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The primary purpose was to determine if there is a difference between the 1 

median frequency slopes of 5 posterior shoulder muscles during the initial portion of the 2 

Posterior Shoulder Endurance Test (PSET) at the 90⁰ and 135⁰ shoulder abduction 3 

positions.   4 

Fifty-five healthy volunteers (31 females) participated.  The median frequency of 5 

the posterior deltoid (PD), upper trapezius (UT), middle trapezius (MT), lower trapezius 6 

(LT), and infraspinatus (INF) was measured during the PSET at 90⁰ and 135⁰ of 7 

shoulder abduction.  External torque of 13±1 Nm was used for females and 21±1 Nm for 8 

males. A fixed effect multi-variable regression model was used to investigate the 9 

median frequency slopes. Males and females were analyzed separately.   10 

Median frequency slopes demonstrated fatigue in all 5 of the muscles.  The PD 11 

fatigued greater than the UT in males (p=0.0215) and greater than the LT in females 12 

(p=0.008).  The time to task failure (TTF) was greater at 90° than 135° for females and 13 

males (p=0.016; p=0.0193) respectively. 14 

The PSET causes fatigue in all of the muscles that were tested, with the PD 15 

fatiguing at a greater rate compared to one muscle for each sex.  This investigation 16 

supports using TTF as a clinical measure of shoulder girdle endurance at 90° shoulder 17 

abduction.   18 

 19 

 20 

 21 
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Introduction  22 

Muscular fatigue in the shoulder girdle has been cited as contributing to pain with 23 

overhead, repetitive movements (Chopp-Hurley et al., 2015, Chopp et al., 2010).  24 

Muscular endurance is the ability of a muscle to sustain activity performed as an 25 

isometric or isotonic contraction.  Local ischemia created by a fatigued muscle or 26 

compressed tendon can cause structural weakness, whereby limiting local control, and 27 

in the rotator cuff tendon, may lead to an inability to control the humeral head during 28 

shoulder elevation (Firat and Turker, 2012).  This notion supports the assumption that 29 

tension overload creates changes to the stability and control of the shoulder girdle.  30 

Examining elite swimmers identified training volume as a contributor to muscular pain 31 

more than the presence of instability (Sein et al., 2010). Supporting that muscular 32 

endurance is a contributing factor in preventing shoulder pain.  However, muscular 33 

fatigue in the shoulder girdle has received limited research attention (Day et al., 2015, 34 

Ebaugh et al., 2006, Moore et al., 2013), and is not commonly evaluated clinically, as no 35 

standard test exists.   36 

The Posterior Shoulder Endurance Test (PSET) was initially described by Moore 37 

et al. (Moore et al., 2013) as an isotonic test performed in a prone position while lifting 38 

the arm to 90⁰ of horizontal abduction at a shoulder abduction angle of 90⁰ at 30 beats 39 

per minute.  An isometric version of the PSET at 135⁰ of shoulder abduction was 40 

modified for patients with lateral epicondylagia (Day et al., 2015).  Patients with lateral 41 

epicondylagia had significantly less endurance than a comparison group without 42 

symptoms (Day et al., 2015).  However, given that individuals with non-traumatic 43 

shoulder pain often have limited range of motion (Chopp-Hurley and Dickerson, 2015), 44 
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the 135⁰ shoulder abduction position may not be optimal.  While the PSET shows 45 

promise as a clinical measure for posterior shoulder endurance, the two variations need 46 

further evaluation to determine which muscles are being fatigued, and to identify any 47 

differences between the two positions.   48 

Reductions in electrical conduction and availability of ATP are common causes of 49 

local muscular fatigue (Brooks GA, 2005).  Because surface EMG can detect the 50 

electrical activity of the muscle, using the power spectrum, the median frequency (MF) 51 

of the muscle is representative of muscular fatigue (Vollestad, 1997).  Surface EMG has 52 

been used in multiple studies examining the fatigue characteristics of the shoulder using 53 

the power spectrum (Vollestad, 1997, Szucs et al., 2009, Tse et al., 2015, Minning et 54 

al., 2007). 55 

The primary purpose of this study was to determine if the posterior shoulder 56 

muscles were selectively fatigued during the initial phase of the PSET in the 90⁰ and 57 

135⁰ positions.  A secondary purpose was to determine if there was a difference in the 58 

time to task failure (TTF) of the PSET between the 90⁰ and 135⁰ positions.   59 

Methods 60 

There were 31 females (Age= 19.9±1.5 years; weight= 65.8±7.9 Kg; 61 

height=166.0±7.0 cm) and 24 males (Age= 25.5±4.2 years; weight= 84.3±11.0 Kg; 62 

height=175.7±7.4 cm) in this study. Potential participants were included if they had 63 

normal pain-free shoulder mobility.  Exclusion criteria included individuals with shoulder 64 

pain, individuals that had a history of shoulder surgery, and individuals that had 65 
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neurological disorders that would exclude them from performing the PSET.  All 66 

participants were provided and signed an university approved informed consent  67 

Participants completed an ordinal scale question which asked them to answer 68 

“How many hours per week do you use weights for your upper body?”.  Participants 69 

could choose “1 hour”, “2-3 hours”, “4-5 hours”, “6-7 hours”, “8-9 hours” or “10+ hours”.  70 

Participants also completed the Shoulder Activity Scale questionnaire (Brophy et al., 71 

2005) to determine level activity for their upper extremity. 72 

The dominant arm was used in all cases during testing.  Lean tissue mass of the 73 

upper extremity was estimated using the Hayne’s equation.  Hayne’s equation required 74 

measuring the  girth of the arm (at the midpoint between the angle of the acromion and 75 

the tip of the olecranon process) and the triceps skin fold measurement is used 76 

(McArdle WD, 2015).  Skin was prepared for electrode placement by shaving any hair, 77 

using sandpaper, and isopropyl alcohol (Soderberg, 1992).  The length of the upper 78 

extremity was measured from the acromioclavicular joint to the distal end of the radial 79 

styloid process with the elbow straight.  Body weight, and height were obtained.  Using 80 

the measured bodyweight and arm length the external torque needed to reach the 81 

standardized level was determined.  The external torque was standardized based on 82 

published anthropometric data using the 50th percentile for both males and females 83 

(Chaffin DB, 1999).  Based on pilot testing, males used an external torque of 21±1 Nm 84 

and females used an external torque of 13±1 Nm.  Once the anthropometric data 85 

estimated the torque provided by the arm alone, an additional external load was 86 

provided to the nearest 0.23 kg.  The external load in males ranged from 2.05-2.5 Kg, 87 

and the external load ranged in females from 1.36-1.59 Kg.  Prior to testing, participants 88 
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performed a 5-minute warm-up on a Biodex Upper Body Ergometer, and were 89 

familiarized with testing procedures.   90 

Electromyographic data were collected using Noraxon MyoMuscle v.MR3.8.6 91 

(Noraxon USA, Inc., Scottsdale, AZ, USA) with the following characteristics:  CMRR 92 

was greater than 100 dB at 50 Hz; electromyographic signals were recorded at a 93 

sampling rate of 1500 Hz.  Noraxon dual self-adhesive Ag/AgCl snap electrodes with a 94 

2.0cm inter-electrode distance were attached to Noraxon DTS sensors, which 95 

communicated with Noraxon MyoMuscle transmitter.   96 

Self-adhesive electrodes were placed parallel to the muscle fiber direction on the 97 

posterior deltoid (PD), upper trapezius (UT), middle trapezius (MT), lower trapezius 98 

(LT), and infraspinatus (INF) according to SENIAM standards (Hermens et al., 2000) 99 

and published data (FIGURE 1) (Soderberg, 1992, Waite et al., 2010).  The PD 100 

electrodes were placed 3 cm inferior to the angle of the acromial process.  The UT 101 

electrodes were placed between the midpoint of C7 spinous process and the acromion 102 

process.  The MT electrodes were placed between the midpoint of T3 spinous process 103 

and the medial border of the root of the scapula.  The LT electrodes were placed 2/3 104 

distance from the superior medial angle of the scapula to T8 spinous process.  The INF 105 

electrodes were placed 4 cm inferior from the middle spine of the scapula.   106 

The PSET was performed with participant in prone with arm at 90⁰ and 135⁰ 107 

shoulder abduction angles (FIGURE 2, 3) A stand-alone target was used to assured 108 

participants remained in the testing position throughout each trial.  Participants were 109 

instructed to maintain contact with the target, but not to excessively push into the target.  110 

The researchers provided verbal encouragement.  The trial was finished when the 111 
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participant failed to maintain contact with the target, demonstrated excessive 112 

substitution patterns, or voluntarily stopped.  Researchers measured time to task failure 113 

(TTF) with a stopwatch.  Testing position was alternated between subjects, and 114 

participants were given 15 minutes of recovery between the test positions (Lariviere et 115 

al., 2003). 116 

 Noraxon MyoMuscle software was used to analyze the raw EMG signals. This 117 

analysis converts the EMG signal into the power spectrum using the Fast Fournier 118 

Transformation (|FFT(x)|^2) and then calculates the median frequency (MF) for each 119 

second of activity creating a slope of median frequency.  Median frequency for the first 120 

20 seconds (MF20) of the activity were used for analysis in order to compare the same 121 

amount of time across participants (90° Range = 31-91 seconds; 135° Range = 23-83 122 

seconds).  Male and female participants used differing external torque loads and were 123 

analyzed separately.   124 

Each repeated measures models subset utilized backward selection to look for 125 

associations with MF20.  Considered co-variants included were muscle (PD, UT, LT, 126 

MT, and INF), position (90⁰ and 135⁰), BMI, triceps lean muscle mass, Shoulder activity 127 

scale questionnaire (Brophy et al., 2005), and the ordinal scale question for time of 128 

exercise.  An a priori alpha level = 0.05 was set for all statistical tests, and Tukey-129 

Kramer (Adj. p) was used for post-hoc pair-wise comparisons when appropriate.  TTF of 130 

the PSET was measured in seconds for the total duration of the test.  Paired t-tests 131 

compared the TTF separately for males and females.  All analyses were performed 132 

using SAS (v. 9.4).   133 

Results 134 
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The final model for the female subjects found significant differences in the MF20 135 

slope by the posterior shoulder muscles (PD, UT, MT, LT, and INF), position (90° and 136 

135°), and lean tissue mass of the humerus.  The final model for males only found 137 

significant differences in the MF20 slope by the posterior shoulder muscles (PD, UT, 138 

MT, LT, and INF).   139 

Female Results 140 

 The repeated measures regression model of the MF20 slopes showed that there 141 

was a significant difference between muscles while controlling for position and triceps 142 

lean muscle mass.  Body Mass Index (BMI), shoulder activity scale questionnaire and 143 

ordinal scale question were not retained in the final model. Pairwise comparisons 144 

revealed the PD (mean ± SE = -0.81 ± 0.04) was greater than the LT (-0.58 ± 0.04) (Adj. 145 

p= 0.0077) for MF20 but all other muscles fatigued at the same rate (FIGURE 4).  The 146 

model identified a significant difference between in MF20 between the 135° (-0.749 ± 147 

.03) and 90° (-0.63 ± .03, Adj. p=.0009) position (FIGURE 5).  With every one unit of 148 

area increase in triceps lean muscle mass (cm2) the slope of fatigue was decreased by 149 

0.01 (p=.0002). The paired t-test examining the TTF between positions revealed that 150 

90° position (58.1 ± 2.4 seconds) required longer time than the 135° position (49.2 ± 2.5 151 

seconds) (p=.016) (FIGURE 7). 152 

Male Results 153 

 The repeated measures regression model of MF20 slopes showed that there was 154 

a significant difference in slopes between muscles (p = .018). Position, BMI, shoulder 155 

activity scale, exercise scale, and triceps lean muscle mass were not retrained in the 156 
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final model. Pairwise comparison between the MF20 slopes revealed that only PD (-157 

0.87 ± 0.08) slope was greater that the UT (-0.59 ± 0.09) slope (Adj. p= 0.02), and all 158 

other muscles fatigued at the same rate (FIGURE 6).  MF20 was not significantly 159 

difference by position (p=.223). The paired t-test examining TTF revealed that the 90° 160 

position (68.5 ± 2.8 seconds) required a longer time to reach fatigue than the 135° 161 

position (59.6 ± 2.4 seconds) (p=.019) (FIGURE 7).   162 

Discussion 163 

The results of the current investigation examined fatigue of 5 posterior shoulder 164 

muscles during the PSET at two different shoulder abduction angles suggest the PSET 165 

is a measure of multiple shoulder girdle muscles fatiguing at a similar rate.  The MF20 166 

slope was decreasing at nearly the same rate in all muscles tested for both men and 167 

women (FIGURE 4, 6).  Previous studies have demonstrated that many shoulder girdle 168 

muscles work synergistically to control the position of the scapula for optimal function 169 

(Cools et al., 2007, Cools et al., 2002, Merolla et al., 2010).  While certain positions may 170 

bias different scapular stabilizers (De Mey et al., 2013, Arlotta et al., 2011, Ha et al., 171 

2012), coordination of the muscle contraction varies amongst individuals (Phadke and 172 

Ludewig, 2013, Hawkes et al., 2012).   173 

Posterior deltoid is most active during horizontal abduction suggesting it is a 174 

prime mover (Pearl et al., 1992).  The current study showed that when accounting for 175 

other controlling factors, the PD muscle fatigued similarly to all the other muscles except 176 

for the UT in males and LT in females.    Using the positon of horizontal abduction, likely 177 

accounts for the PD to fatigue at steeper slope than two of the muscles but not all.   A 178 

cross-sectional EMG study that examined the middle deltoid (MD), UT, LT, and serratus 179 
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anterior during a fatiguing task of shoulder elevation found the MD fatigued sooner than 180 

the other muscles tested.  Similar to the current investigation, all of the muscles 181 

significantly fatigued during the task (Minning et al., 2007).  While the current 182 

investigation did not measure the MD or serratus anterior, the three trapezius muscles 183 

behavior to fatigue were similar in both studies.   Since torque is produced by 184 

multiplying the force and moment arm, and mechanical advantage is the ratio of the 185 

external moment arm and internal moment arm, adding the external load to the distal 186 

segment would reduce the muscle’s mechanical advantage.  Therefore, it is reasonable 187 

that the deltoid muscle, whether the MD or PD, would fatigue at a faster rate than the 188 

other muscles.  However, there was no statistical difference in the median frequency 189 

slopes between the PD and the other muscles tested with the exception of one other 190 

muscle in each sex.  Therefore, one could argue that the PSET is actually measuring 191 

muscle fatigue in multiple posterior shoulder girdle muscles.  While the PD may be the 192 

prime mover, the other synergist muscles are also fatiguing similarly in the current 193 

investigation and the Minning et al. (2007) study.   194 

When comparing the MF slopes between participants, it is important to calculate 195 

MF across the same time window.  MF20 of the PSET were used for analysis because 196 

one participant was only able to hold the 135° position for 23 seconds.  However, since 197 

the majority of MF slope change occurred during the initial portion of the exercise, the 198 

first 20 seconds should represent muscle fatigue (Cifrek et al., 2009).   199 

The vast majority of kinematic studies attribute reductions in upward rotation of 200 

the scapula, and posterior tilting to subacromial impingement (Ludewig and Reynolds, 201 

2009).  As shoulder abduction angles increases, scapular upward rotation and posterior 202 
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tilting also increase.  Therefore, the authors hypothesize the 135° position of shoulder 203 

abduction may create subacromial space narrowing, preventing individuals with 204 

shoulder pain from performing the test.  Additionally, exercise prescription for muscular 205 

endurance includes resistance training at relatively light external torque loads while 206 

performing static holds or a high number of repetitions (Campos et al., 2002).  207 

Therefore, using the test position that typically requires a longer duration may be 208 

beneficial to measured muscular endurance as opposed to merely muscular strength.  209 

Since the 90° shoulder abduction position took approximately 10 second longer to 210 

fatigue, it is reasonable to assume that the 90° position would ensure muscular 211 

endurance assessment better than the 135° position in the absence of surface EMG 212 

verification.  Hence, the authors recommend using the 90° shoulder abduction PSET 213 

position since the 90° position would likely be less painful in a population with shoulder 214 

pathology, and this position would ensure assessment of muscular endurance rather 215 

than muscular strength alone.     216 

Since there were different external torques used between sexes, we were unable 217 

to compare across male and female subjects.  The decision to use different external 218 

torques was based on pilot data a priori.  Since the amount of external torque added to 219 

the arm was determined from the participant’s body weight and arm length, if similar 220 

torques were used across sexes, the female participants would have had to hold larger 221 

external loads than the male participants did.  Therefore, females used an external 222 

torque of 13±1 Nm, while males used an external torque of 21±1 Nm.   223 

 This study has limitations to acknowledge.  While proper SEMIAM guidelines 224 

were followed for surface EMG electrode placement and data collection (Soderberg, 225 
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1992), and the primary author consistently performed the electrode placement, surface 226 

EMG is still susceptible to cross talk from neighboring muscles.  The possibility of using 227 

surface electrodes to estimate intramuscular muscle activity and using their 228 

mathematical formulas found that cross talk ranged from 4.4% to 17.3%, with the cross 229 

talk being greatest in muscles that overlap one another (Waite et al., 2010). Based on 230 

their findings it is likely the supraspinatus was contributing to the surface EMG 231 

placement of the upper trapezius, and posterior deltoid.   232 

Additionally, a limitation of spectral frequency analysis is that the muscle volume 233 

conductor may serve as a low-pass filter.  This would also include differences in body 234 

fat and skin impedance differences between subjects.  Thus, a high-velocity motor unit 235 

that is recruited deep in the tissue may be represented in the lower frequency portion of 236 

the power spectrum (Farina et al., 2002).  This limitation may be another explanation of 237 

the PD fatiguing at a faster rate than the other muscles.  While this limitation cannot be 238 

denied, median frequency has been used to objectively observe muscle fatigue 239 

elsewhere (Vollestad, 1997, Tse et al., 2015, Minning et al., 2007). 240 

While clear definitions for muscle fatigue were used in this study, we could not 241 

control for what was leading to fatigue.  Both peripheral and central factors may 242 

contribute to fatigue (Enoka and Duchateau, 2008).  In fact, it appears that the cause of 243 

muscle fatigue may be task-specific.  The current study did not measure peak torque, 244 

so presumably, the percentage of peak torque varied between participants.  This 245 

difference in percentage of peak torque may contribute to how one fatigues.  In order to 246 

improve the clinical utility of the PSET, the authors decided to use a standard external 247 

torque rather than a percentage of peak torque, so the test could be performed based 248 
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on readily available information in a clinical setting.  Additionally, the participant’s 249 

volitional effort is important for testing and control is limited in human studies.   250 

Lastly, given the participants were young and free from shoulder pathology, 251 

these results are not generalizable.  Other studies have demonstrated that the amount 252 

of muscle torque vary depending on training regimen (Garrandes et al., 2007), 253 

neuromuscular activation patterns vary among sex (Clark et al., 2005), and peak torque 254 

during a fatiguing task change depending on age (Baudry et al., 2007).  Therefore, more 255 

research is needed to make claims regarding these co-variants.     256 

Conclusion 257 

 The findings conclude that the PSET causes fatigue in all of the muscles tested.  258 

The PD fatigued significantly faster than the LT and UT in women and men respectively.  259 

This study suggests that the PSET is testing the endurance of multiple posterior 260 

shoulder girdle muscles, not a specific muscle.   Further studies need to consider other 261 

muscles that may impart some amount of stabilization to the shoulder complex.  Time to 262 

task failure may prove a useful clinical measure of shoulder girdle endurance at 90° of 263 

shoulder abduction.  Future studies should investigate if the PSET is can discriminate 264 

between individuals with and without shoulder pain, and if the PSET is a clinically 265 

reliable test.   266 
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FIGURE 1.  Electrode Placement of the 5 posterior shoulder muscles tested 

 

 

 

 

 

 

 

 

 

 

 

 



 

FIGURE 2.  Posterior Shoulder Endurance Test Position at 90⁰ horizontal abduction 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure 3.  Posterior Shoulder Endurance Test Position at 135⁰ horizontal abduction  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 4.  Female MF20 slope by muscles.  The final model included position (90⁰ and 
135⁰) and lean tissue mass of the humerus.  N=62 because each muscle was tested 
over both 90° and 135°.   
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Figure 5.  Female MF20 slope by position.   
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Figure 6.  Male MF20 slope by muscles.  The final model included muscle only.  N=48 
because each muscle was tested over both 90° and 135°.   

 
 

 

 

 

 

 

 

 

 

 

 

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

M
F 

Sl
op

e 
in

 1
st

 2
0 

se
c

Male MF20 Slope by Muscle 

Infraspinatus

Lower Trapezius

Middle Trapezius

Posterior Deltoid

Upper Trapezius

*Adj. p=0.02

*

*



Figure 7.  A comparison of the 90⁰ and 135⁰ position and TTF for females and males.  
Each sex was compared separately.    
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