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MECHANICAL PROPERTIES OF CORN AND SOYBEAN MEAL

M. Molenda,  M. D. Montross,  J. Horabik,  I. J. Ross

ABSTRACT. Ground corn and soybean meal are common ingredients in feed mixes. The knowledge of their mechanical
properties is important to the feed manufacturer and consumer. Changes in these properties can lead to abnormally high or
low levels of active ingredients in finished feed, thus decreasing its quality. Mechanical properties of wheat, corn meal, and
soybean meal were investigated using a modified direct shear apparatus. The moisture content (wet basis), uncompacted bulk
density, and particle density were: 10.4%, 733 kg/m3, and 1410 kg/m3 for soft red winter wheat; 11.4%, 583 kg/m3, and
1350 kg/m3 for soybean meal; and 11.7%, 595 kg/m3, and 1410 kg/m3 for corn meal, respectively. A relatively long sliding
path of 60 mm was utilized in shear testing to account for the high compressibility of the materials and minimize boundary
effects. The compressibility of the materials was determined at a maximum vertical pressure of 34.4 kPa, which caused a
density increase of 21% for corn meal while the density of wheat and soybean meal increased by approximately 5%. Frictional
properties were tested for seven levels of vertical consolidation pressures ranging from 4.1 to 20.7 kPa. The high
compressibility of corn meal resulted in severe stick–slip behavior of the frictional force–displacement relationships. The
angles of internal friction of wheat, soybean meal, and corn meal were found to be 26.3³ µ0.3³, 33.9³ µ0.9³, and
30.7³µ1.4³, respectively. Cohesion of soybean meal and corn meal was approximately 0.7 kPa without a clear relation to
consolidation stress and approximately 0.3 kPa for wheat. With cohesion values lower than 4 kPa, all three materials should
be treated as free–flowing in terms of Eurocode 1. Corn and soybean meals are known to cause flow problems in practice that
were not confirmed during testing. In practical storage conditions, materials undergo a longer consolidation period. Our tests
have shown that with processes that have a short duration and low consolidation pressures, these materials should be treated
as free–flowing.

Keywords. Granular feeds, Direct shear test, Internal friction angle, Unconfined yield strength, Stick–slip.

utomation and increased scale of operation in the
feed industry in recent decades has led to an
increase in the amount of raw materials,
ingredients, and finished feeds used in granular

form (bulk solids). At the same time, handling bulk solid
materials is one of the least understood areas associated with
solid processing plants (Knowlton et al., 1994). For that
reason, mechanics of granular materials has gained growing
interest among researchers and industrial practitioners. New
theoretical approaches and experimental methods have been
developed for procedures such as material characterization
and bin design. Bin design based on Janssen’s equation with
the necessary material parameters (bulk density, coefficient
of friction on the wall, and pressure ratio) allows for
calculation of wall and floor loads with acceptable accuracy.
Although 100 years old, Janssen’s equation is still the most
widely used analytical solution for the calculation of
pressures in silos (Wilms, 1991).
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Bin design as related to flow behavior has been based
largely on past experience and trial and error (Cook, 1976).
A great deal of work has been done to develop a usable theory
of gravity flow for granular materials. The most widely
accepted approach was developed by Jenike (1961). The
author further refined the approach, but his original testing
method and interpretation is still the basis for many codes of
practice and later investigations by other researchers.
Jenike’s testing method originally was used for the estima-
tion of bin design parameters, but the determination of
flowability is currently more important. Industrial practition-
ers report that 95% of their testing needs are for quality
control or product development and not for bin design (Bell
et al., 1994). They state that the Jenike shear testing method
is relatively complex and time consuming, so there is a need
for simpler methods for quality control and material
characterization  in the industry. Another limitation of the
Jenike tester is the short shear path, which makes it difficult
to use for very elastic bulk solids.

Flowability is a measure of the quality of granular product
that influences its end–use value, for some materials used in
the chemical, mineral, pharmaceutical, and food industries
(Bell et al., 1994). Flowability of feed ingredients is
important during the production of high–quality feeds to
ensure that they have consistent composition. Certain
nutrients need to be guaranteed at minimum levels and other
ingredients below maximum levels that may be toxic at high
concentrations.  Variation of nutrients in feed effects animal
growth and profitability. Variation in flowability of ingredi-
ents is a significant source of errors during the weighing and
proportioning, resulting in non–uniformity in the finished
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feed product. Physical properties of premix carriers should be
standardized because their changes can produce abnormally
high or low levels of active ingredients in the finished feed
(Benson, 1976). Knowlton et al. (1994) stated that three key
parameters are required to assess flowability: cohesive
strength, wall friction, and compressibility.

Standardized procedures pertain to material characteriza-
tion under high levels of stress, such as 100 kPa of vertical
stress as recommended by Eurocode 1 (1995). The majority
of feed operations are performed with shallow layers of
granular materials in which vertical stresses are relatively
small, but granular materials solidified through consolida-
tion may become useless. Thus, knowledge about material
behavior under low vertical stress is valuable for the
appropriate design and operation of granular material storage
structures. However, determination of material characteris-
tics under low vertical pressures poses particular difficulties.
Non–uniform packing of the material as well as non–homog-
enous shear deformation result in a wide range of material
parameters determined by different tests. One possible tool
for the determination of properties of elastic materials of
biological origin may be the modified direct shear device that
was used by Molenda et al. (2000) to determine the
coefficient of friction of wheat on corrugated steel. This
device allowed for a longer shear path as well as lower
vertical pressure relative to the standard Jenike shear tester.
The modified direct shear device more accurately reflects the
conditions in a shallow layer of highly deformable materials
of biological origin.

The objectives of the research reported in this article were
to: (1) examine the applicability of the modified direct shear
device for investigation of internal friction of biological
granular materials under low vertical pressures (below
21 kPa), and (2) determine the basic mechanical characteris-
tics of two popular feed premix carriers (corn and soybean
meal) compared to a free–flowing material (soft red winter
wheat).

MATERIALS AND METHODS
Corn meal and soybean meal were chosen for testing from

the list of grain products considered as suitable carriers for
feed premixes (Benson, 1976). The wheat, corn meal, and
soybean meal samples were obtained from a local feed mill.
Soft red winter wheat was used as the typical free–flowing
material for comparison. Uncompacted bulk densities were
determined using the weight per Winchester bushel (USDA,
1999), and the moisture content was determined using the
oven method (ASAE Standards, 1997b). The uncompacted
bulk densities and moisture contents (wet basis) were:
733 kg/m3 and 10.4% for wheat, 566 kg/m3 and 11.7% for
corn meal, and 583 kg/m3 and 11.4% for soybean meal,
respectively. The particle densities were determined using an
air comparison multipycnometer (Quantachrome MVP–2,
Boynton Beach, Fla.). The particle densities for wheat,
soybean meal, and corn meal were determined to be 1410,
1350, and 1410 kg/m3, respectively.

PARTICLE SIZE DISTRIBUTION

Particle size distribution of ground materials was deter-
mined with standard Tyler Ro–Tap sieve shakers according
to ASAE S319.3 (ASAE Standards, 1997a). A set of seven

sieves with aperture sizes of 2000, 850, 425, 250, 149, 106,
and 75 �m with a sample of 400 g was used with a sieving
time of 15 min.

COMPRESSIBILITY

Compressibility of the tested materials was determined
with an apparatus used by Thompson and Ross (1983) for
wheat. The apparatus consisted of a square container with an
internal dimension of 30.5 cm per side and a wall height of
10.2 cm. The material was filled to the top of the container
and leveled. The container was then closed with a steel top
plate, and a flexible diaphragm mounted on the bottom of the
container exerted a known pressure on the grain mass,
causing the granular material to compact. The changes in
height of the material were measured by a dial gauge that
deflected as the material compressed. The internal stress was
simulated by applying air pressure under the rubber dia-
phragm, which was monitored by a manometer. Fourteen
levels of vertical pressure in a range from 0 to 34.4 kPa were
applied with a holding time of 2 min after each pressure
increment to allow stabilization of material height. Prelimi-
nary tests indicated that after 2 min the loading deformation–
time curve completed its highly non–linear phase of increase,
and this time period was adopted for all compressibility tests.
Three replications were conducted for each material.

INTERNAL FRICTION PARAMETERS (c, �c, AND �)
Parameters of internal friction (also termed strength

parameters) –– cohesion (c), angle of internal friction (�c),
and effective angle of internal friction (�) –– were deter-
mined with the direct shear device used by Molenda et al.
(2000). In this apparatus, a sliding tray with vertical blades
is pulled horizontally to create a shear zone as it is moved
within the stagnant granular material (fig. 1). The sliding tray
with vertical blades 1.6 mm thick, 13 mm high, and spaced
51 mm apart was supported on six pairs of roller bearings that
allowed it to move freely in the longitudinal direction of the
apparatus. A flexible diaphragm mounted on the bottom of
the cover of the apparatus was used to exert a known normal
pressure on the material mass in the grain compartment.

Samples of material, 88 mm deep, were located within the
compartment,  which was bounded on top by the rubber
diaphragm and on the bottom by the UHDP plates and the
bottom of the sliding tray. The tray was 0.25 m wide with
0.61 m of its length exposed to grain pressure. It was attached
through a chain and gear system to a universal test machine
(Instron, Canton, Mass.), which allowed for measurement of
the force of internal friction in the granular material. The
preliminary tests indicated that less than 0.1% of the force
could be attributed to friction in the mechanical assembly of
the apparatus; therefore, these effects were neglected during
data analysis. A detailed description of the modified direct
shear tester can be found in Molenda et al. (2000). Direct
shear tests were performed with the original procedure from
Jenike (1961), which was adapted for the modified direct
shear device. The procedure was:
1. A prescribed mass of material was placed in the

compartment  of the apparatus.
2. A vertical consolidation reference pressure (�r) was

applied for 5 min before shearing.
3. The sample was sheared until an asymptotic value of

frictional force (steady flow) was approached, and thus
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Figure 1. Schematic drawing of modified direct shear apparatus for mea-
suring the internal force of friction for granular materials.

values of �r and �r stresses at the terminus of yield locus
were determined.

4. Steps 1 and 2 were repeated to prepare each sample.
5. The sample was sheared until 95% of an asymptotic value

of frictional force (equivalent to �r, see fig. 5) was
measured.

6. The vertical consolidation reference pressure (�r) was
released to zero.

7. Vertical pressure (�z1) was applied for 2 min of static
holding.

8. The sample was sheared under pressure (�z1) until the end
of the 60 mm shear path.

9. Steps 4 through 8 were repeated for vertical pressures of
�z2 and �z3, and thus three points on the yield locus were
obtained.
Seven levels of vertical reference pressures (�r) were

used: 4.1, 6.2, 8.3, 10.3, 13.8, 17.2, and 20.7 kPa. For each
level of vertical reference pressure (�r), one shear test with
this pressure and three tests with lower vertical pressures
(�z1 = 0.3�r, �z2 = 0.6�r, and �z3 = 0.9�r) were performed. This
allowed for estimation of seven yield loci for each material.
The maximum applied consolidation pressure of 20.7 kPa
was equivalent to the vertical pressure exerted by a 3 m deep
bed of dry wheat on a bin floor. A shearing speed of
50 mm/min was used in all experiments. The shear force was
recorded in 0.25 s time intervals with an accuracy of µ5 N
(<0.02% at full scale).

ELASTIC PARAMETERS (E AND �)
An approach proposed by Sawicki (1994) was adopted to

estimate Young’s modulus and Poisson’s ratio. Tests were
performed on a 0.17 m high and 0.21 m diameter uniaxial
compression apparatus, shown schematically in figure 2. The
top cover and base plate of the apparatus had load cells to
measure vertical forces. The cylindrical wall of the apparatus
was constructed in two semicircular halves cut along the axis.
The two halves were connected with four load cells installed
in pairs on the two connection lines, which created the
cylindrical  shape of the wall. This configuration allowed for
the determination of vertical pressures exerted on the cover
(�z0) and on the bottom (�z), as well as the horizontal pressure
(�x) exerted on the wall. The test chamber of the apparatus
was centrally filled through a funnel, and the surface was
leveled. A plate was installed, and the material was
compressed with a constant velocity of 0.36 mm/min until the
vertical stress (�z0) reached a value of 100 kPa. At this point,
the plate was stopped and reversed, resulting in reduction of
the vertical force.

A typical response graph of vertical force (F) versus
vertical strain (�) during loading and unloading is presented

Figure 2. Uniaxial compression apparatus with additional measurement of horizontal pressure.
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in figure 2. Three distinct phases can be distinguished during
a single cycle (Sawicki, 1994). During the initial loading
(OA), both reversible and irreversible (compaction) strains
develop in the material. The first stage of unloading (AB) is
characterized  by a purely reversible response. The second
stage of unloading (BC) is characterized by an increase in
volume in which both elastic and plastic strains occur. The
loading phase (OA) and second stage of the unloading (BC)
of the cycle will not be analyzed in this article. A material
behaves as linear elastic during the first stage of unloading.
This allows for the determination of the elastic constants, i.e.,
Young’s modulus (E) and Poisson’s ratio (�). The reversible
response of the material is governed by Hooke’s law:

( )[ ]zxE
e
x νσ−σν−=ε 1

1 (1)

[ ]xzE
e
z νσ−σ=ε 2

1 (2)

where �x and �z are horizontal and vertical strains, respective-
ly. The superscript e denotes the elastic part of the strain.
According to the assumption (�x

A – �x
B) = 0, and from

equation 1, it follows that:

a
B
x

A
x

B
z

A
z =

σ−σ

σ−σ
=

ν
ν−1

(3)

where a denotes slope of the linear part of the unloading path
in the �x and �z system of coordinates. Equation 3 allows for
the determination of Poisson’s ratio. With no change in
plastic strain, �z

p,A equals �z
p,B, which equals a constant, and

Young’s modulus follows from equations 2 and 3 as:
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where E* denotes slope of the linear part of unloading path
in the �x and �z space.

RESULTS AND DISCUSSION
PARTICLE SIZE DISTRIBUTION

Particle size distribution by mass on each sieve is shown
in figure 3. Soybean meal had 52% of the particles retained

on the 841 �m aperture sieve, and 85% of the particles were
larger than 420 �m. Soybean meal was more uniform than
corn meal. Only 31% of corn meal was retained on the 2000
and 841 �m sieves. In practice, particles with sizes below
400 �m are considered fine and highly compressible (Johan-
son, 2000). The particle size distribution of corn meal
indicates it will have a high compressibility as compared to
soybean meal. An increase in the amount of fine particles is
usually associated with decreased flowability. The two
materials were standard products of the same feed mill, so the
observed distribution may be considered typical. However,
according to Johanson (2000), even among relatively
standard materials such as flour, products from different
manufacturers vary in particle size distribution and essential
flow properties, which is likely also true for the products used
in these tests.

DENSITY–PRESSURE RELATIONSHIPS

Changes in bulk density of the materials as a function of
consolidation pressure are shown in figure 4 for three
replications of each measurement. Under compaction, the
bulk density of wheat and soybean meal increased by
approximately  5% (from 736 kg/m3 to 770 kg/m3 and from
585 kg/m3 to 617 kg/m3, respectively), while the bulk density
of corn meal increased by 21% (from 639 kg/m3 to
773 kg/m3). Following Clower et al. (1973), an equation of
the form:

5.0σ+ρ=ρ Ao (5)

was fitted to the data using a non–linear regression proce-
dure. The fitted equations are presented in table 1. High
coefficients of correlation (R) indicated a good approxima-
tion of the experimental data using a parabolic equation.
Parameter A had nearly a five–fold difference between
soybean meal (A = 5.81) and corn meal (A = 27.04), which
clearly indicates the large difference in compressibility of the
two materials.

FRICTIONAL CHARACTERISTICS
A typical set of data collected for soybean meal is shown

in figure 5. Shear tests shown were performed on soybean
meal with a reference pressure (�r) of 20.7 kPa and three
levels of vertical pressure (�z): 6.2, 12.4, and 18.6 kPa. The
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Figure 3. Particle size distribution by mass for soybean meal and corn meal on each sieve.
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Figure 4. Relationships between the bulk density and vertical pressure determined for wheat, soybean meal, and corn meal.

Table 1. Relationship between bulk density (�, kg/m3) and
vertical pressure (�, kPa) for tested materials.

Materials Equation R

Wheat ρ = 738.6 + 6.05 (σ)0.5 0.9474
Soybean meal ρ = 582.4 + 5.81 (σ)0.5 0.9924
Corn meal ρ = 631.1 + 27.04 (σ)0.5 0.9699

Figure 5. Friction force versus displacement for soybean meal for estimat-
ing yield locus at four levels of normal pressure.

magnitude of frictional force under 20.7 kPa of vertical
pressure stabilized after approximately 35 mm of displace-
ment. Preconsolidation under shear stress was completed
before the material reached the critical state of continuous
flow without a change in stress state, as represented in figure
5 by the three curves approaching a value of 2.08 kN, or 95%
of the critical state value.

After the pressure (�r) was released, a pressure value of �z
was applied and shearing resumed, as represented in figure 5
by the three curves stabilizing at 2.0, 1.37, and 0.74 kPa.
Pressures were calculated as ratios of forces to surfaces of
shear area. Internal friction parameters were calculated using
figure 6. A straight line was drawn through the origin of
coordinates (0, 0) and terminus of the yield locus (�r, �r), and
an effective angle of internal friction was calculated from:







σ
τ

=ϕ
r
rarctan (6)

Linear regression was applied to three points (�zi, �zi), and
parameters c and �c were estimated in the regression model:

Figure 6. Angles of internal friction (� and �c) and the cohesion (c) for soy-
bean meal at a consolidation reference pressure of 20.7 kPa.

� = c + � tan�c (7)

Coefficients of correlation and parameters with standard
deviations are shown in table 2. Numerous materials have
curvilinear yield locus, but the high coefficients of correla-
tion (see table 2) point to the linearity of yield locus in corn
meal, soybean meal, and wheat. The materials obeyed
Coulomb’s yield condition. No clear relation was determined
between frictional parameters and consolidation pressure.
Cohesion will result in a decrease in the coefficient of friction
(�) with increasing normal load. For dry wheat, a linear
relationship between shear stress (�) and vertical stress (�) in
a range of pressures from 1.4 to 20.7 kPa was found to be:

� = 0.142 + 0.487� (R = 0.999) (8)

Relatively low values of cohesion indicated that dry wheat
was a free–flowing material. Non–zero values of cohesion
caused a non–linear relationship between the coefficient of
friction and normal load.

The equation expressing the coefficient of friction took
the form:

� = 0.487 + 0.142/� (9)

Therefore, cohesion adds 0.1 to � for a normal load of
1.42 kPa, and 0.01 for a normal load of 14.2 kPa.

The effective angle of internal friction (�) of wheat was
found to be 26.4³ µ0.6³, while values of � for soybean and
corn meal were distinctly higher and approximately equal to
36.2³ µ0.6³ and 35.7³ µ0.5³, respectively. Cohesion of
wheat was found to be 0.33 µ0.07 kPa, while for soybean and
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Table 2. Estimated friction parameters for effective angle of internal
friction (�), angle of internal friction in the test specimen (�c), and
cohesion (c) for wheat, soybean meal, and corn meal. Correlation

coefficient (R) of equation 7 fitted to experimental data with
mean and standard deviations.

Reference
Pressure

(kPa)
ϕ

(�)
ϕc
(�)

c
(kPa) R

Wheat
4.1 27.2 25.0 0.36 0.993
6.2 26.8 25.1 0.36 1.000
8.3 27.1 24.9 0.33 0.998
10.3 26.0 25.4 0.33 0.999
13.8 25.9 25.2 0.45 1.000
17.2 25.7 26.1 0.24 1.000
20.7 26.2 26.2 0.27 0.999

avg ±SD 26.4 ±0.6 25.4 ±0.5 0.33 ±0.07

Soybean meal
4.1 37.3 31.3 0.78 0.995
6.2 38.0 30.6 0.77 1.000
8.3 36.5 32.6 0.66 0.999
10.3 37.1 34.7 0.55 0.999
13.8 35.3 34.7 0.24[a] 1.000
17.2 35.0 34.1 0.47 0.999
20.7 34.3 33.3 0.71 1.000

avg ±SD 36.2 ±1.4 33.0 ±1.6 0.66 ±0.12

Corn meal
4.1 35.5 26.9[a] 0.82 0.999
6.2 36.6 29.4 0.72 0.999
8.3 35.7 29.6 0.74 0.999
10.3 35.6 29.8 0.36 0.997
13.8 35.8 30.6 1.02 1.000
17.2 34.9 32.0 0.62 1.000
20.7 35.8 31.6 2.06[a] 0.998

avg ±SD 35.7 ±0.5 30.5 ±1.1 0.71 ±0.22
[a] Outlier values are excluded from the estimation of the average and stan-

dard deviation.

corn meal it was about double, with values of 0.70 µ0.10 kPa
and 0.71 µ0.22 kPa, respectively. Cohesion values obtained
for the three materials tested may be treated as having low
cohesion according to terms set by Eurocode 1 (1995).

FORCE–DISPLACEMENT CHARACTERISTICS
Soybean and corn meal having approximately equal

strength parameters �, �c, and c reveal distinctly different
force–displacement  characteristics. The characteristics for
the two materials sheared under 20.7 kPa of vertical pressure
are shown in figure 7. The frictional force of soybean meal
attained a critical state (asymptotic value) after a displace-
ment of 35 mm, while for ground corn it took 60 mm.
Consequently, the secant modulus of soybean meal was
considerably higher, indicating the tangential stiffness of the
material.  Another difference in the behavior of the two
materials is the stick–slip effect observed for corn meal. The
stick–slip variation in the frictional force had an amplitude
of approximately 300 N, or 15%, for 2200 N of frictional
force. Frictional parameters were estimated using the
maximum values of force to obtain the largest values of the
parameters.

A probable reason for the observed stick–slip was the high
compressibility  of corn meal. Stick–slip may be considered
as a sequence of compaction–dilation events around the areas
of shear zones developing in the material. Compaction

Figure 7. Typical frictional force–displacement test curves for soybean
meal and corn meal at a vertical pressure of 20.7 kPa.

results in an increase of material strength and the ability to
withstand higher shear loads. Exceeding the maximum
strength was associated with dilation in the shear zone,
reorientation of stresses, and a sharp decrease in the shear
load. This ramp was immediately followed by a period of
slower increase in strength that resulted from material
compaction in a new shear zone. Frictional vibrations
influenced sample strength and brought additional difficul-
ties in interpretation of test results.

In industrial practice, stick–slip effects appear in silos as
vibrations (silo music) or shocks (silo quake). Such effects
have to be avoided in silos for many reasons (Tejchman and
Gudehus, 1993). In the worst case, vibrations can cause silo
failures. Tejchman and Gudehus stated that the wall rough-
ness, the kind of silo outlet, and the material elastic properties
had a significant effect on the frequency and the amplitude
of the vibrations. Bucklin et al. (1996) studied stick–slip
behavior between wheat and galvanized steel. A decrease in
amplitude of frictional force vibrations was observed with an
increase in displacement velocity. The velocity at which
stick–slip behavior ended was defined as critical velocity.
The authors found a statistically significant relationship
between the coefficient of friction and critical velocity, but
no significant influence of pressure on critical velocity was
observed. Tejchman (1999) suggested several solutions to
prevent frictional vibrations in a silo, including increasing
wall roughness, stiffening of the silo wall, and circumferen-
tial filling. In general, it may be stated that the change of
parameters of a mechanical vibrating system leads to a
change in frequency and amplitude of vibration, but an
efficient model of a silo as vibrating system is not yet
available for design purposes.

ELASTIC PARAMETERS AND PRESSURE RATIO

Table 3 presents the elastic material parameters � and E for
corn meal, soybean meal, and wheat. The parameter k shown
in table 3 is the ratio of horizontal stress (�x) to vertical stress
(�z) measured at the end of initial compaction (�z = 100 kPa,
point A in fig. 2). Since literature on the mechanical
properties of corn meal and soybean meal is scarce, only

Table 3. Average and standard deviation of Young’s modulus (E),
Poisson’s ratio (�), and stress ratio (k) for wheat,

soybean meal, and corn meal.
Material ν E (MPa) k

Wheat 0.19 ±0.015 22.4 ±1.2 0.355 ±0.008
Soybean meal 0.26 ±0.017 10.0 ±2.1 0.481 ±0.017
Corn meal 0.21 ±0.012 12.2 ±1.1 0.333 ±0.020
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parameters of wheat will be compared with results of other
researchers.

Poisson’s ratio of soybean meal (0.26 µ0.017) was 24%
higher than � of corn meal (0.21 µ0.012), in contrast to
frictional parameters of soybean and corn meal that were not
distinctly different. Poisson’s ratio for wheat (0.19 µ0.015)
was lower than that of the other two materials and also lower
than � of 0.29 reported by Zhang et al. (1988) for wheat in
comparable conditions. Differences in Young’s modulus (E)
for soybean meal (10.0 µ2.1 MPa) and corn meal
(12.2 µ1.1 MPa) were not large considering the high
standard deviations of this parameter. Young’s modulus for
wheat was almost double the value of the ground materials.
Young’s modulus for wheat was measured as 22.4 µ1.2 MPa,
which was higher than the range in E values of 9.3 to
15.5 MPa reported by Zhang et al. (1988), which increased
with an increase in vertical pressure.

The stress ratio (k) for soybean meal was 0.481 µ0.017,
which was considerably higher than the value
(0.333 µ0.020) obtained for corn meal. The measured value
of k for wheat was 0.355 µ0.008, which was in good
agreement with results of Zhang et al. (1994), who reported
stress ratios in the range of 0.32 to 0.43 for pressures ranging
from 2 kPa to 400 kPa.

A number of equations relating k to the angle of internal
friction (�) have been proposed (Lohnes, 1993). Stress ratio
can be also derived from the theory of elasticity (Lambe and
Whitman, 1969) as a function of Poisson’s ratio:

ν−
ν

=
1

k (10)

Jaky (according to Lohnes, 1993) derived a relationship
for the at–rest state of stress:

( )

ϕ+







 ϕ+ϕ−

=
sin1

sin
3
2

1sin1
k (11)

Equation 6 was modified and recommended by Eurocode
1 (1995) as:

)sin1(1.1 ϕ−=k (12)

Calculated values of k using equations 10 through 12 are
presented in table 4 together with the mean results from
table 3.

Estimation of k based on the theory of elasticity (eq. 10)
resulted in a value of the parameter distinctly lower than the
experimental results. Eurocode 1 recommended equation 12
to estimate k, which gave a value higher than the experimen-
tal values. Jaky’s equation (eq. 11) provided an estimate for
k that was closest to the experimental value.

Table 4. Experimental values for stress ratio (k) and predicted values
calculated using equations 10, 11, and 12 for wheat,

soybean meal, and corn meal.

Experimental Eq. 10 Eq. 11 Eq. 12

Wheat 0.355 0.235 0.498 0.666
Soybean meal 0.481 0.351 0.359 0.491
Corn meal 0.333 0.266 0.365 0.500

CONCLUSIONS
A modified direct shear apparatus was shown to be a

useful tool for estimation of frictional properties of biologi–
cal–based granular materials. Strength parameters c, �c, and
� were in good agreement with data published earlier by
various authors. The grain tester was relatively easy to
operate; vertical loads were applied by means of compressed
air, and there was no need for moving weights. Longer shear
displacement than in standard direct shear apparatuses were
available without a decrease in shear area; hence, no
correction in stress calculations for decreasing shear area
were necessary.

Yield loci of corn meal, soybean meal, and wheat were
found linear in the range of applied consolidation pressure
(up to 34 kPa). The materials obeyed Coulomb’s yield
condition. Angles of friction of soybean meal (� =
36.2³µ1.4³, �c = 33.0³ µ1.6³) and corn meal (� =
35.7³µ0.5³, �c = 30.5³ µ1.1³) were similar. Angles of
friction of wheat found � equal to 26.4³ µ0.6³ and �c equal
to 25.4³ µ0.5³ and were in good agreement with earlier
reported data. Values of cohesion (c) for wheat, soybean
meal, and corn meal were found to be 0.33 µ0.07 kPa,
0.70µ0.1 kPa, and 0.71 µ0.22 kPa, respectively.

The frictional force–displacement characteristics of soy-
bean meal and corn meal, below the critical state unlike the
strength parameters, were distinctly different. During shear-
ing under a normal load of 20.7 kPa, the frictional force for
soybean meal stabilized after 20 mm, while in the case of
corn meal, the frictional force did not stabilize within 60 mm
of displacement. Corn meal showed higher compressibility
than soybean meal. At a vertical pressure of 34.4 kPa, the
density of corn meal increased by 21%, while the density of
soybean meal increased by approximately 5%.

Values of Young’s modulus (E) for soybean meal and corn
meal were 10.0 µ2.1 and 12.2 µ1.1 MPa, respectively.
Values of Poisson’s ratio for soybean meal and corn meal
were distinctly different, with values of 0.26 µ0.017 and
0.21µ0.012, respectively. The lateral–to–vertical stress ratio
(k) of soybean meal (0.481 µ0.017) was the highest, and k of
corn meal (0.333 µ0.020) was the lowest. For wheat, k was
0.355 µ0.008, which was in good agreement with earlier
published results. The stress ratio estimated using Jaky’s
theoretical  equation gave the best approximation to experi-
mental results for the examined equations. A probable reason
for the difference in mechanical behavior of soybean meal
and corn meal was the difference in particle size distribution
and/or the difference in chemical properties of the whole
seed, which could be a result of the higher fat content of
soybean meal.

Relatively high compressibility of agricultural materials
poses particular difficulties during testing. Large dimensions
of the test sample are generally considered preferable when
testing granular materials. However, a high volume of the
sample combined with high compressibility resulted in a
strong elastic reaction of the system, causing stick–slip
effects. Stick–slip may be considered a sequence of compac-
tion–dilation events around the areas of shear zones formed
in the material. Compaction resulted in an increased material
strength, and an ability to withstand a higher shear load.
Exceeding the maximum strength was associated with
dilation in the shear zone, reorientation of stresses, and a
sharp decrease in shear load. This ramp was immediately
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followed by a period of slower increase in strength that
resulted from material compaction in new shear zones.
Frictional vibrations influenced sample strength and brought
additional difficulties in interpretation of test results. In
industrial practice, stick–slip effects appear in silos as
vibrations or shocks. Currently there is no clear model of
frictional vibration, and the phenomenon needs further
investigations.
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NOMENCLATURE
a = slope of the linear part of the unloading path

in �x and �z coordinates
c = cohesion
k = stress ratio
A = parameter for bulk density relationship
E = Young’s modulus
E* = slope of the linear part of unloading path in

the �x and �z space
e
xε = horizontal strain
e
zε = vertical strain
� = effective angle of internal friction
�c = angle of internal friction
ρo = uncompacted bulk density (kg/m3)
ρ = compacted bulk density (kg/m3)
� = vertical pressure (kPa)
�r = vertical consolidation reference pressure

(kPa)
�z1, �z2, �z3 = vertical pressures (kPa)
� = Poisson’s ratio
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