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STATISTICAL PROCEDURES FOR EVALUATING DAILY AND

MONTHLY HYDROLOGIC MODEL PREDICTIONS

M. E. Coffey,  S. R. Workman,  J. L. Taraba,  A. W. Fogle

ABSTRACT. The overall study objective was to evaluate the applicability of different qualitative and quantitative methods for
comparing daily and monthly SWAT computer model hydrologic streamflow predictions to observed data, and to recommend
statistical methods for use in future model evaluations. Statistical methods were tested using daily streamflows and monthly
equivalent runoff depths. The statistical techniques included linear regression, Nash-Sutcliffe efficiency, nonparametric
tests, t-test, objective functions, autocorrelation, and cross-correlation. None of the methods specifically applied to the
non-normal distribution and dependence between data points for the daily predicted and observed data. Of the tested
methods, median objective functions, sign test, autocorrelation, and cross-correlation were most applicable for the daily data.
The robust coefficient of determination (CD*) and robust modeling efficiency (EF*) objective functions were the preferred
methods for daily model results due to the ease of comparing these values with a fixed ideal reference value of one. Predicted
and observed monthly totals were more normally distributed, and there was less dependence between individual monthly
totals than was observed for the corresponding predicted and observed daily values. More statistical methods were available
for comparing SWAT model-predicted and observed monthly totals. The 1995 monthly SWAT model predictions and observed
data had a regression Rr

2 of 0.70, a Nash-Sutcliffe efficiency of 0.41, and the t-test failed to reject the equal data means
hypothesis. The Nash-Sutcliffe coefficient and the Rr

2 coefficient were the preferred methods for monthly results due to the
ability to compare these coefficients to a set ideal value of one.

Keywords. Dependent data, Hydrologic time series, Hypothesis testing, Model validity, Non-normality.

he increased use of physically based models has ex-
acerbated the evidence of two problems associated
with computer modeling: lack of methods for ade-
quate calibration of model parameters, and limited

means for assessing model performance. Comparing model
results to observed data is critical for model performance
evaluation (Haan et al., 1995). The development of increas-
ingly complex models has resulted in more model parameters
being defined, increased need for calibration, and increased
uncertainty of model results. With technological advances,
physical data are more readily available for parameterizing
models and for comparison to model output than ever before.
However, improved measurement methods and increased
amounts of data alone will not entirely eliminate the need to
improve methods for calibrating model parameters and eval-
uating model performance since physically based models do
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not include all of the relationships and components of the ac-
tual system.

Due to model parameter and output uncertainty, Haan et
al. (1995) used Monte Carlo simulations to determine the
output probability density function (pdf) and to establish
model prediction confidence intervals. The observed data pdf
and mean were compared to the model output pdf. If the
observed data pdf and mean were within the output
confidence interval, then the model was deemed statistically
satisfactory. Increasing the number of uncertain model
parameters can make the confidence interval so wide that
statistically  sound model results are unacceptable for the
desired applications. The model output pdf should include
uncertain model parameters, but for models with many
uncertain parameters, calculation time and efforts may
exceed benefits in determining how well the model simulates
the actual situation. Haan et al. (1995) recommended
establishing other quantitative criteria for deeming model
results acceptable.

Gupta et al. (1998) proposed a multi-objective parameter
calibration approach for use in conjunction with the statisti-
cal methods traditionally used to evaluate model perfor-
mance. Multi-objective calibration and evaluation involves
determining which parameters are most important for the
particular case and attempting to define a Pareto solution
space that encompasses the best ranges of parameter values.
This solution space is defined and narrowed by selecting the
appropriate objective functions to test the hypothesis, and by
using a population estimate of values to determine any
patterns in the Pareto solution space. Duan et al. (1992)
proposed the shuffled complex evolution algorithm to
conduct global optimizations of hydrologic models.

T
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Whether defining parameter confidence intervals or
Pareto solution space, statistical evaluation approaches
require the model user to determine which statistical
techniques provide the most accurate descriptions of the fit
between modeled values and observed data. There are no
standard statistical criteria available for evaluating model
results (ASCE, 1993; Gupta et al., 1998).

Qualitative graphs of predicted and observed data provide
preliminary model performance assessment (ASCE, 1993).
Time series graphs are useful for determining whether a
model systematically over- or under-predicts at certain time
periods as well as for viewing observed data-model results
synchronization.  However, evaluating a model’s ability to
re-create complex system interactions requires more objec-
tive testing methods.

Many of the quantitative tests developed to compare
model results with observed data assume that both data sets
are from normally distributed populations (Shapiro and Wilk,
1965). Although some statistical tests are robust enough to
apply to certain types of non-normal data, knowing how well
data meet the normality assumption is necessary for using test
results (Shapiro and Wilk, 1965). Therefore, normality
testing is critical for determining appropriate statistical
techniques.

Preliminary quantitative analysis involves central tenden-
cy and variation calculations (Zacharias et al., 1996). Mean
and standard deviation are preferred central tendency and
variation measures for approximately normal data. For data
of non-normal or unknown distribution, median and median
absolute deviations are recommended central tendency and
variation measures. Median estimators are less sensitive to
data contamination effects (and thus non-normality) than
mean estimators (Rousseeuw and Leroy, 1987).

A plethora of quantitative tests have been utilized for
comparing model results to observed data, but the underlying
assumptions must not be ignored. Spruill et al. (2000) used
average absolute deviation (α) for calibration testing of a
watershed model. Linear least-squares regression of a plot of
predicted versus observed values is another evaluation
technique (Arnold and Allen, 1996; Bingner, 1996; Arnold et
al., 1998). The regression correlation coefficient (Rr

2)
relatively compares the model regression to the ideal case.
An ASCE Task Committee (ASCE, 1993) recommended
using Nash-Sutcliffe model efficiency (R2) and average
runoff volume deviation (DV) for gauging hydrologic model
performance.  Legates and McCabe (1999) found these
correlation methods to be sensitive to extreme values and
insensitive to additive differences, which are cases common-
ly found in hydrologic data. Mean and median objective
functions were also implemented for evaluating model fit
(Loague et al., 1988; Legates and McCabe, 1999; Zacharias
et al., 1996). Nonparametric methods allow statistical
analysis in the presence of non-normality, outlying data
points, skewed distributions, and truncated data (Hirsch et
al., 1991; Bilisoly et al., 1997). Comparison of time series
with dependent data points may require autocorrelation and
cross-correlation (Haefner, 1997).

While all of the hydrologic model statistical analysis
articles reviewed included appraisal of model results, limited
work was available on assessing which statistical techniques
were best suited for evaluating hydrologic model effective-
ness. This research involved testing the applicability of
various statistical methods in comparing daily and monthly

results obtained by Spruill et al. (2000) using the Soil and
Water Assessment Tool (SWAT) model developed by Arnold
et al. (1999) to observed site data. The statistical techniques
tested included average absolute deviation, least-squares
regression, Nash-Sutcliffe efficiency coefficient, average
deviation, product moment correlation coefficient, good-
ness-of-fit objective functions, hypothesis testing, and
correlation analysis. The overall study objective was to
determine which statistical methods were most appropriate
for gauging hydrologic model performance, particularly
SWAT model performance, and to provide recommendations
for evaluating model results in future studies.

DESCRIPTION OF STATISTICAL TESTS
Various statistical methods were used for the quantitative

portion of the model performance evaluation. The quantita-
tive tests included methods for evaluating the properties of
individual data sets (e.g., checking for normal distribution
and autocorrelations) as well as tests to gauge model
performance by comparing model results to the observed
data. The calculations within individual data sets were used
to evaluate how well the data satisfied the assumptions of the
statistical measures used to evaluate model performance.
Many of the study statistics were dimensionless. If a statistic
has units associated with the calculated value, then the units
are presented with the statistical results.

NORMALITY STATISTICAL TESTING

Three measures were used to assess normality of observed
and predicted data sets. Kurtosis describes distribution
peakedness and is 3 for a normal distribution, with kurtosis
greater than 3 indicating a less peaked (more heavily tailed)
distribution than the normal distribution, and vice versa for
values less than 3 (Haan, 2002). The skewness coefficient
shows data skew direction, with symmetric distributions
having a skewness coefficient of zero (Haan, 2002). The
Shapiro-Wilk W-test uses the sample variance and size to
form the W statistic (Shapiro and Wilk, 1965). The Shapiro-
Wilk test equations are presented in equations 1-4. The null
hypothesis of normally distributed data is evaluated using
P-values based on the W statistic.
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where
S2 = sample variance
yi  = sample observation (in ascending order)
y  = sample mean
k  = test statistic summation index
a  = normalized coefficient
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b  = linear sample order statistic
W  = test statistic (small values indicate non-normality)
n  = sample size.

MODEL PERFORMANCE STATISTICS

The average absolute deviation or mean absolute error (α)
uses absolute deviations between model values and observed
data to prevent opposite-signed error cancellation (eq. 5).
Average absolute deviations can be effective for model
calibration to assess result differences associated with
changing a model parameter (Spruill et al., 2000). Model
parameters can be optimized by minimizing α values.

n

XY
n

i
ii∑

=
−

=α 1 (5)

where
Xi  = predicted value
Yi  = observed value.
The regression correlation coefficient (Rr

2) gauges how
closely the observed-predicted regression line approaches an
ideal fit. This coefficient usually ranges from zero to one,
with an Rr

2 of one indicating a perfect fit (eqs. 6-8). For the
best fit, regression slope and intercept are one and zero,
respectively. Three least-squares regression assumptions
involving error terms and data points are constant variance,
independence,  and approximate normal distribution (Freund
and Wilson, 1997).
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where
Rr

2  = regression correlation coefficient
SSE = sum of squares errors
SST = total sum of squares

riY ,  = value predicted by regression equation.
The Nash-Sutcliffe coefficient (R2) shown in equation 9

was developed as a sum of squares relative model efficiency
measure (Nash and Sutcliffe, 1970):
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where Y is the average of observed values.
The R2 coefficient is less than or equal to one, with R2 of

one showing ideal model fit, and R2 of zero indicating that the
model results are no better than the observed data mean
(ASCE, 1993). The R2 value can also be negative because the
coefficient is calculated using actual differences and not
absolute values for the differences.

An average deviation (DV) of zero indicates ideal model
fit (eq. 10). Absolute differences avoid canceling opposite-

signed errors (Martinec and Rango, 1989). The DV calcula-
tion is weighted by the actual observed values.
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where DV is the average percent deviation.
The product moment correlation coefficient (r) shown in

equation 11 is another statistic for determining the relation-
ship between two data sets (Addiscott et al., 1995). The
correlation coefficient measures the linear relationship
between observed data and model values (Haan, 2002).
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where X  is the average of predicted values.
For linearly correlated sets, r is one. The r coefficient only

tests for linear correlation, so an r value of zero does not mean
that no correlation exists.

Model goodness-of-fit objective functions were present-
ed by Loague et al. (1988). The mean-based functions
include maximum error (ME), normalized root mean square
error (RMSE), coefficient of determination (CD), and
modeling efficiency (EF):
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Zacharias et al. (1996) presented three robust objective
function modifications for use where median is the better
central tendency estimator (i.e., non-normal data) (eqs.
16-19). The statistics include normalized median absolute
error (MdAE), robust coefficient of determination (CD*),
and robust modeling efficiency (EF*), corresponding to
normalized RMSE, CD, and EF, respectively. For perfect
model fit, ME = RMSE = MdAE = 0, and CD = CD* = EF =
EF* = 1.
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Hypothesis tests are more rigorous methods to compare
data sets (Haefner, 1997). The null hypothesis for comparing
approximately normal data is that the two data set means are
equal, so the sample t statistic shown in equation 20 can be
used (Freund and Wilson, 1997):

( )
ns

d
t

µ−= (20)

where
d  = sample mean of differences
µ  = population mean (null hypothesis)
s  = sample estimate of standard deviation.
The sign test and Wilcoxon sign rank test are two

nonparametric  paired data methods useful with data of
unknown distribution. Nonparametric statistics use median
for central tendency and do not rely on distribution-specific
assumptions, but they have other assumptions to consider
(Hollander and Wolfe, 1973). Hirsch et al. (1991) demon-
strated that nonparametric testing had small efficiency and
testing power advantages over parametric tests when data
were slightly non-normal, but the advantage increased as
data moved farther from normality. Each test statistic is based
on differences between the values in each observed-pre-
dicted data pair. The null hypothesis is that the data sets share
the same median (the median of the differences is zero). The
sign test assumes that errors are random, independent
variables from a continuous population. The data pair
differences (Zi) are used to form the B statistic for hypothesis
testing:
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where
iϕ  = indicator variable

n  = number nonzero Zi values.
The Wilcoxon sign rank test shares the sign test assump-

tions along with an additional normally distributed errors
assumption. The more powerful sign rank test has more
limited applicability than the sign test. The Wilcoxon test
involves ranking the absolute differences (Zi) and computing
the T+ statistic or the sum of the positive ranks:
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where Ri is the rank of absolute differences (Zi).
Data correlations in computer-simulated and observed

daily time series (e.g., streamflow) can violate the data point
and error term independence assumptions of many statistical
tests (Haefner, 1997). Autocorrelation and cross-correlation
techniques for testing time series model fit require other
statistical assumptions. These correlation methods assume
that the time series are stationary with no deterministic
components (Haan, 2002). Removal of trends from determin-
istic time series produces residual autocorrelation between
unrelated variables (Haan, 2002; Diggle, 1990). Autocorrela-
tion calculations shown in equations 24-26 define correla-
tion between two data points within a single time series for
specified lag times (Haan, 2002). For purely random
processes, all of a given time series’ lag time autocorrelation
estimators are zero, indicating no linear dependence between
the values within a data set.
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where

nx  = mean value of time series
X  = observation within time series
h  = lag time (days)

( )h�
^  = autocovariance estimator

( )hr
^  = autocovariance estimator.
Unlike autocorrelation, which checks for correlations

within a single time series, cross-correlation gauges correla-
tion between two given time series (Fuller, 1996). The
cross-correlation method relates cross-covariance to the
autocovariance  at lag time zero (eqs. 27-28). Cross-correla-
tion shows agreement between observed and simulated time
series and can be calculated for specific lag times.
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where

( )hij
�
^  = cross-covariance estimator

Xii  = observation from observed data

inx  = observed data mean
Xj,t+h  = observation from model results at lag time h

jnx  = model data mean

( )hijr
^  = cross-correlation estimator
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( )0jj
�
^  = model results autocorrelation estimate at lag time

zero

( )0ii�
^  = observed data autocorrelation estimate at lag

time zero.

MATERIALS AND METHODS
The SWAT watershed model (Arnold et al., 1999) was

used to simulate daily streamflow for 1995 and 1996 for a
basin at the University of Kentucky Animal Research Center
(ARC) site (Spruill, 1998). Streamflow data from 1995 and
1996 collected at the ARC located near Versailles in central
Kentucky were used to evaluate the SWAT model results
obtained by Spruill (1998) using statistical procedures. The
ARC site covers 5.5 km2 and is located in the Inner Bluegrass
geologic region of Kentucky, which is characterized by
prevalent karst geologic features such as sinkholes and
springs. The ARC is used for growing tobacco, hay, small
grains, and row crops and will become the University’s
primary animal research location. The soil series are
predominantly Maury (Typic Paleudalf) and McAfee (Mollic
Hapludalf) that have moderate available water content and
permeability. Water from the ARC eventually enters the
Kentucky River.

Weirs have been placed at various locations on the ARC
site to measure streamflow. The main weir (inlet to a box
culvert) for streamflow measurement is at the edge of the
property. The outlet weir data referenced in this article are for
the first six and a half months of 1995 and nearly all of 1996.
For 1995, the data collected from mid-July through the rest
of the year were removed from the analysis due to equipment
malfunctions.  The 1996 flow data start at the beginning of
January and end at the beginning of December, when
equipment problems also occurred. The flow data (collected
at a 5 min interval) were summarized to obtain daily values,
and these daily values were compared to the model
predictions.

Streamflow data collected in 1996 were used to calibrate
the SWAT model in the Spruill study, and 1995 flow data were
used to test SWAT’s performance in predicting ARC
streamflow. Both 1995 and 1996 flow data records included

gaps in the data where streamflow was not recorded. The
Spruill study noted that the model tended to over-predict
peak flow values for summer months.

This study not only compared predicted and observed
values from the Spruill study but also involved comparison
between daily and monthly data sets. The daily observed and
SWAT-predicted values were streamflow amounts (cms).
For monthly observed and model-predicted values, monthly
equivalent runoff depths (m) were used for the study. The
equivalent runoff depths were calculated by summing the
average daily volumes to get a monthly volume and then
dividing the monthly volume by the watershed drainage area.

RESULTS AND DISCUSSION
QUALITATIVE ANALYSIS

Daily Average Flows

A graph of observed and SWAT-simulated results over
time showed that SWAT daily average flows were often not
synchronized with observed averages (figs. 1 and 2). Overall,
SWAT tended to under-predict flows and showed quicker
recession than the observed data (Spruill et al., 2000). Some
flow over-prediction occurred in the 1995 winter months and
within certain periods of high precipitation. The Spruill study
results were affected by late afternoon or evening storms. The
storms were modeled on the day of the storm; however, the
stream hydrograph usually peaked shortly after midnight and
thus occurred on the day following the storm event. Smithers
and Engel (1996) also reported that the SWAT model
over-predicted flows and simulated little or no recession
between event peaks for one of the two watersheds modeled
in a separate study.

Monthly Equivalent Runoff Depths
The monthly totals graph was scrutinized for overall

agreement between observed data and SWAT results (fig. 3).
Monthly totals for March, May, and June of 1995 and for
March, April, May, and September of 1996 showed model
under-prediction of water exiting the site, corresponding
with the daily graph recession and peak flow difficulties
(figs. 1 and 2). Over half of the monthly totals were
under-predicted by the SWAT model. For the ARC location,
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Figure 1. Average daily streamflow values for January through June 1995. The observed data were recorded at the watershed outlet of the University
of Kentucky Animal Research Center.
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Figure 2. Average daily streamflows and SWAT results for 1996. The observed data were recorded at the watershed outlet of the University of Kentucky
Animal Research Center.
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Figure 3. Monthly equivalent runoff depths for 1995 and 1996. The equivalent depths were obtained by summing average daily volumes to get a monthly
volume, and then dividing the monthly volume by the 12 km2 optimal drainage area used by Spruill (1998).

model under-prediction may have been due to the regional
karst geology, which could not be explicitly modeled in
SWAT. Kosky and Engel (1997) also found that the SWAT
model generally under-predicted runoff volume for 15 rain-
fall events where measured runoff volumes were compared
to SWAT-predicted runoff volumes.

QUANTITATIVE ANALYSIS

Daily Average Flows

Normally distributed and independent data and error
assumptions were scrutinized to determine the most applica-
ble statistical tests. Kurtosis and skewness coefficient
calculations were performed for daily and monthly values
including the observed data and SWAT predictions (table 1).
The daily observed and predicted kurtosis calculations were
all much greater than 3, indicating that the distributions were
less peaked than the normal distribution. All of the daily
skewness coefficients were much greater than zero, meaning
that the observed and predicted data sets were skewed when
compared to the normal distribution. The Shapiro-Wilk test
gauged whether each set of values was normally distributed
by using the null hypothesis that the data within each set were

normally distributed for confidence level α = 0.5. None of the
daily data were approximately normally distributed (table 1).
Each data set showed autocorrelations, but as lag time dis-
tance from zero increased, the autocorrelations quickly ap-
proached zero, indicating low system error persistence (eqs.
24-26 and table 2).

Table 1. Normality testing results.

Skewness
Shapiro-Wilk Test

Data Kurtosis
Skewness
Coefficient P-value Conclusion

1995 daily

Observed 21.5 3.9 0.00 Reject h0

SWAT 77.5 7.6 0.00 Reject h0

1996 daily

Observed 12.8 3.0 0.00 Reject h0

SWAT 63.5 5.7 0.00 Reject h0

1995 monthly

Observed 1.8 -0.05 0.65 Do not reject h0

SWAT 0.12 0.40 0.35 Do not reject h0

1996 monthly

Observed -0.90 0.57 0.32 Do not reject h0

SWAT -1.5 0.43 0.16 Do not reject h0
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Daily time series analysis combined autocorrelation and
cross-correlation criteria for model fit evaluation
(eqs. 24-28). Ideally, both autocorrelation patterns would be
identical, and the cross-correlation at lag time zero would be
one with a symmetric cross-correlation pattern. Box and
Jenkins (1976) recommend at least 50 time series observa-
tions for autocorrelation and cross-correlation calculations,
which was met by all the daily observed data. The observed
and SWAT autocorrelation patterns for each year were not
similar, indicating a lack of symmetry between the two data
sets (table 2). For both 1995 and 1996, the lag time zero
cross-correlations showed correlation between observed
data and model results, but the lag time zero values were well
below one, and the patterns showed limited symmetry about
zero (table 2). While the 1995 cross-correlation at lag time
zero was larger than the corresponding 1996 value, the 1996
observed data set was larger than the 1995 observed data set.
Therefore, the 1995 and 1996 cross-correlation coefficients
should not be directly compared.

The average absolute deviations showed average model
differences but provided little information regarding how
well model values corresponded with observed data (eq. 5
and table 3). For ideal model fit, α would be zero. The α
statistic is useful in making rapid comparisons between
successive model simulations for model calibration
(e.g., Spruill, 1998). The average absolute deviation pro-
vides a statistic in the units of the variable, which is useful in
making quick assessments of model capabilities (Legates and
McCabe, 1999).

Table 2. Daily time series correlation results.

Lag Time
Autocorrelation Cross-

Year
Lag Time

(days) Observed SWAT correlation

1995 -7 0.12 0.06 0.13

-6 0.15 0.09 0.16
-5 0.22 0.14 0.19
-4 0.31 0.16 0.25
-3 0.40 0.19 0.36
-2 0.51 0.19 0.40
-1 0.76 0.25 0.65
0 1.00 1.00 0.52
1 0.76 0.25 0.25
2 0.51 0.19 0.25
3 0.40 0.19 0.25
4 0.31 0.16 0.17
5 0.22 0.14 0.10
6 0.15 0.09 0.08
7 0.12 0.06 0.05

1996 -7 0.24 0.31 0.23

-6 0.29 0.34 0.26
-5 0.36 0.37 0.30
-4 0.36 0.41 0.38
-3 0.41 0.44 0.47
-2 0.51 0.47 0.66
-1 0.71 0.48 0.64
0 1.00 1.00 0.48
1 0.71 0.48 0.46
2 0.51 0.47 0.45
3 0.41 0.44 0.43
4 0.36 0.41 0.42
5 0.36 0.37 0.34
6 0.29 0.34 0.31
7 0.24 0.31 0.29

Table 3. Partial summary of parametric statistic results.
Data R2 DV (%) r α (cms)

Daily

1995 0.09 61.73 0.51 0.22
1996 0.15 54.25 0.48 0.17

Monthly

1995 0.41 31.80 0.84 0.02
1996 0.61 32.02 0.94 0.03

Both Nash-Sutcliffe coefficients comparing SWAT re-
sults to observed data showed model efficiencies below 20%,
which was much less than the ideal fit value of one (eq. 9 and
table 3). The R2 efficiency statistic uses the observed values
mean, a potential shortcoming for non-normal data. A value
of R2 greater than zero indicates that the model is a better
predictor of the data than simply using the mean (Legates and
McCabe, 1999). The small time lag in observed flows versus
simulated flows resulting from late afternoon storms caused
the lower model efficiencies. Other studies involving the
SWAT model also used the Nash-Sutcliffe coefficient for
comparison between predicted and observed values (Arnold
et al., 1993; Srinivasan and Arnold, 1994; King et al., 1999;
Peterson and Hamlett, 1997; Kosky and Engel, 1997). The
range of values for R2 results was from -1.89 to 0.86,
indicating that the data mean was sometimes a better
predictor of the observed data than the SWAT model (i.e.,
when the Nash-Sutcliffe coefficient was negative). The R2

efficiencies for the 1995 and 1996 data were within this range
of values.

The DV statistic showed how well model and generated
data represented observed daily runoff volumes with an ideal
DV of zero (eq. 10 and table 3). The SWAT deviations were
over 50%. Periods of low runoff show higher DV results than
periods of high runoff due to the DV statistic (Martinec and
Rango, 1989), with this effect contributing to model and
generated data DV values. Peterson and Hamlett (1997)
obtained an overall daily DV of 40% with the DV value
lowered to 4% for daily and monthly results where snowfall
events were assumed negligible. The daily DV values from
the Spruill results were also much higher than the corre-
sponding monthly values (table 3).

The r correlation showed that the model results and
observed data were positively related (eq. 11 and table 3);
however, it was more sensitive to the timing discrepancy
between the predicted and observed values than previous
techniques. The r statistic used the mean for measuring
central tendency. Ideal linear correlation produces a product
moment correlation of one (Addiscott et al., 1995). Both
SWAT r values were approximately 0.5. Two other SWAT
model studies utilized the r correlation coefficient (Smithers
and Engel, 1996; Kosky and Engel, 1997). The product
moment correlation values reported in these two studies were
between 0.35 and 0.84. The r values using the Spruill study
SWAT results also fell within this range.

Regression line slope and intercept would ideally be one
and zero, respectively, with an Rr

2 coefficient of one
(eqs. 6-8). The Rr

2 value for 1996 was closer to one than the
1995 value (table 4). Other SWAT model studies using the Rr

2

statistic produced regression correlation coefficients be-
tween -0.22 and 0.95 for watersheds of various sizes in
different geographic regions (e.g., Arnold et al., 1993;
Srinivasan and Arnold, 1994; Arnold and Allen, 1996;
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Bingner, 1996; Smithers and Engel, 1996; Kosky and Engel,
1997). Even though the 1996 Rr

2 value of 0.40 was less than
the ideal coefficient value of one, the result was within the
range of values produced from other studies involving the
SWAT model. Regression techniques can withstand some
constant error variance assumption infractions, but are
sensitive to error independence violations (Haefner, 1997).

The mean objective function and robust (median) objec-
tive functions results generally showed that SWAT predic-
tions matched the observed data (eqs. 12-19 and table 5). For
ideal fit, MdAE = ME = RMSE = 0, and CD = CD* = EF =
EF* = 1. However, ME, RMSE, CD, and EF are most
accurate for approximately normally distributed data since
they are mean-based functions. Median objective functions
are better suited for non-normal data since median is the
better central tendency estimator for non-normal data
(Rosenberger and Gasko, 1983). The SWAT model MdAE
values were consistently lower than mean-based RMSE
counterparts,  and the SWAT CD* values were greater than
SWAT CD values for 1995 but not for 1996. The SWAT EF
statistic showed lower efficiencies than SWAT EF*. No
single trend was observed when comparing SWAT EF and
EF* values. For this study, the goal was to obtain model
results that produced CD, CD*, EF, and EF* values within
±0.5 of the ideal value of one. The 1995 CD, 1996 CD*, and
1996 EF* results were within this desired range. Overall,
median -based objective functions were considered the better
model fit estimators for the non-normal data. However, even
the median objective functions did not achieve the desired
performance level.

The sign and Wilcoxon sign rank tests checked the equal
medians null hypothesis for observed and model values at the
0.05 confidence level (eqs. 21-23 and table 6). The
nonparametric  tests accounted for non-normal data but not
for data dependence. There were no null hypothesis rejec-
tions for the sign test and for the Wilcoxon sign rank test.

Monthly Equivalent Runoff Depths
Monthly runoff depth statistics were compared with daily

results for comparing statistic performance. Normality
testing (kurtosis, skewness coefficient, and Shapiro-Wilk
test) showed that all monthly data sets could be assumed
approximately  normally distributed, increasing the number
of statistical options available for comparing predicted and

Table 4. Least-squares regression results.

Data Slope Intercept (cms) Rr
2

Daily

1995 0.45 0.11 0.26
1996 0.38 0.10 0.40

Monthly

1995 0.50 0.02 0.70
1996 0.63 0.00 0.88

Table 5. Mean and median objective function values.
Data ME MdAE RMSE CD CD* EF EF*

Daily

1995 2.91 42.69 119.5 1.23 2.08 0.09 0.37
1996 2.84 34.85 114.9 2.22 0.57 0.15 1.32

Monthly

1995 0.15 25.05 37.2 1.68 0.68 0.41 -0.68
1996 0.26 31.39 41.9 1.53 1.24 0.61 0.57

Table 6. Nonparametric test results.
Sign Test Wilcoxon Sign Rank Test

Data P-value Conclusion P-value Conclusion

Daily

1995 0.41 Do not reject h0 0.84 Do not reject h0

1996 0.13 Do not reject h0 0.83 Do not reject h0

Monthly

1995 0.22 Do not reject h0 0.09 Do not reject h0

1996 0.39 Do not reject h0 0.62 Do not reject h0

observed values (eqs. 1-4 and table 1). Monthly summaries
also reduce data point dependence at the price of fewer data
points. Lacking Box and Jenkins’ (1976) 50-point minimum
for correlation, no monthly autocorrelations and cross-cor-
relations were calculated.

Overall improved model and generated data fit for
monthly totals versus daily flows was partly due to better
compliance with normality and data independence assump-
tions (table 3). The improved model fit results may also have
been due to lumping the daily values into monthly totals
(i.e., using fewer data points). For monthly SWAT data sets,
all Nash-Sutcliffe coefficients (R2) were closer to one, all
had lower DV statistics, and all r correlations were closer to
one than the corresponding daily statistics (eqs. 9-11 and
table 4). The SWAT monthly α values were much lower than
SWAT daily α values (eq. 5 and table 3). All monthly
regression and Rr

2 values showed better fit than the
corresponding daily regression results (eqs. 6-8 and table 4).

Monthly mean and median objective function results
(eqs. 12-19 and table 5) did not exhibit a general trend.
Dimensional daily and monthly error terms (ME, MdAE,
RMSE) could not be readily compared, but monthly MdAE
values were lower than RMSE values. No single pattern
emerged comparing monthly CD versus CD* values, but
these statistics were generally closer to one than the daily CD
and CD* results. For most cases, monthly EF and EF* values
were closer to ideal fit than daily EF and EF* values, and
monthly CD* and EF* were lower than corresponding CD
and EF amounts. The 1995 CD*, 1996 CD*, 1996 EF, and
1996 EF* values were within the target range of ±0.5 away
from the perfect fit value of one. The monthly sign test and
Wilcoxon sign rank test at the 0.05 confidence level did not
show any differences between daily and monthly data
(eqs. 21-23 and table 6). There were no null hypothesis
rejections for either year’s monthly totals.

Combining daily values for monthly totals decreased the
data dependence between the individual data points noted for
the daily data. Decreased dependence did not prove that the
error independence assumption was valid, but the error
independence assumption was more valid for monthly values
than for daily figures. For approximately normal monthly
totals, t-tests checked the equal data set means null
hypothesis at the 0.05 confidence level (eq. 20). The 1995
t-test results showed no null hypothesis rejections. For 1996,
the model P-value was slightly less than the required 0.05,
but the t-test may lack sensitivity to smaller fit errors.

SUMMARY AND CONCLUSIONS
The increased numbers of parameters and outputs from

physically based models require additional attention when
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assessing model results. Statistical evaluation should careful-
ly consider daily and monthly data characteristics as well as
other properties of the model output to customize statistical
analysis. Qualitative daily and monthly analysis should be
performed to look for general fit problems. More than one
statistical test should be implemented to evaluate model
performance.  Multiple statistical test methods help confirm
model fit (or lack thereof). Data normality should be
considered in statistical analysis of model results where the
statistics used invoke underlying assumptions of normally
distributed data.

The daily SWAT results showed good model fit, but
timing, peak flow, and recession curve estimations needed
improvements. Daily autocorrelation and cross-correlation
patterns showed that model predictions were correlated with
the observed data, but the correlation could be strengthened.
Monthly totals were closer to meeting required statistical
assumptions than daily values.

The major pitfalls for daily results analysis were both
non-normal and dependent data sets. Many of the statistical
techniques evaluated were based on the assumptions of
normality and/or independence between the data values.
Nonparametric  methods and median objective functions
were applicable to non-normal data but required indepen-
dent error terms. Only autocorrelation and cross-correlation
statistics explicitly addressed dependent data. More statisti-
cal techniques were available for the monthly analysis than
for the daily analysis since monthly totals could be assumed
approximately  normal and data point dependence was
reduced. The cost for using monthly totals rather than daily
values was having fewer data points.

For evaluating daily model results, median objective
functions, sign test, autocorrelation, and cross-correlation
were the most appropriate techniques evaluated from the
standpoint of evaluating non-normal data sets containing
dependence between the data points. None of the evaluated
statistics was designed specifically for daily, non-normal,
dependent data sets. The CD* and EF* median objective
functions were especially suitable for gauging model fit for
ease of comparison to a set reference point for ideal model fit.
Several other SWAT studies also used the Nash-Sutcliffe
coefficient and the product moment correlation coefficient
for evaluating model performance versus observed data.
These statistics would also be of value in comparing and
contrasting a SWAT study with other SWAT modeling
endeavors.

Monthly model fit was best estimated using regression
coefficients, Rr

2 coefficient, Nash-Sutcliffe coefficient, and
t-test. Of these techniques, the Nash-Sutcliffe coefficient
and the R2 coefficient were the two methods most often used
for evaluation in other SWAT studies. These two statistics
also were easily comparable to a fixed reference value of one
for perfect model fit.
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