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THE INFLUENCE OF ENVIRONMENTAL TEMPERATURE AND
SuUBSTRATE INITIAL MOISTURE CONTENT ON ASPERGILLUS
NIGER GROWTH AND PHYTASE PRODUCTION
IN SOLID—STATE CULTIVATION

S. B. Carter, S. E. Nokes, C. L. Crofcheck

ABSTRACT. Aspergillus niger is being used commercially for phytase production utilizing solid—state cultivation; however, no
studies have been published that investigated the optimal environmental temperature and initial substrate water content to
maximize fungal growth and/or phytase production. Solid—state cultivations of Aspergillus niger on wheat bran and soybean
meal were conducted at three temperatures (25°C, 30°C, and 35°C) and three initial moisture contents (50%, 55%, and 60%
wet basis) in a split—plot full-factorial experimental design. Fermentations were conducted for 0, 24, 48, 72, and 120 h. The
containers were sampled destructively and assayed for phytase activity and glucosamine concentration as an estimate of
fungal biomass. Temperature affected phytase activity production, but substrate initial moisture content did not. The highest
phytase activity was found at 30 °C, 50% to 60% initial moisture content, and 72 h of fermentation. Initial substrate moisture
content affected glucosamine production after 72 and 120 h of fermentation. The maximum glucosamine was produced at
35°C, either 50% or 60% initial moisture content, and 120 h of fermentation. The results show that the optimal biomass growth
conditions are not the same as the optimal phytase production conditions, suggesting that phytase production is not entirely

correlated with fungal growth.

Keywords. Aspergillus niger, Environmental temperature, Phytase, Solid—state cultivation, Substrate moisture content.

hosphorus is an essential mineral for animal growth
and development (Poulsen, 2000), stored mainly as
phytic acid in cereals (Common, 1940), seeds (Bo-
land et al., 1975), and legumes (Nelson et al., 1968).
Phytic acid is not readily assimilated by monogastric animals
(Boland et al., 1975; Harland and Harland, 1980) and has an-
tinutritive properties because it forms complexes with pro-
teins and multivalent cations (such as Zn?*, Ca2*, and Fe3*),
which reduces their bioavailability (Nair and Duvnjak,
1991). Phytic acid also has been shown to inhibit nutritional-
ly important enzymes in vivo (Graf, 1986). The nutritional
impediments caused by phytic acid result in higher levels of
phytate phosphorus being released into the environment via
animal excrement. Phosphorus in the environment is associ-
ated with eutrophication of fresh waters and is a major prob-
lem in surface water quality (Commission of the European
Communities, 1992; USEPA, 1996).
Phytic acid can be hydrolyzed chemically, which often
degrades the nutritional value of the feed, or enzymatically
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(Ebune et al., 1995). Upon hydrolysis of phytic acid,
phosphorus is freed and the bioavailability of nutrients
increases. Phytase is a phosphomonoesterase and is capable
of hydrolyzing phytic acid to inorganic orthophosphate,
lower esters of myoinositol, and free inositol (Irvine and
Cosgrove, 1972). This enzyme is present in plants and
tissues, and it is also produced by many species of fungi and
bacteria (Consgrove, 1966). Supplementation of microbial
phytases in animal diets provides growth performance
equivalent to or better than animals supplemented with
phosphate, and it reduces the amount of phosphorus in the
animal manure (Wodzinski and Ullah, 1996). The U.S. Food
and Drug Administration (FDA) has approved a generally—
regarded—as—safe (GRAS) petition for use of phytase in food,
and phytase has been marketed as a feed additive in the U.S.
since 1996 (Wodzinski and Ullah, 1996).

Microbial enzymes are produced commercially mainly by
submerged fermentation (SmF). However, the high cost of
enzymes is often cited as the limiting factor prohibiting use
of enzymes in animal diets (Han et al., 1987; Wodzinski and
Ullah, 1996). An alternative enzyme production method,
solid-state cultivation (SSC) has been reported to be a less
expensive production method than SmF because it requires
lower capital investment, has lower operating costs, and
results in a higher volumetric productivity than SmF
(Mitchell and Lonsane, 1992). SSC refers to the growth of
microorganisms on solid substrates without the presence of
free liquid (Cannel and Moo—Young, 1980). SSC is especial-
ly attractive for enzyme production for the animal feed
industry because the entire fermented product can be dried,
ground, and sold as animal feed, resulting in less waste and
less downstream processing.
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Environmental temperature of the fermenting solids is a
significant variable in solid—state cultivation and is generally
specific to the organism and the product to be cultured, as in
submerged fermentations (Prior et al., 1992). Optimal
temperatures for growth may not be the same as for product
formation, suggesting a possible need for temperature shifts
(profiling) in later stages of fermentation (Prior et al., 1992).

Previous phytase production research with Aspergillus
niger focused on the effects of inoculum size (Krishna and
Nokes, 2001), medium viscosity, and agitation levels (Papa-
gianni et al., 2001). The influence of water content on the
physical properties of the substrate and the growth of the
microorganism is not well understood. Therefore, the
optimum moisture content for each microbe-substrate
system should be determined based on the desired product
and the conditions for cultivation (Prior et al., 1992). The
optimal moisture level is affected by temperature (Kim et al.,
1985; Silman et al., 1979) and may not be the same for growth
as it is for product formation (Grajek and Gervais, 1987).

The objective of this study was to investigate whether the
phytase activity production coincides with fungal growth
such that the optimal temperature and initial substrate water
content for Aspergillus niger biomass growth would be the
same for optimal phytase activity production. The median
temperature and initial substrate moisture content values in
this study were indicated by the producers of Aspergillus
niger as being the best conditions for fungal growth. The
upper and lower limits for temperature and initial substrate
were selected to be different enough from the median values
to elicit a change in the outcome, but within the limits of the
specifications given by the supplier. Values outside of the
upper and lower limits of this study would most likely result
in subpar fungal growth such that phytase activity production
would also be expected to be subpar. For example, we
assumed that initial moisture contents greater than 65%
would lead to anaerobic environment, which inhibits growth.
In addition, we investigated the magnitude of substrate
temperature and water content changes over time during
SSC.

MATERIALS AND METHODS
ORGANISM AND MAINTENANCE

A phytase—producing strain of Aspergillus niger (pro-
vided by Alltech, Inc., Nicholasville, Ky.) was used through-
out this work. Culture maintenance included a bimonthly
recycle subculture from a molasses agar plate to a potato
dextrose agar (PDA) plate and back, all stored at room
temperature (~25°C). Inoculation was accomplished by
cutting an agar block of 5 X 5 x 5 mm from the growing edge
of the culture and transferring it to the center of a new plate.
The PDA plates were incubated for 7 days and used as the
inoculum for the liquid culture. The inocula (a5 X 5 X 5mm
agar cube) for the solid—state culture were provided by a
3—day liquid shaker flask culture. The liquid media con-
tained: 28 g/L corn starch, 5 g/L glucose, 18 g/L peptone,
0.5 g/L KCI, 1.5 g/L MgS0O4-7H20, 1 g/L KH,POy, 2 g/L
CaCly-2H,0, and 20 g/L wheat bran. Corn starch was
purchased from a local grocery store (Kroger Co.), wheat
bran was purchased from a local organic food store (Good
Foods Co-op), and all other reagents were purchased from
Difco (Franklin Lakes, N.J.)
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SoLID—STATE CULTIVATION

Solid-state cultivations of Aspergillus niger on a wheat
bran and soybean meal substrate were conducted at three
temperatures (25°C, 30°C, and 35°C) and three initial
moisture contents (50%, 55%, and 60% w.b.) in a split-plot
full-factorial experimental design with three replications.
Fermentations were conducted for 0, 24, 48, 72, and 120 h.
The containers were sampled destructively and assayed for
phytase activity and for glucosamine as an estimate of
biomass.

Glass 250 mL Erlenmeyer flasks were used as bench-
scale bioreactors. The solid substrate, 3.5 g of wheat bran and
1.5 g of full-fat soybean meal (Good Foods Co-op,
Lexington, Ky.), was added to each flask, and each flask was
plugged with a foam stopper. Each flask was then equipped
with a type-T thermocouple, supported by a glass rod,
threaded through the foam stopper and positioned in the
center of the solid substrate. All monitoring equipment and
bioreactor parts were autoclaved at 121°C for 30 min prior
to each experiment. Flasks were then inoculated aseptically
with 3 mL of the inoculum solution containing mycelium,
and the initial moisture content was adjusted using deionized
water (50%, 55%, and 60% w.b.). Flasks were randomly
placed in separate incubators (New Brunswick 4300, New
Brunswick, N.J.) at three different temperatures (25°C,
30°C, and 35°C). Temperature readings were collected every
15 min with a datalogger (21X, Campbell Scientific, Inc.,
Logan, Utah). Cultures were harvested after 0, 24, 48, 72, and
120 h of fermentation.

PHYTASE ACTIVITY

Phytase activity was determine for the inoculum before
cultivation and for the harvested phytase extracted from the
solid substrate after cultivation. Crude enzyme was extracted
using 20 mL of deionized water and 0.1% (v/v) Tween 80 per
1 g of initial media by homogenizing and shaking the
suspension at 200 rpm for 1 h. The homogenized suspension
was filtered through paper filters (Whatman 4, 15 cm), and
the clear filtrate was designated as the crude enzyme. Phytase
activity was assayed by measuring the amount of phospho-
rous released from a sodium phytate solution using the
method of Harland and Harland (1980). The colorimetric
analysis was performed with a spectrometer at 380 nm and
compared to a standard curve. Enzyme activity was ex-
pressed in international units (IU) defined using the follow-
ing equations:

B W

mL enzyme

[(absorbance — blank@380 nm Xstandard curve slope )Idilution factor)

U _um 1 100 mL (2)

gsubstrate  mL enzyme time of reaction 5g substrate

One unit of enzyme activity was defined as the amount of
phytase required to release 1 mg of phosphorus from 1 mL of
1.5 mM sodium phytate (pH of 4) per hour at room
temperature.

FuNGAL BloMASS ESTIMATION

After harvesting, 0.5 g of the SSC material was used for
biomass estimation via a glucosamine assay, as described by
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Sakurai et al. (1977). Glucosamine suspended in solution was
quantified by a spectrophotometer at 530 nm. In order to esti-
mate biomass based on glucosamine content, a calibration
curve was generated by measuring the biomass and glucosa-
mine contents of several submerged fermentations (Al-
Asheh and Duvnjak, 1995).

EXPERIMENTAL DESIGN AND DATA ANALYSIS

A split-plot experiment incorporating factorial treatments
was conducted to investigate the effects of environmental
temperature, initial substrate moisture content, and length of
fermentation on Aspergillus niger growth and phytase
activity production with three replications (fig. 1). The main
plot parameter was environmental temperature, due to the
limited number of environmental chambers available. PROC
GLM in SAS Software (SAS Institute, Inc., Cary, N.C.) was
used to evaluate the data, using temperature within chamber
mean square error as the error term for evaluating tempera-
ture main effects, and the model mean square error as the
error term for evaluating substrate water content main effects
and interactions (o = 0.05, unless otherwise indicated).

RESuLTS AND DiscussioN
SUBSTRATE TEMPERATURE AND MOISTURE CONTENT
DURING SSC

Substrate temperature achieved equilibrium with the
environmental chamber within an hour of being placed in the
chamber. The flasks cultivated in the 25°C environmental
chamber maintained a temperature identical to the environ-
mental chamber for approximately 50 h, then exhibited a
small temperature increase (approximately 1°C over 20 h),
and then remained fairly stable at 26°C until 95 h of
cultivation, when the temperature returned to 25°C. The
flasks in the 30° C environmental chamber exhibited a similar
temperature trend, except the temperature increase began at
approximately 40 h of fermentation, and the temperature
reduction began at around 60 h of cultivation. The 35°C

ec

55%

[0 ][ 24 ][ 48 ][ 72 |[ s20]

T

50%

| |
L ]
[0 ][ 24 ][ 48 |[ 72 |[120] [ 0 || 24 ][ 48 [ 72 ][ a20]

TR A AR AR T

Figure 1. Diagram of a single main plot (temperature) with three split—
plot treatments (initial moisture content), five fermentation times, and
three replications for each treatment combination.

60%
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flasks exhibited a larger temperature increase (approximate-
ly 2°C over 30 h), which began at approximately 25 h of cul-
tivation. The temperature reduction began at around 50 h of
fermentation, and it took around 40 h for the substrate tem-
perature to return to 30°C.

Substrate moisture contents remained generally stable
until 72 h of cultivation. The 50% w.b. moisture content
treatment incubated at 25° C dried to about 28% w.b. by 120 h
of fermentation. The 55% w.b. moisture content treatment
incubated at 35°C dried to around 45% water content (w.b.)
by 120 h. All other treatments remained within 5% of their
initial water content throughout the fermentation.

PHYTASE ACTIVITY PRODUCTION

Average phytase activity results are shown in figure 2. For
the 72 and 120 h fermentations, the main effect of
temperature was significant according to the analysis of
variance (P < 0.01), while the effect of moisture content and
the interactions of the two were not significant.

For the 72 h fermentations, as shown in table 1, the main
effects of temperature (averaged over initial moisture
content) were significantly different for all three tempera-
tures. The main effects of initial moisture content (averaged
over temperature) were not significantly different. The only
statistical difference between initial moisture content treat-
ments within a single temperature treatment was between
50% and 60% initial moisture at 30°C (552 and 703 1U/g
substrate, respectively). The highest level of phytase activity
(703 1U/g substrate) was produced at 30°C with an initial
moisture content of 60%.

After 120 h of fermentation, as shown in table 2, no main
effect of initial moisture content was detected, while the
phytase activity for the 30°C temperature (averaged over
initial moisture content) of 740 1U/ g substrate was statistical-
ly higher than for the other temperature treatments. With
respect to the treatment combinations, the only significant
difference was seen with an initial moisture content of 50%,
where the phytase activity at 30°C (790 1U/g substrate) was
statistically higher than the phytase activity at the other
temperatures (477 1U/g substrate at 25°C and 343 1U/g
substrate at 35°C).

900
800

700 —e—25C
600 - —=—-30C
500{ —4—35C

400 4
300 4
200
100

Phytase Activity (IU/g substrate)

0 20 40 60 80 100 120

Fermentation Time (hr)

Figure 2. The increase in phytase activity during fermentation averaged
over moisture content for each temperature treatment (average of three
moisture levels and three replications). Error bars represent standard er-
ror.
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Table 1. Phytase activity (1U/g substrate) after 72 h of fermentation
for all temperature (°C) and initial moisture content
(% w.b.) treatment combinations.?]

Initial Moisture Content Temperature Main

Temperature Effect Average
(°C) 50% 55% 60% (1U/g substrate)
25 316 ad 312ad  343ad 324 a
30 552bd 671 bde 703 be 642 b
35 413ad 548 bd 484 ad 482 c
Moisture content 427 d 510d 510d

main effect average
(1U/g substrate)

[e] Different letters (a, b, and c) indicate different column means for temper-
ature treatments within each moisture content; different letters (d, e, and
f) indicate different row means for moisture content treatments within
each temperature treatment (o = 0.05).

FunGaL GROWTH

Average glucosamine production for the three tempera-
ture levels (averaged over moisture content) is shown in
figure 3. For the 72 and 120 h fermentations, the effect of
temperature on glucosamine production was significant
according to the analysis of variance (P < 0.005), while the
effect of moisture content and the interactions of the two were
only significant for the 120 h fermentations (P < 0.05).

After 72 h of fermentation, as shown in table 3, the main
effects of temperature (averaged over initial moisture
content) were significantly different for all three tempera-
tures, with the 35°C treatment resulting in the highest
glucosamine production (19.80 mg/g). The 30°C tempera-
ture environment produced the second highest biomass
glucosamine level (15.34 mg/g). The first observation of
differences in biomass glucosamine production by moisture
content occurred at 72 h of fermentation. Biomass glucosa-
mine production at 50% initial moisture content (12.97 mg/g)
was significantly lower than production at 55% moisture
content (15.10 mg/g), when averaged over temperature. The
highest accumulation of biomass glucosamine (18.90 mg/g)
occurred with a temperature of 35°C and a 60% initial
moisture content, a noticeable contrast from the 48 h
fermentation data where it ranked the lowest among moisture
contents at a temperature of 35°C.

After 120 h of fermentation, as shown in table 4, the main
effect of temperature was significantly different for all
temperatures averaged over initial moisture content. The
35°C treatment resulted in the highest glucosamine
(24.16 mg/g), followed by the 30°C treatment (16.15 mg/g)

Table 2. Phytase activity (1U/g substrate) after 120 h of fermentation
for all temperature (°C) and initial moisture content
(% wet basis) treatment combinations.[al

Initial Moisture Content Temperature Main

Temperature Effect Average
(°C) 50% 55% 60% (1U/g substrate)
25 477 ad 555ad 562 ad 531a
30 790bd  679ad 752 ad 740 b
35 343 ad 394ad 476 ad 404 a
Moisture content 537 d 543 d 597 d

main effect average
(1U/g substrate)

[e] Different letters (a, b, and c) indicate different column means for temper-
ature treatments within each moisture content; different letters (d, e, and
f) indicate different row means for moisture content treatments within
each temperature treatment (o. = 0.05).
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Glucosamine Production (mg/g)
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Figure 3. The increase glucosamine during fermentation averaged over
moisture content for each temperature treatment (average of three mois-
ture levels and three replications). Error bars represent standard error.

and then the 25°C treatment (13.92 mg/g). A significant ef-
fect of initial moisture content averaged over temperature
was observed, where the 50% and 60% initial moisture con-
tents resulted in statistically higher fungal growth (18.34 and
19.19 mg/g, respectively). For the 55% initial moisture con-
tent, the higher temperatures corresponded to a decrease in
fungal growth compared to the other initial moisture treat-
ments, where this initial moisture content resulted in an in-
crease in fungal growth at 72 h of fermentation. This seems
to indicate that the fungal growth peaks earlier than 120 h.

Table 3. Glucosamine production (mg/g) activity after 72 h of
fermentation for all temperature (°C) and initial moisture
content (% wet basis) treatment combinations.[al

Initial Moisture Content Temperature Main

Temperature Effect Average
(°C) 50% 55% 60% (mg/g)
25 10.62 ad 12.25ad 11.60 ad 1149a
30 14.60 bd 14.87 abd 14.19 ad 1534 b
35 13.68 abd 18.18 be 18.90 be 19.80 ¢
Moisture content  12.97d  15.10e 14.90 de

main effect average
(mg/g)
[e] Different letters (a, b, and c) indicate different column means for temper-
ature treatments within each moisture content; different letters (d, e, and
f) indicate different row means for moisture content treatments within
each temperature treatment (o = 0.05).

Table 4. Glucosamine production (mg/g) activity after 120 h of
fermentation for all temperature (°C) and initial moisture
content (% wet basis) treatment combinations.[al

Initial Moisture Content Temperature Main

Temperature Effect Average
(°C) 50% 55% 60% (mg/g)
25 1470 ad 13.55ad 13.51 ad 1392 a
30 16.57 ad 15.33ad 16.54 bd 16.15b
35 23.75bd 21.21bd 2753 ce 24.16 ¢
Moisture content 18.34de 16.70d 19.19e

main effect average
(mg/g)
[e] Different letters (a, b, and c) indicate different column means for temper-
ature treatments within each moisture content; different letters (d, e, and
f) indicate different row means for moisture content treatments within
each temperature treatment (o = 0.05).
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CONCLUSION

The maximum phytase activity was produced at 30°C and
55% to 60% initial substrate moisture content for a 72 h
fermentation and at 30°C and 50% to 60% moisture content
for a 120 h fermentation. The change in phytase activity from
the 72 h (30°C; 55% and 60% moisture contents) fermenta-
tion to the 120 h (30°C; 50%, 55%, and 60% moisture
contents) was not statistically significant (o = 0.05). The
glucosamine quantities produced under both sets of condi-
tions were compared statistically to determine if they
differed, but no statistical difference was found. The shorter
fermentation time would allow a higher production rate in an
industrial enzyme production plant.

The maximum fungal growth was produced at 35°C,
either 50% or 60% initial substrate moisture content, and
120 h of fermentation, and was statistically higher than under
similar conditions at 72 h of fermentation. The higher
temperature required for optimal growth, as opposed to
optimal phytase productions, indicates that the production of
phytase is not directly dependent on fungal growth. Environ-
mental temperature affected phytase activity production, but
substrate initial moisture content had less of an effect. The
results of this study suggest that a lower temperature (30°C)
should be used to maximize phytase production. A shorter
fermentation time (72 h) should be sufficient for phytase
production. With a shorter fermentation time, the moisture
content should be between 55% and 60%.
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