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Rapid Characterization of Local 
Shape Memory Properties through 
Indentation
Peizhen Li1, Haluk E. Karaca  1 & Yang-Tse Cheng2

Shape memory alloys (SMAs) have the ability to show large recoverable shape changes upon 
temperature, stress or magnetic field cycling. Their shape memory, material and magnetic properties 
(e.g. transformation temperatures, strain, saturation magnetization and strength) determine their 
prospects for applications from small-scale microelectromechanical systems to large scale aerospace 
and biomedical systems. It should be noted that properties of SMAs are highly temperature dependent. 
Generally, the conventional mechanical characterization methods (e.g, tension, compression, 
and torsion) are used on bulk samples of SMAs to determine those properties. In this article, it will be 
shown that indentation technique can be used as an alternative rapid method to determine some of the 
important shape memory properties of SMAs. Indentation response of a high-temperature NiTiHf alloy 
was determined as a function of temperature. A clear relationship between the work recoverable ratio 
and transformation temperatures, superelastic and plastic behavior was observed. This work shows 
that indentation response can be used to measure local superelasticity response, determine phase 
transformation temperatures and reveal the temperature intervals of the deformation mechanisms of 
shape memory alloys.

Shape memory alloys (SMAs) are well known for their unique properties such as shape memory effect (SME) and 
superelasticity (SE), whereby large deformations can recover through reversible phase transformations. While 
there are many SMAs, the most commonly studied SMAs over the past 50 years are NiTi based alloys that have a 
relatively large reversible strain (~8%). NiTi alloys have been exploited for applications in several fields, including 
biomedical devices1–3, civil engineering structures4,5, and microelectromechanical systems (MEMS)6,7. Since the 
design of SMA-based MEMS and elaborate medical devices requires the characterization of material performance 
on small-scales, several tools that can quickly and accurately probe the mechanical properties on small-scale 
materials have been developed8. A powerful method of probing micro- and nano-scale mechanical properties of 
materials is the instrumented indentation which measures local mechanical properties, such as Young’s modulus, 
hardness, and strain hardening coefficient9.

Previous nanoindentation studies on SMAs were mostly conducted at room temperature to determine inden-
tation hardness, depth recovery ratio and superelasticity8,10–12. It was found that in superelastic SMAs, the inden-
tation depth imposed by spherical indenters can be almost fully recovered upon heating, while deformation 
induced by Berkovich indenter can only be partially recovered10. Moreover, the instrumented indentation method 
was also used to demonstrate indentation induced two-way shape memory effect13,14 and determine phase 
transformations15. Recent advances in high temperature indentation instrumentation have stimulated a broad 
interest in the indentation response of materials over a wide temperature range. In 1995, Poisl et al. performed 
elevated-temperature nanoindentation by placing a commercial nanoindenter in a temperature-controlled room 
which could be heated from room temperature to 34 °C16. Later, Suzuki and Ohmura built an optimized high 
temperature (up to ~600 °C) indentation instrument with a fast heating rate which affects the sensitivity during 
testing17. Later, commercial indentation equipment was developed to overcome sample oxidation and system 
thermal drift, allowing both nano and micro-indentation measurements up to 750 °C.

High temperature nanoindentation measurements have been conducted on many alloys such as fused sil-
ica18–20, aluminum19, Titanium18, copper19, and Ni-based super alloys21. A number of researchers also studied 
NiTi at elevated-temperatures22–26. The remnant indent depth ratios (depth after unloading/depth at peak load) 
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were measured as a function of temperature for NiTi alloys under a spherical indenter, and it was found that the 
relative low remnant indent depth ratio is indicative to the occurrence of superelasticity22. It was confirmed that 
this procedure could also be applied to evaluate thin films of binary and ternary NiTi-based (Hf, Cu) shape mem-
ory alloys over a range of temperature (up to 400 °C)23. The indentation-induced SE effect was also characterized 
under Berkovich indenter at elevated temperature by Zhang et al.25, and they observed that the microscopic 
superelastic behavior of NiTi thin-film occurred at about 100 K above the austenite transformation finish tem-
perature (Af) which was due to the high hydrostatic pressure under the indenter. Recently, it was found that the 
phase transformation temperatures and other characteristics of shape memory alloy samples could be estimated 
by utilizing the instrumented indentation techniques as well as in situ nano-compression in a transmission elec-
tron microscope (TEM)27,28. In addition, stress-induced phase transformations on shape memory alloys have also 
been studied at the nano-scale by using multiple nanoindentation techniques29. These recent studies clearly show 
that instrumented indentation techniques can be used to characterize the mechanical response of bulk and thin 
film NiTi alloys. In this study, Ni50.3Ti29.7Hf20 alloy was selected since it has higher strength than other NiTi-based 
alloys and shows superelasticity at high temperatures of about 200 °C30–33. The main aim of this study is to char-
acterize the mechanical behavior of NiTiHf alloys as a function of temperature under a spherical indenter in 
micro-scale and compare that with compression experiments at macro-scale.

Experimental Results
Compression Stress-Strain and Phase Diagram. The start and finish temperatures of martensite and 
austenite of the aged NiTiHf alloy are measured as 186, 171, 195, and 205 °C (Ms, Mf, As, Af), respectively from the 
DSC results. A typical SMA exhibits phase transformation between martensite and austenite phases, depending 
on applied stress and temperature. There are typically five stages of deformation: I) (T < Mf) martensite reorien-
tation (MR), no recovery; II) (Mf < T < Af) phase transformation (PT) behavior or variant reorientation (VR) 
with no or partial recovery; III) (Af < T < TSE) superelastic (SE) behavior with full recovery; IV) (TSE < T < Md) 
phase transformation with plastic deformation (PD) results in partial recovery or no recovery; V) (Md < T) plastic 
deformation of austenite with no recovery. Here, the Md temperature is defined as the maximum temperature at 
which SMAs can no longer transform to martensite. It should be noted that in all stages, the recovery amount will 
depend on the level of maximum loading strain/stress. The stages above were determined by assuming that the 
loading is only continued till the end of phase transformation.

The compressive response of NiTiHf as a function of temperature is shown in Fig. 1a and a detailed phase 
transformation diagram of bulk NiTiHf alloy is presented in Fig. 1b, where critical stresses for martensite reori-
entation, martensitic transformation or slip are shown as a function of temperature. Critical stresses, σc

T, are 
extracted from Fig. 1a by using the tangent method. It should be noted that one sample was tested from 120 to 
400 °C with temperature intervals of 20 °C. At 120 °C, which is below Mf of 171 °C, no strain recovery was 
observed upon unloading. However, SME strain was attained once heating the sample above the Af. As shown in 
the Fig. 1a, the critical stress for the martensite reorientation decreases with increasing temperature from 120 to 
180 °C, presumably due to the increased mobility of internal twins and martensite plate boundaries. Only partial/
no recovery was observed upon unloading below Ms and deformation can be fully recovered while heating above 
Af. At the temperature close to Ms of 186 °C, the stress-strain curve after the initial linear elastic deformation starts 
to exhibit a plateau like response at 180 °C which can be attributed to the initial stage of stress-induced martensite 
(SIM) being formed during loading, and followed by a small amount of elastic recoverable strain upon unloading. 
Between temperatures of 200 to 240 °C, the stress required for martensite transformation increases with temper-
ature, and perfect superelasticity is observed due to the superelasticity. However, a partial recovery occurs at 
260 °C since the martensite transformation and plastic deformation occurs simultaneously while the testing tem-
perature is approaching Md. From 280 to 320 °C, the sample shows no recovery, but critical stress increases, sug-
gesting that there is still phase transformation. Beyond 320 °C, c

Tσ  decreases and no recovery is observed due to 
the fact that plastic deformation of austenite takes place before martensite transformation, thus shape recovery 
cannot be found. The slope of the plateau region (due to phase transformation and/or plastic deformation), mp, is 
positive from 180 to 300 °C. At 320 °C, it is almost zero and then it is negative at higher temperatures. The critical 
stress decreases with temperature due to the conventional softening in metals at high temperature. Thus, the Md 
temperature was determined to be around 300–320 °C, as it was the highest temperature that phase transforma-
tion was still observed. Due to the difficulty of determining the temperature where only plastic deformation takes 
place in stress-strain curves of SMAs, the intersection method is generally used. The Md can determined to be 
280 °C by this method.

Fig. 1b can be divided into five stages (I, II, III, IV, V) based on the deformation behavior. The transformation 
temperatures (TTs) obtained from DSC measurements are also shown in Fig. 1b, where the Ms is very close to the 
intersection (lowest) point between the line of low critical stress and stress induced phase transformation. From 
Ms to TSE, σc

T increases linearly with temperature. From TSE to Md, σc
T increases and above Md, σc

T decreases with 
temperature. The decrease of the stress can be explained by the increase in plasticity of austenite and dislocation 
mechanisms start to dominate.

Indentation Load-Depth Curves. Fig. 2 shows the load-displacement (L-D) curves for the spherical 
indentation response of the NiTiHf at temperatures between 30 and 340 °C. The data obtained at other tempera-
tures are omitted in the figure for clarity. Fig. 2a and b are the L-D curves during heating and cooling processes, 
respectively. Most of the recent indentation studies with elevated temperatures only focused on the heating pro-
cess21,23,28,34,35 to characterize the austenite start and finish temperatures of NiTi alloys and the cooling process has 
not been studied. Thus, a systematically and stepwise cooling process was followed after heating at 340 °C to 
identify the martensite phase transformation temperatures during cooling. At each temperature, indentations 
were repeated three times at different locations. For clarity, the first indentation load-displacement curve obtained 
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Figure 1. Phase transformation diagram of aged Ni50.3Ti29.7Hf20. The stress-strain curves showing temperature 
dependency of the critical stress (a); relationship of critical stress and transformation temperatures (b).

Figure 2. Spherical indentation responses of typical load-displacement relationships at selected temperature. 
Load-displacement curves of NiTiHf under load 500 mN with heating process from 28 °C to 340 °C (a) and 
cooling process from 340  to 28 °C (b).
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at each temperature is displayed. The NiTiHf alloy starts in the pure martensitic phase in heating and austenite 
phase in cooling. It is instructive to note that these TTs extracted from the indentation response are not expected 
exactly match the TTs obtained from DSC as they would depend on the applied indentation force. Thus, the TTs 
obtained from indentation response will be named as Ms

I, Mf
I , As

I, and Af
I  throughout the text.

In the beginning of the heating process as shown in Fig. 2a, the maximum indentation depth (Dmax) slightly 
increases with temperature from 120 to 200 °C, and then increases substantially at 205 °C due to the phase trans-
formation. The increase of the maximum indentation depth indicates that the material is becoming softer which 
is consistent with the indentation hardness value displayed in Fig. 2 at each temperature. However, the hardness 
value does not change much with temperature, which might be due to the complex phases during phase transfor-
mation. Wood et al.23 also observed an increase in Dmax below Af

I . Above 205 °C, in Fig. 2a, austenite phase was 
formed completely and both the maximum depth of indentation and the remnant depth (DR) decreased, suggest-
ing that the superelastic strain recovery mechanism was operating upon unloading only around Af

I , but was 
absent at lower temperatures (below As

I). Meanwhile, the indentation hardness increased dramatically from 205 
°C (2.8 GPa) to 230 °C (3.47 GPa), indicating austenite phase formation. Thus, we conclude that the 205 °C is the 
austenite finish temperature during indentation, which matches with the Af (205 °C) measured from DSC of the 
bulk NiTiHf. The L-D curve at 230 °C provides the clearest evidence of the transition between superelastic and 
non-superelastic behavior, since it exhibits more depth recovery than the ones observed below 205 °C. With fur-
ther increasing in temperature to 330 °C, the maximum indentation depth decreases dramatically, resulting in an 
increase in hardness due to dislocation-mediated plastic deformation.

Fig. 2b shows the L-D relation as a function of temperature during the cooling process. Starting at 330 °C, 
either the hardness or the maximum indentation depth is the same as that measured during the heating process. 
This may be caused by the variations in indentation locations or grain orientations. However, during the cooling 
process, the sample was in pure austenite initially and deformed plastically because the temperature was above 
Md. The maximum indentation depth increased slightly as the temperature decreased to 225 °C, where a small 
decrease in indentation hardness synchronously appeared even though temperature drops by 100 °C. A sudden 
increase in Dmax and decrease in hardness happened when temperature decreased to 180 °C, where the lowest 
value of hardness and modulus were observed during the cooling process. Such a decrease also indicates the 
decrease in superelasticity. Furthermore, temperature below 180 °C shows an increase in Dmax with decreasing 
temperature, corresponding to the decrease in hardness. Here, 180 °C is the Ms

I, during cooling, which is in good 
agreement with the Ms

I, (185 °C) measured from DSC. These predictions from the indentation L-D response of 
heating and cooling process will be discussed further in the next section.

Discussion
To gain further understanding of the L-D curves, we evaluate indentation hardness, modulus, and recoverable 
ratio as a function of temperature. Indentation response of measured hardness and elastic moduli values are not 
the same as that of either martensite or austenite phases. Although indentation can cause phase transformation 

Figure 3. Spherical indentation response of work recovery ratio (a), maximum indentation depth Dmax (b) as a 
function of temperature under 500 mN of NiTiHf with heating process from 28  to 340 °C marked as circle and 
cooling process from 340  to 30 °C marked as triangle.
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under the indenter, hardness and elastic moduli with a wide range of temperature cannot define the actual state 
of transforming phases or other stages (SE, plasticity, and martensite reorientation) accurately. However, the 
work/depth recovery or remnant depth recovery as a function of temperature are often used to characterize the 
transformation temperature and superelasticity8,23. In this article, the work recovery method was used to define 
the stages of mechanical deformation.

Fig. 3a and b are the temperature dependent spherical indentation response on work recovery and maximum 
indent depth (Dmax) of NiTiHf under peak load 500 mN, respectively. With a complete thermal cycling between 
30 and 340 °C, indentation data was collected and the average work recovery ratio and maximum indent depth 
were analyzed from three repeated experiments. In order to interpret the data more accurate, error bars repre-
senting the standard deviation were shown at temperature. Based on the general behavior of SMAs under stress 
and temperature, the indentation work recoverable ratio of NiTiHf alloy as a function of temperature can also be 
separated into stages during heating and cooling, shown in Fig. 3a.

Starting with the heating process in pure martensite, martensite variant reorientation takes place during 
indentation with a peak load of 500 mN. The work recoverable ratio slightly decreases from 0.61 to 0.54 while the 
temperature increases from 30 to 180 °C (this temperature range was selected as stage I). In this temperature 
range, the maximum depth increased incrementally in Fig. 3b. An enormous increase (15%) of work recovery was 
observed from 190 to 225 °C. Such an increase in the work recovery ratio is due to the increased volume fraction 
of austenite phase in the matrix that results in SIM. As shown in Fig. 3a, the work recoverable ratio exhibits a 
sudden jump between 200 and 205 °C, manifesting the completion of austenite phase transformation at 200 °C. 
Therefore, the temperature ranges from 190 to 200 °C was selected as stage II (PT/VR), and 190 °C is the As

I, since 
it shows the lowest work recoverable ratio and it starts to increase at higher temperatures. It should be noted that 
maximum depth increased abruptly from 180 to 205 °C, as shown in Fig. 3b. It suggests that the volume fraction 
of the material that undergoes VR or SIM increased in this section. This observation can be attributed to the low 
critical stress requirement for SIM or VR around the transformation temperatures as shown in Fig. 1. Since the 
applied force is kept constant, lower critical stress resulted in larger volume fraction of transformation or variant 
reorientation. Above Af

I , a dramatic increase in work recovery was observed, where the highest value indicates the 
best superelastic behavior upon unloading at 225 °C (TSE). Thus, the range 205–225 °C was defined as the super-
elastic region (stage III). Comparing with the superelastic behavior of the bulk sample, perfect superelasticity was 
found from 200–240 °C, as shown in Fig. 1a, which agrees well with the indentation results. It should be kept in 
mind that although the stress is constant in the compression test of the bulk sample, the stress is distributed in 
spherical indentation tests. Thus, in spherical indentation, a range of stress is applied to the material. It can also 
be argued that the end temperature of region III (TSE) will depend on the indenter size and the applied load. The 
higher load and lower indenter diameter will result in lower TSE. It was observed in another NiTiHf sample that 
when the applied load was increased from 500 mN to 2000 mN, TSE was decreased by 25 °C (the results are not 
shown here). From Fig. 3b, it can be determined that Dmax decreases above 205 °C and the intersection method 
can be used to find that 225 °C is the deflection point, above which the decrease in Dmax is linear. Above 225 °C, 
the work recoverable ratio starts to decrease with temperature up to 300 °C, and then saturates to a constant work 
recoverable ratio of 0.61. Such a decrease is attributed to the increased plastic deformation of austenite phase with 
partial superelasticity, and it also indicates phase transformation. It should be noted that 300 °C was determined 
to be the Md since there is no phase transformation at higher temperatures. Therefore, 225–300 °C was selected as 
stage IV (SIM + PD) and 300–340 °C is the stage V where only the plasticity will occur. Dmax decreases linearly 
from 205 to 320 °C and then increases with temperature.

Following the heating experiments, the work recovery ratio as a function of temperature with cooling process 
was also divided into five stages as shown in Fig. 3a with triangle marks. During cooling from 340–225 °C, the 
indentation work recoverable ratio shows almost identical hysteresis with the heating experiments as the material 
is completely austenite. On the other hand, Dmax during cooling is lower than the Dmax during heating. The differ-
ence can be attributed to the fact that since indentation measures local properties, orientation of grains could 
affect the results. Heating and cooling experiments are conducted at two different regions of a polycrystalline 
sample, thus, Dmax will depend on the orientation of the grains. Since work recoverable ratio is almost identical, 
this behavior indicates the deformation of austenite has a good agreement of heating and cooling experiments. 
Therefore, the stage V and IV of cooling process are in the same temperature range as with the heating process. 
Between 225–205 °C, the work recovery ratio decreases linearly while Dmax increases with decreasing temperature 
and the results are identical to heating curve. This stage was selected as stage III (SE). The results between 205 to 
180 °C are similar to the previous region, however, the changes are more profound than the results deviate from 
to heating curve. This behavior is expected since during cooling, initially, austenite is stable fully from Af

I  to Ms
I 

and partially from Ms
I to Mf

I , while during heating, martensite is stable from Mf
I  to As

I and then partially from As
I 

to Af
I . Thus, decreasing temperature in this region, increases the volume fraction of austenite phase that goes 

through SIM but decrease of martensite to austenite back transformation. At 180 °C, the lowest work recovery 
ratio and the maximum Dmax were observed during cooling experiments, and it was selected as the Ms

I where 
SMAs show the lowest critical stress. From 180–160 °C, the work recoverable ratio increases sharply and maxi-
mum depth decreases pronouncedly compared to the values below 160 °C. Such a temperature range was deter-
mined as stage II (PT). The martensite finish temperature Mf

I  was determined to be around 160 °C because the 
work recoverable ratio below that temperature (160 °C) was not increased much which means that the martensite 
phase transformation was fully completed. The smooth and steady curve below 160 °C shows a similar behavior 
as the heating process where martensite reorientation takes place, named as stage I. Comparing with the heating 
and cooling loops in Fig. 3a, the small hysteresis between 175 to 205 °C attributes to the thermal hysteresis of 
austenite and martensite.
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It should be noted that shape memory and material properties are highly orientation dependent31,36,37. The 
average grain size of the tested material was around 50 µm, the indenter tip radius was 25 µm, the maximum con-
tact diameter was around 20 µm and the distance between indent centers was 200 µm. Thus, it is possible that 
some indents will occurs inside the grains while others could hit the grain boundaries. Thus, indentation response 
at three varied locations gives different L-D results depending on the grain orientations. It is clear that the error 
bars in stage IV and V are relatively higher than other stages, especially in the heating process. Thus, it might be 
suggested that grain orientations are affecting the plastic deformation more than the shape memory response. 
There are only a few exceptions to this where the error bar at As

I during heating is large since the indentation 
response will highly depend on whether, the material is austenite, martensite or mixed phase.

Nevertheless, the transformation temperatures of Ms
I, Mf

I , As
I, and Af

I  from indentation response of work 
recovery can be determined as 180, 160, 190, and 200 °C, respectively. Moreover, TSE can be determined as 225 °C 
but it should be noted that it will depend on the loading level as well as indentation tip radius. Lastly, Md can be 
determined to be around 300 °C by using indentation technique. These values are in good agreement with the 
DSC and bulk mechanical compression results. However, it should be noted that, indentation technique can be 
used to determine local properties. Such a new method of characterizing shape memory properties has several 
advantages than the conventional method: i) the programming interface of indentation technique makes the 
experiments easier and save time for researchers, ii) it can be employed as nondestructive testing of bulk SMAs, 
iii) the small scale measurement economically saves material, iv) it can precisely determine local properties at 
nano or macro scales, v) the purging system avoids oxidization at high temperature.

Summary. Spherical indentation technique was used to determine the temperature-dependent behavior of a 
high temperature NiTiHf shape memory alloy. This method can be used for detecting the transformation temper-
atures and deformation stages. The temperature, where shows the highest Dmax during heating and cooling, cor-
responds to Af

I  and Ms
I, respectively, while the temperature at the lowest work recoverable ratio during heating 

and cooling corresponds to As
I and Ms

I, respectively. The TTs obtained through indentation are in very good 
agreement with the TTs obtained from DSC results. Moreover, the temperature with the highest work recoverable 
ratio is the TSE, and Md can be determined at the temperature where the work recoverable ratio starts to saturate 
after TSE. Furthermore, the results obtained using the indentation method are in a good agreement with the phase 
transformation behavior performed on bulk materials under compression. This simple indentation technique is 
capable of quantitative characterization at micro- and nano-meter scales of shape memory materials.

Method
The Ni50.3Ti29.7Hf20 alloy was inductively melted using a graphite crucible and cast into a 1 inch diameter copper 
chill mold. The ingot was homogenized at 1050 °C for 72 hours and extruded at 900 °C with a 7:1 reduction in 
area, and then aged at 550 °C for 3 hours. For simplicity, aged Ni50.3Ti29.7Hf20 is denoted as NiTiHf in this arti-
cle. The alloys were electrical-discharge machined to a standard compression sample (4 mm × 4 mm × 8 mm). 
Mechanical testing was conducted in an MTS Landmark servo hydraulic test platform with a 100 kN load cell. 
Stress-free transformation temperatures were measured using a Perkin-Elmer Pyris 1 differential scanning calo-
rimeter (DSC) with a scan rate of 10 °C min−1.

Before indentation experiments, the surface roughness of samples was reduced to 0.05 µm in five steps by 
using Buehler EcoMet 250 Grinder-Polisher with an AutoMet 250 Power head. Spherical indents were made 
using the MicroMaterials Nanotest Platform equipped with a hot stage (up to 750 °C) for controlling the temper-
ature of both indenter and sample. A tip radius of 25 µm diamond spherical indenter was mounted on a heating 
shield which reduces the heat transfer from indenter to the surrounding. The NiTiHf specimen was bounded 
to the hot stage using a thermally conductive ceramic paste. Thermocouples were mounted on the surface and 
directly above the resistive heating element to monitor and control specimen temperatures. To minimize tran-
sient thermal fluctuations and heat transfer between the specimen surface and indenter tip during experiments, 
a separate resistive heater thermal control system was used to heat the indenter. The temperature of the specimen 

Figure 4. Optical microscopy image of aged Ni50.3Ti29.7Hf20 after indentation experiments.
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surface and indenter was controlled to within 0.1 °C. The indentation platform was configured horizontally in 
order to minimize heat transfer. Prior to indentation, a standard load and depth were calibrated. When the tem-
peratures of the indenter and the specimen were stabilized, indentation was made using a peak load of 500 mN 
with a loading rate of 5 mN/s. Following a dwelling period of 10 s at the peak load, the indenter was unloaded at 
the same rate of 5 mN/s. The spherical indenter and the specimen were heated simultaneously with a maximum 
heating rate of 8 °C/min. The temperature range of indentation experiments was from 30 to 340 °C with 10 °C 
intervals, while 5 °C intervals were used between 150 and 240 °C to obtain accurate phase transformation behav-
ior. At each temperature, indentation experiments were repeated three times at the same load. Fig. 4 is the optical 
microscope image of the indentation location and indentation size. The average indent size is about 20 µm and the 
space between each indent is around 200 µm.

Hardness and elastic modulus were calculated from the initial stage of the unloading curve using the Nano 
Vantage Software38. The ratio of the recoverable energy to the total energy is defined as ηw. The recoverable energy, 
We, can be obtained by integrating the unloading curve. The total deformation energy, Wt, is the area under the 
loading curve. The area between the loading and unloading curve is the irrecoverable work, Wirr, also known as 
dissipation energy.
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