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ABSTRACT OF DISSERTATION

ADVANCED SYNCHRONOUS MACHINE MODELING

The synchronous machine is one of the critical components of electric power systems.
Modeling of synchronous machines is essential for power systems analyses. Electric ma-
chines are often interfaced with power electronic components. This work presents an ad-
vanced synchronous machine modeling, which emphasis on the modeling and simulation
of systems that contain a mixture of synchronous machines and power electronic compo-
nents. Such systems can be found in electric drive systems, dc power systems, renewable
energy, and conventional synchronous machine excitation. Numerous models and formu-
lations have been used to study synchronous machines in different applications. Herein,
a unified derivation of the various model formulations, which support direct interface to
external circuitry in a variety of scenarios, is presented. Selection of the formulation with
the most suitable interface for the simulation scenario has better accuracy, fewer time steps,
and less run time.

Brushless excitation systems are widely used for synchronous machines. As a critical
part of the system, rotating rectifiers have a significant impact on the system behavior. This
work presents a numerical average-value model (AVM) for rotating rectifiers in brushless
excitation systems, where the essential numerical functions are extracted from the detailed
simulations and vary depending on the loading conditions. The proposed AVM can pro-
vide accurate simulations in both transient and steady states with fewer time steps and
less run time compared with detailed models of such systems and that the proposed AVM
can be combined with AVM models of other rectifiers in the system to reduce the overall
computational cost.

Furthermore, this work proposes an alternative formulation of numerical AVMs of
machine-rectifier systems, which makes direct use of the natural dynamic impedance of
the rectifier without introducing low-frequency approximations or algebraic loops. By us-
ing this formulation, a direct interface of the AVM is achieved with inductive circuitry on
both the ac and dc sides allowing traditional voltage-in, current-out formulations of the
circuitry on these sides to be used with the proposed formulation directly. This numeri-
cal AVM formulation is validated against an experimentally validated detailed model and
compared with previous AVM formulations. It is demonstrated that the proposed AVM
formulation accurately predicts the system’s low-frequency behavior during both steady
and transient states, including in cases where previous AVM formulations cannot predict



accurate results. Both run times and numbers of time steps needed by the proposed AVM
formulation are comparable to those of existing AVM formulations and significantly de-
creased compared with the detailed model.

KEYWORDS: AC machines, electric machines, brushless machines, converters, genera-
tors, simulation.
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Chapter 1
Introduction

The synchronous machine, featuring its shaft rotation synchronized with the frequency of

the supply current, is one of the critical components of electric power systems. An electric

power system, by definition a network of electrical components used to supply, transmit

and use electric power, broadly consists of four main elements: generation, transmission,

distribution, and loads. Generators supply the electric power; transmission systems carry

the power from generation stations to load centers; distribution systems feed the power to

industries and homes in the neighborhood; and loads are the terminals of the power system,

consuming the electric power. Synchronous machines are widely recognized as generator

units in various power systems [2–8]. Almost all electrical energy utilized around the

world is generated by synchronous machines. Also, synchronous machines are used in

motor applications from the load side.

Modeling of synchronous machines is essential for power systems analyses. As a gen-

erator, it determines the electric characteristics of the power system, especially for the

system security, the ability to withstand sudden disturbances such as faults, switching,

and load changes [9–11]. The power system behavior is also dependent on the electrical

and electromechanical processes of synchronous machines. However, it is generally im-

practical to conduct experiments and diagnosis directly on the main power grid. As an

alternative, modeling synchronous machines can achieve further insight in the complex

electro-magnetic behavior of the machine, as well as power systems simulation and analy-
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ses [12–14].

Synchronous machine modeling has been extensively studied for decades. Various

models have been proposed in the literature. Most analytical models for synchronous ma-

chines are based on Park’s transformation [15]. Those models are formulated in terms of

variables of fictitious windings in the rotor reference frame. The advantages of this formu-

lation are 1) the corresponding equations become time invariant since they are independent

of rotor position; and 2) the state variables are constant in the steady state. Thus, using

these fictitious variables can simplify the machine analysis. However, the disadvantage is

its inherently inefficient to represent converter circuits for machine-converter systems.

Synchronous machine-converter systems are widely used in automobiles, ships, air-

planes and brushless excitation systems. Modeling the machine-converter interface is im-

portant for numerical accuracy and computational performance of the overall simulation.

In the traditional qd models, the interface modeling is typically resolved by using a resis-

tive or capacitive snubber circuit, which is required to calculate the interfacing voltage and

leads to multiple numerical disadvantages. The VBR models can achieve a direct interface

of machine models with the external electrical networks.

Numerous models and formulations have been used to study synchronous machines

in different applications. Herein, a unified derivation of the various model formulations,

which support direct interface to external circuitry in a variety of scenarios, is presented. A

synchronous machine model with magnetizing path saturation including cross-saturation

and an arbitrary rotor network representation is considered. This model has been ex-

tensively experimentally validated and includes most existing machine models as special

cases. Derivations of the standard voltage-in, current-out formulation as well as formu-

lations in which the stator and/or the field windings are represented in a voltage-behind-

reactance form are presented in a unified manner, including the derivation of a field-only

voltage-behind-reactance formulation. The formulations are compared in a variety of sim-

ulation scenarios to show the relative advantages in terms of run time and accuracy. It has
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been demonstrated that selection of the formulation with the most suitable interface for the

simulation scenario has better accuracy and less run time.

Numerical average-value modeling has been successfully applied in a variety of cases

involving machine-converter interactions. These techniques are adapted to the rotating rec-

tifier in a brushless excitation system in this study. A numerical average-value modeling

of rotating rectifiers in brushless excitation systems is proposed. This model averages the

periodic switching behavior of the rotating rectifier. Furthermore, an alternative formula-

tion of numerical AVMs of machine-rectifier systems is developed, which works for both

stationary rectifiers and rotating rectifiers. In the proposed formulation, it is not necessary

to introduce low-frequency approximations or to invert the voltage-current interfaces on ei-

ther the ac or dc side. The proposed AVM formulation is validated with an experimentally

validated detailed model and compared with previous AVM formulations. The results show

that the low-frequency behavior of the system is accurately represented and that the high

computational efficiency associated with existing AVM formulations is retained. Because

the proposed AVM formulation can be directly included in simulation models with tradi-

tional voltage-in, current-out formulations of the ac and dc equipment, it can be readily

used with existing models of such equipment in commercial simulation toolboxes.

The remainder of this work is organized as follows. Chapter 2 provides the back-

ground on synchronous machines and their modeling, and also reviews existing techniques

for electrical machines modeling. Chapter 3 presents unified model formulations for syn-

chronous machine model with saturation and arbitrary rotor network representation. A

numerical average-value modeling of rotating rectifiers in brushless excitation systems and

a formulation of rectifiers numerical average-value model for direct interface with induc-

tive circuitry are proposed in Chapter 4 and Chapter 5, respectively. A concluding summary

and areas of future work are provided in Chapter 6.
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Chapter 2
Background and Literature Review

Synchronous machines are very important electromechanical energy-conversion devices,

which play a key role both in the production of electricity and in certain special drive ap-

plications. Synchronous generators convert mechanical energy from the hydro or steam

turbines or combustion engines into electric energy. In most power systems, 99% of the

electrical power is generated by synchronous generators. Synchronous motors find appli-

cations in all industrial applications where constant speed is necessary. Also, synchronous

motors are employed as power factor correction and voltage regulation.

Analytical modeling of synchronous machines has been extensively studied with and

without magnetic saturation, including using the physical variables in the physical form

and the fictitious variables in the rotor reference frame. For the physical variables in the

physical form, the corresponding equations and the state variables are time-varying. By

transforming the stator variables to the rotor reference frame based on Park’s equations, the

corresponding equations eliminate the time-dependent inductances and become invariant,

also the state variables become constant in the steady state. Yet, it is difficult to represent

converter circuits in terms of the transformed stator variables. If the machine is represented

in terms of physical variables, little work is required from the system analyst’s perspective,

and greatly reduces the work needed in modeling a machine-converter system.

Synchronous machines are usually acknowledged to be accurately modeled by two

lumped-parameter equivalent circuits representing the q-axis and the d-axis. The number
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of the rotor damper branches is selected in accordance with the rotor design. In current

research literature, the rotor branches are designed with low-order circuits in which the

components are with specific physical meanings. The equivalent circuits are modeled for

some particular applications/conditions.

This chapter gives the background information related to this work and a literature

review about the typical models of synchronous machines in recent years.

2.1 Background

2.1.1 Construction of Synchronous Machines

The principal components of a synchronous machine are the stator and the rotor. The stator

carries three armature windings (three-phase), which are identical sinusoidally distributed

windings displaced from each other by 120 degrees. The rotor carries field windings and

may have one or more damper windings. Field windings are connected to an external dc

current source via slip rings and brushes or to a revolving dc source via a special brushless

configuration, producing the main magnetic field. The strength of the magnetic field is pro-

portional to the applied field current which is aligned with the axis of the field windings.

The rotor behaves as a large electromagnet and may be replaced by a permanent magnet.

The magnetic poles can be either salient (sticking out of the rotor’s core) or non-salient

constructions. Generally, non-salient structure is used for high-speed synchronous ma-

chines, such as steam turbine generators, while salient pole structure is used for low-speed

applications, such as hydroelectric generators. Salient-pole machines have magnetically

unsymmetrical rotors, which limits the applicability of transforming rotor variables. How-

ever, the stator variables are usually referred to the rotor reference frame based on Park’s

transformation, or to the arbitrary reference frame for better analytical modeling and sim-

ulating electrical machines.

The inductances of the stator windings are the places where the energy is stored, and

5



the amount of energy stored depends on the rotor position. As the rotor moves, there is

a change in the energy stored. In synchronous motors, the energy is extracted from the

magnetic field and becomes the mechanical energy. In synchronous generators, the energy

is stored in the magnetic field and eventually flows into the electrical circuit that powers

the stator. The rotor is turned by external means in order to produce a rotating magnetic

field. The frequency of the power is synchronized with the mechanical rotational speed.

2.1.2 Voltage, Flux Linkage and Torque Equations in Machine Vari-

ables

A typical synchronous machine (two-pole, three-phase, wye-connected, salient-pole syn-

chronous machine), which is shown in Figure 2.1, can be used to predict the electrical and

electromechanical behavior of most synchronous machines [1]. The stator windings are

identical sinusoidally distributed and physically displaced from each other by 120 degrees.

Axes represent the direction in which the current in the coil produces the magnetic flux.

The as, bs, and cs axes represent the magnetic axes of the stator windings. The stator

windings have Ns equivalent turns with resistance rs. The rotor carries a field winding

( f d winding) and three damper windings (kd, kq1 and kq1 windings), which are all sinu-

soidally distributed. The f d winding has N f d equivalent turns with resistance r f d . The kd

winding, which has the same magnetic axis as the field winding, has Nkd equivalent turns

with resistance rkd . The direct axis (d axis) is the magnetic axis of the f d and kd windings.

The kq1 winding has Nkq1 equivalent turns with resistance rkq1. The kq2 winding has Nkq2

equivalent turns with resistance rkq2. The quadrature axis (q axis) is the magnetic axis of

the kq1 and kq2 windings. The d axis is displaced 90 degrees behind of the q axis as shown

in Figure 2.1. θr is the electrical angular position. ωr is the electrical angular velocity.

It is assumed that the direction of positive stator currents is into the terminals. The
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Figure 2.1: Two-pole, three-phase, wye-connected, salient-pole synchronous machine [1]

voltage equations in machine variables can be presented as

Vabcs = rsiabcs + pλλλ abcs (2.1)

Vqdr = rriqdr + pλλλ qdr, (2.2)
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where

fabcs =


fas

fbs

fcs

 (2.3)

fqdr =



fkq1

fkq2

f f d

fkd


(2.4)

rs =


rs

rs

rs

 (2.5)

rr =



rkq1

rkq2

r f d

rkd


. (2.6)

Variables associated with the stator and rotor windings are denoted by the s and r sub-

scripts, respectively. The directions of positive as, bs, and cs axes are the same as positive

flux linkages relative to the assumed positive direction of the stator currents. The flux

linkage equations can be presented as λλλ abcs

λλλ qdr

=

 Ls Lsr

LT
sr Lr


 iabcs

iqdr

 , (2.7)

where

Ls =

[
Lls+LA−LB cos2θr − 1

2 LA−LB cos2(θr− π

3 ) − 1
2 LA−LB cos2(θr+

π

3 )

− 1
2 LA−LB cos2(θr− π

3 ) Lls+LA−LB cos2(θr− 2π

3 ) − 1
2 LA−LB cos2(θr+π)

− 1
2 LA−LB cos2(θr+

π

3 ) −
1
2 LA−LB cos2(θr+π) Lls+LA−LB cos2(θr+

2π

3 )

]
(2.8)

8



Lsr =


Lskq1 cosθr Lskq2 cosθr Ls f d sinθr Lskd sinθr

Lskq1 cos(θr− 2π

3 ) Lskq2 cos(θr− 2π

3 ) Ls f d sin(θr− 2π

3 ) Lskd sin(θr− 2π

3 )

Lskq1 cos(θr +
2π

3 ) Lskq2 cos(θr +
2π

3 ) Ls f d sin(θr +
2π

3 ) Lskd sin(θr +
2π

3 )


(2.9)

Lr =



Llkq1 +Lmkq1 Lkq1kq2

Lkq1kq2 Llkq2 +Lmkq2

Ll f d +Lm f d L f dkd

L f dkd Llkd +Lmkd


(2.10)

LA =

(
Ns

2

)2

πµ0rlα1 (2.11)

LB =

(
1
2

)(
Ns

2

)2

πµ0rlα2 (2.12)

Lmq =

(
3
2

)
(LA−LB) (2.13)

Lmd =

(
3
2

)
(LA +LB) (2.14)

Lskq1 =

(
2
3

)(
Nkq1

Ns

)
Lmq (2.15)

Lskq2 =

(
2
3

)(
Nkq2

Ns

)
Lmq (2.16)

Ls f d =

(
2
3

)(
N f d

Ns

)
Lmd (2.17)

Lskd =

(
2
3

)(
Nkd

Ns

)
Lmd (2.18)
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Lmkq1 =

(
2
3

)(
Nkq1

Ns

)2

Lmq (2.19)

Lmkq2 =

(
2
3

)(
Nkq2

Ns

)2

Lmq (2.20)

Lm f d =

(
2
3

)(
N f d

Ns

)2

Lmd (2.21)

Lmkd =

(
2
3

)(
Nkd

Ns

)2

Lmd (2.22)

Lkq1kq2 =

(
Nkq2

Nkq1

)
Lmkq1 =

(
Nkq1

Nkq2

)
Lmkq2 (2.23)

L f dkd =

(
Nkd

N f d

)
Lm f d =

(
N f d

Nkd

)
Lmkd (2.24)

In the above equations, µ0 is the permeability of free space and equals to 4π×10−7H/m,

r is the radius to the mean of the air gap, l is the axial length of the air gap of the machine,

(α1 +α2)
−1 and (α1−α2)

−1 are the minimum and the maximum air-gap length, respec-

tively. If the rotor is non-salient, i.e. round, α2 = 0 and LB = 0. The subscript l denotes the

leakage inductance. The mutual inductances between stator and rotor windings are denoted

by the subscripts skq1, skq2, s f d, skd.

In order to better analyze, the rotor variables are transformed to the stationary reference

frame as

i
′
j =

(
2
3

)(
N j

Ns

)
i j (2.25)

v
′
j =

(
Ns

N j

)
v j (2.26)

λ
′
j =

(
Ns

N j

)
λ j (2.27)
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r
′
j =

(
3
2

)(
Ns

N j

)2

r j (2.28)

L
′
l j =

(
3
2

)(
Ns

N j

)2

Ll j, (2.29)

where j can represent kq1, kq2, f d, or kd.

The voltage equations (2.1), (2.2) and the flux linkage equations (2.7) may now be

expressed in stationary reference frame as vabcs

v′qdr

=

 rsI3

r′r


 iabcs

i′qdr

+
 pλλλ abcs

pλλλ
′

qdr

 (2.30)

 λλλ abcs

λλλ
′

qdr

=

 Ls L′sr

2
3L′Tsr L′r


 iabcs

i′qdr

 , (2.31)

where

L
′
sr =


Lmq cosθr Lmq cosθr Lmd sinθr Lmd sinθr

Lmq cos(θr− 2π

3 ) Lmq cos(θr− 2π

3 ) Lmd sin(θr− 2π

3 ) Lmd sin(θr− 2π

3 )

Lmq cos(θr +
2π

3 ) Lmq cos(θr +
2π

3 ) Lmd sin(θr +
2π

3 ) Lmd sin(θr +
2π

3 )


(2.32)

L
′
r =



L
′
lkq1 +Lmq Lmq

Lmq L
′
lkq2 +Lmq

L
′
l f d +Lmd Lmd

Lmd L
′
lkd +Lmd


(2.33)
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The energy stored in the coupling field can be presented as

Wf =

(
1
2

) iabcs

iqdr


T  λλλ abcs−λλλ labcs

λλλ qdr−λλλ lqdr


=

(
1
2

) iabcs

iqdr


T  Ls−LlsI3 Lsr

LT
sr Lr−Llr


 iabcs

iqdr


=

(
1
2

)
iTabcs(Ls−LlsI3)iabcs + iTabcsLsriqdr +

(
1
2

)
iTqdr(Lr−Llr)iqdr

=

(
1
2

)
iTabcs(Ls−LlsI3)iabcs + iTabcsL

′
sri
′
qdr +

(
1
2

)(
3
2

)
i
′T
qdr(L

′
r−L

′
lr)i

′
qdr. (2.34)

It is assumed that the magnetic system is linear. Thus

Wf =Wc =

(
1
2

)
iTabcs(Ls−LlsI3)iabcs+ iTabcsL

′
sri
′
qdr+

(
1
2

)(
3
2

)
i
′T
qdr(L

′
r−L

′
lr)i

′
qdr (2.35)

where Wc is the co energy.

The electromagnetic torque can be expressed as

Te =

(
P
2

)
∂Wc

∂θr

=

(
P
2

)(
1
2

iTabcs
∂ (Ls−LlsI3)

∂θr
iabcs + iTabcs

∂L′sr
∂θr

i
′
qdr

)

=

(
P
2

)(
1
2

iTabcs


2LBsin2θr 2LBsin2(θr− π

3 ) 2LBsin2(θr +
π

3 )

2LBsin2(θr− π

3 ) 2LBsin2(θr− 2π

3 ) 2LBsin2(θr +π)

2LBsin2(θr +
π

3 ) 2LBsin2(θr +π) 2LBsin2(θr +
2π

3 )

 iabcs

+ iTabcs

[ −Lmqsinθr −Lmqsinθr Lmdcosθr Lmdcosθr

−Lmqsin(θr− 2π

3 ) −Lmqsin(θr− 2π

3 ) Lmdcos(θr− 2π

3 ) Lmdcos(θr− 2π

3 )

−Lmqsin(θr+
2π

3 ) −Lmqsin(θr+
2π

3 ) Lmdcos(θr+
2π

3 ) Lmdcos(θr+
2π

3 )

]
i
′
qdr

)
, (2.36)

where

LB =
Lmd−Lmq

3
. (2.37)
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Because
sin2θr sin2(θr− π

3 ) sin2(θr +
π

3 )

sin2(θr− π

3 ) sin2(θr− 2π

3 ) sin2(θr +π)

sin2(θr +
π

3 ) sin2(θr +π) sin2(θr +
2π

3 )



=


sin2θr −1

2sin2θr−
√

3
2 cos2θr −1

2sin2θr +
√

3
2 cos2θr

−1
2sin2θr−

√
3

2 cos2θr −1
2sin2θr +

√
3

2 cos2θr sin2θr

−1
2sin2θr +

√
3

2 cos2θr sin2θr −1
2sin2θr−

√
3

2 cos2θr



=


1 −1

2 −1
2

−1
2 −1

2 1

−1
2 1 −1

2

sin2θr +

√
3

2


0 −1 1

−1 1 0

1 0 −1

cos2θr (2.38)

and
−Lmqsinθr −Lmqsinθr Lmdcosθr Lmdcosθr

−Lmqsin(θr− 2π

3 ) −Lmqsin(θr− 2π

3 ) Lmdcos(θr− 2π

3 ) Lmdcos(θr− 2π

3 )

−Lmqsin(θr +
2π

3 ) −Lmqsin(θr +
2π

3 ) Lmscos(θr +
2π

3 ) Lmscos(θr +
2π

3 )


=

 −Lmqsinθr −Lmqsinθr Lmdcosθr Lmdcosθr

Lmq

(
1
2 sinθr+

√
3

2 cosθr

)
Lmq

(
1
2 sinθr+

√
3

2 cosθr

)
Lmd

(√
3

2 sinθr− 1
2 cosθr

)
Lmd

(√
3

2 sinθr− 1
2 cosθr

)
Lmq

(
1
2 sinθr−

√
3

2 cosθr

)
Lmq

(
1
2 sinθr−

√
3

2 cosθr

)
Lmd

(
−
√

3
2 sinθr− 1

2 cosθr

)
Lmd

(
−
√

3
2 sinθr− 1

2 cosθr

)


=

[−Lmq −Lmq 0 0
1
2 Lmq

1
2 Lmq

√
3

2 Lmd

√
3

2 Lmd
1
2 Lmq

1
2 Lmq −

√
3

2 Lmd −
√

3
2 Lmd

]
sinθr

[ 0 0 Lmd Lmd√
3

2 Lmq

√
3

2 Lmq − 1
2 Lmd − 1

2 Lmd

−
√

3
2 Lmq −

√
3

2 Lmq − 1
2 Lmd − 1

2 Lmd

]
cosθr. (2.39)

Equation (2.36) can be transformed into

Te =

(
P
2

)(
Lmd−Lmq

3

[(
i2as−

1
2

i2bs−
1
2

i2cs− iasibs− iasics +2ibsics

)
sin2θr

+

√
3

2
(
i2bs− i2cs−2iasibs +2iasics

)
cos2θr

]

+Lmq(i
′
kq1 + i

′
kq2)

[(
ias−

1
2

ibs−
1
2

ics

)
sinθr−

√
3

2
(ibs− ics)cosθr

]

−Lmd(i
′
f d + i

′
kd)

[√
3

2
(ibs− ics)sinθr +

(
ias−

1
2

ibs−
1
2

ics

)
cosθr

])
. (2.40)
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2.1.3 Voltage and Flux Linkage Equations in Arbitrary Reference Frame

Variables

The voltage equations (2.1) can be expressed in the arbitrary reference frame as

Vqd0s = rsiqd0s +ω


0 1 0

−1 0 0

0 0 0

λλλ qd0s + pλλλ qd0s. (2.41)

Because the rotor circuits are unbalanced, there is no benefit to transform the rotor

voltage equations into the arbitrary reference frame. Therefore, the rotor voltage equations

are expressed only in the rotor reference frame and written as

V
′r
qdr = rri

′r
qdr + pλλλ

′r
qdr. (2.42)

The superscript r denotes variables expressed in the rotor reference frame.

From the flux linkage equations (2.31), the following equations can be derived K−1
s λλλ qd0s

λλλ
′r
qdr

=

 Ls L′sr

2
3L′Tsr L′r


 K−1

s iqd0s

i′rqdr

 (2.43)

 λλλ qd0s

λλλ
′r
qdr

=

 KsLsK−1
s KsL

′
sr

2
3L′Tsr K−1

s L′r


 iqd0s

i′rqdr

 , (2.44)

where

KsLsK−1
s =


Lls +

3
2LA− 3

2LB cos2(θ −θr) −3
2LB sin2(θ −θr) 0

−3
2LB sin2(θ −θr) Lls +

3
2LA +

3
2LB cos2(θ −θr) 0

0 0 Lls


(2.45)

KsL
′
sr =


Lmq cos(θ −θr) Lmq cos(θ −θr) −Lmd sin(θ −θr) −Lmd sin(θ −θr)

Lmq sin(θ −θr) Lmq sin(θ −θr) Lmd cos(θ −θr) Lmd cos(θ −θr)

0 0 0 0


(2.46)
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2
3

L
′T
sr K−1

s = (KsL
′
sr)

T =



Lmq cos(θ −θr) Lmq sin(θ −θr) 0

Lmq cos(θ −θr) Lmq sin(θ −θr) 0

−Lmd sin(θ −θr) Lmd cos(θ −θr) 0

−Lmd sin(θ −θr) Lmd cos(θ −θr) 0


. (2.47)

2.1.4 Park’s Equations and Equivalent Circuits

It is found that mutual inductances of rotating machinery and self-inductances of salient

pole machinery stator windings are functions of rotor position (time-varying). These position-

varying inductances make the state variable equations time-varying and complicate the ma-

chine analysis. In order to eliminate all rotor position-dependent inductances from the state

variable equations and simplify electric machine analyses, R. H. Park transformed the sta-

tor variables to the rotor reference frame, which is rotating at the electrical angular velocity

of the rotor. Then the voltage equations in rotor reference-frame variables, which are also

called Park’s equations, are obtained. By doing Park’s transformation, the corresponding

equations don’t depend on the rotor position anymore and become time invariant, and the

state variables become constant in the steady state. Therefore, the machine analysis is sim-

plified [16]. Since the transformation of the rotor circuit will not simplify the circuit, the

rotor circuit won’t be transformed. By setting the speed of the arbitrary reference frame ω

equal to the rotor speed ωr, Park’s equations can be obtained from the voltage equations

(2.41) as

Vr
qd0s = rsirqd0s +ωr


0 1 0

−1 0 0

0 0 0

λλλ
r
qd0s + pλλλ

r
qd0s. (2.48)

V
′r
qdr = rri

′r
qdr + pλλλ

′r
qdr. (2.49)
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By setting θ equal to θr , the flux linkages equations can be expressed in the rotor

reference frame as  λλλ
r
qd0s

λλλ
′r
qdr

=

 Kr
sLsKr−1

s Kr
sL
′
sr

2
3L′Tsr Kr−1

s L′r


 irqd0s

i′rqdr

 , (2.50)

where

Kr
s LsKr−1

s =


Lls +Lmq 0 0

0 Lls +Lmd 0

0 0 Lls

 (2.51)

Kr
s L
′
sr =


Lmq Lmq 0 0

0 0 Lmd Lmd

0 0 0 0

 (2.52)

2
3

L
′T
sr Kr−1

s = (Kr
s L
′
sr)

T =



Lmq 0 0

Lmq 0 0

0 Lmd 0

0 Lmd 0


. (2.53)

Park’s voltage equations can be expanded as

vr
qs = rsirqs +ωrλ

r
ds + pλ

r
qs (2.54)

vr
ds = rsirds−ωrλ

r
qs + pλ

r
ds (2.55)

v0s = rsi0s + pλ0s (2.56)

v
′r
kq1 = r

′
kq1i

′r
kq1 + pλ

′r
kq1 (2.57)

v
′r
kq2 = r

′
kq2i

′r
kq2 + pλ

′r
kq2 (2.58)
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v
′r
f d = r

′
f di
′r
f d + pλ

′r
f d (2.59)

v
′r
kd = r

′
kdi
′r
kd + pλ

′r
kd . (2.60)

By substituting Equation (2.51), Equation (2.52), Equation (2.53), and Equation (2.33),

into Equation (2.50), the flux linkages equations can be derived as

λ
r
qs = Llsirqs +Lmq(irqs + i

′r
kq1 + i

′r
kq2) (2.61)

λ
r
ds = Llsirds +Lmd(irds + i

′r
f d + i

′r
kd) (2.62)

λ0s = Llsi0s (2.63)

λ
′r
kq1 = L

′
lkq1i

′r
kq1 +Lmq(irqs + i

′r
kq1 + i

′r
kq2) (2.64)

λ
′r
kq2 = L

′
lkq2i

′r
kq2 +Lmq(irqs + i

′r
kq1 + i

′r
kq2) (2.65)

λ
′r
f d = L

′
l f di

′r
f d +Lmd(irds + i

′r
f d + i

′r
kd) (2.66)

λ
′r
kd = L

′
lkdi

′r
kd +Lmd(irds + i

′r
f d + i

′r
kd). (2.67)

The equivalent circuits suggested by the voltage and flux linkage equations are shown

in Figure 2.2.
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Figure 2.2: Equivalent circuits of a three-phase synchronous machine in the rotor reference
frame [1]
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Substituting the equations of transformation into Equation (2.36) yields the expression

for the electromagnetic torque in rotor reference frame as

Te =

(
P
2

)(
1
2

iTabcs
∂ (Ls−LlsI3)

∂θr
iabcs + iTabcs

∂L
′
sr

∂θr
i
′
qdr

)

=

(
P
2

)(
1
2
(Kr−1

s irqd0s)
T ∂ (Ls−LlsI3)

∂θr
Kr−1

s irqd0s +(Kr−1
s irqd0s)

T ∂L
′
sr

∂θr
i
′
qdr

)

=

(
P
2

)(
1
2

irT
qd0sK

r−1T
s

∂ (Ls−LlsI3)

∂θr
Kr−1

s irqd0s + irT
qd0sK

r−1T
s

∂L
′
sr

∂θr
i
′
qdr

)
, (2.68)

where

∂ (Ls−LlsI3)

∂θr
=


2LB sin2θr 2LB sin2(θr− π

3 ) 2LB sin2(θr +
π

3 )

2LB sin2(θr− π

3 ) 2LB sin2(θr− 2π

3 ) 2LB sin2(θr +π)

2LB sin2(θr +
π

3 ) 2LB sin2(θr +π) 2LB sin2(θr +
2π

3 )

 (2.69)

∂L
′
sr

∂θr
=


−Lmq sinθr −Lmq sinθr Lmd cosθr Lmd cosθr

−Lmq sin(θr− 2π

3 ) −Lmq sin(θr− 2π

3 ) Lmd cos(θr− 2π

3 ) Lmd cos(θr− 2π

3 )

−Lmq sin(θr +
2π

3 ) −Lmq sin(θr +
2π

3 ) Lmd cos(θr +
2π

3 ) Lmd cos(θr +
2π

3 )

 .

(2.70)

Thus the torque equation in rotor reference frame, i.e. Equation (2.68), can be reduced

to

Te =

(
3
2

)(
P
2

)(
Lmd(irds + i

′
f d + i

′
kd)i

r
qs−Lmq(irqs + i

′
kq1 + i

′
kq2)i

r
ds

)
=

(
3
2

)(
P
2

)(
λ

r
dsr

r
qs−λ

r
qsr

r
ds
)

. (2.71)

The rotor angle is the angular displacement between the rotor and the phase of the

terminal voltage. Thus, the rotor angle may be expressed in radiant as

δ = θr−θev, (2.72)

where θev is the electrical angular velocity of the terminal voltage.
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The variables in the synchronously rotating reference frame can be transformed into

rotor reference frame by using

f r
qd0s =

eKr
s f e

qd0s, (2.73)

where

eKr
s =


cosδ −sinδ 0

sinδ cosδ 0

0 0 1

 (2.74)

The superscript e denotes variables expressed in the the synchronously rotating reference

frame.

The electromagnetic torque and the rotor speed may be related as

J
dωrm

dt
= Te−Tl , (2.75)

where J is the inertia of the rotor and Tl is the torque load.

If the speed of the synchronously rotating reference frame, i.e. ωe, is constant, then

J
dωrm

dt
= J

(
2
P

)
dωr

dt
= J

(
2
P

)(
dωr

dt
− dωe

dt

)
= J

(
2
P

)(
d2θr

dt2 −
d2θev

dt2

)
= J

(
2
P

)
d2δ

dt2 = Te−Tl . (2.76)

2.2 Literature Review

Analytical modeling of synchronous machines is essential for power systems analysis and

studies and other important applications such as the study of dc power systems and rotating

rectifiers [17–23]. Various models have been proposed from a wide range of perspectives

and applications [24–58]. Specifically, many of these models are derived based on Park’s

transformation [15]. By transformation to the rotor reference frame, the corresponding

equations become time invariant, the state variables become constant in the steady state,

and the machine analysis is simplified.
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Many improvements to synchronous machine models have been offered. Some mod-

els have included alternative rotor networks [27, 36, 37, 39, 40, 59, 60], e.g., differential

leakage inductance to account for unequal coupling of rotor windings with respect to sta-

tor windings. Other models have included magnetizing path saturation in the d-axis [61]

or using equivalent isotropic models [45, 62]. The model considered herein, which was

proposed in [63], includes arbitrary linear rotor networks and a general magnetizing path

saturation representation that includes cross-saturation. This model has been extensively

validated in hardware [58,63–65], and most existing machine models (e.g., the standard qd

model, [60, 61, 66]) are special cases of this model.

While the machine model encompasses the mathematical equations used to represent

the machine, the formulation is used herein to indicate the particular arrangement of these

equations in order to perform time-domain simulation. A given machine model can have

multiple formulations that are each better suited for certain types of simulations. One

such case is the consideration of machine-rectifier interactions. For such scenarios, the use

of traditional voltage-in, current-out (or signal-flow) formulations results in an interface

mismatch between the machine and the rectifier, which is more conducive to a circuit rep-

resentation. This mismatch can be resolved by inserting fictitious circuit elements (e.g.,

resistors), but this can lead to inaccuracy and to longer simulation run times [67]. Such sit-

uations have been studied using phase-domain (PD) circuit formulations [68–73]. In [67], a

voltage-behind-reactance (VBR) formulation that achieves direct interfacing between ma-

chine models and external networks is derived. This formulation separates the rotor dy-

namics from the stator circuit representation to achieve better numerical efficiency than PD

formulations. In [61], this formulation was extended to models including d-axis saturation.

An interesting recent set of formulations have involved constant-parameter VBR formu-

lations, which can greatly decrease run time [74, 75]. These models inherently require

additional model approximations and are beyond the scope of the present work.

Multiple formulations of the model considered herein have been derived [63–65]. In
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[64], a voltage-in, current-out (qd) formulation is proposed. A stator-only VBR (SVBR)

formulation is derived in [63]. A stator and field VBR (SFVBR) formulation was set forth

in [65]. Each of these formulations have been successful for certain simulation appli-

cations, but these formulations have each entailed complicated derivations with little com-

monality. Herein, a unified derivation of the model formulations is presented, which avoids

the diverse notation, realizations, and transformations found in previous derivations, a field-

only VBR (FVBR) formulation that completes the set of formulations for this model is de-

rived, and the relative advantages of each formulation in different simulation applications

are demonstrated.

Brushless excitation systems offer higher reliability and require less maintenance than

static excitation systems by eliminating brushes, slip rings, circuit breakers, field breakers,

and carbon dust [76–78]. These advantages lead to its wide use in large synchronous ma-

chines, especially in applications where high reliability is required and maintenance budget

is limited [78–80]. Rotating rectifiers are commonly employed in brushless excitation sys-

tems, where exciter armature windings and rotating rectifiers are all mounted on the same

shaft as main machine field windings [79, 81]. Output voltages of exciters are rectified by

rotating rectifiers and fed to main machine field circuits. Because brushless exciters are

directly related to main machine field voltages and power system dynamic behavior, accu-

rate and computationally efficient modeling of brushless excitation systems with rotating

rectifiers is essential for power electronic simulation and power systems analysis. Spe-

cific applications in which accurate and efficient modeling are necessary may involve long

simulation times, large numbers of components, and/or repeated simulations with different

sets of parameters (e.g., aircraft power systems [82], shipboard power systems [79,83], and

microgrids [84]).

Modeling machine-converter systems has received considerable attention. Although

the detailed model of machine-rectifier systems can provide accurate results and design

evaluations [85], it is computationally expensive due to repeated switching of the diodes.
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Average-value models (AVMs) reduce the modeling complexity and enhance the compu-

tational efficiency by “neglecting” or “averaging” the effects of fast switching with re-

spect to the prototypical switching interval [86,87]. In early studies, relationships between

ac source variables and rectifier dc variables are derived analytically [88–90]. However,

such characteristics are obtained based on idealized ac systems and the assumption that

the commutating reactance is constant. In later work, the AVM for converters connected

to synchronous machines is proposed [18]. The commutating reactance is set equal to

the d-axis subtransient reactance of synchronous machines. Because the commutating re-

actance should also be related to the q-axis subtransient reactance, the AVM presented

in [18] is not accurate. The study in [91] improves the AVM by using a function of both

the q- and d-axis subtransient reactances and of the converter firing angle as equivalent

commutating reactances. In order to accurately predict the output impedance at higher fre-

quencies, dynamic AVMs are developed in [92]. Analytical derivation methods, which are

used in [18, 81, 88–93], are based upon specific switching patterns and have limited utility

outside of these operating modes. Also, many of these methods require implicit solutions

to nonlinear equations and numerical integration within each time step, which can increase

computational cost.

An alternative method for construction of AVMs of rectifiers has been coined the

parametric or numerical approach, wherein numerical solutions are adopted in the ear-

lier model development stage to obtain rectifier AVM parameters from detailed simula-

tions [19, 94–97]. In [19], the average behaviors of rectifiers are represented using a set of

fixed parameters, which are not able to adaptively evolve according to operating conditions

and therefore lead to inaccurate results. An improved AVM with parameters vary dynami-

cally depending on operational conditions is presented in [95]. However, this AVM cannot

be directly applied to the rotating rectifier in a brushless excitation system because of some

differences between these rectifiers. In particular, the rotating rectifier requires a different

reference frame transformation. More importantly, the field winding of the main machine
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does not resemble an LC filter (e.g., like seen in [95]); it primarily acts like an RL circuit.

This creates a unique interfacing challenge that has not previously been addressed in the

literature and is complicated by the saliency of the exciter machine.

Herein, a numerical AVM of the rotating rectifier in a brushless excitation system is

proposed. This model averages the periodic switching behavior of the rotating rectifier

and integrates these numerical functions with a dynamic model of the exciter machine to

allow the nonlinear and dynamic characteristics of the brushless excitation system to be

incorporated in simulation models with a traditional voltage-in, current-out formulation

of the main machine. This results in accurate and computationally efficient simulations.

The proposed model is validated using an experimentally validated machine-exciter system

model and the computational efficiency benefits are quantified. It is also shown that the

proposed AVM of the brushless excitation system can be combined with a numerical AVM

of a stationary rectifier (i.e., [95]) to greatly reduce the computational cost of simulating

such a system.

Machine-rectifier systems are generally utilized in the electrical subsystems of electric

vehicles, including ships, aircraft, and automobiles, and for the brushless excitation of large

synchronous machines. Modeling and simulation of machine-rectifier systems have great

significance in the design and analysis of such applications because they can predict the

dynamic behavior of each component and the overall system prior to the actual realization

in hardware. Accurate and efficient modeling of machine-rectifier systems is particularly

beneficial in applications with long run times, iterative simulations with diverse sets of

parameters, and/or a high component count, such as microgrids [84], shipboard power

systems [79, 83], and aircraft power systems [82].

Different approaches have been proposed to simulate and model machine-rectifier sys-

tems. The traditional detailed model of such systems has the ability to predict results

accurately and offer design evaluations [85] and can be easily developed utilizing differ-

ent simulation software packages [98]. However, it requires long simulation times due
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to repetitive switching of the diodes. To reduce the computational cost, average-value

models (AVMs) have been developed by neglecting the details of each individual switch-

ing [86, 87]. Construction methods for AVMs of rectifiers can be generally classified into

two categories, i.e., analytical derivation [18, 81, 88–93] and parametric or numerical ap-

proaches [19, 94–97, 99]. In analytical derivation methods, analytical relationships be-

tween variables on the ac and dc sides are derived. In early studies, such relationships

are derived based on strong assumptions (e.g., idealized ac system, constant commutating

reactance) [88–90]. In [18], the d-axis subtransient reactance is used to represent the ac-

side commutating reactance, which neglects the effect of the q-axis subtransient reactance.

In [91], the commutating reactance is determined by a function of the converter firing angle

and of both the q- and d-axis subtransient reactances. Subsequently, dynamic AVMs are

developed to accurately predict frequency-domain impedance characteristic [92]. Analyti-

cal derivation methods are based upon specific operating mode and require significant work

to solve nonlinear equations and/or numerical integration, which may significantly reduce

the computational efficiency.

As an alternative to analytical derivations, the parametric or numerical approach sim-

plifies the development of AVMs. In parametric or numerical approaches, rectifier AVM

parameters are obtained from detailed simulations at an earlier model development stage

using numerical solutions [19, 94–97]. The study in [19] uses a set of fixed parameters to

model the averaged rectifier behavior. In [95], the AVM is improved by using dynamic

parameters which vary depending on operational conditions. The approach in [95] (and

subsequently [96, 97]) introduces a low-frequency approximation of the inductor in the dc

filter. It was found in [99] that this approximation was not useful for rotating rectifiers

in brushless excitation systems because the field winding being fed by the rectifier did

not have similar dynamics to the LC dc filters considered in [95] and subsequent work.

Therefore, in [99], a low-frequency approximation was introduced to the ac side for such

systems. The difference between these two approaches is not really about stationary versus
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rotating but about feeding an LC circuit with load versus a field winding that resembles an

RL circuit. The parametric or numerical approach has been extended in numerous ways

(e.g., ac harmonics and frequency dependency for thyristor-controlled rectifiers are con-

sidered in [100]). The fundamental approach is the same, based on numerical averaging

of the results of detailed simulations in order to establish a numerical representation of the

relationship between the ac and dc variables. However, previous approaches for numer-

ical AVMs introduce low-frequency approximations to avoid improper transfer functions

on either the ac or dc side of the rectifier. These approximations can create inaccuracy in

highly dynamic situations and can also complicate the interfacing of traditional models of

equipment on either the ac or dc side of the rectifier.

Herein, a numerical AVM formulation is proposed that provides a means of directly

coupling the AVM with inductive circuitry (e.g., machine on the ac side and dc filter on the

dc side). While the proposed formulation uses a model with similar mathematical relation-

ships to existing AVM formulations, it makes direct use of the natural dynamic impedance

of the rectifier without the introduction of low-frequency approximations on either the ac

or the dc side of the rectifier, a source of significant inaccuracy that is demonstrated in

the paper. By using this formulation, direct interface of the AVM that is demonstrated

herein is achieved with inductive circuitry on both the ac and dc sides allowing traditional

voltage-in, current-out formulations of the circuitry on these sides to be used with the pro-

posed formulation directly. In the proposed alternative formulation, it is not necessary to

introduce low-frequency approximations or to invert the voltage-current interfaces on ei-

ther the ac or dc side for interfacing with an LC circuit with load or a field winding that

resembles an RL circuit. Therefore, the proposed formulation is equally valid for the sta-

tionary recitifer applications considered in [95–97] and for the rotating rectifier application

considered in [99]. Direct interfacing with inductive branches on the ac and dc sides of

the rectifier is achieved without introducing low-frequency approximations or algebraic

loops. The proposed model is validated against an experimentally validated detailed model
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and compared with previous AVM formulations in six cases. The results show that the

low-frequency behavior of the system is accurately represented (even in cases in which

previous AVM formulations fail to accurately represent this behavior) and that the high

computational efficiency associated with existing AVMs is retained. Because the proposed

AVM can be directly interfaced with simulation models with traditional voltage-in, current-

out formulations of the ac and dc equipment, it can be readily used with existing models of

such equipment in commercial simulation toolboxes.
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Chapter 3
Unified Model Formulations for Synchronous
Machine Model with Saturation and Ar-
bitrary Rotor Network Representation

Numerous models and formulations have been used to study synchronous machines in dif-

ferent applications. Herein, a unified derivation of the various model formulations, which

support direct interface to external circuitry in a variety of scenarios, is presented. The

work described in this chapter has been published in [16]. A synchronous machine model

with magnetizing path saturation including cross-saturation and an arbitrary rotor network

representation is considered. This model has been extensively experimentally validated

and includes most existing machine models as special cases. Derivations of the standard

voltage-in, current-out formulation as well as formulations in which the stator and/or the

field windings are represented in a voltage-behind-reactance form are presented in a uni-

fied manner, including the derivation of a field-only voltage-behind-reactance formulation.

The formulations are compared in a variety of simulation scenarios to show the relative

advantages in terms of time steps, run time, and accuracy. It has been demonstrated that

selection of the formulation with the most suitable interface for the simulation scenario has

better accuracy, fewer time steps, and less run time.

The contributions of this work are: 1) the unified derivation of model formulations for

the synchronous machine model, 2) the development of the FVBR formulation, and 3) the

demonstration of the relative advantages of the formulations. The remainder of this chapter
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is organized as follows. In Section 3.1, the mathematical notation used herein is defined.

Section 5.1 details the synchronous machine model in sufficient detail to present the model

formulations. The model formulations are included in Section 3.3. Results demonstrating

the relative performance of the four synchronous machine formulations are shown and

compared in Section 3.4.

3.1 Notation

Matrices and vectors are bold faced. Stator phase variables can be represented in vector

form as fabcs = [ fas fbs fcs]
T. The symbol f can represent voltage (v), current (i), or flux

linkage (λ ). Such vector quantities can be transformed into the rotor reference frame using

fqd0s = Ks(θr)fabcs (3.1)

where the transformation matrix [1] is given by

Ks(θr) =
2
3


cosθr cos(θr− 2π

3 ) cos(θr +
2π

3 )

sinθr sin(θr− 2π

3 ) sin(θr +
2π

3 )

1
2

1
2

1
2

 . (3.2)

The electrical angular position is given by

θr =
P
2

θrm, (3.3)

where P is the number of magnetic poles in the machine and θrm is the mechanical angular

position of the machine. Similarly, the electrical angular velocity is given by

ωr =
P
2

ωrm, (3.4)

where ωrm is the mechanical angular velocity of the machine. The components of fqd0s =

[ fqs fds f0s]
T are the q- and d-axis components and the zero-sequence component of the

quantity, respectively. When the zero-sequence component is omitted, fqds = [ fqs fds]
T.
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Figure 3.1: Synchronous machine model in rotor reference frame.

The notation fdq0s = [ fds − fqs 0]T is used for speed voltage terms, and fdqs = [ fds −

fqs]
T when the zero-sequence component is omitted. Throughout, the operator p denotes

differentiation with respect to time.

3.2 Synchronous Machine Model

The synchronous machine model that is considered herein is presented in [58] and shown

in Figure 3.1. It can be seen that the model features arbitrary linear networks to represent

the rotor circuits and magnetizing path saturation including cross-saturation. The details of

the model that are necessary to derive the relevant formulations are presented below.

The stator voltages are given by

vabcs = rsiabcs + pλλλ abcs, (3.5)

where rs is the stator resistance. Transforming (3.5) into the rotor reference frame using

(5.3) yields

vqd0s = rsiqd0s +ωrλλλ dq0s + pλλλ qd0s. (3.6)

30



The stator q- and d-axis flux linkages can be divided into a leakage term and a magnetizing

term:

λλλ qds = Llsiqds +λλλ mqd , (3.7)

where Lls is the stator leakage inductance and λλλ mqd = [λmq λmd]
T are the magnetizing flux

linkages. By Faraday’s law, the magnetizing voltages are equal to the time derivatives of

the magnetizing flux linkages:

vmqd = pλλλ mqd . (3.8)

By substitution of (3.7) into (3.6), the q- and d-axis stator voltages can be expressed as

vqds = rsiqds +ωrLlsidqs +Lls piqds +ωrλλλ mdq +vmqd , (3.9)

where λλλ mdq = [λmd −λmq]
T. The stator zero-sequence flux linkage can be expressed as

λ0s = Llsi0s. (3.10)

Substitution of (3.10) into (3.6) yields the following expression for the zero sequence stator

voltage:

v0s = rsi0s +Lls pi0s. (3.11)

The magnetizing currents are related to the magnetizing flux linkages by

imq = Γmq(λ̂m)λmq (3.12)

imd = Γmd(λ̂m)λmd , (3.13)

where Γmq(·) and Γmd(·) are inverse inductance functions related to the representation of

saturation,

λ̂m =
√

λ 2
md +αλ 2

mq, (3.14)

and α is a saliency-dependent parameter. The relationship between the time derivatives of

the magnetizing currents and of the magnetizing flux linkages is given by

pimqd = ΓΓΓmi(λλλ mqd)pλλλ mqd = ΓΓΓmi(λλλ mqd)vmqd , (3.15)
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where the incremental inverse inductance matrix is given by

ΓΓΓmi(λλλ mqd) =

dΓmq(λ̂m)

dλ̂m

αλ 2
mq

λ̂m
+Γmq(λ̂m),

dΓmq(λ̂m)

dλ̂m

λmqλmd

λ̂m

dΓmd(λ̂m)

dλ̂m

αλmqλmd

λ̂m
, dΓmd(λ̂m)

dλ̂m

λ 2
md

λ̂m
+Γmd(λ̂m)

 . (3.16)

Because a lossless coupling field is assumed, a functional constraint of Γmd(·) and Γmq(·)

is necessary, which renders the incremental inverse inductance matrix symmetric [64].

The rotor circuit is represented in both the q- and d-axes by an arbitrary linear network.

In particular, the d-axis is described by

pxd = Adxd +Bd

vmd

v f dr

 (3.17)

 idr

i f dr

= Cdxd , (3.18)

and the q-axis is described by

pxq = Aqxq +bqvmq (3.19)

iqr = cT
q xq. (3.20)

The matrices Ad , Bd , and Cd are a minimal realization of the d-axis rotor network transfer

function, denoted by Yd(s) in Figure 3.1, and the components of xd are state variables

associated with this realization. Likewise, the matrix Aq and the vectors bq and cq are a

minimal realization of the q-axis rotor network transfer function, denoted Yq(s), and the

components of xq are its state variables.

It is generally possible by linear transformation to have

Cd = [I2 0] (3.21)

cT
q = [1 0T]. (3.22)

A transformation matrix that achieves the form indicated in (3.21) and (3.22) is given by

T = [P N], (3.23)
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where P = C+ and N is a matrix formed from columns that span null(C). This transforma-

tion is applied such that the linear system in the new coordinates is described using

Ã = T−1AT (3.24)

B̃ = T−1A (3.25)

C̃ = CT = [I 0]. (3.26)

When such a transformation has been applied, it is possible to partition the d-axis linear

system as 
pidr

pi f dr

pxd3

=


ad11 ad12 aT

d13

ad21 ad22 aT
d23

ad31 ad32 Ad33




idr

i f dr

xd3

+


bd11 bd12

bd21 bd22

bd31 bd32


vmd

v f dr

 . (3.27)

Likewise, the q-axis system can be partitioned as piqr

pxq2

=

aq11 aT
q12

aq21 Aq22


 iqr

xq2

+
bq1

bq2

vmq. (3.28)

By Kirchhoff’s current law,

iqds = imqd + iqdr. (3.29)

Using this current relationship, the magnetizing voltages vmqd can be eliminated from the

equations. Differentiating (3.29) with respect to time and substituting (3.15), (3.27) and

(3.28) yields

piqds =

ΓΓΓmi(λλλ mqd)+

bq1

bd11


vmqd

+

aq11

ad11

 iqdr +

aT
q12xq2

aT
d13xd3


+

 0

ad12

 i f dr +

 0

bd12

v f dr. (3.30)

33



Substituting (3.30) into (3.9) and solving for vmqd results in the following:

vmqd = M

[
vqds− rsiqds−ωrLlsidqs−ωrλλλ mdq

−Lls

(aq11

ad11

 iqdr +

aT
q12xq2

aT
d13xd3


+

 0

ad12

 i f dr +

 0

bd12

v f dr

)]
, (3.31)

where

M =

I2 +Lls

ΓΓΓmi(λλλ mqd)+

bq1

bd11




−1

. (3.32)

The set of voltage equations can be rearranged into forms suitable for each of the model

formulations. In particular, certain voltage equations must be represented in a form suitable

for circuit representation for each formulation. For the SVBR formulation, solving (3.29)

for iqdr, substituting into (3.30), solving for vmqd , substituting into (3.9), and combining

with (3.11) yields

vqd0s = rsiqd0s +ωrLlsidq0s +Lls piqd0s + R̂miqd0s + L̂m piqd0s + eqd0s. (3.33)

The matrices and vector in (3.33) are

R̂m =


Lmi

aq

ad


0

 (3.34)

L̂m =

Lmi

0

 (3.35)

eqd0s =

eqds

0

 , (3.36)
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where aq =−aq11, ad =−ad11, and

Lmi =

ΓΓΓmi(λλλ mqd)+

bq1

bd11



−1

=

Lmqq Lmqd

Lmqd Lmdd

 (3.37)

eqds =ωrλλλ mdq

+Lmi

(aq11

ad11

 imqd−

aT
q12xq2

aT
d13xd3

−
 0

ad12

 i f dr−

 0

bd12

v f dr

)
. (3.38)

Transforming (3.33) into phase variables yields

vabcs = Riabcs +Lpiabcs + eabcs. (3.39)

The matrices and vector in (3.39) are

R = rsI3 +Rm (3.40)

L = LlsI3 +Lm (3.41)

eabcs = K−1
s eqd0s, (3.42)
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where

Rm =RaM1 +(
√

3/2)(ωrLa−Rd)M2

+


R1(θr) R1(θr−π/3) R1(θr +π/3)

R1(θr−π/3) R1(θr +π/3) R1(θr)

R1(θr +π/3) R1(θr) R1(θr−π/3)



+ωr


L2(θr) L2(θr−π/3) L2(θr +π/3)

L2(θr−π/3) L2(θr +π/3) L2(θr)

L2(θr +π/3) L2(θr) L2(θr−π/3)

 (3.43)

Lm =LaM1 +


L1(θr) L1(θr−π/3) L1(θr +π/3)

L1(θr−π/3) L1(θr +π/3) L1(θr)

L1(θr +π/3) L1(θr) L1(θr−π/3)

 (3.44)
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La = (Lmqq +Lmdd)/3 (3.45)

Lb = (Lmdd−Lmqq)/3 (3.46)

Lc = 2Lmqd/3 (3.47)

Ra = (aqLmqq +adLmdd)/3 (3.48)

Rb = (adLmdd−aqLmqq)/3 (3.49)

Rc = (aq +ad)Lmqd/3 (3.50)

Rd = (ad−aq)Lmqd/3 (3.51)

L1(φ) =−Lb cos(2φ)+Lc sin(2φ) (3.52)

L2(φ) = L1(φ +π/4) (3.53)

R1(φ) =−Rb cos(2φ)+Rc sin(2φ) (3.54)

M1 =


1 −1/2 −1/2

−1/2 1 −1/2

−1/2 −1/2 1

 (3.55)

M2 =


0 1 −1

−1 0 1

1 −1 0

 . (3.56)

For the FVBR formulation, substituting (3.31) into (3.27) and solving for v f dr results

in the following:

v f dr = Ri f dr +Lpi f dr + e f dr. (3.57)
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The scalars in (3.57) are

R =rs f dr +σa′f LlsM′dd (3.58)

L =Ls f dr +χσLlsM′dd (3.59)

e f dr =σ [M′qd M′dd]

[
vqds− rsiqds−ωrLlsidqs−ωrλλλ mdq

−Lls

(aq11

ad11

 iqdr +

aT
q12xq2

aT
d13xd3

)]

− (Ls f dr +χσLlsM′dd)(ad21idr +aT
d23xd3), (3.60)

where

M′ =

[
I2 +Lls

(
ΓΓΓmi(λλλ mqd)+

bq1

bd11−χσbd22

)]−1

=

M′qq M′qd

M′qd M′dd

 (3.61)

χ =−bd12/bd22 (3.62)

σ =−bd21/bd22 (3.63)

a′f =−ad12−χad22 (3.64)

rs f dr =−ad22/bd22 (3.65)

Ls f dr = 1/bd22. (3.66)

For the SFVBR formulation, substituting (3.31) into (3.9) and (3.27), solving for vqds
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and v f dr, and combining with (3.11) yields:vqd0s

v f dr

= R′s

iqd0s

i f dr

+
ωrLlsidq0s

0


+L′s

piqd0s

pi f dr

+ R̂′m

iqd0s

i f dr


+ L̂′m

piqd0s

pi f dr

+
e′qd0s

e′f dr

 . (3.67)
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The matrices, vector, and scalar in (3.67) are

R′s =

rsI3

rs f dr

 (3.68)

L′s =

LlsI3

Ls f dr

 (3.69)

R̂′m =



0 0 0 0

0 0 0 0

0 0 0 0

0 rm f dr 0 0


+



−aqL′mqq −adL′mqd 0 −a f L′mqd

−aqL′mqd −adL′mdd 0 −a f L′mdd

0 0 0 0

σaqL′mqd σadL′mdd 0 σa f L′mdd


(3.70)

L̂′m =



L′mqq L′mqd 0 −χL′mqd

L′mqd L′mdd 0 −χL′mdd

0 0 0 0

−σL′mqd −σL′mdd 0 χσL′mdd


(3.71)

e′qd0s =L′mi

aq11

ad11

 imqd−

aT
q12xq2

aT
d13xd3


−χ

L′mqd

L′mdd

(aT
d23xd3−ad21imd)+ωrλλλ mdq (3.72)

e′f dr =σ

[
L′mqd L′mdd

](aq11

ad11

 imqd−

aT
q12xq2

aT
d13xd3

)

− (Ls f dr +χσL′mdd)(a
T
d23xd3−ad21imd), (3.73)
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where

L′mi =

(
ΓΓΓmi(λλλ mqd)+

bq1

bd11−bd12bd21/bd22

)−1

=

L′mqq L′mqd

L′mqd L′mdd

 (3.74)

a′d =−ad11−χad21 (3.75)

rm f dr =−ad21/bd22. (3.76)

Transforming (3.67) into phase variables yieldsvabcs

v f dr

= R′

iabcs

i f dr

+L′

piabcs

pi f dr

+
e′abcs

e′f dr

 . (3.77)

The matrices and vector in (3.77) are

R′ = R′s +R′m (3.78)

L′ = L′s +L′m (3.79)

e′abcs = K−1
s e′qd0s, (3.80)
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where R′m and L′m are defined in (3.81) and (3.82).

R′m =

R′aM1

σa′f L′mdd

+(
√

3/2)(ωrL′a−R′d)

M2

0



+



R′1(θr) R′1(θr−π/3) R′1(θr +π/3) R′2(θr)

R′1(θr−π/3) R′1(θr +π/3) R′1(θr) R′2(θr−2π/3)

R′1(θr +π/3) R′1(θr) R′1(θr−π/3) R′2(θr +2π/3)

R′3(θr) R′3(θr−2π/3) R′3(θr +2π/3) 0



+ωr



L′2(θr) L′2(θr−π/3) L′2(θr +π/3) 0

L′2(θr−π/3) L′2(θr +π/3) L′2(θr) 0

L′2(θr +π/3) L′2(θr) L′2(θr−π/3) 0

L′4(θr) L′4(θr−2π/3) L′4(θr +2π/3) 0


(3.81)

L′m =

L′aM1

χσL′mdd



+



L′1(θr) L′1(θr−π/3) L′1(θr +π/3) L′5(θr)

L′1(θr−π/3) L′1(θr +π/3) L′1(θr) L′5(θr−2π/3)

L′1(θr +π/3) L′1(θr) L′1(θr−π/3) L′5(θr +2π/3)

L′3(θr) L′3(θr−2π/3) L′3(θr +2π/3) 0


(3.82)
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L′a = (L′mqq +L′mdd)/3 (3.83)

L′b = (L′mdd−L′mqq)/3 (3.84)

L′c = 2L′mqd/3 (3.85)

R′a = (aqL′mqq +a′dL′mdd)/3 (3.86)

R′b = (a′dL′mdd−aqL′mqq)/3 (3.87)

R′c = (aq +a′d)L
′
mqd/3 (3.88)

R′d = (a′d−aq)L′mqd/3 (3.89)

L′1(φ) =−L′b cos(2φ)+L′c sin(2φ) (3.90)

L′2(φ) = L′1(φ +π/4) (3.91)

Lx(φ) = L′mqd cos(φ)+L′mdd sin(φ) (3.92)

L′3(φ) = 2σLx(φ)/3 (3.93)

L′4(φ) = L′3(φ +π/2) (3.94)

L′5(φ) = χLx(φ) (3.95)

R′1(φ) =−R′b cos(2φ)+R′c sin(2φ) (3.96)

R′2(φ) = a′f Lx(φ) (3.97)

R′3(φ) = 2/3(σ(aqL′mqd cos(φ)+a′dL′mdd sin(φ))+ rm f dr sin(φ). (3.98)

3.3 Model Formulations

Each of the formulations described below has a similar structure. For each formulation

there is a set of state variables, which always includes the magnetizing flux linkages λλλ mqd .

The rotor mechanical speed ωrm and (if necessary) the rotor mechanical position θrm are

inputs to the model. Each formulation can be thought to operate in a subset of the following

six stages. In the first stage, the initial calculations listed below are performed for each of

the formulations.
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1. Calculate ωr from (3.4) and (if necessary) θr from (3.3).

2. Calculate λ̂m from (3.14) and Γmq(λ̂m) and Γmd(λ̂m) from their definitions.

3. Calculate ΓΓΓmi from (3.16).

4. Calculate imqd from (3.12) and (3.13).

Depending on the formulation, currents are determined based on the state variables of the

model and output to external signal-flow models of connected circuitry in the second stage.

In the third stage, the external signal-flow models calculate voltages for such formulations.

Depending on the formulation, the parameters of a VBR representation are calculated in the

fourth stage. In the fifth stage, the VBR circuit model is combined with circuit models of

connected circuitry, and a circuit solver is used to calculate voltages and currents for such

formulations. In the final stage, the time derivatives of the state variables are calculated. In

this stage, the torque developed by the synchronous machine is calculated by [63]

Te =
3
2

P
2
(iqsλmd− idsλmq), (3.99)

which is used by the prime mover model to calculate the time derivatives of the mechanical

state variables (ωrm and (if necessary) θrm).

3.3.1 qd Formulation

For a qd formulation, the state variables of the model are λλλ mqd , iqdr, i f dr, xd3, and xq2. If

the zero-sequence components are to be represented, i0s is an additional state variable of the

model. Such a formulation requires the initial calculation, current calculation, signal-flow

interface, and derivative calculation stages shown in Figure 3.2. In the current calculation

stage, the stator currents iqds (or iqd0s if the zero-sequence components are to be represented

or iabcs if phase currents are to be used) and field current i f dr are determined. The steps

required in this stage are listed below.
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Figure 3.2: Summary of model formulations. The integrators associated with the mechan-
ical state variables are represented within the Mechanical Model block.

1. Calculate iqds from (3.29). If the zero-sequence components are represented, i0s is a

state variable.

2. If necessary, transform iqd0s to iabcs.

3. The field current i f dr is a state variable.

In the signal-flow interface stage, an external signal-flow model of circuitry connected

to the stator and field is used to calculate the stator voltages vqds (or vqd0s or vabcs) and the

field voltage v f dr.

In the derivative calculation stage, the time derivatives of the state variables are calcu-

lated. The steps required in this stage are listed below.

1. If necessary, transform vabcs to vqd0s.

2. Calculate vmqd from (3.31).

3. Calculate pλλλ mqd from (3.8).

4. Calculate piqdr, pi f dr, pxd3, and pxq2 from (3.27) and (3.28). If the zero-sequence

components are represented, calculate pi0s from (3.11).
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3.3.2 SVBR Formulation

For an SVBR formulation, the state variables of the model are λλλ mqd , i f dr, xd3, and xq2.

Such a formulation requires the initial calculation, current calculation, signal-flow inter-

face, VBR calculation, circuit interface, and derivative calculation stages shown in Fig-

ure 3.2. In the current calculation stage, the field current i f dr is a state variable.

In the signal-flow interface stage, an external signal-flow model of circuitry connected

to the field is used to calculate the field voltage v f dr.

In the VBR calculation stage, the stator circuit parameters R, L, and eabcs are calculated

from (3.40)–(3.42).

In the circuit interface stage, the stator VBR circuit model is combined with circuit

models of circuitry connected to the stator, and a circuit solver is used to calculate vabcs

and iabcs.

In the derivative calculation stage, the time derivatives of the state variables are calcu-

lated. The steps required in this stage are listed below.

1. Transform vabcs and iabcs to vqd0s and iqd0s, respectively.

2. Calculate iqdr from (3.29).

3. Calculate vmqd from (3.31).

4. Calculate pλλλ mqd from (3.8).

5. Calculate pi f dr, pxd3, and pxq2 from (3.27) and (3.28).

3.3.3 FVBR Formulation

For an FVBR formulation, the state variables of the model are λλλ mqd , iqdr, xd3 and xq2. If

the zero-sequence components are to be represented, i0s is an additional state variable of

the model. Such a formulation requires the initial calculation, current calculation, signal-

flow interface, VBR calculation, circuit interface, and derivative calculation stages shown
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in Figure 3.2. In the current calculation stage, the stator currents iqds (or iqd0s if the zero-

sequence components are to be represented or iabcs if phase currents are to be used) are

determined. The steps required in this stage are listed below.

1. Calculate iqds from (3.29). If the zero-sequence components are represented, i0s is a

state variable.

2. If necessary, transform iqd0s to iabcs.

In the signal-flow interface stage, an external signal-flow model of circuitry connected

to the stator is used to calculate the stator voltages vqds (or vqd0s or vabcs). If necessary,

vabcs is transformed to vqd0s.

In the VBR calculation stage, the field circuit parameters R, L, and e f dr are calculated

from (3.58)–(3.60).

In the circuit interface stage, the field VBR circuit model is combined with a circuit

model of circuitry connected to the field, and a circuit solver is used to calculate v f dr and

i f dr.

In the derivative calculation stage, the time derivatives of the state variables are calcu-

lated. The steps required in this stage are listed below.

1. Calculate vmqd from (3.31).

2. Calculate pλλλ mqd from (3.8).

3. Calculate piqdr, pxd3, and pxq2 from (3.27) and (3.28). If the zero-sequence compo-

nents are represented, calculate pi0s from (3.11).

3.3.4 SFVBR Formulation

For an SFVBR formulation, the state variables of the model are λλλ mqd , xd3, and xq2. Such

a formulation requires the initial calculation, the VBR calculation, circuit interface, and
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derivative calculation stages shown in Figure 3.2. In the VBR calculation stage, the circuit

parameters R′, L′, e′abcs and e′f dr can be calculated from (3.78)–(3.80) and (3.73).

In the circuit interface stage, the circuit parameters are combined with circuit repre-

sentations of the interconnected equipment. This system is solved using a circuit solver to

calculate vabcs, iabcs, v f dr, and i f dr.

The steps required in the derivative calculation stage to calculate the time derivatives

of the state variables are below.

1. Transform vabcs and iabcs to vqd0s and iqd0s, respectively.

2. Calculate iqdr from (3.29).

3. Calculate vmqd from (3.31).

4. Calculate pλλλ mqd from (3.8).

5. Calculate pxd3 and pxq2 from (3.27) and (3.28).

3.4 Formulation Comparison

In this section, the four model formulations are compared for four distinct cases. The ma-

chine model represents the 59-kW, 560-V, four-pole machine characterized in [58], where

its parameters may be found. This model of the machine has been extensively validated in

hardware in [63–65]. The simulations are performed using MATLAB R2014a Simulink’s

ode45 integration algorithm with a maximum time step of 83.3 ms, a relative tolerance of

10−6, and the default absolute tolerance, which is the maximum value that the state variable

has assumed over the course of simulation times the relative tolerance [101]. Circuit ele-

ments are represented using the Automated State Model Generator, a software package that

automatically establishes a state-space model based on the circuit topology [102]. In each

case, initial conditions corresponding to steady-state are selected, and each simulation lasts

83.3 ms (5 cycles). The model formulations are all derived from a common set of model
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equations, but the case studies are selected such that each is most conducive to a particular

formulation. For each case, the SFVBR, which makes no model interface approximations,

is simulated at a maximum time step of 1 µs. For each formulation and each case, the rms

errors of the ias and i f dr waveforms with respect to the reference waveforms are calculated.

These values are normalized by the rms value of the non-average component of the refer-

ence waveforms. Also, the run time associated with each formulation and case is recorded

by averaging over 20 simulations. The simulations are performed on Intel(R) Core(TM)

i7-3770 CPU @3.40 GHz and 8.00 GB RAM.

In Case I, the field winding is excited by a 30-V source, the stator is connected to

an infinite 560-V bus, the machine is rotating at 1800 r/min, and the initial rotor angle

is π/8 rad. The rotor speed increases linearly to 1912.5 r/min over 8.3 ms starting at

20 ms and then decreases linearly back to 1800 r/min at the same rate. This results in

the rotor angle increasing to 3π/16 rad. This case can be studied without introducing

any model interface approximations because it is consistent with voltage-in, current-out

representations of both the stator and field windings. The time steps, run time, and error

results for Case I (and all of the cases) are shown in Table 5.3. It can be seen that each

formulation has negligible error in both the stator and field currents because none of the

formulations require interface approximations. Because the qd formulation is simpler and

does not involve time-varying circuit elements, it has the fewest time steps and fastest run

time. In terms of time steps, there is about a factor of four penalty for simulating in abc

variables on the stator when it is unnecessary (SVBR and SFVBR vs. qd and FVBR). There

is relatively little cost to using the circuit model of the field even when it is not required

(qd vs. FVBR), which can also be seen in Case II below.

In Case II, the field winding is also excited by a 30-V source, but the stator supplies

a rectifier load with LC filter and constant-current dc load of 48 A shown in Figure 3.3.

The filter inductance and capacitance are 2.5 mH and 1.4 mF, respectively, and the ma-

chine is rotating at 1800 r/min. In such a situation, an interface mismatch between stator
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Table 3.1: Case Results

Case Formulation Time steps Run time iaserr i f drerr

(s) (%) (%)
qd 580 0.30 0.00 0.00

SVBR 2098 0.54 0.00 0.00
Case I FVBR 591 0.39 0.00 0.00

SFVBR 2105 0.66 0.00 0.00

qd 187388 4.55 1.99 5.37
SVBR 6613 0.74 0.00 0.00

Case II FVBR 187928 6.50 1.99 5.37
SFVBR 6608 0.95 0.00 0.00

qd 9498 0.56 0.08 0.25
qd (400 Ω) 12943 0.64 0.04 0.12

SVBR 11103 1.10 0.08 0.25
Case III FVBR 6094 0.59 0.00 0.00

SFVBR 7026 1.08 0.00 0.00

qd 202545 5.20 2.30 4.16
SVBR 26868 1.90 0.03 0.71

Case IV FVBR 205599 7.90 2.31 4.71
SFVBR 10082 1.35 0.00 0.00

and rectifier load exists for the qd and FVBR formulations. This mismatch is resolved

by adding 530-Ω (approximately 100 pu) resistances in parallel with the stator windings.

Response to a step increase in field voltage is considered. At t = 33.3 ms, the field voltage

is stepped to 45 V. It can be seen in Table 5.3 that the SVBR and SFVBR formulations

have negligible error because they require no interface approximations. The qd and FVBR

formulations exhibit errors in the stator current due to the interface approximation, but this

also results in considerable error in the field current. The reference waveforms and detailed

views of the waveforms predicted by each formulation are shown in Figure 5.7 and show

both these errors and the relatively high number of time steps required by these methods.

These methods also require considerably longer run times due to the stiffness introduced

by the artificial resistance at the stator. The SVBR formulation had the fastest run time due

to lack of artificial stiffness and simplicity relative to the SFVBR formulation. There is
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Figure 3.3: Case II arrangement.

about a factor of twenty penalty in number of required time steps for not using the stator

circuit interface when required (qd and FVBR vs. SVBR and SFVBR), and this can also

be seen in the comparison between the FVBR and SFVBR formulations of Case IV below.

In Case III, the field winding is supplied through a diode rectifier by a 37-V, 120-Hz

three-phase source with a series commutating inductance of 2.31 mH and the stator is con-

nected to an infinite 560-V bus shown in Figure 3.5. The machine is rotating at 1800 r/min

and the rotor angle is π/8 rad. In such a situation, an interface mismatch between field and

rectifier source exists for the qd and SVBR formulations. This mismatch is resolved by

adding a 200-Ω (approximately 100 times the field resistance) resistance in parallel with

the field winding. At t = 20 ms, one of the upper diodes in the rectifier is shorted. The

results are shown in Figure 5.9. It can be seen in the figure and in Table 5.3 that the FVBR

and SFVBR formulations have negligible error in both the stator and field currents because

neither of the formulations require interface approximations. The qd and SVBR formu-

lations exhibit errors in the field current due to the interface approximation, but this also

results in non-negligible error in the stator current. It is observed that the errors associ-

ated with interface mismatches at the field result in relatively smaller errors than interface

mismatches at the stator (as in Case II). The run time cost associated with the interface mis-

matches is also smaller. This is attributed to the relatively slow dynamics associated with

the field winding relative to the stator windings. In fact, the qd formulation has the smallest

run time despite the introduction of a large resistance. However, if the artificial resistance

is doubled to 400 Ω, the qd formulation errors are halved (remaining non-negligible) and
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Figure 3.4: Case II results.

the run time exceeds that of the FVBR formulation. The FVBR formulation requires the

fewest time steps. There is approximately a factor of two penalty for not using the field

circuit representation in this case (qd and SVBR vs. FVBR and SFVBR). In this case, the

penalty for simulating in abc variables on the stator when it is not required (SFVBR vs.

FVBR ) is not as great as in Case I because of the sustained current transient on the stator

side.

In Case IV, the field winding is supplied through a diode rectifier as in Case III, and the

stator is used to supply a rectifier load as in Case II shown in Figure 3.7. The same interface
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Figure 3.5: Case III arrangement.
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Figure 3.6: Case III results.
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Figure 3.7: Case IV arrangement.

mismatches occur, so the artificial resistances described above are used at the stator for

the qd and FVBR formulations and at the field for the qd and SVBR formulations. At

t = 28 ms, the dc load is stepped from 48 A to 36 A. The results are shown in Figure 5.10.

Only the SFVBR formulation has negligible error in both the stator and field currents. It

also has the fewest required time steps and the fastest run time. There is about a factor of

twenty penalty for not using the stator circuit interface when required (FVBR vs. SFVBR),

which corresponds with the results from Case II. It is noted that the SVBR formulation has

smaller errors, fewer time steps, and faster run time than the other two formulations, which

further indicates that the penalty for inserting artificial resistance at the field is less severe

than that for inserting resistance at the stator.
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Chapter 4
Numerical Average-Value Modeling of Ro-
tating Rectifiers in Brushless Excitation
Systems

Brushless excitation systems are widely used for synchronous machines. As a critical part

of the system, rotating rectifiers have significant impact on the system behavior. This chap-

ter presents a numerical average-value model (AVM) for rotating rectifiers in brushless

excitation systems, where the essential numerical functions are extracted from the detailed

simulations and vary depending on the loading conditions. The work described in this

chapter has been published in [99]. Open-circuit voltages of the brushless exciter arma-

ture are used to calculate the dynamic impedance that represents the loading condition.

The model is validated by comparison with an experimentally validated detailed model of

the brushless excitation system in three distinct cases. It has been demonstrated that the

proposed AVM can provide accurate simulations in both transient and steady states with

fewer time steps and less run time compared with detailed models of such systems and that

the proposed AVM can be combined with AVM models of other rectifiers in the system to

reduce the overall computational cost.

The remainder of this chapter is organized as follows. The proposed model is described

in Section 5.1. The characterization of the rectifier is described in Section 5.2. The model is

validated by comparison with an experimentally validated detailed model of the brushless

excitation system in Section 5.3.
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4.1 Average-Value Model of Brushless Excitation System

Numerical average-value modeling has been successfully applied in a variety of cases in-

volving machine-converter interactions. These techniques are adapted to the rotating recti-

fier in a brushless excitation system below.

4.1.1 Notation

The electrical rotor speed and position of the exciter machine are

ωr =
P
2

ωrm (4.1)

θr =
P
2

θrm, (4.2)

respectively, where ωrm and θrm are the mechanical rotor speed and position, respectively,

and P is the number of exciter machine poles. The variables associated with the rotor of the

exciter machine are denoted fabcr = [ far fbr fcr]
T where f can be used to indicate voltage

(v), current (i), or flux linkage (λ ). These variables can be transformed into the stationary

reference frame by use of the transformation

fqd0r = Krfabcr, (4.3)

where

Kr =
2
3


cosθr cos(θr +

2π

3 ) cos(θr− 2π

3 )

−sinθr −sin(θr +
2π

3 ) −sin(θr− 2π

3 )

1
2

1
2

1
2

 (4.4)

and fqd0r = [ fqr fdr f0r]
T are the transformed variables. The zero sequence f0r is negligible.

The transformed variables can also be expressed in space-phasor notation: ~f = fqr + j fdr

for rotating armature variables transformed to the stationary reference frame. Differentia-

tion with respect to time is indicated by the operator p.

Main machine variables are transformed to the qd reference frame using Park’s trans-

formation.
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Figure 4.1: Stationary rectifier system.

4.1.2 Rectifier relationships

The proposed numerical average-value model of the brushless excitation system is based

on [95]. In [95], the average behavior of the stationary rectifier depicted in Figure 4.1 is

represented by the following relationships:

||~v||= αs(zs)vdc (4.5)

idc = βs(zs)||~i|| (4.6)

∠~v = ∠~i+φs(zs)+π , (4.7)

where || · || denotes the 2-norm of a vector, ~v and~i are space phasors associated with the

stationary armature variables transformed to the reference frame fixed in the rotor, αs(·),

βs(·), and φs(·) are algebraic functions of the loading condition, the phase offset of π

accounts for the fact that the current space phasor~i is into the machine and thus out of the

rectifier, and zs is a “conveniently defined” dynamic impedance that represents the loading

condition and is defined as

zs =
vC

||~i||
. (4.8)

Similar relationships are utilized for the rotating rectifier in the brushless excitation

system shown in Figure 4.2, but these relationships are modified to account for the differ-

ences between the stationary and rotating rectifiers. The rotating rectifier is on the rotor

and requires a different reference frame transformation, i.e., (5.5). Additionally, the field

winding of the main machine does not resemble the LC filter studied in [95]. In particular,
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Figure 4.2: Rotating rectifier system.

the average behavior of the rectifier is represented by the following relationships:

v f dr = α(z)||~v|| (4.9)

||~i||= β (z)i f dr (4.10)

∠~v = ∠~i+φ(z)+π , (4.11)

where z is a dynamic impedance that represents the loading condition. The dynamic

impedance considered in [95] was selected because it is readily available in simulation

as the capacitor voltage of the LC filter is a state variable. The field winding of the main

machine does not exhibit such a voltage. Therefore, an alternative dynamic impedance is

employed:

z =
||eqdr||

i f dr
, (4.12)

where eqdr are the open-circuit voltages of the brushless exciter armature as described

below.

4.1.3 Brushless exciter model

The brushless exciter machine can be described in the rotor reference frame as

vqr = rriqr−ωrλdr + pλqr (4.13)

vdr = rridr +ωrλqr + pλdr (4.14)

v′f ds = r′f dsi
′
f ds + pλ

′
f ds, (4.15)
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where

λqr = Llriqr +Lmqiqr (4.16)

λdr = Llridr +Lmd(idr + i′f ds)+λmd0 (4.17)

λ
′
f ds = L′l f dsi

′
f ds +Lmd(idr + i′f ds)+λmd0, (4.18)

the primed variables represent field variables referred to the rotor, rr and r′f ds are the rotor

and (referred) field resistances, Llr and L′l f ds are the rotor and (referred) field leakage in-

ductance, Lmq and Lmd are the q- and d-axis magnetizing inductances, and λmd0 is an affine

term added to the d-axis magnetizing flux to represent the effects of magnetic hysteresis.

The brushless exciter machine model can be expressed in the stationary reference frame

as

vqr = rriqr−ωrLdidr +Lq piqr + eqr (4.19)

vdr = rridr +ωrLqiqr +L′′d pidr + edr, (4.20)

where

Lq = Llr +Lmq (4.21)

Ld = Llr +Lmd (4.22)

L′′d = Llr +
L′l f dsLmd

L′l f ds +Lmd
(4.23)

eqr =−ωr(Lmdi′f ds +λmd0) (4.24)

edr =
Lmd

L′l f ds +Lmd
(v′f ds− r′f dsi

′
f ds). (4.25)

It can be seen that eqdr = [eqr edr]
T are the open-circuit voltages of the brushless exciter

armature. Furthermore, substituting (4.17) into (4.14), (4.18) into (4.15), and solving for

the time derivative of the field current results in the following:

pi′f ds =
Ld(v′f ds− r′f dsi

′
f ds)−Lmd(vdr− rridr−ωrLqiqr)

LdL′f ds−L2
md

. (4.26)
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4.1.4 Differentiator approximation

Both the armature windings of the exciter machine and the field winding of the main ma-

chine are most easily represented using voltage-in, current-out formulations, which cor-

responds to the case of the stationary rectifier where the main machine and the LC filter

are most conveniently represented using voltage-in, current-out formulations. It is noted

in [95] that this formulation is problematic because of the representation given in (5.12)–

(5.14). In [95], this issue is resolved by using a current-in, voltage-out formulation of the

LC filter. In doing this, the inductor in the LC filter acts as a differentiator and has an im-

proper transfer function; this differentiator is replaced with a low-frequency approximation

with a proper transfer function. Herein, an alternative approach is pursued that is consis-

tent with the fact that the open-circuit voltages calculated in (4.24) and (4.25) are used to

calculate the dynamic impedance z in (5.15).

In the proposed approach, the armature windings of the exciter machine are represented

using a current-in, voltage-out formulation. It can be seen from (4.19) and (4.20) that such

an approach also entails differentiators. Using a similar approach to that used in [95], a

low-frequency approximation with proper transfer function is proposed. In particular,

px = Ax+B

 iqr

idr

 (4.27)

 piqr

pidr

≈ Cx+D

 iqr

idr

 , (4.28)

where A, B, C, and D are 2×2 matrices associated with the realization of the approximation

and x is a vector of two state variables associated with the realization. It is convenient to
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express the rows of C and the elements of D as

C =

 cT
1

cT
2

 (4.29)

D =

 d11 d12

d21 d22

 . (4.30)

This realization is an appropriate low-frequency approximation of the differentiators in

(4.19) and (4.20) if

lim
s→0

C(sI−A)−1B+D
s

= I, (4.31)

where I is the 2×2 identity matrix.

It is shown below that specifying a certain structure for D can facilitate the model

integration. For a given D, the condition in (4.31) is satisfied if the remaining matrices are

expressed as

A =−ΛΛΛ (4.32)

B = V−1 (4.33)

C =−VΛΛΛ
2, (4.34)

where D = VΛΛΛV−1 and ΛΛΛ is a diagonal matrix. The eigenvalues of A, i.e., the negatives of

the eigenvalues of D, are associated with the bandwidth of the differentiator approximation

and should be situated sufficiently far into the left half plane.
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4.1.5 Model integration

By substitution of (4.28) into (4.19) and (4.20), the rotor voltages can be approximated as

vqr ≈ rriqr−ωrLdidr + eqr +LqcT
1 x

+Lqd11iqr +Lqd12idr

= rriqr−ωrLdidr +uq

+Lqd11iqr +Lqd12idr (4.35)

vdr ≈ rridr +ωrLqiqr + edr +L′′dcT
2 x

+L′′dd21iqr +L′′dd22idr

= rridr +ωrLqiqr +ud

+L′′dd21iqr +L′′dd22idr, (4.36)

where

uq = eqr +LqcT
1 x (4.37)

ud = edr +L′′dcT
2 x. (4.38)

It can be seen that (4.35) and (4.36) transform into

vqr ≈ Riqr−Xidr +uq (4.39)

vdr ≈ Ridr +Xiqr +ud (4.40)

if the following conditions hold:

R = rr +Lqd11 = rr +L′′dd22 (4.41)

X = ωrLd−Lqd12 = ωrLq +L′′dd21 (4.42)

for some constants R and X . Furthermore, if approximately constant speed is assumed, i.e.,

ωr ≈ ω∗r , where ω∗r is the nominal speed, then

X ≈ X∗ = ω
∗
r Ld−Lqd12 = ω

∗
r Lq +L′′dd21 (4.43)
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and is approximately constant. These conditions can be made to hold by choice of D. For

example, D can be defined as

D =

 R−rr
Lq

ω∗r Ld−X∗
Lq

X∗−ω∗r Lq
L′′d

R−rr
L′′d

 . (4.44)

By choice of a sufficiently large R the eigenvalues of D can be placed sufficiently far into

the right half plane. It is noted that D is selected based on a constant speed assumption and

that variation from the nominal speed will introduce error in the exciter representation.

With such a suitable differentiator approximation, the voltage equations can be ex-

pressed in space-phasor form as

~v≈ Z~i+~u, (4.45)

where Z = R + jX and ~u = uq + jud . In this form, the model can be integrated. The

magnitude of the exciter machine currents can be found from (5.13). The voltage equation

(4.45) can be combined with (4.11) and expressed as

||~v||e j(∠~i+φ(z)) ≈−Z||~i||e j∠~i−~u. (4.46)

This relationship can be used to calculate

||~v|| ≈
√
||~u||2− Im2[Z||~i||e− jφ(z)]−Re[Z||~i||e− jφ(z)] (4.47)

∠~i≈ ∠
−~u

||~v||e jφ(z)+Z||~i||
. (4.48)

Finally, (4.9) can be used to determine the main machine field voltage.

4.1.6 Model summary

The proposed model is depicted graphically in Figure 5.2 and summarized in the steps

below.

1. The main machine field current i f dr is calculated by the model of the main machine.
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Figure 4.3: Summary of model formulation (dashed lines represent external interfaces
to/from the proposed model).

2. The exciter field current i′f ds is a state variable and used in the voltage regulator

model.

3. The exciter machine field voltage v′f ds is calculated by the model of the voltage reg-

ulator.

4. The open-circuit voltages of the exciter machine eqdr are calculated using (4.24) and

(4.25)

5. The dynamic impedance z is calculated using (5.15).

6. The magnitude of the exciter machine currents ||~i|| is calculated using (5.13).

7. The magnitude of the exciter machine voltages ||~v|| and the angle of the exciter ma-

chine currents ∠~i are calculated using (4.47) and (4.48), respectively.

8. The main machine field voltage v f dr is calculated using (4.9) and used in the model

of the main machine.

9. The derivatives of the state variables associated with the differentiator approximation

px are calculated using (4.27).
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10. The time derivative of the exciter field current pi′f ds is calculated using (4.26).

4.2 Rectifier Characterization

In order to use the proposed model, the numerical functions α(·), β (·), and φ(·) must be ex-

tracted from the detailed simulations. The extraction of such functions has been discussed

in [96]. In particular, it is found that because the functions describe algebraic relationships

that are assumed to hold continuously, these functions can be extracted from transient sim-

ulations rather than requiring numerous steady-state simulations. This is important in the

case of the rotating rectifier in a brushless excitation system because the steady-state dy-

namic impedance z varies over a very narrow range. Transient simulations are necessary to

characterize the performance of the rectifier over a wide loading range.

The system considered herein is shown in Figure 4.2. The main machine is a four-

pole, 59 kVA, 560 V synchronous generator with the model and parameters presented

in [64] and [58]. This machine model has been extensively validated against experimental

measurements [63–65]. For detailed simulation, it is modeled using the field-only voltage-

behind-reacance (FVBR) formulation [16]. The exciter machine formulation, an armature-

only voltage-behind-reactance (AVBR) formulation, described below is used to perform

detailed simulations. The parameters of the machine are found in Table 4.1 [65]. The

voltage equation is

vabcr = Riabcr +Lpiabcr + eabcr. (4.49)

The resistance matrix is

R = rrI3 + pLr−
2
3

L′r f ds pLT′
r f ds

L′f ds
, (4.50)
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where

Lr =


Llr +LA −1

2LA −1
2LA

−1
2LA Llr +LA −1

2LA

−1
2LA −1

2LA Llr +LA



−LB


cos(2θr) cos(2(θr +

π

3 )) cos(2(θr− π

3 ))

cos(2(θr +
π

3 )) cos(2(θr +
2π

3 )) cos(2(θr−π))

cos(2(θr− π

3 )) cos(2(θr−π)) cos(2(θr− 2π

3 ))

 (4.51)

L′r f ds =−Lmd


sinθr

sin(θr +
2π

3 )

sin(θr− 2π

3 )

 (4.52)

L′f ds =L′l f ds +Lmd (4.53)

LA =
Lmd +Lmq

3
(4.54)

LB =
Lmd−Lmq

3
. (4.55)

The inductance matrix is

L = Lr−
2
3

L′r f dsL
T′
r f ds

L′f ds
. (4.56)

The voltage vector is

eabcr =−ωrλmd0


cosθr

cos(θr +
2π

3 )

cos(θr− 2π

3 )

+ L′r f ds

L′f ds
v′f ds +(pL′r f ds−

L′r f dsr
′
f ds

L′f ds
)i′f ds. (4.57)

The detailed simulations is performed using MATLAB R2016a Simulink’s ode23tb

integration algorithm with a maximum time step of 10.85 µs and default values for the

relative and absolute tolerances. Circuit elements are represented using the Automated

State Model Generator, a software package that automatically establishes a state-space

model based on the circuit topology and switch states [102].
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Table 4.1: Brushless Exciter Parameters

P 8 Nr/N f ds 0.07
rr 0.121 Ω Llr 0.49 mH

r f ds 4.69 Ω Ll f ds 0.117 mH
Lmq 1.82 mH Lmd 3.49 mH
λmd0 5.69 mVs

For the characterization of the rectifier, the main machine is loaded with a balanced

three-phase resistive load that draws rated power at rated voltage. Initial conditions are

set corresponding to a zero-flux state. The shaft is rotated at a constant 2π30 rad/s (1800

RPM), and the frequency of the switching ripple in the rotor quantities is 720 Hz. The field

voltage of the exciter is ramped from −0.8 V (corresponding to zero flux linkage) to 8 V

in 3.33 s (200 cycles) and then ramped back down to −0.8 V in the following 3.33 s (200

cycles). Averaging the waveforms from the detailed simulation over 60-Hz windows every

1/720 s yields the values shown in Figure 4.4. The least-squares spline approximation

SPAP2 algorithm is used to select support points, and it can be seen in Figure 4.4 that these

data are well represented using cubic splines with relatively few support points, which are

given in Table 4.2. Furthermore, both the α(·) and φ(·) functions have discontinuities

occurring at approximately 2.97 Ω. For values of dynamic impedance smaller than this,

the values of both α(·) and φ(·) are zero.

4.3 Model Validation

In this section, the brushless excitation system AVM is validated with the detailed model

in three distinct cases. All simulations are performed using MATLAB R2016a Simulink’s

ode23tb integration algorithm with the automatic maximum time step, a relative tolerance

of 10−6, and the default absolute tolerance. Circuit elements are represented using the Au-

tomated State Model Generator [102]. In order to place the eigenvalues of D sufficiently far

into the right half plane, R and X∗ are selected to be rr+
√

LqL′′d×105 rad/s and ω?
r
√

LqLd ,

respectively. In each case, initial conditions corresponding to steady state are selected, and
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Figure 4.4: Functions α(·), β (·), and φ(·).

each simulation lasts 0.5 s (30 cycles). Also, the run time associated with each model and

case is recorded by averaging over 20 simulations. The simulations are performed on an

Intel Core i7-3770 CPU running at 3.40 GHz with 8.00 GB of RAM. For comparison, the

analytical AVM presented in [81] is also simulated in these cases.

In Case I, the main machine field winding is supplied through a rotating rectifier, which

is connected to an exciter with 10-V field voltage. The stator is connected to an infinite

560-V bus. The machine is rotating constantly at 2π30 rad/s, and the initial rotor angle is

22°. Under this condition, the generator is supplying 46 kW at a power factor of 0.8 lag-

ging. At t = 1/60 s, the field voltage of the exciter is stepped down to 8 V, resulting in the
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Table 4.2: Support Points for Functions α(·), β (·), and φ(·)

z α(·) β (·) φ(·)
0.000 ——- 0.000 ——-
2.529 ——- 0.842 ——-
2.976 1.500 0.990 0.051
3.059 1.505 1.016 0.167
3.141 1.512 1.035 0.228
3.223 1.524 1.047 0.246
3.269 1.534 1.051 0.237
3.299 1.543 1.053 0.216
3.334 1.553 1.053 0.187
3.378 1.559 1.054 0.171
3.454 1.562 1.055 0.163
3.594 1.565 1.058 0.167
3.738 1.565 1.060 0.176
3.864 1.565 1.063 0.187
4.122 1.566 1.068 0.206
4.829 1.570 1.077 0.228
5.973 1.580 1.085 0.230
7.707 1.592 1.091 0.220

10.034 1.604 1.094 0.205
15.480 1.618 1.098 0.178
25.106 1.630 1.100 0.150
40.098 1.638 1.102 0.125
55.089 1.643 1.103 0.108
70.080 1.649 1.103 0.091
85.072 1.658 1.102 0.073

power factor increasing to 0.9 lagging and the reactive power delivered being decreased by

38%. For the detailed simulation, the FVBR formulation of the main machine is used with

the detailed representation of the rotating rectifier and the AVBR formulation of the ex-

citer machine. For the analytical AVM simulation, the qd formulation of the main machine

is used with an analytical AVM of the brushless excitation system with a reduced-order

exciter machine representation [81]. For the numerical AVM simulation, the qd formula-

tion of the main machine is used with the AVM of the brushless excitation system. The

time steps and run time for all of the cases are given in Table 5.3. The armature and field

currents and voltages of both the exciter and main machine are shown in Figure 4.5 and
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Table 4.3: Model Computational Efficiency

Case Simulation Time steps Run time (s)
Case I Detailed 160179 4.05

Analytical AVM 1626 4.21
Numerical AVM 1664 0.24

Case II Detailed 149575 3.90
Analytical AVM 12043 26.89
Numerical AVM 4129 0.26

Case III Detailed 186778 8.41
Analytical AVM 143918 323.82

Numerical


Stationary AVM 201952 5.98
Rotating AVM 180903 6.73

Full AVM 4347 0.39

Figure 4.6. It can be seen in the figure that the proposed numerical AVM faithfully rep-

resents the low-frequency behavior of the main machine and brushless excitation system.

The waveforms predicted by the numerical AVM lie within the switching envelope of the

waveforms predicted by the detailed model. The deviations of the analytical AVM from the

detailed model and numerical AVM are fairly small and largely due to assumptions made

in the derivation of the analytical model. Furthermore, it can be seen in Table 5.3, the

number of time steps required by the numerical AVM is slightly greater than that required

for the analytical AVM, but the run time is reduced by a factor of 15. Both the numbers

of time steps and the run time required by the simulation algorithm are drastically reduced

compared with the detailed model; the number of time steps is reduced by a factor of 96,

and the run time is reduced by a factor of 17.

In Case II, the main machine field winding is supplied through a rotating rectifier, and

the stator is connected to an infinite 560-V bus and starts from the same conditions as in

Case I. At t = 1/60 s, a voltage sag occurs, and the magnitude of the output voltage drops

to 95% of the initial value. The same machine formulations and rectifier representations

used in Case I are used for the detailed and AVM simulations. The waveforms predicted by

the AVM model and the detailed model are compared in Figure 4.7 and Figure 4.8. As with

Case I, the AVM model waveforms are situated within the switching envelope of the de-
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Figure 4.5: Case I (excitation voltage step change) results.
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Figure 4.6: Case I (excitation voltage step change) results.
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tailed model waveforms, and the AVM model is capable of representing the low-frequency

behavior of the system. The analytical AVM demonstrates similarly small deviations from

the detailed model and numerical AVM. In Table 5.3, it can be seen that similarly drastic

reductions in computational cost are obtained. The number of time steps is reduced by

a factor of 36, and the run time is reduced by a factor of 15. When compared with the

analytical AVM, the number of time steps is reduced by a factor of 3, and the run time is

reduced by a factor of 104.

In Case III, the main machine field winding is supplied through a rotating rectifier,

which is connected to an exciter with 7.27-V field voltage. The stator is used to supply a

rectifier load with LC filter and resistive load of 11.1 Ω shown in Figure 5.8.

The filter inductance and capacitance are 2.5 mH and 1.4 mF, respectively, and the ma-

chine is rotating at 2π30 rad/s. At t = 1/60 s, the resistive load is stepped from 11.1 Ω

to 34.4 Ω. This case corresponds to the experimental results used to validate the machine

model in [58]. For the detailed simulation, the detailed representation of the stationary

rectifier load, the SFVBR formulation of the main machine, the detailed representation of

the rotating rectifier, and the AVBR formulation of the exciter machine are used. As this

case includes two rectifiers, it is possible to perform averaging with either or both of these

rectifiers. For the stationary AVM simulation, the numerical AVM of the stationary rectifier

load, the FVBR formulation of the main machine, the detailed representation of the rotating

rectifier, and the AVBR formulation of the exciter machine are used. The numerical AVM

of the stationary rectifier load is implemented as described in [95] and parameterized using

the SVBR formulation of the main machine excited with constant dc voltage and loaded

with a varying resistive load as described in [96]. For the rotating AVM simulation, the

detailed representation of the stationary rectifier load, the SVBR formulation of the main

machine, and the numerical AVM of the brushless excitation system are used. For the full

AVM simulation, the numerical AVM of the stationary rectifier load, the qd formulation of

the main machine, and the numerical AVM of the brushless excitation system are used. For
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Figure 4.7: Case II (terminal voltage step change) results.
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Figure 4.8: Case II (terminal voltage step change) results.
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Exciter

Figure 4.9: Case III circuit.

the analytical AVM simulation, the detailed representation of the stationary rectifier load,

the SVBR formulation of the main machine, and an analytical AVM of the brushless excita-

tion system with a reduced-order exciter machine representation are used; this corresponds

most closely to the rotating AVM simulation. The currents and voltages predicted by the

AVM model and the detailed model are shown in Figure 4.10 and Figure 4.11. Because of

the complexity of the waveforms in this case, the q-axis armature current of the exciter is

examined more carefully in Figure 5.9. In this case, the two rectifiers produce harmonics

at two different specific frequencies because of the difference in the number of poles in

the main and exciter machines. The rotating rectifier produces harmonics at 720 Hz and

mutliples thereof, and the stationary rectifier produces harmonics at 360 Hz and multiples

thereof, which includes smaller components at multiples of 720 Hz. Each AVM averages

out the harmonics that correspond to the rectifier in question. The partial AVMs, models

that only represent one of the rectifiers with an AVM, retain the harmonics associated with

the other rectifier. The results of the detailed model and full AVM are shown in the top plot,

and it can be seen that the full AVM is capable of representing the low-frequency behavior

of the system. In the middle plot, the steady-state behavior of the four models is shown. It

can be seen that the full AVM waveform is dc, that the stationary AVM waveform appears

periodic with a frequency of 720 Hz, and that the rotating AVM appears periodic with a

frequency of 360 Hz. The detailed model waveform clearly contains components at each of

these frequencies. This corresponds to the interpretation that the stationary AVM removes

the 360-Hz components associated with the stationary rectifier while retaining the 720-Hz

components associated with the rotating rectifier and that the rotating AVM does the op-
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posite. A fast Fourier transform (FFT) of these waveforms confirms this interpretation as

can be seen in the bottom plot of Figure 5.9. The full AVM only retains the dc component,

and the partial AVMs retain the harmonics associated with the rectifier that is not averaged

by the AVM. It can be seen that both of the partial AVMs have much less improvement in

computational cost. The number of time steps for the stationary AVM is actually greater

than that required for the detailed model, and the rotating AVM only reduces this number

by 3%. The run times of the stationary and rotating AVMs are only reduced by 29% and

20%, respectively. However, the full AVM results in a factor of 43 decrease in time steps

and a factor of 22 decrease in run time. The computational cost benefits of the AVM are

only realized fully when all of the rectifiers in the system are represented by an AVM. Be-

cause of the high computational cost of each time step in the analytical AVM, the use of a

partial analytical AVM is very costly in such a scenario.
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Figure 4.10: Case III (rectifier load step change) results.
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Figure 4.11: Case III (rectifier load step change) results.
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Chapter 5
Formulation of Rectifier Numerical Average-
Value Model for Direct Interface with In-
ductive Circuitry

The computational cost for the simulation of detailed models of machine-rectifer systems

is expensive because of repetitive diodes switching. Average-value models (AVMs) of

machine-rectifier systems have been developed that can alleviate the computational burden

by neglecting the details of the switching of each individual diode while retaining the aver-

age characteristics. This paper proposes an alternative formulation of numerical AVMs of

machine-rectifier systems, which makes direct use of the natural dynamic impedance of the

rectifier without introducing low-frequency approximations or algebraic loops. By using

this formulation, direct interface of the AVM is achieved with inductive circuitry on both

the ac and dc sides allowing traditional voltage-in, current-out formulations of the circuitry

on these sides to be used with the proposed formulation directly. This numerical AVM

formulation is validated against an experimentally validated detailed model and compared

with previous AVM formulations. It is demonstrated that the proposed AVM formulation

accurately predicts the system’s low-frequency behavior during both steady and transient

states, including in cases where previous AVM formulations cannot predict accurate results.

Both run times and numbers of time steps needed by the proposed AVM formulation are

comparable to those of existing AVM formulations and significantly decreased compared

with the detailed model.
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The organization of this chapter is as below. Section 5.1 describes the proposed model,

while Section 5.2 explains the rectifier characterization procedure. The model validation

and comparison are presented in Section 5.3.

5.1 Average-Value Model of Machine-Rectifier Systems

An alternative approach for applying parametric or numerical AVMs is presented below

that reformulates the relationships between variables on the ac and dc side of the rectifier to

avoid introducing low-frequency approximations or inverting the voltage-current interfaces

on either the ac or dc side, or creating algebraic loops.

5.1.1 Notation

Matrices and vectors are bold faced. The electrical angular speed and position of the ma-

chine are

ωr =
P
2

ωrm (5.1)

θr =
P
2

θrm, (5.2)

respectively, where ωrm and θrm are the mechanical angular velocity and position of the

machine, respectively, and P is the number of magnetic poles in the machine. The armature

variables associated with a machine with a stationary armature can be expressed in vector

form as fabcs = [ fas fbs fcs]
T, where f may represent voltage (v), current (i), or flux linkage

(λ ). Such stationary armature variables are able to be transformed into the rotor reference

frame [1] using

fqd0s = Ksfabcs, (5.3)

where

Ks =
2
3


cosθr cos(θr− 2π

3 ) cos(θr +
2π

3 )

sinθr sin(θr− 2π

3 ) sin(θr +
2π

3 )

1
2

1
2

1
2

 (5.4)
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and fqd0s = [ fqs fds f0s]
T represents the q- and d-axis, and the zero-sequence components

of the quantity. For systems considered herein, the zero-sequence component will be zero

and can be ignored. Stationary variables transformed to the rotating reference frame are

also able to be represented in space-phasor notation: ~fqds = fqs− j fds.

The armature variables associated with a machine with a rotating armature are denoted

fabcr = [ far fbr fcr]
T. Such rotating armature variables are able to be transformed into the

stationary reference frame using

fqd0r = Krfabcr, (5.5)

where

Kr =
2
3


cosθr cos(θr +

2π

3 ) cos(θr− 2π

3 )

−sinθr −sin(θr +
2π

3 ) −sin(θr− 2π

3 )

1
2

1
2

1
2

 (5.6)

and fqd0r = [ fqr fdr f0r]
T represent the transformed variables. For systems considered

herein, the zero-sequence component will be zero and can be ignored. Rotating armature

variables transformed to the stationary reference frame are also able to be represented in

space-phasor notation: ~fqdr = fqr + j fdr.

The operator p indicates the differentiation with respect to time, and || · || denotes the

magnitude of a complex number or the 2-norm of a vector.

5.1.2 Rectifier relationships

The method presented for modeling the relationships in the rectifier shown in Figure 5.1

are based on [95] and [99]. In [95], the relationships that represent the average behavior of

the stationary rectifier are:

||~v||= αs(zs)vdc (5.7)

idc = βs(zs)||~i|| (5.8)

∠~v = ∠~i+φs(zs)+π , (5.9)
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where~v and~i are the stationary armature variables on the ac side transformed to the rotat-

ing reference frame in space phasor form, αs(·), βs(·), and φs(·) are the essential numerical

functions, π is the phase offset since the current~i is out of the rectifier, and zs is a “conve-

niently defined” dynamic impedance, which is defined in [95] as

zs =
vC

||~i||
, (5.10)

where vC is the capacitor voltage of the LC filter. In [95], the dynamic impedance zs was

selected because vC is a state variable and zs is readily available in simulation.

For rotating rectifiers in brushless excitation systems, similar relationships to (5.7)–

(5.9) are used in [99]. Because the main machine field winding is different from the LC

filter and does not have a capacitor voltage, an alternative dynamic impedance is used:

zr =
||eqdr||

i f dr
, (5.11)

where eqdr is the brushless exciter armature open-circuit voltages and i f dr is the current

into the main machine field winding.

The natural formulations of both the machine on the ac side and the inductor on the

dc side in both cases would be a voltage-in, current-out formulation in which the rectifier

model would input the ac and dc currents and calculate the ac and dc voltages. Such models

involve proper state models, but they are not directly consistent with the relationships (5.7)–

(5.9). To address the inconsistency, low-frequency approximations are introduced in both

[95] and [99] to transform either the dc or ac model to a current-in, voltage-out formulation.

It is argued, for example in [103], that such approximations do not significantly effect the

behavior of the model.

The proposed reformulation of numerical AVMs for machine-rectifier systems uses

similar relationships for the ac and dc voltages and currents. These relationships are modi-

fied in order to model rectifiers without using the low-pass filter [95, 96] and the differen-

tiator approximation [99]. The relationships represent the average behavior of the rectifier
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Figure 5.1: Rectifier.

shown in Figure 5.1 are:

||~v||= α(z)vdc (5.12)

idc = β (z)||~i|| (5.13)

∠~v = ∠~i+φ(z)+π . (5.14)

Instead of a “conveniently defined” dynamic impedance set some distance from the rectifier

in [95, 96, 99], a natural dynamic impedance is employed:

z =
vdc

||~i||
, (5.15)

where vdc is the terminal voltage of the rectifier. The proposed numerical AVM of machine-

rectifier systems includes both stationary rectifiers and rotating rectifiers in the brushless

excitation systems.

5.1.3 Model summary

The proposed AVM formulation is graphically described in Figure 5.2 and summarized in

the steps below.

1. The input current of the rectifier ||~i|| is calculated by the ac model. For the stationary

rectifier, the ac model is the main machine armature. For the rotating rectifier, the ac

model is the exciter armature.

2. The rectifier dc current idc is calculated by the dc model. For the stationary rectifier,

idc is the filter current. For the rotating rectifier, idc is the main machine field current.

86



Figure 5.2: Summary of model formulation (dashed lines represent external interfaces
from/to the proposed model).

3. The numerical function β (·) is calculated using (5.13).

4. The dynamic impedance z is obtained by inverting the numerical function β (·).

5. The numerical functions α(·) and φ(·) are obtained through lookup tables.

6. The magnitude ||~v|| and angle ∠~v of the ac voltage are calculated using (5.12) and

(5.14), respectively, and the ac voltage~v is used in the ac model.

7. The rectifier dc voltage vdc is calculated using (5.15) and used in the dc model.

5.2 Rectifier Characterization

The essential numerical functions α(·), β (·), and φ(·) are able to be extracted from the

detailed simulations numerically, which has been discussed in [96]. Based on the assump-

tion that algebraic relationships formulated by those functions are continuous, the rectifier

characterization over a wide loading range can be done by transient simulations instead

of repeated steady-state simulations. For both characterizations of stationary and rotating

rectifiers, the ode23tb integration algorithm in MATLAB R2016a Simulink is used in the

detailed simulations. The maximum time step is set to be 0.1 µs. The values of relative

and absolute tolerances are set to their default values. Automated State Model Genera-
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tor (ASMG), which can automatically establish state-space models based upon topological

states of the circuits, is used to represent circuit elements [102].

A four-pole synchronous generator rated for 59 kVA, 560 V at 1800 r/min is con-

sidered here as the main machine. Its model and parameters are adopted from studies

in [64] and [58], and these models have been validated with multiple experimental mea-

surements [63–65]. For the stationary rectifier characterization, the stator-only voltage-

behind-reactance (SVBR) formulation [16] is used to model the main machine. The main

machine is connected to a rectifier, which supplies a resistive load through an LC filer with

a 2.5-mH inductance and a 1.4-mF capacitance. The resistive load exponentially increases

from 0.01 Ω to 100 Ω in 1 s. The main machine field winding is connected to a 30-V volt-

age source. Initial conditions corresponding to a zero-flux state are selected. The resultant

waveforms exhibit switching ripple at 360 Hz. The waveforms are averaged over 60-Hz

windows every 1/360 s, and the values are plotted in Figure 5.3.

For the rotating rectifier characterization, the field-only voltage-behind-reactance (FVBR)

formulation [16] is used to model the main machine. A balanced three-phase resistive load

is connected to the main machine and draws rated power at rated voltage. The armature-

only voltage-behind-reactance (AVBR) formulation of the exciter machine and its parame-

ters are provided in [16]. Initial conditions corresponding to a zero-flux state are selected.

The initial value of the exciter field voltage is −0.8 V. In the first 3.33 s, the exciter field

voltage linearly increases to 8 V and then linearly decreases to the initial value in the next

3.33 s. The resultant waveforms exhibit switching ripple at 720 Hz. The waveforms are

averaged over 60-Hz windows every 1/720 s, and the values are plotted in Figure 5.4.

Relatively few support points are selected using the least-squares spline approximation

SPAP2 algorithm, and cubic splines can accurately represent these data as shown in Fig-

ure 5.3 and Figure 5.4. The support points for stationary and rotating rectifiers functions

α(·), β (·), and φ(·) are found in Table 5.1 and Table 5.2, respectively.
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Figure 5.3: Stationary functions α(·), β (·), and φ(·).

5.3 Model Validation

The proposed AVM formulation of machine-rectifier systems is validated against the de-

tailed model and compared with previous AVM formulations in this section. The ode23tb

integration algorithm is adopted with the default absolute tolerance and the automatic max-

imum time step in MATLAB R2016a Simulink. The relative tolerance is set to be 10−6.

ASMG is used to represent circuit elements. Each simulation starts at steady state and lasts

1 s (60 cycles). The run time is averaged over 20 simulations for each model and case. A

Dell Optiplex 7010 computer with an Intel Core i7-3770 3.40 GHz processor and 8.00 GB
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Figure 5.4: Rotating functions α(·), β (·), and φ(·).

of RAM is used to perform all the simulations.

5.3.1 Main machine and stationary rectifier load

In Case I, the main machine field winding is connected to a 25-V voltage source as shown

in Figure 5.5. The stator is connected to a rectifier which feeds a 12 Ω resistive load via

the LC filter. At t = 1/60 s, the excitation voltage is stepped up to 150% of the initial

value. The SVBR formulation of the main machine and the detailed representation of the

rectifier load are used in the detailed simulation. The qd formulation of the main machine

and the previous AVM formulation of the stationary rectifier are adopted with a current-in,
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Table 5.1: Support Points for Stationary Rectifier Functions α(·), β (·), and φ(·)

z (Ω) α β φ

0.075 0.658 0.960 0.228
0.115 0.654 0.954 0.233
0.149 0.651 0.952 0.222
0.189 0.647 0.951 0.201
0.241 0.644 0.950 0.175
0.309 0.641 0.950 0.154
0.396 0.639 0.949 0.143
0.507 0.638 0.949 0.140
0.675 0.638 0.947 0.147
0.922 0.637 0.943 0.168
1.233 0.637 0.938 0.196
1.579 0.636 0.933 0.218
2.012 0.635 0.928 0.230
2.597 0.633 0.924 0.235
3.433 0.631 0.920 0.233
4.564 0.628 0.916 0.224
6.116 0.624 0.913 0.211
7.962 0.621 0.910 0.202

10.413 0.617 0.908 0.194
13.990 0.615 0.907 0.184
20.801 0.612 0.905 0.171
31.760 0.609 0.903 0.162
45.949 0.608 0.901 0.159

voltage-out formulation of the LC filter in the previous AVM simulation. The inductor in

the LC filter operates as a differentiator with an improper transfer function. This improper

transfer function is represented with a low-frequency approximation, and the time constant

associated with the approximation is set to be 10 µs [95]. The qd formulation of the main

machine and the proposed AVM formulation of the rectifier are used in the proposed AVM

simulation. In all cases, the time steps and the run times are listed in Table 5.3. Figure 5.6

shows the armature voltages and currents and the field current of the main machine. The

main machine’s low-frequency behavior is accurately represented by both the previous and

proposed AVMs in this case. Both sets of waveforms predicted by the AVMs are essentially

identical and follow the tendency of detailed model waveforms. Furthermore, it can be seen
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Table 5.2: Support Points for Rotating Rectifier Functions α(·), β (·), and φ(·)

z (Ω) α β φ

0.000 0.666 1.003 0.094
0.163 0.662 0.969 0.224
0.352 0.657 0.956 0.251
0.653 0.650 0.950 0.229
1.032 0.643 0.949 0.181
1.360 0.640 0.948 0.167
1.477 0.640 0.947 0.164
1.542 0.640 0.947 0.164
1.625 0.639 0.947 0.164
1.951 0.639 0.945 0.169
2.368 0.639 0.942 0.180
2.795 0.639 0.939 0.198
3.603 0.638 0.932 0.221
5.232 0.635 0.925 0.231
7.684 0.630 0.919 0.225

11.172 0.625 0.915 0.211
23.252 0.617 0.910 0.172
35.332 0.614 0.909 0.149
47.411 0.612 0.908 0.133
59.491 0.610 0.907 0.122
71.571 0.609 0.907 0.112
83.651 0.609 0.906 0.102
95.731 0.608 0.906 0.093

Figure 5.5: Case I and Case II arrangement.

in Table 5.3, both the run time and the number of time steps required by the proposed AVM

are comparable with those required for the previous AVM. The run time are reduced by

97%, and the number of time steps is reduced by 99% compared with the detailed model.

The same excitation of the main machine, rectifier load and initial conditions used in
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Table 5.3: Model Computational Efficiency

Case Simulation Time steps Run time (s)
Detailed 337978 7.62

Case I Previous AVM 3959 0.23
Proposed AVM 3999 0.23

Detailed 67182 1.70
Case II Previous AVM 6661 0.26

Proposed AVM 5258 0.25
Detailed 293059 7.36

Case III Previous AVM 3805 0.26
Proposed AVM 4108 0.24

Detailed 244518 5.82
Case IV Previous AVM 6141 0.28

Proposed AVM 7361 0.25
Detailed 372815 16.40

Case V Previous AVM 2710 0.26
Proposed AVM 2548 0.24

Detailed 246953 10.59
Case VI Previous AVM 8947 0.35

Proposed AVM 8716 0.32

Case I are used in Case II as shown in Figure 5.5. At t = 1/60 s, a bolted fault across the

capacitor occurs at the dc side. For Case II, the same machine formulations and rectifier

representations as in Case I are used in the detailed simulation and AVM simulations. Fig-

ure 5.7 shows the comparisons of the waveforms obtained from the proposed AVM, the

previous AVM, and the detailed model. One can find that resultant waveforms from the

proposed AVM follow the overall tendency of the waveforms obtained from the detailed

model. It can be concluded that the proposed AVM is capable of representing the system’s

low-frequency responses. In contrast, it can be observed that the previous AVM exhibits

significant deviations from the behavior predicted by the detailed model during the tran-

sition. The cause of these deviations is the use of different dynamic impedances and the

introduction of low-frequency approximations in the previous AVM. As can be seen in

Table 5.3, the computational cost, i.e., the run time and the number of time steps, of the

proposed AVM is slightly less than that of the previous AVM. The run time and the number

of time steps are reduced by 85% and 92% compared with the detailed model, respectively.
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Figure 5.6: Case I (excitation voltage step change) results.

The computational cost of the detailed model in Case II is lower than in Case I because the

dc fault causes the rectifier diodes to stop switching on and off.

5.3.2 Exciter, rotating rectifier, main machine, and infinite bus

In Case III, the field winding of the main machine is connected to a rotating rectifier, which

is fed by an exciter with 7.5-V field voltage as shown in Figure 5.8. The stator is used to

supply power to an infinite 560-V bus. The rotor angle of the machine is π/8 rad. At

t = 1/60 s, the rotor speed linearly increases from 1800 r/min to 1912.5 r/min over 1/120 s

and then linearly decreases back to the original value over 1/120 s. As a consequence,
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Figure 5.7: Case II (dc fault) results.

the rotor angle increases to 3π/16 rad. The FVBR formulation of the main machine, the

armature-only voltage-behind-reactance (AVBR) formulation of the brushless exciter ma-

chine presented in [16] and the detailed representation of the rotating rectifier are used

in the detailed simulation. The qd formulation of the main machine, the previous AVM

formulation of the exciter machine and rotating rectifier presented in [99] are used in the

previous AVM simulation. The exciter machine is represented using a low-frequency ap-

proximation described in [99] with poles located at −1.4×105 rad/s and −0.7×105 rad/s.

The qd formulation of the main machine, the qd formulation of the exciter and the pro-

posed AVM formulation of the rectifier are used in the proposed AVM simulation. Fig-
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Exciter

Figure 5.8: Case III and Case IV arrangement.

ure 5.9 shows the armature currents and the field voltage and current of the main machine.

The waveforms are predicted accurately by the proposed AVM even when the rotor speed

changes significantly. In contrast, there are significant deviations exhibited in the previous

AVM waveforms from the detailed model waveforms and the proposed AVM waveforms

during the transient state in this case. Comparing the computational cost with the previous

AVM shown in Table 5.3, though the number of time steps is slightly greater, the run time

is slightly smaller. The run time and the number of time steps are reduced by 97% and 99%

compared with the detailed model, respectively.

The same arrangement of the exciter, rotating rectifier, main machine, infinite 560-V

bus and initial conditions used in Case III are used in Case IV as shown in Figure 5.8. At

1/60s, a three-phase bolted fault occurs at the ac side, i.e., the armature voltages of the

main machine are stepped down to 0 V. Case IV uses the same rectifier representations and

machine formulations for the detailed and AVM simulations as Case III. Figure 5.10 shows

the armature voltages and currents and the field current of the exciter machine. It shows

that the waveforms obtained from the proposed AVM follow the waveforms obtained from

the detailed model very well, but the previous AVM cannot capture the rapid decline of the

voltages or the low-frequency oscillations observed in the currents. From Table 5.3, it can

be seen that the proposed AVM again has comparable number of time steps and run time

with the previous AVM. The run time is reduced by 96%, and the number of time steps is

reduced by 97% compared with the detailed model.
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Figure 5.9: Case III (rotor angle change) results.

5.3.3 Exciter, rotating Rectifier, main machine, and stationary recti-

fier load

In Case V, the field winding of the main machine is connected to a rotating rectifier, which

is fed by an exciter with 7.5-V field voltage shown in Figure 5.11. The stator is connected

to a rectifier which feeds a 12 Ω resistive load via an LC filter. At 1/60s, the excitation

voltage of the exciter drops to 6 V. The SFVBR formulation of the main machine, the de-

tailed representation of the rectifier load, the AVBR formulation of the brushless exciter

machine, and the detailed representation of the rotating rectifier are use in the detailed sim-
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Figure 5.10: Case IV (ac fault) results.

ulation. The qd formulation of the main machine, the previous AVM formulation of the

stationary rectifier presented in [95], and the previous AVM formulation of the exciter ma-

chine and rotating rectifier presented in [16] are used in the previous AVM simulation. The

qd formulations of the main and exciter machines, the proposed AVM formulations of the

stationary and rotating rectifiers are used in the proposed AVM simulation. The armature

voltages and currents and the field current of the exciter machine are plotted in Figure 5.12.

As with Case I, the figure shows that the waveforms obtained from the proposed AVM are

identical to the waveforms obtained from the previous AVM and faithfully follow the trace

predicted by the detailed model. The proposed AVM performs similarly to the previous
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Figure 5.11: Case V and Case VI arrangement.
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Figure 5.12: Case V (excitation voltage step change) results.

AVM and significantly improves the computational efficiency with respect to the detailed

model as shown in Table 5.3. Both the run time and the number of time steps required by

the proposed AVM are reduced by 99% compared with the detailed model.

The same arrangement of the exciter, rotating rectifier, main machine, stationary recti-

99



fier load and initial conditions used in Case V are used in Case VI as shown in Figure 5.11.

At t = 1/60 s, a bolted fault across the capacitor occurs at the dc side. Case VI uses the

same machine formulations and rectifier representations as in Case V in the detailed and

AVM simulations. Figure 5.13 shows the field voltage and the output voltage and current of

the main machine. It is shown that the waveforms obtained from the proposed AVM follow

the waveforms obtained from the detailed model very well. It is also shown in Figure 5.13

that the previous AVM had significant discrepancies on the dc side of the stationary recti-

fier. The waveforms shown in Figure 5.7 for Case II are not shown for this case, but the

previous AVM also demonstrated the same discrepancies in this case. As with the other

cases, it can be seen in Table 5.3 that the proposed AVM has a comparable computational

cost with the previous AVM and that its computational costs are much smaller than those

associated with the detailed model. The run time and the number of time steps are reduced

by 97% and 96% compared with the detailed model, respectively.
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Figure 5.13: Case VI (dc fault) results.
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Chapter 6
Conclusion and Future Work

6.1 Conclusion

The derivation of various formulations of a synchronous machine model that includes arbi-

trary linear networks to represent rotor circuits and magnetizing path saturation including

cross-saturation has been unified. This machine model is significant because it has been

extensively experimentally validated and includes most existing machine models as special

cases. An FVBR formulation of this model has been derived as well. The benefits in terms

of run time and accuracy of each formulation have been examined. In particular, it has been

found that the formulation with the most conducive interface for the simulation application

produces more accurate results with fewer required time steps and less run time but that

having a suitable stator interface is particularly important.

A numerical AVM for rotating rectifiers in brushless excitation systems is developed,

wherein open-circuit voltages of the brushless exciter armature are used to calculate the

dynamic impedance that represents the loading condition. This model averages the periodic

switching behavior of the rotating rectifier. Numerical functions describing relationships

between averaged dc variables and exciter ac variables in rotating rectifiers are extracted

from detailed simulations and vary depending on the loading conditions. The proposed

AVM model is validated with the detailed model and compared with an analytical AVM

model. It is shown to accurately represent the low-frequency behavior of the system and to

have high computational efficiency.
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An alternative formulation of numerical AVMs of machine-rectifier systems is pro-

posed, which can directly interface with branches on the ac and dc sides of the rectifier

without introducing low-frequency approximations or algebraic loops. The key numerical

functions are similar to those used in previous AVM formulations and are extracted from

detailed simulations over varying loading conditions. The natural dynamic impedance of

the rectifier, calculated using the terminal quantities of the rectifier, is directly used without

introducing low-frequency approximations or algebraic loops. The proposed AVM for-

mulation, which encompasses both stationary rectifiers and rotating rectifiers in brushless

excitation systems, does not require inversion of voltage-current interfaces on either the ac

or dc side and can be directly interfaced with simulation models with traditional voltage-in,

current-out formulations of the ac and dc equipment. This AVM formulation is validated

against the detailed model and compared with previous AVM formulations in six distinct

cases. The proposed AVM formulation is shown to be accurate in providing simulations

during both steady and transient states, including in cases where previous AVM formu-

lations do not accurately predict the waveforms, while retaining the computational cost

advantages of existing AVM formulations over detailed models.

The parametric or numerical approach has been extended in numerous ways (e.g., ac

harmonics and frequency dependency for thyristor-controlled rectifiers are considered in

[100]). The fundamental approach is the same, based on numerical averaging of the results

of detailed simulations in order to establish a numerical representation of the relationship

between the ac and dc variables.

6.2 Future Work

Modeling of synchronous machines has been an intensive study area for decades for vari-

ous purposes in either industry or academic applications. Most of the current models can

be generally traced back to phase domain (PD) models in the phase coordinate frame and

qd-models in the rotating qd-coordinates frame. To improve the modeling accuracy and
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numerical efficiency, the so-called voltage-behind-reactance (VBR) modeling has been re-

cently proposed. Although the PD models and the VBR models can provide a direct in-

terface with the external electrical network, these models are presented by rotor-position-

dependent parameters (inductances). The fundamental machine parameters are expressed

in terms of physical variables and the measured time constants. A constant-parameter de-

coupled RL-branch equivalent circuit, which can achieve a direct and explicit interface of

ac machines, is proposed in [74]. It is based on the voltage-behind-reactance formulation.

However, the effect of magnetic saturation has not been considered in [74]. In order to

improve the accuracy of modeling synchronous machines, it is desirable to include the ef-

fect of magnetic saturation. The previous research can be extended to include magnetic

saturation into the constant-parameter equivalent circuit for synchronous machines, which

will take in to account the axes static and dynamic cross saturation. By adding a set of

fixed winding parameters in addition to the VBR model, the synchronous machine with

saturation can be represented by a constant-parameters equivalent circuit.

Depending on the objectives of studies and required accuracy, the modeling approaches

for synchronous machine with saturation may be roughly divided into three categories: fi-

nite element method [104], equivalent magnetic circuit approach [68,69], and magnetically

coupled electric circuit approach. This chapter mainly focuses on general-purpose models

that are based on the last approach, which leads to a relatively small number of equations

and has been very often utilized for predicting the dynamic responses of electrical machines

in power system operations. To further simplify the coupled electric circuit approach, the

machine physical variables are often transformed into quadrature and direct magnetic rotor

axes [10, 13]. This approach is also known as the modeling of rotating machines, which is

widely used in Electromagnetic Transient Programs (EMTP) [14] for power system tran-

sient simulations and analyses.

For synchronous machines, if L
′′
mq = L

′′
md , the terms inside the subtransient inductance

matrix will be constant. An artificial damper winding is added to the rotor circuit in order to

104



enforce the numerical equality of L
′′
mq and L

′′
md . Since the subtransient inductance in the d-

axis is typically smaller, the additional winding is normally added to the q-axis equivalent

circuit. Therefore, LS(·) and LM(·) are constant as LS = Lls +
2
3L
′′
md , LM = −1

3L
′′
md . The

off-diagonal elements of the constant matrix are eliminated by incorporating zero-sequence

current into the voltage equation for the stator branches. A fourth branch, which is the zero-

sequence branch, is defined by the voltage equation vng = L0 p(3i0s) = L0 ping. Finally, the

four constant and decoupled RL-branches are defined [74]. Combined with the VBR model,

the magnetic saturation will be considered to merge into the proposed constant-parameters

circuit for synchronous machines.

Synchronous machines are very important and useful machinery in power systems.

Modeling synchronous machines can achieve further insight in the complex electro-magnetic

behavior of the machine, as well as power systems simulation and analyses. The objec-

tives of this work are: to formulate a numerical average-value model (AVM) for machine-

rectifier systems to simplify machine-rectifier interfaces issues and improve accuracy; to

evaluate the alternative formulation of numerical AVMs of machine-rectifier Systems per-

formance. In this work, derivations of the standard voltage-in, current-out formulation

as well as formulations in which the stator and/or the field windings are represented in

a voltage-behind-reactance (VBR) form are presented in a unified manner, including the

derivation of a field-only voltage-behind-reactance formulation. It has been demonstrated

that selection of the formulation with the most suitable interface for the simulation scenario

has better accuracy and less run time. This work develops a numerical average-value model

of machine-rectifier systems, which encompasses both stationary rectifiers and rotating rec-

tifiers in brushless excitation systems. Furthermore, numerical AVMs of machine-rectifier

systems are reformulated so that it does not require inversion of the voltage-current inter-

faces on either the ac or dc side and can be simply incorporated in simulation models with

traditional voltage-in, current-out formulations on both the ac and dc sides. Advanced syn-

chronous machine modeling can be extended to different applications. For example, it can
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be used in observer-based fault detection and isolation, and generator protection. Different

spine functions can be extracted, via numerical averaging, from the behaviors of systems,

which include systems without any faults and systems with different kinds of faults. Those

functions can further form a database, with the purpose of diagnosis of potential faults from

any system by comparing its spine functions with those in the database. Through matching

the functions, the nature of fault(s), if any, in the system can not only be identified, but the

location of fault(s) may also be found.
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[19] I. Jadrić, D. Borojević, and M. Jadrić, “Modeling and control of a synchronous
generator with an active dc load,” IEEE Trans. Power Electron., vol. 15, no. 2, pp.
303–311, Mar. 2000.

[20] J. G. Ciezki and R. W. Ashton, “Selection and stability issues associated with a navy
shipboard dc zonal electric distribution system,” IEEE Trans. Power Del., vol. 15,
no. 2, pp. 665–669, Apr. 2000.

[21] J. Rivas, D. Perreault, and T. Keim, “Performance improvement of alternators with
switched-mode rectifiers,” IEEE Trans. Energy Convers., vol. 19, no. 3, pp. 561–
568, Sep. 2004.

[22] S. B. Leeb, J. L. Kirtley, W. W. Jr, Z. Remscrim, C. N. Tidd, J. A. Goshorn,
K. Thomas, R. W. Cox, and R. Chaney, “How much dc power is necessary?” Nav.
Eng. J., vol. 122, no. 2, pp. 79–92, Jun. 2010.

108



[23] C. A. Platero, F. Blázquez, P. Frı́as, and D. Ramı́rez, “Influence of rotor position in
FRA response for detection of insulation failures in salient-pole synchronous ma-
chines,” IEEE Trans. Energy Convers., vol. 26, no. 2, pp. 671–676, Jun. 2011.

[24] I. M. Canay, “Causes of discrepancies on calculation of rotor quantities and exact
equivalent diagrams of the synchronous machine,” IEEE Transactions on Power Ap-
paratus and Systems, vol. PAS-88, no. 7, pp. 1114–1120, Jul. 1969.

[25] M. R. Harris, P. J. Lawrenson, and J. M. Stephenson, Per-Unit Systems With Special
Reference to Electrical Machines. Cambridge, U.K.: Cambridge Univ. Press, 1970.

[26] G. R. Slemon, “Analytical models for saturated synchronous machines,” IEEE
Transactions on Power Apparatus and Systems, vol. PAS-90, no. 2, pp. 409–417,
Mar. 1971.

[27] R. P. Schulz, W. D. Jones, and D. N. Ewart, “Dynamic models of turbine generators
derived from solid rotor equivalent circuits,” IEEE Trans. Power App. and Syst., vol.
PAS-92, no. 3, pp. 926–933, May 1973.

[28] R. G. Harley, D. J. N. Limebeer, and E. Chirricozzi, “Comparative study of satura-
tion methods in synchronous machine models,” IEE Proceedings B - Electric Power
Applications, vol. 127, no. 1, pp. 1–7, Jan. 1980.

[29] L. Salvatore and M. Savino, “Experimental determination of synchronous machine
parameters,” IEE Proceedings B - Electric Power Applications, vol. 128, no. 4, pp.
212–218, Jul. 1981.

[30] J. E. Brown, K. P. Kovacs, and P. Vas, “A method of including the effects of main flux
path saturation in the generalized equations of a.c. machines,” IEEE Transactions on
Power Apparatus and Systems, vol. PAS-102, no. 1, pp. 96–103, Jan. 1983.

[31] R. S. Ramshaw and G. Xie, “Nonlinear model of nonsalient synchronous machines,”
IEEE Transactions on Power Apparatus and Systems, vol. PAS-103, no. 7, pp. 1809–
1815, Jul. 1984.

[32] G. Xie and R. S. Ramshaw, “Nonlinear model of synchronous machines with
saliency,” IEEE Transactions on Energy Conversion, vol. EC-1, no. 3, pp. 198–204,
Sep. 1986.

[33] F. P. de Mello and L. N. Hannett, “Representation of saturation in synchronous ma-
chines,” IEEE Transactions on Power Systems, vol. 1, no. 4, pp. 8–14, Nov. 1986.

[34] I. M. Canay, “Physical significance of sub-subtransient quantities in dynamic be-
haviour of synchronous machines,” IEE Proceedings B - Electric Power Applica-
tions, vol. 135, no. 6, pp. 334–340, Nov. 1988.

[35] J. O. Ojo and T. A. Lipo, “An improved model for saturated salient pole synchronous
motors,” IEEE Transactions on Energy Conversion, vol. 4, no. 1, pp. 135–142, Mar.
1989.

109



[36] H. Bissig, K. Reichert, and T. S. Kulig, “Modelling and identification of synchronous
machines, a new approach with an extended frequency range,” IEEE Trans. Energy
Convers., vol. 8, no. 2, pp. 263–271, Jun. 1993.

[37] I. M. Canay, “Determination of the model parameters of machines from the reac-
tance operators xd(p), xq(p) (evaluation of standstill frequency response test),” IEEE
Trans. Energy Convers., vol. 8, no. 2, pp. 272–279, Jun. 1993.

[38] ——, “Modelling of alternating-current machines having multiple rotor circuits,”
IEEE Transactions on Energy Conversion, vol. 8, no. 2, pp. 280–296, Jun. 1993.

[39] A. Keyhani and H. Tsai, “Identification of high-order synchronous generator models
from SSFR test data,” IEEE Trans. Energy Convers., vol. 9, no. 3, pp. 593–603, Sep.
1994.

[40] J. L. Kirtley, “On turbine-generator rotor equivalent circuits,” IEEE Trans. Power
Syst., vol. 9, no. 1, pp. 262–271, Feb. 1994.

[41] I. Kamwa and P. Viarouge, “On equivalent circuit structures for empirical modeling
of turbine-generators,” IEEE Transactions on Energy Conversion, vol. 9, no. 3, pp.
579–592, Sep. 1994.

[42] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of Electric Machinery.
New York: Wiley-IEEE Press, 1995.

[43] P. L. Dandeno and M. R. Iravani, “Third order turboalternator electrical stability
models with applications to subsynchronous resonance studies,” IEEE Transactions
on Energy Conversion, vol. 10, no. 1, pp. 78–86, Mar. 1995.

[44] J. Tamura and I. Takeda, “A new model of saturated synchronous machines for power
system transient stability simulations,” IEEE Transactions on Energy Conversion,
vol. 10, no. 2, pp. 218–224, Jun. 1995.

[45] S.-A. Tahan and I. Kamwa, “A two-factor saturation model for synchronous ma-
chines with multiple rotor circuits,” IEEE Trans. Energy Convers., vol. 10, no. 4, pp.
609–616, Dec. 1995.

[46] H. Tsai, A. Keyhani, J. A. Demcko, and D. A. Selin, “Development of a neural
network based saturation model for synchronous generator analysis,” IEEE Trans-
actions on Energy Conversion, vol. 10, no. 4, pp. 617–624, Dec. 1995.

[47] C.-M. Ong, Dynamic Simulation of Electric Machinery Using Matlab/Simulink.
Englewood Cliffs, NJ: Prentice Hall, 1998.

[48] K. A. Corzine, B. T. Kuhn, S. D. Sudhoff, and H. J. Hegner, “An improved method
for incorporating magnetic saturation in the q-d synchronous machine model,” IEEE
Transactions on Energy Conversion, vol. 13, no. 3, pp. 270–275, Sep. 1998.

110



[49] J. Verbeeck, R. Pintelon, and P. Guillaume, “Determination of synchronous machine
parameters using network synthesis techniques,” IEEE Transactions on Energy Con-
version, vol. 14, no. 3, pp. 310–314, Sep. 1999.

[50] J. Verbeeck, R. Pintelon, and P. Lataire, “Relationships between parameter sets of
equivalent synchronous machine models,” IEEE Transactions on Energy Conver-
sion, vol. 14, no. 4, pp. 1075–1080, Dec. 1999.

[51] ——, “Influence of saturation on estimated synchronous machine parameters in
standstill frequency response tests,” IEEE Transactions on Energy Conversion,
vol. 15, no. 3, pp. 277–283, Sep. 2000.

[52] S. Pillutla and A. Keyhani, “Neural network based saturation model for round rotor
synchronous generator,” IEEE Transactions on Energy Conversion, vol. 14, no. 4,
pp. 1019–1025, Dec. 1999.

[53] ——, “Neural network based modeling of round rotor synchronous generator rotor
body parameters from operating data,” IEEE Transactions on Energy Conversion,
vol. 14, no. 3, pp. 321–327, Sep. 1999.

[54] H. B. Karayaka, A. Keyhani, B. L. Agrawal, D. A. Selin, and G. T. Heydt, “Identifi-
cation of armature, field, and saturated parameters of a large steam turbine-generator
from operating data,” IEEE Transactions on Energy Conversion, vol. 15, no. 2, pp.
181–187, Jun. 2000.

[55] H. B. Karayaka, A. Keyhani, G. T. Heydt, B. L. Agrawal, and D. A. Selin, “Neural
network based modeling of a large steam turbine-generator rotor body parameters
from on-line disturbance data,” IEEE Transactions on Energy Conversion, vol. 16,
no. 4, pp. 305–311, Dec. 2001.

[56] S. D. Sudhoff, D. C. Aliprantis, B. T. Kuhn, and P. L. Chapman, “An induction
machine model for predicting inverter-machine interaction,” IEEE Transactions on
Energy Conversion, vol. 17, no. 2, pp. 203–210, Jun. 2002.

[57] N. Dedene, R. Pintelon, and P. Lataire, “Estimation of a global synchronous ma-
chine model using a multiple-input multiple-output estimator,” IEEE Transactions
on Energy Conversion, vol. 18, no. 1, pp. 11–16, Mar. 2003.

[58] D. C. Aliprantis, S. D. Sudhoff, and B. T. Kuhn, “Experimental characterization
procedure for a synchronous machine model with saturation and arbitrary rotor net-
work representation,” IEEE Trans. Energy Convers., vol. 20, no. 3, pp. 595–603,
Sep. 2005.

[59] I. M. Canay, “Causes of discrepancies on calculation of rotor quantities and exact
equivalent diagrams of the synchronous machine,” IEEE Trans. Power App. and
Syst., vol. PAS-88, no. 7, pp. 1114–1120, Jul. 1969.

[60] IEEE Guide for Synchronous Generator Modeling Practices and Applications in
Power System Stability Analyses, IEEE Std.1110-2002, Nov. 2003.

111



[61] S. D. Pekarek, E. A. Walters, and B. T. Kuhn, “An efficient and accurate method
of representing magnetic saturation in physical-variable models of synchronous ma-
chines,” IEEE Trans. Energy Convers., vol. 14, no. 1, pp. 72–79, Mar. 1999.

[62] E. Levi, “Saturation modelling in d-q axis models of salient pole synchronous ma-
chines,” IEEE Trans. Energy Convers., vol. 14, no. 1, pp. 44–50, Mar. 1999.

[63] D. C. Aliprantis, O. Wasynczuk, and C. D. Rodrı́guez Valdez, “A voltage-behind-
reactance synchronous machine model with saturation and arbitrary rotor network
representation,” IEEE Trans. Energy Convers., vol. 23, no. 2, pp. 499–508, Jun.
2008.

[64] D. C. Aliprantis, S. D. Sudhoff, and B. T. Kuhn, “A synchronous machine model
with saturation and arbitrary rotor network representation,” IEEE Trans. Energy
Convers., vol. 20, no. 3, pp. 584–594, Sep. 2005.

[65] A. M. Cramer, B. P. Loop, and D. C. Aliprantis, “Synchronous machine model with
voltage-behind-reactance formulation of stator and field windings,” IEEE Trans. En-
ergy Convers., vol. 27, no. 2, pp. 391–402, Jun. 2012.

[66] E. Levi and V. A. Levi, “Impact of dynamic cross-saturation on accuracy of saturated
synchronous machine models,” IEEE Trans. Energy Convers., vol. 15, no. 2, pp.
224–230, Jun. 2000.

[67] S. D. Pekarek, O. Wasynczuk, and H. J. Hegner, “An efficient and accurate model
for the simulation and analysis of synchronous machine/converter systems,” IEEE
Trans. Energy Convers., vol. 13, no. 1, pp. 42–48, Mar. 1998.

[68] G. R. Slemon, “An equivalent circuit approach to analysis of synchronous machines
with saliency and saturation,” IEEE Trans. Energy Convers., vol. 5, no. 3, pp. 538–
545, Sep. 1990.

[69] Y. Xiao, G. R. Slemon, and M. R. Iravani, “Implementation of an equivalent circuit
approach to the analysis of synchronous machines,” IEEE Trans. Energy Convers.,
vol. 9, no. 4, pp. 717–723, Dec. 1994.

[70] X. Cao, A. Kurita, H. Mitsuma, Y. Tada, and H. Okamoto, “Improvements of nu-
merical stability of electromagnetic transient simulation by use of phase-domain
synchronous machine models,” Electrical Engineering in Japan, vol. 128, no. 3, pp.
53–62, Apr. 1999.

[71] L. Wang, J. Jatskevich, and S. D. Pekarek, “Modeling of induction machines using a
voltage-behind-reactance formulation,” IEEE Trans. Energy Convers., vol. 23, no. 2,
pp. 382–392, Jun. 2008.

[72] L. Wang, J. Jatskevich, V. Dinavahi, H. W. Dommel, J. A. Martinez, K. Strunz,
M. Rioual, G. W. Chang, and R. Iravani, “Methods of interfacing rotating machine
models in transient simulation programs,” IEEE Trans. Power Del., vol. 25, no. 2,
pp. 891–903, Apr. 2010.

112



[73] L. Wang and J. Jatskevich, “A phase-domain synchronous machine model with con-
stant equivalent conductance matrix for EMTP-type solution,” IEEE Trans. Energy
Convers., vol. 28, no. 1, pp. 191–202, Mar. 2013.

[74] M. Chapariha, L. Wang, J. Jatskevich, H. W. Dommel, and S. D. Pekarek, “Constant-
parameter rl -branch equivalent circuit for interfacing ac machine models in state-
variable-based simulation packages,” IEEE Trans. Energy Convers., vol. 27, no. 3,
pp. 634–645, Sep. 2012.

[75] M. Chapariha, F. Therrien, J. Jatskevich, and H. W. Dommel, “Constant-parameter
circuit-based models of synchronous machines,” IEEE Trans. Energy Convers.,
vol. 30, no. 2, pp. 441–452, Jun. 2015.

[76] R. W. Ferguson, R. Herbst, and R. W. Miller, “Analytical studies of the brushless
excitation system,” Transactions of the American Institute of Electrical Engineers.
Part III: Power Apparatus and Systems, vol. 78, no. 4, pp. 1815–1821, Dec. 1959.

[77] E. C. Whitney, D. B. Hoover, and P. O. Bobo, “An electric utility brushless excitation
system,” Transactions of the American Institute of Electrical Engineers. Part III:
Power Apparatus and Systems, vol. 78, no. 4, pp. 1821–1824, Dec. 1959.

[78] S. Feng, X. Jianbo, W. Guoping, and X. Yong-hong, “Study of brushless excitation
system parameters estimation based on improved genetic algorithm,” in Third Inter-
national Conference on Electric Utility Deregulation and Restructuring and Power
Technologies (DRPT), Apr. 2008, pp. 915–919.

[79] V. Ruuskanen, M. Niemela, J. Pyrhonen, S. Kanerva, and J. Kaukonen, “Modelling
the brushless excitation system for a synchronous machine,” IET Electric Power
Applications, vol. 3, no. 3, pp. 231–239, May 2009.

[80] A. Griffo, R. Wrobel, P. H. Mellor, and J. M. Yon, “Design and characterization of a
three-phase brushless exciter for aircraft starter/generator,” IEEE Trans. Ind. Appl.,
vol. 49, no. 5, pp. 2106–2115, Sep. 2013.

[81] D. C. Aliprantis, S. D. Sudhoff, and B. T. Kuhn, “A brushless exciter model in-
corporating multiple rectifier modes and preisach’s hysteresis theory,” IEEE Trans.
Energy Convers., vol. 21, no. 1, pp. 136–147, Mar. 2006.

[82] T. L. Skvarenina, S. Pekarek, O. Wasynczuk, P. C. Krause, R. J. Thibodeaux, and
J. Weimer, “Simulation of a more-electric aircraft power system using an automated
state model approach,” in IECEC 96. Proceedings of the 31st Intersociety Energy
Conversion Engineering Conference, vol. 1, Aug. 1996, pp. 133–136 vol.1.

[83] A. M. Cramer, X. Liu, Y. Zhang, J. D. Stevens, and E. L. Zivi, “Early-stage shipboard
power system simulation of operational vignettes for dependability assessment,” in
2015 IEEE Electric Ship Technologies Symposium (ESTS), Jun. 2015, pp. 382–387.

113



[84] D. Montenegro, G. A. Ramos, and S. Bacha, “A-diakoptics for the multicore
sequential-time simulation of microgrids within large distribution systems,” IEEE
Trans. Smart Grid, vol. 8, no. 3, pp. 1211–1219, May 2017.

[85] T. Zouaghi and M. Poloujadoff, “Modeling of polyphase brushless exciter behavior
for failing diode operation,” IEEE Trans. Energy Convers., vol. 13, no. 3, pp. 214–
220, Sep. 1998.

[86] S. Chiniforoosh, J. Jatskevich, A. Yazdani, V. Sood, V. Dinavahi, J. A. Martinez, and
A. Ramirez, “Definitions and applications of dynamic average models for analysis
of power systems,” IEEE Trans. Power Del., vol. 25, no. 4, pp. 2655–2669, Oct.
2010.

[87] S. Chiniforoosh, H. Atighechi, and J. Jatskevich, “A generalized methodology for
dynamic average modeling of high-pulse-count rectifiers in transient simulation pro-
grams,” IEEE Trans. Energy Convers., vol. 31, no. 1, pp. 228–239, Mar. 2016.

[88] H. A. Petroson and P. C. Krause, “A direct-and quadrature-axis representation of
a parallel ac and dc power system,” IEEE Trans. Power App. Syst.*, vol. PAS-85,
no. 3, pp. 210–225, Mar. 1966.

[89] P. C. Krause and T. A. Lipo, “Analysis and simplified representations of a rectifier-
inverter induction motor drive,” IEEE Trans. Power App. Syst.*, vol. PAS-88, no. 5,
pp. 588–596, May 1969.

[90] E. Kimbark, Direct current transmission. Wiley-Interscience, 1971.

[91] S. D. Sudhoff and O. Wasynczuk, “Analysis and average-value modeling of line-
commutated converter-synchronous machine systems,” IEEE Trans. Energy Con-
vers., vol. 8, no. 1, pp. 92–99, Mar. 1993.

[92] S. D. Sudhoff, K. A. Corzine, H. J. Hegner, and D. E. Delisle, “Transient and dy-
namic average-value modeling of synchronous machine fed load-commutated con-
verters,” IEEE Trans. Energy Convers., vol. 11, no. 3, pp. 508–514, Sep. 1996.

[93] M. Shahnazari and A. Vahedi, “Improved dynamic average modelling of brushless
excitation system in all rectification modes,” IET Electric Power Applications, vol. 4,
no. 8, pp. 657–669, Sep. 2010.

[94] J. Jatskevich and T. Aboul-Seoud, “Impedance characterization of a six-phase syn-
chronous generator-rectifier system using average-value model,” in Canadian Con-
ference on Electrical and Computer Engineering, vol. 4, May 2004, pp. 2231–2234
Vol.4.

[95] J. Jatskevich, S. D. Pekarek, and A. Davoudi, “Parametric average-value model
of synchronous machine-rectifier systems,” IEEE Trans. Energy Convers., vol. 21,
no. 1, pp. 9–18, Mar. 2006.

114



[96] ——, “Fast procedure for constructing an accurate dynamic average-value model
of synchronous machine-rectifier systems,” IEEE Trans. Energy Convers., vol. 21,
no. 2, pp. 435–441, Jun. 2006.

[97] J. Jatskevich and S. D. Pekarek, “Numerical validation of parametric average-value
modeling of synchronous machine-rectifier systems for variable frequency opera-
tion,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 342–344, Mar. 2008.

[98] H. Atighechi, S. Chiniforoosh, K. Tabarraee, and J. Jatskevich, “Average-value
modeling of synchronous-machine-fed thyristor-controlled-rectifier systems,” IEEE
Transactions on Energy Conversion, vol. 30, no. 2, pp. 487–497, Jun. 2015.

[99] Y. Zhang and A. M. Cramer, “Numerical average-value modeling of rotating rec-
tifiers in brushless excitation systems,” IEEE Transactions on Energy Conversion,
vol. PP, no. 99, pp. 1–1, 2017.

[100] S. Ebrahimi, N. Amiri, H. Atighechi, Y. Huang, L. Wang, and J. Jatskevich, “Gener-
alized parametric average-value model of line-commutated rectifiers considering ac
harmonics with variable frequency operation,” IEEE Transactions on Energy Con-
version, vol. PP, no. 99, pp. 1–1, 2017.

[101] Simulink User’s Guide, MathWorks, Natick, MA.

[102] Automated State Model Generator (ASMG) Reference Manual, P. C. Krause and
Associates, Inc., West Lafayette, IN, 2002.

[103] F. Therrien, M. Chapariha, and J. Jatskevich, “Pole selection procedure for explicit
constant-parameter synchronous machine models,” IEEE Transactions on Energy
Conversion, vol. 29, no. 3, pp. 790–792, Sep. 2014.

[104] S. J. Salon, Finite Element Analysis of Electrical Machines. New York, NJ:
Springer, 1995.

115



Vita

YuQi Zhang was born in Yichun, Jiangxi, China.

Education

M.S. in Electrical Engineering, University of Kentucky, Lexington, KY, U.S., June, 2014.

B.S. in Electrical Engineering, Harbin Institute of Technology, Harbin, China, July, 2005.

Awards

Best Papers in the IEEE TRANSACTIONS ON ENERGY CONVERSION 2016-2017.

Publications

1. Y. Zhang and A. M. Cramer, ”Formulation of Rectifier Numerical Average-Value

Model for Direct Interface with Inductive Circuitry,” submitted in IEEE Transactions

on Energy Conversion, Jan. 2018.

2. Y. Zhang and A. M. Cramer, ”Numerical Average-Value Modeling of Rotating Recti-

fiers in Brushless Excitation Systems,” in IEEE Transactions on Energy Conversion,

vol. 32, no. 4, pp. 1592-1601, Dec. 2017.

3. Y. Zhang and A. M. Cramer, ”Unified Model Formulations for Synchronous Ma-

chine Model With Saturation and Arbitrary Rotor Network Representation,” in IEEE

Transactions on Energy Conversion, vol. 31, no. 4, pp. 1356-1365, Dec. 2016.

116



4. Y. Zhang and A. M. Cramer, ”Market-based control of electric ship power systems,”

2017 IEEE Electric Ship Technologies Symposium (ESTS), Arlington, VA, 2017,

pp. 372-379.

5. Y. Zhang, N. Uzuegbunam, W. Xu and S. c. S. Cheung, ”RoboMirror: Simulat-

ing a mirror with a robotic camera,” 2016 IEEE International Conference on Image

Processing (ICIP), Phoenix, AZ, 2016, pp. 1734-1738.

6. A. M. Cramer, X. Liu, Y. Zhang, J. D. Stevens and E. L. Zivi, ”Early-stage ship-

board power system simulation of operational vignettes for dependability assess-

ment,” 2015 IEEE Electric Ship Technologies Symposium (ESTS), Alexandria, VA,

2015, pp. 382-387.

117


	ADVANCED SYNCHRONOUS MACHINE MODELING
	Recommended Citation

	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	1 Introduction
	2 Background and Literature Review
	2.1 Background
	2.1.1 Construction of Synchronous Machines
	2.1.2 Voltage, Flux Linkage and Torque Equations in Machine Variables
	2.1.3 Voltage and Flux Linkage Equations in Arbitrary Reference Frame Variables
	2.1.4 Park's Equations and Equivalent Circuits

	2.2 Literature Review

	3 Unified Model Formulations for Synchronous Machine Model with Saturation and Arbitrary Rotor Network Representation
	3.1 Notation
	3.2 Synchronous Machine Model
	3.3 Model Formulations
	3.3.1 qd Formulation
	3.3.2 SVBR Formulation
	3.3.3 FVBR Formulation
	3.3.4 SFVBR Formulation

	3.4 Formulation Comparison

	4 Numerical Average-Value Modeling of Rotating Rectifiers in Brushless Excitation Systems
	4.1 Average-Value Model of Brushless Excitation System
	4.1.1 Notation
	4.1.2 Rectifier relationships
	4.1.3 Brushless exciter model
	4.1.4 Differentiator approximation
	4.1.5 Model integration
	4.1.6 Model summary

	4.2 Rectifier Characterization
	4.3 Model Validation

	5 Formulation of Rectifier Numerical Average-Value Model for Direct Interface with Inductive Circuitry
	5.1 Average-Value Model of Machine-Rectifier Systems
	5.1.1 Notation
	5.1.2 Rectifier relationships
	5.1.3 Model summary

	5.2 Rectifier Characterization
	5.3 Model Validation
	5.3.1 Main machine and stationary rectifier load
	5.3.2 Exciter, rotating rectifier, main machine, and infinite bus
	5.3.3 Exciter, rotating Rectifier, main machine, and stationary rectifier load


	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	Bibliography
	Vita

