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Abstract 

Lipid extraction from Scenedesmus sp. microalgae using hot compressed hexane (HCH) 

was investigated. Extraction performance was evaluated near the critical point of 

hexane and was compared with that of hexane extraction performed at room 

temperature and pressure, and the Bligh and Dyer extraction method. Experimental data 

showed that HCH significantly improves the lipid yield and rate of lipid extraction 

compared to the use of hexane at ambient conditions. High yields of biodiesel-

convertible lipid fractions were rapidly achieved at the critical point of hexane, at a 

level comparable to that of the Bligh and Dyer method.  

Keywords: lipid extraction; microalgae; hot compressed hexane; biodiesel; 

Scenedesmus 
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1. Introduction 

 Microalgae are photosynthetic unicellular microorganisms capable of 

converting sunlight, water, and carbon dioxide to algal biomass. Their high 

photosynthetic rates enable microalgae to serve as an effective carbon capture platform 

while rapidly accumulating lipids in their biomass. Even in a conservative scenario, 

microalgae are predicted to produce about 10 times more biodiesel per unit area of land 

than a typical terrestrial oleaginous crop [1-4]. Since microalgal species can be cultured 

on non-arable land, the production of algal biomass does not place additional strains on 

food production [5]. For these reasons, microalgae are currently considered some of the 

most promising alternative sources for biodiesel feedstock [3]. 

 Traditionally, lipids have been extracted from biological matrices using a 

combination of chloroform, methanol, and water through Bligh and Dyer’s method [6]. 

Indeed, this method has been used as a benchmark for comparing solvent extraction 

methods. However, it has several disadvantages when used on a large scale because it 

generates significant quantities of waste solvent. Organic solvent is costly to recycle 

and can be unsafe to handle in large amounts [7]. Therefore, although Bligh and Dyer’s 

method has proven effective for the majority of microalgal lipid extractions, an 

alternative organic solvent extraction method is needed for larger scale use [8]. Hexane 

is the most common solvent of choice for large-scale lipid extractions due to its cost-

effectiveness. When extracting lipids from microalgae, hexane is less toxic than 

chloroform, has minimal affinity towards non-lipid contaminants and has higher 
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selectivity towards neutral lipid fractions that can be converted to biodiesel using 

existing technology [9,10]. The use of hexane alone for high yield lipid extractions 

from microalgae would be a more economical and environmentally friendly process for 

biodiesel production. Unfortunately, hexane has been reported to be less efficient than 

chloroform-based solvent mixtures for microalgal lipid extractions [9-11]. 

 When the temperature and pressure of fluids are raised over their critical points, 

fluids enter the supercritical region and demonstrate unique properties of both the liquid 

and gas phases. A supercritical fluid possesses a density close to that of a liquid and has 

the ability to dissolve many components. Simultaneously, the high diffusivity and low 

viscosity of supercritical fluids enable them to behave in a manner similar to gas. Due 

to these advantages, supercritical fluids appear well suited for use as extraction media. 

Indeed, lipid extractions using supercritical carbon dioxide have recently been studied 

extensively for biodiesel production from microalgae [12-14]. Based on these 

considerations, in this work lipid extraction from Scenedesmus microalgae was 

evaluated using hot compressed hexane (HCH) in sub- and supercritical conditions. 

Crude lipid yield and the fatty acid methyl ester (FAME) yield obtained from HCH 

extracts were compared with those obtained using hexane extraction at ambient 

conditions and with the Bligh and Dyer extraction method. Soxhlet extraction, which is 

considered a baseline for the comparison of lipid extraction methods, was also tested 

near the boiling point of hexane. 

2. Experimental  
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2.1. Microalgae preparation and materials 

 The algae used in all experiments were Scenedesmus acutus (UTEX B72). 

Algae were cultured autotrophically in a 5500 L closed-loop vertical tube 

photobioreactor located in a greenhouse, using a urea-based medium containing 0.14 

g/L of urea [15]. The temperature of the culture medium was not controlled and ranged 

between 18 and 43 ºC. After harvesting and dewatering, the algae (10-15 % solids) were 

dried in an oven at 60 ºC for 24 h. Algal biomass from a single harvest (1.1 kg dry 

weight) was used for all experiments. The dried algae (3% moisture content) were 

subsequently ground in a coffee grinder until the algae particles were less than 150 µm. 

After grinding and before all extraction procedures, algae were heated to 100 ºC for 24 

h to remove residual water (moisture content < 1%). All organic solvents were reagent 

grade and were used without further purification. BF3 in methanol (10 wt.% BF3, 

Sigma-Aldrich) was used for the transesterification of lipid extracts. FAME mixture 

(99.9% pure, Sigma-Aldrich) was used as a standard, and methyl heptadecanoate (17:0) 

was used as an internal standard for analyzing FAME content. 

2.2. Bligh and Dyer extraction 

 Lipids were extracted by mixing chloroform-methanol-deionized water (1:1:0.9, 

v/v/v). This ratio is based on Bligh and Dyer’s method [6]. After placing 5 g of algae in 

an Erlenmeyer flask, 25 ml chloroform, 50 ml methanol, and 20 ml of deionized water 

were poured into the flask. The mixture was then shaken for 10 min, after which an 

additional 25 ml chloroform and 25 ml deionized water were poured into the flask. The 
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mixture was then shaken for a specified period of time. When the extraction was 

finished, the mixture was immediately filtered to remove algae and avoid further lipid 

extraction. The mixture was transferred to a separatory funnel to allow separation of the 

organic and aqueous layers, after which the chloroform layer was evaporated using a 

rotary evaporator to leave behind the extracted lipids. The weight of extracted lipids 

was then recorded. 

2.3. Hexane extraction at ambient conditions 

 Algae (5 g) and hexane (100 ml) were placed in an Erlenmeyer flask and shaken 

for a prescribed time. When the extraction was complete, the mixture was filtered to 

remove any remaining algae. Hexane was removed with a rotary evaporator and the 

weight of extracted lipids was recorded. 

2.4. Hot compressed hexane extraction 

 Five grams of algae were loaded into an autoclave (300 ml) with 100 ml of 

hexane. The autoclave was purged using argon gas, heated to the desired temperature 

(220, 235, or 250 ºC), and held for either 5 or 10 min. The pressure inside the vessel 

was monitored using a pressure gauge, and the agitation speed was adjusted to 300 rpm. 

After extraction was completed, the autoclave was cooled to room temperature and 

depressurized. The extracted mixture was filtered to separate algae debris, and hexane 

was removed with a rotary evaporator. The lipid extracts were weighed gravimetrically 

to obtain the crude lipid yield. 

2.5. Soxhlet extraction with hexane 
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 Five grams of dry algae were placed in a cellulose thimble (25 mm I.D., 28 mm 

O.D., 100 mm length) inside the soxhlet extractor. The extraction was continued at 80 

ºC for 12 h using 250 ml of hexane. After the solvent was removed, the extracted lipid 

was gravimetrically quantified. 

2.6. Microalgal lipid analysis 

 Crude lipid yield was calculated by dividing the weight of crude lipid by the 

weight of dry algae. The obtained lipid (400 mg) was transesterified at 80 ºC for 2 h 

using 4 ml of BF3 in methanol to determine FAME content. After the reaction was 

complete, chloroform and deionized water (4 ml each) were added and centrifugation 

was performed. The bottom layer was then collected and the solvent was evaporated. 

Transesterified products were analyzed by an Agilent 6890 gas chromatograph-mass 

spectrometer equipped with a HP-88 column (100 m length, 0.25 mm I.D., 0.2 µm film 

thickness). A solution of methyl heptadecanoate in heptane (5mg/ml) was used as the 

internal standard for FAME analysis. Three milliliters of internal standard solution was 

added to 75 mg of transesterified products for preparation of the samples. Samples (1 

µl) were injected at an initial oven temperature of 50 ºC. After injection, the oven was 

heated at 10 ºC/min to 170 ºC, at 5 ºC/min to 210 ºC and held for 10 min, then at 5 

ºC/min to 230 ºC and held for 6 min. The flow rate of carrier gas (He) was 1 ml/min. 

The injector and detector temperatures were set at 260 ºC. The ion source temperature 

was 280 ºC, while the interface temperature was 260 ºC. Electron impact (EI) mass 

spectra were measured at an ionizing energy of 70 eV by scanning from 50 to 500 m/z. 
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FAMEs in samples were identified by comparing the retention times of FAME peaks 

with those of authentic standards, and also confirmed by measuring their EI mass 

spectra. 

3. Results and Discussion 

 Lipid extractions were carried out near the critical point of hexane (235 ºC, 31 

bar), and extraction performance was compared with that of hexane extraction at room 

temperature and pressure, as well as with the Bligh and Dyer method, and soxhlet 

extraction using hexane. Table 1 shows crude lipid yields at different extraction 

conditions for each method. As expected, the Bligh and Dyer method extracted a 

relatively large amount of lipid (14.5 ± 0.5 wt.%) within 2 h, whereas hexane extraction 

at ambient conditions yielded only 4.0 ± 0.4 wt.% lipids after 3 h of extraction time. 

Soxhlet extraction with hexane proved similarly ineffective (5.9 ± 0.2 wt.% lipid yield). 

For HCH extraction, the maximum yield of crude lipid was obtained within 5 min at all 

extraction conditions used in this study. Under subcritical conditions, corresponding to 

220 ºC and 25 bar, the lipid yield was approximately 11.9 ± 0.3 wt.%. As temperature 

and pressure rose to around the critical point, lipid yield increased and reached a 

maximum value of 16.3 ± 0.2 wt.%. The crude lipid yield remained almost constant 

above the critical point of hexane, the yield being slightly higher than that obtained 

with the Bligh and Dyer method. Overall, HCH greatly accelerates the low extraction 

rate obtained with hexane at ambient conditions and provides significantly higher lipid 

yields. From these results, it is believe that due to the intermediate liquid-gas properties 
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obtained above the critical point of hexane, HCH can penetrate through cellular 

matrices rapidly and produce a high extraction yield. 

 Lipids can be defined as any biological molecule that is soluble in organic 

solvents. Most lipids can generally be classified into two categories based on the 

polarity of the molecular head group [16]: (1) neutral lipids (acylglycerols, free fatty 

acids (FFA), hydrocarbons, sterols, ketones, and pigments such as carotenes and 

chlorophylls), and (2) polar lipids, which are further sub-categorized into phospholipids 

and glycolipids. Among the various lipid components, acylglycerols, FFA, and fatty 

acid parts of polar lipids are readily converted to FAMEs, which are the main 

components of biodiesel. This indicates that acylglycerols, FFA, and fatty acid parts of 

polar lipids are desirable biodiesel-convertible lipid fractions. In this study, therefore, 

FAME yield (as well as crude lipid yield) was used as an important index to evaluate 

extraction efficiency for biodiesel applications. Moreover, the fatty acid profile in the 

feedstock has a significant impact on the properties of the resulting biodiesel [17]. 

Therefore, it is important to determine the FAME composition in order to ascertain if 

the presence of high temperature and pressure during lipid extraction has a significant 

effect on the fatty acid profiles. The fatty acid profile in the crude lipid was determined 

by transesterifying the lipids obtained from the different extraction methods. A 

comparison of FAME compositions and yields for the extraction methods is shown in 

Table 2, from which it is evident that the FAME compositions were similar regardless 

of the extraction procedure. The main FAMEs in the crude lipid extracts were methyl 



9 

 

esters of palmitic acid (C16:0), palmitoleic acid (C16:1), elaidic acid (C18:1t), oleic 

acid (C18:1c), linolelaidic acid (C18:2t), linoleic acid (C18:2c), and α-linolenic acid 

(C18:3n3). The degree of unsaturation (as defined in Table 2) ranged from 151.16 to 

167.04 depending on the method; the fact that the values are almost the same indicates 

that there was no significant thermal cracking of unsaturated FAMEs in the crude lipid 

in spite of the relatively high temperature and pressure during HCH extraction. The 

selectivity to FAME shown by the extract obtained using hexane at ambient conditions 

was higher than that of the Bligh and Dyer extract due to the relatively low solvent 

polarity of hexane compared to chloroform, thereby favoring the extraction of neutral 

lipids. However, overall FAME yield was much lower than that of the Bligh and Dyer 

extract. HCH extraction afforded somewhat lower selectivity to biodiesel-convertible 

lipid fractions compared to that of the Bligh and Dyer method, but FAME yield was 

almost the same due to the high crude lipid yield. 

 Based on these results, it is evident that using HCH as an extraction medium 

enormously enhanced the low efficiency of hexane for microalgal lipid extraction. As a 

result, high yields of biodiesel-convertible lipid fractions were achieved at short times, 

at a level comparable to that of the Bligh and Dyer method. 

4. Conclusions 

 Lipid extraction from Scenedesmus microalgae using HCH was demonstrated. 

The merit of this approach is that high yields of biodiesel-convertible lipid fractions can 

be obtained in a short time using hexane alone. HCH is a promising alternative medium 
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for microalgal lipid extraction for biodiesel applications. 
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Table 1. Crude lipid yieldsa (%) at different extraction conditions. 
 

Extraction 

conditions 
5 min 10 min 1 h 2 h 3 h 6 h 12 h 

Bligh-Dyer  

(25 ºC) 
- - 

12.8 

(±0.7) 

14.5 

(±0.5) 

14.5 

(±0.6) 
- - 

Hexane  

(25 ºC) 
- - 

2.4 

(±0.7) 

3.5 

(±0.5) 

4.0 

(±0.4) 

4.1  

(±0.5) 
- 

HCH  

(220 ºC, 25 bar) 

11.9  

(±0.3) 

12.0 

(±0.2) 
- - - - - 

HCH  

(235 ºC, 31 bar) 

16.3 

(±0.2) 

16.1 

(±0.3) 
- - - - - 

HCH  

(250 ºC, 40 bar) 

16.4 

(±0.3) 
- - - - - - 

Soxhlet  

(80 ºC) 
- - - - - - 

5.9  

(±0.2) 

aLipid yields represent the average of three extractions (±standard deviation). 
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Table 2. Comparison of FAME compositions and yields for different extraction methods. 

 

 Extraction method 

 Bligh-Dyer Hexane 
aHot compressed 

hexane 

Extraction time (min) 120 180 5 

Crude lipid yield (wt.%) 14.5 (±0.5) 4.0 (±0.4) 16.3 (±0.2) 

FAME composition (% FAME)    

Caproic acid (C10:0) 0.36 0.99 0.40 

Lauric acid (C12:0) 1.51 3.69 1.95 

Tridecanoic acid (C13:0) 2.56 4.63 0.59 

Myristic acid (C14:0) 0.36 0.39 0.43 

Myristoleic acid (C14:1) 1.42 2.80 1.80 

Pentadecanoic acid (C15:0) 0.00 0.00 0.00 

Palmitic acid (C16:0) 13.20 14.10 17.20 

Palmitoleic acid (C16:1) 4.28 3.79 5.54 

Heptadecanoleic acid (C17:1) 1.86 1.47 1.84 

Stearic acid (C18:0) 1.16 2.08 1.45 

Elaidic acid (C18:1t) 3.88 3.03 3.53 

Oleic acid (C18:1c) 6.45 7.66 8.47 

Linolelaidic acid (C18:2t) 13.60 9.75 10.6 

Linoleic acid (C18:2c) 13.80 13.6 14.5 

γ-Linolenic acid(C18:3n6) 0.76 0.85 0.62 

Arachidic acid(C20:0) 1.00 1.03 1.48 

α-Linolenic acid (C18:3n3) 30.6 27.7 27.20 

Heneicosanoic acid (C21:0) 2.86 2.4 2.34 

Eicosadienoic acid (C20:2) 0.29 0.00 0.00 
bDegree of unsaturation 167.04 151.16 154.93 

FAME content (%) 65.08 68.57 58.65 
cFAME yield (wt.%) 9.4 (±0.3) 2.7 (±0.3) 9.6 (±0.1) 

aHCH extraction was performed at the critical point of hexane (235 ºC, 31 bar). 
bDegree of unsaturation = 1 × monoene (%) + 2 × diene (%) + 3 × triene (%) + 4 × tetraene 

(%). 
cFAME yield (wt.%) = Crude lipid yield (wt.%)×FAME content (%) / 100. 
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