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A METHOD FOR REFLECTANCE INDEX WAVELENGTH  
SELECTION FROM MOISTURE-CONTROLLED  

SOIL AND CROP RESIDUE SAMPLES 

A. Hamidisepehr,  M. P. Sama,  A. P. Turner,  O. O. Wendroth 

ABSTRACT. Reflectance indices are a method for reducing the dimensionality of spectral measurements used to quantify 
material properties. Choosing the optimal wavelengths for developing an index based on a given material and property of 
interest is made difficult by the large number of wavelengths typically available to choose from and the lack of homogeneity 
when remotely sensing agricultural materials. This study aimed to determine the feasibility of using a low-cost method for 
sensing the moisture content of background materials in traditional crop remote sensing. Moisture-controlled soil and wheat 
stalk residue samples were measured at varying heights using a reflectance probe connected to visible and near-infrared 
spectrometers. A program was written that used reflectance data to determine the optimal pair of narrowband wavelengths 
to calculate a normalized difference water index (NDWI). Wavelengths were selected to maximize the slope of the linear 
index function (i.e., sensitivity to moisture) and either maximize the coefficient of determination (R2) or minimize the root 
mean squared error (RMSE) of the index. Results showed that wavelengths centered near 1300 nm and 1500 nm, within the 
range of 400 to 1700 nm, produced the best index for individual samples. Probe height above samples and moisture content 
were examined for statistical significance using the selected wavelengths. The effect of moisture was significant for both 
bare soil and wheat stalks, but probe height was only significant for wheat stalk samples. The index, when applied to all 
samples, performed well for soil samples but poorly for wheat stalk samples. Index calculations from soil reflectance meas-
urements were highly linear (R2 > 0.95) and exhibited small variability between samples at a given moisture content, re-
gardless of probe height. Index calculations from wheat stalk reflectance measurements were highly variable, which limited 
the usefulness of the index for this material. Based on these results, it is expected that crop residues, such as wheat stalks, 
will reduce the accuracy of remotely sensed soil surface moisture measurements. 

Keywords. Near-infrared reflectance, Normalized difference water index, Remote sensing, Soil moisture, Spectroscopy. 

he development of irrigation and nutrient manage-
ment practices for food production has resulted in 
substantial increases in crop yield, accounting for 
over 80% of the gains in the global supply of 

wheat, rice, and corn since the 1960s (Cassman, 1999). 
While this development has limited the expansion of agri-
cultural land, it has also resulted in a reduction in biodiver-
sity (Cardinale et al., 2012) and placed a large burden on 
global water resources (Hatfield, 2015). Nearly 23 million 
hectares of land were irrigated in the U.S. during 2012, ac-
counting for 31% of total U.S. freshwater use (USDA, 
2015). Many of the smart irrigation systems available for 
scheduling water application rely on either soil water hold-
ing capacity maps or low spatial resolution sub-soil sensor 
networks (Yule et al., 2008). Both methods may not be opti-

mized, particularly in instances where the sensing technol-
ogy is not spatially matched with the application technology. 
Increasing the spatial resolution of intensive management 
practices optimizes inputs and can reduce the overall level 
of inputs required to produce the same output (Raun et al., 
2002). 

Higher spatial resolution methods (10 m grid or smaller) 
for identifying water stress typically involve the use of re-
mote sensing of a crop canopy using combinations of visible 
and near-infrared (Penuelas et al., 1997) or thermal infrared 
sensing (Carlson et al., 1981; Nemani and Running, 1989). 
Traditional deployments include satellite, conventional air-
craft, and ground-based sensors but are limited in terms of 
cost, temporal resolution, and spatial resolution. Perhaps the 
most successful adoption of remote sensing technology in 
production agriculture has been the use of the normalized 
difference vegetation index (NDVI) to detect crop vigor, 
which is then correlated to a myriad of parameters in addi-
tion to water stress. These include vegetation cover (Carlson 
and Ripley, 1997), crop nitrogen status (Solari et al., 2008), 
crop yield (Benedetti and Rossini, 1993), and phenotype 
(Svensgaard et al., 2014). An alternative to NDVI is the nor-
malized difference water index (NDWI), which typically 
uses longer wavelengths of light beyond the sensitivity of 
silicone-based photodiodes (Gao, 1996) and is potentially 
better suited to isolating water stress (Gu et al., 2007). 
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Two challenges for remotely sensing crop water stress us-
ing traditional methods are the absorption of light due to at-
mospheric moisture and the contribution of soil reflectance 
to the overall vegetation reflectance spectra. Active ground-
based sensors have been shown to overcome atmospheric 
limitations in nitrogen sensing by providing a light source 
(Raun et al., 2002; Mullen et al., 2003; Holland et al. 2004). 
The effect of soil type and conditions on canopy reflectance 
indices has also been addressed through calibrated indices, 
such as the soil adjusted vegetation index (SAVI) (Huete, 
1998), or by removing the soil contribution from the reflec-
tance spectra (Huang et al., 2009). In all the aforementioned 
applications, the crop was the visual target for indirectly 
measuring soil or crop parameters. However, there may still 
be useful information available from direct soil reflectance 
measurements. This work aims to study the reflectance spec-
tra of bare soil and crop residue to determine if they can con-
tribute to water stress detection. The ability to quantify soil 
moisture variability and its temporal dynamics over entire 
fields through direct soil observations using remote sensing 
will improve early detection of water stress before crop 
physiological or economic damage has occurred, and it will 
contribute to the identification of zones within a field where 
soil water is depleted faster than in other zones. 

OBJECTIVES 
The main objective of this study was to determine the fea-

sibility of developing a low-cost reflectance sensor for re-
motely delineating soil moisture content from a ground-
based or low-altitude UAS platform. Specific objectives in-
clude: 

1. Collect visible and near-infrared spectral response 
from moisture-controlled soil and crop residue sam-
ples. 

2. Identify the optimal wavelengths for a normalized in-
dex based on user-defined constraints. 

3. Determine if the effect of sensor height above the sam-
pled surface is statistically significant. 

MATERIAL AND METHODS 
SAMPLE PREPARATION 

In this study, samples with predetermined water contents 
were prepared from two materials: silt loam soil and wheat 
stalk residue. These materials were chosen because they rep-
resent potential background materials when observing row 
crops, such as corn or soybean, at early growth stages. Plas-
tic containers of 120 mL volume with airtight removable lids 
were used to contain the moisture-controlled samples. The 
soil was air-dried, ground, and passed through a 2 mm sieve. 
The initial moisture content (wet basis) of the soil was deter-
mined gravimetrically by drying a sample in a convection 
oven at 105°C for over 24 h and measuring the resulting re-
duction in mass. The stalks were dried in a similar manner 
as the soil samples to prevent decomposition. Seven mois-
ture levels were chosen: air dry (for soil) or 0% (for stalks), 
5%, 10%, 15%, 20%, 25%, and 30%. Each container was 
marked at a volume of 35 mL (for bare soil) and 120 mL (for 
stalks), filled to the mark, and lightly tapped to firm up the 

soil or stalks. The mass of soil or stalks inside each sample 
container was measured with the mass of the container re-
moved and used to determine the required mass of water to 
reach the target moisture content. Water was added to each 
sample using a pipet with a volumetric precision of 0.01 mL, 
and the final mass was recorded. The lid of each container 
was then closed, and the samples equilibrated for several 
days to allow the water to distribute through the sample. 
Three replications were prepared for each moisture level to 
minimize the effect of sample preparation error on statistical 
analysis. In total, 21 soil samples and 21 stalk samples were 
prepared. 

INSTRUMENTATION HARDWARE 
Reflectance was measured using visible and near-infrared 

spectrometers (HR400-7-VIS-NIR, NIRQuest512, Ocean 
Optics, Dunedin, Fla.) with a tungsten-halogen light source 
(HL-2000-HP-FHSA, Ocean Optics). A fiber optic reflec-
tance probe (QR200-12-MIXED, Ocean Optics) was used to 
transmit source light to the sample and reflected light to the 
spectrometers. The reflectance probe consisted of twelve 
200 μm diameter transmission fibers spaced concentrically 
around two 200 μm diameter reflectance fibers and was 2 m 
in length. The spectrometers were calibrated to 0% and 
100% reflectance by blocking the light source for the back-
ground measurement and by using a Spectralon calibration 
target (WS-1-SL, Ocean Optics) for the reference measure-
ment, respectively. The effective spectral range was 400 to 
1700 nm with an overlap at 900 nm between the two spec-
trometers. 

A consistent method was needed to position the reflec-
tance probe above each sample to minimize bias and reduce 
variability due to probe height. A reflectance test fixture 
(fig. 1) was designed and fabricated to consistently position 
the spectrometer reflectance probe above the sample surface. 
The fixture consisted of three main components that were 3D 

Figure 1. Cross-section view of the reflectance test fixture used to posi-
tion the spectrometer probe above a soil or wheat stalk sample. 
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printed from black ABS plastic: a sample holder for center-
ing the sample container underneath the probe, an outer 
probe mount that rested directly on top of the sample surface, 
and an inner probe mount for setting the height of the probe 
above the sample surface. The inner probe mount had stain-
less-steel dowel pins pressed into the sidewall that slid down 
guides in the outer probe mount. The height of the probe was 
set by rotating the inner probe mount inside the outer probe 
mount at one of five height index points. The probe heights 
were evenly spaced from 0.64 to 5.76 cm in increments of 
1.28 cm. The 24.8° field-of-view (FOV) of the reflectance 
probe resulted in a sampling area of approximately 0.06 to 
5 cm2. The sampling diameters and areas for all heights are 
shown in table 1. The maximum height was selected based 
on the reflectance probe FOV and the sample size to limit 
the sidewalls of the outer probe mount from affecting the re-
flectance measurement. 

DATA COLLECTION 
OceanView software (ver. 1.4.1, Ocean Optics, Dunedin, 

Fla.) was used to configure the spectrometers and record the 
reflectance response. A graphical program was written that 
calculated the reflectance from each spectrometer, combined 
the two results into a single array, and graphed the results in 
real-time. The system was calibrated every time the height 
of the probe was changed and whenever the spectrometers 
and light source were powered on. The software was config-
ured to record three measurements per sample. Given that 
there were three samples for each moisture content, three 
replications for each sample, and three measurements for 
each replication, there were 27 total reflectance responses 
for every combination of moisture content and height. This 
replication structure was intended to reduce the influence of 
variability in sample preparation, reflectance probe position, 
and sensor noise on the resulting index calculation. 

Reflection measurements were normalized between 0 and 
1 (0% and 100%) by subtracting the background measure-
ment intensity from the raw measurement intensity and ref-
erence target measurement intensity and taking the ratio of 
the resulting differences (eq. 1): 

 
01

0
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λλ
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−
−=
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R  (1) 

where 
R = normalized reflectance measurement from a sample 

(%) 
M = raw measurement intensity from a sample (A/D 

counts) 
C0 = background measurement intensity with the light 

source obstructed (A/D counts) 

C1 = reference target measurement intensity (A/D counts) 
λ = specific wavelength (nm). 
Each reflectance measurement was stored in a tab-delim-

ited text file containing the spectral response along with the 
spectrometer settings. A filename format was used to label 
each text file to facilitate post-processing. Filenames in-
cluded a sample code for identifying sensor height, replica-
tion, and sample container; a string corresponding to the data 
type within OceanView; and a local timestamp (fig. 2). A 
MATLAB script (R2015b, The Mathworks, Natick, Mass.) 
was written to access all text files from a single folder and 
categorize them using the filename sample code. The script 
stored data as columns in a single Excel spreadsheet with the 
corresponding sample codes as headers in the first row of 
each column. 

DATA ANALYSIS 
A second MATLAB script was written to perform data 

analysis. The script read in the entire dataset, calculated nor-
malized indices for all pairs of wavelengths, and identified 
the “best” pair based on user-defined criteria. The normal-
ized index was composed of two distinct narrowband ranges 
identified by their center wavelengths and obtained for every 
possible pair in ascending order over the 400 to 1700 nm 
range (eq. 2): 

 
21

21
2,1

λλ

λλ
λλ +

−=
RR

RR
I  (2) 

where 
Iλ1,λ2 = normalized index for wavelengths centered at λ1 

and λ2 (-1 to 1) 
Rλ1 and Rλ2 = average reflectance at wavelengths centered 

at λ1 and λ2 (%) 
λ1 > λ2 to reduce the number of computations by a factor 

of 2. 
Selecting the “best” pair of wavelengths for calculating a 

reflectance index to predict moisture content implied several 
assumptions and required constraints to simplify the optimi-
zation process. It was assumed that the low-cost sensor 
would use either a silicon or indium-gallium-arsenide (In-
GaAs) photodetector coupled with narrow-band filters to de-
tect specific wavelengths of visible and NIR light. For this 
study, the bandwidths were set to ±25 nm and were assumed 
to be uniformly distributed about a center wavelength. Pre-
liminary reflectance index calculations using manually se-
lected wavelengths revealed a linear relationship between 
sample moisture content and the normalized index. Moreov-

Table 1. Reflectance probe heights and resulting sampling diameters
and sampling areas. 

Height 
Probe Height 

(cm) 
Sampling Diameter 

(cm) 
Sampling Area 

(cm2) 
H1 0.64 0.28 0.06 
H2 1.92 0.84 0.55 
H3 3.20 1.40 1.54 
H4 4.48 1.96 3.02 
H5 5.76 2.52 4.99 

 

Figure 2. Filename format for output text files of the spectrometers. 
Fixed values are shown in black; variables are shown in red italics. 
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er, sensor height above the sample had little effect on index 
values. Therefore, a linear regression model was used to es-
timate moisture content based on the average normalized in-
dex measurement. Three optimization parameters were ini-
tially chosen: the coefficient of determination (R2) of the lin-
ear regression between moisture content and the reflectance 
index, the root mean squared error (RMSE) between the ac-
tual and predicted moisture contents, and the slope of the lin-
ear regression, which represented sensitivity. The pair of 
wavelengths with the highest slope, the lowest RMSE, and 
the highest R2 was considered the optimal solution by max-
imizing sensitivity and minimizing error. The optimization 
parameters were stored for each normalized index calcula-
tion and plotted in the form of slope versus R2 and slope ver-
sus RMSE to determine if local optima or a global optimum 
existed. 

A third script was written to determine the performance 
of the index for predicting moisture. The “best” wavelengths 
resulting from the previous step were used as inputs, and the 
normalized index for all samples was computed. A statistical 
analysis was conducted to determine if probe height above 
the sample was statistically significant. The experiment was 
set up with a factorial design using moisture content and 
height (7 × 5) with bare soil. The data were subjected to anal-
ysis of variance, and appropriate means separation was con-
ducted using statistical software (JMP 12, SAS Institute, 
Cary, N.C.). The linear regression model from the average 
normalized index and the individual index values were used 
to determine a 95% prediction interval. 

RESULTS AND DISCUSSION 
SPECTROMETER CALIBRATION 

The purpose of the calibration was to remove non-uni-
formity in the spectral response due to variability in the light 
source, optical fibers, and spectrometer detector with respect 
to wavelength. Figure 3 illustrates the raw intensity refer-
ence response from the spectrometers with the probe set to 

height H3 above the calibration target and the light source 
adjusted to maximize intensity without saturation at any 
wavelength of either spectrometer. The visible spectrometer 
always saturated before the NIR spectrometer and thus de-
termined the intensity of the light source. Heights H4 and H5 
used the full light source intensity and therefore did not use 
the full intensity range of either spectrometer. The other 
three heights produced similar responses that were scaled 
along the intensity axis. The intensity axis represents the raw 
analog-to-digital (A/D) converter results from the spectrom-
eters’ photodetectors. The visible spectrometer provided 14-
bit resolution (0 to 16383) measurements, and the NIR spec-
trometer provided 15-bit resolution (0 to 32767) measure-
ments. 

Figure 4 illustrates the raw intensity background response 
from the spectrometers when the light source was blocked. 
The small variations across wavelengths were due to noise 
in the spectrometer detector. The NIR spectrometer had a 
large offset from zero as compared to the visible spectrome-
ter, which was due to operating in high-gain mode. The high-
gain mode was necessary to obtain a sufficient signal from 
the NIR spectrometer when using a single light source and 
reflectance probe. 

Figure 5 shows the results of the calibration process in 
which non-uniformity was removed across all wavelengths 
when calculating the background reflectance and the reflec-
tance from the reference target. Data from both spectrome-
ters were spliced into a single dataset by removing data from 
the visible spectrometer past 900 nm and combining it with 
all data from the NIR spectrometer. Note that wavelengths 
below 500 nm still deviated from the desired 0% and 100% 
reflectance for the background and reference measurements, 
respectively. This was due to the low relative sensitivity of 
the visible spectrometer below this wavelength and indicated 
that more noise should be expected when using wavelengths 
in this range to calculate indices. 

 

Figure 3. Intensity of reflected light versus wavelength for reference
measurement at height H3 (3.2 cm). 

Figure 4. Intensity of reflected light versus wavelength for background 
measurement at height H3 (3.2 cm). 
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BARE SOIL 
Figure 6 shows the reflectance for soil samples of varying 

moisture content versus wavelength. Each series is the aver-
age of all samples at a particular moisture content across all 
heights. The general spectral response of the soil samples 
was an increase in relative reflectance as wavelength in-
creased. Drier samples typically reflected more light on av-
erage, but there were instances where the average reflec-
tances across all wavelengths were not in order. For exam-
ple, both the 25% and 30% moisture content samples meas-
ured at height H3 reflected more light than the 20% moisture 
content sample. This phenomenon was likely caused by 
small variations in the distance between the measured area 
and the spectrometer probe. Despite efforts to control the ex-
act distance with the reflectance probe test fixture, uncon-
trolled variations in the soil surface shape (i.e., flat, convex, 

concave) likely had a substantial impact on the average re-
flectance. Given that the soil surface in the field would never 
be carefully controlled on the scale that was relevant to this 
experiment, no further adjustments to the sample were made. 
The non-ordered progression of average reflectance also il-
lustrates why an index with two or more wavelengths is cru-
cial for modeling the relationship between reflectance and 
moisture content. No single wavelength will produce a mon-
otonic relationship with suitable sensitivity. However, it was 
observed that the relative dip in reflectance between 1400 
and 1500 nm, when compared to other wavelengths for the 
same moisture content, exhibited a clear pattern. As moisture 
content increased, the relative reflectance within this range 
tended to decrease, while the rest of the spectral response 
followed a consistent profile. 

The transition between the visible and near-infrared spec-
trometers at 900 nm produced a noticeable artifact in the rel-
ative reflectance measurement. Increasing the number of 
spectrometer calibration points between 0% and 100% re-
flectance might have mitigated this non-linearity, but a sim-
pler solution was to ensure that wavelengths near this transi-
tion were not used when calculating an index. 

As previously stated, the goal of the optimization process 
for selecting the “best” pair of wavelengths used to calculate 
a moisture content prediction index was to select the index 
that produced the largest slope while either maximizing the 
R2 or minimizing the RMSE of the index function. Without 
knowing the relationship between the constraints, it was dif-
ficult to prioritize one constraint over the other. Rather than 
arbitrarily weighting each constraint, the resulting relation-
ship between all pairs of wavelengths was plotted for both 
slope versus R2 (fig. 7) and slope versus RMSE (fig. 8). 

The resulting shapes revealed if local or global optima 
existed and illustrated an interesting trend between slope and 
either R2 or RMSE. Points tended to follow deterministic 
paths as one wavelength was changed relative to another. 
The majority of slopes were negative, which was a result of 
the index equation in conjunction with the positive trend in 

Figure 5. Calibrated and combined reflectance response for back-
ground and reference measurements at height H3 (3.2 cm). 

Figure 6. Average relative reflectance versus wavelength for varying
nominal soil moisture contents of bare soil. 

Figure 7. Slope of linear regression of reflectance and moisture content 
versus R2 for bare soil. 
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relative reflectance. Longer wavelengths generally exhibited 
a larger relative reflectance than shorter wavelengths, which 
produced a negative term in the index numerator. The sign 
could be fixed positive by always assigning the higher rela-
tive reflectance wavelength to λ1. Figure 7 also reveals why 
R2 and RMSE alone were not adequate for selecting the ap-
propriate index wavelengths. As RMSE decreased, so did the 
slope of the index, which reduced the sensitivity of the index 
to moisture content. Similarly, the wavelengths that resulted 
in the highest R2 also had a slope very close to zero. 

There was no global optimum when using RMSE, but R2 
produced a grouping of indices where both the slope and R2 
were close to their respective maxima. The two wavelengths 
that produced this relationship were centered near 1300 nm 
and 1500 nm. When using RMSE, a peak occurred at a slope 
of approximately 0.0058 Index %MC-1 and an RMSE of 
0.013. The corresponding wavelengths for this index were 

also centered near 1300 nm and 1500 nm. 
The index values from 50 nm wide bands centered at 

1300 nm and 1500 nm for all samples are shown in figure 9 
along with the linear regression model and 95% prediction 
interval. Variability in the calculated index among samples 
at a given moisture content tended to increase as moisture 
content increased. Average index values varied from 0 to 
0.15 for soil samples at 3.3% to 30% moisture content, re-
spectively. 

WHEAT STALK RESIDUE 
Wheat stalk residue produced a similar spectral response 

to bare soil, where the reflectance generally increased with 
respect to wavelength and a dip occurred between 1400 and 
1600 nm (fig. 10). Both the discontinuities between the two 
spectrometers and the dip at the water absorption bands were 
more pronounced, while the average difference in reflec-

Figure 8. Slope of linear regression of reflectance and moisture content
versus RMSE for bare soil. 

Figure 9. Normalized index for bare soil using 50 nm bands centered at 1300 nm and 1500 nm. 

Figure 10. Average relative reflectance versus wavelength for varying 
nominal moisture of wheat stalk residue. 
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tance between moisture contents was smaller. Again, the dis-
continuities could have been better addressed through a more 
complex calibration process, but that was deemed unneces-
sary for this experiment. The average reflectance was not 
well correlated with moisture content and was likely driven 
by the effective height of the stalk surface, which was less 
carefully controlled than the soil surface due to the physical 
structure of the stalks. 

Because similar patterns between reflectance and wave-
lengths existed for both bare soil and wheat stalks, it was 
expected that the optimization process for stalks would pro-
vide a pair of “best” wavelengths close to the results for bare 
soil. Plots of R2 (fig. 11) and RMSE (fig. 12) versus slope 
revealed similar patterns as wavelengths were incrementally 
changed, but the overall shapes differed from the results for 
bare soil. In both instances, optima occurred at smaller 
slopes and either lower R2 or higher RMSE values, indicat-

ing that the index would not likely perform as well as it did 
for bare soil. However, the local optima still corresponded to 
the same pair of wavelengths near 1300 nm and 1500 nm, 
which indicated that the same sensor may function, albeit 
less accurately, in areas that include both bare soil and wheat 
stalk residue. A single pair of wavelengths across a variety 
of soil and crop material compositions would be advanta-
geous for applying a low-cost sensor across varying com-
modities and production practices. 

The index values from 50 nm wide bands centered at 1300 
nm and 1500 nm for all samples are shown in figure 13 along 
with the linear regression model and 95% prediction interval. 
The variability in index calculation among samples at a given 
moisture content was large for all moisture contents, thus re-
ducing the usefulness of the index for stalk moisture content. 
Two possible explanations for why the index failed to perform 
as well for stalks as it did for soil include: (1) the non-uniform 

Figure 11. Slope of linear regression of reflectance and moisture con-
tent versus R2 for wheat stalk residue. 

Figure 13. Normalized index for wheat stalk residue using 50 nm bands centered at 1300 nm and 1500 nm. 

Figure 12. Slope of linear regression of reflectance and moisture con-
tent versus RMSE for wheat stalk residue. 
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height of the stalks relative to the reflectance increased varia-
bility, and (2) the water absorbed by the stalks was not uni-
formly distributed, i.e., the moisture at the stalk surface did 
not necessarily represent the average moisture content. 

SENSOR HEIGHT 
Average index values for individual sensor heights and 

moisture contents are shown in table 2 for the bare soil and 
wheat stalk data. Results for bare soil showed a strong direct 
relationship between moisture content and the index value, 
while results for wheat stalk residue showed a weaker direct 
relationship. The sensor height above the sample was ob-
served to influence the average reflectance, but the effect on 
the index calculation was not known. Therefore, a multifac-
tor analysis of variance (ANOVA) (α = 0.05) was used to 
determine if sensor height and moisture content significantly 
affected the index results (table 3). The ANOVA revealed 
that moisture content was significant while height was not 
for bare soil, and that both moisture and height were signifi-
cant for wheat stalk residue. This result indicates the diffi-
culty that low-cost field sensors may encounter when ob-
serving heterogeneous ground cover. Careful control of the 
sensor height, and perhaps classification of the ground cover, 
may be necessary for remotely sensing soil surface moisture 
content. 

CONCLUSIONS 
Moisture-controlled soil and wheat stalk residue samples 

were prepared and measured at varying heights using a re-
flectance probe connected to visible and near-infrared spec-
trometers. A computer program was written that used reflec-
tance data to determine the optimal narrowband wavelengths 
when calculating NDWI based on user-defined constraints, 
and the statistical significance of sensor height and moisture 
content was determined for the “best” pair. Constraints for 
this study were configured to maximize the slope of the in-
dex (i.e., sensitivity to moisture) and either maximize the R2 

or minimize the RMSE of the index function. A linear model 
was chosen to represent the index when fitting parameters. 
Results showed that wavelengths centered near 1300 nm and 
1500 nm, within the range of 400 to 1700 nm, produced the 
best index for individual samples. An advantage of this pair 
of wavelengths is that they can be sensed with a single type 
of sensor using narrowband optical filters. The 1500 nm 
band, when measured with an active ground-based sensor, 
will provide spectral information not available when using 
passive aerial or satellite-based remote sensing methods due 
to absorption from atmospheric moisture. When applied to 
all samples, the index performed well for the soil samples 
but poorly for the wheat stalk residue samples. Index calcu-
lations from soil reflectance measurements were highly lin-
ear (R2 > 0.95) and exhibited small variability between sam-
ples at a given moisture content, regardless of measurement 
height. Index calculations from wheat stalk residue reflec-
tance measurements were highly variable, which limited the 
usefulness of the index for this type of material. Based on 
these results, it is expected that crop residues, such as wheat 
stalks, will reduce the accuracy of remotely sensed soil sur-
face moisture measurements. Future work should include 
heterogeneous samples that include both soil and crop resi-
due in varying proportions to determine the composite re-
sponse. As new low-cost sensors are developed, the optimi-
zation parameters used to determine the “best” wavelengths 
should be refined based on actual sensor response, rather 
than ideal assumptions. 
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Table 2. Average index measurements for bare soil and wheat stalk residue at varying moisture contents and sensor heights. 

Sample 
Moisture 

Content (%) 
Sensor Height 

H1 H2 H3 H4 H5 

Bare soil 

3.33 -0.0006 0.0016 0.0011 0.0027 0.0006 
5.0 0.0088 0.0111 0.0100 0.0122 0.0104 
10.0 0.0337 0.0335 0.0324 0.0316 0.0316 
15.0 0.0532 0.0581 0.0561 0.0557 0.0555 
20.0 0.0814 0.0936 0.0994 0.1001 0.1012 
25.0 0.1217 0.1230 0.1219 0.1253 0.1267 
30.0 0.1661 0.1716 0.1722 0.1615 0.1575 

Wheat stalk residue 

0.0 0.0101 0.0461 0.0201 0.0514 0.0497 
5.0 0.0236 0.0404 0.0487 0.0423 0.0574 
10.0 0.0105 0.0668 0.0784 0.0822 0.0939 
15.0 0.0422 0.0225 0.0551 0.0606 0.0599 
20.0 0.0457 0.0704 0.1021 0.0831 0.0863 
25.0 0.0705 0.0956 0.1330 0.1408 0.1362 
30.0 0.1908 0.1597 0.2056 0.2113 0.1835 

 
Table 3. Parameter estimates and significance testing of height and moisture on the index. 

Sample Parameter Estimate Standard Error t Ratio Prob. > |t| 

Bare soil 
Height 0.0006356 0.000851 0.75 0.4604 

Moisture 0.0061931 0.000129 48.04 <0.0001 

Wheat stalk residue 
Height 0.0108258 0.003532 3.07 0.0044 

Moisture 0.0045207 0.000499 9.05 <0.0001 
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