
University of Kentucky
UKnowledge

Theses and Dissertations--Forestry and Natural
Resources Forestry and Natural Resources

2018

INITIAL ASSESSMENT AND EFFECTS OF
SNAKE FUNGAL DISEASE ON
POPULATIONS OF SNAKES IN KENTUCKY
Jennifer Mckenzie
University of Kentucky, mckenziemjenn@gmail.com
Digital Object Identifier: https://doi.org/10.13023/ETD.2018.213

Right click to open a feedback form in a new tab to let us know how this document benefits you.

This Master's Thesis is brought to you for free and open access by the Forestry and Natural Resources at UKnowledge. It has been accepted for
inclusion in Theses and Dissertations--Forestry and Natural Resources by an authorized administrator of UKnowledge. For more information, please
contact UKnowledge@lsv.uky.edu.

Recommended Citation
Mckenzie, Jennifer, "INITIAL ASSESSMENT AND EFFECTS OF SNAKE FUNGAL DISEASE ON POPULATIONS OF SNAKES
IN KENTUCKY" (2018). Theses and Dissertations--Forestry and Natural Resources. 42.
https://uknowledge.uky.edu/forestry_etds/42

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Kentucky

https://core.ac.uk/display/232584966?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://uknowledge.uky.edu/
http://uknowledge.uky.edu/
https://uknowledge.uky.edu
https://uknowledge.uky.edu/forestry_etds
https://uknowledge.uky.edu/forestry_etds
https://uknowledge.uky.edu/forestry
https://uky.az1.qualtrics.com/jfe/form/SV_9mq8fx2GnONRfz7
mailto:UKnowledge@lsv.uky.edu


STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been
given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright
permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-
party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not
permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-
free license to archive and make accessible my work in whole or in part in all forms of media, now or
hereafter known. I agree that the document mentioned above may be made available immediately for
worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in future
works (such as articles or books) all or part of my work. I understand that I am free to register the
copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student’s advisor, on behalf of
the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of the program; we
verify that this is the final, approved version of the student’s thesis including all changes required by the
advisory committee. The undersigned agree to abide by the statements above.

Jennifer Mckenzie, Student

Dr. Steven J. Price, Major Professor

Dr. Steven J. Price, Director of Graduate Studies



 
 

 
 

 
 

 

 

 

 

 

INITIAL ASSESSMENT AND EFFECTS OF SNAKE FUNGAL DISEASE ON 

POPULATIONS OF SNAKES IN KENTUCKY 

 

 

 

 

 

 

 

Thesis 

 

A thesis submitted in partial fulfillment of the requirements for the degree of Master of 

Science in Forest and Natural Resource Sciences in the College of Agricultural, Food and 

Environment at the University of Kentucky 

 

 

By 

 

Jennifer McKenzie 

 

Lexington, Kentucky 

 

Director: Dr. Steven J. Price, Associate Professor of Stream and Riparian Ecology 

 

Lexington, Kentucky 

 

2018 
 
 
 

 

Copyright © Jennifer McKenzie 2018 
  



ABSTRACT OF THESIS 

INITIAL ASSESSMENT AND EFFECTS OF SNAKE FUNGAL DISEASE ON 

POPULATIONS OF SNAKES IN KENTUCKY 

Pathogenic fungi are increasingly associated with epidemics in wildlife populations 

and represent a significant threat to global biodiversity. Snake fungal disease is an 

emerging disease caused by the fungus, Ophidiomyces ophiodiicola, and appears to be 

widespread in the eastern United States. Yet an evaluation of field diagnostics, and an 

understanding of the population-level consequences of the disease, are lacking. First, I 

evaluated the use of clinical signs to predict the presence of O. ophiodiicola across season 

and snake habitat affiliation (aquatic or terrestrial) and I compared two sampling methods 

to see if collection method impacts PCR result. Overall, snakes with clinical signs had a 

higher probability of testing positive regardless of season or habitat association. However, 

terrestrial snakes had a lower overall probability of testing positive for O. ophiodiicola 

compared to aquatic snakes. I found no significant difference between sampling methods. 

Second, I used Passive Integrated Transponder (PIT) telemetry, and multistate capture-

mark-recapture modelling to determine if SFD affects the short-term survival, movement, 

and behavior of wild snakes. I found no difference in short-term survival for snakes with 

SFD. Snakes with SFD spend more time surface-active and have lower permanent 

emigration and temporary immigration rates than snakes without SFD. 

KEYWORDS: snake, populations, snake fungal disease, survivorship, clinical sign, 

capture-mark-recapture 
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CHAPTER 1: INTRODUCTION 

 

Pathogenic fungi are increasingly associated with epidemics in animal 

populations and represent a significant threat to global biodiversity (Fisher et al. 2012). 

Prominent examples include the emergence of the fungi Batrachyochytrium 

dendrobatidis, and B. salamandrivorans  which both lead to chytridiomycosis in 

amphibians (Berger et al. 1998; Martel et al. 2013), and Pseudogymnoascus destructans, 

the fungus responsible for white-nose syndrome in bat populations (Blehert et al. 2008). 

Due to the reproductive potential of most pathogenic fungi, host populations can decline 

at a rate that quickly leads to extirpation or extinction (Fisher et al. 2012). 

Snake fungal disease (SFD), caused by the fungus Ophidiomyces ophiodiicola, is 

an emerging infectious disease affecting both wild and captive snakes (Rajeev et al. 2009; 

Lorch et al. 2016). The fungus causes crusts on scales, thickening of the skin, cloudiness 

of the eyes, separation of the outermost layer of skin from the underlying layer (i.e., 

stratum corneum) and facial swelling (Lorch et al. 2015). Individual mortality due to 

infection has occurred (Allender et al. 2011; Lind et al. 2018), yet many aspects of SFD 

remain poorly understood. Among the most important factors requiring research include 

disease diagnostics, host susceptibility, and the population-level effects of SFD. 

Understanding these factors is important to develop essential management and 

conservation strategies for this disease.  

Snake fungal disease was first documented in Kentucky in a single wild caught 

Queensnake (Regina septemvittata) in 2014 and has since been confirmed in several other 

snake species within the Commonwealth (Price et al. 2015; Lorch et al. 2016). In my first 

chapter, I examined disease diagnostics and host susceptibility in Kentucky.  Specifically, 
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I evaluated the use of clinical signs to predict the presence of O. ophiodiicola across 

seasons and habitat affiliation. I also compared two sampling methods, scale clip 

collection and swabbing, for O. ophiodiicola to see if collection method impacts the 

results of polymerase chain reaction (PCR). My second chapter focuses on the impacts of 

SFD on wild populations of R. septemvittata and Nerodia sipedon in central Kentucky. 

By utilizing Passive Integrated Transponder (PIT) telemetry and a multistate capture-

mark-recapture model, I assess how SFD affects the short-term survival, movement and 

behavior of these two species. My first chapter is in review with EcoHealth, and slight 

formatting differences between chapters reflect journal submission requirements. 
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CHAPTER 2: INITIAL ASSESSMENT 

 

Introduction 

 

Pathogenic fungi are increasingly associated with epidemics in animal populations 

and represent a significant threat to global biodiversity (Fisher et al. 2012). Prominent 

examples include the emergence of Batrachyochytrium dendrobatidis and B. 

salamandrivorans, which causes chytridiomycosis in amphibians (Berger et al. 1998; 

Martel et al. 2013), and Pseudogymnoascus destructans, the fungus responsible for white-

nose syndrome in some bat populations (Blehert et al. 2008). As of 2012, fungi have been 

implicated in at least 54 species-level extirpations and are a major cause (e.g., 65%) of 

pathogen-driven host loss (Fisher et al. 2012). Since fungal pathogens have caused 

widespread declines of many host populations, intensive monitoring of the distribution, 

host susceptibility, and development of field diagnostics for newly emerging fungal 

pathogens have become essential first steps for management and conservation actions.  

  Snake fungal disease (SFD), caused by the fungus Ophidoimyces ophiodiicola, is 

an emerging disease of wild and captive snakes (Sigler et al. 2013; Lorch et al. 2015; Lorch 

et al. 2016). Clinical signs of SFD include skin ulcers, subcutaneous nodules, increased 

molt frequency, localized thickening of the skin, and facial swelling (Lorch et al. 2015). 

Behavioral changes, such as an increase in basking, have also been noted in infected 

individuals (Clark et al. 2011; Lorch et al. 2015). Secondary effects of O. ophiodiicola 

infection may include starvation, poor body condition, and bacterial infection, that may 

result in mortality (Allender et al. 2011; Lorch et al. 2016; McCoy et al. 2017). Despite its 

recent description, research suggests that O. ophiodiicola is a fungus native to North 

America, yet is now recently emerging for unknown reasons (Lorch et al. 2016). 
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Recent work suggests that O. ophiodiicola displays traits of a well-adapted 

pathogen that has a broad host range and can likely persist in the environment (Allender et 

al. 2015; Lorch et al. 2016; Burbrink et al. 2017). Yet, seasonal variation in clinical sign 

severity indicate that environmental conditions can influence infection status (McCoy et 

al. 2017). While O. ophiodiicola has been documented in 23 U.S. states, one Canadian 

Province in eastern North America, and recently in Europe (Lorch et al. 2016; Franklions 

et al. 2017), information remains limited on effective field diagnostic methods, particularly 

the relationship between clinical signs (i.e., skin lesions) and infection by O. ophiodiicola.  

Clinical signs of SFD are nonspecific and used to describe “symptoms” commonly 

observed with infection by O. ophiodiicola. Swabs and tissue samples (e.g., scale clips) are 

used to test for the presence of O. ophiodiicola by polymerase chain reaction (PCR) 

(Allender et al. 2015; Bohuski et al. 2015); however, the relationship between PCR-based 

detection of the fungus and disease state has not been fully elucidated. Furthermore, some 

snakes harboring O. ophiodiicola do not have clinical signs of SFD (Paré et al. 2003; 

Bohuski et al. 2015), but the extent to which wild snakes may have subclinical infections 

or act as carriers of O. ophiodiicola has not been investigated. Assessing the percentage of 

“asymptomatic” snakes with O. ophiodiicola would be helpful in further defining the 

geographic distribution, host range and disease dynamics of O. ophiodiicola.  

 My primary objective was to test the relationship between field observations of 

SFD and the presence of O. ophiodiicola. Since previous studies have alluded to seasonal 

trends of O. ophiodiicola infection (reviewed by Lorch et al. 2016; McCoy et al. 2017), I 

examined the relationship between both clinical signs and season (spring, summer and fall) 

on fungal presence. In addition, since moist environments are thought to be important for 



 
 

5 
 

fungal growth (Lorch et al. 2016), I considered habitat affiliation (aquatic or terrestrial) of 

snake species sampled to determine if snakes with a certain habitat affiliation are more 

likely to be exposed or infected with O. ophiodiicola. Second, I examined the effectiveness 

two sampling methods for O. ophiodiicola: scale clips and swabbing.  

 

Methods - Study Sites 

Snakes were captured using a variety of field methods at six sampling locations 

within the Inner Bluegrass, Eastern Kentucky Coalfields, Knobs, and Jackson Purchase 

physiographic regions of Kentucky (USA) between March 2015 and May 2016 (Figure 

2.1). At sample locations in the Knobs and Eastern Kentucky, most snakes were captured 

under artificial cover (i.e., wood coverboards and roofing tin). Within the Inner Bluegrass, 

snakes were captured opportunistically and later recaptured using passive integrated 

transponder (PIT) telemetry (Oldham et al. 2016). In the Jackson Purchase, snakes were 

captured via nighttime road surveys. 

 

Methods - Field Sampling and Laboratory Assessment  

Upon each capture, snakes were identified to species; dates of capture and locality 

information were also recorded. I recorded the presence/absence of visible dermal lesions 

on the head or body of the animal. Specifically, I defined visible dermal lesions to include 

regional or local edema, crusts, ulcers, dysecdysis and other forms of damage to the dermis 

(i.e., Lorch et al. 2015; Guthrie et al. 2016). I considered these dermal lesions as indicative 

of O. ophiodiicola infection. After recording clinical signs, I used up to two methods to 

collect samples for PCR assay for O. ophiodiicola. If lesions were present, one lesion was 
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swabbed with a sterile polyester tipped swab saturated with pure water (Fisher Scientific, 

BP2484-100) and/or a scale clip was collected by removing a small section of one scale. 

The swab was brushed over the lesion five times, then placed into a plastic vial, and stored 

in a -40°C freezer (J. Lorch pers. comm.). If no lesions were present, a snake was swabbed 

on the dorsal side of its midline. Scale clips were taken using scissors and forceps; sampling 

equipment was treated with 10% bleach to sterilize and remove nucleic acid between 

snakes. Scale clips were either taken from lesioned areas of skin (if lesions were present) 

or a grossly normal ventral scale on the transverse midline (if lesions were absent). After 

sampling, all snakes were released at their capture location.  

Real-time PCR was used to determine presence of O. ophidiocola according to the 

protocols in Bohuski et al. (2015) for the internal transcribed spacer region (ITS) assay. 

Ophiodiomyces ophiodiicola was considered present on a snake if the threshold was ≤ 40 

cycles (Bohuski et al. 2015). This threshold does not confirm the presence of SFD; it only 

confirms the presence of O. ophiodiicola. Samples were considered negative for O. 

ophiodiicola if amplification did not occur within 40 cycles. All research was compliant 

with University of Kentucky IACUC protocol (2013-1073). Permits were obtained from 

the Kentucky Department of Fish and Wildlife Resources (SC1511017, SC1611043, 

SC1611136).  

 

Statistical Analyses 

I compared scale clips and swab samples using 173 snakes for which a scale clip 

and a swab sample were both taken at the same instance of capture. I used the package 

“MASS” in R v.3.2.1 to run a McNemar’s test (Venables and Ripley, 2002; R Core Team, 
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2016) to compare the effectiveness of scale clips against swab samples at detecting 

presence of O. ophiodiicola. Because some snakes had multiple instances of paired samples 

(e.g., swab and scale clip collected at the same time), for this analysis I used the first 

instance of a paired sample with one positive sampling method for O. ophiodiicola. If an 

individual did not have any instances where one sampling method was positive within a 

paired sample, I used the first set of paired samples collected to determine disease status.  

To evaluate the probability of a positive PCR result given the presence or absence 

of clinical signs, season and species habitat affiliation, I used the package “lme4” to fit a 

generalized linear mixed model in R v.3.2.1 (Bates et al. 2015; R Core Team, 2016). I used 

the package “AICcmodavg” to generate predicted infection probabilities using an inverse-

logit transformation (Mazerolle, 2016). For this analysis, I included all available PCR 

results from both sampling methods, even if a snake had multiple PCR results over time. I 

used PCR result (0=negative, 1=positive) as the response variable with season, 

presence/absence of clinical signs and habitat affiliation as predictor variables. I treated 

individual ID as a random effect to account for non-independence of multiple 

measurements of the same snakes. Season was divided into three groups: spring (March-

May), summer (June-August), and fall (September-November). In addition, I divided 

snakes into two groups based on habitat affiliation (aquatic and terrestrial) to examine how 

this affiliation was related to the probability of O. ophiodiicola presence. Specifically, I 

placed Regina septemvittata and Nerodia sipedon in the aquatic category (n=188), with all 

other snakes in the terrestrial category (n=83) (Table 2.1). I generated seven competing 

models to predict PCR result: 1) habitat affiliation, 2) clinical signs, 3) season, 4) clinical 

signs and habitat affiliation, 5) season and habitat affiliation, 6) season and clinical signs, 
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and 7) season, clinical signs and habitat affiliation (Table 2.2). I compared models using 

the Akaike Information Criterion (AIC; Burnham and Anderson, 2002).  

 

Results 

I collected 639 swab or scale clip samples from 271 individual snakes, represented 

by fifteen species. Fifteen snake species were represented in this study (Table 2.1). Out of 

the 271 snakes sampled, 140 (51.66%) had clinical signs. Ophidiomyces ophiodiicola was 

detected in at least one sample from each species, except for Opheodrys aestivus which 

was represented by just two individuals. I collected 196 samples from 100 individuals in 

spring, 273 samples from 147 individuals in summer, and 170 samples from 71 individuals 

in fall. I also detected O. ophiodiicola in nearly every combination of season, PCR result, 

and clinical sign status (Table 2.3). From the 271 individuals, aquatic snakes (i.e., R. 

septemvittata and N. sipedon) comprised 188 samples, with 125 samples testing positive 

for O. ophiodiicola (66.50%). Terrestrial snakes comprised 83 samples, with 42 samples 

(50.60%) testing positive. Most clinical signs were considered mild (i.e., see Gutherie et 

al. 2016; Lorch et al. 2016), although some individuals had moderate to severe infections 

as denoted by skin ulcers, large patches of thickened skin, and infection of the eyes (Figure 

2.2). When comparing scale clip and swab sampling, I found no significant difference 

between the two sampling methods for detecting presence of O. ophiodiicola (McNemar’s 

chi-squared = 1.59, df = 1, p-value = 0.21) (Figure 2.3). 

The presence of clinical signs, snake habitat affiliation and season were all 

important predictors of PCR results (AIC weight = 0.95; Table 2). Specifically, aquatic 

snakes with clinical signs had an 81.4% (spring; n= 196), 75.5% (summer; n = 273) and 
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24.1% (fall; n = 170) probability of having a positive PCR result in each season, whereas 

terrestrial snakes with clinical signs had 65.8%, 57.5%, and 12.2% chances of a positive 

PCR result in spring, summer, and fall, respectively (Figure 2.4). A post-hoc Tukey test 

showed that spring and fall were significantly different (p<0.001), and summer and fall 

were significantly different (p<0.001). There was no significant difference between spring 

and summer samples.  

I found that some wild snakes may have subclinical infections or act as 

“asymptomatic” carriers of O. ophiodiicola. For example, aquatic snakes without clinical 

signs had a 42.2%, 33.9% and 5.0% chance of having a positive PCR result in spring, 

summer, and fall respectively, whereas terrestrial snakes lacking clinical signs had the 

following chances of PCR-based O. ophiodiicola detection across seasons: 24.3%, 18.41% 

and 2.28%. For all snakes, the probability of O. ophiodiicola being present was lowest in 

the fall samples. 

 

Discussion 

Snake fungal disease is widely distributed in North America, and O. ophiodiicola 

has a broad host range (Burbrink et al. 2017), with infections documented in 30 species 

across six snake families (reviewed by Lorch et al. 2016; Burbrink et al. 2017). My research 

is consistent with these findings, albeit at a smaller spatial scale, as I detected O. 

ophiodiicola at each sampling location and in 14 of 15 (93.3%) species examined. I added 

one wild-caught snake species, Pantherophis spiloides, to the known host range of O. 

ophiodiicola.  
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I found no significant difference between sampling methods (i.e., swabs versus 

tissue samples) for detection of O. ophiodiicola by real-time PCR. Based on my results, I 

suggest sampling snakes via swab because it is less invasive and can be done rapidly in the 

field compared to scale clipping. Swabbing may also decrease the risk of disease 

transmission between individuals because swabs are less likely to compromise the surface 

of the skin and allow a point of entry for O. ophiodiicola (Lorch et al. 2015). Furthermore, 

swabbing is more efficient in the field because tools (i.e., scissors and forceps) do not need 

to be disinfected and decontaminated between individual animals. More work is needed to 

determine whether certain sample methods might be better for a particular type of lesion 

or stage of infection. 

I found that snakes with lesions had a higher probability of a positive PCR result 

for O. ophiodiicola than snakes without lesions. However, I found that some 

“asymptomatic” snakes tested positive for O. ophiodiicola. This is consistent with previous 

findings by Bohuski et al. (2015) that 12.5% of snakes that lacked clinical signs of SFD 

tested positive for O. ophiodiicola by real-time PCR. This indicates that while clinical signs 

are a conspicuous predictor of the presence of O. ophiodiicola, instances where the fungus 

is present, but the snake is without lesions, do occur. Snakes without clinical signs could 

be in the early stages of infection with O. ophiodiicola or they could be carriers of the 

fungus (Lorch et al. 2016). Certain clinical signs, such as crusts, may be more likely to 

have O. ophiodiicola on the surface and thus more likely to yield a positive PCR result 

compared to other clinical signs indicative of a fungal infection deeper in the skin.  

I found that snakes with aquatic habitat affiliations had a higher probability of 

testing positive for O. ophiodiicola than snakes with terrestrial habitat affiliations. Thus, 
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my results indicate that species affiliated within aquatic habitats vary in either their 

susceptibility or the distribution of O. ophiodiicola may vary between terrestrial and 

aquatic habitats. Lorch et al. (2016) suggested that moist conditions could promote growth 

of O. ophiodiicola and its persistence in the environment, as seen in other fungal pathogens 

(Kriger and Hero, 2007). Based upon the detection of O. ophiodiicola on individuals 

without clinical signs of infection, aquatic snakes may have higher exposure rates 

compared to the fungal pathogen than terrestrial snakes in my study area. Conversely, the 

aquatic snake species examined could be more susceptible to O. ophiodiicola. The snake 

species, R. septemvittata, which comprised most of my aquatic snakes, has some of the 

thinnest skin of all snake species which could make it more vulnerable to abrasions which 

would provide an entry point for O. ophiodiicola infection (Stokes and Dunson, 1982). 

Most previous work on SFD has focused on terrestrial snake species (Allender et al. 2013; 

McCoy et al. 2017), but my findings demonstrate that aquatic snake species should be more 

closely studied to better understand how host natural history may affect disease dynamics. 

For example, comparing aquatic and terrestrial environments could provide insights into 

how environmental loads of the pathogen vary between habitats (i.e., host exposure) and 

the ability of infected snakes to locate suitable microclimates for fighting infection. Closely 

examining species-level differences in natural histories of various host species could also 

provide insights into which snake species are most vulnerable to developing severe 

infections caused by O. ophiodiicola. 

I found that the probability of disease was lowest in fall, compared to spring and 

summer. The higher probability of positive PCR results in spring closely tracks previous 

reports of SFD being more frequent in snakes after spring emergence (Lorch et al. 2016). 
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This suggests that infections by O. ophiodiicola may initiate in winter or spring during a 

time when host immune function is suppressed (Nelson and Demas, 2012) and snakes are 

exposed to potentially high loads of the fungus in moist underground hibernacula. Snakes 

that emerge from hibernation infected may subsequently expose unaffected animals by 

direct contact or by shedding large amounts of the pathogen into the environment. Snakes 

that are PCR-positive for O. ophiodiicola in the absence of clinical signs, may indicate 

exposure to the fungus without the establishment of an active infection. Snake fungal 

disease is often a chronic condition (Lorch et al. 2015) which may explain persistence of 

clinical signs and detection of O. ophiodiicola into summer. However, the percentage of 

snakes with clinical signs of SFD is reduced in fall compared to spring and summer, 

consistent with recovery or removal of many infected animals within the population or 

because the wild snakes may have already been in inaccessible hibernacula at the time 

when infections would be expected to reoccur. More work is needed to determine the roles 

of seasonal changes in host immune physiology, rainfall, and air temperature in driving 

disease dynamics, as these factors are correlated with season. 

Habitat and species-specific differences could also result in different observed 

seasonal patterns. For example, aquatic snake species that occupy more shaded habitats 

could experience cooler summer temperatures, which could cause a delayed response to 

infection, with infections lingering longer into summer. In Florida (USA), a mean fungal 

score, which included the presence and severity of observed clinical signs, negatively 

correlated with increasing temperature (McCoy et al. 2017). This is contrary to my results, 

which demonstrate high probabilities of testing positive in spring and summer. This 

discrepancy could exist because Florida temperatures allow this population of snakes to be 
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active year-round, and temperatures may exceed the upper growth limit for O. ophiodiicola 

(>35°C; Allender et al. 2015), and never become too cold to prevent growth (7°C; Allender 

et al. 2015), unlike in Kentucky. 

Studying the fungal load of specific lesions, and the predictive ability of certain 

lesions would be beneficial in understanding how the infection progresses. In snakes that 

have clinical signs but test negative for O. ophiodiicola, other etiologies (e.g., other fungi, 

bacteria, traumatic injuries, etc.) could be responsible for the presence of lesions, which 

further confounds diagnosing snakes with SFD using clinical signs alone (see Lorch et al. 

2016 for a description of other fungi). While confirming the presence of O. ophiodiicola 

via PCR is vital for a definitive diagnosis of SFD, I found that clinical signs appear to be a 

relatively accurate predictor of O. ophiodiicola presence in spring and summer. On the 

other hand, I found that clinical signs were not particularly effective at diagnosing snakes 

in fall because the overall the probability of a snakes testing positive for O. ophiodiicola 

was lower. I only tested for additive effects of sign, habitat, and season and that, as a result, 

I do not know whether the effectiveness of clinical sign as a disease indicator depends on 

season. 

Overall, my results provide insight into the range of host species that can become 

infected by, or carry, O. ophiodiicola, differences in detection probabilities of O. 

ophiodiicola for snakes with certain habitat affiliations, and seasonal variation in the 

presence of clinical signs of SFD and the presence of O. ophiodiicola. Results may vary in 

other regions, but in my study area, I recommend surveying snake populations for O. 

ophiodiicola in the spring and summer as that corresponds to when clinical signs are most 

conspicuous and predictive of positive PCR results. Although I make an effort to address 
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the lack of multi-species assessments for infection by O. ophiodiicola, the effects this 

fungus has on populations of snakes are unknown. My study provides information that will 

be vital to understanding infection patterns and developing effective management 

strategies for populations of snakes affected by SFD.
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Table 2.1. Morbidity Table. Morbidity table showing species, habitat affiliation, number of individual samples, presence or absence of 

clinical signs and real-time PCR results (positive or negative) for snake species tested for O. ophiodiicola in Kentucky, USA (2016). 

 
 

 

 

Aquatic Species 

Number 

Sampled 

Clinical 

Signs 

Present 

Clinical Signs 

Present and 

Positive 

Clinical Signs 

Present and 

Negative 

Clinical 

Signs 

Absent 

Clinical Signs 

Absent and 

Positive 

Clinical Signs 

Absent and 

Negative 

Nerodia sipedon 72 17 17 0 55 21 34 

Regina septemvittata 116 73 61 12 43 26 17 

Total 188 90 78 12 98 47 51 

Terrestrial Species        

Agkistrodon contortrix 18 9 7 2 9 0 9 

Carphophis amoenus 6 4 4 0 2 0 2 

Coluber constrictor 13 8 5 3 5 1 4 

Crotalus horridus 3 3 2 1 0 0 0 

Diadophis punctatus 9 4 3 1 5 0 5 

Lampropeltis getula 9 7 7 0 2 1 1 

L. triangulum 5 5 4 1 0 0 0 

Nerodia erythrogaster 2 1 1 0 1 0 1 

Opheodrys aestivus 2 1 0 1 1 0 1 

Pantherophis spiloides 2 1 1 0 1 0 1 

Storeria occipitomaculata 3 1 1 0 2 0 2 



     
 

 
 

1
6

 

 

Table 2.1 (continued) 

 

 

 

 

 

 

 

 

 

 

Terrestrial Species 

Number 

Sampled 

Clinical 

Signs 

Present 

Clinical Signs 

Present and 

Positive 

Clinical Signs 

Present and 

Negative 

Clinical 

Signs 

Absent 

Clinical Signs 

Absent and 

Positive 

Clinical Signs 

Absent and 

Negative 

Thamnophis sirtalis 8 5 4 1 3 0 3 

Virginia valeriae 3 1 0 1 2 1 1 

Total 83 50 39 11 33 3 30 

Overall Total 271 140 117 23 131 50 81 
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Table 2.2 Model Output from GLMM Analysis. Model outputs from GLMM analysis examining the ability of clinical signs to predict 

disease status in snakes with certain habitat affiliations over three seasons. The table shows the model, AICc value, model weight, 

number of parameters, and coefficient estimates and standard errors for explanatory variables. Asterisks indicate significance (p<0.001). 

Model AICc w k Intercept Habitat Affiliation (HA) - 

Terrestrial 

Season - 

Fall 

Season - 

Spring 

Clinical Signs (CS) -

Present 

Season + CS + 

HA 

706.23 0.95 6 -0.664 ± 

0.2263 

-0.8224 ± 0.3051 -2.2706 ± 

0.3424 

*** 

0.3521 ± 

0.2715 

1.7890 ± 0.2763 

*** 

Season + CS 712.11 0.05 5 -0.8274 ± 

0.2185   *** 

--- -2.1869 ± 

0.3376 

*** 

 

0.2820 ± 

0.2655 

1.7072 ± 0.2667 

*** 

Season + HA 756.00 0.00 5 0.2243 ± 

0.1893 

-0.6611 ± 0.3006 -2.3247 ± 

0.3408 

*** 

0.7263 ± 

0.2750 

--- 

Season 759.05 0.00 4 0.0571 ± 

0.1730 

--- -2.2700 ± 

0.3383 

*** 

0.6596 ± 

0.2703 

 

--- 

Clinical + HA 772.01 0.00 4 -1.2374 ± 

0.2174   *** 

-0.6168 ± 0.3236 --- --- 2.1229 ± 0.2995 

*** 

Clinical 773.95 0.00 3 -1.3429 ± 

0.2094   *** 

--- --- --- 2.0237 ± 0.2841 

*** 

Habitat 

Affiliation 

840.62 0.00 3 -0.0983 ± 

0.1615 

-0.3705 ± 0.3158 --- --- --- 
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Table 2.3 Number of Samples Collected By Season, Habitat Affiliation, PCR Result, and 

Clinical Sign Status. The number of samples collected for each season, habitat affiliation, 

real-time PCR result and clinical sign status combination.

Season Habitat 

Affiliation 

PCR 

Result 

Clinical 

Signs 

Number of 

Samples 

Collected 

Spring Aquatic Negative Absent 20 

Spring Aquatic Negative Present 27 

Spring Aquatic Positive Absent 15 

Spring Aquatic Positive Present 70 

Spring Terrestrial Negative Absent 13 

Spring Terrestrial Negative Present 14 

Spring Terrestrial Positive Absent 1 

Spring Terrestrial Positive Present 36 

Summer Aquatic Negative Absent 49 

Summer Aquatic Negative Present 43 

Summer Aquatic Positive Absent 46 

Summer Aquatic Positive Present 70 

Summer Terrestrial Negative Absent 24 

Summer Terrestrial Negative Present 15 

Summer Terrestrial Positive Absent 2 

Summer Terrestrial Positive Present 24 

Fall Aquatic Negative Absent 83 

Fall Aquatic Negative Present 44 

Fall Aquatic Positive Absent 1 

Fall Aquatic Positive Present 22 

Fall Terrestrial Negative Absent 13 

Fall Terrestrial Negative Present 4 

Fall Terrestrial Positive Absent 0 

Fall Terrestrial Positive Present 3 
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 Figure 2.1 Sampling Locations. Red dots indicate sampling locations across multiple 

physiographic regions in Kentucky. At least one positive individual was found at each 

sampling location. 
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Figure 2.2 Clinical Signs of Snake Fungal Disease. Mild clincal signs of snake fungal disease on A) Northern Copperhead 

(Agkistrodon contortrix) captured in Breathitt Co., Kentucky, B) Moderate clinical signs on Queensnake (Regina 

septemvittata) captured in Jessamine Co., Kentucky and C) severe clinical signs on Southern Black Racer (Coluber 

constrictor) captured in Madison Co., Kentucky.
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Figure 2.3 PCR Results for Scale and Swab Samples. Percentages of the total number of 

paired swab and scale clips in each combination: scale clip and swab negative, scale clip 

negative and swab positive, scale clip positive and swab negative, and scale clip and 

swab positive.
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Figure 2.4 Disease Probabilities by Clinical Sign Presence/Absence, Season and Habitat 

Affiliation. Probability of a positive real-time PCR detection for Ophidiomyces 

ophiodiicola in aquatic snakes (top) and terrestrial snakes (bottom) with SFD clinical sign 

status.  
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CHAPTER 3: POPULATION IMPACTS 

 

Introduction 

Recently, pathogenic fungi are emerging as a significant threat to global 

biodiversity (Fisher et al. 2012). Studies of these emerging diseases often focus on 

describing spatial or temporal patterns of disease prevalence and infection rates (Cooch et 

al. 2012). However, the rate of disease transmission and the effectiveness of particular 

disease management strategies depend on an understanding of the behavior of the host 

species, disease-associated mortality rates, seasonal variation of pathogen spread and 

spatiotemporal patterns in disease prevalence across landscapes (Grassly and Fraser 

2008, Cross et al. 2009, McCallum 2012). Assessing these complex disease dynamics in 

free-ranging wildlife populations is challenging because demographic data are typically 

collected from incomplete samples of individuals (Cooch et al. 2012), individual 

infection status may be incorrectly identified (McClintock et al. 2010, Miller et al. 2012), 

and susceptible species may emigrate from study sites, resulting in biased estimates of 

mortality rates (Faustino et al. 2004). Furthermore, whereas most quantitative research on 

disease dynamics has focused on animals that are easily observed or trapped (See 

Faustino et al. 2004; Lachish et al. 2007), many high-profile diseases infect species that 

are elusive or potentially difficult to sample (e.g., amphibians and chytridiomycosis, 

Berger et al. 1998).  

Snake fungal disease (SFD) is an emerging threat to wild snake populations 

(Rajeev et al. 2009; Lorch et al. 2016). Snake fungal disease was first hypothesized as a 

causative factor resulting in declines in snake populations in 2006 (Clark et al. 2011), and 

afflicted snakes have since been documented throughout eastern North America and 
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recently in Europe (Lorch et al. 2016; Franklinos et al. 2017). The disease is caused by 

the fungus Ophidiomyces ophiodiicola and is characterized by severe skin infections 

(Lorch et al. 2015; Lorch et al. 2016; Hileman et al. 2017). In laboratory settings, severe 

infections alter host behavior, and lead to morbidity and mortality (Lorch et al. 2016). To 

date, 23 North American snake species have been reported to have the disease, and a 

recent analysis suggests that most snake species, regardless of ecological traits and 

phylogeny, are susceptible to SFD (Burbrink et al. 2017). The number of individuals 

exhibiting clinical signs varies both spatially and temporally, with infection rate often 

associated with hibernation and spring emergence in temperate climates and cooler 

temperatures where snakes do not hibernate (Lorch et al. 2016; Lind et al. 2018; McCoy 

et al. 2017). Due to its recent emergence, this disease has been described as among the 

most significant yet under-studied risks to global biodiversity (Sutherland et al. 2014). To 

date, the majority of research on SFD has focused on identifying the causative agent, 

documenting the geographic distribution and host range of SFD and identifying spatial 

and temporal dynamics of infection (Allender et al. 2015; Lorch et al. 2016). 

 Understanding the individual and population-level impacts of SFD in field 

settings has been challenging due to the secretive nature of snakes and the subsequent 

difficulty associated with collecting health monitoring data. Most snake species have 

notoriously low detection rates, preventing the collection of adequate samples to make 

inferences regrading population status or demographic rates (Steen et al. 2012).  Thus, 

only a few studies have examined population-level effects of SFD. Tetzlaf et al. (2017) 

and Lind et al. (2018) found that Viperid snakes (i.e., Sistrurus catenatus and S. 

miliarius, respectively) with clinical signs of SFD exhibit altered behaviors, including 
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increased basking and reduced movements, which may influence survival. However, 

traditional CMR models are unable to estimate true survival when individuals 

permanently emigrate from the study population (Lebreton et al. 1992) and disease-

associated mortality cannot be directly estimated since permanent emigration and 

disease-associated mortality are confounded.  Thus, novel field techniques to monitor 

large numbers of individuals and appropriate analyses are needed to assess the 

population-level impacts of SFD on wild snake populations. Recent efforts by Connette 

and Semlitsch (2015) describe a method that uses detections of individuals marked with 

Passive Integrated Transponder tags (i.e., PIT tags; Connette and Semlitsch 2012; 

Oldham et al. 2016) to populate a multistate capture-mark-recapture model (Lebreton et 

al. 1992),  which overcomes some of the problems encountered by traditional CMR 

methods (i.e. Cormack Jolly Seber) including distinguishing between two sources of loss 

within a population, mortality and permanent emigration, and therefore more accurately 

estimating true survival within a population.  

 Herein, I utilize a monitoring technique (i.e., PIT telemetry; Connette and 

Semlitsch 2012; Oldham et al. 2016) and multistate capture-mark-recapture models to 

examine the consequences of SFD on wild populations of Queensnakes (Regina 

septemvittata) and Northern Watersnakes (Nerodia sipedon) in central Kentucky streams. 

Specifically, I address the following question: does SFD affect the short-term survival, 

movement, and behavior of wild snakes? This study will be the first to yield estimates for 

key demographic (survival, emigration) and behavioral parameters (e.g., movement, 

surface activity) of snakes in wild populations with and without SFD.  
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Methods - Study Sites 

My study was conducted at six streams from Madison, Fayette, Jessamine and 

Woodford Counties, in the inner Bluegrass Region of Kentucky (USA) (Table 3.1). This 

region is characterized by Karst topography, gently rolling hills, and mixed land-use, 

dominated by pasture, forest, and urban/suburban land cover. I sampled streams that 

ranged from first to fourth order; each stream was part of the Kentucky River basin and 

had ample rock cover with bedrock substrate. Surveyed stream reaches ranged from 293 

to 1005 meters (Table 3.1). Stream water chemistry at my study sites was consistent with 

other streams in the region (i.e., conductivity values between 300-500 umohs/L) (Table 

3.2). Average canopy cover was similar at all sites (between 78.6% and 95.0%), except 

Otter Creek, which had a more open canopy (Table 3.1). 

 

Methods - Field Sampling 

I conducted area-constrained searches of natural cover objects within the creek 

channel and banks at all field sites for R. septemvittata and N. sipedon between April and 

early June 2016 to capture and mark snakes with PIT tags prior to beginning PIT 

telemetry surveys. Snakes were transported back to the lab in individual snake bags or 

containers where they were photographed, weighed, measured (snout-vent length and 

total length), sexed and visually assessed for clinical signs of SFD (presence/absence). 

Clinical signs were considered “present” if dermal lesions were observed. If clinical signs 

were present, a sterile polyester tipped swab was first dipped in sterile water (Fisher 

Scientific, BP2484-100) and then brushed across the lesion five times. If clinical were 

absent, snakes were swabbed five times on the dorsal midline, over a small section of 
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scales. Swabs were placed into plastic vials and stored in a -40°C freezer. Snakes were 

subcutaneously marked with passive integrated transponder (PIT) tags, using the 

Biomark MK10 implanter with 134.2 kHz, 12.5 mm PIT tag (Figure 3.1), along the 

posterior third of the venter above the cloaca (Oldham et al. 2016). The injection site was 

sanitized with iodine or a 10% hydrogen peroxide solution. After processing, snakes were 

kept in individual enclosures before being returned to their original location within 48 

hours of capture. To reduce cross contamination between snakes, gloves were worn, and 

all equipment was sanitized with a 10% bleach solution.  

I conducted sixteen PIT telemetry surveys at each study site between early June 

and October of 2016 to detect marked snakes and collect encounter data for capture-

mark-recapture analyses. Passive Integrated Transponder telemetry surveys consisted of 

one person holding the Biomark HPR Plus portable PIT tag reader and the Biomark BP 

Portable Antenna Plus and sweeping the antenna over creek banks, and any exposed 

rocks (Oldham et al. 2016). The antenna is capable of detecting PIT tags up to 43.2 cm 

away for the type of tags used. When a PIT tag was detected, I attempted locating the 

snake to visually confirm its presence. If a snake was not located, it was recorded as a 

non-visual detection. Recaptured snakes were photographed, weighed, measured, clinical 

signs recorded, and the snake was swabbed for O. ophiodiicola. Subsequent measuring 

occurred in the field only if the snake had not been captured within the past 30 days. 

Otherwise, the snake was confirmed alive and immediately released. On some occasions 

snakes were seen, but I were unable to recapture them. If unmarked snakes were 

opportunistically discovered, they were implanted with a PIT tag and processed (see 
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above). Surveys occurred every 7 to 10 days. I recorded time, air temperature, wind 

speed, day of last rain, and cloud cover at the beginning and end of each survey.  

 

Methods - Laboratory Assessment/Determining Disease Status 

I used two methods, in conjunction, to determine disease status for each snake. 

First, I reviewed photos of snakes for the presence or absence of specific clinical signs. 

These clinical signs were separated into two categories, indicative of SFD and non-

indicative of SFD. Clinical signs that were indicative of SFD included: regional edema, 

local (scale) edema, crust with stratum corneum, crust without stratum corneum, nodule, 

and ulcer. Clinical signs that were not indicative of SFD included: healed, discoloration, 

non-SFD lesion (i.e., skin damage that did not appear infected, like a wound, puncture or 

scrape; see Appendix for definitions of clinical signs). Second, I used real-time PCR to 

determine the presence O. ophidiocola according to protocols in Bohuski et al. (2015). If 

a snake had less than 116 copies of fungal DNA, and no clinical signs indicative of SFD, 

I defined the snake as SFD negative (J. Lorch pers. comm.). If a snake had greater than 

116 copies of fungal DNA, and at least one clinical sign that was indicative of SFD, I 

considered the snake to be SFD positive. Finally, snakes with less than 116 copies of 

fungal DNA, and at least two clinical signs indicative of SFD were also considered 

positive for SFD. 

All research was compliant with University of Kentucky IACUC protocol (2013-

1073). Permits were obtained from the Kentucky Department of Fish and Wildlife 

Resources (SC1511017, SC1611043, SC1611136).  
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Statistical Methods 

 I used a multistate capture-recapture model to estimate the probability that 

individuals transition from “alive”, “dead”, “temporarily emigrated” or “permanently 

emigrated” states by utilizing visual resighting and PIT tag detections (Connette and 

Semlitsch, 2015; Figure 3.3). Each individual was recorded as either not detected (0), 

detected with the PIT tag antenna only (1), or visually detected (2). During a survey, a 

snake can be: alive and present in the survey area, alive and dead within the survey area, 

alive and absent from the survey area, dead and absent from the survey area, or 

permanently emigrated. Snakes can transition between states until they reach an 

“absorbing state” (i.e. dead or permanently emigrated from the study area) (Connette and 

Semlitsch 2015). The populations of snakes at these study sites were open to mortality, 

permanent emigration and temporary emigration between surveys. Permanent emigration 

is when a snake leaves the study area (outside of the survey reach, or out of range of the 

PIT-tag reader) and is not detected again. Temporary emigration occurs when a snake 

leaves the study reach or is out of range of the PIT-tag reader but returns and is detected 

again. The model assumes individuals can be visually encountered when they are alive 

and present within the study area and that PIT-tag detections are possible for those 

individuals, as well as those dead within the study area. Survey data were summarized in 

an encounter matrix, where an individual was (1) detected with the PIT tag reader only, 

(2) visually resighted, and (3) not detected during the survey (Connette and Semlitsch 

2015). I used a state-space formulation (Kéry and Schaub 2012), where the true state of 

an individual at time t + 1 is conditional on the state of the individual at the previous 

survey.  



 
 

30 

 To examine the effect of SFD on monthly survival, permanent emigration, visual 

detection, temporary emigration, and temporary immigration, I incorporated the 

following covariates into my model: species (R. spetemvittata, N. sipedon) and disease 

status (SFD, or no SFD). Disease status was treated as constant, and if a snake had SFD 

at one occasion during the sampling season, I assumed it had SFD for the duration of the 

project. I considered cloud cover and temperature as covariates for visual detection 

because I believe these factors influence basking behavior of snakes within the site (Sun 

et al. 2001). In other words, on warmer and less cloudier days snakes are more likely to 

be surface active than on cooler, cloudier days. Day of year was used as a covariate for 

temporary emigration because snakes may have seasonal movement patterns and may 

prefer to occupy a specific section of a stream at a specific time of year (Mushinsky et al. 

1980).  

I used the program R version 3.4.0 (R Development Core Team 2017), and the 

package jagsUI 1.4.4 (Kellner 2016) to access JAGS 4.2.0 (Plummer 2003). I assigned 

uninformative uniform priors (0,1) to the parameters for survival, permanent emigration, 

and PIT-tag detection. I assigned uniform priors (-5,5) to the parameters for visual 

detection, temporary emigration, and temporary immigration. I assigned uniform priors (-

10, 10) to the covariates for visual detection (cloud cover, temperature), and temporary 

emigration (day of year). This model ran three parallel Markov chains comprised of 

800,000 MCMC iterations, a thinning rate of 50, and an initial burn-in of 400,000 which 

yielded 48,000 samples from the joint posterior. Convergence was and evaluated using 

the Gelman-Rubin statistic (r̂, Gelman et al. 2004) for which convergence occurs when r̂ 

< 1.01. This model had successful convergence of all parameters. 
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Results 

During 2016, I marked and processed 525 individuals across my six study sites, 

with most individuals being marked in April-early June. I marked 232 R. septemvittata 

and 293 N. sipedon. I considered 98/232 (42.24%) of R. septemvittata and 56/293 

(19.11%) of N. sipedon with SFD based on clinical signs and results of PCR test. 

Through my 16 PIT telemetry surveys at each site, I recorded 1330 PIT-tag detections. I 

classified 902 of these detections as confirmed alive if I capture the snake in hand, or 

visually identified it (Table 3.3). My recapture rates, if only visual detections are included 

(i.e. snake confirmed alive), for R. septemvittata was 45.7% (102/232) and for N. 

sipedon, was 35.5% (104/293). 

Within-season monthly survival was high (0.99, 95% CRI: 0.96-1.00) for both 

snake species and I found no difference between diseased and non-diseased snakes (Table 

3.5, Figure 3.3). However, I found that disease status affected behavior and movement 

(Table 3.5, Figure 3.3). Specifically, permanent emigration was lower in R. septemvittata 

with SFD (0.07, 95% CRI: 0.01-0.14) compared to non-diseased R. septemvittata (0.23, 

95% CRI: 0.16-0.30). Furthermore, in R. septemvittata with SFD, temporary immigration 

was lower (0.54, 95% CRI: 0.52-0.57) than the estimate for R. septemvittata without SFD 

(0.58, 95% CRI: 0.55-0.62). I found that N. sipedon with SFD, had reduced temporary 

immigration rates (0.55, 95% CRI: 0.52-0.59) compared to N. sipedon without SFD 

(0.58, 95% CRI: 0.55-0.61). Temporary emigration probabilities for R. septemvittata and 

N. sipedon did not differ between diseased and non-diseased snakes (Table 3.5, Figure 
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3.3). However, the probability of a snake temporarily emigrating increased as day of year 

increased (Figure 3.4).  

I found that the estimated probability of detecting an individual marked snake 

within range of the PIT tag reader, regardless of species or disease status was 0.43 (CRI: 

0.33-0.55) and was positively associated with increasing temperature and negatively 

associated with increasing cloud cover for all snakes (Figure 3.5, 3.6). Furthermore, I 

found that disease state affected detection probabilities (Figure 3.5). The mean 

probability for visual detection was higher for diseased snakes (R. septemvittata: 0.61, 

95% CRI: 0.54-0.68; N. sipedon: 0.52, 95% CRI: 0.40-0.64) than non-diseased snakes (R. 

septemvittata: 0.42, 95% CRI: 0.35-0.49; N. sipedon: 0.44, 95% CRI: 0.39-0.50), 

indicating greater degree of surface activity. 

 

Discussion 

Using a multi-state capture-mark-recapture model and PIT telemetry, I examined 

the population-level impacts of SFD by addressing the question: does SFD affect the 

short-term survival, movement, and behavior of wild snakes? I found no evidence that 

SFD impacted short-term survival in either of the species examined. Yet, I found an 

increased probability of visual detection for SFD positive snakes, indicating the SFD may 

alter behavior. Additionally, lower rates of temporary and permanent emigration and 

temporary immigration indicate the SFD may also impact movements.   

I found high monthly survival over four and a half months of field sampling with 

monthly survival estimates approaching 0.99 for both species. My results differ from 

other studies that allude to decreased short-term survival of snakes afflicted with SFD 
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(Allender et al. 2011, Tetzlaff et al. 2017). Individual mortality has been documented and 

appears more commonly documented than population declines (Tetzlaff et al. 2017, 

Allender et al. 2011, Lorch et al. 2015). Snakes infected with O. ophiodiicola often have 

severe infections of the head, mouth and eyes that may directly limit the procurement of 

prey, that may result in death if the infection cannot be cleared, and normal feeding 

behaviors resume (Lorch et al. 2016). Indeed, in both field and lab settings infected 

snakes have shown either emaciation, or refusal to eat when presented with food (Lorch 

et al. 2015, Lorch et al. 2016, McCoy, Lind and Farrell 2017).  Additionally, McCoy, 

Lind and Farrell (2017) documented a negative relationship between the severity of 

clinical signs and body condition index. Although the snakes that I captured and assessed 

had clinical signs on the head, mouth and eyes, the severity and extent of these clinical 

signs was less severe than those documented in previous studies (Allender et al. 2011, 

McCoy, Lind and Farrell 2017). Therefore, the inability to procure food, likely did not 

impact the snakes in this study in the short-term. 

A possible explanation for the high rates of visual detection in snakes with SFD 

may be that diseased snakes increase basking to overcome infection (Burns et al. 1996). 

A previous laboratory study noted that Patherophis guttatus infected with O. 

ophiodiicola spent more time in conspicuous areas of their enclosures, despite having 

access to a shelter and being kept in stable environmental conditions (Lorch et al. 2015). 

In field settings, increased basking may result in “risky” behaviors including emerging 

early from hibernation to bask and subsequently dying from exposure. Furthermore, 

increased basking makes snakes more vulnerable to predators, as snakes are spending 

more time in conspicuous places (Lorch et al. 2016). If initial body temperatures are low 
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while a snake is engaging in “risky” basking behavior, its ability to escape predators 

could be impaired as there is a strong relationship between body temperature and flight 

distance (Layne and Ford 1984). However, in my study populations it appears that this 

increased surface activity does not influence short-term survival. This could be because 

of the proximity of available cover objects, that were abundant at all study sites. 

Additionally, consistently warm temperatures (Table 3.4) experienced during my study 

period (June-October) would allow snakes to maintain higher initial body temperatures, 

suggesting little impact to their ability to escape predators while basking.  

More importantly, increased surface activity of infected individuals complicates 

estimating the proportion of diseased snakes within a population. Since diseased 

individuals are more surface-active, they may be over-represented in surface counts 

which could lead to an over-estimation of diseased individuals within a population. 

Surveys of snake populations should account for this behavioral change to yield 

appropriate estimates of disease rates in a population.  

Furthermore, snakes afflicted with SFD showed reduced movement (permanent 

emigration, temporary immigration). These results are consistent with a study on 25 

Sistrurus catenatus in Michigan that found individuals with O. ophiodiicola or with 

clinical signs of SFD moved less frequently than individuals deemed uninfected (Tetzlaff 

et al. 2017). Overall, reductions in movement could have consequences for behaviors 

such as foraging, mate finding, and dispersal. Snakes with SFD are often emaciated 

which could be the result of reduced foraging (Lorch et al. 2015; Lorch et al. 2016; 

Tetzlaff et al. 2017; McCoy, Lind and Farrell 2017). Additionally, decreased activity in 

response to infection has been documented in other reptiles, such as reduced activity in 
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Sceloporus occidentalis infected with malaria (Dunlap and Church 1996). Reduced 

movement in diseased snakes which would further overestimate surface counts of 

diseased individuals in a population, as diseased individuals are less likely to leave the 

study area. 

Long-term consequences on survival and population persistence cannot be 

addressed by my data, which are limited to one active season (4.5 months). Despite 

documented population declines caused by O. ophiodiicola in timber rattlesnakes and the 

Lake Erie watersnake (Clark et al. 2011; Lorch et al. 2016), it is possible that these 

declines may not manifest until snakes emerge from overwintering or that these 

populations had specific demographic traits that make them especially vulnerable to a 

fungal outbreak (small population size, inbreeding depression, loss of habitat). Previous 

SFD infections can reoccur in individuals emerging from hibernation and physiological 

changes induced by hibernation may make snakes more vulnerable to infection (Lorch et 

al. 2016). The need to thermoregulate can drive snakes to emerge early from hibernation 

and succumb to low overnight temperatures (Lorch et al. 2016). Long-term studies are 

underway to examine changes in densities and long-term survival within these 

populations (J. Lorch pers. comm.). 

By utilizing PIT tags to mark individuals and focusing my sampling efforts on 

two species of relatively common snakes in Kentucky (R. septemvittata, and N. sipedon) I 

was able to procure a large sample size and enhance detection probabilities. I had higher 

detection probabilities than a previous capture-mark-recapture study on R. septemvittata, 

which reported recapture rates of only 18.6% (13/70) of marked snakes (Branson and 

Baker 1974). My recapture rates for marked R. septemvittata was 45.7% (102/232), and 
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35.5% (104/293) of marked N. sipedon. In comparison, recapture rates for Thamnophis 

atratus, a snake often associated with streams, similar to N. sipedon, annual recapture 

rates ranged from 13 to 32% (Lind et al. 2005). By using PIT-tags and PIT telemetry I 

were able to recapture more individuals than if I were using traditional methods. 

Furthermore, traditional CMR methods can underestimate true survival because it is not 

possible to differentiate between emigration and mortality, my use of PIT telemetry 

allows us to use auxiliary data (when a snake is detected with the PIT tag reader, but not 

detected visually) to distinguish between these two sources of loss within a population. 

Without distinguishing between these two sources of loss, it cannot be determined if a 

disease is responsible for population declines, or if another factor exists within the 

population that is driving permanent emigration from the study site. Since snake 

populations are traditionally touted as challenging to study, I present methodologies that 

substantially improves data collection for these secretive species (Durso, Wilson and 

Winne 2011). With SFD considered a threat to snake populations, and a current lack of 

population-level studies, I feel these methods will be incredibly useful for exploring the 

effect SFD has on snake populations. 

My results indicate that in free-ranging snakes, behavioral consequences due to 

SFD are occurring at the population-level. Research on SFD thus far has focused on 

documenting fungal characteristics, geographic range of O. ophiodiicola and individual 

consequences of infection. I suggested increased monitoring of snake populations over 

multiple years to understand seasonal patterns that could be driving infection dynamics 

(Lind et al. 2018; McCoy et al. 2017). The fungus that causes SFD has a broad host range 

and can persist in the environment, although environmental traits that facilitate 
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persistence are not known at this time (Lorch et al. 2016). Understanding the role 

environmental temperature, and rainfall play in disease dynamics would allow us to 

locate geographically vulnerable snake populations. Additionally, characterizing 

demographics (small population, isolated, increased conspecific interactions) that might 

make snakes more vulnerable to contracting or spreading SFD would allow the allocating 

of resources of protect these populations. 
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Table 3.1 Descriptive Characteristics of Study Site. County, stream order, geographic 

coordinates, survey length and canopy cover for study sites. 

 

Study Site County 
Stream 

Order 

Geographic 

Coordinates 

(Latitude, 

Longitude) 

Survey 

Length 

(meters) 

Canopy 

Cover* 

Little 

Hickman 

Creek 

Jessamine 1 
37.774879, 

-84.566452 
755 14.29 ± 9.68 

Tates Creek Madison 2 
37.76375, 

-84.35667 
510 13.67 ± 4.78 

Otter Creek Madison 2 
37.84716, 

-84.24734 
470 6.90 ± 7.31 

Glenns Creek Woodford 3 
38.13435, 

-84.82336 
293 11.79 ± 6.69 

Elias and 

Hickman 

Creek 

Fayette 1, 4 
37.954559, 

-84.510384 
1005 12.45 ± 8.80 

Elkhorn Creek Fayette 1 
38.03981, 

-84.42525 
399 14.06 ± 4.94 

*Average number of points obscured on a densiometer. 
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Table 3.2 Water Chemistry. Average water chemistry with standard deviations for all field sites. 

 

Site 
Cond 

(umohs/L) 

TOC 

(mg/L C) 

PO4 

(mg/L) 

pH 

(H+) 

Mn 

(mg/L) 

Cl 

(mg/L) 

SO4 

(mg/L) 

NO3-N 

(mg/L) 

NH4-N 

(mg/L) 

Ca 

(mg/L) 

Elias and 

Hickman 

Creek 

532.63 ± 

131.37 

12.08 ± 

6.48 

2.55 ± 

4.08 

6.85 

± 

0.20 

0.04 ± 

0.04 

1.07 ± 

0.52 

31.75 ± 

30.16 

0.44 ± 

0.27 

0.04 ± 

0.06 

54.01 ± 

11.92 

Elkhorn 

Creek 

493.00 ± 

154.47 

10.83 ± 

9.94 

4.34 ± 

3.71 

6.69 

± 

0.11 

0.02 ± 

0.02 

1.04 ± 

0.35 

47.38 ± 

76.77 

0.23 ± 

0.26 

0.05 ± 

0.08 

50.64 ± 

8.33 

Glenns 

Creek 

519.25 ± 

101.15 

14.12 ± 

8.43 

0.74 ± 

0.54 

7.5 ± 

0.07 

0.02 ± 

0.02 

1.07 ± 

0.32 

22.66 ± 

24.42 

1.81 ± 

0.47 

0.005 ± 

0.01 

57.26 ± 

11.12 

Otter 

Creek 

316.75 ± 

55.06 

13.79 ± 

7.29 

5.36 ± 

4.63 

7.25 

± 

0.10 

0.07 ± 

0.10 

0.94 ± 

0.35 

101.82 

± 

109.83 

0.02 ± 

0.02 

0.03 ± 

0.07 

31.85 ± 

9.94 

Little 

Hickman 

Creek 

340.25 ± 

40.41 

12.16 ± 

7.41 

6.92 ± 

8.63 

6.97 

± 

0.10 

0.03 ± 

0.02 

0.88 ± 

0.31 

75.33 ± 

25.36 

0.30 ± 

0.27 

0.02 ± 

0.03 

45.44 ± 

5.84 

Tates 

Creek 

450.50 ± 

51.32 

10.95 ± 

6.61 

0.02 ± 

0.04 

7.20 

± 

0.12 

0.02 ± 

0.02 

1.15 ± 

0.53 

58.00 ± 

21.04 

0.16 ± 

0.13 

0.005 ± 

0.01 

50.57 ± 

11.08 
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Table 3.2 (continued) 

Site 
Mg 

(mg/L) 

K 

(mg/L) 

Na 

(mg/L) 

NO2-N 

(mg/L) 

Elias and 

Hickman 

Creek 

5.91 ± 

2.71 

2.58 ± 

0.53 

13.35 ± 

3.89 

0.08 ± 

0.18 

Elkhorn 

Creek 

6.33 ± 

2.83 

3.13 ± 

0.89 

12.49 ± 

1.65 

0.11 ± 

0.14 

Glenns 

Creek 

5.53 ± 

2.68 

5.1 ± 

1.04 

16.79 ± 

1.02 

0.08 ± 

0.06 

Otter 

Creek 

10.65 ± 

0.69 

3.88 ± 

0.32 

4.12 ± 

0.42 

0.06 ± 

0.04 

Little 

Hickman 

Creek 

4.92 ± 

1.93 

3.67 ± 

0.45 

3.68 ± 

0.72 

0.08 ± 

0.06 

Tates 

Creek 

9.77 ± 

0.80 

3.9 ± 

0.47 

12.63 ± 

1.69 

0.10 ± 

0.11 
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Table 3.3 Frequency of PIT-tag Detections by Type of Detection, Disease Status and 

Species. Number of snakes, by species, marked, detected, detected and visually 

confirmed alive, PIT-tag only detections, with SFD, and without SFD in central 

Kentucky, USA 2016. 

 

Species 
Number 

Marked 

Number 

of 

Detections 

Total 

Visual 

Detections 

Total 

PIT-

tag  

With 

SFD 

Without 

SFD 

Regina 

septemvittata 
232 645 438 207 98 127 

Nerodia 

sipedon 
293 685 464 221 56 226 

Total 525 1330 902 428 154 353 
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Table 3.4 Air Temperature, Windspeed, Water Temperature, Day Since Last Rain and Cloud Cover for All Surveys. Averages and 

standard deviations for covariates (air temperature, windspeed, water temperature, days since last rain, and cloud cover) recorded at 

the start and end of PIT-tag telemetry surveys, when specified. 

 

Site 

Starting Air 

Temperature 

(°C) 

Ending Air 

Temperature 

(°C) 

Starting 

Windspeed 

(mph) 

Ending 

Windspeed 

(mph) 

Water 

Temperature 

(°C) 

Days 

since 

Last 

Rain 

Cloud 

Cover 

(eighths) 

Elias and 

Hickman 

Creek 

23.78 ± 1.54 26.14 ± 1.99 0.56 ± 0.90 0.94 ± 0.77 22.52 ± 2.44 
2.24 ± 

2.66 
3 ± 2.97 

Elkhorn 

Creek 
24.66 ± 1.91 26.95 ± 2.83 0.69 ± 0.62 1.39 ± 1.13 21.55 ± 2.12 

1.88 ± 

1.80 
1.76 ± 2.28 

Glenns 

Creek 
24.88 ± 2.63 27.21 ± 2.95 0.36 ± 0.48 0.55 ± 0.69 22.45 ± 1.88 

4.19 ± 

5.32 
2.56 ± 2.18 

Otter Creek 23.95 ± 2.38 27.62 ± 3.20 0.44 ± 0.46 1.08 ± 0.98 24.35 ± 2.95 
1.94 ± 

1.43 
4 ± 3.12 

Little 

Hickman 

Creek 

23.25 ± 2.25 26.83 ± 2.56 0.72 ± 0.56 0.59 ± 0.66 21.13 ± 2.16 
1.89 ± 

1.64 
3.00 ± 3.33 

Tates Creek 23.84 ± 2.35 27.34 ± 3.22 0.70 ± 0.70 0.39 ± 0.58 22.03 ± 3.06 
2.75 ± 

2.21 
2.94 ± 2.91 
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Table 3.5 Model Probability Rates. Model probability rates (posterior mean ± 1 SD) for 

monthly survival, permanent emigration, visual detection, temporary emigration and 

temporary immigration for both species, with and without SFD. 

 

 

 

 

 

 

 

 

            Regina septemvittata Nerodia sipedon 

Diseased - + - + 

Monthly Survival 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 

Permanent Emigration 0.23 ± 0.03 0.07 ± 0.03 0.25 ± 0.03 0.21 ± 0.06 

Visual Detection 0.42 ± 0.04 0.61 ± 0.04 0.45 ± 0.03 0.52 ± 0.06 

Temporary Emigration 0.44 ± 0.10 0.40 ± 0.08 0.51 ± 0.09 0.51 ± 0.09 

Temporary Immigration 0.58 ± 0.02 0.54 ± 0.01 0.58 ± 0.01 0.55 ± 0.02 
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Figure 3.1 Passive Integrated Transponder (PIT) Tag. An 134.2 kHz 12.5 mm passive integrated transponder (PIT) tag used to 

subcutaneously mark snakes. 
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Figure 3.2 Conceptual Diagram of Multi-State Model. Conceptual diagram of model for 

estimating emigration, survival, and availability for PIT-tag detection
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Figure 3.3 Estimated Difference in Parameters Estimates for Diseased and Non-Diseased 

Snakes. Estimated difference in parameter estimates for diseased and non-diseased 

snakes (logit-scale).  The black bars represent R. septemvittata and the gray bars 

represent N. sipedon. Points indicate posterior means, thin bars indicate 90% credible 

intervals, and thick bars indicate 95% credible intervals.
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Figure 3.4 Predicted Relationship Between Temporary Emigration and Day of Year. The 

predicted relationship and 95% credible interval between temporary emigration 

probability and day of year for (A) R. septemvittata without SFD, (B) R. septemvittata 

with SFD, (C) N. sipedon without SFD, and (D) N. sipedon with SFD. For all snakes, 

temporary emigration probability increasing as day of year increases. 
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Figure 3.5 Predicted Relationship Between Visual Detection and Temperature. The 

predicted relationship and 95% credible interval between visual detection probability and 

temperature for (A) R. septemvittata without SFD, (B) R. septemvittata with SFD, (C) N. 

sipedon without SFD, and (D) N. sipedon with SFD. For all snakes, visual detection 

probability is positively correlated with increasing temperature. 
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Figure 3.6 Predicted Relationship Between Visual Detection and Cloud Cover. The 

predicted relationship and 95% credible interval between visual detection probability and 

cloud cover for (A) R. septemvittata negative for SFD, (B) R. septemvittata positive for 

SFD, (C) N. sipedon negative for SFD, and (D) N. sipedon positive for SFD. For all 

snakes, visual detection probability is negatively associated with increasing cloud cover. 
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APPENDICES 

 

Appendix A: Description of Specific Clinical Signs 

 

In Chapter 3, photographs of captured snakes were reviewed to classify any clinical 

sign observed into specific categories. Certain clinical signs (regional edema, local [scale] 

edema, crust with stratum corneum, crust without stratum corneum, nodule and ulcer) were 

considered indicative of SFD. The following is a detailed description with examples of 

each clinical sign category used. 

Regional edema involves generalized swelling of an entire area of the body and is 

among the first clinical signs to occur during initial infection by O. ophiodiicola (Figure 

A.1). Regional edema typically lasts briefly but can persist if infection is severe. Scale 

damage has likely not yet occurred during this stage of infection. Ophidiomyces 

ophiodiicola is under the outer layer of skin at this stage of infection. Local (scale) edema 

is occurs when immune cells move to the exact scales that are infected (Figure A.2). This 

clinical sign manifests as swelling and discoloration (whitening or yellowing) of infected 

scales. Scales can become inflated with fluid and resemble blisters. This can last for several 

days and can be present at the edge of advanced lesions. At this stage of infection, O. 

ophiodiicola is present under the skin. Crust with stratum corneum occurs when immune 

cells respond to the site of infection and release reactive oxygen compounds to kill the 

fungus (Figure A.3). However, this kills the snakes’ own skin cells in the process. When 

these cells die, the skin becomes necrotic and turns yellowish-brown. While not technically 

crusts, they become thickened and hardened. When crusts first start to form the stratum 

corneum is still intact and covers the crust which may make the crust look smooth and 
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shiny. At this stage, O. ophiodiicola begins rapidly producing spores underneath the 

stratum corneum. Crust without stratum corneum occur when the stratum corneum 

detaches from the lesion, exposing the underlying crust before the snake can molt (Figure 

A.4). When the stratum corneum detaches, the crust appears dull with a roughened surface. 

This clinical sign can be common on ventral scales where the snakes’ movement against 

the substrate facilitates removal of the stratum corneum. Without the stratum corneum, O. 

ophiodiicola and its spores are present in greater abundance on the surface of the skin. A 

snake at this stage of infection may molt and rid themselves of the infection, or restart the 

infection process. Ulcers occur when the epidermis is removed and the underlying layers 

of skin are exposed to show the presence of blood or pink skin (Figure A.5). Ulcers can 

occur when a crust detaches during a molt, or due to mechanical removal. Unless part of 

the crust is still attached to the skin, it can be very difficult to determine when if an ulcer 

is the result of SFD, or some other injury or infection. Ulcers can facilitate infection by 

providing an invasion site for O. ophiodiicola. Edema or crusts can be present surrounding 

the ulcer. Ulcers can take a long time to heal and may present as areas of the skin lacking 

scales. Healed scales occur when a snake with SFD, or some other form of skin damage 

molts, and the new scales or skin appear to be abnormal (Figure A.6). Several molt cycles 

are often needed for the skin to regain its typical appearance. Snakes that have had SFD 

but subsequently shed, will often have scales that appear small, wrinkled, or with irregular 

edges. It can take several days or weeks for a recurring O. ophiodiicola infection to begin 

showing clinical signs again after a molt. Snakes that had SFD and very recently shed may 

have residual O. ophiodiicola on the surface of their new skin, even though they may never 

re-develop the disease. A nodule occurs when immune cells form a granuloma around a 
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pathogen in living tissue (Figure A.7). In SFD granulomas will only form if O. ophiodiicola 

penetrates the dermis. Nodules may be covered by crusted skin, or they may be covered by 

healthy-looking skin. The granuloma will remain for a long time, even after the skin 

appears healed. Nodules are non-specific and can result from bacterial, fungal or parasitic 

infections. Sometimes crusts can become so thickened that they form a mass that resembles 

a nodule, but true nodules occur deeper in the skin. Snakes sometimes have abnormally-

colored scales (discoloration) without signs of edema or crusting (Figure A.8). These 

snakes likely do not have skin infections, unless they have other types of lesions present. 

Non-SFD lesions include skin damaged that appeared to be mechanical (i.e., crushing 

wounds, punctures, scrapes) (Figure A.9). Dysecdysis covers any type of abnormal 

shedding, including skin flaking off in pieces, rather than molting off in one piece, or old 

skin sticking to the new skin after a molt (Figure A.10). While this is common with SFD, 

it can be caused by other issues as well. 
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Figure A.1. Regional edema caused by O. ophiodiicola near the head of captured R. septemvittata (left) and N. sipedon (right). 
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Figure A.2. Local (scale) edema on three locations (dorsal, ventral and head) on different R. septemvittata. 
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Figure A.3. Two N. sipedon (left and right) and one R. septemvittata (center) with instances of crusts with the stratum corneum 

intact. 
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Figure A.4. Crusts without the stratum corneum on two R. septemvittata (left, center) and one N. sipedon (right). 
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Figure A.5. Ulcers found on one N. sipedon (left) and two R. septemvittata (center, right). They are characterized by exposed 

pink skin. 
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Figure A.6. Healed scales are in one N. sipedon (left) and two R. septemvittata (center, right). These scales often appear to be 

irregularly shaped or abnormal. 
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Figure A.7. A R. septemvittata with multiple nodules along its body. Nodules may be covered by healthy-looking or by crusty 

skin. 
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Figure A.8. Discoloration in two R. septemvittata. Discoloration is not always an indicator of O. ophiodiicola. 
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Figure A.9. Three R. septemvittata are depicted with non-SFD lesions, which includes any mechanical-looking skin damage. 
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Figure A.10. Examples of dysecdysis in one R. septemvittata (left) and one N. sipedon (right). 
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Appendix B: R Code For Chapter 2 

 

B.1. Swab and Scale Clip Comparison R Code 

 
#######################Swab v. Scale Clip 

Comparision################################################# 

###########################December 14, 

2016########################################################## 

 

#clear all variables 

rm(list=ls()) 

graphics.off() 

 

#set working directory 

getwd() 

setwd("C:\\") 

 

#load data and rename for easier typing 

sc<-read.csv(file.choose(), fill = NA, header = TRUE) #swabscaleminimal.csv 

test<-read.csv(file.choose(), fill = NA, header = TRUE)  

View(sc) 

View(test) 

#making a contingency table 

#loading MASS package 

library(MASS) 

 

#creating a labelled table 

table <- matrix(c(54,21,30,68),ncol=2,byrow=TRUE) 

colnames(table) <- c("Swab Neg","Swab Pos") 

rownames(table) <- c("Scale Neg","Scale Pos") 

table <- as.table(table) 

table 

 

#chi squared test 

chisq.test(table) 

 

#mcnemar's test 

mcnemar.test(table) 

 

#making a barplot for the contingency table 

library(ggplot2) 

install.packages("ggplot2") 

 

#reading in a different data set 

graph<-read.csv(file.choose(), fill = NA, header = TRUE) 

View(graph) 

 

graph1<-ggplot(data=graph, aes(x=graph$Scale.Swab.Sample.Results, y=graph$Percent.of.Total)) + 

  geom_bar(stat="identity", width = 0.5, fill="black") + xlab("Scale-Swab Sample Results") + 

ylab("Percent of Total")+ 

  theme_bw() + theme(axis.text.x = element_text(colour="black",size=14),axis.text.y = 

element_text(colour="black",size=14), 

  axis.title.x = element_text(colour="black",size=14), axis.title.y = element_text(colour="black",size=14 )) 

+ 
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  theme(panel.border = element_blank(), panel.grid.major = element_blank(), 

  panel.grid.minor = element_blank(),axis.line.x = element_line(color="black", size = 0.8), 

  axis.line.y = element_line(color="black", size = 0.8)) + scale_y_continuous(expand = c(0,0)) + 

  expand_limits(y=c(0,100)) 

 

graph1 

 

B.2. Chapter 2 Model and Graph R Code 
 

##Model Code For Chapter 2 

 

#clear all variables 

rm(list=ls()) 

graphics.off() 

 

#set working directory 

getwd() 

setwd("C:\\") 

 

#load data and rename for easier typing 

ct<-read.csv(file.choose(), fill = NA, header = TRUE) #using all snakes cleaned.csv 

 

View(ct) 

 

#checking the structure of clinical and PCR 

str(ct$clinical) 

str(ct$pcr) 

 

ct$clinical <- factor(ct$clinical) 

ct$pcr <- factor(ct$pcr) 

#viewing data 

ct[1:5,] 

 

#loading package 

library(lme4) 

 

#checking what type of variable submitter id 

str(ct$Submitter.ID) 

as.numeric(table(ct$Submitter.ID)) 

 

#running season models 

mod4<-glmer(pcr ~ season + (1|Submitter.ID), family="binomial", data=ct) 

summary(mod4) 

 

mod4.1<-glmer(pcr ~ clinical  + (1|Submitter.ID), family="binomial", data=ct) 

summary(mod4.1) 

 

mod4.2<- glmer(pcr ~ group  + (1|Submitter.ID), family="binomial", data=ct) 

summary(mod4.2) 

 

mod4.3<-glmer(pcr ~ season  + clinical + (1|Submitter.ID), family="binomial", data=ct) 

summary(mod4.3) 

 

mod4.4<-glmer(pcr ~ season  + group + (1|Submitter.ID), family="binomial", data=ct) 

summary(mod4.4) 
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mod4.5<-glmer(pcr ~ clinical  + group + (1|Submitter.ID), family="binomial", data=ct) 

summary(mod4.5) 

 

mod4.6 <- glmer(pcr ~ season + clinical + group  + (1|Submitter.ID), family="binomial", data=ct) 

summary(mod4.6) 

 

# Make AIC table with other models included 

table_AIC <- AIC(mod4, mod4.1, mod4.2, mod4.3, mod4.4, mod4.5, mod4.6) 

table_AIC$AICc <- table_AIC[,2] + (2*table_AIC[,1]*(table_AIC[,1]+1))/(nrow(ct)-table_AIC[,1]-1) 

table_AIC$dAICc <- table_AIC$AICc - min(table_AIC$AICc) 

table_AIC$modLik <- exp(-table_AIC$dAICc/2) 

table_AIC$weights <- table_AIC$modLik/sum(table_AIC$modLik) 

 

#### Make AIC Table 

rownames(table_AIC) <-  c("Season", "Clinical Signs", "Group", "Season + Clinical Signs", "Season + 

Group", "Clinical + Group", "Season + Clinical + Group") 

colnames(table_AIC) <- c("K","AIC","AICc","dAICc","Likelihood","weight") 

table_AIC <- table_AIC[order(table_AIC[,5]),] 

round(table_AIC,digits=2) 

 

##create a data set to make predictions 

new2 <- expand.grid(clinical = c(0,1), season=c("spring", "summer", "fall"), group=c("aquatic", 

"terrestrial")) 

new2 

 

##predictions on logit link scale 

install.packages("AICcmodavg") 

library(AICcmodavg) 

 

pred <- predictSE(mod = mod4.6, newdata = new2, se.fit = TRUE, 

                  type = "link") 

plogis(pred$fit) 

 

#####Plotting data##### 

##basic plotting, trying to get three points on the graph 

#reading in new csv to graph 

graphtest2<-read.csv(file.choose(), fill = NA, header = TRUE) #graphtest.csv 

graphtest2 

summary(graphtest2) 

 

#adjusting variable names 

graphtest2 

graphtest2 <- within(graphtest2, (Season <- factor(Season, c("Spring", "Summer", "Fall")))) 

graphtest2 

library(ggplot2) 

 

#changing the legend order 

levels(graphtest2$Status) 

graphtest2$Status<-factor(graphtest2$Status, levels =rev(levels(graphtest2$Status))) 

levels(graphtest2$Status) 

# geom_line(aes(linetype=status), size=1) + scale_linetype_discrete(name="Clinical Signs") + 

# A line graph 

p<-ggplot(data=graphtest2, aes(x=Season, y=Value, group=Status, shape=Status, colour=Status)) +  

      # Set linetype by status 

  geom_point(size=2, fill="white") +         # Use larger points, fill with white 

  expand_limits(y=c(0,1)) +                       # Set y range to include 0 
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  scale_colour_hue(name="Clinical Signs",      # Set legend title 

                   l=30)  +                  # Use darker colors (lightness=30) 

  scale_shape_manual(name="Clinical Signs", 

                     values=c(22,21)) +      # Use points with a fill color 

   

  xlab("Season") + ylab("Probability of (+) PCR") + # Set axis labels 

  ggtitle("Probability of Disease with Clinical Sign Status by Season") +     # Set title 

  theme_pubr() + 

  theme(legend.position=c(.9, .7)) 

#viewing graph 

print(p) 

 

#error bars for the plot 

#defining error bars 

limits<-aes(ymax=plogis(pred$fit + 1.96*pred$se.fit), ymin =plogis(pred$fit - 1.96*pred$se.fit)) 

#error bars on the graph 

p1<-p + geom_errorbar(limits, width=0.1, size=0.68, position=position_dodge(0.001)) 

print(p1) 

 

#making larger axis tic mark sizes 

black.13.text <- element_text(color = "black", size = 13) 

p1 + theme(axis.text = black.13.text) 

#making larger axis labels 

red.bold.italic.text <- element_text(color = "black", size=16) 

p1 + theme(axis.title = red.bold.italic.text) 

#making a larger graph title 

graph.title<-element_text(color = "black", size = 17) 

p1 + theme(plot.title = graph.title)+ theme(axis.text = black.13.text)+  

  theme(axis.title = red.bold.italic.text) 

 

###reading in data##################################################################### 

graphtest<-read.csv(file.choose(), fill = NA, header = TRUE) 

graphtest 

summary(graphtest) 

graphtest <- within(graphtest, (time <- factor(time, c("Spring", "Summer", "Fall")))) 

graphtest 

 

# A line graph 

p<-ggplot(data = graphtest, aes(x=time, y=value, color = status, shape= status, group = interaction(status, 

association))) + 

          geom_point(aes(x = time, y = value, shape = status), size = 3, fill = "white") + 

          geom_line(aes(linetype=association), size=1) + 

          expand_limits(y=c(0,1)) +   scale_colour_hue(name="Clinical Signs", l=30, c("Presence", 

"Absence"))+ 

          xlab("Season") + ylab("Probability of (+) PCR") +  

          ggtitle("Probability of Disease with Clinical Sign Status by Season") +  

          theme_bw() + 

          scale_linetype_discrete(name="Natural History") + 

          theme_bw() + theme(panel.border = element_blank(), panel.grid.major = element_blank(), 

          panel.grid.minor = element_blank(),axis.line.x = element_line(color="black", size = 0.5), 

          axis.line.y = element_line(color="black", size = 0.5))+ 

          scale_shape_discrete(name="Clinical Signs", c("Presence", "Absence")) 

           

print(p) 
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#error bars for the plot 

#defining error bars 

limits<-aes(ymax=plogis(pred$fit + 1.96*pred$se.fit), ymin =plogis(pred$fit - 1.96*pred$se.fit) ) 

#error bars on the graph 

p1<-p + geom_errorbar(limits, width=0.2, size= 0.68, position=position_dodge(0.001)) 

print(p1) 

 

#making larger axis tic mark sizes 

black.13.text <- element_text(color = "black", size = 13) 

p1 + theme(axis.text = black.13.text) 

#making larger axis labels 

red.bold.italic.text <- element_text(color = "black", size=16) 

p1 + theme(axis.title = red.bold.italic.text) 

#making a larger graph title 

graph.title<-element_text(color = "black", size = 17) 

p1 + theme(plot.title = graph.title)+ theme(axis.text = black.13.text)+  

  theme(axis.title = red.bold.italic.text) 

 

 

##create a data set to make predictions 

new4 <- expand.grid(clinical = c(0), season=c("spring", "summer", "fall"), group=c("aquatic", 

"terrestrial")) 

new4 

 

##predictions on logit link scale 

 

pred1 <- predictSE(mod = mod4.6, newdata = new4, se.fit = TRUE, 

                   type = "link") 

plogis(pred1$fit) 

limits2<-aes(ymax=plogis(pred1$fit + 1.96*pred1$se.fit), ymin =plogis(pred1$fit - 1.96*pred1$se.fit) ) 

#error bars on the graph 

abs1<-abs + geom_errorbar(limits2, width=0.2, size= 0.68, position=position_dodge(0.001)) 

print(abs1) 

####for aquatic 

aquatic<-subset(graphtest2, Group =="Aquatic") 

View(aquatic) 

 

aq<-ggplot(data = aquatic, aes(x=Season, y=Value, color = Status, shape= Status, group = Status)) + 

  geom_point(aes(x = Season, y = Value, shape = Status), size = 3, fill = "white") + 

  expand_limits(y=c(0,1)) +   scale_colour_hue(name="Clinical Signs", l=30, c("Presence", "Absence"))+ 

  xlab("Season") + ylab("Probability of (+) PCR") +  

   

  theme_pubr() + 

  scale_linetype_discrete(name="Clinical Signs", c("Presence", "Absence")) + 

  scale_shape_discrete(name="Clinical Signs", c("Presence", "Absence"))+theme(legend.position=c(0.7, 

.8)) 

 

print(aq) 

##create a data set to make predictions 

new5 <- expand.grid(clinical = c(0,1), season=c("summer", "fall", "spring"), group=c("aquatic")) 

new5 

 

##predictions on logit link scale 

pred2 <- predictSE(mod = mod4.6, newdata = new5, se.fit = TRUE, 

                   type = "link") 

plogis(pred2$fit) 
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limits3<-aes(ymax=plogis(pred2$fit + 1.96*pred2$se.fit), ymin =plogis(pred2$fit - 1.96*pred2$se.fit) ) 

#error bars on the graph 

aq1<-aq + geom_errorbar(limits3, width=0.2, size= 0.68, position=position_dodge(0.001)) 

print(aq1) 

 

#making larger axis tic mark sizes 

black.13.text <- element_text(color = "black", size = 34) 

aq1 + theme(axis.text = black.13.text) 

#making larger axis labels 

red.bold.italic.text <- element_text(color = "black", size=34) 

aq1 + theme(axis.title = red.bold.italic.text) 

 

#making a larger graph title 

graph.title<-element_text(color = "black", size = 36) 

aq1 + theme(plot.title = graph.title)+ theme(axis.text = black.13.text)+  

  theme(axis.title = red.bold.italic.text) + 

  theme(legend.text =element_text(color="black", size = 30)) + 

  theme(legend.title = element_text(color="black", size = 30)) 

print(tr1) 

#####terrestrial 

terrestrial<-subset(graphtest2, Group == "Terrestrial") 

View(terrestrial) 

 

tr<-ggplot(data = terrestrial, aes(x=Season, y=Value, color = Status, shape= Status, group = Status)) + 

  geom_point(aes(x = Season, y = Value, shape = Status), size = 3, fill = "white") + 

   

  expand_limits(y=c(0,1)) +   scale_colour_hue(name="Clinical Signs", l=30, c("Presence", "Absence"))+ 

  xlab("Season") + ylab("Probability of (+) PCR") +  

 

  theme_pubr()+ 

 

  scale_shape_discrete(name="Clinical Signs", c("Presence", "Absence"))+theme(legend.position=c(0.7, 

.8)) 

 

print(tr) 

 

##create a data set to make predictions 

new6 <- expand.grid(clinical = c(0,1), season=c("summer", "fall", "spring"), group=c("terrestrial")) 

new6 

 

##predictions on logit link scale 

pred3 <- predictSE(mod = mod4.6, newdata = new6, se.fit = TRUE, 

                   type = "link") 

plogis(pred3$fit) 

limits4<-aes(ymax=plogis(pred3$fit + 1.96*pred3$se.fit), ymin =plogis(pred3$fit - 1.96*pred3$se.fit) ) 

#error bars on the graph 

tr1<-tr + geom_errorbar(limits4, width=0.2, size= 0.68, position=position_dodge(0.001)) 

print(tr1) 

 

#making larger axis tic mark sizes 

black.13.text <- element_text(color = "black", size = 34) 

tr1 + theme(axis.text = black.13.text) 

#making larger axis labels 

red.bold.italic.text <- element_text(color = "black", size=34) 

tr1 + theme(axis.title = red.bold.italic.text) 
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#making a larger graph title 

graph.title<-element_text(color = "black", size = 36) 

tr1 + theme(plot.title = graph.title)+ theme(axis.text = black.13.text)+  

  theme(axis.title = red.bold.italic.text) + 

  theme(legend.text =element_text(color="black", size = 30)) + 

  theme(legend.title = element_text(color="black", size = 30)) 

 

B.3. Tukey Test R Code 
 

library(multcomp) 

 

summary(glht(mod4.6, linfct = mcp(season = "Tukey"))) 
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Appendix C: R Code For Chapter 3 

 

C.1. R Code for Multi-State Model 

 
######################################################################################

########## 

# Set input parameters 

options(scipen = 20)  # Turn off scientific notation for PIT-tag codes 

######################################################################################

########## 

getwd() 

# Set working directory to analysis folder 

setwd('C:/Users/User/Desktop/Current Analysis') 

 

# Import data to create observation histories 

ObsDat <- read.csv(file="ObservationData_v4.csv",strip.white = T)[,c(1:8,13)]    # Import individual 

observation data 

ObsDat$Date <- julian(as.Date(ObsDat$Date, format="%m/%d/%Y"),origin = as.Date("2016-01-01"))    # 

Convert dates to julian 

ObsDat$scan <- as.numeric(substring(ObsDat$scan,5)) + 1 

 

# Delete extra scan0 records (using the last visual detection as the "capture/release occasion") 

ObsDat$tmp <- paste0(ObsDat$id,"_",ObsDat$scan)   # Create unique id x scan combination 

ObsDat <- ObsDat[order(ObsDat$id, ObsDat$scan, -ObsDat$detection, -ObsDat$Date),]   # Order records 

ObsDat <- ObsDat[!duplicated(ObsDat$tmp),]   # delete all but the first scan0 record for an individual 

ObsDat <- ObsDat[,-ncol(ObsDat)]     # Delete the unique id x scan column 

 

# Specify number of scans/surveys and individuals 

numberofsurveys <- 17 

numberofsnakes <- length(unique(ObsDat$id))  # Calculate total number of individuals 

 

# Set up empty encounter matrices 

CH <- PCR <- Clinical <- matrix(NA,numberofsnakes,numberofsurveys) 

colnames(CH) <- colnames(PCR) <- colnames(Clinical) <- 1:17 

rownames(CH) <- rownames(PCR) <- rownames(Clinical) <- unique(ObsDat$id) 

site <- species <- firstdate <- numeric() 

 

iter=0 

for (i in unique(ObsDat$id)){   # Loop through Individuals (PIT tag Numbers) 

  iter=iter+1   # counter for individual # 

   

  ScanNumber <- ObsDat$scan[which(ObsDat$id==i)] 

  site[iter] <- ObsDat$site[which(ObsDat$id==i)[1]] 

  species[iter] <- ObsDat$Species[which(ObsDat$id==i)[1]] 

  firstdate[iter] <- min(ObsDat$Date[(which(ObsDat$id==i & ObsDat$detection==2))]) 

   

  # Create detection histories   

  DetectionType <- ObsDat$detection[which(ObsDat$id==i)]   # Extract whether visually observed or not - 

convert to numeric 

  CH[iter,colnames(CH) %in% ScanNumber] <- DetectionType      # Write those values to correct scan 

number columns 

   

  PCRType <- ObsDat$pcr[which(ObsDat$id==i)]      # Extract PCR results 
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  PCR[iter,colnames(PCR) %in% ScanNumber] <- PCRType  # Write those values to correct scan number 

column 

   

  ClinicalType <- ObsDat$clincalsign[which(ObsDat$id==i)]      # Extract clinical sign results 

  Clinical[iter,colnames(Clinical) %in% ScanNumber] <- ClinicalType  # Write those values to correct scan 

number column 

} 

 

# Find snakes never visually seen in 2016 and remove (Most from Little Hickman?) 

NeverSeen <- which(apply(CH,1,max,na.rm=T)<2) 

CH <- CH[-NeverSeen,] 

PCR <- PCR[-NeverSeen,] 

Clinical <- Clinical[-NeverSeen,] 

site <- site[-NeverSeen] 

species <- species[-NeverSeen] 

firstdate <- firstdate[-NeverSeen] 

 

# Calculate occasion of first capture for each individual 

f <- apply(CH,1,function(x){min(which(x==2))}) 

 

# Import individual-level summary data 

SurvDat <- read.csv(file="SurveyData.csv",strip.white = T)[,c(1:10)]    # Import survey data 

SurvDat$sampledate <- julian(as.Date(SurvDat$sampledate, format="%m/%d/%Y"),origin = 

as.Date("2016-01-01"))    # Convert dates to julian 

SurvDat$scan <- as.numeric(substring(SurvDat$scan,5)) + 1   # Add 1 because there's no scan0 

 

# Create matrix of survey dates by individual 

SampleDatesM <- matrix(NA,nrow=nrow(CH),ncol=ncol(CH)) 

colnames(SampleDatesM) <- 1:17 

rownames(SampleDatesM) <- rownames(CH) 

 

iter=0 

for (i in rownames(SampleDatesM)){   # Loop through Individuals (PIT tag Numbers) 

  iter=iter+1   # counter for individual # 

   

  SampleDatesM[iter,2:17] <- SurvDat$sampledate[which(as.numeric(SurvDat$site)==site[iter])] # Write 

dates surveyed 

   

  # Any survey dates before/equal to the first observation become NA 

  SampleDatesM[iter,(1:f[iter])] <- NA 

  SampleDatesM[iter,f[iter]] <- firstdate[iter] 

} 

 

# Final data manipulations 

Intervals <- t(diff(t(SampleDatesM)))  # Calculate intervals between surveys (including first capture) 

Surv <- dim(CH)[2]   # Determine number of surveys 

Ind <- dim(CH)[1]    # Determine number of individuals 

CH[which(is.na(CH))] <- 3    # Make non-detections == 3 

 

# Below uses regional weather stations to compile site/survey covariates - currently not implemented 

#FrankWeather <- read.table(file="Frankfortweather.csv",sep=",",header=T, strip.white=T)  # Must be 

ordered by date 

#FrankWeather$JDate <- julian(as.Date(FrankWeather$EDT,format="%m/%d/%Y"),origin = 

as.Date("2016-01-01")) 

#LexWeather <- read.table(file="Lexweather.csv",sep=",",header=T, strip.white=T)  # Must be ordered by 

date 



   

72 
 

#LexWeather$JDate <- julian(as.Date(LexWeather$EDT,format="%m/%d/%Y"),origin = as.Date("2016-

01-01")) 

 

#Cloud <- CloudF <- CloudL <- SampleDatesM 

#for (i in 1:length(Cloud)){ 

#  CloudF[i] <- 

ifelse(is.na(SampleDatesM[i]),NA,FrankWeather$CloudCover[which(FrankWeather$JDate==SampleDates

M[i])]) 

#  Cloud[i] <- 

ifelse(is.na(SampleDatesM[i]),NA,LexWeather$CloudCover[which(LexWeather$JDate==SampleDatesM[i

])]) 

#} 

#Cloud[which(site==3),] <- CloudF[which(site==3),]  # Replace Glenn cloud cover with FrankWeather 

 

SurvDat <- read.csv(file="SurveyData.csv",strip.white = T)    # Import survey-specific data 

SurvDat$Date <- julian(as.Date(SurvDat$sampledate, format="%m/%d/%Y"),origin = as.Date("2016-01-

01"))    # Convert dates to julian 

SurvDat <- SurvDat[order(SurvDat$site, SurvDat$Date),]   # Order records 

 

Cloud <- matrix(SurvDat$cloud.cover,nrow=6,byrow=T) 

Temp <- matrix(SurvDat$start.air,nrow=6,byrow=T) 

SiteType <- c(1,1,1,1,1,1)   # 1 = Forest, 2 = Suburban, 3 = Agriculture 

 

# Delete extra objects 

rm(list= ls()[!(ls() %in% 

c('f','Intervals','Cloud','Temp','SiteType','SampleDatesM','CH','PCR','Clinical','SurvDat','basedir','Surv', 

                            'Ind','species','site','firstdate'))]) 

 
######################################################################################

########### 

# Multi-state mark-recapture analysis 

######################################################################################

########### 

 

# DOY effect on TE (PIT requested) 

# Cloud cover on visual (also PIT) 

# Average temperature or average high temperature could be a covariate for temporary emmigration 

#Site type (Otter, Glenns = agricultural; Tates, Little Hickman = forested, Elkhorn, Elias/HIckman = 

suburban) could also be used as a covariate for survivorship. 

 

#Frankweather=Glenns 

 

basedir <- "C:/Users/User/Desktop/Current Analysis"   # Where is the project folder? 

 

source(file = paste0(basedir,"/","DataProcessing_v3.R")) 

 

# For Model 1 we are just treating each snake as "diseased" if it ever tested positive (PCR=positive) 

SFD <- apply(PCR,1,max,na.rm=T)    # Calculate 0/1 for negative/positive 

SFD[which(!is.finite(SFD))] <- NA  # Use NA to denote individuals with no test result 

 

# Convert species to numeric 

species <- as.numeric(species)   # Regsep=1, Nersip=2 

 

######################################################################################

########### 

# Specify Model 



   

73 
 

sink("PIT.txt") 

cat(" 

    model { 

     

    ################################## 

    # Sub-model for disease dynamics # 

    ##################################  

     

    # Priors and constraints 

    for (sp in 1:2){ 

    Dprob[sp] ~ dunif(0,1) 

    } 

     

    # Likelihood 

    for (i in 1:n.ind){ 

    SFD[i] ~ dbern(Dprob[Species[i]]) 

    } 

     

    ################################### 

    # Sub-model for survival dynamics # 

    ###################################  

     

    # Priors and constraints 

    for (ds in 1:2){  # loop over disease states (1=not diseased, 2=diseased) 

    for (sp in 1:2){  # loop over species (1=Regsep, 2=Nersip) 

    pV.a[ds,sp] ~ dunif(-5,5)            # Prior for conditional encounter probability 

    psiOI.a[ds,sp] ~ dunif(0,1)         # Prior for Out-In Temporary Emigration probability 

    psiIO.a[ds,sp] ~ dunif(-5,5)         # Prior for In-Out Temporary Emigration probability 

    mo.s[ds,sp] ~ dunif(0,1)          # Prior for survival 

    mo.f[ds,sp] ~ dunif(0,1)          # Prior for site fidelity 

    } 

    } 

     

    psiIO.b ~ dunif(-10,10)         # Prior for In-Out Temporary Emigration probability 

    pV.b1 ~ dunif(-10,10) 

    pV.b2 ~ dunif(-10,10) 

     

    pT ~ dunif(0,1)                 # Prior for PIT-tag detection probability 

     

    for (i in 1:n.ind){ 

    for (t in first[i]:(n.surv-1)){ 

    psiOI[i,t] <- psiOI.a[(SFD[i]+1),Species[i]] 

    logit(psiIO[i,t]) <- psiIO.a[(SFD[i]+1),Species[i]] + psiIO.b*DOY[i,t] 

    logit(pV[i,t]) <- pV.a[(SFD[i]+1),Species[i]] + pV.b1*Cloud[site[i],t] + pV.b2*Temp[site[i],t] 

    s[i,t] <- pow(mo.s[(SFD[i]+1),Species[i]], Intervals[i,t]/30) 

    f[i,t] <- pow(mo.f[(SFD[i]+1),Species[i]], Intervals[i,t]/30) 

    } 

    } 

     

    for (i in 1:n.ind){ 

    for (t in first[i]:(n.surv-1)){   # Loop through INTERVALS 

     

    # Define transition matrix (probability of individual states at time t, conditional on states at t-1) 

    ps[1,i,t,1] <- f[i,t]*s[i,t]*(1-psiIO[i,t]) 

    ps[1,i,t,2] <- f[i,t]*s[i,t]*psiIO[i,t] 

    ps[1,i,t,3] <- (1-f[i,t])*s[i,t] 



   

74 
 

    ps[1,i,t,4] <- (1-s[i,t]) 

    ps[1,i,t,5] <- 0 

    ps[2,i,t,1] <- f[i,t]*s[i,t]*psiOI[i,t] 

    ps[2,i,t,2] <- f[i,t]*s[i,t]*(1-psiOI[i,t]) 

    ps[2,i,t,3] <- (1-f[i,t])*s[i,t] 

    ps[2,i,t,4] <- 0 

    ps[2,i,t,5] <- (1-s[i,t]) 

    ps[3,i,t,1] <- 0 

    ps[3,i,t,2] <- 0 

    ps[3,i,t,3] <- 1 

    ps[3,i,t,4] <- 0 

    ps[3,i,t,5] <- 0 

    ps[4,i,t,1] <- 0 

    ps[4,i,t,2] <- 0 

    ps[4,i,t,3] <- 0 

    ps[4,i,t,4] <- 1 

    ps[4,i,t,5] <- 0 

    ps[5,i,t,1] <- 0 

    ps[5,i,t,2] <- 0 

    ps[5,i,t,3] <- 0 

    ps[5,i,t,4] <- 0 

    ps[5,i,t,5] <- 1 

     

    # Define observation matrix 

    po[1,i,t,1] <- (1-pV[i,t])*pT 

    po[1,i,t,2] <- pV[i,t]*pT 

    po[1,i,t,3] <- 1-pT 

    po[2,i,t,1] <- 0 

    po[2,i,t,2] <- 0 

    po[2,i,t,3] <- 1 

    po[3,i,t,1] <- 0 

    po[3,i,t,2] <- 0 

    po[3,i,t,3] <- 1 

    po[4,i,t,1] <- pT 

    po[4,i,t,2] <- 0 

    po[4,i,t,3] <- 1-pT 

    po[5,i,t,1] <- 0 

    po[5,i,t,2] <- 0 

    po[5,i,t,3] <- 1 

    } #t 

    } #i 

     

    # Likelihood 

    for (i in 1:n.ind){ 

    # Define latent state at first capture 

    z[i,first[i]] <- 1 

     

    for (t in (first[i]+1):n.surv){ 

    # State process - current state (z[i,t]) given previous state (z[i,t-1]) 

    z[i,t] ~ dcat(ps[z[i,t-1],i,t-1,]) 

     

    # Observation process - current observation (y[i,t]) given current state (z[i,t]) 

    y[i,t] ~ dcat(po[z[i,t],i,t-1,]) 

    } #t 

    } #i 

    } 
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    ",fill = TRUE) 

sink() 

 

# Create known latent states z (only known state is when PIT & Visual detetion occurs) 

Known.Z <- ifelse(CH==2,1,NA) 

for (i in 1:Ind){ 

  Known.Z[i,f[i]] <- NA 

} 

 

# Bundle data 

bugs.data <- list(y = CH, n.surv=Surv, 

                  Temp=(Temp-mean(Temp))/sd(Temp), 

                  Cloud=(Cloud-mean(Cloud))/sd(Cloud), 

                  DOY=(SampleDatesM[,-1]-mean(SampleDatesM[,-1],na.rm=T))/sd(SampleDatesM[,-

1],na.rm=T), 

                  n.ind=Ind, z = Known.Z, SFD=SFD, 

                  first=f, site=site, SiteType=SiteType, 

                  Intervals=Intervals, Species=species) 

 

# Function to create initial values for unknown z 

ms.init.z <- function(ch){ 

  ch <- ifelse(is.na(Known.Z),1,NA) 

  return(ch) 

} 

 

ms.init.z <- function(ch, f){ 

  for (i in 1:dim(ch)[1]){ch[i,1:f[i]] <- NA} 

  for (i in 1:dim(ch)[1]){ch[i,(f[i]+1):Surv] <- 1} 

  for (i in 1:dim(ch)[1]){ch[i,which(Known.Z[i,]==1)] <- NA} 

  return(ch) 

} 

 

# Initial values 

inits <- function(){list(z=ms.init.z(CH,f), 

                         pV.a = matrix(runif(4, -1, 1),nrow=2), 

                         pV.b1 = runif(1, -1, 1), 

                         pV.b2 = runif(1, -1, 1), 

                         psiIO.b = runif(1, -1, 1))} 

 

# Parameters monitored 

parameters <- c("mo.f", "mo.s", "pT", "pV.a","pV.b1","pV.b2","psiIO.a","psiIO.b","psiOI.a","Dprob") 

 

# MCMC settings  (let's aim for ~3,000 posterior samples) 

ni <- 800000 

nt <- 50 

nb <- 400000 

nc <- 3 

 

library("jagsUI") 

# Call WinBUGS from R (Approximate run time = 4 hr.) 

system.time(out <- jags(bugs.data, inits, parameters, "PIT.txt", parallel = T, #codaOnly = c('po'), 

                        n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb)) 

print(out, digits = 3) 

 

update(out,n.iter=800000,n.burnin=400000,n.thin=50) 

 



   

76 
 

C.2. R Code to Create Figure 3.3 
library(jagsUI) 

 

 

# Load workspace 

load("model_run_021318.RData") 

print(out,3) 

 

dSurvivalRegsep <- qlogis(out$sims.list$mo.s[,2,1])-qlogis(out$sims.list$mo.s[,1,1]) 

dSurvivalNersip <- qlogis(out$sims.list$mo.s[,2,2])-qlogis(out$sims.list$mo.s[,1,2]) 

dPermEmigRegsep <- qlogis(1-out$sims.list$mo.f[,2,1])-qlogis(1-out$sims.list$mo.f[,1,1]) 

dPermEmigNersip <- qlogis(1-out$sims.list$mo.f[,2,2])-qlogis(1-out$sims.list$mo.f[,1,2]) 

dVisibleRegsep <- out$sims.list$pV.a[,2,1]-out$sims.list$pV.a[,1,1] 

dVisibleNersip <- out$sims.list$pV.a[,2,2]-out$sims.list$pV.a[,1,2] 

dTempEmiRegsep <- out$sims.list$psiIO.a[,2,1]-out$sims.list$psiIO.a[,1,1] 

dTempEmiNersip <- out$sims.list$psiIO.a[,2,2]-out$sims.list$psiIO.a[,1,2] 

dTempImmRegsep <- qlogis(out$sims.list$psiOI.a[,2,1])-qlogis(out$sims.list$psiOI.a[,1,1]) 

dTempImmNersip <- qlogis(out$sims.list$psiOI.a[,2,2])-qlogis(out$sims.list$psiOI.a[,1,2]) 

 

# Survival 

plot(mean(dSurvivalRegsep),5.1,ylim=c(0.5,5.5),xlim=c(-

4,4),pch=19,cex=2,xaxs='i',yaxs='i',yaxt='n',ylab="",xlab="Contrast") 

abline(v=0, lty=2) 

points(mean(dSurvivalNersip),4.9,ylim=c(0,6),xlim=c(-4,4),pch=19,cex=2,col="gray") 

segments(x0=quantile(dSurvivalRegsep,0.025),x1=quantile(dSurvivalRegsep,0.975),y0=5.1,y1=5.1) 

segments(x0=quantile(dSurvivalRegsep,0.05),x1=quantile(dSurvivalRegsep,0.95),y0=5.1,y1=5.1,lwd=5) 

segments(x0=quantile(dSurvivalNersip,0.025),x1=quantile(dSurvivalNersip,0.975),y0=4.9,y1=4.9,col="gra

y") 

segments(x0=quantile(dSurvivalNersip,0.05),x1=quantile(dSurvivalNersip,0.95),y0=4.9,y1=4.9,lwd=5,col

="gray") 

 

# Permanent Emigration 

points(mean(dPermEmigRegsep),4.1,ylim=c(0,6),xlim=c(-4,4),pch=19,cex=2) 

points(mean(dPermEmigNersip),3.9,ylim=c(0,6),xlim=c(-4,4),pch=19,cex=2,col="gray") 

segments(x0=quantile(dPermEmigRegsep,0.025),x1=quantile(dPermEmigRegsep,0.975),y0=4.1,y1=4.1) 

segments(x0=quantile(dPermEmigRegsep,0.05),x1=quantile(dPermEmigRegsep,0.95),y0=4.1,y1=4.1,lwd=

5) 

segments(x0=quantile(dPermEmigNersip,0.025),x1=quantile(dPermEmigNersip,0.975),y0=3.9,y1=3.9,col

="gray") 

segments(x0=quantile(dPermEmigNersip,0.05),x1=quantile(dPermEmigNersip,0.95),y0=3.9,y1=3.9,lwd=5

,col="gray") 

 

# Visual Detection 

points(mean(dVisibleRegsep),3.1,ylim=c(0,6),xlim=c(-4,4),pch=19,cex=2) 

points(mean(dVisibleNersip),2.9,ylim=c(0,6),xlim=c(-4,4),pch=19,cex=2,col="gray") 

segments(x0=quantile(dVisibleRegsep,0.025),x1=quantile(dVisibleRegsep,0.975),y0=3.1,y1=3.1) 

segments(x0=quantile(dVisibleRegsep,0.05),x1=quantile(dVisibleRegsep,0.95),y0=3.1,y1=3.1,lwd=5) 

segments(x0=quantile(dVisibleNersip,0.025),x1=quantile(dVisibleNersip,0.975),y0=2.9,y1=2.9,col="gray"

) 

segments(x0=quantile(dVisibleNersip,0.05),x1=quantile(dVisibleNersip,0.95),y0=2.9,y1=2.9,lwd=5,col="

gray") 

 

# Temporary Emigration 

points(mean(dTempEmiRegsep),2.1,ylim=c(0,6),xlim=c(-4,4),pch=19,cex=2) 

points(mean(dTempEmiNersip),1.9,ylim=c(0,6),xlim=c(-4,4),pch=19,cex=2,col="gray") 

segments(x0=quantile(dTempEmiRegsep,0.025),x1=quantile(dTempEmiRegsep,0.975),y0=2.1,y1=2.1) 
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segments(x0=quantile(dTempEmiRegsep,0.05),x1=quantile(dTempEmiRegsep,0.95),y0=2.1,y1=2.1,lwd=5

) 

segments(x0=quantile(dTempEmiNersip,0.025),x1=quantile(dTempEmiNersip,0.975),y0=1.9,y1=1.9,col="

gray") 

segments(x0=quantile(dTempEmiNersip,0.05),x1=quantile(dTempEmiNersip,0.95),y0=1.9,y1=1.9,lwd=5,c

ol="gray") 

 

# Temporary Immigration 

points(mean(dTempImmRegsep),1.1,ylim=c(0,6),xlim=c(-4,4),pch=19,cex=2) 

points(mean(dTempImmNersip),0.9,ylim=c(0,6),xlim=c(-4,4),pch=19,cex=2,col="gray") 

segments(x0=quantile(dTempImmRegsep,0.025),x1=quantile(dTempImmRegsep,0.975),y0=1.1,y1=1.1) 

segments(x0=quantile(dTempImmRegsep,0.05),x1=quantile(dTempImmRegsep,0.95),y0=1.1,y1=1.1,lwd=

5) 

segments(x0=quantile(dTempImmNersip,0.025),x1=quantile(dTempImmNersip,0.975),y0=0.9,y1=0.9,col=

"gray") 

segments(x0=quantile(dTempImmNersip,0.05),x1=quantile(dTempImmNersip,0.95),y0=0.9,y1=0.9,lwd=5,

col="gray") 

 

# Extra lines 

abline(h=4.5); text('Survival',x=-3.25,y=5.4) 

abline(h=3.5); text('Permanent Emigration',x=-2.25,y=4.4) 

abline(h=2.5); text('Surface Probability',x=-2.5,y=3.4) 

abline(h=1.5); text('Temporary Emigration',x=-2.25,y=2.4) 

text('Temporary Immigration',x=-2.25,y=1.4) 

 

C.3. R Code to Create Figures 3.4 – 3.6 
 

#Step 1: Load workspace from model run 400iterations 

#clear variables 

rm(list=ls()) 

print(out) 

library(grid) 

library(gridExtra) 

library(ggplot2) 

library(ggpubr) 

 

#creating datasets 

newTEMPdata <- seq(from=15,to=35,by=0.1) 

newDOYdata <-seq(from=1,to=365, by=1) 

newCLOUDdata<-seq(from=0, to=8, by=1) 

 

#creating dataframes out of tempdata and probabilities 

dftempdata <- data.frame(newTEMPdata) 

dfDOYdata <- data.frame(newDOYdata) 

dfclouddata <- data.frame(newCLOUDdata) 

 

#positive queen snake, detection with temperature 

logitposrs <- out$mean$pV.a[2,1] + out$mean$pV.b2*(newTEMPdata-mean(Temp))/sd(Temp)  # 

Disease=0, species=1 

ymax1=pnorm(0.146 + out$mean$pV.b2*(newTEMPdata-mean(Temp))/sd(Temp)) 

ymin1=pnorm(0.784 + out$mean$pV.b2*(newTEMPdata-mean(Temp))/sd(Temp)) 

probsposrs <- pnorm(logitposrs) 

dfposrs <- data.frame(probsposrs) 

View(dfposrs) 

View(dftempdata) 
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df1<-cbind(dfposrs, dftempdata) 

 

#ggplot2 line graph code 

plot1<-ggplot(data=df1, aes(x=newTEMPdata, y=probsposrs, group=1)) + geom_line(size=1) + 

  expand_limits(y=0) + ylim(0.0, 1.00)+annotate("text", x = 17, y = 0.9, label = "B", size=15)+ 

  xlab(expression("Temperature (°C)")) + ylab("Visual Detection Probability") + 

  theme_pubr()+ geom_ribbon(aes(x=newTEMPdata, ymin=ymin1, ymax=ymax1), alpha=0.2, 

fill="#808080") 

plot1 

   

#negative queen snake, visual detection and temperature 

logitnegrs <- out$mean$pV.a[1,1] + out$mean$pV.b2*(newTEMPdata-mean(Temp))/sd(Temp)  # 

Disease=0, species=1 

ymax2=pnorm(-0.037 + out$mean$pV.b2*(newTEMPdata-mean(Temp))/sd(Temp)) 

ymin2=pnorm(-0.632 + out$mean$pV.b2*(newTEMPdata-mean(Temp))/sd(Temp)) 

probsnegrs <- pnorm(logitnegrs) 

dfnegrs <- data.frame(probsnegrs) 

View(dfnegrs) 

df2<-cbind(dfnegrs, dftempdata) 

 

plot2<-ggplot(data=df2, aes(x=newTEMPdata, y=probsnegrs, group=1)) + geom_line(size=1) + 

   expand_limits(y=0) + ylim(0.0,1.00) +  

  annotate("text", x = 17, y = 0.9, label = "A", size=15) + 

  xlab(expression("Temperature (°C)")) + ylab("Visual Detection Probability") + 

  theme_pubr()+geom_ribbon(aes(x=newTEMPdata, ymin=ymin2, ymax=ymax2), alpha=0.2, 

fill="#808080") 

plot2 

 

#negative, nerodia, visual detection and temperature 

logitnegns <- out$mean$pV.a[1,2] + out$mean$pV.b2*(newTEMPdata-mean(Temp))/sd(Temp)  # 

Disease=0, species=1 

ymax3=pnorm(0.036 + out$mean$pV.b2*(newTEMPdata-mean(Temp))/sd(Temp)) 

ymin3=pnorm(-0.469 + out$mean$pV.b2*(newTEMPdata-mean(Temp))/sd(Temp)) 

probsnegns <- pnorm(logitnegns) 

dfnegns <- data.frame(probsnegns) 

View(dfnegns) 

df3<-cbind(dfnegns, dftempdata) 

 

plot3<-ggplot(data=df3, aes(x=newTEMPdata, y=probsnegns, group=1)) + geom_line(size=1) + 

  expand_limits(y=0) + ylim(0.0,1.00)+annotate("text", x = 17, y = 0.9, label = "C", size=15) + 

  xlab(expression("Temperature (°C)")) + ylab("Visual Detection Probability") + 

  theme_pubr()+geom_ribbon(aes(x=newTEMPdata, ymin=ymin3, ymax=ymax3), alpha=0.2, 

fill="#808080") 

plot3 

 

#positive nerodia, temperature and visual detection 

logitposns <- out$mean$pV.a[2,2] + out$mean$pV.b2*(newTEMPdata-mean(Temp))/sd(Temp)  # 

Disease=0, species=1 

ymax4=pnorm(0.567 + out$mean$pV.b2*(newTEMPdata-mean(Temp))/sd(Temp)) 

ymin4=pnorm(-0.408 + out$mean$pV.b2*(newTEMPdata-mean(Temp))/sd(Temp)) 

probsposns <- pnorm(logitposns) 

dfposns <- data.frame(probsposns) 

View(dfposns) 

df4<-cbind(dfposns, dftempdata) 

 

plot4<-ggplot(data=df4, aes(x=newTEMPdata, y=probsposns, group=1)) + geom_line(size=1) + 
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   expand_limits(y=0) +ylim(0.0, 1.00)+annotate("text", x = 17, y = 0.9, label = "D", size=15)+ 

  xlab(expression("Temperature (°C)")) + ylab("Visual Detection Probability") + 

  theme_pubr()+geom_ribbon(aes(x=newTEMPdata, ymin=ymin4, ymax=ymax4), alpha=0.2, 

fill="#808080") 

plot4 

 

#see multiplot function script at the end of this file 

multiplot(plot2, plot3, plot1, plot4, cols=2) 

 

####Psio in to out 

##c 

 

logitpsionegreg <- out$mean$psiIO.a[1,1] + out$mean$psiIO.b*(newDOYdata-

mean(SurvDat$Date))/sd(SurvDat$Date)  # Disease=0, species=1 

ymax5=pnorm(0.567 + out$mean$psiIO.b*(newDOYdata-mean(SurvDat$Date))/sd(SurvDat$Date)) 

ymin5=pnorm(-1.040 + out$mean$psiIO.b*(newDOYdata-mean(SurvDat$Date))/sd(SurvDat$Date)) 

probpsionegreg <- pnorm(logitpsionegreg) 

dfpsionegreg <- data.frame(probpsionegreg) 

df5<-cbind(dfpsionegreg, dfDOYdata) 

View(df5) 

 

plot5<-ggplot(data=df5, aes(x=newDOYdata, y=probpsionegreg, group=1)) + geom_line(size=1) + 

  expand_limits(y=0) + annotate("text", x = 50, y = 0.9, label = "A", size=15)+ 

  xlab("Day of Year") + ylab("Temporary Emigration Probability") + 

  theme_pubr()+geom_ribbon(aes(x=newDOYdata, ymin=ymin5, ymax=ymax5), alpha=0.2, 

fill="#808080") 

plot5 

 

#positive queen snakes, day of year 

logitpsioposreg <- out$mean$psiIO.a[2,1] + out$mean$psiIO.b*(newDOYdata-

mean(SurvDat$Date))/sd(SurvDat$Date)  # Disease=0, species=1 

ymax6=pnorm(0.343 + out$mean$psiIO.b*(newDOYdata-mean(SurvDat$Date))/sd(SurvDat$Date)) 

ymin6=pnorm(-1.021 + out$mean$psiIO.b*(newDOYdata-mean(SurvDat$Date))/sd(SurvDat$Date)) 

probpsioposreg <- pnorm(logitpsioposreg) 

dfpsioposreg <- data.frame(probpsioposreg) 

df6<-cbind(dfpsioposreg, dfDOYdata) 

View(df6) 

 

plot6<-ggplot(data=df6, aes(x=newDOYdata, y=probpsioposreg, group=1)) + geom_line(size=1) + 

  expand_limits(y=0) +annotate("text", x = 50, y = 0.9, label = "B", size=15)+  

  xlab("Day of Year") + ylab("Temporary Emigration Probability") + ylim(0, 1.00)+ 

  theme_pubr()+geom_ribbon(aes(x=newDOYdata, ymin=ymin6, ymax=ymax6), alpha=0.2, 

fill="#808080") 

plot6 

 

#negative nerodia, day of year 

logitpsionegner <- out$mean$psiIO.a[1,2] + out$mean$psiIO.b*(newDOYdata-

mean(SurvDat$Date))/sd(SurvDat$Date)  # Disease=0, species=1 

ymax7=pnorm(0.758 + out$mean$psiIO.b*(newDOYdata-mean(SurvDat$Date))/sd(SurvDat$Date)) 

ymin7=pnorm(-0.649 + out$mean$psiIO.b*(newDOYdata-mean(SurvDat$Date))/sd(SurvDat$Date)) 

probpsionegner <- pnorm(logitpsionegner) 

dfpsionegner <- data.frame(probpsionegner) 

df7<-cbind(dfpsionegner, dfDOYdata) 

View(df7) 

 

plot7<-ggplot(data=df7, aes(x=newDOYdata, y=probpsionegner, group=1)) + geom_line(size=1) + 
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  expand_limits(y=0) +annotate("text", x = 50, y = 0.9, label = "C", size=15)+ 

  xlab("Day of Year") + ylab("Temporary Emigration Probability") + 

  theme_pubr()+geom_ribbon(aes(x=newDOYdata, ymin=ymin7, ymax=ymax7), alpha=0.2, 

fill="#808080") 

plot7 

 

#positive nerodia, day of year 

logitpsioposner <- out$mean$psiIO.a[2,2] + out$mean$psiIO.b*(newDOYdata-

mean(SurvDat$Date))/sd(SurvDat$Date)  # Disease=0, species=1 

ymax8=pnorm(0.939 + out$mean$psiIO.b*(newDOYdata-mean(SurvDat$Date))/sd(SurvDat$Date)) 

ymin8=pnorm(-0.772 + out$mean$psiIO.b*(newDOYdata-mean(SurvDat$Date))/sd(SurvDat$Date)) 

probpsioposner <- pnorm(logitpsioposner) 

dfpsioposner <- data.frame(probpsioposner) 

df8<-cbind(dfpsioposner, dfDOYdata) 

View(df8) 

 

plot8<-ggplot(data=df8, aes(x=newDOYdata, y=probpsioposner, group=1)) + geom_line(size=1) + 

  expand_limits(y=0) +annotate("text", x = 50, y = 0.9, label = "D", size=15)+ 

  xlab("Day of Year") + ylab("Temporary Emigration Probability") + 

  theme_pubr()+geom_ribbon(aes(x=newDOYdata, ymin=ymin8, ymax=ymax8), alpha=0.2, 

fill="#808080") 

plot8 

 

#see multiplot function script at the end of this file 

multiplot(plot5, plot7, plot6, plot8, cols=2) 

 

#cloud cover attempt 

#negative, queen snake, cloud 

logitVnegreg <- out$mean$pV.a[1,1] + out$mean$pV.b1*(newCLOUDdata-mean(Cloud))/sd(Cloud)  # 

Disease=0, species=1 

ymax9=pnorm(-0.037 + out$mean$pV.b1*(newCLOUDdata-mean(Cloud))/sd(Cloud)) 

ymin9=pnorm(-0.632 + out$mean$pV.b1*(newCLOUDdata-mean(Cloud))/sd(Cloud)) 

probsVnegreg <- pnorm(logitVnegreg) 

dfVnegreg <- data.frame(probsVnegreg) 

df9<-cbind(dfVnegreg, dfclouddata) 

View(df9) 

 

plot9<-ggplot(data=df9, aes(x=newCLOUDdata, y=probsVnegreg, group=1)) + geom_line(size=1) + 

  expand_limits(y=0) +ylim(0.0,1.00)+annotate("text", x = 0.5, y = 0.94, label = "A", size=15)+ 

  xlab("Cloud Cover") + ylab("Visual Detection Probability") + 

  theme_pubr()+geom_ribbon(aes(x=newCLOUDdata, ymin=ymin9, ymax=ymax9), alpha=0.2, 

fill="#808080") 

plot9 

 

#positive, queen snake, cloud 

logitVposreg <- out$mean$pV.a[2,1] + out$mean$pV.b1*(newCLOUDdata-mean(Cloud))/sd(Cloud)  # 

Disease=0, species=1 

ymax10=pnorm(0.784 + out$mean$pV.b1*(newCLOUDdata-mean(Cloud))/sd(Cloud)) 

ymin10=pnorm(0.146 + out$mean$pV.b1*(newCLOUDdata-mean(Cloud))/sd(Cloud)) 

probsVposreg <- pnorm(logitVposreg) 

dfVposreg <- data.frame(probsVposreg) 

df10<-cbind(dfVposreg, dfclouddata) 

View(df10) 

 

plot10<-ggplot(data=df10, aes(x=newCLOUDdata, y=probsVposreg, group=1)) + geom_line(size=1) + 

  expand_limits(y=0) +ylim(0.0,1.00)+annotate("text", x = 0.5, y = 0.94, label = "B", size=15)+ 
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  xlab("Cloud Cover") + ylab("Visual Detection Probability") + 

  theme_pubr()+geom_ribbon(aes(x=newCLOUDdata, ymin=ymin10, ymax=ymax10), alpha=0.2, 

fill="#808080") 

plot10 

 

#negative, nerodia, cloud 

logitVnegner<- out$mean$pV.a[1,2] + out$mean$pV.b1*(newCLOUDdata-mean(Cloud))/sd(Cloud)  # 

Disease=0, species=1 

ymax11=pnorm(0.036 + out$mean$pV.b1*(newCLOUDdata-mean(Cloud))/sd(Cloud)) 

ymin11=pnorm(-0.469 + out$mean$pV.b1*(newCLOUDdata-mean(Cloud))/sd(Cloud)) 

probsVnegner <- pnorm(logitVnegner) 

dfVnegner <- data.frame(probsVnegner) 

df11<-cbind(dfVnegner, dfclouddata) 

View(df11) 

 

plot11<-ggplot(data=df11, aes(x=newCLOUDdata, y=probsVnegner, group=1)) + geom_line(size=1) + 

  expand_limits(y=0) +ylim(0.0,1.00)+annotate("text", x = 0.5, y = 0.94, label = "C", size=15)+ 

  xlab("Cloud Cover") + ylab("Visual Detection Probability") + 

  theme_pubr()+geom_ribbon(aes(x=newCLOUDdata, ymin=ymin11, ymax=ymax11), alpha=0.2, 

fill="#808080") 

plot11 

 

#postiive, nerodia, cloud 

logitVposner <- out$mean$pV.a[2,2] + out$mean$pV.b1*(newCLOUDdata-mean(Cloud))/sd(Cloud)  # 

Disease=0, species=1 

ymax12=pnorm(0.567 + out$mean$pV.b1*(newCLOUDdata-mean(Cloud))/sd(Cloud)) 

ymin12=pnorm(-0.408 + out$mean$pV.b1*(newCLOUDdata-mean(Cloud))/sd(Cloud)) 

probsVposner <- pnorm(logitVposner) 

dfVposner <- data.frame(probsVposner) 

df12<-cbind(dfVposner, dfclouddata) 

View(df12) 

 

plot12<-ggplot(data=df12, aes(x=newCLOUDdata, y=probsVposner, group=1)) + geom_line(size=1) + 

  expand_limits(y=0) +ylim(0.0,1.00)+ annotate("text", x = 0.5, y = 0.94, label = "D", size=15)+ 

  xlab("Cloud Cover") + ylab("Visual Detection Probability") + 

  theme_pubr()+geom_ribbon(aes(x=newCLOUDdata, ymin=ymin12, ymax=ymax12), alpha=0.2, 

fill="#808080") 

plot12 

 

multiplot(plot9, plot11, plot10, plot12, cols=2) 

 

#attempting to graph two dataframes on one ggplot2 graph 

a.temp <- newTEMPdata 

a.value   <- probsnegrs 

a.cat <- c("regina, negative") 

dtframe.a <- data.frame(a.temp, a.value, a.cat) 

 

a.temp <- newTEMPdata 

a.value   <- probsposrs 

a.cat <- c("regina, positive") 

dtframe.b <- data.frame(a.temp, a.value, a.cat) 

 

#combining the two dataframes above 

df <- rbind(dtframe.a,dtframe.b) 

 

#creating other two data frames for nerodia disease status 
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a.temp <- newTEMPdata 

a.value   <- probsnegns 

a.cat <- c("nerodia, negative") 

dtframe.c <- data.frame(a.temp, a.value, a.cat) 

 

a.temp <- newTEMPdata 

a.value   <- probsposns 

a.cat <- c("nerodia, positive") 

dtframe.d <- data.frame(a.temp, a.value, a.cat) 

 

#combining all of the dataframes into one 

df1<-rbind(df,dtframe.c, dtframe.d) 

View(df1) 

 

#changing column headings 

names(df1)[1] <- "Temp" 

names(df1)[2] <- "Prob" 

names(df1)[3] <- "Cat" 

# 

 

tempplot<-ggplot(data = df1, aes(x=Temp, y=Prob, color = Cat)) + 

  geom_line(aes(color=Cat), size=1) + 

  expand_limits(y=c(0,1)) +   scale_colour_hue(name="Species and Disease Status", l=30, c("Queensnake, 

Negative","Queensnake, Positive", 

                                                                                          "Northern Watersnake, Negative", "Northern 

Watersnake, Positive"))+ 

  xlab("Temperature") + ylab("Probability of Visual Detection") +  

  ggtitle("Probability of Visual Detection Depending on Temperature") +  

  theme_bw() + theme(panel.border = element_blank(), panel.grid.major = element_blank(), 

                     panel.grid.minor = element_blank(),axis.line.x = element_line(color="black", size = 0.5), 

                     axis.line.y = element_line(color="black", size = 0.5)) +  

  scale_colour_manual(values=c("red","green","blue","purple")) 

print(tempplot) 

 

ggplot(data=df1, aes(x=Temp, y=Prob, group = Cat, colour = Cat)) + 

  geom_line()+ xlab("Temperature") + ylab("Probability of Visual Detection") +  

  ggtitle("Probability of Visual Detection Depending on Temperature") + theme_bw()+ 

  theme(panel.border = element_blank(), panel.grid.major = element_blank(), 

panel.grid.minor = element_blank(),axis.line.x = element_line(color="black", size = 0.5), 

axis.line.y = element_line(color="black", size = 0.5)) 

 

# 

 

#multiplot function code 

########################################################### 

#3 will go all the way across the bottom. 

# 

multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) { 

  require(grid) 

   

  # Make a list from the ... arguments and plotlist 

  plots <- c(list(...), plotlist) 

   

  numPlots = length(plots) 

   

  # If layout is NULL, then use 'cols' to determine layout 
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  if (is.null(layout)) { 

    # Make the panel 

    # ncol: Number of columns of plots 

    # nrow: Number of rows needed, calculated from # of cols 

    layout <- matrix(seq(1, cols * ceiling(numPlots/cols)), 

                     ncol = cols, nrow = ceiling(numPlots/cols)) 

  } 

   

  if (numPlots==1) { 

    print(plots[[1]]) 

     

  } else { 

    # Set up the page 

    grid.newpage() 

    pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout)))) 

     

    # Make each plot, in the correct location 

    for (i in 1:numPlots) { 

      # Get the i,j matrix positions of the regions that contain this subplot 

      matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE)) 

       

      print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row, 

                                      layout.pos.col = matchidx$col)) 

    } 

  } 

} 
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