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THE curing process in a burley tobacco facility is an 
important step in the preparation of the tobacco for 

sale on the warehouse floor. The environmental condi
tions that are present during this process largely deter
mine the success or failure of the cure as measured by the 
quality of the end-product. Among the factors that affect 
the tobacco quality are the temperature and relative hu
midity of the ambient air, the rate of air flow within the 
curing facility and the moisture content of the tobacco. 

A deep-layer drying model for burley tobacco (Bridges 
et al., 1981) has been developed to predict temperature, 
humidity and tobacoo moisture content during the cur
ing process. The model can aid both the tobacco pro
ducer and researcher alike to understand better the cur
ing process and to determine proper management 
strategies that will enhance the quality of the final pro
duct. As a necessary step in any model development, the 
values predicted by the drying model were compared to 
existing data as a measure of the accuracy and usefulness 
of the model. 

OBJECTIVES 

The objective of the study reported in this paper was to 
validate the one-dimensional drying analysis used in the 
deep-layer drying model. This was to be accomplished by 
comparing the predicted temperatures and relative 
humidities of the drying model with observed data col
lected from a solar curing facility during the curing pro
cess. This allowed a means of verifying the procedure 
used in predicting these values and its usefulness in 
evaluating the conditions during the drying process. 

MODEL BACKGROUND 

The drying model (Bridges et al., 1981) was designed 
to predict temperatures and relative humidities in a 
burley curing facility as a function of the ambient 
weather and wind conditions during the curing season. 
The model was developed using a three-dimensional 
analysis. The one-dimensional analysis consisted of 
dividing the curing facility into a rectangular grid of 
equally spaced points, allowing the grid points facing the 
wind to assume the values of the ambient temperature 
and humidity and then predicting the temperatures, 
humidities and tobacco moisture content for the remain-
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ing grid points in the direction of the wind. A second 
dimension was added to the model by allowing the wind 
to approach the barn from eight different directions pro
viding a capability of analyzing the drying process with 
varying airflow directions through the grid. The third 
dimension involved consideration of the solar heating of 
the roof and the temperature rise of the drying air due to 
heating of the boundary layer. This allowed the model to 
calculate temperatures and humidities at selected depths 
throughout the barn as well as those at each grid point. 

In the one-dimensional model analysis, drying always 
occurs from point to point along the grid path in the 
direction of the airflow and is an adiabatic process. The 
model calculates temperature and humidity at each 
suceeding point based on the existing air conditions, the 
mositure content of the tobacco, and the amount of 
moisture given up at the previous grid point. The entire 
grid is analyzed in this manner for a given time interval. 
As a new time interval is begun, the model notes changes 
in the ambient temperature, humidity or wind direction 
and continues the analysis. The distance between grid 
points is always of equal spacing and is determined by 
the barn geometry with the plane of the grid being 
parallel to the barn floor. For a detailed discussion of the 
procedure used in the model the reader is referred to 
Bridges et al. (1981). 

The drying model was developed primarily for use with 
a three-tier conventional-type curing facility. A major 
conclusion during the model development was that these 
facilities are dependent upon the changing wind direc
tions and the natural variation of the air currents for suc
cessful quality cures. While the model was developed 
with this in mind, these air flow rates are small, extreme
ly difficult to measure and may not be maintained in a 
constant direction for any substantial period of time. For 
purposes of validating the one-dimensional model 
analysis a more controlled situation was desirable for 
comparison of results. 

PROCEDURE 

A solar curing structure containing three separate cur
ing chambers (Walton et al., 1980) was instrumented 
during the 1977 curing season to evaluate the capabilities 
of forced ventilation using solar heat. This structure was 
designed to simulate the two-tier forced ventilation barn 
developed at the University of Kentucky (Bunn et al., 
1973). The curing chambers consisted of a conventional 
unheated chamber with a metal roof and two solar 
chambers with an insulated and uninsulated rock bed, 
respectively. The tobacco was loaded on the tier rails in 
each chamber at approximately 6.6 sticks/m (2 sticks/ft) 
while a fan positioned above the tier rails provided a con
stant ventilation rate of 4.57 m/min (15 ft/min) down 
through the robacco. Thermocouple psychrometers were 
placed directly above and below tobacco in each 
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FIG. 1 Schematic diagram of solar curing facility. 

chamber. This represented a vertical spacing of 3.35 m 
(11.0 ft) between psychrometers in the direction of the 
airflow (Fig. 1). 

The solar curing facility was filled with tobacco at ap
proximately midday on September 9, 1977. The dry and 
wet bulb temperatures were recorded at the aforemen
tioned points for each chamber over the entire curing 
season. Generally the values were recorded at 6-h inter
vals but in some instances a 3-h interval was also used. 
The first 279 h (11.6 days) of recorded temperatures for 
both the conventional chamber and the solar chamber 
with the insulated rock bed were selected as observed 
data for this study. This initial period is generally the 
most important in the curing process and the time when 
the model predictions would be most critical. The dry 
and wet bulb readings were used to determine the 
relative humidity at the indicated points for each time in
terval and these values were used to compare with 
simulated data from the model. 

For this study it was decided to use the observed 
temperature and humidity at the top of the upper tier rail 
for a given time interval as the initial or "ambient'' 
values for the model and then predict the temperature 
and humidity at a distance equal to that between the 
observed points in the curing facility [(3.35 m)(11.0)ft]. 
A grid length of 0.84 m (2.75 ft) was chosen so that the 
model also predicted the temperature and humidity at 
intermediate points of 0.84 m (2.75 ft), 1.68 m (5.5 ft), 
and 2.51 m (8.25 ft). This provided the equal grid spac
ing necessary for the model and examination of the ac
curacy of the one-dimensional procedure over several 
grid points. As a measure of model accuracy the stan
dard error of the differences between the predicted and 
observed temperatures and humidities at the 3.35 m 
distance was calculated. This was done separately for 
each chamber as well as both combined for the 51 time 
intervals in the observed data. The intermediate grid 
values were not used in the calculation of standard error 
since observed values were not available. 

The moisture content and drying rate of the tobacco 
are other factors that influence the temperatures and 
humidities within a curing facility. For this report the in
itial moisture at loading was estimated to be 700 percent 
(db). Bunn et al. (1972) determined the exponential dry
ing constant to be a function of the environment as 
follows: 

TABLE 1. THE STANDARD ERROR VALUES FOR THE 
SIMULATED TEMPERATURE AND HUMIDITIES 

FOR ANALYSIS NUMBER 1 

Drying constant = 2.14 x 10 

Initial moisture = 700 percent db 

Airflow rate = 4.57 m/min 

Grid interval = 0.84 m 

Chamber 
Number of 

observations 
Simulated 

time, 
h 

Standard 
error 

temperature 
at 3.35 m 

°C (°F) 

Standard 
error 
R.H. 

at 3.35m 

Solar 
Conventional 
Combined 

51 
51 

102 

279 0.73 (1.31) 5.77 
279 0.65 (1.17) 5.51 

0.68 (1.23) 5.61 

2.14 x 10"8 G [1] 

where G is the moisture deficit of the drying air, kg 
H20/kg dry air. While this expression is for the tobacco 
leaf alone the solar curing facility was loaded with whole 
plants which includes the stalk as well as the leaves. The 
overall drying rate of the whole plant is lower than that of 
the leaf alone. To consider this reduced rate of drying, a 
second analysis was conducted with the exponential dry
ing constant arbitrarily expressed as: 

K= 1.427 x 10"* [ 2 ] 

This allowed an evaluation of the model at two different 
drying rates for both chambers. 

RESULTS AND DISCUSSION 

Tables 1 and 2 present the standard errors of the 
simulated temperatures and humidities for both 
chambers at each drying rate. Included in each table is 
the number of observed time intervals that were 
simulated, the total curing time of all observations in 
hours, the standard error of the predicted temperature 
°C (°F) and the standard error of the predicted relative 
humidity in percent. Also presented in each table is the 
drying contant used for that analysis and the combined 
standard errors for both chambers. 

The standard error values in Tables 1 and 2 generally 
indicate that the model was effective in predicting the 
temperature and humidities throughout the simulated 
time period. The standard error of the predicted 
temperatures ranged from ± 0.61 °C (1.10 °F) to ± 
0.73 °C (1.31 °F) over both analyses while that of the 
relative humidity varied from ± 5 . 1 9 percent to ± 4.77 
percent. These ranges would indicate that the one-
dimensional drying analysis in the model could ade-

TABLE 2. THE STANDARD ERROR VALUES FOR THE 
SIMULATED TEMPERATURES AND HUMIDITIES 

FOR ANALYSIS NUMBER 2 

Drying constant 

Initial moisture 

Chamber 

Solar 
Conventional 
Combined 

= 1.427 x 10 -8 

= 700 percent db 

Number of 
observations 

51 
51 

102 

Simulated 
time, 

h 

279 
279 

Airflow rate = 4.57 m/min 

Grid interval = 0.84 m 

Standard 
error 

temperature 
at 3.35 m 

°C 

0.64 
0.61 
0.62 

<°F) 

(1.15) 
(1.10) 
(1.12) 

Standard 
error 
R.H. 

at 3.35 m 
% 

5.19 
5.27 
5.20 
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TABLE 3. PREDICTED AND OBSERVED TEMPERATURE AND RELATIVE HUMIDITY MEANS 

Chamber 

Solar 
Conventional 

Observed 
mean temp. 

°C (°F) 

20.8 
19.9 

(69.4) 
(67.9) 

Observed 
mean R.H. 

% 

79.9 
85.3 

Analysis 1 

Predicted 
mean temp. 

°C (°F) 

20.2 
19.5 

(68.4) 
(67.2) 

Predicted 
mean R.H. 

% 

84.3 
88.7 

Analysis 

Predicted 
mean temp. 

°C (°F) 

20.5 
19.8 

(68.9) 
(67.7) 

2 

Predicted 
mean R.H. 

% 

81.9 
86.7 

quately predict environmental conditions for a constant 
airflow rate. While the standard errors for analysis 2 
(Table 2) were less than those for analysis 1 (Table 1), the 
small reduction gained by reducing the drying constant 
by one-third would indicate that the model was not sen
sitive to this parameter for the early stages of curing. The 
drying constant will become more important during the 
latter stages of the cure when equilibrium conditions bet
ween the tobacco and air are less likely to occur. 

One trend that was noted in the predicted values, was 
that the model generally over-estimated the drying rate 
for a given time increment. While this was not to a large 
degree as shown by the standard errors, generally the 
predicted temperature was lower than that of the observ
ed value and the predicted relative humidity was larger 
than the observed value indicating a higher rate of 
moisture removal by the model than was actually taking 
place. This conclusion is further borne out by the data in 
Table 3 showing the predicted and observed temperature 
and relative humidity means. For both analyses and both 
chambers the predicted temperature means were smaller 
than the observed values while the predicted relative 
humidity means were larger than those of the observed 
data. Figs. 2 and 3 give a general idea of the range of 
observed temperatures and humidities for the solar 
chamber as well as the entire study and show how well 
the model predicted these values in analysis 2. 

It was noted that the observed data contained several 
time periods (9 for the solar chamber, 11 for the conven
tional) that were not of a drying nature. These time 
periods were characterized by a temperature increase 
and humidity decrease between observed points and 
since the model does not consider rewetting of the tobac
co these values could not be accurately predicted. Table 
4 presents the standard errors for the simulated 
temperatures and humidities with the rewetting periods 
removed. It can be seen that this was most effective in 
improving the estimate of the relative humidity over 
those in Tables 1 and 2. The improvement gained by 
eliminating these values would indicate that an analysis 

30 

25 

20 

-

B
U

LB
 

T
E

M
P

E
R

A
T

U
R

E
 

s 
3 

9 

\ !7\ 

A ! 

\| *4 

hj \ J v ^ M 

Drying Constant= l .427xlCr«G 

Observed Values 

Predicted Vdues o o 

120 190 

CURING TIME (HNS) 

210 240 270 

of rewetting or moisture sorption by the tobacco similar 
to that used in grain drying models is a necessary addi
tion to the model in future work. 

SUMMARY 

A deep-layer drying model for tobacco was used to 
predict the temperatures and relative humidities in a 
solar curing facility. Temperatures and humidities were 
simulated at a depth of 3.35 m for 2 curing chambers 
and 2 drying rates. The standard error of the difference 
between the predicted and observed values was used to 
measure the model accuracy. Overall, the standard error 
indicated that the model was effective in predicting the 
temperatures and humidities throughout the curing pro
cess and that the procedure used in the model was valid. 
It was also found that the model does over-predict the 
drying rate and a necessary improvement in the model 
would be consideration of the tobacco rewetting. 
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TABLE 4. THE STANDARD ERROR VALUES FOR THE 
SIMULATED TEMPERATURES AND HUMIDITIES AFTER 

REMOVAL OF THE REWETTING TIME PERIODS 

Analysis 

1 
1 
2 
2 

Chamber 

Solar 
Conventional 
Solar 
Conventional 

Number of 
observations 

42 
4 0 
42 
4 0 

6c 
0.63 
0.57 
0.50 
0.51 

(°F) 

(1.14) 
(1.02) 
(0.91) 
(0.92) 

Standard 
error R.H. 
at 3.35 m 

% 
4.59 
4.36 
3.66 
4.02 

Drying Constant = I 4 2 7 x 10'^G 

Observed Values 

Predicted Values o o 

210 240 270 

CURINC TIME (MRS) 

FIG. 2 Predicted and observed dry bulb temperatures for solar curing 
chamber. 

FIG. 3 Predicted and observed relative humidities for solar curing 
chamber. 
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