

Kentucky Geological Survey Information Circular

Kentucky Geological Survey

2015

Quality of Water from Tile Drains in Fields Treated with Poultry Litter in McLean County, Kentucky

E. Glynn Beck University of Kentucky, ebeck@uky.edu

Lisa Y. Blue University of Kentucky, lisayblue@gmail.com

David A. Atwood University of Kentucky, datwood@uky.edu

Right click to open a feedback form in a new tab to let us know how this document benefits you.

Follow this and additional works at: https://uknowledge.uky.edu/kgs_ic Part of the <u>Geology Commons</u>, and the <u>Hydrology Commons</u>

Repository Citation

Beck, E. Glynn; Blue, Lisa Y.; and Atwood, David A., "Quality of Water from Tile Drains in Fields Treated with Poultry Litter in McLean County, Kentucky" (2015). *Kentucky Geological Survey Information Circular*. 22. https://uknowledge.uky.edu/kgs_ic/22

This Report is brought to you for free and open access by the Kentucky Geological Survey at UKnowledge. It has been accepted for inclusion in Kentucky Geological Survey Information Circular by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

Quality of Water from Tile Drains in Fields Treated with Poultry Litter in McLean County, Kentucky

E. Glynn Beck, Lisa Y. Blue, and David A. Atwood

Our Mission

Our mission is to increase knowledge and understanding of the mineral, energy, and water resources, geologic hazards, and geology of Kentucky for the benefit of the Commonwealth and Nation.

Earth Resources—Our Common Wealth

www.uky.edu/kgs

Technical Level

Abstract	1
Introduction	2
Sample Sites	3
Site A	3
Sites B and C	3
Sites D, E, and F	
Site G	3
Site H	3
Sites I and J	3
Methods	3
Water-Sample Collection	3
Analytical Methods	3
Results	4
Total Major and Trace Metals	4
Dissolved Major and Trace Metals	4
Tile-Drain Samples	4
Drainage-Ditch Samples	5
Anions	5
Conclusions	5
Acknowledgments	6
References Cited	
Appendix 1: Sampling Sites	7
Appendix 2: Water-Quality and Statistical Summary Data	

Contents

Figures

1.	Map showing location of McLean County in Kentucky	2
A1.	Map showing locations of sites A through J in McLean County, Kentucky	
A2.	Photograph showing site A tile-drain and drainage-ditch sample sites	8
A3.	Photograph showing sites B and C tile-drain and drainage-ditch sample sites	9
A4.	Photograph showing sites D, E, and F tile-drain and drainage-ditch sample sites	10
A5.	Photograph showing site G tile-drain and drainage-ditch sample sites	11
A6.	Photograph showing site H tile-drain and drainage-ditch sample sites	12
A7.	Photograph showing site I tile-drain and drainage-ditch sample sites	13
A8.	Photograph showing site J tile-drain sample site	14

Tables

B1.	Sample date, litter application rate, soil type, and location information for sites A	
	through J	15
B2.	Sample splits collected from sites A through J	16
B3.	Analytical method detection limits for major and trace metals and anions	17
B4.	Total major-metal concentrations for samples collected from tile drains at sites A	
	through J	17
B5.	Statistical summary for total major-metal concentrations in samples collected from	
	amended and unamended field tile drains	18
B6.	Total trace-metal concentrations for samples collected from tile drains at sites A	
	through J	18
B7.	Statistical summary for total trace metals sampled from amended and unamended	
	field tile drains	18

Tables (Continued)

B8.	Major-metal concentrations for the unacidified samples collected from sites A	
	through J	19
B9.	Statistical summary of major-metal concentrations for unacidified samples collected	
	from amended and unamended field tile drains	20
B10.	Trace-metal concentrations for unacidified samples collected from sites A through J	21
B11.	Statistical summary of trace-metal concentrations for unacidified samples collected	
	from amended and unamended field tile drains	22
B12.	Major-metal concentrations for unacidified samples collected from amended and	
	unamended drainage ditches	23
B13.	Statistical summary of major-metal concentrations for unacidified samples collected	
	from amended-field drainage ditches	23
B14.	Total-metal concentrations for unacidified samples collected from amended- and	
	unamended-field drainage ditches	24
B15.	Statistical summary of minor-metal concentrations for unacidified samples collected	
	from amended-field drainage ditches	24
B16.	Anion concentrations for samples collected from tile drains at sites A through J	25
B17.	Statistical summary of anion concentrations for samples collected from amended-	
	and unamended-field tile drains	25

Quality of Water from Tile Drains in Fields Treated with Poultry Litter in McLean County, Kentucky

E. Glynn Beck¹, Lisa Y. Blue², and David A. Atwood²

Abstract

Poultry litter (a mixture of feed, manure, and bedding material) is commonly used as a soil amendment to row-crop fields in western Kentucky. Because of feed additives, litter typically has elevated concentrations of contaminants, including metals and anions. These metals and anions can accumulate in the soil and therefore could be transported to surface water through drainage tiles. In order to assess water quality in tile drains, a pilot study was conducted in 2008 in McLean County, Kentucky, in which 10 tile drains and six drainage ditches were sampled for total metals and anions. Seven of the tile-drained fields were amended with poultry litter and three tile-drained fields were not amended. Drainage ditches received discharge from the tile drains. Acidified and unacidified samples were collected for laboratory analysis, and the acidified samples were analyzed for total major and trace metals (aluminum, arsenic, calcium, cadmium, copper, iron, mercury, magnesium, manganese, nickel, lead, and zinc). To determine the association of major and trace metals to suspended material in the water, the unacidified samples were filtered using 0.45- and 0.20-µm filters, and each filtered sample was analyzed for major and trace metals.

Mean concentrations for total calcium and magnesium were similar for the amended and unamended field samples. Total aluminum, iron, and manganese concentrations were higher in the amended-field samples than in the unamended-field samples. Total arsenic, cadmium, and mercury concentrations were below the method detection limits for all samples. Total copper and nickel concentrations were higher in the amended-field samples than in the unamended-field samples.

Calcium, magnesium, and manganese concentrations did not decrease after samples were filtered. Aluminum and iron concentrations decreased, indicating that these metals are associated with suspended sediment in the tile discharge water. Copper and nickel concentrations did not decrease after the samples were filtered.

Chloride, sulfate, and nitrate concentrations were higher in amended-field samples than in unamended-field samples. The mean nitrate concentration for the tile-drain samples from amended fields was above the U.S. Environmental Protection Agency maximum contaminant level of 10 ppm. All phosphate concentrations were below the MDL.

Additional sampling is needed to more thoroughly document concentrations and evaluate the impact of potential contaminants associated with poultry litter on the quality of tile-drain water in Kentucky.

¹Kentucky Geological Survey

²Department of Chemistry, University of Kentucky

Introduction

Poultry is Kentucky's highest grossing agricultural commodity (Kentucky Poultry Federation, 2013), with more than 300 million chickens produced annually (U.S. Department of Agriculture, 2011). A large percentage of the birds produced in Kentucky are grown in 400 poultry houses distributed throughout McLean County (Blue and others, 2009). The poultry are fed various additives to promote accelerated growth and treat parasites (Sims, 1995). Many of these additives contain trace metals such as arsenic, copper, and zinc (Sims, 1995). The majority of the trace metals are excreted by the chickens and accumulate in high concentrations in the poultry litter (Anderson and Chamblee, 2001; Jackson and others, 2003). Litter is the floor material in broiler houses that consists of a mixture of feed, manure, and bedding material, such as sawdust, wood shavings, or rice hulls (D'Angelo and others, 2012). Common practice is to dispose of litter by spreading it on nearby pasture and row-crop fields. Litter has a high concentration of nitrogen, phosphorus, and potassium, which improves soil fertility (Coufal and others, 2006). Over time, however, the accumulation of poultry litter can result in elevated concentrations of trace metals and other metals (Daigh and others, 2009; Ashjaei and others, 2011; D'Angelo and others, 2012). Many of the row-crop fields amended with poultry litter, espe-

cially in Kentucky, are tile-drained, which removes excess water from the fields to nearby drainage ditches. In 2008, water samples were collected by the Kentucky Geological Survey from 10 tile drains in McLean County (Fig. 1), and were sampled and analyzed for total major and trace metals (aluminum, arsenic, calcium, cadmium, copper, iron, mercury, magnesium, manganese, nickel, lead, and zinc) and anions (F⁻, Cl⁻, Br⁻, NO₂⁻-N, NO₃⁻-N, SO₄²⁻, and PO_4^{3-}). Additional samples were collected and filtered in the laboratory with 0.45- and 0.20-µm filters to determine the association of metals to suspended material in the water. Seven of the sampled tile-drained fields were amended with poultry litter (sites A through G) and three tile-drained fields were not amended with litter (sites H through J) (Fig. A1). Four of the drainage ditches received tile water from amended fields (sites A, C, F, and G) and two received tile water from unamended fields (sites H and I) (Fig. A1).

This report presents water-quality data obtained from the tile drains and drainage ditches sampled in the study area, and some general conclusions about the potential impacts of applying poultry litter to stream water quality. Funding for this project was provided in part by the National Science Foundation's Kentucky Experimental Program to Stimulate Competitive Research.

Appendix 1 shows the locations of tile-drain and drainage-ditch sampling points. Appendix 2

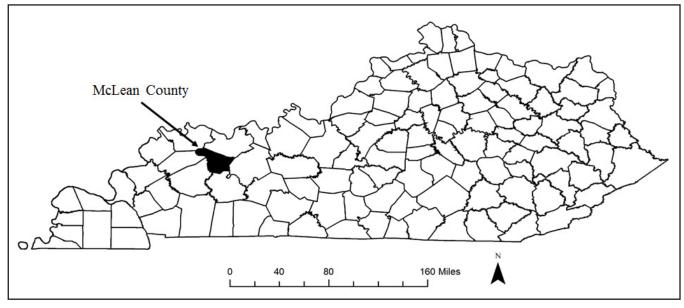


Figure 1. Location of McLean County in Kentucky.

contains water-quality and statistical summaries for all of the tile-drain and drainage-ditch samples.

Sample Sites

Sample site A is approximately 5.8 mi southwest of Calhoun (Fig. A1). The site is in the southwest corner of a 48-acre row-crop field that was amended with poultry litter in the fall of 2007 (Fig. A2, Table B1). Three sample splits were collected from the tile drain at site A and one split was collected from the drainage ditch just northwest of the tile drain at site A (Table B2).

Sites B and C

Sample sites B and C are approximately 3.7 mi east of Calhoun, north of Ky. 136 (Fig. A1). Sites B and C are along the south-central edge of a 66-acre row-crop field that was amended with poultry litter in the fall of 2007 (Table B1). The tile drain at site B drains the western part of the field, and the tile drain at site C drains the eastern part of the field (Fig. A3). Three sample splits were collected from the tile drains at sites at sites B and C and one split was collected from the drainage ditch just south of the tile drain at site C (Table B2).

Sites D, E, and F

Sample sites D, E, and F are approximately 4 mi east of Calhoun, just north of Ky. 136 (Fig. A1). Tile drains at sites D, E, and F drain three separate fields that are approximately 24, 7, and 28 acres in size, respectively (Fig. A4). Each field was previously amended with poultry litter (Table B1). The tile drain at site D drains the field west of the drainage ditch. The tile drain at site E drains the field north of the sampling location. The tile drain at site F drains the field east of the drainage ditch. Three sample splits were collected from each of the tile drains at sites D, E, and F (Table B2), and one split was collected from the drainage ditch just south of the tile drain at site F (Table B2).

Site G

Sample site G is approximately 4 mi east of Calhoun, just north of Ky. 136 (Fig. A1). The site is in the southwest corner of a 16-acre row-crop field that was amended with litter in the fall of 2007 (Fig. A5, Table B1). Three sample splits were collected from the tile drain at site G and one split was

collected from the drainage ditch just south of the tile drain (Table B2).

Site H

Sample site H is approximately 3 mi south of Calhoun, just west of Ky. 81 (Fig. A1, Table B1). The site is in the southeast corner of a 246-acre unamended row-crop field (Fig. A6). Three sample splits were collected from the tile drain at site H and one split was collected from the drainage ditch just south of the sampled tile drain (Table B2).

Sites I and J

Sample sites I and J are approximately 3 mi southwest of Calhoun, south of Ky. 138 (Fig. A1, Table B1). Tile drains at sites I and J drain a 188-acre unamended row-crop field (Figs. A7–A8, respectively). Three sample splits were collected from the tile drains at site I (Table B2) and site J (Table B2). One split was collected from the drainage ditch just west of the tile drain at site I (Table B2).

Methods

Water-Sample Collection

Tile-drain and drainage-ditch water samples were collected using a 1-L plastic beaker taped to an aluminum telescopic handle. Prior to sampling, the plastic beaker was rinsed three times with deionized water and three times with either tile or drainage-ditch water. At least three splits were collected from each tile drain. A separate 250-ml sample was collected for anion and total major- and trace-metal analysis (Table B2) The 250-ml total-metal sample was acidified with nitric acid at the time of collection. An unacidified 1-L sample was collected from each tile drain and drainage ditch for filtration in the laboratory and major- and trace-metal analysis (Table B2). Field measurements (pH, temperature, and dissolved oxygen) and discharge were not recorded at any of the sites.

Analytical Methods

Sample splits were prepared in the field and transported to the laboratory in bottles certified clean by the manufacturer. If preservation was required by analysis protocol, the samples were preserved at the time of collection and kept at a temperature of 4°C until delivered to the University of Kentucky Environmental Research and Training Laboratory (Table B2); all water analyses were performed there.

Major metals (aluminum, calcium, iron, magnesium, and manganese) and trace metals (copper, mercury, nickel, and zinc) were analyzed using inductively coupled plasma optical emission spectrometry, following methods 3030E and 3120B (American Public Health Association and others, 1998). Concentrations of these metals were recorded in parts per million. Trace metals (arsenic, cadmium, and lead) were analyzed using graphite furnace atomic absorption spectrometry following methods 3030E and 3113B (American Public Health Association and others, 1998). Concentrations of these metals were recorded in parts per billion. After being analyzed for total major and trace metals, the 1-L unacidified tile-drain and drainage-ditch samples were filtered in the laboratory using 0.45and 0.20-µm filters. Each 0.45- and 0.20-µm filtered sample was analyzed for major and trace metals. The minimum detection level for each major and trace metal is listed in Table B3.

Following EPA method 300.0, anions (F⁻, Cl⁻, Br⁻, NO₂⁻-N, NO₃⁻-N, SO₄²⁻, and PO₄⁻³) were analyzed using ion chromatography. The MDL for each anion is listed in Table B3.

Results Total Major and Trace Metals

Tile-drain samples acidified with nitric acid in the field were analyzed to determine total majorand trace-metal concentrations (Table B4). Mean calcium and magnesium concentrations were similar for amended and unamended tile waters (Table B5). This similarity can most likely be attributed to lime being applied as a soil amendment. Aluminum, iron, and manganese concentrations were higher in tile-water samples from amended fields than from unamended fields (Table B2). These results may indicate that aluminum, iron, and manganese are accumulating in the amended soils over time and are being transported through the soil column, most likely via macropores, to the underlying tile drain. All of the amended fields are in Karnak soil (Table B1), which has a high montmorillonite clay content (Wells and others, 1993). The montmorillonite could also be a source of the elevated aluminum concentrations in the tile-drain water. Some of the samples from the tile drains from the amended fields had aluminum and manganese concentrations greater than the EPA secondary maximum contaminant levels of 0.2 and 0.05 ppm, respectively (Table B4). All iron concentrations were below the SMCL of 0.3 ppm (Table B4).

Total arsenic, cadmium, and mercury concentrations were below the MDL in all samples (Table B6). Mean concentrations of total copper and nickel in the amended tile samples were 0.535 and 0.033 ppm, respectively (Table B7). Copper concentrations were well below the SMCL of 1.0 ppm. Total copper and nickel concentrations in the three unamended tile samples were below the MDL for each metal (Table B6). These data indicate that elevated copper and nickel concentrations in tiledrain water may be derived from an accumulation of these metals in the amended soil. No samples from amended tile drains contained lead concentrations greater than the MDL (Table B6). One unamended tile-drain sample (from site J) contained lead at a concentration greater than the MDL, but was well below the EPA action level of 15 ppb (Table B6). Only one sample (from site A) contained zinc concentrations greater than the MDL, but that concentration was well below the SMCL of 5 ppm (Table B6).

Dissolved Major and Trace Metals

Tile-Drain Samples. In order to minimize the dissolution of suspended material, the 1-L tile-drain and drainage-ditch splits were not acidified in the field with nitric acid. The goal was to determine if total major- and trace-metal concentrations were linked to the presence of suspended solids. The samples were first analyzed without filtering to determine the unacidified total major- and tracemetal concentrations, then filtered using 0.45- and 0.20-µm filters and analyzed again. Unacidified major-metal concentrations for tile drains in amended and unamended fields are presented in Table B8. Mean concentrations of all of the total (unfiltered) major metals in the unacidified samples (Table B9) are very similar to the acidified total major-metal concentrations (Table B5). Calcium, magnesium, and manganese mean concentrations changed very little, if at all, after the samples were filtered with a 0.45- and 0.20-µm filter (Table B9). Aluminum and iron mean concentrations decreased after the 0.45-µm filtering (Table B9), but mean concentrations increased slightly after the 0.20-µm filtering (Table B9). After the 0.20-µm filtering, mean concentrations were still lower than the unfiltered concentrations, however (Table B9). The decreases in concentration after filtering indicate that a large percentage of aluminum and iron are associated with suspended solids, most likely suspended clay particles.

Like the unacidified total (unfiltered) major metals, unacidified total (unfiltered) trace-metal concentrations (Table B10) were similar to the acidified total-metal concentrations (Table B5). Arsenic, cadmium, mercury, and lead concentrations were below their respective MDL's (Table B10). After filtering, copper, nickel, and zinc mean concentrations showed no significant change (Table B11).

Drainage-Ditch Samples. Unacidified drainageditch samples were also collected and analyzed for major and trace metals, following the same protocol used for the unacidified tile-drain samples. Unacidified major-metal concentrations for the drainage-ditch samples are presented in Table B12. Aluminum, iron, magnesium, and manganese mean concentrations were higher in the amended drainage-ditch samples (Table B13) than in the amended tile-drain samples (Table B9), whereas mean calcium concentrations were lower (Table B13). Calcium, magnesium, and manganese mean concentrations in the amended ditches did not change after both filtering rounds (Table B13). Aluminum and iron mean concentrations decreased substantially, however (Table B13), most likely because of the removal of suspended clay particles. Only two samples were collected from unamended ditches; therefore, statistical data are not presented for these samples.

With the exception of one sample, arsenic and zinc concentrations were below the MDL at site I (unfiltered) and site C (0.20 μ m), respectively (Table B14). All cadmium and mercury concentrations were below the MDL (Table B14). Mean copper and nickel concentrations in the unfiltered samples (Table B15) were similar to those in the unfiltered tile-drain samples (Table B11). Mean copper and nickel concentrations in the amended ditch samples also showed very little change after filtering (Table B15). Only two samples were collected from

unamended ditches; therefore, statistical data are not presented for these samples.

Anions. Anion concentrations for samples collected from all tile drains are presented in Table B16. As expected, mean concentrations of chloride, sulfate, and nitrate in the amended tile-drain samples were significantly higher than those in the unamended tile-drain samples (Table B17). The mean concentration of nitrate for the amended tile-drain samples was greater than the MCL of 10 mg/L (Table B17). All fluoride concentrations were below the SMCL of 4.0 mg/L. All phosphate, nitrite, and bromide concentrations were below the MDL (Table B16).

Conclusions

Ten tile drains and six drainage ditches in McLean County, Kentucky, were sampled for major and trace metals (arsenic, aluminum, calcium, cadmium, copper, iron, mercury, magnesium, manganese, nickel, lead, and zinc) and anions (F-, Cl⁻, Br⁻, NO₂⁻-N, NO₃⁻-N, SO₄²⁻, and PO₄³⁻). Seven of the tile-drained fields were amended with poultry litter and three were not amended. The mean concentrations of total calcium and magnesium for the amended and unamended fields were very similar. Total aluminum, iron, and manganese concentrations were higher in tile-water samples collected from amended fields than from unamended fields. Total arsenic, cadmium, and mercury concentrations were below MDL's in water samples collected from tile drains in fields amended with poultry litter and unamended fields. Total copper and nickel concentrations were greater in the amended-field tile drains than in the unamended-field tile drains.

After filtering, total calcium, magnesium, and manganese concentrations in the amended field samples did not change, which indicates that these metals are not associated with suspended material. Aluminum and iron concentrations decreased significantly after filtering, however, which indicates that these metals are associated with suspended material, most likely clays. Even though copper and nickel were present in the amended-field samples, concentrations did not significantly decrease after filtering.

Chloride, sulfate, and nitrate concentrations were significantly higher in the amendedfield samples compared to the unamended-field samples. The mean nitrate concentration for the amended-field samples was greater than the MCL of 10 mg/L. Phosphate concentrations for all tile samples were below the MDL.

Additional tile-drain water-quality data are needed to better evaluate the occurrence and range of metal and anion concentrations derived from poultry-litter-amended and unamended fields in Kentucky.

Acknowledgments

We would like to thank Scott Waninger of the Kentucky Geological Survey for his help with collecting samples, and John May and Tricia Coakley of the University of Kentucky Environmental Research and Training Laboratory for help with sample analysis.

References Cited

- American Public Health Association, American Water Works Association, and Water Environment Federation, 1998, Standard methods for the examination of water and wastewater [20th ed.]: American Public Health Association, 724 p.
- Anderson, B.K., and Chamblee, T.N., 2001, The effect of dietary 3-nitro-4-hydroxylphenyl-arsonic acid (roxarsone) on the total arsenic level in broiler excreta and broiler litter: Journal of Applied Poultry Research, v. 10, p. 323–328.
- Ashjaei, S., Miller, W.P., Cabrera, M.L., and Hassan, S.M., 2011, Arsenic in soils and forages from poultry litter-amended pastures: International Journal of Environmental Research and Public Health, v. 8, p. 1534–1546.
- Blue, L.Y., Bird, K.N., Preece, C.A., Beck, E.G., and Atwood, D.A., 2009, Mobility of arsenic and trace contaminant metals in poultry litter amended agricultural soils: Cooperative State Research, Education, and Extension Service National Water Conference, St. Louis, Mo., 16 p., www.usawaterquality.org/ conferences/2009/PDF/Ag_BMPs-oral/ Blue09.pdf [accessed 11/11/2013].
- Coufal, C.D., Chavez, C., Niemeyer, P.R., and Carey, J.B., 2006, Measurement of broiler litter production rates and nutrient content using

recycled litter: Poultry Science, v. 85, p. 389-403.

- Cox, F.R., 1980, Soil survey of McLean and Muhlenberg Counties, Kentucky: U.S. Department of Agriculture–Soil Conservation Service, in cooperation with Kentucky Department for Natural Resources and Environmental Protection and Kentucky Agricultural Experiment Station, 124 p.
- Daigh, A.L., Brye, K.R., Sharpley, A.N., Miller, D.M., West, C.P., and Brahana, V.J., 2009, Fiveyear change in soil profile chemical properties as affected by broiler litter application rate: Soil Science, v. 174, no. 10, p. 531–542.
- D'Angelo, E., Zeigler, G., Beck, E.G., Grove, J., and Sikora, F., 2012, Arsenic species in broiler (*Gallus gallus domesticus*) litter, soils, maize (*Zea mays* L.), and groundwater from litteramended fields: Science of the Total Environment, v. 438, p. 286–292.
- Jackson, B.P., Bertsch, P.M., Cabrera, M.L., Camberato, J.J., Seaman, J.C., and Wood, C.W., 2003, Trace element speciation in poultry litter: Journal of Environmental Quality, v. 32, p. 535–540.
- Kentucky Poultry Federation, 2013, Kentucky's poultry industry: www.kypoultry.org/ pfacts/docs/KPFBulletinPointSheet.pdf, 1 p. [accessed 11/06/2013].
- Sims, J.T., 1995, Characteristics of animal wastes and waste amended soils: An overview of the agricultural and environmental issues, *in* Steele, K., ed., Animal waste and the landwater interface: Boca Raton, Fla., CRC Press, p. 1–14.
- U.S. Department of Agriculture, 2011, Kentucky agricultural statistics 2010-2011 bulletin: www.nass.usda.gov/Statistics_by_State/ Kentucky/Publications/Annual_ Statistical_Bulletin/B2011/Pg056.pdf [accessed 11/11/2013].
- Wells, K.L., Henson, G., and Kelley, G., 1993, A survey of the content of some heavy metals in soil and corn grain in the Pond and lower Green River bottoms: University of Kentucky Cooperative Extension Service, Agronomy Notes, v. 26, no. 3, 7 p.

Appendix 1: Sampling Sites

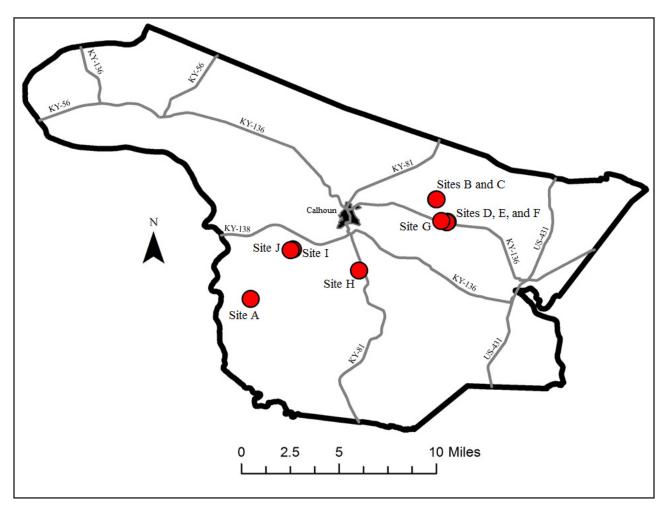


Figure A1. Locations of sites A through J in McLean County, Kentucky.

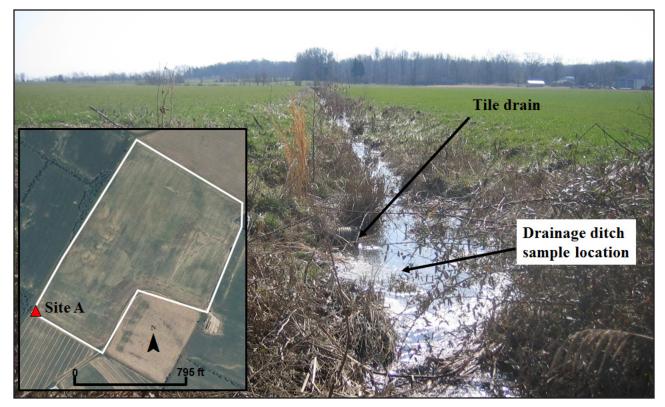


Figure A2. Site A tile-drain and drainage-ditch sample sites. Picture was taken standing on a farm road looking southwest. Inset map shows the location of site A relative to the litter-amended field, outlined in white.

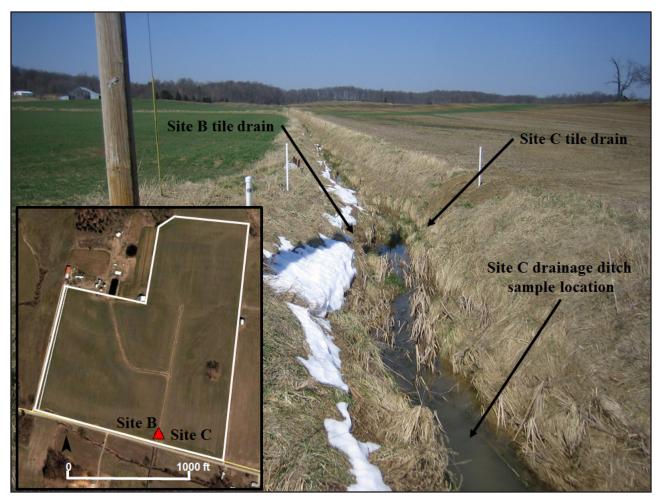


Figure A3. Sites B and C tile-drain and drainage-ditch sample sites. Picture was taken standing on Old Buel Road looking north. Inset map shows the location of sites B and C relative to the litter-amended fields, outlined in white.

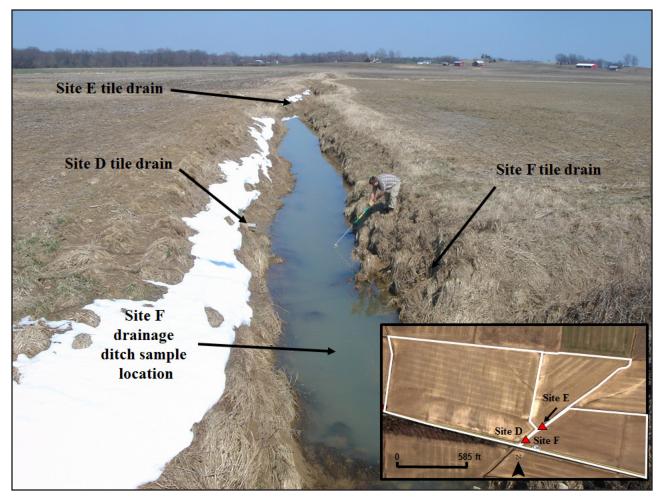


Figure A4. Sites D, E, and F tile-drain and drainage-ditch sample sites. Picture was taken standing on Ky. 136 looking northeast. Inset map shows the location of sites D, E, and F relative to their respective litter-amended fields, outlined in white.

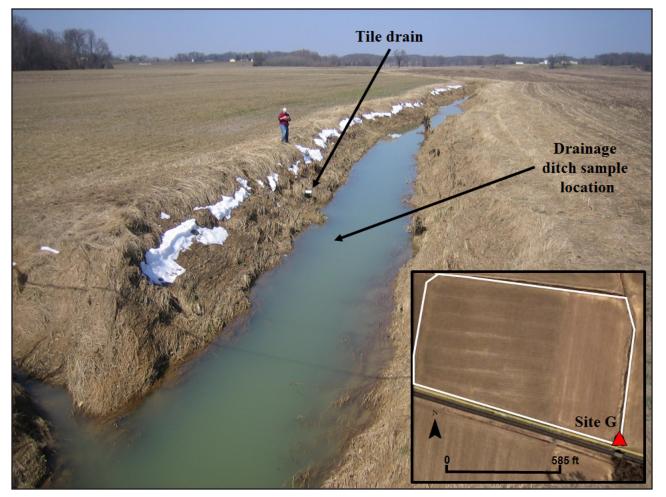


Figure A5. Site G tile-drain and drainage-ditch sample sites. Picture was taken standing on Ky. 136 looking north. Inset map shows the location of site G relative to the litter-amended field, outlined in white.

Figure A6. Site H tile-drain and drainage-ditch sample sites. Picture was taken standing on McElwain Road looking northeast. Inset map shows the location of site H relative to the unamended field, outlined in white.

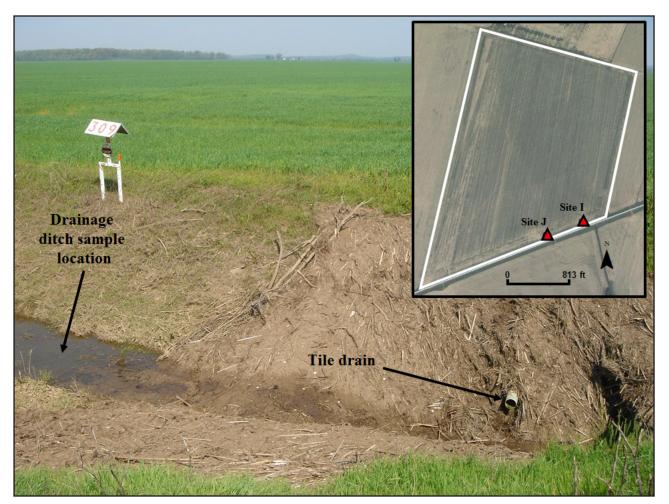


Figure A7. Site I tile-drain and drainage-ditch sample sites. Picture was taken standing on Pack Church Road looking north. Inset map shows the location of site I relative to the unamended field, outlined in white.

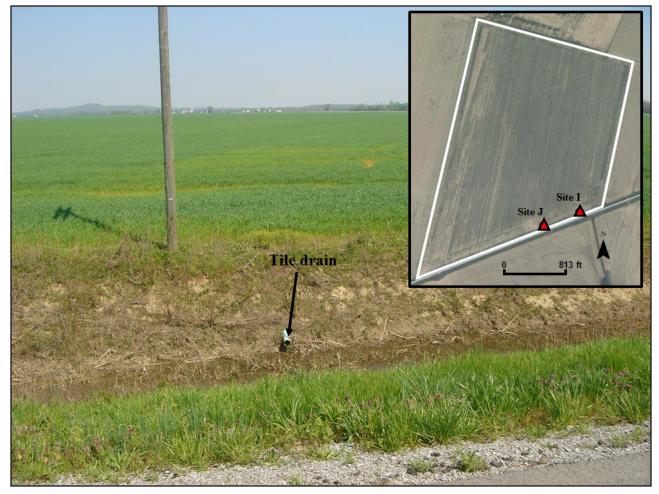


Figure A8. Site J tile-drain sample site. Picture was taken standing on Pack Church Road looking north. Inset map shows the location of site J relative to the unamended field, outlined in white.

Appendix 2: Water-Quality and Statistical Summary Data

Table B1. Sample date, litter application rate, soil type, and location information for sites A through J.									
Site	Date Sampled	Application Rate (tons/acre)	Application Date	Soil Type (Cox, 1980)	Latitude (NAD 83)	Longitude (NAD 83)			
А	3/12/2008	4	fall 2007	Belknap and Grenada	37.478738	-87.332221			
В	3/12/2008	4	fall 2007	Belknap	37.553520	-87.194217			
С	3/12/2008	4	fall 2007	Belknap	37.553500	-87.194110			
D	3/12/2008	4	fall 2006	Belknap	37.536280	-87.186420			
E	3/12/2008	4	fall 2006	Belknap	37.536640	-87.185940			
F	3/12/2008	4	fall 2007	Belknap	37.536280	-87.186420			
G	3/12/2008	4	fall 2007	Belknap	37.537227	-87.190517			
Н	4/23/2008	none		Karnak	37.500113	-87.251727			
I	4/23/2008	none		Karnak	37.515920	-87.300890			
J	4/23/2008	none		Karnak	37.515420	-87.302580			

Table B2. Sample splits collected from sites A through J.								
Site	Split	Source	Analytes	Sample Volume	Preservation			
A 1		tile	anions	250 ml	4°C			
А	2	tile	total metals	250 ml	nitric acid, 4°C			
А	3	tile	total metals	1 L	4°C			
А	5	drainage ditch	total metals	1 L	4°C			
В	1	tile	anions	250 ml	4°C			
В	2	tile	total metals	250 ml	nitric acid, 4°C			
В	3	tile	total metals	1 L	4°C			
С	1	tile	anions	250 ml	4°C			
С	2	tile	total metals	250 ml	nitric acid, 4°C			
С	3	tile	total metals	1 L	4°C			
С	4	drainage ditch	total metals	1 L	4°C			
D	1	tile	anions	250 ml	4°C			
D	2	tile	total metals	250 ml	nitric acid, 4°C			
D	3	tile	total metals	1 L	4°C			
E	1	tile	anions	250 ml	4°C			
E	2	tile	total metals	250 ml	nitric acid, 4°C			
E	3	tile	total metals	1 L	4°C			
F	1	tile	anions	250 ml	4°C			
F	2	tile	total metals	250 ml	nitric acid, 4°C			
F	3	tile	total metals	1 L	4°C			
F	4	drainage ditch	total metals	1 L	4°C			
G	1	tile	anions	250 ml	4°C			
G	2	tile	total metals	250 ml	nitric acid, 4°C			
G	3	tile	total metals	1 L	4°C			
G	4	drainage ditch	total metals	1 L	4°C			
Н	1	tile	anions	250 ml	4°C			
Н	2	tile	total metals	250 ml	nitric acid, 4°C			
Н	3	tile	total metals	1 L	4°C			
Н	5	drainage ditch	total metals	1 L	4°C			
l	1	tile	anions	250 ml	4°C			
I	2	tile	total metals	250 ml	nitric acid, 4°C			
I	3	tile	total metals	1 L	4°C			
I	4	drainage ditch	total metals	1 L	4°C			
J	1	tile	anions	250 ml	4°C			
J	2	tile	total metals	250 ml	nitric acid, 4°C			
J	3	tile	total metals	1 L	4°C			

Table B3. Analytical method detection limits for major and trace metals and anions.						
Analyte	Method Detection Limit	Unit				
aluminum	0.010	ppm				
calcium	1.00	ppm				
iron	0.010	ppm				
magnesium	1.00	ppm				
manganese	0.010	ppm				
arsenic	5.00	ppb				
cadmium	0.500	ppb				
copper	0.100	ppm				
mercury	0.100	ppm				
nickel	0.010	ppm				
lead	5.00	ppb				
zinc	0.010	ppm				
fluoride	0.125	ppm				
chloride	0.125	ppm				
bromide	0.125	ppm				
nitrite	0.125	ppm				
nitrate	0.125	ppm				
sulfate	0.125	ppm				
phosphate 1.000 and 10.000* ppm						
*Unable to determine phosphate less than 10.000 ppm for samples collected at sites H, I, and J because of poor ion chromatography column performance.						

 Table B4.
 Total major-metal concentrations (ppm) for samples collected from tile drains at sites A through J. Standard deviations in parentheses.

aoriatione i										
Site	Aluminum Calcium		Iron	Magnesium	Manganese					
amended										
А	0.666 (0.005)	61.89 (0.49)	0.186 (0.006)	33.07 (0.21)	0.839 (0.011)					
В	0.117 (0.002)	19.58 (0.08)	0.034 (0.000)	10.76 (0.01)	0.140 (0.001)					
С	0.177 (0.002)	22.05 (0.12)	0.133 (0.003)	13.52 (0.10)	0.096 (0.001)					
D	0.277 (0.001)	88.37 (0.18)	0.143 (0.008)	44.97 (0.15)	0.067 (0.000)					
E	0.113 (0.000)	61.98 (0.28)	0.074 (0.001)	27.82 (0.08)	0.044 (0.001)					
F	0.151 (0.003)	70.94 (0.67)	0.077 (0.001)	34.65 (0.26)	0.039 (0.000)					
G	0.165 (0.000)	70.87 (0.27)	0.087 (0.000)	42.05 (0.03)	0.035 (0.000)					
		ur	amended							
Н	0.121 (0.004)	68.29 (1.11)	0.088 (0.001)	25.20 (0.31)	< MDL					
I	< MDL	71.99 (0.54)	0.050 (0.001)	24.31 (0.16)	< MDL					
J	< MDL	78.74 (1.00)	0.041 (0.001)	27.07 (0.39)	< MDL					

Table B5. Statistical summary for total major-metal concentrations (ppm) in samples collected from
amended (n=7) and unamended (n=3) field tile drains.

Field Type Statistic		Aluminum	Calcium	Iron	Magnesium	Manganese		
	minimum	0.113	19.58	0.034	10.76	0.035		
amended	mean	0.238	56.53	0.105	29.55	0.180		
	maximum	0.666	88.37	0.186	44.97	0.839		
	minimum	< MDL	68.29	0.041	24.31			
unamended	mean		73.01	0.060	25.53	< MDL		
	maximum	0.121	78.74	0.088	27.07	< MDL		

Table B6. Total trace-metal concentrations for samples collected from tile drains at sites A through J. Standard deviations in parentheses.

Site	Arsenic (ppb)	Cadmium (ppb)	Copper (ppm)	Mercury (ppm)	Nickel (ppm)	Lead (ppb)	Zinc (ppm)			
	amended									
А	< MDL	< MDL	0.726 (0.013)	< MDL	0.063 (0.03)	< MDL	0.035 (0.002)			
В	< MDL	< MDL	0.737 (0.007)	< MDL	0.029 (0.002)	< MDL	< MDL			
С	< MDL	< MDL	0.620 (0.003)	< MDL	0.030 (0.000)	< MDL	< MDL			
D	< MDL	< MDL	0.527 (0.003)	< MDL	0.029 (0.001)	< MDL	< MDL			
E	< MDL	< MDL	0.462 (0.000)	< MDL	0.025 (0.001)	< MDL	< MDL			
F	< MDL	< MDL	0.358 (0.009)	< MDL	0.026 (0.006)	< MDL	< MDL			
G	< MDL	< MDL	0.316 (0.002)	< MDL	0.026 (0.001)	< MDL	< MDL			
			una	mended						
Н	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL			
I	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL			
J	< MDL	< MDL	< MDL	< MDL	< MDL	5.12 (0.12)	< MDL			

Table B7. Statistical summary for total trace metals sampled from amended (n = 7) and unamended (n = 3) field tile drains.										
Field Type	Statistic	Arsenic (ppb)	Cadmium (ppb)	Copper (ppm)	Mercury (ppm)	Nickel (ppm)	Lead (ppb)	Zinc (ppm)		
	minimum			0.316		0.025		< MDL		
amended	mean	< MDL	< MDL	0.535	< MDL	0.033	< MDL			
	maximum	< MDL	< MDL	0.737	< MDL	0.063	< MDL	0.035		
	minimum						< MDL			
unamended	mean	< MDL	< MDL	< MDL	< MDL	< MDL		< MDL		
	maximum	< MDL	< MDL	< MDL	< MDL	< MDL	5.12	< MDL		

Table B8. Major in parentheses.	-metal concentrati	ons (ppm) for the u	nacidified samples	s collected from sit	es A through J. Sta	andard deviations				
Site	Filter (µm)	Aluminum	Calcium	Iron	Magnesium	Manganese				
amended										
	unfiltered	0.646 (0.004)	61.37 (0.60)	0.245 (0.004)	33.09 (0.32)	0.864 (0.011)				
А	0.45	0.187 (0.001)	61.81 (0.39)	0.013 (0.000)	33.47 (0.07)	0.865 (0.022)				
	0.20	0.161 (0.001)	61.11 (0.77)	< MDL	33.20 (0.17)	0.852 (0.018)				
	unfiltered	0.115 (0.002)	19.80 (0.44)	0.036 (0.001)	10.90 (0.23)	0.142 (0.002)				
В	0.45	0.067 (0.000)	20.15 (0.15)	< MDL	11.02 (0.08)	0.138 (0.001)				
	0.20	0.063 (0.002)	19.88 (0.11)	< MDL	10.94 (0.02)	0.140 (0.002)				
	unfiltered	0.638 (0.002)	22.33 (0.15)	0.589 (0.002)	13.76 (0.09	0.093 (0.000)				
С	0.45	0.022 (0.002)	21.90 (0.17)	< MDL	13.50 (0.04)	0.069 (0.000)				
	0.20	0.161 (0.002)	22.41 (0.13)	0.125 (0.001)	13.76 (0.06)	0.074 (0.000)				
	unfiltered	0.227 (0.003)	88.41 (1.04)	0.167 (0.003)	45.40 (0.25)	0.064 (0.000)				
D	0.45	0.022 (0.001)	89.41 (0.18)	< MDL	45.56 (0.19)	0.061 (0.001)				
	0.20	0.214 (0.005)	88.54 (0.41)	0.153 (0.002)	45.28 (0.35)	0.062 (0.000)				
	unfiltered	0.126 (0.002)	62.77 (0.53)	0.072 (0.000)	28.18 (0.15)	0.044 (0.000)				
E	0.45	0.017 (0.002)	62.83 (0.33)	< MDL	27.67 (0.06)	0.062 (0.000)				
	0.20	0.080 (0.001)	63.21 (0.17)	0.041 (0.000)	27.68 (0.08)	0.059 (0.001)				
	unfiltered	0.149 (0.005)	71.84 (1.19)	0.077 (0.002)	34.85 (0.46)	0.037 (0.001)				
F	0.45	0.014 (0.001)	71.23 (0.20)	< MDL	34.99 (0.16)	0.032 (0.001)				
	0.20	0.062 (0.001)	71.96 (0.40)	0.030 (0.000)	35.00 (0.32)	0.034 (0.000)				
	unfiltered	0.213 (0.001)	70.56 (0.66)	0.120 (0.004)	42.00 (0.43)	0.034 (0.000)				
G	0.45	0.016 (0.001)	71.24 (0.34)	< MDL	42.31 (0.21)	0.034 (0.000)				
	0.20	0.163 (0.002)	71.33 (0.29)	0.112 (0.001)	42.54 (0.10)	0.030 (0.000)				
			unamended							
	unfiltered	0.130 (0.007)	68.61 (0.46)	0.084 (0.002)	25.40 (0.12)	< MDL				
Н	0.45	< MDL	66.54 (3.63)	0.010 (0.001)	24.43 (1.15)	< MDL				
	0.20	0.104 (0.009)	68.63 (0.81)	0.090 (0.000)	25.54 (0.32)	< MDL				
	unfiltered	< MDL	75.99 (4.86)	0.052 (0.004)	25.87 (1.67)	< MDL				
I	0.45	< MDL	72.53 (0.86)	0.023 (0.001)	24.48 (0.25)	< MDL				
	0.20	< MDL	72.56 (1.02)	0.037 (0.001)	24.47 (0.36)	< MDL				
	unfiltered	< MDL	79.17 (1.18)	0.025 (0.001)	27.17 (0.54)	< MDL				
J	0.45	< MDL	79.12 (1.02)	0.015 (0.001)	27.01 (0.28)	< MDL				
	0.20	< MDL	83.19 (7.92)	0.022 (0.001)	28.81 (3.32)	< MDL				

ĩ

Field Type	Statistic	Aluminum	Calcium	Iron	Magnesium	Manganese
		•	unfiltered		•	•
	minimum	0.115	19.80	0.036	10.90	0.034
amended	mean	0.302	56.73	0.187	29.74	0.183
	maximum	0.646	88.41	0.589	45.40	0.864
	minimum	< MDL	68.61	0.025	25.40	
unamended	mean		74.59	0.054	26.15	
	maximum	0.130	79.17	0.084	27.17	< MDL
			0.45-µm filter			
	minimum	0.014	20.15	< MDL	11.02	0.032
amended	mean	0.049	56.94		29.79	0.180
	maximum	0.187	89.41	0.013	45.56	0.865
	minimum		66.54	0.010	24.43	
unamended	mean		72.73	0.016	25.31	
	maximum	< MDL	79.12	0.023	27.01	< MDL
			0.20-µm filter			
	minimum	0.062	19.88	0.030	10.94	0.030
amended	mean	0.129	56.92	0.092	29.77	0.179
	maximum	0.214	88.54	0.153	45.28	0.852
	minimum	< MDL	68.63	0.022	24.47	
unamended	mean		74.79	0.050	26.27	
	maximum	0.104	83.19	0.090	28.81	< MDL

Table B9 Statistical summary of major-metal concentrations (ppm) for unacidified samples collected from amended (n=7)

Site	Filter (µm)	Arsenic (ppb)	Cadmium (ppb)	Copper (ppm)	Mercury (ppm)	Nickel (ppm)	Lead (ppb)	Zinc (ppm)
	()/	(171-17)	(1-1)	amende		(1-1)	(1-1)	(1-1)
	unfiltered	< MDL	< MDL	0.930 (0.007)	< MDL	0.062 (0.005)	< MDL	0.034 (0.004)
А	0.45	NA	NA	1.135 (0.005)	< MDL	0.060 (0.003)	NA	0.036 (0.003)
	0.20	NA	NA	0.799 (0.011)	< MDL	0.060 (0.001)	NA	0.034 (0.004)
	unfiltered	< MDL	< MDL	0.734 (0.013)	< MDL	0.029 (0.000)	< MDL	< MDL
В	0.45	NA	NA	0.595 (0.003)	< MDL	0.030 (0.002)	NA	0.011 (0.002)
	0.20	NA	NA	0.681 (0.001)	< MDL	0.031 (0.002)	NA	0.011 (0.001)
	unfiltered	< MDL	< MDL	0.649 (0.005)	< MDL	0.033 (0.001)	< MDL	< MDL
С	0.45	NA	NA	0.488 (0.009)	< MDL	0.028 (0.003)	NA	< MDL
	0.20	NA	NA	0.555 (0.002)	< MDL	0.029 (0.003)	NA	< MDL
	unfiltered	< MDL	< MDL	0.473 (0.003)	< MDL	0.027 (0.001)	< MDL	< MDL
D	0.45	NA	NA	0.455 (0.004)	< MDL	0.027 (0.000)	NA	< MDL
	0.20	NA	NA	0.465 (0.004)	< MDL	0.025 (0.002)	NA	< MDL
	unfiltered	< MDL	< MDL	0.465 (0.005)	< MDL	0.021 (0.002)	< MDL	< MDL
Е	0.45	NA	NA	1.019 (0.006)	< MDL	0.032 (0.002)	NA	0.011 (0.002
	0.20	NA	NA	0.860 (0.003)	< MDL	0.035 (0.000)	NA	< MDL
	unfiltered	< MDL	< MDL	0.345 (0.017)	< MDL	0.023 (0.001)	< MDL	< MDL
F	0.45	NA	NA	0.270 (0.000)	< MDL	0.025 (0.002)	NA	< MDL
	0.20	NA	NA	0.296 (0.002)	< MDL	0.023 (0.001)	NA	< MDL
	unfiltered	< MDL	< MDL	0.322 (0.001)	< MDL	0.027 (0.001)	< MDL	< MDL
G	0.45	NA	NA	0.339 (0.004)	< MDL	0.026 (0.001)	NA	< MDL
	0.20	NA	NA	0.253 (0.001)	< MDL	0.025 (0.001)	NA	< MDL
				unamende	ed			
	unfiltered	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL
Н	0.45	NA	NA	< MDL	< MDL	< MDL	NA	0.018 (0.001
	0.20	NA	NA	< MDL	< MDL	< MDL	NA	< MDL
	unfiltered	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL
I	0.45	NA	NA	< MDL	< MDL	< MDL	NA	< MDL
	0.20	NA	NA	< MDL	< MDL	< MDL	NA	0.011 (0.000
	unfiltered	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL
J	0.45	NA	NA	< MDL	< MDL	< MDL	NA	< MDL
	0.20	NA	NA	< MDL	< MDL	< MDL	NA	< MDL

unamended (n=3) field tile							
Field Type	Statistic	Arsenic (ppb)	Cadmium (ppb)	Copper (ppm)	Mercury (ppm)	Nickel (ppm)	Lead (ppb)	Zinc (ppm)
				unfiltered				
	minimum			0.322		0.021		< MDL
amended	mean	< MDL	< MDL	0.560	< MDL	0.032	< MDL	
	maximum			0.930		0.062		0.034
	minimum							
unamended	mean	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL
	maximum							
				0.45-µm filter				
	minimum			0.270		0.025		< MDL
amended	mean			0.614	< MDL	0.033		0.019
	maximum			1.135		0.060		0.036
	minimum							< MDL
unamended	mean			< MDL	< MDL	< MDL		
	maximum							0.018
				0.20-µm filter				
	minimum			0.253		0.023		< MDL
amended	mean			0.558		0.033		
	maximum			0.860	< MDL	0.060		0.034
	minimum							< MDL
unamended	mean			< MDL	< MDL	< MDL		
ĺ	maximum							0.011

collected from of tra etal ncentratio s for cidified o nnle

Table B12. Major-metal concentrations (ppm) for unacidified samples collected from amended and unamended drainage ditches. Standard deviations in parentheses.												
Site	Filter (µm)	Aluminum	Calcium	Iron	Magnesium	Manganese						
	amended											
	unfiltered	1.128 (0.019)	25.82 (0.17)	0.746 (0.005)	11.19 (0.05)	0.262 (0.001)						
A	0.45	0.059 (0.001)	26.20 (0.13)	0.055 (0.001)	11.08 (0.02)	0.293 (0.004)						
	0.20	0.022 (0.002)	26.00 (0.12)	0.021 (0.001)	11.12 (0.09)	0.277 (0.001)						
	unfiltered	1.013 (0.014)	22.86 (0.29)	0.796 (0.009)	11.69 (0.09)	0.099 (0.000)						
С	0.45	0.368 (0.006)	22.64 (0.19)	0.254 (0.005)	11.59 (0.11)	0.086 (0.000)						
	0.20	0.288 (0.002)	23.02 (0.16)	0.207 (0.001)	11.72 (0.04)	0.082 (0.000)						
	unfiltered	0.624 (0.011)	36.93 (0.56)	0.478 (0.009)	16.92 (0.18)	0.063 (0.000)						
F	0.45	0.059 (0.001)	36.47 (0.16)	0.043 (0.001)	16.80 (0.07)	0.055 (0.000)						
	0.20	0.511 (0.010)	36.85 (0.13)	0.459 (0.004)	16.92 (0.04)	0.059 (0.001)						
	unfiltered	0.586 (0.008)	26.80 (0.12)	0.545 (0.004)	12.24 (0.02)	0.054 (0.001)						
G	0.45	0.061 (0.001)	26.54 (0.20)	0.048 (0.000)	12.11 (0.10)	0.050 (0.000)						
	0.20	0.395 (0.007)	26.92 (0.09)	0.363 (0.001)	12.29 (0.04)	0.048 (0.000)						
			unamended									
	unfiltered	0.576 (0.007)	67.01 (0.55)	1.394 (0.012)	25.43 (0.23)	0.411 (0.001)						
н	0.45	< MDL	65.59 (0.70)	0.067 (0.003)	24.89 (0.31)	0.393 (0.009)						
	0.20	0.585 (0.007)	67.55 (0.73)	1.504 (0.017)	25.80 (0.16)	0.415 (0.007)						
	unfiltered	0.158	68.36 (0.72)	1.217 (0.006)	26.15 (0.26)	0.100 (0.001)						
I	0.45	< MDL	68.06 (0.30)	0.664 (0.005)	26.16 (0.14)	0.094 (0.000)						
	0.20	0.102 (0.006)	67.95 (0.53)	1.149 (0.008)	26.06 (0.23)	0.095 (0.001)						

Table B13. Statistical summary of major-metal concentrations (ppm) for unacidified samples collected from amended-field drainage ditches (n=7).

	· · ·									
Field Type	Statistic	Aluminum	Calcium	Iron	Magnesium	Manganese				
unfiltered										
	minimum	0.586	22.86	0.478	11.19	0.054				
amended	mean	0.838	28.10	0.641	13.01	0.120				
	maximum	1.128	36.93	0.796	16.92	0.262				
			0.45-µm filter							
	minimum	0.059	22.64	0.043	11.08	0.050				
amended	mean	0.137	27.96	0.100	12.90	0.121				
	maximum	0.368	36.47	0.254	16.80	0.293				
			0.20-µm filter							
	minimum	0.022	23.02	0.021	11.12	0.048				
amended	mean	0.304	28.20	0.263	13.01	0.117				
	maximum	0.511	36.85	0.459	16.92	0.277				

	Table B14. Total-metal concentrations for unacidified samples collected from amended- and unamended-field drainage ditches. Standard deviations in parentheses. NA=not analyzed.										
Site	Filter (µm)	Arsenic (ppb)	Cadmium (ppb)	Copper (ppm)	Mercury (ppm)	Nickel (ppm)	Lead (ppb)	Zinc (ppm)			
amended											
	unfiltered	< MDL	< MDL	0.203 (0.001)	< MDL	0.022 (0.001)	< MDL	< MDL			
A	0.45	NA	NA	0.980 (0.012)	< MDL	0.022 (0.003)	NA	< MDL			
	0.20	NA	NA	0.642 (0.002)	< MDL	0.019 (0.001)	NA	< MDL			
	unfiltered	< MDL	< MDL	0.540 (0.005)	< MDL	0.030 (0.001)	< MDL	< MDL			
С	0.45	NA	NA	0.465 (0.004)	< MDL	0.026 (0.003)	NA	< MDL			
	0.20	NA	NA	0.432 (0.002)	< MDL	0.024 (0.003)	NA	0.011 (0.001)			
	unfiltered	< MDL	< MDL	0.316 (0.003)	< MDL	0.030 (0.001)	< MDL	< MDL			
F	0.45	NA	NA	0.256 (0.001)	< MDL	0.023 (0.002)	NA	< MDL			
	0.20	NA	NA	0.273 (0.000)	< MDL	0.025 (0.004)	NA	< MDL			
	unfiltered	< MDL	< MDL	0.249 (0.003)	< MDL	0.025 (0.001)	< MDL	< MDL			
G	0.45	NA	NA	0.299 (0.002)	< MDL	0.024 (0.002)	NA	< MDL			
	0.20	NA	NA	0.221 (0.001)	< MDL	0.022 (0.001)	NA	< MDL			
				unamende	ed						
	unfiltered	< MDL	< MDL	< MDL	< MDL	0.012 (0.002)	< MDL	< MDL			
н	0.45	NA	NA	< MDL	< MDL	< MDL	NA	< MDL			
	0.20	NA	NA	< MDL	< MDL	0.012 (0.001)	NA	< MDL			
	unfiltered	5.61 (0.25)	< MDL	< MDL	< MDL	< MDL	< MDL	< MDL			
	0.45	NA	NA	< MDL	< MDL	< MDL	NA	< MDL			
	0.20	NA	NA	< MDL	< MDL	< MDL	NA	< MDL			

 Table 15. Statistical summary of minor-metal concentrations for unacidified samples collected from amended-field drainage ditches (n=7).

 Image: Argonia - Argonia - Codmium
 Connor - Margury - Mig/col

Field Type	Statistic	Arsenic (ppb)	Cadmium (ppb)	Copper (ppm)	Mercury (ppm)	Nickel (ppm)	Lead (ppb)	Zinc (ppm)			
unfiltered											
	minimum			0.203		0.022					
amended	mean	< MDL	< MDL	0.327	< MDL	0.027	< MDL	< MDL			
	maximum			0.540		0.030					
				0.45-µm filter							
	minimum			0.256		0.022					
amended	mean			0.500	< MDL	0.024		< MDL			
	maximum			0.980		0.026					
				0.20-µm filter							
	minimum			0.221		0.019		< MDL			
amended	mean			0.392	< MDL	0.023					
	maximum			0.642		0.025		0.011			

Table B16. Anion concentrations (ppm) for samples collected from tile drains at sites A through J.											
Tile Drain	Fluoride	Chloride	Nitrite	Sulfate	Bromide	Nitrate	Phosphate				
amended											
А	0.131	51.719	< MDL	282.935*	< MDL	5.778	< MDL				
В	< MDL	34.710	< MDL	76.732	< MDL	6.382	< MDL				
С	< MDL	30.742	< MDL	42.198	< MDL	17.880	< MDL				
D	< MDL	42.374	< MDL	212.465*	< MDL	9.826	< MDL				
E	< MDL	38.090	< MDL	52.851	< MDL	9.009	< MDL				
F	0.135	46.059	< MDL	79.576	< MDL	12.794	< MDL				
G	0.204	58.099	< MDL	113.310	< MDL	12.524	< MDL				
			unam	ended							
Н	0.179	28.147	< MDL	24.319	< MDL	2.997	< MDL				
I	0.182	23.050	< MDL	31.734	< MDL	0.341	< MDL				
J	0.187	24.157	< MDL	41.204	< MDL	0.306	< MDL				
*Sulfate conce	Sulfate concentration obtained by 10x sample dilution.										

Table B17. Statistical summary of anion concentrations (ppm) for samples collected from amended- (n=7) and unamendedfield (n=3) tile drains. Field Type Statistic Fluoride Chloride Nitrite Sulfate Bromide Nitrate Phosphate minimum < MDL 30.742 42.198 5.778 amended mean 0.157 43.113 < MDL 122.867 < MDL 10.599 < MDL 0.204 58.099 282.935 17.880 maximum minimum 0.179 23.050 24.319 0.306 < MDL 32.419 < MDL < MDL unamended mean 0.183 25.118 1.215 0.187 28.147 41.204 2.997 maximum