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The sweep rake was the fore-runner of the front-end
loader. A review of company archival literature by
King (1992) showed that Deere & Co. first
manufactured their sweep rake and hay stacker in

1930. A 1931 photo of a Case industrial tractor is shown
with a fabri-form loader which is a scoop using wire cable
to slide up and down on two vertical members (Letournean,
1992). Deere & Co. introduced their hydraulic manure
loader in 1953 (King, 1992). The front-end loader has
progressed from the initial perception of a one-operation
implement to the multi-purpose implement it is today.

With the introduction of round balers and the
experimentation with mechanically harvesting burley
tobacco, the role of a tractor outfitted with a front-end
loader is changing. The front-end loader is being used to
lift, transport, and stack round hay bales. These bales can
weigh up to 900 kg and, if stacked, may need to be raised to
a height of 3.8 m. The front-end loader (Bader et al., 1990;
Casada et al., 1987; Wells et al.,1990; Walton et al., 1985) is
used as a means of handling frames of burley tobacco that
weigh from 800 to 1200 kg and may need to be stacked to a
height of 4.6 m. The stability of the tractor-loader
combination needs to be analyzed under these new usages.

The standard or conventional front-end loader is
attached to the main frame of a tractor. In the loader’s
raised position, the center of gravity of the tractor-loader

system is raised and moved backward, thus causing the
system to become less stable. An alternate tractor-loader
system has been developed which uses a steerable carrier
upon which the loader is mounted (Walton et al., 1985).
Since this loader is not mounted rigidly to the main frame
of the tractor, but instead to the frame of the steerable
carrier, the response of this system will be different than
that for the standard tractor-loader-load system.

A better understanding of the transient motions of a
standard tractor-loader combination is needed to determine
the kinds and sizes of loads which can be safely
transported. It is important to determine whether or not the
steerable carrier is more stable and thereby safer than the
conventional tractor-front-end loader system.

The overall objective of the research was to compare the
dynamic stability (as measured by roll angle) of a wheeled
agricultural tractor equipped with a front-end loader
mounted to the front axle as opposed to the conventional
front-end loader mounting arrangement. Specific objectives
were to:

1. Design and fabricate scale models of two tractor-
loader systems.

2. Experimentally determine the dynamic response of
each system to various destabilizing conditions.

3. Interpret kinematic response of both systems with
regard to safety of operation.

MATERIALS AND METHODS
EXPERIMENTAL MODEL TRACTOR AND LOADER

The advantages of a small-scale tractor and loader are
the small area required for operation and ease of physically
handling the model while those of a larger scale model are
a more realistic construction of the tractor. A one-quarter
scale model was chosen for this research because the
smallest pneumatic tire available was in this range of
scaling. It was not possible to scale all of the tractor
parameters such as spring constant of the tires, damping
coefficients, and mass moments of inertia. However,
parameters such as velocity, wheel base, wheel diameter,
mass, etc., could be scaled adequately.
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conventional loader system consisted of a conventional loader attached to a steerable carrier which in turn was attached
to the tractor by the front axle and drawbar of the tractor. The stabilizing axle for the non-conventional loader system was
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l'igure l-Scale model tractor.

Thc model tractor and loader (fig. l) was scaled using a
typical 100 hp tractor. Component specifications were:

L Front t ires: Size 2.80 x 4.0 pneumatic tires.
2. Rear tires: Size 4.80 x 8.0 pneumatic tires.
3. Electric motor: l/6 hp dc.
4. Clutch: Electric clutch brake.
5 .  T r a n s m i s s i o n :  M o d i f i e d  4 - s p e e d  m a n u a l

transmission.
6. Difl-erential: 4.6 tt l I ratio.
l. Hydraulic cylinders modelcd l 'rom John Decrc

model 158 loadcr. Cylindcr construction is shown
in figure 2.

Each of the two loadcr systems wcrc attached to thc
same model tractor. The loadcr was mountcd to thc main
body of the model tractor to study the convcntional Ioadcr
mounting systcm as shown in figure 3. In thc conventional

rnd Sco I s
-  ty l  inder  rod

t y l inder  Heod ond Seo l  /

Figure 2-Loader cylindcr construction.

tractor-loader-load system, the loader frame and load move
with the main tractor body. To study the nonconventional
loader mounting, the loader was attached to the front
tractor axle by a metal fiame as shown in figure 4. This
frame was also attached to a pivot point at the rear of the
t r a c t o r  b e h i n d  t h e  d i f f e r e n t i a l  h o u s i n g .  I n  t h e
nonconventional loader system, the loader frame and load
move in relation to the fiont axle.

Since thc loader is mountcd to the main tractor body in
the conventional system, the load on the front-end loader
reduces the fbrccs on the rear tires which providc stabil ity
for the tractor- loader-load system. When thc rear whcel
transvcrses a bump, thc subsequent load shift may cause
overturn.  For  the nonconvent ional  t ractor- loadcr- load
system, the load on thc l iont-end loadcr incrcases the l 'orcc
on the front t ires and providcs stabil ity for the tractor-
loader-load system. As a l iont whcel traverscs a bump, the
load shiit wil l work against thc systcm, but thc greater
in i t ia l  lorce on the stabi l iz ing wheels should thcorct ica l ly
providc morc rcsistancc to ovcrturn.

Thc modcl tr: lctor w:rs powcrcd by an clcctric motor
which was powcrcd by a dcep cyclc 12 V automotivc
battcry. The battcry was mountcd on a platl 'orm which was
convcyed along the path of thc tractor. This arrangcment
allowed a largc battcry to be used in thc cxpcrinrcntal tests,
which, in turn, gavc a rnorc unilbrm voltagc to bc applied
to thc dr iv ing motor  bctwecn runs.

Thc tcrrain (l ' ig. 5) ovcr which thc rnodcls ran was a
planc cc lncrctc  sur facc wi th a broorn I ' in ish and a
sinusoidal-shapcd clbstaclc input to thc upsklpc tires. The
tcst coursc consistccl of a mctal f 'rarnc with a plywood lloor
and concrctc on top of' thc plywood. Thc tcst course was

F-igure 4-Nonconventional loader mounting system.

Figure S-Expcrimental apparatus configuration.

[y I i nden

866

Figure 3-Conventional loader mounting system.
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hinged about one side so that the slope of terrain to be
traversed by the models could be varied. The test course
was 4.9 m long and was 1.2 m wide for the first 2.5 m of
the course and 1.4 m wide for the remainder. The obstacle
was described by the equation:

y = H sin(πx/L) (1)

where
y = height of obstacle at distance x (cm)
H = the height of obstacle (cm)
L = the length of obstacle (cm)
x = horizontal distance along the obstacle (cm)

SONIC DIGITIZER

A sonic digitizer was used to monitor the transient
response of the two tractor-loader systems. Emitters
mounted on the model tractor emitted a sound created by a
small electrical arc. The sonic digitizer measured and
recorded the time required for sound to travel from emitters
to stationary microphones positioned above the surface.
Using the speed of sound and the time measurements,
distances from each microphone to each emitter were
determined and stored in a computer. The position of each
emitter was determined as a function of time to an accuracy
of ± 0.5 mm in the x, y, and z directions, which in turn
provided the position of the wheels and body of the tractor.
Details concerning the sonic digitizer are provided by
Bader et al. (1996).

EXPERIMENTAL PROCEDURE

A series of experiments were conducted using one-
quarter scale models of the two tractor-loader-load
configurations to determine the relative stability of the two
systems using roll angle as the assessment of stability. The
roll angle is defined as the rotation of the body about its
longitudinal axis. It is the roll angle plus the slope that,
when large enough, causes overturn of the tractor. The
front axle rotation angle was also determined to provide
additional information. These experiments were conducted
using the terrain described above. Each model
(conventional and nonconventional loader) was placed
perpendicular to the slope of the terrain table and made to
traverse sinusoidal obstacles with heights of 1.9 and
3.8 cm. Treatment variables considered were terrain slope
(10 and 15°), load weights (6 and 12 kg), load height (22.9
and 45.7 cm), and tractor velocity (first and second gear
which correspond to model velocities of 34 and 110 cm/s
and full-scale tractor velocities of 2.4 and 7.9 km/h). Each
test was replicated three times. Differences among
treatments were determined by analysis of variance.

The experiment began by selecting a loader
configuration and a terrain slope. Once this combination of
loader configuration and terrain slope was fixed, all
combinations of load heights, load weights, tractor
velocities, and obstacle heights were run. Once this set of
tests was made, the slope was changed and tests of random
combinations of load heights, load weights, tractor
velocities, and obstacle heights were conducted on the
second slope. The loader configuration was then changed
and the process was repeated.

RESULTS AND DISCUSSION
The analysis of variance showed that loader

arrangement, tractor velocity, bump height, load height,
and load weight had a significant effect on roll angle at the
1% level and also showed that tractor velocity, bump
height, and load height had a significant effect on front axle
rotation angle at the 1% level. In general, this discussion
will focus on the effect of treatments and interactions on
roll angle and will include a discussion of front axle
rotation angle (θ) only when it helps to understand the
effect of treatments on roll angle.

The mean values of roll angle and theta as a function of
the treatments are shown in table 1. The experiment was
able to discern differences in means of roll angle among
treatments of less than 0.1°. A very important result was
the non-conventional loader producing a lower roll angle
than the conventional loader. The mean difference was
only 0.09° but the difference was as much as 1.13° for
maximum load, load height, bump height, and velocity.
The non-conventional loader arrangement has an inherent
advantage over the conventional loader from the
standpoint of safety with all other things being equal. The
advantage in safety can be enhanced even further by
lengthening the wheel base and widening the front wheels
of the carrier. These are decisions that engineers make
when designing a carrier for safety as opposed to
designing a tractor for versatility.

There was no difference between roll angle on the 10° and
15° slopes (table 1). Clearly, the slope contributes to overturns
because the roll angle and slope act together to produce the
instability that creates the overturn. This result shows that the
slope neither exacerbated nor retarded the angle of roll.

The surprising result was that the mean roll angle was
12% lower for the high tractor velocity than for the low
tractor velocity. An explanation for this result can be found
by noting that mean front axle rotation angle was 19%
lower for the high velocity than for the low velocity. This
indicated that the higher velocity placed a greater force on
the tires which caused more deformation as they traversed

867VOL. 40(4):865-869

Table 1. Mean values of roll angle and front axle rotation angle as a 
function of loader arrangement, slope, bump height,

load weight, load height, and velocity

Roll Front Axle
Angle Rotation Angle

Treatments (°) (°)

Loader arrangement:
Non-conventional (L1) 3.37a* 2.98a
Conventional (L2) 3.46b 2.95a

Slope: 10° (S1) 3.40a 2.92a
15° (S2) 3.43a 3.01a

Bump height: 1.9 cm (B1) 2.31a 1.91a
3.8 cm (B2) 4.52b 4.02b

Load weight: 6 kg (W1) 3.38a 2.94a
12 kg (W2) 3.45b 2.99a

Load height: 22.9 cm (H1) 3.37a 2.88a
45.7 cm (H2) 3.46b 3.05b

Tractor velocity: 34 cm/s (V1) 3.63a 3.28a
110 cm/s (V2) 3.20b 2.65b

* Means within a treatment followed by different letters are
significantly different at the 1% level.



the bump which in turn produced a lower roll angle. In
other words, the tires absorbed more of the shock at higher
velocities than at lower velocities. The reduction in roll
angle with increased velocity was consistent across all
combinations of treatments with the singular exception of
the combination of larger load, higher loader height, higher
bump and higher slope treatment which caused the roll
angle to increase by 9.7% as the velocity increased.

Bump height had the greatest effect on roll angle as was
expected. The increase in roll angle was approximately
equal to the increase in bump height, when the bump
height doubled, the roll angle doubled.

Both amount and height of load had an influence on the
angle of roll (table 1). The heavier and higher load caused a
2% greater angle of roll than the lighter and lower load,
respectively. In these instances the lateral acceleration of
the load was exacerbated as the tractor traversed the bump
by the increased load and increased lever arm, respectively.

Significant second-order interactions involving roll
angle were loader arrangement-load weight (L×W), loader
arrangement-velocity (L×V), slope-bump height (S×B),
slope-velocity (S×V), bump height-load height (B×H),
bump height-velocity (B×V), and load height-velocity
(H×V). Mean values of roll angle as a function of
significant second order treatment interactions are shown
in table 2. The loader arrangement and load weight
interaction was significant because the nonconventional
loader (L1) showed no change in roll angle with increased
load but the mean roll angle increased by 0.13° (9%) for
the conventional loader (L2) as the load was doubled. The
design of the nonconventional loader system resulted in the
load being attached to the front axle so the added load
would not affect the roll of the main tractor body whereas
the conventional loader is attached directly to the main
tractor body thus increasing the effect of load on the
magnitude of roll angle.

The loader arrangement — velocity (L×V, table 2)
interaction was significant because the conventional and
nonconventional loader had the same mean roll angle at the
lower velocity but the nonconventional loader had a lower
mean roll angle at higher velocity than did the conventional
loader. Apparently, the nonconventional loader design
exhibited moderately greater stability at a higher velocity

than the conventional loader resulting in the significant
loader arrangement-velocity interaction.

The slope-bump height interaction (S×B, table 2) showed
that the 15° slope caused a larger increase in roll angle as
bump height was increased from 1.9 cm to 3.8 cm than the
10° slope. This result was probably caused by instability at
the combination of high slope and high bump height.

The slope-velocity interaction (S×V, table 2) showed
that the reduction in roll angle with increased velocity was
greater at the lower slope than at the higher slope. Since it
was established earlier that the reduction in roll angle with
increased velocity was a function of force on the tires, it is
clear that the greater force on the tires perpendicular to the
surface occurs at the lower slope and a lesser force on the
tires occurs at the higher slope.

The interaction of bump height and velocity (B×V,
table 2) was significant because the magnitude of roll
angle decreased more for the high bump than for the low
bump. This was probably caused by a difference in tire
forces and deformation for the combinations of bump
height and velocity.

The interaction of bump height and load height (B×H,
table 2) showed that increase in roll angle was greater
from low to high load height as the tractor-loader
traversed the high bump as compared to the low bump.
This effect is probably a function of load acceleration
which would be greater for the higher bump height than
for the lower bump height.

The interaction of load height and velocity (H×V,
table 2) showed that the decrease in roll angle with
increased velocity was greater for the low load height than
the high load height. This result was probably caused by
greater acceleration of the load at the higher load height
and high bump height.

CONCLUSIONS
Conclusions based on this research were as follows:
1. The scale model tractor front-end loader system

permitted effective evaluation of system
performance.

2. The nonconventional loader system was superior
to the conventional front-end loader system from a
safety standpoint as assessed by roll angle.

3. The tires deformed at high velocity to the extent
that roll angle was less at the higher velocity than
at the low velocity.

4. Larger load weight and higher load height
produced larger roll angles.

5. Slope became a significant factor on roll angle
only at higher bump heights when the bump height
and slope combined to produce instability.
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