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The pine caterpillar moth, Dendrolimus punctatus, is a devastating forest pest. Genetic

manipulation of this insect pest is limited due to the lack of genomic and functional

genomic toolsets. Recently, CRISPR/Cas9 technology has been demonstrated to be

a promising approach to modify the genome. To investigate gene functions during

the embryogenesis, we introduced CRISPR/Cas9 system in D. punctatus to precisely

and effectively manipulate gene expressions inmutant embryos. Compared to controls,

knocking out of DpWnt-1, a gene well known for its role in the early body planning,

led to high embryonic mortality. Among these mutants, 32.9% of the embryos and

larvae showed an abnormal development. DpWnt-1 mutants predominantly exhibited

abnormal posterior segments. In addition, multiple phenotypes were observed, including

the loss of limbs and the head deformation, suggesting that DpWnt-1 signaling pathway

is necessary for anterior segmentation and appendage development. Overall, our results

demonstrate that CRISPR/Cas9 system is feasible and efficient in inducing mutations at

a specific locus in D. punctatus. This study not only lays the foundation for characterizing

gene functions in a non-model species, but also facilitates the future development of pest

control alternatives for a major defoliator.

Keywords: Dendrolimus punctatus, CRISPR/Cas9, Wnt-1, segmentation, embryogenesis, genome editing

INTRODUCTION

The pine caterpillar moth Dendrolimus punctatus (Lepidoptera: Lasiocampidae) is one of the most
destructive forest pests in China and Southeast Asia, where it attacks a variety of pine species and
causes extensive forest damages (Billings, 1991; Zeng et al., 2010). Through the years, D. punctatus
management has relied primarily on synthetic insecticides. The advent of Genomic Era facilitates
the development of environmentally friendly and sustainable control alternatives. The sterile insect
technique (SIT) is an environmentally friendly insect control technology that relies on the release
of large numbers of sterile males to mate with wild females to suppress pest population (Benedict
and Robinson, 2003). The application of this method, however, is limited by the production of
undesired females which need to be separated and eliminated. Amodified SIT technique, the release
of insects carrying a conditional dominant lethal gene (RIDL) can overcome this issue by inducing
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repressible female-specific lethality (Heinrich and Scott, 2000;
Horn and Wimmer, 2003; Fu et al., 2007; Windbichler et al.,
2008; Tan A. et al., 2013). This concept has been proofed in
the mosquito control, both in laboratory and confined field tests
(Thomas et al., 2000; Alphey and Andreasen, 2002; Alphey et al.,
2002).

RNAi and genome editing are the primary tools to elucidate
gene functions (Mao et al., 2013; Ma et al., 2014; Xu et al.,
2014, 2015; Hammond et al., 2016). However, RNAi efficiency is
highly variable in lepidopterans which underlying mechanisms
are still unknown. More importantly, heritable RNAi effects
have yet to be documented in lepidopterans (Bettencourt et al.,
2002; Terenius et al., 2011; Swevers and Smagghe, 2012). In
contrast, genome editing can achieve target gene mutagenesis
by inducing irreversible DNA breaks (Corrigan-Curay et al.,
2015). Genome editing tools, including customized zinc-finger
nucleases (ZFN), transcription activator-like effector nucleases
(TALEN) or clustered regularly interspaced short palindromic
repeats-associated nuclease 9 (CRISPR-Cas9), can effectively
modify the genomic DNA of organisms. By inducing DNA
double-stranded breaks (DSBs), these tools stimulate subsequent
homologous recombination (HR) and/or non-homologous ends-
joining (NHEJ), which facilitate genome manipulation at a
target locus (Harrison et al., 2014). Although ZFN and TALEN
have been used for gene targeting, the complexity of module
construction and the costs associated with these tools limit their
applications. Recently, a bacteria-derived CRISPR/Cas9 system,
consisting of CRISPR RNAs and Cas proteins, circumvents some
of these issues. With the aid of two short RNA molecules,
namely CRISPR RNA (crRNA) and trans-encoded CRISPR
RNA (tracrRNA), the Cas9 endonuclease can cleave a specific
sequence that is targeted by the RNAs. These two RNA
molecules can be fused artificially to form a chimeric RNA
molecule called single guide RNA (sgRNA). CRISPR/Cas9 system
has been used to produce heritable mutations in non-model
organisms, including RNAi-recalcitrant Lepidoptera, such as
Bombyx mori, Danaus plexippus, Spodoptera litura, Plutella
xylostella, Spodoptera littoralis, and Helicoverpa armigera (Wang
et al., 2013, 2016; Daimon et al., 2014; Huang et al., 2016;
Koutroumpa et al., 2016; Markert et al., 2016; Zhu et al., 2016).

To facilitate the construction of RIDL, we focus on the search
of targeting genes, including lethal genes. In Drosophila, wingless
also called Wnt Family Member 1 (Wnt-1), is associated with
wing development (Sharma and Chopra, 1976). Wnt/β-catenin
signalingis highly conserved in insects, can control cell fate and
proliferation, and determine body plan in vertebrate embryos
(Hikasa and Sokol, 2013). While Wnt/β-catenin signaling is
required for segmentation during the early embryogenesis
(Bolognesi et al., 2008; Petersen and Reddien, 2009; Fu et al.,
2012), it also involves in the renewal of epithelial tissue
(Sahai-Hernandez et al., 2012), antero-posterior brain patterning
(Kobayashi et al., 2007), long-term memory (Tan Y. et al.,
2013), neural plate and planarian regeneration (Niehrs, 2010)
and head formation (Posnien et al., 2010). In Tribolium, Wnt
signaling plays important roles in leg development during the
embryonic stage, also involves in leg and wing regeneration,
and in metamorphosis (Ober and Jockusch, 2006; Shah et al.,

2011). In Lepidoptera, including Manduca sexta and B. mori,
Wnt-1 contributes to the posterior growth and segmentation
processes (Kraft and Jäckle, 1994; Zhang et al., 2015). In other
species of vertebrate and invertebrate, Wnt-signaling genes are
involved in the headmorphogenesis and appendage development
(Heisenberg et al., 2001; Müller et al., 2007; Lewis et al., 2008;
Eroshkin et al., 2016).

The segmentation process involves multiple genes’
interactions. In Drosophila, Wnt suppressed hedgehog (hh) and
engrailed (en) expression in intercalary stripe and antennal stripe,
but initiated en expression in ocular segment (Gallitano-Mendel
and Finkelstein, 1997). A cephalic gap genes Orthodenticle
(otd) represses wg expression in the antennal segment and
all segments posterior to it, but activates wg expression in
ocular segment (Gallitano-Mendel and Finkelstein, 1998). In
Tribolium, complementary cross-regulation of Wnt and Hh
pathways play an opposite interaction in the head and trunk
development (Oberhofer et al., 2014). Knockout of Axin, a
negative regulator of the Wnt pathway, led to missing head
and thorax (Fu et al., 2012). A similar phenotype was obtained
from Masterblind/Axin1 mutation, which showed smaller head
and eyes in zebrafish (Heisenberg et al., 2001). In Xenopus
laevis, Noggin4 regulates head development by inhibiting Wnt8
signaling (Eroshkin et al., 2016). In mouse, DKK (Dickkopf -
related protein 1) as one of Wnt antagonists, is expressed
anteriorly to repress Wnt signaling in the head (Lewis et al.,
2008). In Hydractinia, activation of Wnt signaling by blocking
GSK-3β(Glycogen Synthase Kinase 3β) affected regeneration, the
patterning of growing polyps and the asexual formation of new
polyps in the colony (Müller et al., 2007).

In this study, we explored CRISPR/Cas9-based genome
editing in a major forest pest in China, the pine caterpillar
moth, D. punctatus. Our molecular target, Wnt-1, is believed
to be involved in the body plan in D. punctatus. To test this
functional genomics tool, we first cloned the DpWnt-1, and then
generated loss-of-function mutations through microinjection
at the embryonic stage. The resultant phenotypic impacts of
Wnt-1 knockout included lethality, abnormal segmentation
and defective appendages. This proof-of-concept study using
the CRISPR/Cas9-based genome editing tool demonstrates the
feasibility of the genetic manipulation in a forest insect pest,
which bears promising future advances in functional genomic
research in forest entomology.

MATERIALS AND METHODS

Gene Identification, Motif, and
Phylogenetic Analyses
To search for the Wnt-1 homolog, nucleotide sequence of
BmWnt-1 (NM_001043850.1) was used as a query to BLAST
against a D. punctatus transcriptome (HHL, unpublished data).
RACE was used to obtain the full length cDNA of DpWnt-1.
The predicted open reading frame (ORF) was subjected to motif
search, pattern analysis, and phylogenetic analysis. The MEME
online server was used for motif analysis, and parameters were
as follows: a minimum width was 6; a maximum width was 12;
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and a maximum number of motif was 8 (http://meme-suite.
org/tools/meme). To understand the phylogenetic relationship
of DpWnt-1 with homologs from other animals, a neighbor-
joining tree was constructed using MEGA5,http://www.mega-
software.net/ (Tamura et al., 2011). The Wnt-1 ORFs included
in the analysis are as follows: B. mori (NM_001043850), H.
armigera (KJ206240), Amyelois transitella (XM_013345048),
P. xylostella (XM_011569928), M. sexta (Z30280), P. xuthus
(XM_013325799), Danio rerio (XP_005162280), Fopius
arisanus (XM_011300877), Bombus terrestris (XM_003393116),
Nasonia vitripennis (XM_001603338), Bactrocera dorsalis
(XM_011204079), Drosophila willistoni (XM_002066877),
Drosophila melanogaster (NM_078778), Tribolium castaneum
(EFA04660), Periplaneta americana (KC311252), Gryllus
bimaculatus (BAB19660), Homo sapiens (NP_005421) and Mus
musculus (NP_067254).

cDNA Cloning and Sequence Analysis
Total RNA was isolated with Trizol Reagent (Invitrogen, USA)
from D. punctatus pupae. Recombinant DNase I-treated (Takara,
Japan) RNA was used for cDNA synthesis with the Scientific
Revert Aid First Strand cDNA synthesis kit (Thermo, USA).
Diluted reverse transcription products were used as templates
to amplify DNA fragments. The primer sets used to obtain
the DpWnt-1 ORF are listed in Table 1. Template DNA was
denatured at 94◦C for 2min, followed by 35 cycles of 94◦C for
15 s, 55◦C for 30 s and 68◦C for 1.5min. PCR products were
cloned into the pCR-Blunt vector for sequencing by ABI 3730 XL
sequencer (Applied. Biosystems, USA).

Quantitative Real-Time PCR (qRT-PCR)
Analysis
qRT-PCR was performed to analyse the expression profile of
DpWnt-1 and 8 Hox genes during the embryonic stage. cDNA
samples were prepared from embryos of different developmental
stages (day 1–day 8 of wild type) and the first instar larvae of
DpWnt-1 mutants. Mastercycler EP realplex (Eppendorf) was
used for the qRT-PCR. The primer sets used in qRT-PCR analysis
are listed in Table 1. The cycling conditions were as follows: an
initial incubation at 95◦C for 10 s, 40 cycles of 95◦C for 15 s,
and 60◦C for 30 s according to SYBR Green fluorescent relative
quantitative approaches (TaKaRa, Japan). The relative mRNA
level of the target genes was calculated using the 2−11Ct method,
in which the target gene expression was normalized to an internal
reference, RP32. Three independent replications for each sample
were performed.

In vitro Transcription of Cas9 and sgRNA
The Cas9 gene template used in this work was provided by
View Solid Biotech (Beijing, China). Cas9mRNAwas synthesized
in vitro with the mMESSAGE mMACHINE R© T7 kit (Ambion,
USA) according to the manufacturer’s instructions.

For the in vitro transcription of sgRNA driven by the
T7 promoter, target sequences start with GG. With the
PAM sequences in consideration, the designed sgRNA sites
follow the GGN19GG rule (Wang et al., 2013). We identified
two 23 bp sgRNA targeting sites at exon III of DpWnt-1
(Figure 3A). The control sgRNAs were used for targeting

TABLE 1 | Primers used in this study.

Name Sequence(5′–3′) Purpose

Wnt1-sgRNA-a TAATACGACTCACTATAGGATGAGGT

TACCTAGCTTTGTTTTAGAGCTAGAA

ATAGCAAGTTAAAA

sgRNA

Wnt1-sgRNA-b TAATACGACTCACTATAGGTGTCTCT

AAATCCACGTTGTTTTAGAGCTAGAA

ATAGCAAGTTAAAA

EGFP-sgRNA-a TAATACGACTCACTATAGGGCGAGG

AGCTGTTCACCGGTTTTAGAGCTAGA

AATAGCAAGTTAAAA

EGFP-sgRNA-b TAATACGACTCACTATAGGCCACAAG

TTCAGCGTGTCGTTTTAGAGCTAGAA

ATAGCAAGTTAAAA

sgRNA-R AAAAGCACCGACTCGGTGCCACTTT

TTCAAGTTGATAACGGACTAGCCTTA

TTTTAACTTGCTATT

Wnt1-ORF-F CCGCCCATCCCAGAATGAAGTGTC ORF

Wnt1-ORF-R CTATAAGCACGTATGCACCACTT

Wnt1-Test-F CACGTGCAAACGGAGATGCGGCA Somatic mutation

Wnt1-Test-R CTATAAGCACGTATGCACCACTT

Wnt-1-F TGTCCGTGGTTGTTTGTGTT qRT-PCR

Wnt-1-R TATTTGGTTCTCCCGCTTTG

Abd-a-F GGGAGGAGCAGGAGAGAATG

Abd-a-R CTTTGAGTAGGTCGTTGGA

Ubx-F ATTTTGAGCAGGGTGGCTTT

Ubx-R GAGGCTGGGCATAGGTGAG

Abd-b-F GTGGCGAAGAACGGCGGACA

Abd-b-R GAAGAACCGCAGCCGACCCC

Scr-F GTAGAGCAAACGGGGCATC

Scr-R TGCGGTGGCGAGTAACAA

Antp-F CGTATGAAGTGGAAGAAGGAGAA

Antp-R TATTGTGGCGAGGTTGGTG

Dfd-F GCTGGAGTCACCACCACGGC

Dfd-R TGCCCACCGACGCAATGCAA

Lab-F GATACCGCCCGCAGAGTT

Lab-R TGTTGTTGAGATTTAGGAGTGG

Pb-F AGTGGAACGCAAAACACAAA

Pb-R GAAGTGGAAGTCTGAGGAGGAG

RP32-F ATGGCAATCAGACCTGTGTACAG

RP32-R GACGGGTCTTCTTGTTTGATCCGT

the EGFP gene. Two complementary oligonucleotides were
annealed and cloned into pJET1.2 (Fermentas, USA). The
templates for in vitro transcription were amplified from pJET1.2,
and primer sets used in this study are listed in Table 1.
sgRNAs were transcribed in vitro with the MAXIscript R© T7
kit (Ambion, USA), following the manufacturer’s recommended
protocol.

Colony Maintenance and Embryonic
Microinjection
Dendrolimus punctatus pupae were originally obtained from
Xing’an County of Guilin city, Guangxi province, P.R. China.
D. punctatus colonies were provisioned with Masson’s pine, and
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maintained at 27 ± 1◦C under a L/D cycle of 16/8 h. Fertilized
eggs were collected within 2 h after oviposition, and subjected to
microinjection.

The combination of Cas9 mRNA (300 ng/µl) and sgRNAs
(sgRNA-a and sgRNA-b, 300 ng/µl, respectively), and Cas9
mRNA/sgRNAs (sgRNA-a and sgRNA-b) (500 ng/µl each) were
co-injected into preblastoderm embryos. An exogenous gene
EGFP and nuclear free water without any sgRNAs or Cas9
mRNA were used as control. These control should have none
effect on the embryonic development. Injection was carried
out following Tamura et al. (1990) with modification, and
injection site was shown in Figure S2. As the egg is oval in
shape, we lined up the egg with the micropyle on top and
injected compounds to the gonad region. The microinjection
was concluded within 6 h. Afterwards, the injected eggs were
incubated at 25 ± 1◦C in a humidified chamber for 8–10 days
until hatch. All hatched larvae were collected and transferred to
Masson’s pine.

Phenotype Documentation and Mutation
Screening
The injected embryos were dissected and checked to calculate
the mutation rate and hatching rate on the seventh day of the
embryonic stage, and the resultant phenotypes were documented
under a multi-function zoom microscope (AZ100, Nikon). The
images were recorded with a computer-controlled microscope
system. The pictures of DpWnt-1mutants, including both larvae
and pupae, were taken by SLR cameras.

To calculate the efficiency of Cas9/sgRNA-mediated
gene alteration in the injected generation, individuals were
collected on the eighth day after injection. The DNA fragments
surrounding the sgRNA targets were obtained by GBdirect
PCR directly from embryos (GBI, China). The primer
sets are shown in Table 1. Mutations were confirmed by
sequencing.

Immunoblotting Analysis
Proteins from 7 day old embryos were used for the
immunoblotting analysis. The primary antibodies, B. mori
Anti-Wnt-1 and Anti-β-actin, respectively, were used at 1:1000
dilution. The secondary antibody, anti-rabbit IgG, was diluted
at 1:5000. Proteins were extracted and diluted with PBS and
quantified using bicinchoninic acid (BCA) protein assay kit
(Thermo). A 12.5% SDS-PAGE gel was used to separate the
same amount of proteins from both the wild types and mutants.
The proteins were then transferred to a polyvinylidene fluoride
membrane. Signal visualization was obtained using the ECL Plus
Western Blotting detection kit (GE Health-care).

RESULTS

Expression Profile of DpWnt-1 during
Embryogenesis
EST sequence of DpWnt-1 (GenBank accession #:KU640201)
was initially obtained from D. punctatus transcriptome. The full
length cDNAs of DpWnt-1 contained 1182 nucleotides, which
encodes 394 amino acids. The nucleotide sequence of DpWnt-
1 was rich in cysteine residues-a character of Wnt protein
family (Figure S1). Wnt-1 homologs from 18 species shared
eight conserved motifs, which located between the N- and
C-terminus (Figure 1). Phylogenetic relationship showed that
DpWNT-1 clustered with other lepidopterans WNT-1 protein
sequences (Figure S2). The expression of DpWnt-1 peaked at the
very beginning, declined during the development, and reached
the minimum level at the end of embryogenesis (Figure 2),
suggesting that DpWnt-1 may play a vital role in D. punctatus
during the early embryogenesis.

CRISPR/Cas9 Induced DpWnt-1 Mutations
To functionally characterize DpWnt-1, CRISPR/Cas9
mutagenesis system was introduced into D. punctatus. A

FIGURE 1 | Motif analysis of Wnt-1 primary structure. (A) Approximate location of each motif in the protein sequence. (B) The most conserved motifs. The

number in the boxes corresponds to the numbered motifs. The number in parentheses represents the e-values.
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total of 240 D. punctatus eggs were co-injected for each
concentration of Cas9 mRNA and DpWnt-1 sgRNAs, whereas
120 eggs were injected for the corresponding concentrations for
the control EGFP sgRNAs (Table 2). Compared to co-injections
of Cas9 protein and DpWnt-1 guide RNAs with those targeting
a control gene (EGFP), D. punctatus embryos with an inactive
copy ofWnt-1showed a reduced hatching rate (22.5 and 30.5% at
a concentration of 500 and 300 ng/µl, respectively), and a range
of phenotypic effects (e.g., various body plan defects, absence
of tissue differentiation). Among the 120 control eggs injected
with EGFP sgRNAs/Cas9 mRNA, 57.5 and 64.2% individuals
hatched at a concentration of 500 and 300 ng/µl, respectively. In
comparison, 65.8% (79/120) wild type eggs hatched.

CRISPR/Cas9 system induced mutations in the pine moth
with high efficiency. Eighty percentage (8 of 10) of the dissected
embryos had mutations at the target sites, and the overall
mutagenesis frequency was 32.9% in the injected generation
at a higher dose (500 ng/µl). Similarly, at a lower dosage
(300 ng/µl), 70% (7 of 10) of the dissected embryos had
mutations at the target sites and the overall mutagenesis
frequency was ∼17.5% (Table 2). The genotypes of the wild
types and DpWnt-1mutants were confirmed by both sequencing

FIGURE 2 | Temporal expression of DpWnt-1during embryonic stages.

The relative mRNA levels of DpWnt-1 in embryos from day 1 to 8 (E1-8). RP32

was used as a reference gene to normalize target gene expression. The data

are presented as mean values ± S.E.M (n = 3).

and Western blotting analysis (Figures 3B,C). All examined
DpWnt-1mutants, including embryos and larvae, had alterations
at the target sites that led to at least five type of deletions
(Figure 3D). The deletion occurred at target sites individually,
simultaneously, or was absent from both sites.

Functional Characterization of DpWnt-1
Knocking out DpWnt-1 has great impact on eggs development.
Most of eggs showed abdominal segments distortion and only
some of them could hatch and develop into pupae, of which
none reached the adult stage. When injected with 500 ng/µl
of Cas9 mRNA and DpWnt-1 sgRNA, 22.9% of the embryos
showed abnormal anterior-posterior (A-P) axis and abdominal
segmentation phenotypes, 7.5% showed defective legs, and 2.5%
showed head malformations. In contrast, when the injection
concentration is 300 ng/µl, 9.5% of embryos showed abnormal
A-P axis and abdominal segmentation phenotypes, 6.3% showed
defective legs, and 1.7% showed head malformations. As a
control, 240 eggs were co-injected with EGFP-sgRNA/Cas9
mRNA. A total of 146 eggs (60.8%) hatched, and no
morphological changes were observed (Table 2).

Patterning of the Posterior Segment from Embryo to

Pupa
DpWnt-1 knockout led to visible abnormal abdominal
formation phenotypes and abnormal patterning of the A-P axis
(Figures 4–6). Some of the embryos showed the anteriorization
of segments A2/7 (Figure 4). In some mutants, the loss of
DpWnt-1 led to the transformation of segments A2–A6 into
more anterior abdominal segments (Figure 5). Some embryos
showed a loss of epithelia on the dorsal side of the A3/5 segments,
which was close to the intersegmental membrane and the dorsal
mid line (Figures 4I,J). In other mutants, the boundaries
between the abdominal segments and the anteroposterior body
axis were discreet, as all of the abdominal segments (A2–A7)
were fused together (Figure 5), indicating that DpWnt-1 plays a
role in posterior segmentation and A-P axis patterning. During
the development, DpWnt-1 mutants retained the posterior
segment fusion and the truncated cuticle phenotypes and were
unable to form posterior segments in a specific region (Figure 4).

Anterior Body Development
DpWnt-1 signaling plays a crucial role in the development of the
anterior segments in D. punctatus. DpWnt-1 mutant larvae had
missing appendages and displayed asymmetric anterior segment

TABLE 2 | Embryonic mutagenesis induced by Cas9/sgRNA injection targeting DpWnt-1.

Gene sgRNA/Cas9 concentration

(ng/µl)

Injected (n) Phenotypic variation Pupation (n)

Defected segments (%) Defected legs (%) Malformed head (%) Hatch rate (%)

Wnt-1 300/300 240 9.5 6.3 1.7 30.5 0

500/500 240 22.9 7.5 2.5 22.5 1

EGFP 300/300 120 0 0 0 57.5 25

500/500 120 0 0 0 64.2 37

WT – 120 0 0 0 74.2 42
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FIGURE 3 | Cas9/sgRNA-induced DpWnt-1 mutations. (A) Schematic representation of Wnt-1 sgRNA targeting sites. The boxes indicate the three deduced

exons of DpWnt-1, and the black line represents the untranslated regions and introns. The sgRNA targeting sites, (A) (74–96 bp) and (B) (151–173 bp), are located on

exon 3. Wnt-1-F and Wnt-1-R were annealed to the upstream and downstream regions of the targeted site. (B–D) CRISPR/Cas9-induced mutagenesis of DpWnt-1.

(B) Representative electrophoretogram of PCR products. Mutants with defective segments (1), defective legs (2), and malformed head (3) were sequenced. (C)

DpWnt-1 protein was undetectable in mutants by Western blotting analysis. (D) Various deletion genotypes. The fragment flanking the two targeted sites were

deleted. The indel mutation genotype is noted on the right.

phenotypes (Figures 5, 6). In the wild type, the ecdysial line is
localized in the middle of the head, and the lateral ocelli and
antennae are located on both sides of the head (Figure 5A).
In comparison with wild type larvae, partial lateral ocelli,
antennae and intercalary were missing on the head of DpWnt-1
mutants, while other mutants showed defective mouthparts with
mandibular, maxillary and labial missing (Figures 5E,J, 6B–F).

Leg Patterning
DpWnt-1 is involved in the leg development, specifically on
thoracic segments (T1–T3) and abdominal segments (A3–A6).
The wild type embryo had three pairs of thoracic legs from the
first to third thoracic segments and four pairs of prolegs from the
third to sixth abdominal segments. In the type I mutant, some
of the T1–T3 and A3–A6 segments were missing, and thoracic
legs and prolegs were on one side of the segments (Figures 5B,G).
In the type II mutant, some of the T1–T3 and A3–A6 segments
were missing, and thoracic legs and prolegs were on both sides
of the segments (Figures 5C,D,H,I). In the type III mutant, the
legs on the T1–T3 thoracic segments did not follow the principle
of symmetry and showed an asymmetrical distribution along the
A-P axis. Moreover, the A3–A6 prolegs were missing on both
sides of the segments (Figures 5E,J).

Pleiotropic Impact of DpWnt-1 Knockout
The distinct phenotypes exhibited in DpWnt-1 mutants
suggested that DpWnt-1 may participate in segmentation. Hox
genes are known to be involved in segmentation. qRT-PCR
analysis in 8-day old DpWnt-1 mutant and wild type embryos
results showed that Sex combs reduced (Scr), Deformed (Dfd),

and Abdominal-b (Abd-b) were significantly upregulated while
Ultrabithorax (Ubx) was downregulated in DpWnt-1 mutants.
The DpWnt-1 mutants also showed slightly reduced expression
levels of Labial (Lab), Abdominal-a (Abd-a), and Antennapedia
(Antp), whereas Proboscipedia (Pb) was undetectable (Figure 7).

DISCUSSION

Characteristics of Wnt-1 Homolog
Understanding the function of Wnt-1 is critical for exploring its
potential role in pest management. In this study, we cloned and
characterized DpWnt-1 homolog and identified one Wnt-1 gene
in D. punctatus, DpWnt-1.The motif and phylogenetic analyses
confirmed that DpWnt-1 is most closely related to BmWnt-1
(Dhawan and Gopinathan, 2003).

InDrosophila, with long germ embryos,Wnt-1 expression was
first detected in the whole segments of the blastoderm during
cellularization (Baker, 1987; Vorwald-Denholtz and De Robertis,
2011). In Tribolium, with short-germ embryos, Wnt-1 was
initially detected in the blastoderm stage, expressed sequentially
from anterior to posterior with the germ band elongation and at
the ventral portion of each segment during the late embryonic
stage (Nagy and Carroll, 1994). In short/intermediate germ
embryos, Wnt-1 was detected in a broad median of the germ
disk and then retracted posteriorly within segmentation process
(Nakao, 2010). The expression pattern of DpWnt-1 during the
embryonic stage showed the same trend with that of Bombyx
(Zhang et al., 2015). BmWnt-1was present in a maternal gradient
and might play a role during the blastoderm formation (Nakao,
2010; Zhang et al., 2015). We hypothesized thatD. punctatusmay
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FIGURE 4 | Cas9/sgRNA-induced posterior segment defects in D. punctatus larvae and pupae. (A,E) EGFP-specific sgRNAs/Cas9 mRNA control.

(B–D,F–H) Mildly affected larvae resulting from DpWnt-1 sgRNAs/Cas9 mRNA co-injection. Transformation of the abdominal segment from posterior to anterior.

(I) Fifth instar larvae, wild type (up) and DpWnt-1 mutant (down), displaying the transformation of A6/7 into A6. (J) Wild type and DpWnt-1 mutant pupae. (B,F)The

mutant larvae type I showed a transformation of A3/5 into A3 and a disturbance of the anterior-posterior axis. (C,G) The mutant larvae type II showed a transformation

of A2/4 into A3 and a disturbance of the anterior-posterior axis. (D,H) The mutant larvae type III has extra pigmentation at A2. (E–H) Close-up images of the wild type

and mutant individuals. The scale bars represent 0.5mm (A–D), 0.25mm (E–H), 50.0mm (I), and 2.0mm (J).

have a short/intermediate germ band, in which segmentation
proceeds consecutively from anterior to posterior and show
visible anterior and posterior segments after gastrulation.

CRISPR/Cas 9 System in D. punctatus
In this study, embryonic injection of a mixture of sgRNAs/Cas9
mRNA successfully induced mutations in DpWnt-1,
demonstrating that CRISPR/Cas9-mediated genome editing can
specifically and efficiently induce gene alterations inD. punctatus.
Besides D. punctatus, CRISPR/Cas9 system has also been
exploited in seven other Lepidoptera species, including B. mori,
S. litura, S. littoralis, P. xylostella, P. xuthus, H. armigera, and
D. plexippus, to manipulate genes associated with development
(embryogenesis), pigmentation, metamorphosis, resistance
mechanism, and adult mating (Wang et al., 2013, 2016; Li et al.,
2015; Bi et al., 2016; Huang et al., 2016; Koutroumpa et al., 2016;
Markert et al., 2016; Zhu et al., 2016). Moreover, the frequency
of mutation is dose dependent. Knocking out DpWnt-1 led to a
high embryonic mortality (∼70%), and none of the DpWnt-1
mutants could developed from larva to adult, suggesting that
DpWnt-1 is a potential candidate for conditional lethal gene.

Although CRISPR/Cas9 system is clearly applicable in
Dendrolimus, additional experiments are needed to fully
established this genome editing technology in this major forest
pest. In situ hybridization study ofDpWnt-1 not only will validate
genome editing results at the translational level, but also provide
the spatial expression pattern, and the potentialHox targets. Also,
without genome information, we could not pinpoint the off-
target effects, which is a routine problem for this technology.
With other genomic resources (Yang et al., 2016), the potential
off-target effects can be predicted.

Involvement of DpWnt-1 in Segmentation
and Appendage Development
DpWnt-1 in Posterior Segmentation
Wnt-1 has been documented to play an important role in A-P axis
patterning and segment development during embryogenesis. In
DpWnt-1mutants, abnormal posterior segments from Abdomen
2 (A2) to Abdomen 7 (A7) were observed along with affected
A-P axis patterning. An examination of Hox genes in Wnt-1
mutants suggested that DpWnt-1 may have a connection with
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FIGURE 5 | Embryonic phenotypes in D. punctatus. (A,F) EGFP sgRNAs/Cas9 mRNA injected control embryo.(B–E,G–J) Severely affected embryo resulting from

DpWnt-1 sgRNAs/Cas9 mRNA injection. (B,G) Thoracic leg and prolegs missing on one side. (C,H) Compact body with thoracic legs and prolegs missing on both

sides. (D,I) Twisted body without thoracic legs or patterning along anterior and posterior axis, with all prolegs missing. (E,J) Deformed body with malformed head,

missing thoracic legs and prolegs on one side. All images were taken at the same magnification. Dorsal is on left and ventral is on right. The scale bars represent 1mm.
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FIGURE 6 | Head phenotypes of DpWnt-1 mutants. (A,C,E) Wild type embryo. (B,D,F) Severely affected embryo with malformed head, missing thoracic legs and

prolegs on both sides. The scale bars represent 1mm.

FIGURE 7 | Expression profiling in DpWnt-1 mutants. Compared to the

controls, the mRNA expression of Sex combs reduced (Scr), Deformed (Dfd),

and Abdominal-b (Abd-b) increased more than 4-fold in the DpWnt-1 mutants.

Others, including Labial (Lab), Proboscipedia (Pb), Antennapedia (Antp),

Ultrabithorax (Ubx), and Abdominal-a (Abd-a), changed <2-fold. Rp32 was

used as reference gene for RT-PCR normalization. The data are presented as

mean values ± S.E.M (n = 3).

Hox genes in regulating insect segmentation. Our results for the
function of DpWnt-1 are consistent with those of Bombyx, in
which DpWnt-1 plays a role in body segmentation. However,
Wnt-1 appears to have a different effect on the expression of
other genes, as all Hox genes were significantly down-regulated
in Bombyx (Zhang et al., 2015). Consistent with Drosophila,
Wingless signaling ensures the formation of the posterior segment
boundaries (Larsen et al., 2003). However, depletion of Wnt-1
in G. bimaculatus, Oncopeltus fasiatus, and Tribolium, does not
reduce the number of segments, but depletion of other Wnt

signaling genes like GbArm leads to abdominal segments defects
in embryos, removal of OfPan results in truncates segmentation,
depleting of TcWnt-8 brings about embryos lacking abdominal
segments and additional removal of TcWnt-1 enhances this
phenotype (Miyawaki et al., 2004; Angelini and Kaufman, 2005;
Shah et al., 2011). All of these results indicate thatDpWnt-1 plays
a role in segmentation in D. punctatus.

DpWnt-1 in Anterior Segmentation
The genetic regulation of the anterior development in insects is
poorly understood. According to Rogers and Kaufman (1996),
head was divided into three cephalic segments (ocular, antennal,
and intercalary) and three gnathal segments (mandibular,
maxillary, and labial). In animals, Wnt-1 is involved in
the head development, including eyes, mesencephalon and
metencephalon (Bally-Cuif et al., 1995; Friedrich, 2003; Lekven
et al., 2003; Rossi et al., 2007). In D. melanogaster, temporal
regulation of Wnt signaling is critical for the differentiation
of antennal and maxillary organs (Lebreton et al., 2008).
In Tribolium, Wnt/β-catenin signaling is required for the
anterior development, which is needed for head patterning after
cellularization (Bolognesi et al., 2008; Fu et al., 2012; Benton
et al., 2013). Consistent with previous observations, both anterior
and posterior sequential segmentation were affected in DpWnt-1
mutants. Besides, partial cephalic segments and gnathal segments
of the mutants were missing or defected. These results support
the hypothesis that Wnt signaling is an integral part of an
ancestral metazoan mechanism that specify the architecture of
posterior and anterior segments.

DpWnt-1 in Appendage Development
The morphological plasticity of appendages represents a crucial
aspect of animal body plan. Knocking out DpWnt-1 produced
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defects in appendage development. No discernible defects in
the appendages were found in mildly affected individuals
(Figure 5). In severely affected individuals, however, lateral ocelli,
antennae, the thoracic legs and prolegs were missing (Figure 6).
Among these mutants, some thoracic legs or prolegs were
distributed asymmetrically along the normal AP axis (Figure 6),
suggesting that the specification of appendages in Dendrolimus
requires DpWnt-1.Some of the defects, such as the loss of
prolegs could be the indirect consequences of segmentation
defects. Consistent with other holometabolous taxa, including
Coleoptera, Lepidoptera, Hymenoptera and Diptera, Wnt-1
signaling is involved in post-embryonic appendage development
(Bejsovec and Peifer, 1992; Siegfried et al., 1994; Sato et al.,
2008; Shah et al., 2011; Zhang et al., 2015). This is different
from taxa that undergo incomplete metamorphosis, of which
appendage development requires Wnt-1 to interact with other
genes, such as inG. bimaculatus (Miyawaki et al., 2004). Although
Gbwg knockouts by RNAi showed no significant impacts on
segmentation, GbWnt/GbArm signaling was involved in the
posterior sequential segmentation during embryogenesis. In P.
americana, Wnt signaling engaged in cross talk with caudal and
Notch signaling in the regulation of growth and segmentation
(Chesebro et al., 2013). In O. fasiatus, Wnt signaling played a
role in body segmentation but not in appendage development
(Angelini and Kaufman, 2005). Based on these results, we
propose that the function of Wnt signaling is conserved among
insects even thoughWnt-1 gene has diverse functions in different
species.

In summary, our study demonstrates that genome editing
using CRISPR/Cas9 system is feasible in Dendrolimus. This
provides a brand new tool for conducting functional genomic

research in a major forest pest. Furthermore, the results from
the functional characterization of DpWnt-1 demonstrated that
this gene could potentially be utilized as a specific lethal gene
in RIDL. CRISPR/Cas9 system could also be used to create
transgenic lines to screen for dominant suppressors driven by
specific promoters to provide candidate genes for the control of
Dendrolimus.
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