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PERMEABILITY OF CORN, SOYBEANS, AND SOFT RED AND
WHITE WINTER WHEAT AS AFFECTED BY BuLK DENSITY

M. D. Montross, S. G. McNeill

ABsTRACT. Darcy’s law is a function of viscosity, permeability, and velocity and can be used to predict the airflow resistance
in granular materials at low air velocities. Permeability also governs the magnitude of natural convection currents during
periods of non-aerated grain storage. The permeability of corn, soybeans, soft white winter wheat, and soft red winter wheat
were measured as a function of bulk density and moisture content. Air was passed through a column of grain and the flow
rate and pressure drop measured. Bulk density and kernel density were also measured to determine the porosity of grain in
the test column. Two filling methods were used to change the bulk density of grain by approximately 50 kg/m3, an increase
of 7%. This resulted in a reduction in porosity of approximately 4 percentage points. However, permeability decreased by a
maximum of 45%. Wheat had the lowest permeability (between 1.15 x 1078 and 7.29 x 10=° m2 or highest resistance
coefficient between 1591 and 2510 Pa's/m2, respectively, depending on bulk density and moisture content), while corn and
soybeans were similar (permeability varied between 1.30 x 1078 and 3.03 x 1078 m2 or resistance coefficient between 1,408
and 604 Pa-s/m2, respectively). Experiments were conducted up to an air velocity of 0.0052 m/s that resulted in a Reynolds
number of 2.5, which was slightly above the maximum air velocity expected during non-aerated grain storage. Nevertheless,

Darcy’s law would be appropriate for predicting natural convection currents during non-aerated storage.

Keywords. Darcy’s law, Grain storage, Non-aerated.

rediction of natural convection currents during non-

aerated grain storage can be accomplished using

Darcy’s law (Darcy, 1856). Darcy’s law is valid for

creeping flows and is a function of the permeability
of the porous media (sometimes reported as resistance coeffi-
cient that is defined as the fluid viscosity divided by the
permeability). Numerous researchers have utilized Darcy’s
law to predict natural convection during periods of non-aer-
ated grain storage (Singh et al., 1993; Casada and Young,
1994; Khankari et al., 1995; Montross et al., 2002).

All of these numerical models of heat, mass, and
momentum transfer during grain storage have indicated that
the permeability of grain was one of the primary unknowns.
Natural convection currents significantly effected moisture
migration and the amount of time required for grain to cool
or rewarm during storage. To improve the accuracy of grain
storage models, permeability needs to be better quantified. A
wide range of permeabilities has been reported for shelled
corn. Khankari et al. (1995) analyzed Patterson’s et al. (1971)
data to calculate the permeability for corn in the range of
2.06 x 1078 and 3.45 x 1078 m?2 (resistance coefficient of 888
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and 530 Pa-s/m2, respectively) between the moisture content
of 16.0% and 23.7%. Khankari et al. (1995) measured the
permeability of 13.1% moisture corn as 3.5 x 1079 m?2
(523 Pa:s/m2) and 12.7% wheat as 2.55 x 109 m?2
(7177 Pa:s/m2). In an earlier study, Hunter (1983) reported a
permeability of 2.55 x 1078 and 5.84 x 10° m2 (or a
resistance coefficient of 719 and 3131 Pa:s/m2, respectively)
for corn and wheat based on Shedd’s data (Shedd, 1953).

Grain during storage experiences packing and compaction
due to the vertical pressure exerted by the grain mass.
Packing results in a change in bulk density of the grain mass,
which in turn results in a change in porosity since little
particle deformation is expected at the low pressures
typically experienced during grain storage (Thompson and
Ross, 1983). Determining the permeability of grain as a
function of bulk density is important for predicting natural
convection currents in stored grain.

The objective of this study was to measure the resistance
coefficient (or permeability) of corn, soybeans, and soft red
and white winter wheat as a function of bulk density and
moisture content.

THEORY

Traditionally the basis of nearly all engineering calcula-
tions for flow through porous media has been based either on
Darcy’s law or on empirical findings. Darcy’s law can be
written as:

— =—Zy=-Rv ()

Darcy’s law states that the pressure drop varies linearly

University of Kentucky, Lexington, KY 40546-0276; phone: . . - .

859_257_3/000 ext. y106; gfaX: 859-257-5671: g_ma”: with the velocity (v). The permeability (k), or the resistance

montross@bae.uky.edu. coefficient (R), reflects the difficulty in moving a fluid
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through a porous media and in principle is only a function of
the pore structure and viscosity (u) of the fluid (Greenkorn,
1983). Higher values of the resistance coefficient (R)
indicated a porous media that created a greater pressure drop;
conversely higher values of permeability (k) indicated a
porous media that created a lower pressure drop.

The resistance coefficient can be determined by measur-
ing the pressure drop through a material at a given flow rate
under steady state conditions. Equation 1 can be rearranged
and a linear regression performed to determine the resistance
coefficient and permeability.

It was assumed that Darcy’s law was valid in three
dimensions and permeability was a second-order tensor
dependent on directional properties. Numerous researchers
have investigated the anistropic behavior of grains related to
permeability and airflow resistances. However, kernel orien-
tation and therefore filling method would influence this
behavior.

Bin filling methods would be expected to influence the
structure of the grain mass, i.e. bulk density, porosity, and
kernel orientation. Bins filled through a spout would have a
kernel orientation that would be similar to the filling angle of
repose and a lower bulk density due to the lower kinetic
energy of the kernels during filling. A grain spreader results
in a higher bulk density (Chang et al., 1983; 1986) and a more
random Kkernel orientation.

There has been a large range in measured resistance values
based on airflow direction and kernel orientation. Hood and
Thorpe (1992) reported the resistance coefficient of 12% w.b.
wheat as 3420 and 3740 Pa s m™ in two dimensions, a
difference of 10%. However, linseed was strongly anistropic
with a resistance coefficient of 7710 and 14,400 Pas m=2in
two dimensions. Kumar and Muir (1986) found at an airflow
rate of 0.077 m3/m2 - s the resistance to flow in the horizontal
direction was 63% of that in the vertical direction for cleaned
spout filled wheat. Jayas et al. (1987) reported the resistance
of canola in the horizontal direction to be 60% of that in the
vertical direction.

MATERIALS AND METHODS

Corn, soybeans, soft red and white winter wheat were
allowed to equilibrate to three moisture content levels (at
20°C/55%, 20°C/65%, and 20°C/75%) that would be typical
of moisture contents for short, moderate, and long-term
storage. Grain moisture was determined using the oven
method (ASAE Standards, 1999a) and test weight using the
Winchester cup. Samples were screened according to
USDA-GIPSA procedures and the percentage of fines, splits,
or broken kernels determined.

The system used for measuring permeability is shown in
figure 1. A cylindrical PVC pipe with an inside diameter of
0.254 m (10 in.) and a height of 0.61 m (23.8 in.) was used
for the test column. Air was introduced at the bottom of the
cylinder and the static pressure measured 0.10 m from the
bottom. The static pressure was measured using a Validyne
DP103 (Northridge, Calif.) variable reluctance differential
pressure transducer, using a diaphragm with a maximum
pressure rating of 124 Pa (0.55 in H,0) with an accuracy of
+0.25% full scale. The pressure transducer was calibrated
using a Furness Controls PPC 500 static pressure calibrator
(East Sussex, United Kingdom). The flow rate was controlled
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Figure 1. Schematic for apparatusto measure permeability of grains.
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using a Scienceware (Fischer Scientific, Pittsburgh, Pa.) flow
meter with a maximum flow rate of 0.00041 m3/s
(0.87 ft3/min) and an accuracy of 1% at full scale. The flow
rate was verified using a recently calibrated Omega FMA
1720 with a full scale range of 0.00017 m3/s and an accuracy
of £1.5% full scale.

The apparatus was weighed using a digital scale to
calculate the bulk density and determine the average
porosity. The porosity of each grain sample was determined
using an air-comparison pycnometer Quantachrome MVP-2
(Boynton Beach, Fla.). The porosity was determined using
the following equation (Mohsenin, 1986):

€ :1—;Lb )
k

where pp is the bulk density and p is the kernel density.

The resistance coefficient (or permeability) was deter-
mined by measuring the pressure drop per unit depth and the
superficial velocity (Goedeken and Tong, 1993). Pressure
drop per unit depth was plotted versus the air velocity and a
linear regression performed. Under conditions of Darcy flow,
the slope of the line should be linear with an intercept of zero.
The resistance coefficient represented the slope of the line
and permeability could be calculated by dividing the fluid
(air) viscosity by the slope of the line. Results from this study
were reported in terms of the resistance coefficient (R) to
allow for comparison to previous work.

The apparatus was filled using two methods to produce
varying bulk densities and kernel orientations. The column
was filled through a screen to simulate a bin filled using a
grain spreader and termed sprinkle filled. A wire mesh screen
was placed on top of the column and grain was poured by
hand through the screen. The second method utilized a funnel
that was kept within 2 cm of the grain surface that simulated
a spout-filled bin. Sprinkle filled produced a higher bulk
density and a random kernel orientation. The orientation of
the kernels using the funnel filled method was approximately
equal to the filling angle of repose and would simulate a bin
filled through a spout. The container was also filled at angles
that resulted in particle orientations that were 10° and 20°
greater than the angle of repose (fig. 2). This was done using
the screen and funnel to determine the anisotropic behavior
of wheat.

APPLIED ENGINEERING IN AGRICULTURE
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Figure 2. Filling methods used to orient kernels at the angle of repose (a) (¢), 10° greater than the angle of repose (b) (10° + @), and 20° greater than

the angle of repose (c) (20°+ @).

REsuULTS AND DiscussioN

The fine material, moisture content, bulk density, and
kernel density of the four grain types investigated at the three
moisture content levels are shown in table 1. The bulk density
of wheat increased as the moisture content decreased but did
not follow a trend for corn and soybeans. The kernel density
remained approximately the same for all moisture contents.
White wheat had a kernel density of 1330 kg/m3 at a moisture
content of 14.6% and 1370 kg/m3 at a moisture content of
10.1%.

The bulk density (fig. 3) and porosity (fig. 4) of the four
grain types within the test column when filled using the
centric sprinkle and funnel filling at three moisture content
levels. The average bulk density was 5.5% greater when the
column was sprinkle filled compared to funnel filled.
Porosity changes were due to particle arrangement from
differences between the two filling methods. The porosity
decreased by an average of 3.4 percentage points for all grain
types at the three moisture content levels when the column
was sprinkle filled compared to funnel filled. The porosity
change was a function of bulk density and kernel arrange-
ment within the column, i.e. no change in kernel size or shape
would be expected due to the lack of external vertical
compression forces.

The pressure drop versus airflow of shelled corn with a
high (sprinkle filled) and low (funnel filled) bulk density and
three moisture contents are shown in figure 5. The slopes of
the lines were similar at all three moisture content levels and
were primarily a function of filling method. The slopes were
linear which indicated Darcy’s law was valid at the flow rates

investigated with an r2 greater than 0.99. The slope for the
sprinkle filled corn was between 1055 and 1258 Pa-'s/m2
compared to a slope between 604 and 778 Pa-s/m?2 for funnel
filled corn. The moisture content changed the resistance
coefficient by less than 20% for the three moisture content
levels. However, changes in the bulk density resulted in a
48% change in the resistance coefficient at a moisture content
of 10.1%
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Figure 3. Average and standard error of theincreasein bulk densty of the
four grain typesat three moisture content levels using two filling methods.
Solid linesare high bulk density (sprinklefilled) and dashed lines are low
bulk density (funnel filled).

Table 1. Fine materiall@l (FM), moisture content(b] (M C), uncompacted bulk densityl¢l (BD), and
kernel densityl® (KD) of the four grain typesinvestigated at the three moisture levels.

Low MC Medium MC High MC
Material FM MC BD KD MC BD KD MC BD KD
Corn 14 101 940 1260 125 949 1270 145 943 1320
Soybeans 34 79 902 1210 9.2 711 1180 12.9 902 1250
Red wheat 0.1 105 1015 1380 12.7 818 1330 14.6 798 1370
White wheat 0.2 101 944 1370 12.8 750 1300 14.6 734 1330

[e] FM includes fine material, split soybeans and broken kernels as appropriate for each grain type.

[b] Moisture content is in % wet basis.
[c] Bulk and kernel density are expressed in kg/m3.

Vol. 21(3): 479-484
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Figure 4. Average and standard error of porosity of thefour grain types
at three moisture content levels using two filling methods. Solid linesare

high bulk density (sprinklefilled) and dashed lines are low bulk density
(funnel filled).

Values of the resistance coefficient for the four grains,
three moisture content levels, and two bulk densities are
presented in figure 6. Permeability could be calculated by
dividing the viscosity of the fluid (air) by the resistance
coefficient. Corn and soybeans behaved similarly with the
two filling methods and three moisture contents. High bulk
density soybeans and corn had a 40% greater resistance
compared to the lower bulk density grain. As expected, red
and white wheat at a low bulk density had a higher resistance
than corn and soybeans due to the lower porosity. Increasing
the bulk density of red and white wheat by an average of 4.7%
resulted in a 41% increase in the resistance coefficient.

The primary factor that affected the change in resistance
was the increase in bulk density and the corresponding
decrease in porosity between funnel and sprinkle filled grain.
Corn and soybeans had an average bulk density increase of
7.1% between the funnel and screen filled methods. In
contrast, red and white wheat experienced an average bulk
density increase of only 4.7% when sprinkle filled. The
change in bulk density resulted in a change of porosity within
the test column. Interestingly, the porosity of corn and
soybeans was lower than red and white wheat at the high and
medium grain moisture content levels.

8
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Figure 5. Average and standard error of the pressure drop versus flow
rate for corn filled using two methods and three moisture content levels.
Solid lines are high bulk density (sprinklefilled) and dashed lines are low
bulk density (funnel filled).
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Figure 6. Resistance coefficient (R) of corn, soybeans, red wheat, and
whitewheat at three moisture content levelsand two bulk densities. Solid
linesare high bulk density (sprinklefilled) and dashed linesare low bulk
density (funnd filled).

Patterson et al. (1971) found a resistance coefficient of
530 and 888 Pa:s/m2 for corn at a moisture content of 16% and
a porosity of 43% and 38%, respectively. This was similar to
the values measured in this study of 604 and 1052 Pa-s/m? for
corn at 14.5% and a porosity of 43.3% and 38.7%,
respectively. Hunter (1983) reported a resistance coefficient
of 719, 646, and 3131 Pa's/m2 for corn (12.4%), soybeans
(10%), and wheat (11%), respectively.

EFFeCT OF KERNEL ORIENTATION

Soft red wheat at the low moisture content was filled using
the apparatus shown in figure 2 for both sprinkle and funnel
filling and pressure drop determined for different airflow
rates (fig. 8). This resulted in kernel orientations of
approximately the angle of repose, 10° greater, and 20°
greater than the angle of repose. The slope of the line for
funnel-filled wheat was approximately the same for all three
filling angles (fig. 8). This would indicate that kernel
orientation did not significantly influence the resistance of
the grain bed at typical kernel orientations that would occur
in storage structures filled through a spout. Sprinkle filled
wheat at a 20° angle had a slightly greater slope than funnel

25
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Figure 7. Average and standard error of the pressure drop versus flow
rate for soft red winter wheat when sprinkle and funnél filled at three

angles shown in figure 2.
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filled wheat. However, sprinkle filled wheat at the 0 and 10°
angle had the greatest slope and were approximately equal.

The porosity and resistance coefficient are summarized in
table 2 for sprinkle- and funnel-filled red wheat at three
filling angles. Porosity values ranged between 38.4% and
39.6% when sprinkle filled between the angles of 0 and 20°
greater than the angle of repose. The porosity of the sprinkle
filled column at an angle of 0 and 10° was the lowest.
Funnel-filled wheat resulted in a more porous and a more
uniform bed with a porosity between 40.8 and 41.0.

There was a greater range in resistance coefficient values
with sprinkle filled wheat. However, this was probably due
to the larger variation in porosity between the three filling
angles when sprinkle filled. The porosity increased from
38.4% to 39.6% when the fill angle increased from 0 to 20°
probably caused the large decrease in the resistance coeffi-
cient. Similar trends were observed for the other grain types
and other moisture content levels.

The anisotropic behavior of grain was not as significant as
previous studies have indicated. Hood and Thorpe (1992)
reported a 10% difference in two dimensions with wheat that
was similar to this study. Kumar and Muir (1986) and Jayas
et al. (1987) found the resistance in the horizontal direction
to be 60% of the vertical direction. The data indicates that
accurate models of kernel orientation and porosity through a
grain bin are required to accurately quantify the airflow
resistance of a grain mass.

APPLICATION OF RESULTS

Models of grain packing and granular mechanics have
been developed to predict the packing and bin loads exerted
in structures (ASAE Standards, 1999b). This data could be
used to provide an indication of the appropriate resistance
coefficient to use at various regions within a grain bin during
modeling studies. For example, the average pack factor for
corn in an 11.9-m diameter bin level filled to a height of
11.9 m was estimated to be 3.8% (ASAE Standards, 1999b).
Corn at the low moisture content when sprinkle filled had a
5.4% greater bulk density than the uncompacted bulk density.
This indicated that the resistance coefficient for the bin
would be between the funnel and sprinkle filled results from
this study. Due to the variation of the loads within the grain
bin, the amount of packing that occurred at different depths
varied. Bulk density (porosity) was the primary variable that
influenced the resistance coefficient. Thus, changes in bulk
density during storage due to compaction should be well
quantified to estimate variations in resistance within a grain
bin. Changes in kernel orientation would be expected to vary

CONCLUSIONS
The resistance of corn, soybeans, soft white wheat, and
soft red wheat were measured as a function of filling method,

Table 2. Porosity (¢) and resistance coefficient (R) of soft red wheat at
the low moisture content level (10.5%) when sprinkle and funnel
filled at three angles using the apparatus shown in figure 2.

Sprinkle Filled Funnel Filled
Angle e (%) R (Pasm™) e (%) R (Pasm™)
0° 384 3839 40.9 2909
10° 38.6 3665 40.8 2841
20° 39.6 3259 41.0 2799

Vol. 21(3): 479-484

bulk density, and moisture content. Low bulk density corn
and soybeans had the lowest resistance coefficient, between
863 and 604 Pa-s/m? (or a permeability between 2.12 x 1078
and 3.03 x 108 m2, respectively). Increasing the bulk density
by 7%, decreased the permeability by approximately 40%.
Wheat had the highest resistance, between 3112 and
1591 Pa:s/m2 (or a permeability between 5.88 x 10~° and
1.15 x 1078 m2, respectively) at the low bulk density. A 4.7%
increase in bulk density resulted in a 41% greater resistance
coefficient for white and red wheat. The effect of kernel
orientation was not as significant as changes in the porosity.
Darcy’s law was valid for predicting natural convection
currents during non-aerated storage.
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NOMENCLATURE
porosity
air viscosity (Pa s)
the bulk density (kg/m3)
the kernel density (kg/m3)
permeability (m?)
superficial velocity (m/s)
length (m)
pressure drop (Pa)
resistance coefficient (Pa:s/m2)
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