at both 

timepoints. Other studies that have used D2O to calculate body fat in horses have also 
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reported some negative values for percent body fat in individual horses (Dugdale et al., 

2011b; Ferjak et al., 2017). When horses with negative values for body fat were removed 

from the data set, average body fat for LO pre-treatment was 7.95% and significantly 

decreased to 5.82% post-treatment. One of the LO horses that had negative values for 

body fat also drank twice as much water (84 ml water/kg BW) and excreted three times 

more urine (61 ml urine/kg BW) than the other horses in the study. Water intake for this 

gelding was more than 8 SD away from the overall mean of water intake and was treated 

as an outlier. It is possible that the large water intake of this horse affected measurement 

of TBW and thus influenced calculation of body fat.  

Body fat percentages calculated from measurements of TBW were low compared 

to estimates calculated from rump fat (Table 4-12). In other equine studies, actual total 

body fat measured by dissection ranged from 1% in Thoroughbreds of lean and 

emaciated condition (Gunn, 1987) to 20% in 18-mo old draft horses (De Palo et al., 

2013). In the study that validated the TBW technique in horses, dissected adipose tissue 

ranged from a low of 1.35% of BW in a pony with BCS of 1.25 up to a high of 26.34% in 

a pony with a BCS of 7 (Dugdale et al., 2011b). In this study, 10% was the largest body 

fat percentage estimated by TBW was in an animal that had a BCS of 6.5.  

Possible explanations for the low body fat percentages seen here include D2O 

losses associated with fecal and urinary excretion during D2O equilibration, variation in 

gut water content, or differences in lean hydration. All horses voided feces and almost all 

horses urinated (21 out of 30) during the 4 h equilibration periods. During the total fecal 

collection period, urine output and water intake was measured for the geldings. Geldings 

fed LO tended to have greater urinary volumes than GA, and MA was not different from 
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either treatment (Table 4-15; P = 0.1060). Water intake was greatest for MA and lowest 

for GA (P < 0.05), but LO was not different from either treatment group. Water retention 

was calculated by subtracting fecal and urine water from feed and free water intake. 

There were no differences in water retention (data not shown; P > 0.10). It is possible that 

these differences among treatments also existed on the day of the D2O test at the end of 

Phase 2 when horses had been on their treatment diets for at least 3 wk. Differences in 

urinary output and fecal water may have influenced measurement of TBW. 

Additionally, differences in diet composition among treatments may have resulted 

in differences in gut water. Horses fed a high fiber diet have more fluid in their GI tract 

than horses fed a low fiber diet (Warren, 2001). Water in the GI tract is exchangeable 

with D2O and can affect estimation of body water and of body fat. In this study, horses 

fed LO would be consuming the most amount of fiber (Appendix A) and these horses 

also have the lowest estimates of body fat. Another potential source of error is in the 

calculation of body fat. Body fat is calculated based on an assumption that lean hydration 

is 73.2%, although this value comes from a study done in guinea pigs (Pace and Rathbun, 

1945) and others have reported lean hydration to range from 73.8% in goats to 77% in 

sheep (Sheng and Huggins, 1979). Underestimation of lean hydration could result in 

underestimation of body fat. For example, using a hydration factor of 73.2% for a horse 

with 67% body water would result in an estimate of 8.5% body fat. If a hydration factor 

of 77% is used, the estimate of body fat is 13%.  



 

83 
 

Effect of energy restriction and BW loss on mineral metabolism  

Because there was no significant difference in weight change between LO and 

MA treatments, these treatments were combined into one ‘Loss’ treatment group and 

compared to the original GA treatment group (‘Gain’). Table 4-16 shows mineral 

digestibility data for this treatment grouping. Phosphorus intake was not different 

between Gain horses and Loss horses (P > 0.10), but Gain horses excreted less fecal P 

than Loss horses (P = 0.0434). Gain horses tended to have a greater P absorption, 

apparent and true P digestibility (P ≤ 0.10). Gain horses consumed less Ca than Loss 

horses (P = 0.0312), but there was no difference in fecal Ca excretion (P > 0.10). 

Therefore, Gain horses absorbed less Ca and had a lower apparent Ca digestibility than 

Loss horses (P < 0.05), although true Ca digestibility was not different between 

treatments (P > 0.10). There were no statistical differences between treatments for Mg 

balance data.  

 Horses were also grouped by actual weight lost, gained or maintained and mineral 

digestibility was compared (Table 4-17). There were nine horses that lost weight (weight 

loss > 2 kg; ‘Loss’), two horses that maintained weight (weight change between -2 and 

+2 kg; ‘Main’), and four horses that gained weight (weight gain > 2 kg; ‘Gain’). When 

grouped this way, Ca intake was not different among groups (P > 0.10), but fecal Ca 

excretion tended to be greatest in Main horses and lowest in Loss horses (P = 0.1034). 

Thus, Loss horses had greater Ca absorption and apparent Ca digestibility compared with 

Main horses and Gain horses (P < 0.05). There were no differences among groups for P 

or Mg balance data. However, fecal P excretion numerically followed a similar pattern to 

the original treatment groups, with Loss horses excreting the most P (32.23 mg P/kg BW) 
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and Gain horses excreting the least P (29.91 mg P/kg BW) and Main horses in the middle 

(30.55 mg P/kg BW).  

While minimal changes in BCS, ultrasonic measurements of fat depth and 

morphometric measures occurred as a result of the dietary treatment, it was of interest to 

determine if there were changes in markers of bone, protein, and fat metabolism. Table 4-

18 shows concentrations of variables measured in the blood at the end of Phase 2, using 

values measured at the end of Phase 1 as covariates for testing differences among 

treatments. There were no differences among treatments in concentrations of Ca, P, or the 

Ca:P in the blood. However BAP, a marker of bone formation activity, was lower in 

horses in LO and MA compared to horses in GA (P = 0.0481). Conversely CTX-1, a 

marker of bone resorption, was greater in LO horses than GA horses (P = 0.0143). Using 

these two markers of bone turnover, the ratio of BAP:CTX-1 would indicate bone 

formation in relation to bone resorption. The BAP:CTX-1 was greatest in GA compared 

with LO and MA horses (P = 0.0279). Creatinine and PUN, markers of protein turnover, 

were greatest in LO horses and lowest in GA horses (P < 0.05). Non-esterified fatty acids 

and TG concentrations were not different among treatments.  

 Table 4-19 shows concentrations of blood variables for each treatment at the end 

of Phase 1 and the end of Phase 2. There were no differences in any of the blood 

variables measured among treatments at the end of Phase 1 before dietary treatments 

were imposed. Horses in GA had increases in BAP and BAP:CTX-1 (P < 0.05) and 

decreases in CTX-1 and creatinine from the end of Phase 1 to the end of Phase 2 (P < 

0.05). Horses in MA had a significant decrease in CTX-1 from the end of Phase 1 to the 

end of Phase 2. These data indicate that GA horses were increasing bone activity, as 
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indicated by larger BAP values and a larger BAP:CTX-1 ratio. Horses in LO were 

undergoing bone resorption, as indicated by greater levels of CTX-1. Additionally, horses 

in LO also had greater markers of protein metabolism, altogether suggesting that LO 

horses were mobilizing both protein and bone. Phosphorus contained in these mobilized 

tissues may have resulted in the increased fecal P excretion observed in these horses.  

Salivary P concentration was of interest to determine if recycling of P into the GI 

tract occurred in the saliva, as it does in ruminants (Horst, 1986). However salivary P 

concentration was not different among treatments and averaged 31.8 ± 1.6 mg P/L saliva. 

It is estimated that ponies weighing 150 kg secrete 10 to 12 L/d of saliva, or 66 to 80 

ml/kg BW per day (Alexander and Hickson, 1970). Using these salivary flow rates, 

horses in this study secreted approximately 2.10 to 2.54 mg P/kg BW in their saliva, 

which equates to 7 to 8.4% of their daily P intake. This estimate of salivary P is slightly 

lower than values previously measured in our lab (Fowler, 2013), but greater than the 

concentrations of 6.2 to 8.6 mg P/L saliva observed in other studies (Alexander, 1966; 

van Doorn et al., 2011). Differences in method of saliva collection, processing, and 

analysis may have caused these differences among studies. 

Fecal P excretion was plotted against weight change to determine if a relationship 

exists (Figure 4-9). There was no relationship between fecal P excretion and weight 

change over the study period (P = 0.1281), indicating that overall weight change does not 

explain much of the variation in P absorption. While this study did not observe a 

relationship between weight change and P excretion, the differences seen among horses 

could be due to differences in the composition of the weight gained or lost. For example, 

horses that were gaining mostly fat would have a lower P retention compared to horses 
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gaining mostly bone or muscle, due to the low concentration of P in adipose tissue. To 

investigate this theory further, samples of muscle, fat, hide, and salivary glands were 

taken from one pony that was euthanized as part of another study. Phosphorus was 

analyzed in these samples as previously described (D'Angelo et al., 2001). Table 4-20 

shows the results from this one pony. As expected, adipose tissue had a relatively low P 

concentration compared to muscle (about 0.0175 and 0.585%, respectively). Therefore, if 

a horse lost 1 kg of adipose tissue, only 0.175 g of P would be lost with that tissue. 

However, if a horse lost 1 kg of muscle (DM basis), 5.85 g of P would be lost. However, 

if muscle is assumed to contain 27% DM (based on 73% lean hydration as estimated by 

Pace and Rathburn (1945)), then the amount of P in 1 kg of wet muscle would be 1.58 g. 

Therefore, relationships between fecal P excretion and markers of bone, adipose, and 

protein were evaluated to investigate if metabolism of these various body components 

would help to explain differences in fecal P excretion. 

There were significant relationships between fecal P excretion and CTX-1 as well 

as P excretion and creatinine (Table 4-21; P < 0.05) and a tendency for a relationship 

between P excretion and PUN (P = 0.1098). The strongest relationship was between P 

excretion and CTX-1, with an R2-value of 0.5477. As CTX-1 is a marker of bone 

resorption, horses with greater concentrations of CTX-1 would be undergoing more bone 

resorption, releasing Ca and P into the body. Unneeded P would be secreted into the GI 

tract for excretion, leading to greater fecal P excretion, thus supporting the hypothesis 

that tissue loss influences secretion of P into the GI tract. Bone loss during weight loss 

has been thoroughly examined in humans (Compston et al., 1992; Pritchard et al., 1996; 

Ensrud et al., 2003), but this is the first study in horses that has documented changes in 
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bone metabolism in response to weight change. Human studies have also demonstrated 

that an increase in bone loss is associated with increased excretion of P, although the P 

excretion in humans was mostly urinary (Hulley et al., 1971; Sebastian et al., 1994).  

No relationships existed between fecal P excretion and any other variables 

measured in the blood. While there were no differences in blood markers of fat 

metabolism, there were some changes in measures of adiposity, such as TBW, BCS, and 

subcutaneous fat depth at the tailhead. Despite the inability of weight change alone to 

explain differences in P excretion, amount of bone resorption as well as protein turnover 

do assist in explaining differences in P excretion. 

Conclusion 

 Weight loss affects markers of muscle and bone metabolism, and increases 

excretion of P. As a result, there tended to be differences in fecal P excretion and 

digestibility in horses gaining weight and horses losing weight, despite being fed the 

same amount of P and similar amounts of DM. These data suggest that endogenous 

secretions of P into the GI tract are not constant and change depending on physiological 

state. Digestibility of P may be greater than previously believed if endogenous losses 

have been underestimated due to recycling of P into the GI tract.  
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Tables and Figures 

Table 4-1. Nutrient composition of feeds used to formulate diets (DM basis) 

Item Balancer 
pellet1 

Oats Beet pulp Timothy 
cubes 

Timothy 
hay 

Soybean 
oil 

DM, %2 90.8 89.2 91.8 91.1 91.9 100 
CP, %2 29.5 11.9 9.03 11.0 11.7 -- 
ADF, %2 19.6 16.7 24.6 41.0 39.5 -- 
aNDF, %2 31.3 26.2 39.9 64.4 63.3 -- 
Ether extract, %3 5.40 2.25 0.18 1.23 1.17 100 
NFC, %4 17.5 62.7 39.9 15.6 14.5 -- 
Ca, %2 0.49 0.08 0.70 0.57 0.36 -- 
P, %2 0.68 0.43 0.10 0.20 0.26 -- 
Mg, %2 0.55 0.15 0.30 0.24 0.16 -- 
K, %2 1.67 0.47 0.46 1.54 2.03 -- 
Na, %2 0.495 0.012 0.090 0.040 0.010 -- 
Fe, ppm2 565 136 176 718 66 -- 
Zn, ppm2 420 27 15 24 26 -- 
Cu, ppm2 251 4 7 8 8 -- 
Mn, ppm2 251 44 41 53 65 -- 
DE, Mcal/kg2 2.97 3.28 2.76 1.64 2.07 9.19 

1Balancer pellet formulated and provided by Buckeye™ Nutrition, Dalton, OH 
2As analyzed by Dairy One Forage Laboratory (Ithaca, NY) except for soybean oil 
3As analyzed in-house using Sohxlet petroleum ether extraction 
4NFC (non-fiber carbohydrates) = 100 - %NDF - %ether extract - %ash - %CP 
 
 
Table 4-2. Composition of diets (%) for loss (LO), maintain (MA), and gain (GA) 

treatments 

Feed LO MA GA 
Balancer pellet1 5.0 4.9 4.6 
Oats 0.0 5.7 16.3 
Beet pulp 0.0 14.2 24.9 
Timothy cubes 63.1 35.1 22.0 
Timothy hay 31.6 37.7 22.6 
Soybean oil 0.0 2.2 9.3 
Sodium chloride 0.3 0.2 0.2 

1Balancer pellet formulated and provided by Buckeye™ Nutrition, Dalton, OH 
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Table 4-3. Nutrient intakes of horses fed loss (LO), maintenance (MA), and gain (GA) 

diets compared to nutrient requirements for an average horse at maintenance1  

Nutrient LO MA GA Requirement 
for horse at 
maintenance1 

DE, kcal/kg BW2  24.09 34.34 44.68 33.4 
NDF, g/kg BW 7.67 8.06 6.50 -- 
ADF, g/kg BW 3.58 4.53 3.58 -- 
Ether extract, % 1.52 3.44 10.75 -- 
NFC, %3 13.80 22.59 28.67 -- 
CP, g/kg BW 1.53 1.56 1.48 1.26 
Ca, mg/kg BW 60.37 67.03 61.16 40 
P, mg/kg BW 30.55 31.52 30.37 28 
Mg, mg/kg BW 27.77 32.42 31.33 15 

1Average maintenance requirements as described by NRC (2007) 
2Calculated DE based on commercial lab analysis (DairyOne, Ithaca, NY) 
3NFC (non-fiber carbohydrates) = 100 - %NDF - %ether extract - %ash - %CP 

 

Table 4-4. Phosphorus digestibility over the fecal collection period for all horses fed loss 

(LO), maintenance (MA) and gain (GA) diets (LS means; n=15) 

Item LO MA GA SEM P-value 
Intake, g 16.74 17.23 16.80 0.61 0.8178 
Intake, mg/kg BW 30.55 31.52 30.37 0.46 0.2024 
Fecal excretion, g  18.13 17.36 16.35 1.27 0.2569 
Fecal excretion, mg/kg BW 32.90 31.64 29.62 1.80 0.0853 
Apparent absorbed, g1 -1.39b -0.13ab 0.45a 0.87 0.0500 
Apparent absorbed, mg/kg BW1 -2.35 -0.12 0.76 1.57 0.0662 
Apparent P digestibility, % -7.38 -0.44 2.59 5.02 0.0672 
True P digestibility, %2 25.41 31.29 35.62 5.25 0.0690 

abc Means within a row lacking a common superscript differ (P < 0.05) 
1Absorbed = Intake – fecal output 
2True digestibility calculated using fecal endogenous P losses of 10 mg/kg BW (NRC, 
2007) 

 



 

90 
 

Table 4-5. Calcium digestibility over the fecal collection period for all horses fed loss 

(LO), maintenance (MA) and gain (GA) diets (LS means; n=15) 

Item LO MA GA SEM P-value 
Intake, g 31.11 32.69 29.70 1.46 0.2843 
Intake, mg/kg BW 56.84ab 59.80a 53.67b 1.84 0.0427 
Fecal excretion, g  16.89 16.59 17.76 1.43 0.7987 
Fecal excretion, mg/kg BW 30.50 30.30 32.24 1.84 0.7101 
Apparent absorbed, g1 14.22ab 16.11a 11.94b 1.20 0.0233 
Apparent absorbed, mg/kg BW1 26.34ab 29.50a 21.43b 2.22 0.0210 
Apparent digestibility, % 46.59 49.42 39.09 3.22 0.0683 
True digestibility, %2 81.81 82.96 76.79 3.08 0.3273 

abc Means within a row lacking a common superscript differ 
1Absorbed = Intake – fecal output 
2True digestibility calculated using fecal endogenous Ca losses of 20 mg/kg BW (NRC, 
2007) 

 

 

 

Table 4-6. Magnesium digestibility over the fecal collection period for all horses fed loss 

(LO), maintenance (MA) and gain (GA) diets (LS means; n=15) 

Item LO MA GA SEM P-value 
Intake, g 12.69b 14.36a 14.10a 0.41 0.0286 
Intake, mg/kg BW 23.25b 26.33a 25.51a 0.73 0.0044 
Fecal excretion, g  8.38 8.68 8.58 0.47 0.8988 
Fecal excretion, mg/kg BW 15.21 15.89 15.57 0.68 0.7810 
Apparent absorbed, g1 4.31b 5.69a 5.52a 0.49 0.0129 
Apparent absorbed, mg/kg BW1 8.04b 10.44a 9.94a 1.00 0.0226 
Apparent digestibility, % 34.18 39.54 38.87 3.32 0.2446 
True digestibility, %2 60.05 62.50 62.43 2.97 0.7248 

abc Means within a row lacking a common superscript differ 
1Absorbed = Intake – fecal output 
2True digestibility calculated using fecal endogenous Mg losses of 6 mg/kg BW (NRC, 
2007) 
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Table 4-7. Phosphorus balance for geldings only fed loss (LO), maintenance (MA) and 

gain (GA) diets (LS means; n=9)  

Item LO MA GA SEM P-value 
Intake, g 17.55 17.43 16.54 0.89 0.6798 
Intake, mg/kg BW 31.24 31.58 29.93 0.51 0.1298 
Fecal excretion, g 19.49 18.45 16.53 1.75 0.2007 
Fecal excretion, mg/kg BW 34.44 33.38 30.05 2.42 0.1118 
Absorbed, g1 -1.94 -1.01 0.00472 1.21 0.2277 
Absorbed, mg/kg BW1 -3.20 -1.81 -0.122 2.13 0.2687 
Urinary concentration, % 0.000054b 0.000081b 0.000163a 0.000023 0.0195 
Urinary excretion, g 0.0082 0.0067 0.0093 0.0013 0.4417 
Urinary excretion, mg/kg 
BW 

0.015 0.012 0.017 0.0025 0.4382 

Retention, g3 -1.95 -1.02 -0.005 1.22 0.2285 
Retention, mg/kg BW3 -3.21 -1.82 -0.13 2.13 0.2696 
Apparent digestibility, % -9.87 -5.75 -0.33 6.85 0.2886 
True digestibility, %4 22.19 25.91 33.08 7.13 0.2117 
Urinary P, % of intake 0.046 0.039 0.057 0.0082 0.3555 
Fecal P, % of intake 109.87 105.75 100.33 6.85 0.2886 
Total P excreted, % of 
intake5 

109.92 105.79 100.39 6.85 0.2897 

1Absorbed = Intake – fecal output 
2Values for absorbed P (g) and absorbed P (mg/kg BW) are not different from 0.  
3Retention = Intake – fecal losses – urinary losses 
4True digestibility calculated using fecal endogenous P losses of 10 mg/kg BW (NRC, 
2007) 
5Total excreted as percent of intake = (urinary excretion + fecal excretion)/intake*100 
abcMeans lacking a common letter differ (P < 0.05) 
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Table 4-8. Calcium balance for geldings only fed loss (LO), maintenance (MA) and gain 

(GA) diets (LS means; n=9) 

Item LO MA GA SEM P-value 
Intake, g 32.43 31.97 28.64 1.37 0.1650 
Intake, mg/kg BW 57.81a 57.92a 51.90b 1.01 0.0081 
Fecal excretion, g 19.36 16.03 18.22 1.83 0.4022 
Fecal excretion, mg/kg BW 34.12 29.02 33.10 2.40 0.2277 
Absorbed, g1 13.07b 15.94a 10.42c 0.74 0.0044 
Absorbed, mg/kg BW1 23.69ab 28.90a 18.80b 1.86 0.0216 
Urinary concentration, % 0.074b 0.13a 0.14a 0.014 0.0169 
Urinary excretion, g 10.93 11.03 8.42 1.12 0.2005 
Urinary excretion, mg/kg BW 19.60 19.94 15.25 1.98 0.2315 
Retention, g2 2.13 4.90 2.00 1.53 0.1399 
Retention, mg/kg BW2 4.09 8.96 3.55 2.86 0.1372 
Apparent digestibility, % 41.18 49.87 36.30 3.59 0.0688 
True digestibility, %3 75.81 84.41 74.88 3.97 0.1704 
Urinary Ca, % of intake 33.96 34.53 29.30 3.64 0.5606 
Fecal Ca, % of intake 58.82α 50.13β 63.70α 3.59 0.0688 
Total Ca excreted, % of intake4 92.77 84.65 93.00 5.09 0.1606 

abc Means within a row lacking a common superscript differ 
αβ Means lacking common Greek letter tend to differ (0.05 < P < 0.10) 
1Absorbed = Intake – fecal output 
2Retention = Intake – fecal losses – urinary losses 
3True digestibility calculated using fecal endogenous Ca losses of 20 mg/kg BW (NRC, 
2007) 
4Total excreted as percent of intake = (urinary excretion + fecal excretion)/intake*100 
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Table 4-9. Magnesium balance for geldings only fed loss (LO), maintenance (MA) and 

gain (GA) diets (LS means; n=9) 

Item LO MA GA SEM P-value 
Intake, g 13.11 14.03 13.94 0.62 0.5468 
Intake, mg/kg BW 23.45 25.45 25.21 1.08 0.2176 
Fecal excretion, g 9.08 8.58 8.74 0.71 0.8836 
Fecal excretion, mg/kg BW 16.05 15.59 15.87 1.00 0.9467 
Absorbed, g1 4.03b 5.45a 5.20a 0.62 0.0233 
Absorbed, mg/kg BW1 7.40b 9.87a 9.34a 1.22 0.0498 
Urinary concentration, % 0.031b 0.066a 0.10a 0.012 0.0100 
Urinary excretion, g 4.21b 5.26a 5.71a 0.41 0.0536 
Urinary excretion, mg/kg BW 7.66 9.52 10.35 0.91 0.1474 
Retention, g2 -0.18 0.19 -0.51 0.43 0.4446 
Retention, mg/kg BW2 -0.26 0.35 -1.00 0.78 0.4081 
Apparent digestibility, % 31.26 38.88 36.98 4.18 0.2851 
True digestibility, %3 56.87 62.66 60.80 3.83 0.5446 
Urinary Mg, % of intake 32.40 37.67 41.04 3.51 0.2840 
Fecal Mg, % of intake 68.74 61.12 63.02 4.18 0.2851 
Total Mg excreted, % of intake4 101.14 98.78 104.06 3.09 0.4270 

abc Means within a row lacking a common superscript differ 
1Absorbed = Intake – fecal output 
2Retention = Intake – fecal losses – urinary losses 
3True digestibility calculated using fecal endogenous Mg losses of 6 mg/kg BW (NRC, 
2007) 
4Total excreted as percent of intake = (urinary excretion + fecal excretion)/intake*100 
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Table 4-10. Fractional urinary excretion (%) of Ca (FECa), and P (FEP) in mares (n = 5) 

and geldings (n= 9) fed loss (LO), maintenance (MA), and gain (GA) diets (LS means) 

Item LO MA GA SEM P - value 
Mares      
     FECa 18.25 16.09 11.75 2.78 0.5156 
     FEP 0.036 0.026 0.022 0.017 0.8618 
Geldings      
     FECa 23.22 16.36 10.85 5.86 0.4115 
     FEP 0.076 0.035 0.061 0.029 0.6198 
All horses      
     FECa 21.23 15.99 11.21 3.59 0.2119 
     FEP 0.060 0.027 0.045 0.018 0.4993 
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Table 4-11. Dry matter digestibility and DE intake over the fecal collection period over 

the fecal collection period for horses fed loss (LO), maintenance (MA) and gain (GA) 

diets (LS means) 

Item LO MA GA SEM P-value 
Intake, kg 6.63b 7.81a 7.95a 0.17 0.0003 
Intake, g/kg BW 12.13b 14.30a 14.39a 0.17 <0.0001 
Fecal excretion, kg  3.29b 3.59a 3.05b 0.11 0.0045 
Fecal excretion, g/kg BW 6.02b 6.56a 5.52c 0.13 <0.0001 
DMD, % 50.38c 54.07b 61.57a 0.95 <0.0001 
Calculated DE intake1, kcal/kg 
BW 

24.09c 34.34b 44.68a 0.53 <0.0001 

DE intake2, kcal/kg BW 24.05 c 32.62 b 41.26 a 1.13 <0.0001 
DE intake2, Mcal/kg DM 1.99 c 2.25 b 2.90 a 0.07 <0.0001 
DE intake2, Mcal/d 13.15c 17.58b 23.09a 0.65 <0.0001 
DE intake3, Mcal/d 13.38c 18.88b 25.06a 0.03 <0.0001 
DE intake4, Mcal/d 14.09c 18.62b 24.72a 0.37 <0.0001 

abc Means within a row lacking a common superscript differ 
1DE calculated using values provided by commercial laboratory (DairyOne, Ithaca, NY). 
These values were used to formulate diets. 
2Digestible energy calculated by subtracting GE of feces from GE of feed 
3Digestibile energy calculated using equation from Pagan (1998) as follows: DE, kcal/kg 
DM = 2,118 + (12.18 x CP%) – (9.37 x ADF%) – (3.83 x hemicellulose%) + (47.18 x 
fat%) + (20.35 x NFC%) – (26.3 x ash%); where hemicellulose = ADF – NDF and non-
fiber carbohydrate (NFC) = 100 - NDF% - fat% - ash% - CP%. 
4Digestible energy calculated using equations from NRC (2007) as follows: for 
roughages and forages, DE, Mcal/kg DM = 4.22 – (0.11 x ADF%) + (0.0332 x CP%) + 
(ADF%2); for energy feeds and protein supplement, DE, Mcal/kg DM = 4.07 – 0.055 x 
(ADF%). 
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Table 4-12. Values for BW, BCS, TBW, body fat, morphometric, and ultrasonic measurements at the end of Phase 1 (Pre) and the end 

of Phase 2 (Post) for horses fed loss (LO), maintenance (MA) and gain (GA) diets (LS means) 

Measurement LO MA GA SEM P-value 
Pre Post Pre Post Pre Post Trt Time Trt*Time 

BW, kg 566.10a 555.05b 558.30a 548.95b 550.55b 556.80a 15.31 0.9148 0.0027 0.0002 
BCS 5.20a 4.85b 5.50 5.40 5.50 5.70 0.33 0.4063 0.3200 0.0490 
Heart girth 
circumference, cm 

198.80 197.40 197.60a 195.80b 194.80 196.20 1.97 0.6122 0.2173 0.0299 

Belly girth 
circumference, cm 

214.80 211.40 211.40 208.80 213.00 215.20 2.33 0.4271 0.2036 0.0657 

Mid-neck 
circumference, cm 

92.20 94.00 92.60a 96.40b 96.40 97.20 1.87 0.3436 0.0237 0.3504 

Low-neck 
circumference, cm 

122.80 122.60 119.00 123.20 121.80 121.00 2.08 0.8146 0.3393 0.1578 

TBW, kg1 395.35 393.58 379.83 379.88 375.81 373.44 14.50 0.5576 0.6831 0.9515 
Body fat, %1,2 4.18a 2.38b 6.51a 4.97b 5.99 7.41 1.54 0.2203 0.1345 0.0144 
Body fat, %3 11.59 11.10 13.29 13.10 12.37 13.32 0.74 0.1551 0.8184 0.3106 
SubQ neck fat, cm 0.847 1.146 1.058 1.054 0.807 0.933 0.199 0.6309 0.1626 0.4460 
SubQ shoulder 
fat, cm 

0.309 0.345 0.363 0.323 0.382 0.378 0.049 0.6415 0.9264 0.5629 

SubQ rib fat, cm 0.627 0.418 0.699 0.416 0.471 0.694 0.24 0.9119 0.5193 0.2923 
SubQ rump fat, 
cm 

0.628 0.524 0.989 0.948 0.7940 0.997 0.158 0.1551 0.8184 0.3106 

SubQ tail-head 
fat, cm 

1.378a 0.872b 1.253a 0.963b 1.407 1.386 0.1823 0.4459 0.0009 0.0252 

abMeans lacking a common letter within treatment differ between timepoints (P < 0.05) 
1Data lost for one GA horse at the pre timepoint. N=4 
2Body fat percentage calculated based on TBW measured using deuterium oxide corrected for a lean hydration factor of 0.732, and 
divided by BW 
3Body fat percentage calculated based on subcutaneous rump fat thickness using the equation: Body fat, % = 8.64 + 4.70*rump fat, 
cm; as described by Westervelt et al. (1976)
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Table 4-13. Associations of BCS with morphometric measurements 

Measurement R2 P-value 
BW 0.1392 0.0423 
Heart girth 0.0186 0.4724 
Belly girth 0.0140 0.2449 
BMI (BW/height) 0.0191 0.4660 
Belly girth:Height 0.2663 0.0035 
Heart girth:Height 0.3885 0.0001 
Heart girth:BW 0.2464 0.0031 
Belly girth:BW 0.1954 0.0145 
Belly girth:Heart girth 0.0120 0.5467 

 

Table 4-14. Relationships between total body water (TBW, %) and morphometric 

measurement ratios 

Ratio R2-value P-value 
Belly girth:heart girth 0.017 0.4999 
BMI (BW/height) 0.074 0.1528 
BCI1 0.118 0.0677 
Belly girth:height 0.129 0.0559 
Heart girth:height 0.150 0.0378 
Belly girth:BW 0.183 0.0205 
Heart girth:BW 0.242 0.0067 

1Body condition index (BCI) = �𝐻𝐻𝐻𝐻
0.5+𝐵𝐵𝐵𝐵+𝑁𝑁𝑁𝑁1.2

ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡1.05 �
2.2

; where HG = heart girth, BG = belly 
girth, NC = mid-neck circumference; (Potter et al., 2013) 
 
 
Table 4-15. Urine output, density, and water intake for geldings only (n=8; LS means) 

Item LO1 MA GA SEM P-value 
Water intake, ml/kg BW 41.86ab 44.94a 35.47b 2.79 0.0438 
Urine output, ml/kg BW 20.73 16.35 11.18 2.38 0.1060 
Urine density, g/100 ml 101.03 101.88 102.33 0.65 0.4925 

1Outlier removed 
abMeans lacking a common letter differ (P < 0.05) 
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Table 4-16. Mineral digestibility (LS means ± SE) for all horses divided into two 

treatment groups: Loss (consists of all horses originally assigned to LO and MA) and 

Gain (consists of all horses originally assigned to GA) 

Item Loss1 Gain2 P-value 
Calcium    
     Intake, mg/kg BW 58.32 ± 1.55 53.67 ± 1.88 0.0312 
     Fecal excretion, mg/kg BW 30.40 ± 1.32 32.24 ± 1.79 0.3961 
     Absorption, mg/kg BW 27.92 ± 1.87 21.43 ± 2.24 0.0109 
     Apparent digestibility, % 48.00 ± 2.50  39.09 ± 3.17 0.0226 
     True digestibility, % 82.39 ± 2.26 76.79 ± 3.00 0.1296 
Phosphorus    
     Intake, mg/kg BW 31.04 ± 0.34 30.37 ± 0.48 0.2746 
     Fecal excretion, mg/kg BW 32.27 ± 1.66 29.62 ± 1.80 0.0434 
     Absorption, mg/kg BW -1.23 ± 1.44 0.76 ± 1.59 0.1097 
     Apparent digestibility, % -3.91 ± 4.60 2.59 ± 5.10 0.1019 
     True digestibility, % 28.35 ± 4.84 35.62 ± 5.30 0.0667 
Magnesium    
     Intake, mg/kg BW 24.79 ± 0.71 25.51 ± 0.93 0.5035 
     Fecal excretion, mg/kg BW 15.55 ± 0.47 15.57 ± 0.67 0.9802 
     Absorption, mg/kg BW 9.24 ± 0.93 9.94 ± 1.05 0.4297 
     Apparent digestibility, % 36.86 ± 2.90 38.87 ± 3.39 0.5187 
     True digestibility, % 61.27 ± 2.42 62.43 ± 2.97 0.7024 

1n=10 
2n=5 
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Table 4-17. Mineral digestibility for all horses grouped by actual weight change. Gain contains horses with a positive weight change 

greater than 2 kg. Main contains horses with a weight change between -2 and +2 kg. Loss contains horses with a weight change less 

than -2 kg. Results presented as LS means ± SE.  

Item Loss1 Main2 Gain3 P-value 
Calcium     
     Intake, mg/kg BW 57.79 ± 1.79 57.12 ± 3.42 54.30 ± 2.40 0.4132 
     Fecal excretion, mg/kg BW 29.59 ± 1.63 35.80 ± 2.80 31.81 ± 2.04 0.1034 
     Absorption, mg/kg BW 28.44 ± 2.42a 20.26 ± 3.55b 22.46 ± 2.81b 0.0180 
     Apparent digestibility, % 49.22 ± 3.36a 35.40 ± 4.97b 40.44 ± 3.91b 0.0081 
     True digestibility, % 83.66 ± 2.90a 71.96 ± 4.68b 77.72 ± 3.52ab 0.0358 
Phosphorus     
     Intake, mg/kg BW 31.02 ± 0.38 30.56 ± 0.80 30.49 ± 0.57 0.7043 
     Fecal excretion, mg/kg BW 32.23 ± 1.73 30.55 ± 2.42 29.91 ± 1.96 0.2711 
     Absorption, mg/kg BW -1.15 ± 1.49 0.059 ± 2.21 0.43 ± 1.74 0.4990 
     Apparent digestibility, % -3.66 ± 4.78 0.56 ± 7.05 1.44 ± 5.56 0.4805 
     True digestibility, % 28.56 ± 5.03 33.20 ± 7.20 34.55 ± 5.76 0.3734 
Magnesium     
     Intake, mg/kg BW 24.57 ± 0.76 26.17 ± 1.56 25.50 ± 1.07 0.5397 
     Fecal excretion, mg/kg BW 15.26 ± 0.50 16.40 ± 1.07 15.79 ± 0.76 0.5983 
     Absorption, mg/kg BW 9.24 ± 0.98 9.60 ± 1.54 9.94 ± 1.18 0.7912 
     Apparent digestibility, % 37.16 ± 3.09 36.99 ± 5.22 38.62 ± 3.85 0.9182 
     True digestibility, % 61.87 ± 2.59 60.11 ± 4.81 61.94 ± 3.41 0.9365 

1n=9 
2n=2 
3n=4 
abcMeans lacking a common letter differ (P < 0.05) 
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Table 4-18. Concentrations of blood variables in horses at the end of Phase 2 for horses 

fed loss (LO), maintenance (MA) and gain (GA) diets (LS means1)  

Item LO MA GA SEM P-value 
Ca, mg/dl 12.03 12.07 12.46 0.22 0.3831 
P, mg/dl 3.26 3.22 2.72 0.18 0.1808 
Ca:P 3.77 3.81 4.58 0.35 0.5899 
BAP, U/L 55.71b 57.30b 66.90a 2.85 0.0481 
CTX-1, U/L 0.34a 0.29ab 0.24b 0.017 0.0143 
BAP:CTX 222.45b 219.78b 331.94a 25.44 0.0279 
Urea, mg/dl 13.52a 10.88ab 9.61b 0.82 0.0251 
Creatinine, 
umol/L 

204.96a 182.81ab 160.50b 8.49 0.0266 

NEFA, umol/L 127.89 130.05 125.67 8.97 0.9460 
TG, mg/ml 0.55 0.53 0.45 0.08 0.7405 

abc Means within a row lacking a common superscript differ (P < 0.05) 
1LS means adjusted for pre-treatment values as covariates
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Table 4-19. Concentrations of blood variables measured at the end of Phase 1 (Pre) and the end of Phase 2 (Post) in horses fed loss 

(LO), maintenance (MA) and gain (GA) diets (LS means) 

Item LO MA GA SEM P-value 
Pre Post Pre Post Pre Post Trt Time Trt*Time 

Ca, mg/dl 11.21 11.99 12.02 12.09 12.00 12.48 0.38 0.1887 0.1400 0.6012 
P, mg/dl 3.30 3.27a 3.20 3.22a 2.95 2.71b 0.17 0.0409 0.5903 0.7496 
Ca:P 3.42 3.67b 3.79 3.81b 4.14 4.67a 0.25 0.0133 0.2060 0.6037 
BAP, U/L 64.41 58.06b 59.10 55.29c 61.13* 66.56*a 4.19 0.4306 0.5163 0.1424 
CTX-1, U/L 0.42 0.39 0.34* 0.26* 0.34* 0.21* 0.1018 0.6400 <0.0001 0.0118 
BAP:CTX 226.19 247.23 192.07 212.94 180.08* 313.99* 38.36 0.6182 0.0070 0.0380 
Urea, mg/dl 12.60 13.73 10.49 10.48 12.48 9.79 0.7607 0.0271 0.2908 0.0174 
Creatinine, umol/L 180.03 198.74 180.79 177.27 200.11* 172.27* 18.90 0.8860 0.5385 0.0446 
NEFA, umol/L 202.69 131.79 202.49 133.89 164.54 117.93 29.47 0.6084 0.0078 0.8552 
TG, mg/ml 0.43 0.46 0.43 0.43 0.66 0.62 0.10 0.2445 0.9747 0.7907 

*Means within a treatment differ between pre and post (P < 0.05) 
abcMeans within a timepoint differ among treatments (P < 0.05) 
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Table 4-20. Phosphorus concentrations in samples of muscle, fat, hide, and salivary 

glands from one pony 

Tissue Phosphorus, % DM 
Muscle  
     Triceps brachii m. 0.58 
     Lastissimus dorsi m.  0.59 
Adipose  
     Subcutaneous fat over triceps  0.019 
     Inter-muscular fat between triceps and lastissimus 0.016 
Other  
     Hide (skin and hair) 0.14 
     Sublingual salivary gland 0.47 
     Mandibular salivary gland 0.65 
     Parotid salivary gland 0.65 

 

Table 4-21. Relationships between fecal P excretion (g), serum Ca and P, and markers of 

bone (serum BAP and CTX-1), protein (serum creatinine and plasma urea-N [PUN]), and 

fat (plasma NEFA and TG) metabolism 

Dependent 
variable 

Intercept Slope R2-value P-value for 
Model 

Ca, mg/dl 10.46 0.56 0.0192 0.6224 
P, mg/dl 10.39 2.24 0.0954 0.2626 
BAP, U/L 18.94 -0.028 0.0078 0.7538 
CTX-1, U/L 14.35 10.15 0.5477 0.0016 
Creatinine, umol/L 9.27 0.04 0.2656 0.0493 
PUN, mg/dl 10.91 0.56 0.1847 0.1098 
NEFA, umol/L 20.36 -0.024 0.0512 0.4172 
TG, mg/ml 17.73 -0.90 0.0052 0.7980 
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Figure 4-1. Regression of actual DE intake (kcal/kg BW) as a function of DM 

digestibility. P < 0.001 
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Figure 4-2. Comparison of actual (measured) versus calculated DE values (Mcal/d) for 

horses fed loss (LO), maintenance (MA) and gain (GA) diets (LS means) 

*Indicates difference from actual DE (P < 0.05).  
†Indicates a trend for difference from actual DE (0.05 < P < 0.10).  
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Figure 4-3. Regression of percent weight change from pre- to post-treatment and DM 

digestibility. P < 0.05 
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Figure 4-4. Regression of percent weight change from pre- to post-treatment and actual 

DE intake (kcal/kg BW). P < 0.05 
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Figure 4-5. Relationship between total body water (TBW) and body weight (BW). P < 

0.05. 
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Figure 4-6. Relationship between subcutaneous fat depth at the tailhead and total body 

water (TBW) for horses with BCS ≥ 5. P < 0.05 
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Figure 4-7. Relationship between BCS and total body water (TBW) for all horses. P < 

0.05 
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Figure 4-8. Relationship between total body water (TBW) and BCS for horses with a 

BCS from 4 to 5.5. P < 0.01.  
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Figure 4-9. Relationship between weight change (kg) over Phase 2 and fecal P excretion 

(g/d). P = 0.09. 

 

 

 

 

 

  

y = -0.1098x + 16.639
R² = 0.1689

0

5

10

15

20

25

30

-40 -30 -20 -10 0 10 20 30

P 
ex

cr
et

ed
, g

/d

Weight change, kg



 

112 
 

CHAPTER 5: THE USE OF EXTERNAL MARKERS IN HORSES FOR 
DETERMINING FECAL OUTPUT 

Introduction 

 Indigestible markers have been used in many species as a way to indirectly 

determine diet digestibility. Exogenous, or externally applied markers, are added to the 

diet and fecal output and digestibility are calculated by measuring the concentration of 

the marker in the feces. If every sample of feces has a similar concentration of marker, 

then the need to collect all of the excreted feces is eliminated.   

The main benefit of using external markers is that total fecal collections do not 

need to be performed; only fecal grab samples are needed. Total fecal collections are not 

only time and labor intensive, they can also disrupt the normal management of horses, 

which can lead to feed refusals, reduced exercise, or other stress-related responses. The 

use of markers also allows digestibility to be determined in horses that would be difficult 

to maintain in a fecal collection harness, such as lactating mares or exercising horses. 

Additionally, the sampling period can be extended beyond the normal 5 to 7 d as there is 

less labor involved in collecting fecal grab samples.  

 Two external markers are common in animal digestibility studies: chromic oxide 

(Cr2O3) and titanium dioxide (TiO2) (Sales, 2012). While Cr2O3 is probably the most 

regularly used external marker in horses (Sales, 2012), TiO2 is gaining popularity in the 

equine literature (Schaafstra et al., 2012; Winsco et al., 2013).   

Excretion of Cr2O3 has been shown to vary diurnally and to be related to time of 

marker dosing (every 12 h) (Haenlein et al., 1966; Parkins et al., 1982; Cuddeford and 

Hughes, 1990). However, this diurnal excretion pattern could also be related to diurnal 



 

113 
 

fecal excretion, as large intestinal motility also varies throughout the day (Williams et al., 

2011). Most studies only dose external markers once or twice daily in conjunction with 

feeding (Haenlein et al., 1966; Holland et al., 1998), and an increased frequency in meal 

feeding and marker dosing may eliminate some of the diurnal effects observed.  

 To date, there have been no studies validating the use of TiO2 to indirectly 

determine fecal output from horses via fecal grab samples. Winsco et al. (2013) used 

TiO2 to determine voluntary dry matter intake in gestating mares, but no validation was 

described. Schaafstra et al. (2012) fed TiO2 to ponies and used TiO2 concentration in the 

total collected feces to calculate total fecal output. The authors reported that 97% of the 

TiO2 was recovered in the feces and calculated total fecal output was not different than 

actual fecal output, but the use of grab samples to estimate total fecal output was not 

evaluated.  

 Our long term objective is to develop a system to accurately assess true P 

digestibility in horse feeds. However, because of the GI recycling of absorbed P, the best 

experimental design would be to use animals that are either retaining P (i.e. growing or 

pregnant) or are secreting P into milk (i.e. lactating). In each of these cases, long term 

confinement and use of fecal collection harnesses present logistical issues. Thus, the 

objective of this study was to evaluate the use of Cr2O3 and TiO2 for calculating total 

fecal output using fecal grab samples in horses so that P digestibility could be studied 

more effectively.  
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Materials and Methods 

All procedures were approved by the Institutional Animal Care and Use 

Committee at the University of Kentucky. 

Experiment 1 

 This experiment was performed in conjunction with the study described in 

Chapter 3. Briefly, eight Thoroughbred mares were used to evaluate the use of two 

indigestible markers in determining digestibility indirectly. Four mares were assigned to 

receive Cr2O3 and four mares were assigned to receive TiO2. Experimental diets 

consisted of timothy cubes, a pelleted concentrate, and soybean oil. All horses received 

the same ration at the same DMI on a BW basis. Daily rations were divided into two 

equal parts and fed twice daily. The assigned marker was top-dressed on the timothy 

cubes at each feeding (10 g TiO2/d or 6.84 g Cr2O3/d) and complete consumption was 

ensured by careful observation of the feed buckets. 

The experiment was conducted in two periods with four mares in each period 

(two mares receiving TiO2 and two mares receiving Cr2O3). Each period consisted of a 

22-d diet adaptation and a 4-d total fecal collection. For the first 12 d of adaptation, 

horses were gradually adjusted to their experimental diet and adapted to their housing 

conditions. On d 13 of adaptation (10 d before total fecal collections began), horses were 

fully transitioned to the experimental diet and began receiving their assigned marker. 

Two days before total fecal collections began, the mares were fed half of their daily 

ration and half of their daily marker dose every 12 h.  
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During the 4-d fecal collection period, horses were fitted with fecal collection 

harnesses (Bun-bag, Sagle, ID) and monitored closely to ensure that all feces were 

collected in the bags. To ensure that urine did not enter the fecal collection bag, a plastic 

shield was attached under the tail of the mare to block urine from entering the fecal 

collection bag, but allowed feces to fall into the bag.  

A 250-g fecal sample was removed from the fecal collection bag every 4 h for 

determination of marker concentration. To simulate a fecal “grab sample,” feces were not 

mixed prior to removing the 250-g sample. The remaining daily output of feces was 

compiled for each horse, thoroughly mixed, and a 10% subsample was saved for analysis 

at the end of each 24-h period. The weight of each grab sample was added to the weight 

of the remaining feces collected to determine total fecal output.  

Experiment 2 

This experiment was performed in conjunction with the study described in 

Chapter 4. Briefly, 15 horses were assigned to three treatment diets designed to cause 

weight gain, weight maintenance or weight loss. The diets were formulated to contain 

low forage (LO), medium forage (MED), or high forage (HI). Dry matter intakes were 

similar for MED and LO (14 g/kg BW) and lower for HI (12 g/kg BW). Horses were fed 

these diets for 3 to 4 wk before a 5-d total fecal collection period was performed. 

At the beginning of the adaptation period, the horses’ daily rations were split into 

two equal meals fed at 0700 h and 1530 h. All feed ingredients for each meal were 

combined into one bucket and thoroughly mixed together, resembling a total mixed ration 

(TMR). At least 12 d prior to the beginning of total fecal collections, the daily ration was 
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split into 3 equal meals fed at 0700 h, 1500 h, and 2300 h. Concurrently, horses began to 

be dosed with 2.00 g TiO2/kg DM each day. The daily dose of TiO2 was split into three 

equal portions and thoroughly mixed into each of the three daily TMR meals. 

During the total fecal collection period, geldings were fitted with fecal collection 

harnesses (The Horse Diaper, Equisan Marketing Pty Ltd., Victoria, Australia; Nappy, 

Stablemaid Horse Hygeine and Waste Management, Australia) that allowed for the 

separate capture of all feces and urine. Mares were fitted with fecal collection harnesses 

(BunBag, Sagle, ID) as in the previous experiment to allow for capture of all feces. 

Horses were adapted to their collection apparatuses for at least 2 wk prior to the 

collection period. During the collection period, horses remained in stalls and were hand-

walked for 15 min twice daily. Horses were monitored throughout the collection period. 

Spot samples of feces (approximately 250 g each) were planned to be taken every 4 h for 

indirect determination of digestibility by measuring TiO2. Bags were checked at least 

every 2 h and if feces was present, the time was noted and the feces were saved. At the 4-

h timepoint, the fecal sample that was collected closest to the planned timepoint was 

weighed and saved for analysis. All remaining feces were composited for each horse over 

each 24-h period. At the end of a 24-h period, feces were thoroughly mixed, weighed, 

and a 10% subsample was saved for analysis. Total daily fecal output was calculated by 

adding the weight of composite feces and the weights of all the spot samples of feces in 

the 24-h period. 
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Sample analysis 

 Fecal DM was determined for each spot sample by drying the 250 g samples in a 

55° C forced air oven for at least 72 h. Dry matter of feed and daily composite feces were 

determined by drying 1 g of sample in duplicate for 24 h at 55° C. 

 Titanium dioxide was determined in duplicate spot samples from Experiment 1 

using a method described by Short et al. (1996), as modified by Titgemeyer et al. (2001) 

(Appendix B). Chromic oxide was determined in composite fecal samples and selected 

spot samples by atomic absorption spectrophotometry using a method described by 

Williams et al. (1962). 

 Due to greater fecal TiO2 concentrations in Experiment 2 compared with 

Experiment 1, complete dissolution of TiO2 was not achieved using the method described 

by Short et al. (1996).  Thus, some adjustments were made to the method as suggested by 

Myers et al. (2004) to ensure complete digestion of the samples. The complete method is 

described in detail in Appendix C. Duplicate spot samples of feces from Experiment 2 

were analyzed using this method.  

Calculations and statistics 

For both experiments, actual daily fecal output (aFO) was measured during total 

fecal collections and was also calculated using markers (cFO). Fecal output was 

calculated by using the following equation: cFO (kg/d) = X (g/d) ÷ [X]feces (g/kg), where 

X represents amount of marker dosed per day and [X]feces represents the concentration of 

marker in the feces. This value (cFO) was calculated for fecal composite samples from 

Experiment 1 for both TiO2 and Cr2O3, as well as in every spot sample of feces for TiO2 
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in Experiment 1 and 2. Percent accuracy of the marker in predicting aFO was calculated 

by dividing cFO by aFO and multiplying by 100. Fecal recovery of the TiO2 was 

calculated as: avg % Ti in spot samples × aFO,kg ×10
Ti intake,g

 × 100. Fecal recovery of Cr2O3 was 

calculated as:  % Cr in composited feces × aFO,kg × 10
Cr intake,g

 × 100. Calculated fecal output was then 

corrected for fecal recovery of the marker (cFO x % recovery). Calculated fecal output 

corrected for fecal recovery could not be accurately calculated for Cr2O3 because Cr2O3 

concentrations in composite samples were used to determine percent recovery (based on 

aFO) as well as cFO, so corrected cFO would be equal to aFO in this case. 

 Data were examined in a progressive fashion. First, all available data were 

averaged across all horses to obtain an overall average. Then data were averaged by horse 

to examine variation among individuals. Third, data were averaged by day and by horse 

to investigate whether there were differences among days of collection for individual 

horses. Next, data were examined by day. Finally, percent accuracy was evaluated by 

hour of collection for individual horses.  

For the methods of examining data as described above, the following statistics 

were employed (SAS 9.4; SAS Institute, Inc, Cary, NC). For all experiments, aFO was 

compared to cFO using a paired t-test. Percent accuracy was tested to determine if the 

value was different from 100% by using a t-test with the null hypothesis equal to 100. 

Additionally for Experiment 2, data were also separated by treatment, and the effect of 

dietary treatment on aFO, cFO, percent accuracy, fecal recovery was analyzed using 

repeated measures ANOVA with block as the random effect and day of collection as the 

repeated measure. If there were significant differences, means were separated using an 
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LSD test. Additionally, simple linear regression was used to examine the relationship 

between aFO and cFO. Data are presented as LS means ± SE. Significance was 

considered when P < 0.05.  

Results and Discussion 

Experiment 1 – Chromic oxide 

Out of the four horses fed Cr2O3, one horse’s composited feces on d 1 was 

discarded before a sample could be taken, but the remaining 3 d for this horse were 

included. Chromic oxide was analyzed in composite samples first, to evaluate the 

efficacy of Cr2O3 in estimating aFO.  

Table 5-1 shows aFO, cFO, percent accuracy of cFO in predicting aFO, and fecal 

Cr2O3 recovery, for each horse on each day, as well as overall average values for horses 

fed Cr2O3. Overall, aFO for all horses averaged 2.72 kg DM and was greater than cFO, 

which was 2.25 kg DM (P < 0.05). Overall accuracy of cFO in predicting aFO averaged 

84.6%, but ranged from 70.0 to 107.4% for individual horses on individual days. Fecal 

recovery of Cr2O3 averaged 82.25% and ranged from 71.87 to 97.76% for individual 

horses on individual days. 

There was a significant relationship between aFO and cFO when using the values 

for each horse on each day (Figure 5-1), with a moderate R2 (R2 = 0.4360). This suggests 

that cFO was able to account for less than 50% of the variation in aFO. In order to 

investigate where the variation might be originating from, the horse or the day of 

collection, data were averaged by day of collection. 
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Table 5-2 shows aFO, cFO, percent accuracy, and fecal Cr2O3 recovery averaged 

by day of collection. Percent accuracy was poor on d 1 and d 3 as these values were 

different than 100% (P < 0.05), but percent accuracy was not different from 100% on d 2 

and d 4 (P > 0.10). The lowest accuracy was observed on d 1 and the greatest was 

observed on d 4. This overall increase in accuracy may suggest that longer fecal 

collection periods could result in even greater increases in percent accuracy. In this study, 

Cr2O3 was fed for 10 d before total fecal collections and the 12 h feeding schedule was 

started just 48 h before fecal collections. Although mean retention time in horses is 

usually less than 30 h (Hansen, 2014), the 48-h period prior to marker collections may 

not have been long enough to stabilize excretion. It is possible that Cr2O3 needs to be fed 

longer for a stable excretion in the feces to be obtained, so Cr2O3 excretion over time 

(concentration in fecal spot samples) was examined next. 

Before all fecal spot samples were analyzed for Cr2O3, spot samples were selected 

for each horse to examine any trends in fecal excretion. One sample per d per horse was 

selected and the time of collection each d was advanced by 4 h in an attempt to observe 

any diurnal variation. Figure 5-2 shows the Cr2O3 concentrations from fecal spot samples 

for each horse. Fecal Cr2O3 concentration in the first samples collected was close to 

0.2%. For three horses, the fecal Cr2O3 concentration appeared to stay relatively constant 

after d 2, but increased to 0.35% for one horse. These data suggest that stable excretion 

was not established until at least d 2 of fecal collection. An alternate explanation is that 

despite being adapted to fecal collections harnesses for a few h each d before total 

collections began, fecal excretion may have been impacted by the change in routine 

during the collection period. As shown in Table 5-2, aFO on d 1 was 3.07 kg and 
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decreased to 2.52 kg on d 2. It is possible that this decrease in fecal output was also 

caused by horses adapting to their new management routine. 

Experiment 1 – Titanium dioxide 

Similar to Cr2O3, concentration of TiO2 was first evaluated in the fecal composite 

samples to evaluate the potential of cFO to predict aFO. For the composite samples, cFO 

was 2.67 ± 0.17 kg DM and aFO was 2.57 ± 0.19 kg DM (data not shown). These values 

were not different from each other (P > 0.10). Percent accuracy of cFO in predicting aFO 

was 104.5 ± 6.9% and fecal recovery of the marker in the composite samples was 100.1 ± 

6.8%. Similarly, Schaafstra et al. (2012) reported fecal recovery of TiO2 in composite 

samples to be 97% and that organic matter digestibilities were similar when calculated 

with aFO and cFO.  These results suggest that TiO2 is more promising than Cr2O3 as a 

candidate for use as an external marker. Thus, TiO2 was analyzed in every collected spot 

sample to look for patterns in excretion and to determine the ability of fecal TiO2 

concentration of spot samples to determine fecal output.  

Using data generated from spot samples, Table 5-3 shows aFO, cFO, percent 

accuracy, fecal TiO2 recovery, and cFO corrected for fecal TiO2 recovery for each horse 

on each day. Across all horses and all days, average aFO was 2.57 kg DM and cFO was 

2.79 kg DM (P < 0.05). Percent accuracy of cFO in calculating aFO was 110.2% and 

ranged from 85.7 to 144.0% among horses and days. The over-prediction of aFO by cFO 

could be explained by fecal recovery of the marker. Fecal recovery in spot samples 

averaged 94.70 ± 7.22% and ranged from 70.3 to 117.6%. When cFO was corrected for 

fecal recovery, cFO averaged 2.62 ± 0.20 kg and was not different from aFO (P > 0.10). 
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Percent accuracy of cFO corrected for fecal recovery averaged 101.99 ± 1.05 and ranged 

from 100.16 to 105.12%. The inaccuracy of uncorrected cFO is likely due to inaccuracies 

in recovering marker in the feces. However, in order to calculate fecal recovery values, 

the aFO needs to be known. Because the goal of using external markers is to eliminate 

the need for total fecal collections, fecal recoveries would not be known for studies solely 

relying on spot samples for determining FO. Thus, in those studies, uncorrected cFO 

would be the only obtainable value. One could assume a constant fecal recovery in an 

attempt to correct cFO, however the large range in fecal recoveries observed in the 

current study (70.3 to 117.6%) indicates that this may not be a practical solution.  

Concentrations of TiO2 in spot samples were averaged by horse on each day and 

the relationship between aFO and cFO was examined. The relationship was not 

significant and very weak (R2 = 0.1484; Figure 5-3), indicating other sources of variation, 

such as day of collection or individual animal, may be influencing the relationship. 

Therefore, data were then averaged by day. 

Using TiO2 concentrations in spot samples, Table 5-4 shows the cFO and percent 

accuracy of cFO at predicting aFO by day. There was no effect of day on aFO or cFO (P 

> 0.10). On d 1 of collection, the percent accuracy is 123% and exhibits the largest 

variation compared to the rest of the days. As with Cr2O3 on d 1, the large amount of 

variation may be due to horses having to adapt to fecal collection harnesses or to the 

change in feeding schedule 48 h before d 1 of fecal collections. The percent accuracy 

decreases to the lowest observed value (102%) by d 3. However on d 4, accuracy is 

decreased, straying further from 100%.  
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 Figure 5-4 shows fecal TiO2 concentrations in fecal spot samples collected for all 

horses over the course of the experiment. Fecal TiO2 concentrations show a large amount 

of variation for most horses during the first 40 h of the experiment, ranging from 0.2 to 

0.45%. However, fecal concentrations appear to become more stable after h 40 for three 

of the horses, staying mainly in the range of 0.3 to 0.45%. One horse (Lizzy) continued to 

have large amounts of variation in fecal excretion patterns.  

There appear to be peaks and valleys in the fecal concentrations of TiO2. Haenlein 

et al. (1966) noted diurnal variation in fecal excretion of Cr2O3 that was related to meal 

time. Because horses in this experiment and in the experiment by Haenlein et al. (1966) 

were only fed twice per d, it is possible that fecal TiO2 excretion exhibited fluctuations 

due to meal time. The marker was top-dressed on the timothy cubes and concentrate was 

offered in a separate bucket in this experiment. The horses may have consumed their 

concentrate first, then began to eat the timothy cubes. The top-dressing of the marker on 

the timothy cubes may have caused the horses to ingest a large amount of the marker at 

the start of eating the timothy cubes, and little marker towards the end of the meal. 

Additionally, eating rate could vary among horses. This feeding behavior may have 

resulted in incomplete mixing in the digestive tract, which could cause the spikes in fecal 

excretion observed in this experiment. Additionally, horses in this experiment consumed 

their meal in under 2 h, so they were without food for approximately 10 h before the next 

meal was fed. As meal feeding can influence gut motility and rate of passage (Van 

Weyenberg et al., 2006), it is possible that fecal excretion was influenced by meal 

feeding. Feeding more frequent meals and thoroughly mixing the marker into the 
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complete ration may help eliminate some of the daily variation seen in fecal TiO2 

concentration.   

Overall, TiO2 appeared to have more potential for use as an external marker due 

to better fecal recovery rates. Therefore, the next experiment utilized more horses, more 

frequent meal feedings, and homogenous mixing of the marker into the meal in an 

attempt to improve the accuracy of TiO2 as a potential external marker. 

Experiment 2 

 Titanium dioxide was only analyzed in the spot samples in Experiment 2. For all 

horses averaged across d, aFO (3.31 kg DM) was not different from cFO (3.21 kg DM; P 

> 0.10; Table 5-5). When separated by treatment diet, the average values of cFO and aFO 

for each horse were compared and horses fed MED and LO diets did not show 

differences between aFO and cFO (P > 0.05; Table 5-5). However, for horses fed the HI 

diet, aFO was greater than cFO (P < 0.05; Table 5-5). The accuracy of cFO in predicting 

aFO averaged 98.1% overall and was not different among treatments (Table 5-5; P > 

0.10). Fecal recovery of TiO2 was 106% and was not different among treatments (Table 

5-5; P > 0.10). When cFO was corrected for fecal recovery, accuracy of cFO in predicting 

aFO averaged 101% and was not different among treatments (Table 5-5; P > 0.10), but 

was different from 100% (P < 0.05). However, accuracy of cFO in predicting aFO was 

not different from 100% for individual horses or for each treatment (P > 0.10). Low 

variation within treatment but larger variation between treatments could have caused the 

average percent accuracy to differ, while individual treatments were not different. 
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 Table 5-6 shows accuracy of cFO and fecal recovery of TiO2 by d for each 

treatment as well as the overall average. On average, percent accuracy of cFO in 

predicting aFO was not different from 100% on d 1, 3, and 4 (P > 0.10). Percent accuracy 

was less than 100% on d 2 and 5 (P < 0.05). Horses fed HI appeared to have less 

variation in accuracy from day to day, only ranging from 91 to 100%. Horses fed MED 

and LO both have wider ranges for accuracy, with MED accuracy ranging from 90 to 

108% and LO ranging from 91 to 120%. Less variation in percent accuracy in horses fed 

a high-forage diet may indicate that fecal excretion of the marker was more stable across 

days, whereas horses fed medium forage and low forage diets had a more pulsatile 

excretion of marker across days. Because the medium forage and low forage diets had 

more ingredients in the mixed ration, it is possible that these horses were able to sort 

ingredients as they ate. Feed sorting could result in a less homogenous mixture of feed in 

the GI tract.  

Fecal TiO2 recovery also appeared to vary by day, with recovery for all horses 

increasing on d 2, then decreasing on d 3, then increasing again on d 4 and 5 (Table 5-6). 

Again, fecal recovery for horses fed HI had a range from 101 to 113%, while the ranges 

for MED and LO were wider. These data also suggest that fecal excretion of TiO2 was 

not steady, but may be more pulsatile across days, particularly for horses fed MED and 

LO.  

To further examine the variation among horses fed different diets, data were 

averaged for each horse on each day and aFO was plotted against cFO. When all horses 

were included, the relationship between aFO and cFO was significant but very poor 

(Figure 5-5a; P < 0.05; R2 = 0.0855). Overall, cFO overestimated aFO, which was 
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potentially caused by fecal recoveries greater than 100%. However, there were three 

horses that had feed refusals during the fecal collection period (two from LO diet and one 

from HI), which may have affected fecal TiO2 excretion. While TiO2 in the orts was 

measured and subtracted from TiO2 offered to obtain actual TiO2 intakes, differences in 

TiO2 intakes among days could have had an effect on fecal excretion of TiO2. Therefore, 

the relationship between cFO and aFO was also examined with only horses that did not 

have feed refusals. When only horses that did not have feed refusals were included, the 

R2 increased to 0.1373 (Figure 5-5b; P < 0.05), which suggests that refusals may have 

slightly influenced excretion of TiO2, but did not explain much of the variation in the 

relationship.  

Data for each horse were then averaged across the entire fecal collection period in 

order to remove variation that may be due to day. When all horses were included, the 

relationship between aFO and cFO tended to be significant, but was relatively weak 

(Figure 5-6a; P = 0.0854; R2 = 0.2104). When only horses that did not have feed refusals 

were included, the relationship became significant, the R2 increased to 0.3611 and the 

slope increased to 0.64 (Figure 5-6b; P < 0.05). It is possible that interday variation 

resulted in overestimation of aFO, so when values were averaged over 5 d, the variation 

decreased among horses. 

Relationships between aFO and cFO were then examined by treatment to 

determine if the diet could explain some of the variation. First the average values for each 

horse on each day were examined (Table 5-7). When all horses were included, there was 

no relationship between aFO and cFO for horses fed MED and LO (P > 0.10) and only a 

weak relationship (R2 = 0.1671) for horses fed HI (P < 0.05). When horses with refusals 
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were removed, more of the variation in the relationship for HI was explained (R2 = 

0.2243), but still only accounted for less than 25%. 

Therefore, data for each treatment was averaged over all days for each horse and 

relationships were re-examined (Table 5-8). There were no relationships between aFO 

and cFO when data included all horses for each treatment (P > 0.10). When horses with 

refusals were removed, the only relationship existed for horses fed LO (P < 0.05) and the 

variation explained by cFO was very high (R2 = 0.9992). However, there were only three 

data points used in this analysis, so results should be interpreted with caution. While the 

relationships were not significant, when data were averaged across days, the slopes 

appeared to be closer to 1 than those observed when data were averaged for each horse on 

each day.  

Lastly, concentrations of TiO2 in individual fecal spot samples were examined 

over time for each horse to determine if there were any patterns of excretion that may 

have caused the variation among days. For the horses fed LO, TiO2 concentrations 

appeared to be more stable during the first 30 to 40 h of the experiment (Figure 5-7). 

Then two horses began to have erratic patterns of excretion. One horse (Vision) did have 

refusals during the last days of the collection period, so that may have influenced the 

fecal excretion of TiO2. The other horse with large variation in fecal excretion (Matty) 

did not have refusals, differences in fecal output among days, or differences in fecal DM 

among days (data not shown), so it is unclear what caused the erratic pattern observed.  

For horses fed MED, the excretion of TiO2 appears more stable than LO across 

time, ranging from approximately 3 to 6 g TiO2/kg DM (Figure 5-8). However, there are 
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some peaks and valleys for individual horses. The most stable marker excretion overall 

was observed for horses fed LO, with fecal TiO2 concentrations ranging from 

approximately 3 to 5 g TiO2/kg DM (Figure 5-9). There were two horses (Emi and 

Rancho) that started with concentrations around 3 to 3.5 g TiO2/kg DM at the beginning 

of the collection period, and then increased to around 4 to 5 g TiO2/kg DM by h 40 of the 

experiment. One of these horses (Rancho) did have orts on d 2, which may explain some 

of the lower excretion during the beginning of the experiment. The remaining horses all 

had relatively stable marker excretion across the experiment, with concentrations staying 

between 4 and 5 g TiO2/kg DM throughout. 

 The relatively stable marker excretion seen in HI, but not in LO or MED may 

have been influenced by rate of meal consumption or differences in passage rates among 

the diets. While time to finish each meal was not recorded in this study, other researchers 

have observed that increasing the amount of chopped hay to concentrate decreased the 

rate of intake, leading to longer feeding times (Campbell et al., 2005). Additionally, rate 

of passage of high-forage diets is typically faster than for high concentrate diets (Jouany 

et al., 2008), which may impact the rate of fecal excretion.   

Conclusion 

 Results from Experiment 1 showed promise for TiO2 as an acceptable marker for 

estimating FO. However, due to large variation among individual fecal samples, one 

random fecal sample was not able to accurately predict total fecal output, so Experiment 

2 had more frequent marker dosing in an attempt to reduce intraday variation. While 

more frequent marker dosing did not result in stable fecal excretion, when averaged 

across 5 d, accuracy of TiO2 to predict aFO is increased. Additionally, diet composition 
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may also influence accuracy of markers in predicting fecal output, with high forage diets 

showing more constant fecal excretion patterns compared to low forage diets.  

 Improvements for future research in this area might include feeding TiO2 for a 

longer period of time prior to fecal sampling, increase the feeding frequency, and 

combining all feed ingredients and TiO2 into a complete pelleted feed to reduce the 

instances of sorting.  Additionally, meal size could be increased or feeding rate reduced 

so that horses spend more time eating throughout the day. This practice might reduce the 

variation in fecal excretion patterns observed post-prandially.   
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Tables and Figures 

Table 5-1. Actual fecal output (aFO), calculated fecal output (cFO), percent accuracy of 

cFO, and fecal recovery for horses fed Cr2O3 in Experiment 1. Values were calculated 

from marker concentrations in the composite fecal sample for each horse on each day.  

Horse Day 
aFO, kg 
DM 

cFO, kg 
DM 

 Accuracy of 
cFO, % 

Fecal 
recovery, 
% 

Dara 1 2.78 2.37 85.24 80.25 
Dara 2 2.45 2.19 89.28 76.61 
Dara 3 2.78 2.10 75.62 90.45 
Dara 4 3.00 2.28 76.02 89.97 
Dara AVG  2.75a 2.24b 81.54* 84.32 
Silk 11 -- -- -- -- 
Silk 2 2.02 2.09 103.43 66.13 
Silk 3 2.53 2.03 80.14 85.35 
Silk 4 2.42 2.13 87.86 77.85 
Silk AVG  2.33 2.08 90.48 76.45 
Sirocco 1 3.72 2.70 72.51 94.33 
Sirocco 2 3.24 2.64 81.66 83.76 
Sirocco 3 2.72 2.16 79.36 86.19 
Sirocco 4 1.98 2.13 107.44 63.66 
Sirocco AVG  2.91 2.41 85.24 81.99 
Calling 1 2.72 2.55 93.76 72.95 
Calling 2 2.37 2.25 95.17 71.87 
Calling 3 3.08 2.18 70.80 96.61 
Calling 4 3.06 2.14 69.97 97.76 
Calling AVG  2.81 2.28 82.42 84.80 
Overall AVG  2.72 ± 0.23a 2.25 ± 0.11b 84.55 ± 5.79* 82.25 ± 6.84 

1Data for Silk on day 1 is not available due to accidental discarding of composited feces 
abAverage aFO differs from average cFO (P < 0.05) 
*Accuracy of average cFO in predicting average aFO is different from 100% (P < 0.05) 
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Table 5-2. Actual fecal ouput (aFO), calculated fecal output (cFO), and percent accuracy 

of cFO in predicting aFO averaged by day for horses fed Cr2O3 in Experiment 1. Means 

represent the average value for all horses calculated from marker concentrations in the 

composite fecal samples. Data presented as LS means ± SE. 

Day aFO, kg DM cFO, kg DM Accuracy, % Fecal 
recovery, % 

1 3.07 ± 0.28 2.54 ± 0.08 76.90 ± 3.61* 74.24 ± 11.83 
2 2.52 ± 0.26 2.29 ± 0.12 86.56 ± 6.66 74.86 ± 2.68 
3 2.78 ± 0.11a 2.12 ± 0.03b 82.93 ± 4.66* 89.65 ± 2.58 
4 2.61 ± 0.25 2.17 ± 0.04 92.27 ± 6.73 82.31 ± 7.44 
AVG 2.72 ± 0.23a 2.26 ± 0.105b 84.55 ± 5.79* 82.25 ± 6.84 

abActual fecal output (aFO) is different than calculated fecal output (cFO, P < 0.05) 
*Accuracy of average cFO in predicting average aFO is different from 100% (P < 0.05) 
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Table 5-3. Actual fecal output (aFO), calculated fecal output (cFO), percent accuracy of cFO, fecal recovery, cFO corrected for fecal 

recovery (corr. cFO) for horses fed TiO2 in Experiment 1. Values represent the average of spot samples over a day for each horse. 

Horse Day aFO, kg DM 
cFO, kg 
DM 

 Accuracy of 
cFO, % 

Fecal 
recovery, % 

Corr. cFO, 
kg DM 

Accuracy of 
corrected cFO, % 

Lizzy 1 2.02 2.91 144.04 70.33 2.05 101.31 
Lizzy 2 2.29 2.62 114.51 87.47 2.29 100.16 
Lizzy 3 2.01 2.60 129.55 77.62 2.02 100.55 
Lizzy 4 2.58 2.91 112.97 90.81 2.65 102.59 
AVG  2.23b  2.76a 125.27* 81.56 2.25 101.15 
Phil 1 2.92 2.50 85.66 117.64 2.94 100.77 
Phil 2 2.18 2.41 110.76 90.87 2.19 100.64 
Phil 3 2.54 2.43 95.81 105.77 2.57 101.35 
Phil 4 2.63 2.54 96.49 104.41 2.65 100.75 
AVG  2.57 2.47 97.18 104.67 2.59 100.86 
Quick 1 2.55 3.47 136.18 74.56 2.59 101.54 
Quick 2 3.04 3.05 100.37 107.34 3.27 107.73 
Quick 3 2.9 2.68 92.36 109.45 2.93 101.09 
Quick 4 2.29 2.84 123.82 84.55 2.40 104.69 
AVG  2.70 3.01 113.18 93.98 2.80 103.76 
Skindy 1 2.92 3.69 126.43 81.03 2.99 102.45 
Skindy 2 3.19 3.22 100.86 104.23 3.35 105.12 
Skindy 3 2.57 2.35 91.39 110.04 2.58 100.56 
Skindy 4 2.42 2.46 101.58 99.033 2.43 100.60 
AVG  2.78 2.93 105.07 98.58 2.84 102.18 
OverallAVG  2.57 ± 0.18b 2.79 ± 0.20a 110.17 ± 8.76* 94.70 ± 7.22 2.62 ± 0.20b 101.99 ± 1.05* 

ab Means for aFO, cFO and corrected cFO (corr. cFO) lacking a common letter differ (P< 0.05) 
*Accuracy of average cFO in predicting average aFO is different from 100% (P < 0.05) 
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Table 5-4. Actual fecal ouput (aFO), calculated fecal output (cFO), and percent accuracy 

of cFO in predicting aFO averaged by day for horses fed TiO2 in Experiment 1. Means 

represent the average value for all horses on each day (calculated from spot samples). 

Data presented as LS means ± SE. 

Day aFO, kg DM cFO, kg DM Accuracy, % Fecal 
recovery, % 

1 2.60 ± 0.21 3.14 ± 0.27 123.08 ± 12.98 85.89 ± 10.81 
2 2.68 ± 0.26 2.93 ± 0.19 106.62 ± 3.56 97.48 ± 4.89 
3 2.51 ± 0.18 2.52 ± 0.08 102.28 ± 9.14 100.72 ± 7.76 
4 2.48 ± 0.08 2.69 ±0.11 108.72 ± 6.10 94.70 ± 4.39 
AVG 2.57 ± 0.18b 2.79 ± 0.20a 110.17 ± 8.76* 94.70 ± 7.22 

abAverage cFO differs from average cFO (P< 0.05) 
*Accuracy of average cFO in predicting average aFO is different from 100% (P < 0.05) 
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Table 5-5. Actual (aFO), calculated (cFO), corrected fecal output (corr. cFO) and percent fecal recoveries for individual horses fed 

TiO2 in Experiment 2. Means represent averaged values from spot samples for each horse across all days. 

Horse Trt1 aFO, kg DM cFO, kg DM 
Accuracy for 
cFO , % 

Fecal 
recovery, % 

Corr. cFO, 
kg DM 

Accuracy for 
corr. cFO , % 

Emi HI 2.91a 3.07a 106.12 96.59 2.95 101.48 
Moses HI 3.85a 3.16b 82.41* 122.52 3.87 100.47 
Paddy HI 3.22a 3.03b 94.58* 106.72 3.23 100.24 
Rancho HI 3.37a 3.08b 91.84* 110.57 3.39 100.40 
Tad HI 3.10a 3.08a 100.12 101.36 3.11 100.55 
AVG HI 3.29 ± 0.037a 3.08 ± 0.022b 95.01 ± 1.00* 107.63 ± 1.09 3.40 ± 0.038 100.63 ± 0.048 
Dino MED 3.55a 3.27b 92.14* 110.83 3.61 101.67 
Leroy MED 3.98a 3.47b 88.07* 115.57 4.01 100.86 
Maestro MED 3.77a 3.51a 94.95 111.66 3.82 101.36 
Sirocco MED 3.64a 3.75a 103.43 99.96 3.72 102.23 
Susanna MED 3.02b 3.17a 105.59* 95.97 3.04 100.73 
AVG MED 3.59 ± 0.036a 3.43 ± 0.029a 96.84 ± 1.17* 105.42 ± 1.24 3.60 ± 0.036 101.37 ± 0.092 
Eggs LO 3.00a 2.66b 88.71* 114.74 3.04 101.22 
George LO 3.02a 2.74b 91.72* 112.58 3.06 101.47 
Matty LO 3.30a 3.78a 116.28 92.95 3.45 104.84 
Oliver LO 3.00a 2.66b 88.79* 114.59 3.04 101.17 
Vision LO 2.94b 3.71a 127.05* 85.85 3.01 102.64 
AVG LO 3.05 ± 0.026a  3.11 ± 0.062a 102.47 ± 2.16 104.37 ± 1.52 3.15 ± 0.028 102.27 ± 0.39 
All horses  3.31 ± 0.022a 3.21 ± 0.033a 98.10 ± 1.10 106.16 ± 0.74 3.36 ± 0.022 101.42 ± 0.14* 

1HI = high forage diet; LO = low forage diet; MED = intermediate level of forage diet 
abMeans for aFO and cFO lacking a common letter differ (P < 0.05). Treatment and overall effects were analyzed using average values 
by horse. Each horse effects were analyzed using all collected spot samples.  
*Percent accuracy is different from 100% (P < 0.05) 
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Table 5-6. Accuracy of calculated fecal output (cFO) in predicting actual fecal output 

(aFO) and percent fecal recovery of TiO2 averaged by day of collection for each 

treatment in Experiment 2. Means represent values averaged for each day across all 

horses in each treatment (calculated from spot samples). (LS means ± SE) 

Day of 
collection HI1 MED1 LO1 All horses 
Accuracy 
for cFO, %     
1 97.09 ± 1.71 101.43 ± 0.71 105.19 ± 1.10 101.24 ± 0.53 
2 92.18 ± 2.10 93.92 ± 1.20 90.80 ± 1.43 92.32 ± 0.67* 
3 99.86 ± 1.02 108.27 ± 2.23 94.64 ± 1.03 100.92 ± 0.69 
4 90.85 ± 0.40 89.85 ± 1.05 119.58 ± 5.26 100.09 ± 1.45 
5 95.09 ± 0.93 90.70 ± 1.48 101.75 ± 2.86 95.85 ± 0.83† 
Fecal 
recovery, %     
1 106.40 ± 2.10 99.89 ± 0.82 98.08 ± 0.92 101.46 ± 0.61 
2 112.69 ± 2.04 109.55 ± 1.49 113.90 ± 1.62 112.04 ± 0.72 
3 101.27 ± 1.08 96.66 ± 2.01 106.81 ± 1.24 101.58 ± 0.65 
4 111.05 ± 0.42 114.21 ± 1.41 99.07 ± 3.31 108.11 ± 0.92 
5 106.34 ± 0.98 113.68 ± 1.71 102.86 ± 2.22 107.63 ± 0.74 

1HI = high forage diet; LO = low forage diet; MED = intermediate level of forage diet 
*Average accuracy for all horses differs from 100% (P < 0.05) 
†Average accuracy for all horses tends to differ from 100% (P = 0.0527) 
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Table 5-7. Relationships between actual fecal output (aFO) and calculated fecal output 

(cFO) from TiO2 for each treatment in Experiment 2. Data were averaged by horse on 

each day. 

 HI1 MED1 LO1 
All horses    
     Intercept 1.14 2.94 2.78 
     Slope 0.70 0.19 0.088 
     R2 0.1671 0.0224 0.0431 
     P-value  0.0425 0.4751 0.3192 
Horses with 
refusals removed 

   

     Intercept 0.60 2.94 2.61 
     Slope 0.87 0.19 0.16 
     R2 0.2243 0.0224 0.0952 
     P-value  0.0349 0.4751 0.2632 

1HI = high forage diet; LO = low forage diet; MED = intermediate level of forage diet 
 

 

Table 5-8. Relationships between actual fecal output (aFO) and calculated fecal output 

(cFO) from TiO2 for each treatment in Experiment 2. Data were averaged for each horse 

across the fecal collection period. 

 HI1 MED1 LO1 
All horses    
     Intercept -14.87 0.23 2.69 
     Slope 5.89 0.98 0.12 
     R2 0.5580 0.3879 0.2209 
     P-value  0.1468 0.2617 0.4244 
Horses with 
refusals removed 

   

     Intercept -15.01 0.23 2.28 
     Slope 5.92 0.98 0.27 
     R2 0.5741 0.3879 0.9992 
     P-value  0.2423 0.2617 0.0181 

1HI = high forage diet; LO = low forage diet; MED = intermediate level of forage diet 
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Figure 5-1. Relationship between actual FO and calculated FO from composite samples 

for horses fed Cr2O3 in Experiment 1. Each point represents the average of one horse on 

one day. P < 0.05. 
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Figure 5-2. Fecal excretion of Cr2O3 in selected spot samples over the fecal collection 

period. Each data point represents the fecal concentration in selected spot samples for 

each horse. A meal was fed at h 4 and then every 12 h thereafter.  
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Figure 5-3. Relationship between actual FO and calculated FO for horses fed TiO2 in 

Experiment 1. Each point represents the average of spot samples collected on one day for 

one horse. P = 0.1406. 
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Figure 5-4. Fecal TiO2 excretion patterns over the course of the fecal collection period in 

Experiment 1. Each data point represents fecal concentration in individual fecal spot 

samples collected. Horses were fed at h 4 and then every 12 h.  
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Figure 5-5, ab. Relationship between calculated FO and actual FO for horses fed TiO2 in 

Experiment 2 for (a) all horses and (b) with horses that had feed refusals removed. Each 

point represents one horse’s values averaged per d of collection. 
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Figure 5-6, ab. Relationship between calculated FO and actual FO for horses fed TiO2 in 

Experiment 2 for (a) all horses and (b) with horses that had feed refusals removed. Each 

point represents one horse’s values averaged over the entire collection period. 
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Figure 5-7. Fecal TiO2 concentration (g/kg DM) for horses fed LO diet in Experiment 2. 

Meals were fed every 8 h, starting at h1. 
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Figure 5-8. Fecal TiO2 concentration (g/kg DM) for horses fed MED diet in Experiment 

2. Meals were fed every 8 h, starting at h1. 
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Figure 5-9. Fecal TiO2 concentration (g/kg DM) for horses fed HI diet in Experiment 2. 

Meals were fed every 8 h, starting at h1.  
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CHAPTER 6: SEASONAL VARIATION OF MINERAL CONTENT IN COOL-
SEASON GRASSES 

Introduction 

In Kentucky, many economically valuable horses are raised and maintained in 

pastures consisting primarily of cool-season grasses. The macromineral (Ca, P, Mg) 

content of the pasture is important, especially for growing and lactating horses, to ensure 

proper skeletal growth and milk production, respectively. To ensure no deficiencies 

occur, commercial concentrates containing additional macrominerals are often fed to 

these horses. However depending on the concentrations of these minerals in the pasture, 

minerals provided by concentrate may result in excess intakes. Excess mineral not needed 

by the animal is excreted and, for P in particular, could be harmful to the environment. 

Therefore, an understanding of pasture mineral content may allow horse operations to 

strategically supplement horses to complement their pastures.  

Pasture mineral concentrations may vary during the growing season, making it 

difficult to precisely formulate supplementation programs for grazing animals. Ideally, 

pasture samples would be taken throughout the year to evaluate the changing mineral 

profiles. However, frequent pasture sampling and analysis can be tedious, expensive, and 

time-consuming. The use of near infrared spectroscopy (NIRS) for determination of plant 

nutrient concentrations is quicker and less expensive than wet chemistry analysis.  

Near infrared spectroscopy has been successfully used to predict moisture, fiber, 

and protein of feeds, but has not been widely used for mineral analysis. Because NIRS 

responds to rotational and vibrational bonding energies of hydrogen, use of NIRS to 

detect inorganic minerals is limited. However, NIRS can detect some mineral forms if 
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they are associated with organic or hydrated inorganic molecules (Clark et al., 1987). 

Accurate use of NIRS for predicting forage mineral concentration has been suggested to 

be limited to macro minerals (Ca, P, Mg, and K) (Clark et al., 1987), potentially due to 

the larger concentrations of these minerals as well as their associations with organic 

molecules. Chemical forms of minerals may also differ among forages, being dependent 

on species as well as maturity (Spears, 1994). Therefore, developing equations using 

NIRS to predict forage macro minerals in a highly specific population have provided the 

most accurate results (Clark et al., 1987; Saiga et al., 1989). 

The goal of this study was to develop NIRS equations to predict Ca, P, and Mg 

concentrations in cool-season grasses (bluegrass, orchardgrass, perennial ryegrass and tall 

fescue) and then use NIRS analysis to examine seasonal changes, species differences, and 

effect of N fertility on cool-season grass pasture mineral content. Species common in 

Kentucky horse pastures (tall fescue, Kentucky bluegrass, and orchardgrass) were 

included in the study in order to be relevant for horse farms in the Kentucky region 

(Smith et al., 2009).  

Materials and Methods 

The NIRS equations for predicting mineral content were calibrated using samples 

collected over two consecutive years as part of another study (Prince, 2017). In the first 

year, samples were collected from variety test plots maintained by the Department of 

Plant and Soil Science at the University of Kentucky North Farm. The cool-season 

grasses that were sampled were: Kentucky bluegrass (varieties ‘Barderby’ and ‘Ginger’), 

orchardgrass (varieties ‘Persist’ and Profit’), tall fescue (varieties ‘Cajun’ and ‘Bronson’), 
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and perennial ryegrass (varieties ‘Calibra’ and ‘Linn’). Samples were collected on 8 

different days (Table 6-1) by clipping forage at 5 cm height from randomly selected 

locations throughout three plots per variety (approximately 100 g of wet sample). 

Samples were collected in the afternoon (1500 to 1600 h). Samples were diced, placed in 

Ziploc plastic bags, and frozen at -20 °C until they could be processed. When samples 

were ready to be analyzed, they were thawed, dried in a forced air oven at 55 °C, and 

then ground to pass through a 1 mm screen in an UDY Cyclone Sample Mill (UDY 

Corporation, Fort Collins, CO). These samples were used only in the development of the 

NIRS equations and were not included in analyses to evaluate species or seasonal effects 

on mineral concentrations.  

The second year of sampling occurred in 2015. Research plots were seeded in 

September 2014 and consisted of Kentucky bluegrass (varieties ‘Barderby’ and 

‘Ginger’), orchardgrass (varieties ‘Persist’, ‘Proft’, and ‘Quickdraw’), tall fescue 

(varieties ‘Cajun II’ and ‘Bronson’), and perennial ryegrass (varieties ‘Calibra’, ‘Linn’ 

and ‘Aberzest’). Each of the 10 cultivars were arranged in a randomized complete block 

design replicated over four blocks. Blocks were split and nitrogen (N) was applied to half 

of each plot as the split block, while the other half of the plot received no N. The N 

treatments were applied on March 16, 2015 (56.07 kg N/ha), May 13, 2015 (39.23 kg/N 

ha), and August 19, 2015 (56.07 kg N/ha) for a total of 157 kg N/ha over the year. Plots 

were mowed to a height of 10 to 12.5 cm every 2 wk to keep grasses in a vegetative state. 

Depending on grass growth, samples were collected every 2 to 4 wk from April 15, 2015 

to November 3, 2015 (Table 6-1) in a similar manner as described for 2014. Samples 

were collected in the morning (0800 to 0900h) as well as the afternoon (1500 to 1600 h) 
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as part of another study (Prince, 2017); however, only samples collected in the afternoon 

were analyzed for this study. Once collected, samples were immediately frozen in liquid 

N and stored at -20 °C until they could be freeze-dried and then ground as described 

above. Due to freeze-dryer malfunction, all of harvest 2 and some of harvests 3 and 4 

developed mold while in the freeze-dryer and therefore were not analyzed. Additionally, 

Kentucky bluegrass varieties were not sampled at harvest 1 (April 15, 2015) due to 

limited growth. As a result, only samples from harvest 3 (May 13, 2015) through harvest 

12 (November 3, 2015) were included in the study.  

NIRS and wet chemistry 

All samples from 2014 and 2015 were scanned using FOSS 6500 NIRS (Foss, 

Inc., Hillderod, Denmark; n = 1050). Wet chemistry was performed on a sub-set of the 

2014 samples (n = 27) selected at random and a sub-set 2015 samples (n = 100) selected 

from FOSS 6500 NIRS ISI software (Infrasoft International, L.L.C., State College, PA). 

Phosphorus was analyzed in ground samples using a gravimetric method (Shaver, 2008). 

Calcium and Mg were analyzed using atomic absorption (Bowers Jr and Rains, 1988). 

 Prediction equations were then developed for Ca, P, and Mg using modified 

partial least square regression (WinISI® software v.4.4). Outliers were removed from the 

equation if they fell beyond the standard deviation limit as determined by the software. 

Table 6-2 shows statistics for the equations calibrated to predict Ca, P, and Mg. The R2 

for all equations was ≥ 0.90, indicating good accuracy of predicting unknown samples. 

The standard errors of calibration are low for all equations (≤ 0.02). The 1-VR values, 

which are similar to an R2-value for a prediction regression, were lower than R2 values: 
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0.508 for Mg, 0.594 for Ca, and 0.601 for P. The 1-VR values indicate predictability of 

unknown samples and the values observed in this study suggest that predictability may be 

lower than desired.  

Statistical analysis of sample data 

 The sample set for the 2015 year included 787 observations for each mineral. The 

main effects of species, sample day and N fertility were analyzed using repeated 

measures ANOVA (SAS 9.4, SAS Institute Inc., Cary, NC) with a random effect of 

block. If differences between means were found to be significant (P < 0.05), means were 

separated using an LSD test. Unless otherwise noted, mean values in tables are presented 

as LS means.  

Results and Discussion 

NIRS equations 

To further examine the efficacy of the equations, the calibration population from 

2014 and 2015 was predicted by each equation and plotted against wet chemistry values 

(Figure 6-1, 6-2, 6-3). A slope of 1 would indicate a perfect relationship between actual 

and predicted values.  

Because NIRS detects chemical bonds, accurate prediction of minerals can be 

difficult due to differences in mineral chemical form within the plant and also across 

plant species. Calcium can exist in plants as calcium phosphate, calcium oxalate, or 

bound to pectin and lignin (Butler and Jones, 1973; Hazell, 1985). The chemical forms of 

Ca depends on forage species and maturity. For example, the proportion of total Ca in the 
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cell wall fraction of tall fescue has been reported to be 14.1% compared to 45.2% in 

white clover (Whitehead et al., 1985). Additionally, the availability of Ca from forages in 

the rumen is dependent on chemical Ca form and has been shown to be highly variable 

(range 30 to 78%) depending on forage species and maturity (Spears, 1994). However 

despite the multiple forms of Ca that may exist within plant tissue, the equation could 

accurately predict actual Ca concentrations when outliers were removed (R2 = 0.9715; 

Figure 6-1). 

The relationship between actual and predicted values for P is not as robust as that 

for Ca (R2 = 0.8836; Figure 6-2). Phosphorus also exists in plants in many chemical 

forms. It can be present as inorganic phosphate, RNA, phospholipids, phosphate ester, 

and phytic acid (Butler and Jones, 1973; Hazell, 1985). Ruminal release of P from 

different forages ranges from 61 to 88%, suggesting that P is readily available and is less 

likely to be associated with cell wall fractions than Ca (Spears, 1994). In fact, Whitehead 

et al. (1985) demonstrated that only 5% of total P is found in the cell wall fraction of tall 

fescue and white clover, which is lower than that observed for Ca. As described for Ca, 

variation among chemical forms of P could lead to inaccurate predictions of P 

concentrations among species by NIRS.  

The relationship between actual and predicted Mg concentrations is relatively 

robust (R2 = 0.9230; Figure 6-3). Magnesium has the least number of potential chemical 

forms in the plant compared to Ca and P, being mainly associated with chlorophyll but 

can also bind to lignin (Butler and Jones, 1973; Hazell, 1985). In fact, the NIRS 

wavelengths used for predicting Mg are very similar to peaks in the chlorophyll spectrum 

(Tremblay et al., 2009). Additionally, ruminal release of Mg is relatively constant across 
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forage species, further suggesting that mineral form of Mg is similar in different forages 

(Spears, 1994). Because the chemical forms of Mg are so few, it is possible that the 

chemical forms were very similar across species and the NIRS was better able to 

recognize Mg bonds and therefore was relatively accurate in predicting Mg 

concentrations. 

Concentrations of Ca, P, and Mg in cool-season grasses 

 Table 6-3 shows the average mineral concentrations for each species, as well as 

the average concentration across species, that was analyzed via wet chemistry and as 

predicted by NIRS. For Ca, the overall average analyzed concentration was 0.552 ± 

0.151% and the equation predicted the concentration to be 0.538 ± 0.099%. For P, the 

average analyzed concentrations was 0.486 ± 0.098% and the predicted concentration 

was 0.480 ± 0.066%. For Mg, the average analyzed concentration was 0.218 ± 0.06% and 

the predicted concentration was 0.222 ± 0.048%.  There were no differences between 

average analyzed and predicted concentrations for any of the minerals (P > 0.10). 

 The greatest concentration of Ca was in perennial ryegrass and lowest in tall 

fescue (Table 6-3). A 500-kg mare in early lactation consuming 2% of her BW in pasture 

(DM) would have a Ca intake of 79.8 g if she was consuming perennial ryegrass pasture 

and 51.4 g if she was consuming mostly tall fescue (using wet chemistry values). The Ca 

requirement for a mare in early lactation is 59 g (NR, 2007), so she would be meeting her 

requirement if her pasture was mostly perennial ryegrass, but may require 

supplementation on a tall fescue pasture. 
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 For P, the greatest concentration was in orchardgrass and the lowest was in 

Kentucky bluegrass. The same mare as described above would be consuming 54.9 g of P 

on an orchardgrass pasture and 42.2 g on a Kentucky bluegrass pasture (using wet 

chemistry values). Her P requirement would be 38 g, which would be met by both 

grasses, indicating no need for P supplementation. 

 Tall fescue had the greatest concentration of Mg and Kentucky bluegrass had the 

lowest. The lactating mare would be consuming 25.2 g of Mg on a tall fescue pasture and 

14.3 g on a Kentucky bluegrass pasture (using wet chemistry values). This mare would be 

meeting her Mg requirement (11.2 g) if fed either of these grasses. 

 On average, these species of cool-season grasses grown in central Kentucky 

provide adequate P and Mg for most horses. Calcium may need to be supplemented in 

some cases, but the Ca in cool-season grasses will likely meet requirements for horses 

with lower nutrient needs. However, other variables, such as time of harvest and fertility, 

may also impact mineral concentrations. Thus, the following sections will discuss the 

effects of species in more depth, as well as harvest date and N fertilization on mineral 

concentrations of these cool-season grasses using values predicted from equations 

developed using NIRS. While these equations may not be as robust as other equations for 

organic plant compounds, they at least provide an indication of the relative responses of 

each mineral, even if the actual values are not perfectly predicted.  

Effect of species 

Across all harvests and fertility levels, Ca, P, and Mg concentrations were all 

affected by species (Figure 6-4). Perennial ryegrass had the greatest Ca concentrations, 
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followed by orchardgrass, and tall fescue had the lowest Ca concentration (P < 0.05). 

Orchardgrass had the greatest concentrations of P and Mg and perennial ryegrass had the 

second greatest concentrations of P and Mg (P < 0.05). Kentucky bluegrass had the 

lowest concentrations of P and Mg (P < 0.05).  

As a result of varying Ca and P concentrations, the Ca:P ratio was also affected by 

species (Figure 6-5). Perennial ryegrass had the greatest ratio of 1.13:1 and orchardgrass 

had the lowest ratio of 0.91:1. In equine nutrition, a dietary Ca:P ratio of at least 1:1 is 

desired and ideally the ratio would be closer to 2:1 (NRC, 2007). All species were 

relatively close to 1:1 however, both orchardgrass and tall fescue had inverted Ca:P ratios 

(less than 1:1). It is reasonably common for horse pastures to contain legumes, 

particularly clover (Smith et al., 2009), which would increase the Ca intake of grazing 

animals. However, if legumes are not present, horses grazing these species may need to 

be supplemented with Ca to achieve a more desirable ratio. In the event that horses were 

supplemented with an unfortified grain, such as oats, the potential for an inverted Ca:P 

ratio would be exacerbated. For example, the Ca:P ratio of oats is reported to be 0.275:1 

(NRC, 2007), so the addition of unfortified oats to meet calorie needs for growth or 

lactation could have a marked impact on P intake and on the Ca:P ratio. 

Effect of harvest date 

 Calcium, P, and Mg were all affected by harvest date, as their concentrations 

varied across the season. Across harvest, Ca concentrations ranged from 0.45 to 0.60% 

with concentrations being lowest in the first part of May, staying relatively stable 

throughout late spring and summer, and then increasing into the fall (Figure 6-6). 
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 Phosphorus concentrations had a more narrow range compared to Ca (0.48 to 

0.55%). Similarly to Ca, the lowest P concentrations occurred in early May and the 

greatest concentrations are observed in fall (Figure 6-7). However, P concentrations 

increased throughout June up to a peak in early July, then declined in late summer, which 

is different than the pattern observed for Ca. Seasonal variation in P concentrations have 

been observed to be lowest in the summer when growth of cool-season grasses is reduced 

(Greene et al., 1987). However in that study which was performed in Texas, P 

concentrations were much lower (0.07 to 0.17% P) (Greene et al., 1987), than those seen 

in the current study, which is likely an effect of the high soil P found in central Kentucky 

compared to other locations in the United States. Additionally, differences in climate as 

well as different varieties that may be more heat tolerant, could also produce different 

results among studies.  

 As a result of varying Ca and P concentrations, the Ca:P ratio also varies among 

harvests (Figure 6-8). The ratio stays relatively close to 1:1 throughout the sampling 

period, but inverted Ca:P ratios are seen in early May and also in July, so the inclusion of 

Ca in the diet, either by the addition of legumes or through the concentrate, may be 

needed during these times, especially for animals grazing tall fescue or orchardgrass, as 

those species generally tend to have inverted ratios overall. Again, there is no need for P 

supplementation, as additional P would further decrease the Ca:P ratio.  

 Seasonal variation in Mg concentrations follow a similar pattern to P (Figure 6-9). 

The lowest concentration of 0.20% was observed in early May, a peak of 0.26% in early 

July, then a decrease through the late summer and another increase in October and 

November.  
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Effect of nitrogen fertilizer 

Overall, N fertilization increased P and Mg concentrations (P < 0.05), but had no 

effect on Ca (P > 0.10; Figure 6-10). Even when broken out by harvest or species, N 

fertilizer had no effect on Ca concentrations (data not shown). Hemingway (1961) 

reported that Mg concentrations in grass species were influenced by application of 

ammonium sulfate, but Ca concentrations were not significantly impacted. Another study 

also reported that P concentrations in cool-season grasses were significantly increased by 

N fertilization in the vegetative stages (Williams, 1953). The differences between overall 

P and Mg concentrations from fertilized and non-fertilized plots appear to be relatively 

small (around 0.03%), however, there was a significant effect of harvest which shows 

greater differences depending on sampling date (Figure 6-11).  

Phosphorus concentrations between fertilized and non-fertilized plots were 

significantly different on May 27, June 10, June 24, July 22, October 13, and November 3 

(Figure 6-11). Fertilizer was applied on March 16, May 13, and again on August 19. The 

May application was followed by an immediate increase in P concentration at the next 

sampling date and the effect remained throughout the following two sampling dates. The 

fall application of fertilizer did not affect P concentrations until approximately 8 wk later 

in October.  

Magnesium concentrations between fertilized and non-fertilized plots were 

significantly different at all harvest dates except for July (Figure 6-11). Interestingly, 

there was no effect of fertilizer for P on this date as well. The May application of 

fertilizer increased the difference between fertilized and non-fertilized plots at the next 
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sampling date (May 27), and then the difference was reduced between the two treatments 

at the next sampling date, but still remained significant.  

When broken out by species, N fertilizer significantly increased P and Mg 

concentrations for all species (Figure 6-12, 6-13). There was no effect of N fertilization 

on Ca concentrations for any species.  

Strategic supplementation of horses maintained on pasture in central Kentucky 

 In this study, pasture mineral concentrations were observed to vary with species, 

date, and in some cases, N fertility. These observations suggest that there is potential to 

develop strategic mineral supplementation programs that meet animal needs, but 

minimize the excretion of minerals, particularly P, into the environment. 

 Generally, P concentrations were lowest in early May and in Kentucky bluegrass. 

If a growing Thoroughbred yearling is consuming an unfertilized pasture mainly 

containing Kentucky bluegrass in May (P = .43%; DM intake of 1.5% BW), it would be 

consuming 20.7 g P, which more or less meets its P requirement (P requirement = 21 g/d, 

NRC, 2007). This yearling would need to be supplemented with 0.3 g of P per day in 

order to exactly meet the daily P requirement. Typically, yearlings are fed approximately 

1% of the BW in concentrate in order to meet energy requirements, which would equate 

to 3 kg in this scenario. In order to meet but not exceed the P requirement of this yearling, 

the concentrate should only contain 0.010% P. However, current commercial 

concentrates formulated for growing horses often contain around 0.60 to 0.80% P 

(Fowler, 2013). A yearling being fed 3 kg of these higher P concentrates will be 

consuming 18 to 24 g of P from the concentrate alone, which well exceeds the 0.3 g P 
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needed from the concentrate to meet requirements and in some cases, P intake from the 

concentrate alone exceeds the P requirement. The excess P that the yearling is consuming 

will be excreted and by feeding over the requirement, more P than necessary is excreted 

in the feces. 

 If a yearling was consuming a mostly orchardgrass pasture in October (P = 

0.63%), the pasture would be meeting its requirement without any supplementation. 

However, if the same concentrates as described above are fed to meet energy 

requirements, the P intake could be 230 to 260% of the P requirement.  

These examples illustrate the potential to develop lower P concentrates that still 

meet energy needs for horses grazing pasture. One such concentrate could be fed in the 

fall when pasture P is high to reduce the excessive P intakes that are likely to exist at that 

time of year. Concentrates developed for spring feeding could contain more P than 

concentrates developed for fall feeding in order to meet P requirements that are not met 

by pasture alone.  

Influence of estimates of true P digestibility on P excretion in horses maintained on 

central Kentucky pastures 

The example above calculated daily P requirements for a growing horse (P 

requirement = 21 g/d) based on estimates of true P digestibility as described by the NRC 

(2007) of 45% for growing horses. However, if true P digestibility is greater than 

previously believed due to P recycling and differences in endogenous losses, then P 

requirements may be overestimated and supplementation programs on for horses on 

pasture may need to be altered even further. For example, if true P digestibility is actually 
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80% for growing horses, as suggested by the NRC (1966), then the daily P requirement 

for a yearling would be 11.8 g P/d, almost half of the requirement calculated by NRC 

(2007). If a requirement of 11.8 g P/d is assumed, then even yearlings grazing 

unfertilized Kentucky bluegrass in May (P = 0.43%) would be consuming 20.7 g P/d, 

which is still 8.9 g P/d more than the newly calculated P requirement. On the other 

extreme, yearlings grazing a pasture with large concentrations of P (i.e. fertilized 

orchardgrass in October; P = 0.63%) would be consuming 30.3 g P/d, which is 18.5 g P 

over the newly calculated requirement. Phosphorus supplementation would not be needed 

for any yearling in this scenario, even if grazing pasture with the lowest P concentrations.  

This exercise highlights the importance of not only knowing how much P the 

pasture is providing to the horse, but also the importance of knowing the actual true P 

digestibility by horses. Because the calculation of P requirements rely so heavily on the 

value chosen for true P digestibility, it is imperative that the correct value is chosen so P 

requirements can be accurately calculated and overfeeding of P can be avoided.  

Conclusion 

Rapid NIRS determination of pasture minerals could be useful for equine 

operations to understand how pasture mineral profiles change over time. A handheld 

NIRS would be ideal for rapid evaluation in the field. With knowledge of pasture mineral 

concentrations, producers can tailor mineral supplementation programs to complement 

pasture mineral composition, thereby reducing the impact of mineral excretion on the 

environment, as well as ensuring their horses are obtaining optimal mineral nutrition.    
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Tables and Figures 

Table 6-1. Dates that samples were collected for 2014 and 2015 studies 

Harvest # Harvest date 
Spring 2014 4/18, 4/21, 4/23, 5/6, 5/7, 5/21, 5/30 
Fall 2014 10/17 
Harvest 3 2015 5/13 
Harvest 4 2015 5/27 
Harvest 5 2015 6/10 
Harvest 6 2015 6/24 
Harvest 7 2015 7/8 
Harvest 8 2015 7/22 
Harvest 9 2015 8/19 
Harvest 10 2015 9/15 
Harvest 11 2015 10/13 
Harvest 12 2015 11/3 

 

Table 6-2. Equation statistics for quantification of calcium (Ca, %), phosphorus (P, %), 

and magnesium (Mg, %) by near infrared reflectance spectroscopy (NIRS) 

Equation n Mean ± SD Range  R2 1-VR SEC SECV 
Ca 64 0.533 ± 0.097 0.241 – 0.825 0.9884 0.594 0.0105 0.0616 
P 73 0.468 ±0.064 0.277 – 0.667 0.8968 0.601 0.0205 0.0401 
Mg 52 0.219 ± 0.045 0.085 – 0.353 0.9352 0.508 0.0114 0.0310 
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Table 6-3. Average mineral concentrations of the same cool-season grass population when analyzed using wet chemistry and NIRS 

(mean ± SD) 

 Calcium, % Phosphorus, % Magnesium, % 
 Lab1 NIRS2 Lab1 NIRS2 Lab1  NIRS2 

Kentucky bluegrass 0.532 ± 0.142 0.545 ± 0.099 0.422 ± 0.061 0.421 ± 0.040 0.143 ± 0.040 0.173 ± 0.036 
Orchardgrass 0.548 ± 0.092 0.551 ± 0.080 0.549 ± 0.109 0.545 ± 0.054 0.242 ± 0.038 0.258 ± 0.035 
Perennial ryegrass 0.798 ± 0.139 0.631 ± 0.104 0.484 ± 0.081 0.475 ± 0.053 0.222 ± 0.052 0.215 ± 0.038 
Tall fescue 0.514 ± 0.111 0.543 ± 0.094 0.475 ± 0.091 0.463 ± 0.051 0.252 ± 0.049 0.236 ± 0.041 
Average of all 
species 

0.552 ± 0.151 0.538 ± 0.099 0.486 ± 0.098 0.480 ± 0.066 
 

0.218 ± 0.060 0.222 ± 0.048 

1Concentrations analyzed in the laboratory using wet chemistry  
2Concentrations predicted using NIRS equation (using same samples analyzed for wet chemistry) 
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Figure 6-1. Relationship between actual laboratory analyzed calcium concentrations and 

near infrared reflectance spectroscopy (NIRS) equation-predicted Ca concentrations of 

cool-season grasses harvested 2014 – 2015. Outliers were excluded from the equation if 

the absolute residual was greater than 0.09 (as determined by modified partial least 

squares regression using WinISI® v4.4 software).  
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Figure 6-2. Relationship between actual laboratory analyzed phosphorus concentrations 

and near infrared reflectance spectroscopy (NIRS) equation-predicted P concentrations of 

cool-season grasses harvested 2014 – 2015. Outliers were excluded from the equation if 

the absolute residual was greater than 0.061 (as determined by modified partial least 

squares regression using WinISI® v4.4 software). 
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Figure 6-3. Relationship between actual laboratory analyzed magnesium concentrations 

and near infrared reflectance spectroscopy (NIRS) equation-predicted Mg concentrations 

of cool-season grasses harvested 2014 – 2015. Outliers were excluded from the equation 

if the absolute residual was greater than 0.04 (as determined by modified partial least 

squares regression using WinISI® v4.4 software). 
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Figure 6-4. Effect of species on concentrations of calcium (Ca), phosphorus (P), and 

magnesium (Mg) in four species of cool-season grasses sampled in 2015. Means within a 

mineral lacking a common letter differ (P < 0.05). 
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Figure 6-5. Effect of species on Ca:P ratio in four species of cool-season grasses sampled 

in 2015. Means lacking a common letter differ (P < 0.05). 
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Figure 6-6. Effect of harvest on calcium (Ca) concentration in all four species of cool-

season grasses sampled in 2015. Means lacking a common letter differ (P < 0.05). 
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Figure 6-7. Effect of harvest on phosphorus (P) concentration in all four species of cool-

season grasses sampled in 2015. Means lacking a common letter differ (P < 0.05). 
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Figure 6-8. Effect of harvest on Ca:P concentration in all four species of cool-season 

grasses sampled in 2015. Means lacking a common letter differ (P < 0.05).  
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Figure 6-9. Effect of harvest on magnesium (Mg) concentration in all four species of 

cool-season grasses sampled in 2015. Means lacking a common letter differ (P < 0.05). 
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Figure 6-10. Effect of nitrogen fertilizer or no fertilizer on concentrations of calcium 

(Ca), phosphorus (P), and magnesium (Mg) in all four species of cool-season grasses 

sampled in 2015. Means within a mineral lacking a common letter differ (P < 0.05). 
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Figure 6-11. Effect of nitrogen fertilizer or no fertilizer on phosphorus (P) and 

magnesium (Mg) concentrations across harvests for all cool-season grasses sampled in 

2015. Means within a harvest and mineral lacking a common letter differ (P < 0.05). 

 

 

 

 

 

a
a a a a a a a

a a

a b b
b

a
b a a b

b

a

a
a a

a
a a

a

a a

b
b b b

a
b b b

b b

0

0.1

0.2

0.3

0.4

0.5

0.6

13-May 27-May 10-Jun 24-Jun 8-Jul 22-Jul 19-Aug 15-Sep 13-Oct 3-Nov

M
in

er
al

 c
on

ce
nt

ra
tio

n,
 %

 D
M

P-Nitrogen P-None Mg-Nitrogen Mg-None



 

173 
 

 

Figure 6-12. Effect of N fertilizer of no fertilizer on phosphorus concentrations averaged 

by species. Means within a species lacking a common letter differ (P < 0.05). 
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Figure 6-13. Effect of N fertilizer of no fertilizer on magnesium concentrations averaged 

by species. Means within a species lacking a common letter differ (P < 0.05). 
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CHAPTER 7: CONCLUSION 

 True P digestibility in horses is likely higher than currently suggested by NRC 

(2007), due to P recycling into the GI tract. If true P digestibility is actually greater than 

currently believed, then current recommendations for P intakes by horses are probably 

high. In order to truly elucidate true P digestibility, P intake should be below the actual 

requirement of the horse, in order to maximize P retention and decrease recycling. Out of 

all the published papers reporting P digestibility in mature horses, only two experiments 

have fed P below the current P requirement of 28 mg P/kg BW (Kichura et al., 1983; 

Buchholz-Bryant et al., 2001), which may be high based on the low true P digestibilities 

used to calculate that requirement (NRC, 2007). Buchholz-Bryant et al. (2001) found that 

mature horses fed at their P requirement had no difference in apparent P digestibility than 

horses consuming 200% of their P requirement, further suggesting that the current 

requirement is too high to reduce P recycling within the gut.  

Formulating a low P diet for mature horses at maintenance in an attempt to 

maximize retention is difficult due to the low P requirement of horses at maintenance. 

The goal of this dissertation was to attempt to create a model that would increase P 

retention and reduce P recycling to better understand actual P digestibility of the feed. 

Post-lactational mares and horses undergoing weight gain were the two physiological 

states that we hypothesized would increase P retention and reduce P recycling into the 

gut. While post-lactational mares increased fecal P excretion, they were also losing 

weight which may have reduced their need to retain P. Horses gaining weight did tend to 

excrete less P than horses losing weight, suggesting the P retained in the body was greater 

in these horses. Horses that were assigned to gain weight only gained a modest amount of 
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weight (6.8 kg), which may not have been enough to eliminate active P secretion into the 

GI tract.  

Ideally, future studies would utilize horses with even greater requirements, such 

as lactating or exercising horses. However, performing total fecal collections with these 

animals is difficult. Therefore, external markers were evaluated in tandem with the 

animal studies in order to validate the accuracy of their ability to predict fecal output, so 

that P digestibility could eventually be calculated in lactating mares and exercising 

horses. Titanium dioxide may be an appropriate marker to use to calculate fecal output, 

but multiple spot samples over many days are needed to obtain reliable results.  

Many horses likely consume much more than their P requirement based on 

current NRC (2007) recommendations due to the dietary addition of fortified 

concentrates containing P. To demonstrate how much P from pasture is already available 

to horses throughout the growing season in Kentucky, cool-season grasses were evaluated 

for mineral content. Pasture mineral content does vary throughout the year. Despite 

seasonal fluctuations, pasture provides sufficient P for most horses without the need for 

supplementation. Horses with greater P requirements (e.g. pregnant, lactating, growing) 

may only need to be supplemented in certain periods of the year, when pasture P is at its 

lowest. Lowering P intake by reducing or eliminating P supplementation would reduce 

excess P excretion and be more environmentally sustainable.  

In conclusion, the current P requirement for horses likely exceeds the actual P 

required by the horse due to P recycling occurring in the studies that were used to 

calculate the current P requirement. True P digestibility is likely greater than currently 
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suggested, but more studies that feed P below the horses’ requirements are needed in 

order to fully determine actual P digestibility by horses.  
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APPENDICES 

Appendix A. Water balance and digestibility of organic matter, NDF and ADF from 
Chapter 4 experiment 

Organic matter intakes were similar among treatments, but OM digestibility was 

greatest in GA and lowest in LO and MA (Table A-1). Organic matter digestibilities were 

numerically greater than DM digestibilities for all treatments, but the difference between 

DM digestibility and OM digestibility was greatest in LO (50.48 versus 54.61%, 

respectively) and lowest in GA (61.57 versus 61.79%, respectively).  

 Intake of the fiber components, NDF and ADF, were greatest in LO group and 

lowest in the GA group (Table A-2; P < 0.05). Despite differences in intake, digestibility 

of these fiber components were similar among treatments (P > 0.10).  

 One gelding in the LO treatment group consumed twice as much water than all 

other horses. The gelding consumed an average of 84 ml water/kg BW per day and the 

remaining 14 horses consumed an average of 41.5 ± 5.1 ml water/kg BW (mean ± SD). 

The one gelding consumed more than 8 times the SD from the overall mean and was 

treated as an outlier. This horse was removed from analysis of water intake. Water intake 

did not differ among treatments (Table A-3; P > 0.10). However there was a trend for 

water intake in relation to feed DM to be greatest in LO horses and lowest in GA horses 

(P = 0.0875). There was also a trend for water intake in relation to ADF intake to be 

greatest in GA and lowest in LO horses (P = 0.0941).     
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Table A-1. Organic matter digestibility over the fecal collection period for horses fed loss 

(LO), maintenance (MA) and gain (GA) diets (LS means) 

Item LO MA GA SEM P-value 
Intake, kg 6.56 7.27 6.99 0.32 0.3340 
Intake, g/kg BW 11.81 13.30 12.84 0.49 0.1294 
Fecal excretion, kg  2.95b 3.19a 2.63c 0.09 0.0001 
Fecal excretion, g/kg BW 5.31b 5.83a 4.85c 0.11 <0.0001 
OMD, % 54.61b 56.08b 61.79a 1.71 0.0232 

abc Means within a row lacking a common superscript differ (P < 0.05) 

Table A-2. NDF and ADF digestibility over the fecal collection period for horses fed loss 

(LO), maintenance (MA) and gain (GA) diets (LS means)  

Item LO MA GA SEM P-value 
NDF intake, kg 4.19a 4.40a 3.59b 0.105 0.0016 
NDF intake, g/kg BW 7.67a 8.06a 6.50b 0.155 0.0003 
NDF excreted, kg 2.21ab 2.52a 1.96b 0.095 0.0102 
NDF excreted, g/kg BW 4.04b 4.60a 3.55b 0.153 0.0043 
NDF digestibility, % 47.22 42.85 45.39 1.572 0.2038 
ADF intake, kg 2.38a 2.48a 1.98b 0.067 0.0018 
ADF intake, g/kg BW 4.36a 4.53a 3.58b 0.099 0.0003 
ADF excreted, kg 1.41a 1.56a 1.19b 0.060 0.0064 
ADF excreted, g/kg BW 2.57a 2.85a 2.15b 0.094 0.0023 
ADF digestibility, % 40.72 36.69 40.03 1.701 0.2600 

abc Means within a row lacking a common superscript differ (P < 0.05) 

Table A-3. Water intake over the fecal collection period for horses fed loss (LO), 

maintenance (MA) and gain (GA) diets (LS means) 

Item LO1 MA2 GA2 SEM P-value 
Water intake, L/d 20.95 24.15 21.53 1.17 0.2094 
Water intake, ml/kg BW 39.34 44.84 38.54 2.48 0.2260 
Water intake, L/kg feed DM 3.27 3.09 2.71 0.14 0.0875 
Water intake, L/kg NDF 5.10 5.49 6.00 0.27 0.1577 
Water intake, L/kg ADF 9.04 9.78 10.88 0.47 0.0941 

1 n=4; outlier from LO treatment removed due to value being 8 SD from overall mean 
2 n=5 
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Appendix B. Determination of titanium dioxide in equine fecal samples: Method 1 

Reagents: 

Standard titanium solution (0.5 mg/ml) 

 Dissolve 250 mg titanium dioxide in 100 ml concentrated sulphuric acid by 
heating in a beaker to just below boiling. Adding a stir bar to assist in dissolution is 
useful. It may take ~1 hr to 2 h to dissolve completely. Rinse the contents of the beaker 
into a 500 ml volumetric flask containing approximately 200 ml nanopure water. Add 
another 100 ml concentrated sulphuric acid to the mixture and dilute to 500 ml with 
nanopure water. 

Sulphuric acid solution (7.4 M) 

 Add 400 ml of concentrated sulphuric acid to 400 ml of nanopure water in a 1 L 
volumetric flask and dilute to 1 L. 

Procedure: 

1. Weigh 0.2 g of fecal material into a quartz crucible and ash overnight at 600°C.  
a. A sample size of 0.1 g is also acceptable, but sample sizes greater than ~0.25 g 

make it more difficult to digest and dissolve TiO2 in sulfuric acid. A sample size 
of 0.2 g is used here because the concentration of TiO2 in horse feces is relatively 
low.  

2. Add 20 ml of the 7.4 M H2SO4 solution to each crucible upon cooling. Gently swirl to 
ensure there are no clumps of ash in the crucible.  

3. Heat the samples to just below boiling (~390°C or until samples steam, but don’t bubble) 
for approximately 90 min or until white particles (TiO2) are dissolved.  

4. Allow crucibles to cool completely. Very slowly and gently, squirt nanopure water into 
the crucible by letting it flow down the inside wall of the crucible. If spattering occurs, 
stop and gently swirl crucible contents, let cool and try again even more slowly. Add 
about 15 mL of nanopure water in total, but no need to be exact.  

5.  Pour the contents of the crucibles into 100 ml volumetric flasks. 
a. You may pour through filter paper (Whatman 541) at this step, or you may skip 

the filtering and just allow the flasks to sit overnight before analyzing. Better 
recoveries have been achieved with horse feces by skipping the filtering and 
letting the flasks sit overnight. 

6. Add 10 ml of 30% hydrogen peroxide (H2O2) to the flasks and the dilute to 100 ml with 
nanopure water.  

a. 10 mL was added as described by Titgemeyer et al. (2001) instead of the amount 
of 20 mL proposed by Short et al. (1996) 

7. Let flasks sit overnight (unless samples were filtered, then ignore this step). 
8. Measure aliquots on a spectrophotometer at 410 nm. 

a. If bubbles appear in cuvettes, gently tap on counter until they dissipate.  
b. Wipe outside of cuvette with KimWipe before placing in spectrophotometer. Any 

dust, debris, bubbles, etc will give inaccurate readings. 
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Calibration Curve: 

1. Pipette 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10 ml of the standard titanium solution (0.5 mg/ml) 
into individual 100 ml volumetric flasks.  

2. Add 7.4 M sulphuric acid to each flask so that the combined volume is 10 ml.  
Standard sol’n (ml) H2SO4 added (ml) TiO2 Concentration (mg/ml) 

0 10 0 
1 9 0.005 
2 8 0.010 
3 7 0.015 
4 6 0.020 
5 5 0.025 
6 4 0.030 
7 3 0.035 
8 2 0.040 
9 1 0.045 
10 0 0.050 

 
3. Add 10 ml of 30% H2O2 to each flask and dilute to volume with nanopure water.  
4. Measure aliquots on a spectrophotometer at 410 nm to obtain a calibration curve. 

 
As described by Short, F.J., P. Gorton, J. Wiseman, K.N. Boorman. 1996. Determination 

of titanium dioxide added as an inert marker in chicken digestibility studies. 
Anim. Feed Sci. Tech 59: 215 – 221.  

As modified by Titgemeyer, E.C., C.K. Armendariz, D.J. Bindel, R.H. Greenwood, and 
C.A. Löest. 2001. Evaluation of titanium dioxide as a digestibility marker for 
cattle. J. Anim. Sci. 79: 1059 – 1063 
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Appendix C. Determination of titanium dioxide in equine fecal samples: Method 2 

 
Standard titanium solution (0.5 mg/ml) 
 Dissolve 250 mg titanium dioxide in 100 ml concentrated sulphuric acid by 
heating in a beaker to just below boiling. Adding a stir bar to assist in dissolution is 
useful. It may take ~1 hr to 2 h to dissolve completely. Rinse the contents of the beaker 
into a 500 ml volumetric flask containing approximately 200 ml nanopure water. Add 
another 100 ml concentrated sulphuric acid to the mixture and dilute to 500 ml with 
nanopure water. 
 
Calibration Curve: 

5. Pipette 0, 0.5, 1, 1.5, and 2 ml of the standard titanium solution (0.5 mg/ml) into 
individual 50 ml volumetric flasks.  

6. Add concentrated sulphuric acid to each flask so that the combined volume is 10 
ml.  

Standard sol’n (ml) H2SO4 added (ml) TiO2 Concentration 
(mg/ml) 

0 10 0 

0.5 9.5 0.005 

1.0 9 0.010 

1.5 8.5 0.015 

2 8 0.020 

 
7. Add 10 ml of 30% H2O2 to each flask and dilute to volume with nanopure water.  
8. Measure aliquots on a spectrophotometer at 410 nm to obtain a calibration curve. 

 
Procedure: 
 
All glassware needs to be washed in mineral-free detergent (Contrex Acidic Liquid 
Detergent) and rinsed with distilled water before each use.  
 
Instruction Notes, details, hints, suggestions, etc 

1. Dry sample overnight in 
55°C forced-air oven 

Results will be on DM basis 

2. Weigh 0.15 g of dried 
sample into quartz 
crucible in duplicate 

Transfer sample from oven to dessicator until ready 
to weigh. Static electricity can cause problems with 
samples during weighing and after they are put in 
the crucibles. Take measures (e.g. dryer sheets, 
handling with tongs instead of hands, etc) to reduce 
static if it seems to be a problem.  
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3. Ash sample overnight at 
600°C in ash oven 

Overnight or at least 8 hours. Use tongs instead of 
hands to remove crucibles from oven to avoid 
causing static. If static is still a problem, washing 
down the sides of the crucible with a small amount 
of distilled water is an option.  

4. Add 1 g of ammonium 
sulfate ((NH4)2 SO4) to 
FOSS 250 ml digestion 
tubes 

Tubes should be individually and uniquely labeled. 
Easiest to add ammonium sulfate before step 5, but 
can add after, just make sure to wash the granules 
down the sides of the tube. One gram of ammonium 
sulfate is about ¼ teaspoon – so careful addition 
with ¼ teaspoon can save time, rather than having 
to weigh enough for each tube. 

5. Transfer the contents of 
the crucible to the 250 
ml FOSS digestion 
tubes.  

Wash down sides of crucible with distilled water to 
ensure all ash is at the bottom of the crucible and to 
eliminate static. Rinse crucible multiple times with 
distilled water to ensure all ash has been transferred. 
Rinse sides of digestion tubes to ensure all ash and 
ammonium sulfate is at bottom of tube. Up to this 
step can be completed in advance, tubes can be 
covered and will be stable for days 

6. Add 13 ml of 
concentrated H2SO4 to 
each digestion tube. 

Should be completed only when ready to begin 
digestion. Addition of acid should be done in a 
fume hood using acid-resistant repipetter. 

7. Place tubes in the FOSS 
Digestor 2520 and place 
the exhaust manifold on 
top of tubes.  

If running less than 20 samples, place empty 
digestion tubes in the empty slots so the exhaust is 
still collected. See Figure C-1 for complete Digestor 
set-up and Figure C-2 for condenser set-up. 
Randomize tubes as they’re placed in Digestor so 
duplicates are not sitting next to each other. 

8. Set the machine at 
420°C for 3 hours and 
push Start. 

The machine will take approximately 1 hour to 
come up to temperature before the timer will start. 

 
9. Label 50 ml volumetric 

flasks with 
corresponding labels to 
digestion tubes. Add 10 
ml of 30% hydrogen 
peroxide to each flask. 

If flasks are prepared ahead of time (no earlier than 
1 hr before the end of digestion), place in 
refrigerator to keep peroxide cool. Fresh peroxide is 
required for complete reaction to occur. 10 mL of 
H2O2 was added as described by Titgemeyer et al. 
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(2001) instead of the amount of 20 mL proposed by 
Short et al. (1996) 

10. After 3 hours of boiling, 
remove tubes from 
Digestor and allow to sit 
in fume hood until they 
stop fuming. 

Use chemical glove to pull tubes up out of the 
Digestor and then immediately use a hot pad/glove 
to grab the tube and transfer to a metal tube rack. If 
tube is dry or acid is low, add ~6 ml of concentrated 
acid to help resolubilize. May also be necessary to 
place tube back on heat block for ~10 min to assist 
in resolubilization.  

11. Pour the contents of the 
tubes into 50 ml 
volumetric flasks 
containing 10 ml of 30% 
hydrogen peroxide 
(H2O2). 

As each tube is processed, first use a squirt bottle to 
slowly add some distilled water to each tube and 
swirl to dilute the acid. Place a labeled 50 ml 
volumetric flask into a small (~tall 150 ml should 
do) beaker as a holder for the flask. Put a small 
funnel in the flask and pour the contents of the 
digestion tube into the corresponding flask. Rinse 
the tube until all residue is transferred to flask. 
Rinse funnel into the flask. 

12. Let the flasks cool down, 
dilute to volume and 
mix.  

Parafilm the flasks and pop a hole in the parafilm 
with a needle. Place thumb over needle hole and 
mix by inverting and shaking at least 3 times. Allow 
pressure built up in flasks to be released through 
needle hole after every inversion to avoid 
explosions. 

13. Let flasks sit overnight.  To let particles settle to the bottom 

14. Transfer an aliquot of 
each sample, standards, 
and blank into cuvettes. 
Measure aliquots on a 
spectrophotometer at 
410 nm with the blank 
standard (0 mg/ml Ti) as 
the blank used to zero 
the spectrophotometer 

If bubbles appear in cuvettes, use a pipet tip to 
gently wipe them from the surface of the cuvette. 
Wipe outside of cuvette with KimWipe before 
placing in spectrophotometer. Any dust, debris, 
bubbles, etc will give wacky readings. Let 
spectrophotometer read at least 3 times in a row 
before recording absorbance. Any drift in 
absorbance may indicate the presence of bubbles.  
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The method was validated by spiking known samples with TiO2 and measuring 

percent recovery. Titanium dioxide recovered in the sample increased linearly as the 

amount of TiO2 added to the sample increased (Figure C-3). Percent recovery of spiked 

samples averaged 93.2%. During sample analysis, if the coefficient of variation was 

above 10% between duplicates, the sample was rerun. Approximately 10% of samples 

were re-analyzed due to coefficients of variation above 10%. 
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Figure C-1. Digestion set-up in fume hood 
 

* Digestion tube rack is purposely placed upside down on top of the heat block of the 
FOSS Digestor. If the tube rack is placed right side up, the tubes heat too quickly 
and evaporate to dryness.  

Also note: picture was taken with fume hood manifold up so the entire apparatus could be 
seen. Manifold was pulled down to working height or lower when digestions were 
being run.  

 
 
 
 

Water bath (ice added to keep cool) 

FOSS 
 

Exhaust manifold Condenser 
apparatus 

Exhaust tubing 

Vacuum 
Digestion tubes 
in Digestor tube 
rack 
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Figure C-2. Close-up of condenser apparatus 
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Figure C-3. Relationship of samples spiked with increasing amounts of TiO2 and amount 

of TiO2 recovered using the method described for Experiment 2.  
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