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ABSTRACT OF THESIS 
 
 
 
 

CHARACTERIZATION OF ROTARY BELL ATOMIZERS THROUGH IMAGE 
ANALYSIS TECHNIQUES 

 
 

Three methods were developed to better understand and characterize the near-field 
dynamic processes of rotary bell atomization. The methods were developed with the goal 
of possible integration into industry to identify equipment changes through changes in the 

primary atomization of the bell. The first technique utilized high-speed imaging to 
capture qualitative ligament breakup and, in combination with a developed image 

processing technique and PIV software, was able to gain statistical size and velocity 
information about both ligaments and droplets in the image data. A second technique, 

using an Nd:YAG laser with an optical filter, was used to capture size statistics at even 
higher rotational speeds than the first technique, and was utilized to find differences 

between serrated and unserrated bell ligament and droplet data. The final technique was 
incorporating proper orthogonal decomposition (POD) into image data of a side-profile 

view of a damaged and undamaged bell during operation. This was done to capture 
differences between the data sets to come up with a characterization for identifying if a 

bell is damaged or not for future industrial integration. 
 

KEYWORDS: rotary bell atomization; high-speed imaging; shadowgraphy; serrations; 
proper orthogonal decomposition; 
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CHAPTER ONE: STUDY OF NEAR-CUP WATER DROPLET BREAKUP OF A 

ROTARY BELL ATOMIZER USING HIGH-SPEED SHADOWGRAPH IMAGING 

 

1.1 Introduction 

Rotary bell applicators (see Fig. 1.1 for an example) are one class of spray atomizers 

that use centrifugal forces to break up fluid closer to the cup. This system is used in 

various applications such as coating applicators, fuel injectors, mass spectroscopy, drug 

delivery, and pesticide application[1,2].  However, one challenging application is in 

automotive painting due to the production rate, size of the vehicle, environmental impact, 

fluid properties and the importance of uniformity on the appearance and finish of the 

vehicle[3,4]. Rotary bell (or cup) applicators operate by releasing fluid along the center 

of a rotating cup, which forms a thin liquid film over the inner surface of the cup. When 

the film reaches the edge of the cup, ligaments (connected liquid threads) are formed.  

Air flow around the outside of the cup, referred to as shaping air, contributes to additional 

liquid breakup into droplets and directs the droplets towards the target, thus resulting in 

the application of the fluid to a substrate. In the automotive industry, the paint is often 

electrostatically charged to enhance the transfer of the paint to the target[3,5]. 
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Figure 1.1. Photograph of the bell-cup of a Dürr EcoBellv2 rotary bell atomizer (left) and 
a shadowgraph image of the bell during operation (right), showing ligaments undergoing 
primary atomization into droplets. 
 

Rotary bell atomizers have been the primary method of paint application for many 

manufacturers due to the increased paint transfer efficiency over the alternative of air 

spray guns, such as air blast sprayers. However, the devices leave room for improvement 

since over-coating is often necessary to ensure sufficient finish quality[5,6]. Since its 

inception into the industry, rotating disk, and later rotary bell, applicators have been 

studied in an attempt to understand and improve the paint application process, but further 

improvements would continue to reduce costs and waste in industrial processes. 

Currently, automotive paint shops amount to 30%-50% of the total cost to manufacture 

automobiles and up to 70% of the total energy costs in an assembly plant[3,5]. Thus, even 

small improvements to any aspect of the process are important, since it can result in large 

cost savings and waste reduction. 
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One of the most often-studied aspects of the rotary bell and rotating disk applicators 

has been the atomization process. Early studies led to the fundamental physical 

interpretation of liquid atomization in these systems[7–10], where it was found that the 

atomization process begins with thin ligaments forming at the edge of the bell that 

eventually breakup into droplets.  Particle size distributions for droplets were also found 

to be Gaussian with a slight skew toward smaller sizes. Liquid breakup from the 

ligaments has also been described, including the laminar breakup of single jet ligament 

length[11], jet breakup time characterization[12], and liquid ligament 

detachment/elongation characterization[13]. 

Spinning disk applicators have similar flowfield characteristics as the bell spray 

process, clearly showing the ligament and droplet formation. Many studies have been 

conducted with regards to the critical parameters and characteristics of spinning disk and 

wheel applications, such as ligament and droplet formation and droplet size 

distributions[14–19]. One notable observations from spinning disk literature is that the 

Sauter mean diameter increases with decreased rotational speed[15]. Sauter mean 

diameter, for context, refers to the theoretical droplet diameter of a perfectly 

homogeneous spray having the same surface area and volume as the actual heterogeneous 

spray the parameter is applied to[20], and is defined as: 

   

𝑫𝑫𝟑𝟑𝟑𝟑 =
∑𝒏𝒏𝑫𝑫𝟑𝟑

∑𝒏𝒏𝑫𝑫𝟑𝟑 
 

(1) 

where 𝒏𝒏 is the frequency of occurrence of a global diameter 𝑫𝑫. Another notable 

observation is that velocity slip of the liquid film flowing over a rotating wheel is 
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significant when the wheel rotation is slow but is negligible at high Weber numbers[17].  

Weber number, for context, is a non-dimensional number that represents the ratio 

between the inertial and surface tension forces in a system. Additionally, spinning disks 

with teeth or serrations[18] had a characteristic bimodal droplet size distribution, which 

was notably different from the typical polydispersed distribution for flat-rimmed rotating 

atomizers[15]. 

Many studies have been performed to characterize the effects of various parameter 

changes on atomization, including flowrate, rotational speed, and cup geometry with 

regards to bell atomizers[21]. Experimental[6,16] and simulated parametrization[22] have 

both been conducted which found that increasing the flowrate of rotary atomizers leads to 

a transition from aerodynamic (or jet) disintegration to turbulent disintegration of the 

ligaments, whereby there is a transition of ligament formation to sheet formation at the 

cup edge[4,23]. Increasing rotational speed was observed to result in less homogeneous 

break up[4]. Additionally, the droplet size distribution near the cup showed multi-modal 

shapes at low rotational speeds with[6] and without[23] electrostatic forces being 

included. It has been suggested that the spray is dominated by main and satellite drop 

sizes, corresponding to the peaks in the number distributions. Such bimodal distributions 

affect the final appearance[24] of the paint coating and the transfer efficiency[3]. The 

bimodal distributions have been shown to converge to a single mode with increasing 

rotational speed as well.  

There have also been varieties of techniques used in imaging and determining droplet 

sizes for general sprays. Laser diffraction (LD) is the most common form of droplet 

sizing in sprays[25]. The method quantifies the droplet size distribution over a wide range 
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through the spray flowfield (plume). Though it does not give other flow properties such 

as velocity, other methods such as Phase Doppler Anemometry (PDA) and Phase-

Doppler Particle Analyzer (PDPA) systems overcame that flaw, and they give properties 

such as droplet-size distribution, velocity, density and mass flux[15]. Another viable 

imaging technique is shadowgraph imaging, where captured images require further 

processing to determine the sizes of droplets and ligaments[26–28], but provide accurate 

statistics after calibration.  

In addition to droplet and ligament size information, velocities of the fluid particles 

are of particular interest in understanding the transfer of the droplet cloud to the substrate. 

Particle image velocimetry (PIV) is a technique which can be used to determine velocity 

fields and has been investigated in previous spray studies to measure the velocity of flow 

fields and individual droplet velocities[29,30].  However, this technique does require two 

consecutive frames in time so that the particles can be correlated to produce the velocity 

vectors. This can be done through laser-pulse imaging and with high-speed cameras. 

It is worth noting that PIV and micro-PIV have been used in rotary bell atomization 

to measure the shaping air velocity and the droplet velocity in the flow field[31–34].  To 

our knowledge, there are no archival articles that reported the near cup droplet and 

ligament velocities using PIV methods. Thus, measured velocity statistics could provide 

meaningful new data. PIV in conjunction with particle tracking velocimetry (PTV) was 

used in the present work, with a high-speed camera, to calculate the near-cup ligament 

and droplet velocities.  

Direct droplet and ligament formation, as well as droplet sizing, have been 

investigated in various capacities for rotary bell applicators. However, these studies were 
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not conducted with the inclusion of shaping airflow[23,24,35,36], which is used in the 

automotive industry for paint application. While general research into pulsed airflow 

breakup effects[37] and specific study of rotary bell atomization characteristics with 

shaping air[38] have  been conducted, the combination of studying droplet and ligament 

size evolution with changing parameters in the near field has not been reported. 

Additionally, many studies examine the atomization process with the inclusion of 

electrostatic forces[7,39], which show droplet size distributions are bimodal.   

The experiments reported in this thesis examine a rotary bell applicator near the cup 

with shaping air using a high-speed shadowgraph imaging setup. While the technique 

itself has been used, its use for near-field imaging of rotary bell applicators to capture 

fluid particle size and simultaneous velocity measurements has not been reported in the 

literature. The purpose of this work was to develop an imaging technique that could 

examine the physical breakup mechanisms at high rotational speeds, gain meaningful size 

and velocity statistics, and correlate the size and velocity data from individual fluid 

particles, all from a single data set. This was accomplished by utilizing high-speed 

shadowgraph imaging and several image processing techniques to eliminate some of the 

inherent background noise that accompanies this type of atomization. Ultimately, this 

work adds valuable insight into the study of the atomization process and aids in 

increasing paint transfer efficiency by demonstrating a new measurement technique for 

studying near-field atomization and presenting meaningful fluid particle data by using 

this technique.  
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1.2 Materials and Methods 

1.2.1 Experimental Setup 

Figure 1.2. Experimental diagram (left) with lamp (A), rotary bell (B), camera (C), hood 
(D) and computer (E). Also pictured are the rotary bell (F) and an experimental image 
(G) with direction of cup rotation (left arrow) and the general fluid flow direction (right 
arrow) indicated. 

 

An ASEA Brown Boveri Ltd. (ABB) rotary bell atomizer, seen in Fig. 1.2, equipped 

with a 65 mm diameter serrated bell-cup was used in this experiment. The rotary bell was 

operated at speeds of 5,000 to 12,000 RPM in intervals of 1,000 RPM. Only rotational 

speed was varied in this experiment due it being the dominant parameter in producing 

different droplet diameters for rotary bell atomizers utilizing water at the speeds 

conducted here[10]. Additionally, in other experimental data that can be found in Chapter 

2 of this thesis in Table 2.2, which was conducted at higher rotational speeds and with 

multiple flowrates considered, a 96% dependence of droplet diameter on rotational speed 

was found with a two-way ANOVA analysis. Given these results, significant changes 

were only expected to be seen with variation in rotational rate. 

Liquid water (paint surrogate) was used as the atomization fluid and was supplied to 

the bell at a flowrate of 250 ccm. The water released from the bell was contained within a 

G F 
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side-draft paint booth. The use of water, instead of paint, still allows for results that are 

relevant for automotive paint spray systems due to the similarity in typical dimensionless 

numbers used in studying droplet dynamics, seen in Table 1.1. 

Table 1.1. Properties of water at parameters tested in this experiment with properties of 
paint at parameters used in the automotive industry. Dimensionless parameters associated 
with fluid breakup given in ranges based on those properties. 
Property (Units) Variable Water Paint 
Density (kg/m3) 𝜌𝜌 1000 1222 
Frequency (1/s) 𝑓𝑓0 83.33 200.0 333.3 1333 
Velocity (m/s) 𝑉𝑉 1.354 3.250 2.500 10.00 
Length (m) 𝑅𝑅 0.0650 0.0150 0.0400 
Surface Tension (N/m) 𝜎𝜎 0.0728 0.0640 
Dynamic Viscosity (kg/(m∙s)) 𝜇𝜇 0.0089 0.1000 
Dimensionless Parameter Equation Range Range 

Reynolds Number 
𝜌𝜌𝑉𝑉𝑅𝑅
𝜇𝜇

 4.95×103 1.19×104 4.58×102 4.89×103 

Weber Number 𝜌𝜌(2𝜋𝜋𝑓𝑓0)2𝑅𝑅3

𝜎𝜎
 1.62×104 9.31×104 3.53×104 1.07×107 

Ohnesorge Number √𝑊𝑊𝑊𝑊
𝑅𝑅𝑊𝑊

 2.57×10-2 2.57×10-2 4.10×10-1 6.70×10-1 

Ekman Number 
𝜇𝜇

2𝜋𝜋𝑓𝑓0𝜌𝜌𝑅𝑅2
 6.71×10-6 1.61×10-5 6.11×10-6 1.74×10-4 

   

Table 1.1 shows the typical physical properties of water at room temperature and 

those of a glycerol-water mixture [40] meant to represent a water-borne paint mixture. 

The velocities and frequencies (or rotational rates) depicted in the table represent those 

used in the experiment, for water, and those for the automotive industry, for the paint. 

The resulting dimensionless parameters from the given properties are also given, along 

with their definitions. In jet breakup of liquid filaments, surface tension is considered a 

promoting force, while inertial and viscous forces act as impeding forces. Likewise, these 

forces are important in the breakup of liquid films, like a rotary atomizer. Thus, the 

Reynolds (which relates inertial force to viscous force), Weber (which relates inertial 
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force to surface tension force), Ohnesorge (which relates viscous force to surface tension 

force), and Ekman (which relates viscous force to Coriolis force) numbers were 

calculated, using the equations provided by Bizjan et al.[17], to ensure similarity between 

systems. As can be seen from the dimensionless number ranges, there is overlap between 

the Weber number ranges, and similarity in the other number ranges, for the operational 

parameters used in this experiment with water, and those used for a waterborne paint at 

industrial rotational speeds. One way to close the gap in the other dimensionless 

parameters would be to increase the rotational speed of the bell in the experiment. This 

proved difficult to accomplish, given the tradeoff between pixel resolution and frame 

acquisition rate in the optical setup of this experiment. In summary, the automotive 

industry operates at very high rotational speeds (20-80kRPM), and with paint at 

viscosities higher than that of water at the rotational speeds used.  This is proportionally 

compensated for in this experiment with the choice of reduced rotational speeds on the 

same order as the reduction in viscosity.  More specifically, this experiment was meant to 

simulate a range of paint atomization of low rotational speeds and small diameter cups 

that often accompany clear coat application, which have a smaller bell diameter (30 – 

40mm) and operate at lower rotational speeds (20-30kRPM).  

A 500 W lamp was used as the illumination source for shadowgraph imaging. A 

Phantom V611 CMOS camera equipped with an f = 105 mm Sigma lens was used to 

image the liquid. The illumination source and the camera were placed on opposing sides 

(transmission mode) of the rotary bell as shown in Fig. 1.2. The acquisition rate of the 

camera was set to 340 kHz using 64×128 pixels with a spatial resolution of 26.22 

𝜇𝜇𝜇𝜇/pixel, resulting in an overall field of view of 1.68×3.36 mm. 
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High-speed shadowgraph imaging was performed at the near field of the cup edge 

with the camera placed at an angle behind the cup to capture the ligament formation. The 

angle was chosen such that the entirety of the ligaments would be approximately 

perpendicular to the camera and most of the fluid in the image would be in this single 

plane, thus allowing the shadowgraph images to give more accurate sizes of the fluid 

particles. Shadowgraph imaging allowed the approximate edges of the water droplets to 

be identified. For each bell speed case, 150,000 consecutive images were taken, which 

amounts to approximately 441 ms of real-time acquisition, or nearly 37 full cup rotations 

for the 5,000 RPM case. The images were then processed to determine size and velocity 

distributions.  

The use of water as a paint surrogate also gives an indication of the overall  

effectiveness  of this method because of the fact that it is easier to image paint using 

shadowgraph than it is with water for a couple of reasons. Those reasons being that paint 

is more opaque and much more viscous than water. Therefore, the droplets have clearer 

edges in the images and much slower breakup times, assuming all operational parameters 

are equal. It can be assumed that the resulting shadowgraph data would also be easier for 

the image processing method presented as well. 
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1.2.2 Image Processing 

Figure 1.3.  Image processing steps visualization, which includes the original image (a), 
dilated image (b), subtraction (c), binarization (d), ligaments-only image (e), droplets-
only image (f), and edges of binarization imposed on the original image (g). 

In order to process the images for both droplet and ligament size statistics, a 

processing algorithm was used to first identify liquid by binarizing the image, then 

connected liquid pixels were formed into groups, and finally segmented into either 

ligaments or droplets. A visual representation of the image processing is shown in Fig. 

1.3. Typically, background images are needed to distinguish between signal and 

background noise levels.  Unfortunately, the background signal differed image-to-image 

since the light source traveled through the droplet cloud, which varied between cases, 

before illuminating the near cup liquid, therefore an approximation for the background 

light signal was needed.  Using MATLAB, a pseudo-background image was calculated as 

shown in Fig. 1.3b (with the original raw image in Fig. 1.3a). The background was 

computed by dilating[41] the original image with a horizontal line structuring element to 

suppress the individual liquid droplets that occur on small spatial scales and accentuate 

any larger scale variation in background light that varies frame-to-frame. Additionally, 

the geometry, orientation, and size of the structuring element was chosen due to the fact 
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that it produced the most uniform background images while still maintaining the 

approximate profile of the cup in the image. Maintaining the approximate cup profile was 

important for the later image subtraction. It is also worth noting that the reason the 

background light varied from image to image in the raw data was due to innate difference 

in the amounts of particles passing between the focus plane of the camera and the 

illumination source.   

Once the background image was calculated, it was then subtracted from the original 

image to show only light that was impacted by the fluid, and therefore showing only the 

liquid, shown in Fig. 1.3c. Finally, this image was binarized using a static thresholding 

method after determining that adaptive thresholding methods, such as Otsu’s method[42], 

did not accurately predict the threshold necessary to yield an image containing only fluid 

elements. Otsu’s method, when applied to the image data, would often include too much 

of the background noise. Ultimately, the thresholding point that did yield the isolated 

fluid element images did not significantly change across images, and so a static threshold 

was chosen that gave an image of only liquid consisting of both ligaments and droplets, 

as shown in Fig. 1.3d. Afterwards, the outline of the processed image was superimposed 

on the original to check the accuracy of the processing, shown in Fig. 1.3g. Once it was 

determined that the edges were sufficiently captured, the method was used for the 

remaining images. 

The images were further processed to separate the ligaments from droplets. To do 

this, ligaments were defined as connected fluid elements attached to the cup and droplets 

as any other identified liquid in the image. Connected components, with eight-neighbor 

connectivity, were identified in the binarized image. The eight-neighbor connectivity, in 
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this case, referring to the inclusion of the eight pixels that surround or “neighbor” every 

pixel in a 3 × 3 block through horizontal, vertical and diagonal connection. This 

identification meant that the ligaments and the cup from the binarized image would be 

taken as a single object. The largest connected component was removed from the image, 

since it was always the combination of the cup and ligaments attached to the cup, leaving 

only the droplets in the image. The largest component was then placed in its own separate 

image, isolating the ligaments and cup edge, and the cup edge was subsequently removed 

from the new image using a circular fit from the original image. All of the pixels on the 

edge of and inside of the arc fit were set to zero, eliminating the entirety of the cup from 

the image. Following the cup removal, two images that could be used to determine size 

statistics remained, one with ligaments only (Fig. 1.3e) and the other with droplets only 

(Fig. 1.3f). The combination of the statistics gained from these two images was also 

considered and is henceforth referred to as “combined” or “overall” statistics. 

Additionally, the length and width of ligaments were calculated from the processed 

images.  Ligament widths were calculated by taking the width of each ligament at the cup 

edge.  Ligament lengths were calculated by using a skeleton operation[39] that 

approximated the ligaments as a line with a width of one pixel, and then obtaining the 

length of the resulting lines. Thus, the widths can be thought of as ligament base widths 

and the lengths can be thought of as the length of the ligament beginning at the cup. The 

ligament lengths and widths were calculated to further investigate general changes in 

ligament geometry with rotational speed. 
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1.2.3 Size Measurements 

Once the liquid was identified, fluid size statistics were next calculated. Fluid size 

was measured in terms of hydraulic diameter, calculated using (2),  

𝑫𝑫𝒉𝒉 =
𝟒𝟒𝑨𝑨
𝑷𝑷

 
 (2) 

Where 𝑫𝑫𝒉𝒉 is the hydraulic diameter, 𝑨𝑨 is the area of the object and 𝑷𝑷 is the perimeter. 

The area of each droplet was defined as the pixel count of that group, and the perimeter 

as the number of pixels bordering the inscribing area for each individual droplet. The area 

and perimeter in pixels were converted into physical distance using a calibration to 

characterize the optical resolution. In order to get statistically different images of the 

liquid flowing from the bell, every 100th frame of the data was used, as this 

approximated a single flow time through the field of view in the 5,000 RPM case. 1500 

images were then used to determine the size statistics. Number distributions were then 

tabulated based on the resulting hydraulic diameter measurements. Volume distributions 

were also calculated by cubing the hydraulic diameters, which created a more size-

weighted interpretation of the data. 

To ensure that this sample size was adequate, convergence tests were performed. This 

was done by calculating a size distribution, from a subset of the total 1500 measurements, 

and computing the percent difference between this subset statistic and that for all of the 

1500 measurements. A subset, as used here, refers to taking the distribution from only a 

portion of the 1500 images, starting with one image. Progressively more data, in 

increments of one image, are added until the distribution of the collective subset of the 

original 1500 images is approximately that of the distribution when all of the images are 
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included. At this point, the distribution requires no more data to better represent the 

process, and the distribution can be said to have converged. Fig. 1.4 shows the evolution 

of a single size distribution as more data is included and Fig. 1.5 represents the percent 

difference evolution for three cases to illustrate the convergence of the distributions 

further. In the case of Fig. 1.5 data, percent difference refers to the percent difference 

between the normalized distribution of the sum of all of the data from the first image to 

every image and the normalized distribution that includes all of the data. Ultimately, in 

the worst-case scenario, the distributions converged to less than 5 percent difference from 

the final distribution after approximately 700 frames were included in the dataset. Thus, 

the distributions are taken as statistically converged. The frames at which each of the 

cases converged to less than 5 percent difference can be seen in Table 1.2a. 

 

 

Figure 1.4. Number distributions of ligament size for the 6,000 RPM case after the 
inclusion of the data from varying amounts of frames, n. 
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Figure 1.5. Convergence of percent difference compared to the inclusion the entire data 
set, of the number distributions of ligament size by including varying amounts of frames 
for three different bell speeds. 
 

 

 

 

 

Table 1.2. The percentage of data (out of 1500 frames) at which the number distributions 
for (a) size and (b) velocity reach less than 5 percent difference compared to the final 
distribution (which includes the data from all 1500 images) for ligaments, droplets, and 
their combined statistics at each bell speed tested. 

  
Bell Speed [kRPM] 

5 6 7 8 9 10 11 12 
(a) 

 
        

  
 Size 
  

Ligaments 31.8 48.9 33.3 5.87 56.5 25.3 23.9 32.1 
Droplets 3.67 5.13 1.73 8.33 1.47 2.13 1.87 2.40 
Combined 3.87 7.40 5.67 8.00 4.07 3.13 1.87 2.53 

(b) 
 

        

  Velocity  
Ligaments 25.9 21.6 22.6 38.0 45.8 44.9 35.1 47.4 
Droplets 25.8 27.5 21.2 12.6 10.5 14.9 9.47 7.53 
Combined 17.4 17.1 14.9 6.07 7.80 13.0 5.13 6.60 
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1.2.4 Velocity Measurements 

LaVision Davis 8.3 was used to obtain velocity information of the individual 

ligaments and droplets using combined PIV and PTV. The PIV algorithm utilized a 

multi-pass cross-correlation algorithm that successively worked down from 64×64 to 4×4 

pixel interrogation window sizes with 50% overlap. The results from this process were 

velocity vector fields for the entire frame. The PTV option subsequently detected droplets 

in the image and reoriented the interrogation window to obtain a single vector for each 

droplet, discarding the remaining vectors in the velocity field. When post processing the 

data, if there were multiple vectors on a single droplet, the average of the velocity vectors 

was taken, and that data was subsequently used in the resulting velocity statistics. Using 

the combination of PIV and PTV, not only were droplet and ligament velocities able to be 

obtained, but the velocity vectors could also be correlated to the droplet and ligament 

sizes. 

1500 evenly spaced sets of two sequential images in time were used for velocity 

calculations.  Statistical comparisons were done on one case to verify how many images 

were needed for the velocity distributions to converge, in the same manner as for the 

sizes, and it was found that the distributions converged to a less than a five percent 

difference from the final distribution after, in the worst case, 700 frames. This result can 

be found in Table 1.2b, which shows the frames at which the velocity distributions 

converge to less than 5 percent difference. Thus, the 1500 sets of images are statistically 

converged for both size and velocity.  The spacing between image sets was the exact 

same as for the size statistics, with the first image in each velocity image set 
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corresponding to the same image used to determine sizes.  This was done so that the 

velocity and size statistics could be directly correlated. 

1.3 Results and Discussion 

1.3.1 Ligament Breakup Observations 

Figure 1.6. Image sequences of three different ligaments in the 5kRPM case over time 
(moving from left to right in the respective row): elongated ligament into droplet (top 
row), ligament into bag breakup (middle row) and bag breakup off of the cup (bottom 
row). These images within each sequence were taken 15 frames, or 44.1 µs, apart. The 
boxed liquid structure is the liquid of interest. 

 

Unprocessed, consecutive experimental images were examined prior to any image 

processing to examine the ligament breakups for the various speeds. The raw image data 

was able to give information about the various fluid structures and ligament geometries 

that form at the edge of the cup. Combined with the high-speed camera capability, 
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detailed evolution of these structures over time was observed, as well as various fluid 

breakup and droplet formation mechanisms. Given that multiple rotational speeds were 

tested, the change in these mechanisms under additional shearing force was also 

observed. The observations of the ligament breakups at the 5kRPM, 8kRPM and 

12kRPM are detailed in this study. 

For the lowest rotational speed tested, 5kRPM, there appear to be three typical 

regimes of fluid breakup, which can be seen in Fig. 1.6. The first regime (shown on the 

row a of Fig. 1.6) appears as an elongated ligament that holds a large volume of fluid at 

its unstable, mushroom-tip that subsequently breaks off into a droplet. The ligament, in 

this case, forms a wave along its length, likely due to Kelvin-Helmholtz and Rayleigh-

Taylor instabilities, and then breaks up into smaller satellite droplets along its length in 

addition to the droplet it forms at the tip. The necking or pinching is typical of a 

Rayleigh-Taylor breakup and indicates that another force, in this case, the centrifugal 

force, has exceeded the surface tension force. This regime closely resembles the low 

momentum, thick ligament growth with multiple sequential breakups in Rao et al. [43] 

A second regime that often appears is shown in the row b of Fig. 1.6. The sequence 

begins with a standard long and thin ligament that initially forms with a larger fluid 

structure at the tip of the ligament, which subsequently breaks up into smaller droplets. 

The fluid structure at the tip rapidly expands similar to a bag breakup[44,45], as opposed 

to the first regime which separates the entire fluid element. Less frequently, a third 

regime, shown in row c of Fig. 1.6, appears which forms a ligament off the cup with a 

different structure. The ligament appears to be a translucent ring shape in the view of the 

camera, and is likely a thin-filmed ligament. The structure expands until the end of the 
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liquid structure bursts into much finer droplets. Both the second and third observed 

breakup regimes resemble similarities to the standard bag breakup regime. 

 

Figure 1.7. Image sequences of three different ligaments in the 8kRPM case over time 
(moving from left to right in the respective row): elongated ligament into droplet (top 
row), ligament into bag breakup (middle row) and bag breakup off of the cup (bottom 
row). These images within each sequence were taken 10 frames, or 29.4 µs, apart. The 
boxed liquid structure is the liquid of interest. 

 

In the 8kRPM case, seen in Fig. 1.7, the ligaments are shorter and the droplets formed 

have smaller diameters than in the 5kRPM case, as expected. The breakup, as a result, 

occurs closer to the edge of the cup, which indicates shorter breakup times. The ligament 

angle in relation to the cup also experiences a notable increase, which then translates into 

a change in the projection angle at which the droplets are ejected from the ligaments. This 
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result is expected as well since the only change was rotational speed, which would thus 

increase the shearing force on the ligaments. Additionally, the same regimes that 

appeared in the previous case are observed to appear in this case. However, the elongated 

ligament to droplet breakup (row a of Fig. 1.7) appears more prevalent and breaks up into 

more droplets along its length. The other notable difference is that the breakup in the row 

c of Fig. 1.7 also resembles the bag-stamen type of breakup[44] as opposed to only a bag 

breakup. 

 

Figure 1.8. Image sequences of three different ligaments in the 12kRPM case over time 
(moving from left to right in the respective row): elongated ligament into droplet (top 
row), ligament into bag breakup (middle row) and bag breakup off of the cup (bottom 
row). These images within each sequence were taken 7 frames, or 20.6 µs, apart. The 
liquid structure of interest is boxed for convenience. 
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Finally, in the 12kRPM case, seen in Fig. 1.8, the ligaments and droplets again 

become even smaller and disintegrate faster. The angle between the ligaments and the 

cup increases further still, and all of the mentioned regimes are still present. Additionally, 

the two forms of bag breakup (row b and c of Fig. 1.8) appear even less frequently as the 

elongated ligament into droplet breakup (row a of Fig. 1.8) becomes more dominant. The 

elongated ligaments also break into even more droplets along the ligament length than in 

the 8kRPM case. Another observation is that the second type of breakup, seen in the row 

b of Fig. 1.8, possibly transitions to a dual-bag breakup[46] and that the breakup 

sequence in row c may transition from bag-stamen to shear-stripping breakup[44]. Such 

results indicate that droplet formation modes which normally occur in secondary breakup 

regions are occurring in the primary breakup region in this process. They also indicate 

that the increasing difference in shearing force versus surface tension forces is advancing 

the type of breakup to smaller droplet sizes. All of these trends are continuations of the 

changes from the 5kRPM to 8kRPM case and can be said to be trends of the system as a 

whole under the conditions tested. 

1.3.2 Size Statistics 

The number and volume distributions for the ligaments and droplets, both separately 

and combined, are shown in Fig. 1.9. These distributions were calculated by binning the 

hydraulic diameter statistics in 20 µm intervals and then normalizing the curves by the 

sum of the distribution. For the ligaments-only and droplets-only data, it is worth noting 

that the sum of overall distribution, which includes the data for both, was used instead of 

their respective sums. This normalization was done to show the relative contribution of 
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the ligaments and droplets to the overall distribution. The droplets dominate the shape of 

the overall number distribution curve, which is expected since on average there are  

considerably more droplets in a given image than ligaments. Thus, an expanded version 

of the ligament number distribution was inset to better display its shape. 

The number distributions show a shift for the droplets-only (Fig. 1.9b), ligaments-

only (Fig. 1.9c) and overall (Fig. 1.9a) distributions to smaller hydraulic diameters with 

increasing rotational speed.  This trend is accentuated in the respective volume 

distribution graphs for the ligaments-only (Fig. 1.9f), droplets-only (Fig. 1.9e) and in the 

overall case (Fig. 1.9d). The ligaments-only number distribution, shown in Fig. 1.9c, is 

bimodal with a peak at larger hydraulic diameters shifting towards lower hydraulic 

diameters with higher rotational speed. The droplet-only distribution, shown in Fig. 1.9b, 

shares a similar peak-shift to lower hydraulic diameters, but is not bimodal. These results 

collectively indicate that there are two regimes of ligament size in the near-cup field of 

view that lead to a single distribution of droplet sizes.  Both ligament and droplet sizes 

decrease with increasing rotational speed. 

It is worth noting that the peak at smaller hydraulic diameters for this data occurs near 

the resolution limit of the optical setup; thus, any change in the diameters of these small 

particles with rotational speed is not resolved. The percentage of particles in this peak 

increases, without shifting, until the 12,000 RPM case where the particles are small 

enough to avoid being detected by the image processing. Such a result can be seen in Fig. 

1.9c where the ligament distribution experienced a large reduction in small particle data. 
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Figure 1.9. Number (a-c) and volumetric (d-f) distributions of droplets (b,e), ligaments (c,f) and overall (a,d) for the 6,000 RPM, 
9,000 RPM and 12,000 RPM bell speed cases.in 20 m intervals and then normalizing the curves by the sum of the distribution. 
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Additionally, despite the exclusion of electrostatic forces, the bimodality of the 

distributions is a result that matches what is found in the literature for electrostatic droplet 

size distributions[6]. 

The shapes of these droplet distributions are consistent to what is reported in the 

literature. However, the ligaments have never been measured in this way, with a 

hydraulic diameter approximation. With the documented shrinking of ligament width in 

this rotational rate regime[35], it can be assumed that the hydraulic diameter that has 

been calculated should also decrease. The ligament length and width number 

distributions, shown in Fig. 1.10, illustrate this expected trend of decreasing size with 

increasing bell speed. These distributions were calculated in the same way as in Fig. 1.9, 

except the ligament lengths were binned for every 300 µm and the ligament widths were 

binned for every 40 µm. It can be seen that with increasing rotational speed, the lengths 

and widths of the ligaments both decrease. The ligament lengths and width results are 

more directly analogous to what has been found in literature than the hydraulic diameter 

approximation, and the trends in the values are the same. 

 

Figure 1.10. Ligament length (a) and width (b) number distributions for the 6,000 RPM, 
9,000 RPM and 12,000 RPM bell speed cases. 
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The span of each distribution was calculated to give a measure of the variability for each 

case that could be compared. Sauter mean diameters (or D32) values, defined in (1), 

which can give an estimate of average particle size when only a surface diameter is 

known, were calculated to assign a single, characteristic value to each size distribution 

that could be compared across cases. The respective spans and D32 values for the droplet, 

ligament, and overall distributions are given in Table 1.3. The droplet spans are 

calculated using (3), 

∆𝒗𝒗=
𝑫𝑫.𝟗𝟗 − 𝑫𝑫.𝟏𝟏

𝑫𝑫.𝟓𝟓
 

 
(3) 

where ∆𝒗𝒗 is the relative span factor and 𝑫𝑫𝑷𝑷 is the hydraulic diameter at which the 

cumulative distribution is equal to 𝑃𝑃 for each respective value. The results from Table 

1.3a show that the total span did not significantly change with increasing rotational speed 

for the ligaments and overall statistics, but increased by 15.9% for the droplets from the 

lowest to highest rotational speed case. An increase in the span for the droplets suggests 

greater droplet size variability in the spray when flowrate remains constant but rotational 

speed is increased. The D32 calculations, given in Table 1.3b, also further display the 

trend of decreasing fluid particle size with increasing rotational speed. This trend for the 

Sauter mean diameters is expected for this system since only the rotational speed is 

changing. 
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Table 1.3. Fluid size spans (a) and D32 [µm] values (b) for ligaments, droplets, and their 
combined statistics for each tested bell speed. 

  
Bell Speed [kRPM] 

5 6 7 8 9 10 11 12 
(a) 

 
        

  
 Span 
  

Ligaments 0.61 0.60 0.57 0.56 0.56 0.56 0.58 0.58 
Droplets 0.84 0.86 0.90 0.93 0.87 0.94 0.95 0.99 
Combined 0.87 0.86 0.86 0.88 0.86 0.89 0.92 0.96 

(b) 
 

        

  D32 [µm]  
Ligaments 274 252 234 223 221 209 205 201 
Droplets 153 144 136 132 137 124 123 119 
Combined 228 207 187 175 175 159 153 146 

 

Overall, the respective trends of the various size statistics presented match what is 

found in the literature for similar systems, but at different locations farther downstream. 

These comparisons were made to demonstrate that this imaging and post-processing 

method could be effective at both capturing and analyzing the data typically studied in 

this field, but with the added ability to determine simultaneous size-dependent velocities. 

1.3.3 Velocity Statistics 

 
The fluid velocity distributions for the magnitude of the velocity vectors and both the 

tangential components of those vectors with respect to the cup are shown in Fig. 1.11. 

These distributions were calculated in the same manner as the size distributions, but with 

bin intervals of 2 m/s. Clearly, for each case, as the rotational speed increases, the 

velocity magnitude also increases. This result is expected since the bell is rotating at 

higher rotational speeds; however, the ligaments and droplets peak at different velocities. 

The vertical lines in Fig. 1.11 indicate the magnitude of the cup tangential speed for each 

case. As the bell speed increases, the peak ligament velocity approaches the tangential 
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cup velocity, but is greater than the tangential cup velocity for low rotational speed. In 

contrast, the peaks for the droplet distributions are centered approximately at the 

tangential cup velocity across all cases.  An interesting result, however, is the apparent 

broadening of the tangential velocity distributions to the left of their peaks across all 

cases as the rotational speed increases in Fig. 1.11. Such a result means that the fluid 

distributions begin to increasingly favor smaller velocity vectors as rotational speed is 

increased. This could be indicative of more collisions happening or increased interference 

from air recirculation, which would result in greater numbers of fluid particles being 

slowed. 

The mean velocity was calculated for both the velocity vectors and the tangential 

component of the velocity vectors for their respective ligaments-only, droplets-only and 

overall data sets. The results of these calculations can be seen in Table 1.4, compared to 

the calculated tangential cup speed, based on the rotational speed and cup diameter. 

These calculated values further show that as bell speed is increased, droplet and ligament 

velocities also increase, as expected. 
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Figure 1.11. Velocity number distributions of ligaments (c,f), droplets (b,e), both (a,d) and associated tangential cup velocity (TCV) 
plotted as vertical lines for the 6,000 RPM, 9,000 RPM and 12,000 RPM bell speed cases. 
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Table 1.4. Comparison of the mean velocity values for the original velocity vectors and 
the tangential component velocity vectors at each bell speed tested to the calculated 
tangential cup speed. 

  Bell Speed [kRPM] 
5 6 7 8 9 10 11 12 

   Tangential Cup Speed [m/s] 
  

17.0 20.4 23.8 27.2 30.6 34.0 37.4 40.8 
  Vavg – Total [m/s] 
  
 

Ligaments 20.3 24.9 26.7 28.9 32.9 36.3 38.7 40.9 
Droplets 18.5 21.7 24.8 27.3 30.8 32.9 35.6 37.9 

Combined 19.0 22.5 25.2 27.6 31.2 33.4 36.0 38.2 
  Vavg – Tangential [m/s]  
  
 

Ligaments 16.9 21.5 25.2 27.1 30.0 33.7 36.6 38.5 
Droplets 15.6 18.7 21.9 24.5 27.9 29.9 32.8 35.0 

Combined 16.0 19.4 22.6 25.0 28.3 30.5 33.3 35.4 
 

Additionally, the average tangential component of velocity for the ligaments, across 

all cases, is almost exactly that of the calculated tangential cup speed. This result makes 

sense given that the ligaments were defined as fluid elements still attached to the cup, and 

therefore their velocity should essentially match. Notably, the values show that despite 

the locations of the peaks of the droplets-only velocity distributions approximating the 

tangential cup speed, the ligaments-only data is the case that has a mean closest to the 

tangential cup speed. This implies that the detached droplets are experiencing 

acceleration or deceleration likely due to the shaping airflow, even at such a close 

proximity to the cup. 

Most of these results are expected, though they have not been explicitly found in 

literature for the near-field region of this type of atomizer. The average velocity 

conditioned on particle size was next computed as shown in Fig. 1.12, to study the effect 

of particle size on these velocity vectors. These values were calculated by conditionally 
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averaging the velocities of fluid particles within specified diameter bins. The results 

again show the expected result that the ligaments are moving faster than the droplets in 

the flow, independent of size.  However, they also demonstrate that the larger fluid 

particles, both ligaments, and droplets, move at higher velocities at larger sizes. Thus, the 

combined optical setup and image processing performed allowed for size and velocity 

data for all fluid particles in the images, from a single data set. It is worth noting that 

recent work showed that larger droplets tend to have slower impact velocities closer to 

target in high-speed rotary bells[47]. Further investigation is needed to understand the 

trend transition in the spray flowfield (plume). 

 

Figure 1.12. Velocity vs. size distributions of ligaments (triangles) and droplets (squares) 
and the associated tangential cup velocity (horizontal lines) for the 6,000 RPM (solid), 
9,000 RPM (dashed) and 12,000 RPM (dotted) tangential cup velocities. 
 

1.4 Conclusion 

Using high-speed shadowgraph imaging, qualitative ligament breakup mechanisms 

were observed, and quantitative droplet and ligament sizes were measured for a rotary 

bell atomizer, with the inclusion of shaping air, near its cup edge for eight operational 
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bell speeds. In regards to the qualitative observations of the ligament to droplet breakup 

for the conditions tested, several notable trends were found. First was that there were 

multiple ligament breakup regimes for a given rotational speed. The first of these regimes 

was that of a ligament forming an unstable, mushroom-tip as it grows, and then having 

that fluid mass eject as a droplet while the rest of the ligament forms into satellite 

droplets along its length. The next two regimes were different forms of bag breakup 

where a bag of fluid is formed at the end of a ligament and eventually explodes into 

satellite droplets. As rotational speed was increased, the dominance of the first type of 

regime also increased. The two bag breakup regimes were also seen to evolve and 

become more catastrophic in their breakup. Visually, the ligaments in the images can also 

be seen to become shorter, and breakup faster, with higher rotational speed. Other 

changes with increasing rotational speed are an increase in ligament angle to the cup and 

an increase in the number of satellite droplets in a given fluid disintegration. Further 

investigation into modeling or predicting these ligament structures and behaviors under 

these conditions is necessary. 

The imaging technique used also allowed for a large quantitative sampling of both 

droplet and ligament sizes. An image post-processing method was utilized to distinguish 

between the fluid particles and background illumination accounting directly for frame-to-

frame variations in background signal.  Once the images were binarized, the fluid sizes 

were calculated. In addition, images of only the droplets, with very little background 

noise were used to calculate velocity vectors and to correlate these velocities to 

individual particles.  
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This method was demonstrated on water as opposed to paint. However, it is easier to 

image paint using shadowgraph than it is with water for a couple of reasons. First, paint is 

more opaque and much more viscous than water. Therefore, the droplets have clearer 

edges in the images, much slower breakup times, and larger sizes, assuming all 

operational parameters are equal. It can be assumed that the resulting shadowgraph data 

would also be applicable for the image processing of paint experiments.   

The resulting size distributions showed that both ligament and droplet hydraulic 

diameters, as well as overall ligament length and width, decrease with increased 

rotational speed. The distributions also illustrated that ligaments have a bimodal size 

distribution, indicating two separate regimes of ligament size in the images. The droplets, 

however, appeared to have a singular mode size distribution with a slight skew towards 

larger droplets that began to narrow with increasing rotational speed. This result suggests 

that the range of droplet sizes, in the field of view, imaged and within the parameter 

ranges tested, narrows with increasing rotational speed.  

The post-processed images were examined using PIV and PTV to determine droplet 

and ligament velocities. The raw velocity magnitude distributions indicate that the droplet 

velocities center on the tangential cup velocity, while the ligament velocities center near a 

velocity that is slightly higher than the tangential cup speed, but maintains an average 

velocity very close to the cup speed.  This result could be an artifact of the effect of the 

liquid flow velocity or shaping airflow in the system. The velocity magnitude 

distributions show that as cup speed increases, the ligament velocity distribution begins 

to approach the tangential cup speed. This indicates the peaks are more closely 

approaching the numerical average of the ligament data and that other forces in the 
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system become less important if bell speed is sufficiently increased at these parameters. 

These results are also reaffirmed by the hydraulic diameter relation to average velocity 

that show the same trend for ligament and droplet velocities with respect to the tangential 

cup speed. 

To conclude, an image processing method was developed to gather relevant data from 

a rotary bell atomization system operating at relevant parameters to that of an assembly 

plant, all from a single set of image data that was captured continuously. The method 

demonstrated both that it could produce data that matched results found in literature, and 

could provide some new insight into fluid interactions and trends within the rotary bell 

atomization process. Future application of this tool could be in the monitoring of in-use 

bell applicators to allow for feedback on potential changes in specified, relevant flow 

parameters.  Such development would be even more relevant to possible paint application 

in assembly plants. 
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CHAPTER TWO: INVESTIGATION OF EFFECT OF SERRATIONS IN ROTARY 

BELL ATOMIZERS THROUGH NEAR FIELD PULSED LASER SHADOWGRAPHY 

2.1 Introduction 

As mentioned previously, automotive rotary bells operate at very high rotational 

speeds. Additionally, not much work has been done to characterize the region of the 

spray prior to the secondary atomization of the shaping air of the system directing the 

spray towards the substrate. This region is where the liquid undergoes the primary 

atomization of ligament formation to droplet formation at the edge of the cup at speeds 

applicable to the automotive industry. Therefore, there is a need to both image and 

characterize this near field region and fluid dynamics and interactions change as 

operational parameters like bell rotational speed and liquid flowrate are altered.  

This work also attempts to investigate the differences between a rotary bell that has 

serrations and one that is unserrated. Serrations on the edge of the bell cup help to form 

ligaments [48] and are designed to artificially control the spacing between ligaments 

during the atomization process [49]. At higher flowrates, ligaments merge into a sheet of 

liquid, which implies they have flooded the serrations. At high bell speeds, multiple 

ligaments can be seen between the serrations and droplet size in the spray decreases [49]. 

Some work has already been done to characterize the effects of serrations on rotary bells. 

Corbeels [10] found that, in studying only a serrated bell cup, high viscosity fluid filmed 

the bell evenly and produced regular, long ligaments, whereas low viscosity fluid could 

film incompletely and produce irregular ligaments at the bell edge. They also found that 

their particle size data, which was measured at a single location 35 mm from the bell 

edge, was not sensitive to large changes in viscosity or flowrate at bell speeds higher than 
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20,000 RPM. This work will be using a low viscosity fluid operating with rotational 

speeds of at and above 20,000 RPM. 

Im et al. [6], in reference to only a serrated bell, found a few interesting results 

relevant to serrated bell characterization as well. One finding was that liquid sheet 

atomization was seen to link ligaments at the bell edge if the flowrate was greater than 

250 ccm. This work will show results for flowrates at and above this value. Another 

finding was that bimodal droplet size distributions appear at 7.62 cm from the target 

plane at 20,000 RPM, but mostly disappear at around 50,000 RPM, and that at 40,000 

RPM, the formation of multiple ligaments could be observed between serrations. This 

work will attempt to show distributions, albeit in a different regime of the spray, that are 

at these speeds and aim to confirm the finding that drop size decreases with increase in 

bell speed found in the study. They concluded noting that the exact cause of the bimodal 

distribution was unclear and that more study would be required to find the cause, but 

speculated that it could be due to a dual mode of coexisting ligament and film breakup 

inherent to ESRB atomization.  

Later, Domnick et al. [50] found that serrated bells yield a bimodal size distribution 

that could be a result of imperfections in the geometry of the serrations. In follow-up 

work [51], they tested three different cup geometries consisting of an unserrated bell, a 

serrated bell, and a cross-serrated bell at flowrates of 200 ccm and 500 ccm. They found 

that the serrations, which have the purpose of narrowing size distributions to give an 

advantage over an unserrated bell, did not actually narrow the droplet size distributions. 

This was evidenced by their span data comparisons from their volume distributions, 

where it was found that span values remained fairly constant for the unserrated bell, but 
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the two serrated bells experienced increasing span factors at increasing bell speeds due to 

the formation of bimodal distributions. Ultimately, they found that the unserrated bell 

produced smaller droplet sizes at lower bell speeds, but that the differences between the 

unserrated and serrated bells diminished in this respect at rotational speeds above 50,000 

RPM. The following work aims to find if such trends exist for a low viscosity liquid 

operating at similar parameters, but in a region much closer to the bell edge. 

 Previously, in Chapter 1 of this thesis, high-speed imaging was used with a lamp 

backlight for rotational speeds of 5,000-12,000 RPM. Beyond these speeds, the images 

became somewhat blurred and therefore unreliable for deriving size statistics. Another 

problem with the high-speed imaging experiment, detailed in the previous chapter, 

included the reduced resolution that was inherent to the optical setup. To reach such high 

image acquisition speeds as 340,000 Hz, the image needed to use less and less of the 

chip, which resulted in smaller and smaller frame and thus image resolutions. As 

rotational speed was increased, the fluid sizes in the images became smaller. This meant 

the method could not go to higher speeds unless both image resolution was increased to 

compensate for the smaller fluid particle sizes and the image acquisition speed was 

increased. In order to resolve these issues, a different optical setup was devised.  

 High-speed imaging was chosen originally to obtain size and velocity statistics 

simultaneously since the images would be correlated in time. By abandoning the time 

correlation, and therefore ability to gather fluid particle velocities, laser pulsed imaging 

could be adopted, thereby resolving both the image resolution and image acquisition rate 

issues of the high-speed method. The use of lasers, including Nd:YAG as the light source 

for shadowgraphy certainly has precedence [52,53]. However, laser speckle is often a 
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problem in imaging with this method as the signal-to-noise ratio in the background can be 

very high [54]. A fluorescent material can be used to reduce this signal-to-noise ratio, 

which is a measure of laser speckle, by providing an intermediary fluorescence with a 

more incoherent, and thus uniform, light profile. Though light reflection off optical 

components, like the glass surface used in the following experiment, can have the 

consequence of energy loss, there are ways to circumvent that problem. One such 

solution has been to use antireflection coatings [55]. These coatings often incorporate 

optically active materials that enhance spectral transmission. 

Rhodamine, in particular, is a dye used in in a variety of filter applications and can be 

used as a laser diffuser to produce a more uniform light background [56]. It also has an 

absorption spectrum in the correct range for Nd:YAG lasers as well as a suitable 

fluorescence lifetime when used in a methanol solution [57].  

Using this information collectively, in the following experiment, a pulsed laser is 

used in combination with a fluorescent material, Rhodamine 6G, in a glass cuvette to 

create adequate background illumination for shadowgraphy of a rotary bell atomizer with 

both a serrated and unserrated bell-cup. The region being imaged is small enough and the 

image resolution high enough that the primary atomization of the water is both captured 

in the frame, and well resolved. Such a setup will help to characterize the primary 

atomization, or ligament breakup into droplets, for a low viscosity fluid in both serrated 

and unserrated cases across high flowrates and rotational speeds to add to the work that 

has already been done. This method is also being introduced as a potential additional 

measurement method to effectively capture relevant size statistics at very high rotational 
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speeds and a way to numerically differentiate ligament and droplet statistics in a similar 

manner as to what was done in the previous section, but at higher speeds. 

2.2 Materials and Methods 

2.2.1 Experimental Setup 

A Dürr Ecobell2 rotary bell atomizer equipped with 65 mm diameter serrated bell-

cup, and later the same cup but without serrations on the cup edge, both pictured in Fig. 

2.1, was used in this experiment. The rotary bell was operated at speeds of 20kRPM, 

35kRPM and 50kRPM with flowrates of 250ccm (low) and 750ccm (high) for the 

20kRPM and 35kRPM cases. For the 50kRPM rotational speed, 250ccm (low) and 

500ccm (high) was used due to a limitation in the rotary bell system preventing the 

flowrate from reaching 750ccm at the 50kRPM case. Additionally, during operation, the 

water released from the bell was contained within a side-draft paint booth.  

 
Figure 2.1. Unserrated (left) and serrated (right) 65mm bell-cups. 
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The camera used to capture the images in the experiment was a Mightex 

Monochrome 1.3 MP 1/3” CCD camera (model number CGN-B013-U) equipped with 

Navitar lens system consisting of a 1-6010 C-mount coupler, a 1-6232 lens body tube and 

a 1-60112 lens attachment. The camera used was chosen to maximize resolution, with 

1280×960 pixels, and the lens system used was chosen to narrow the field of view. The 

result was a spatial resolution of 1.785 𝜇𝜇𝜇𝜇/pixel, resulting in an overall field of view of 

2.285×1.714 mm. A 3.5mL glass cuvette filled with a solution of less than 0.01 grams of 

Rhodamine 6G and pure ethanol served as the illumination source for shadowgraph 

imaging through a Q-switched 532 pulsed Nd:YAG laser firing at 15 Hz at the cuvette. 

This allowed some optical filtering which eliminated much of the speckle pattern of the 

captured background images, without the bell running, as seen in Fig. 2.2. As can be seen 

from the figure, the addition of the rhodamine solution increased the incoherence of the 

light source such that the pixel intensity distribution of the background speckle moved to 

much higher intensity values and the distribution width narrowed. The camera and 

illumination source were placed on opposing sides of the rotary bell, acting as the 

transmission mode, as shown in Fig. 2.3. Additionally, the acquisition rate of the camera 

was equal to the fire rate of the laser, as the camera was synced to the laser to capture the 

illuminated shadowgraph image that occurred after the laser fired during a one-

millisecond exposure time.  
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Figure 2.2. Original laser backlight (top-left) compared to the rhodamine illuminated 
laser backlight (top-right). Pixel intensity histograms of the original laser backlight image 
(bottom-left) and the rhodamine illuminated laser backlight (bottom-right). 
 

 

Figure 2.3. Experimental diagram with Nd:YAG laser (A), rhodamine and methanol 
solution filled cuvette (B), hood (C), rotary bell (D), camera and lens setup (E) and 
computer (F). 

A 
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The near field of the cup edge was the area being imaged, so that the ligament size 

evolution across different conditions could be effectively captured and compared. Due to 

this aim, the angle behind the cup relative to the camera was chosen such that the 

ligaments would be in a single plane, meaning that the ligaments would be approximately 

perpendicular. This positioning aspect of the experimental setup was similar to the one 

discussed in the previous chapter with the high-speed camera. Shadowgraph imaging was 

again used to allow the approximate edges of the ligaments and droplets in the images to 

be identified. For each bell rotational speed tested, 1500 consecutive images were taken 

over a 100-second period. The images were then put through a similar image processing 

technique as before, but with some altered thresholds unique to the image sets taken.   

2.2.2 Image Processing 

 The method of processing images was very similar to the one used before, 

however, the image resolution was much higher, so some alterations were made. As 

before, the creation of a pseudo-background was necessary to enhance the contrast 

between objects and make the image thresholding much easier. First, using MATLAB, a 

histogram was made of the intensity values of the pixels of the raw image. It was found 

that there were two peaks in the image, seen in Fig. 2.4. After some investigation, it was 

found that a large portion of the second peak was background noise. Therefore, the 

maximum value of that peak was found for each image and the image was thresholded 

such that any pixel intensities greater than that were deemed background noise and 

assigned the maximum intensity value so that they would later be automatically filtered 

out of the image. An example of this can be seen in Fig. 2.5. 
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Figure 2.4. Representative example of intensity value histogram of one of the raw 
images. 

 

Figure 2.5. Example image of pre-filtering of thresholded intensity (left) and post-
filtering (right). 

 

 Following this initial thresholding, an averaging filter followed by an image 

dilation (which can be seen in the HS_Img_Processing.mat script of section A.1 in the 

Appendix) was used to finalize the pseudo-background image. Next, the image was 

binarized using an adaptive MATLAB binarization function to account for the small 

variations in background light intensity that occur when different experimental conditions 
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are run. In the binarization, some of the smaller droplets’ full shapes were not being 

effectively captured, so holes in small objects in the image were filled in using imfill, 

another built-in MATLAB function. The function, imfill, in the way that it was used for 

this image processing, fills holes in the input binary image. Finally, very small objects in  

Figure 2.6. Unserrated raw (column 1) and processed (column 2) and serrated raw 
(column 3) and processed (column 4) examples from the (row a) 20kRPM, 250ccm, (row 
b) 20kRPM, 750ccm, (row c) 35kRPM, 250ccm, (row d) 35kRPM, 750ccm, (row e) 
50kRPM, 250ccm, (row f) 50kRPM, 500ccm cases. 
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the image (<25 pixel areas) were considered too small to be ligaments, so they were 

added to the droplet statistics. An example of the resulting raw and processed images for 

the serrated and unserrated cups can be seen in Fig. 2.6. 

Finally, the ligaments and droplets were separated in the image and the cup edge was 

removed so that the fluid elements could be isolated and size statistics could be obtained. 

This was done by first identifying all connected components in the image. The largest of 

these connected components was always the cup edge and any connected ligaments. Due 

to this, ligaments in the image were identified as fluid elements attached to the cup. This 

largest component was then subtracted from the binarized image. With the cup edge and 

ligaments subtracted, only the droplets remained in the image. Thus, this would be the 

image from which droplet-only statistics would be derived.  Then that largest component 

was placed in its own image and the cup edge was subtracted. The portion of the cup 

edge being captured in the image was small enough that the curvature of the cup could be 

approximated as a straight line, and therefore a straight line fit was applied to the edge to 

subtract off the edge of the cup and leave only the ligaments in the image. This image 

would be the one that the ligaments-only statistics were derived from. 

2.2.3 Size Statistics 

Once the images were finished processing, fluid size statistics were calculated in the 

same manner as the previous chapter, such that hydraulic diameters were calculated from 

areas and perimeters of objects determined from the processed images. Convergence was 

again checked to ensure that the sample size of 1500 images was adequate. Table 2.1 

shows the image, out of the 1500, at which the sum of each of the distributions for the 

serrated and unserrated statistics converged to less than 5 percent difference from the 
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final distribution. As evidenced from the data, the droplet and combined data sets for both 

the serrated and unserrated bells converged quickly. The ligament data converged after a 

noticeably longer amount of images, but still before even half of the data had been used 

in even the slowest convergence case. Thus, all of the data can be said to have converged. 

Table 2.1. The frame number for convergence of less than five percent for ligaments, 
droplets, and their combined statistics for each of the (a) serrated and (b) unserrated bell 
cases. 

  Bell Speed [kRPM] / Flowrate (ccm) 
20/250 20/750 35/250 35/750 50/250 50/500 

(a) 
       

  
 Serrated 
 Image # 

Ligaments 572 482 500 301 399 590 
Droplets 92 85 35 39 42 17 
Combined 89 85 33 38 43 29 

(b)        

 Unserrated 
 Image #  

Ligaments 406 737 279 494 254 174 
Droplets 71 137 21 44 17 23 
Combined 75 130 22 42 17 23 

 

2.3 Results and Discussion 

2.3.1 Number Distributions 

The number distribution for the ligaments in the serrated bell data showed two trends. 

The first trend was that as the flowrate was increased, hydraulic diameter increased. As 

rotational speed increased, hydraulic diameter decreased and a distinct bimodality in 

ligament size arises. Domnick et al.[51] also found these trends, albeit in a different 

region of the flow. In the ligament data for the unserrated bell cases, the trends of 

hydraulic diameter increasing with increasing flowrate and hydraulic diameters 

decreasing with increasing rotational speed also hold true. However, the bimodality is not 

present in any of the cases, which is also what was found previously [51], as well as the 

fact that the distributions become much narrower with increasing rotational speed. Such a 
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result implies that in this region as well, the dual mode of ligament and film formation, or 

whatever the explanation may be, exists. Furthermore, because this region is so close to 

the cup, it is unlikely that any flowfield recirculation effects or significant interference 

from the shaping air is present and affecting the data. 

The droplet-only and combined number distributions in the serrated bell cases can be 

described concurrently due to their high similarity, which is a result of the bulk of the 

objects in an image being droplets. Depicted in Fig. 2.7 and Fig. 2.8, these distributions 

show the similar trends that as rotational speed is increased, the hydraulic diameters 

decrease and the distributions narrow. A distinct difference between these distributions 

and the ligament distributions is that change in flowrate does not appear to significantly 

influence the size of the droplets in this region. The hydraulic diameters appear, though 

somewhat weakly, to decrease with increasing flowrate, but such a result would need to 

be confirmed by the volume weighted size distributions to know for sure. As for the 

droplet-only and combined number distributions in the unserrated bell cases, which can 

also be concurrently discussed, the trend of decreasing hydraulic diameters with 

increasing rotational speed again appears. However, the flowrate trend, which is again 

fairly weak, is that as flowrate is increased, hydraulic diameter increases. 
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Figure 2.7. Number distributions, for the serrated bell, of the hydraulic diameters for all fluids (left) in an image, just the droplets 
(center), and just the ligaments (right). 

Figure 2.8. Number distributions, for the unserrated bell, of the hydraulic diameters for all fluids (left) in an image, just the droplets 
(center), and just the ligaments (right).
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2.3.2 Volume Distributions 

The volume distributions, depicted in Fig. 2.9 and Fig. 2.10, again reflect the trend of 

decreasing hydraulic diameter with increasing rotational speed. The information gained 

from these distributions, though, is that the increase in flowrate results in increased 

hydraulic diameter across for both the serrated and unserrated bells. Overall, these 

distributions also indicate that for droplet size, rotational speed is clearly the more 

dominant operational parameter, another result found previously [6,51]. Conversely, for 

ligaments, hydraulic diameter appears just as dependent on flowrate as on rotational 

speed, which to our knowledge has not been found previously. 

2.3.3 Sauter Mean Diameters and Spans 

The SMD data, as seen in Table 2.2, confirms the trends previously discussed of 

increasing hydraulic diameter with increasing flowrate and decreasing rotational speed. 

What this data now shows, however, is that the SMD for the unserrated bell cases are 

consistently higher than the serrated bell cases at equivalent operational parameters. 

Additionally, it shows that changes in flowrate affect the unserrated bell cases much more 

than the serrated cases. For example, the 20kRPM, serrated bell, droplet SMD increase 

between the high and low flowrate cases is 3.94% while for the identical unserrated bell 

case the increase is 9.08%. The percent differences, as well as the gap between percent 

differences, between same rotational speed, but differing flowrate, cases for the serrated 

and unserrated bells are even greater for the ligament data. 
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Figure 2.9. Volume distributions, for the serrated bell, of the hydraulic diameters for all fluids (left) in an image, just the droplets 
(center), and just the ligaments (right). 

Figure 2.10. Volume distributions, for the unserrated bell, of the hydraulic diameters for all fluids (left) in an image, just the droplets 
(center), and just the ligaments (right). 
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Table 2.2. Fluid size D32 [µm] values for ligaments, droplets, and their combined 
statistics for each of the (a) serrated and (b) unserrated bell cases. 

  Bell Speed [kRPM] / Flowrate (ccm) 
20/250 20/750 35/250 35/750 50/250 50/500 

(a) 
       

  
 Serrated 
 D32 [µm] 

Ligaments 53.9 63.5 42.8 49.8 37.6 41.9 
Droplets 42.3 44.0 28.1 30.0 22.7 23.6 
Combined 43.6 46.3 29.4 31.8 23.8 25.0 

(b)        

 Unserrated 
 D32 [µm]  

Ligaments 50.4 69.3 34.7 47.6 28.3 35.5 
Droplets 45.2 49.5 28.7 31.5 22.6 24.2 
Combined 45.8 51.5 29.1 32.6 22.9 25.0 

 
 The changes in rotational speed also affect the serrated bell ligament data more 

than the unserrated bell data. As an example, when increasing the bell speed from 

35kRPM to 50kRPM at the 250ccm flowrate, the ligament SMD decrease is 37.6% for 

the serrated bell, but is only 28.3% for the identical unserrated cases. The differences for 

the droplet and combined SMD data in these cases is minimal, though. Such a result 

implies that the serrations are producing smaller ligaments than the atomization process 

would otherwise produce without them. However, a more complete description would 

include the information from the number distribution data where it is clear that there are 

two regimes of ligament sizes in the serrated bell cases; only one of which appears to 

change significantly with rotational speed.  

The span data, used to numerically confirm relative distribution widths and seen in 

Table 2.3, displays trends that are not so definitive. First, when it comes to the droplet 

and combined fluid statistics in this near-field region, the spans do not vary significantly 

between the serrated and unserrated bell cases. Additionally, both the serrated and 

unserrated data for these cases shows an increase in span as flowrate is increased and as 
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rotational speed is increased, despite the fact that the distributions would appear to 

indicate the opposite.  

When it comes to the ligament data, the trends are different for the serrated and 

unserrated bell cases. For the serrated ligament distribution widths, there is an increase 

with increasing rotational speed, followed by a slight decrease. Conversely, for the 

unserrated ligament distribution span, there is a steady increase. This resulting difference 

may be due to the bimodality of the ligament sizes for the serrated case. Additionally, for 

the serrated bell cases, the ligament span decreases with increasing flowrate. This, while 

for the unserrated bell cases, the ligament span increases with increasing flowrate for the 

20,000 RPM case and then decreases in the higher rotational speed cases. These results 

again contradict what the distributions appear to indicate, and would seem to show that 

there may be a regime transition, namely ligament to direct drop or film formation, within 

these operational parameters that effects the uniformity of ligament size for the 

unserrated case that may be counteracted somewhat by the serrations. 

Table 2.3. Fluid size span values determined from the volume weighted size statistics for 
ligaments, droplets, and their combined data for each of the (a) serrated and (b) 
unserrated bell cases. 

  Bell Speed [kRPM] / Flowrate (CCM) 
20/250 20/750 35/250 35/750 50/250 50/500 

(a) 
       

  
 Serrated 
 Spans 

Ligaments .628 .532 .698 .573 .689 .627 
Droplets .748 .808 .779 .869 .868 .920 
Combined .750 .829 .850 .950 .961 1.04 

(b)        

 Unserrated 
 Spans  

Ligaments .653 .697 .813 .743 .883 .802 
Droplets .774 .806 .826 .867 .861 .886 
Combined .759 .833 .829 .915 .875 .927 
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2.3.4 Ligament Lengths and Widths 

The final size parameters measured were the ligament lengths and widths. As can be 

seen in Fig. 2.11 (lengths) and Fig. 2.12 (widths) for the unserrated and serrated bell, a 

few trends can be observed. In the ligament lengths data, it can be seen that as rotational 

speed is increased, the distributions become narrower and shift towards smaller ligament 

lengths. This trend is true for both the serrated and unserrated bells. In the unserrated bell 

ligament data, decreasing flowrate also shifts the distributions towards smaller ligament 

lengths. These results, as has been previously discussed with the hydraulic diameter data, 

are expected. However, a notable result is that for the serrated bell data, change in 

flowrate, while shifting towards smaller ligament lengths with lower flowrates for the 

20kRPM case, does not affect the distributions for the 35kRPM and 50kRPM rotational 

speed cases. Such a result suggests that the serrations, the only parameter that changes 

between the two data sets, limit the natural size evolution of the ligaments by channeling 

the flow near the edge of the bell. It also suggests that the channeling of the flow directly 

influences the effect of flowrate changes on the ligament size distributions.  

In regards to the ligament widths, there exists the similar trend to the ligament 

lengths, in the unserrated case, that increasing rotational rate results in a shift to smaller 

ligament widths. Likewise, for the unserrated case, decrease in flowrate results in a 

decrease in ligament widths. However, for the serrated bell data, while an increase in 

rotational rate results in a shift to smaller ligament widths, decreasing rotational rate has 

negligible effect at all rotational speeds. This result supports the ligament length result, 

which suggests that serrations make the overall ligament sizes more uniform than they 

otherwise would be at these operational parameters. 
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Figure 2.11. Ligament length number distributions for the unserrated (left) and serrated 
(right) rotary bells. Each color corresponds to a particular rotational speed with blue for 
20kRPM, green for 35kRPM, and red for 50kRPM. Within the rotational speeds, the 
dashed line corresponds to the lower flowrate case, while the solid line data corresponds 
to the higher flowrate case. 
 
 

Figure 2.12. Ligament width number distributions for the unserrated (left) and serrated 
(right) rotary bells. Each color corresponds to a particular rotational speed with blue for 
20kRPM, green for 35kRPM, and red for 50kRPM. Within the rotational speeds, the 
dashed line corresponds to the lower flowrate case, while the solid line data corresponds 
to the higher flowrate case. 
 

2.4 Conclusion 

A shadowgraph imaging experiment, which utilized laser pulse background light to 

minimize the exposure time and gain clearly resolved fluid particle profiles, was 

conducted as a follow-up to the high-speed imaging in Chapter 1. This alternative method 
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was necessary to capture clearer images at higher rotational speeds possible with a 

different rotary bell atomizer.  This method could be used in future experiments as a 

means for studying this region of a rotary bell atomizer at such high rotational speeds. 

Three different rotational speeds and a high and low liquid flowrate were tested for two 

nearly identical bell-cups that varied only in the fact that one had a serrated edge and the 

other did not. Approximate, and typical for droplet research, size statistics on the near-

field region just off the cup-edge of a rotary bell atomizer, just as before, were obtained 

to study any effects of the different operational parameters and of serrations. These size 

statistics consisted of histograms of the hydraulic diameters, comprising of number and 

volume distributions, SMDs, and spans. Combined, these statistical representations of the 

processed image data aided in providing a comprehensive description of various trends 

arising from the variation of the parameters in the experiment. 

 The results from the processed image data revealed both expected results and 

helped to confirm other previously seen trends, in that they matched what had been found 

further downstream in this atomization process. Ultimately, what was found was that, for 

both the serrated and unserrated bells, hydraulic diameters of the both the ligaments and 

droplets in the still images increased with increasing flowrate and decreasing rotational 

speed. However, though the direction of the trends for both of the bells is similar, the rate 

of change for the same variation of operational parameters was not. The effect of 

rotational speed is more impactful on the serrated bell cases. Both bells also showed 

rotational speed as the more dominant parameter for droplets, though, despite using high 

flowrate parameters. Conversely, ligament sizes where much more dependent, relative to 

the droplets, on flowrate. 
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The volume distributions show a general decrease in distribution width with 

increasing rotational speed and with increasing flowrate across all cases. However, the 

span data shows a more complex story. For the serrated ligament distribution widths, 

there was an increase with increasing rotational speed, followed by a slight decrease, 

while for the unserrated ligament distribution span, there is a steady increase. The cause 

is uncertain for this difference. For the serrated bell cases, the ligament span also 

decreases with increasing flowrate, while for the unserrated bell cases, the ligament span 

increases with increasing flowrate and then decreases in the higher rotational speed cases. 

These results contradict what the distributions appear to indicate, and would seem to 

show that there may be a regime transition that may be subdued by the serrations, or the 

conflicting results may indicate that the span may not be a suitable parameter to 

summarize the hydraulic diameter distributions presented numerically. 

Finally, the ligament length and width data aid in confirming the trends that arise in 

the number and volume distribution data. The ligament lengths and widths for the 

unserrated bell show the expected result of a decrease in ligament length and width with 

decreasing flowrate and increasing rotational speed. However, they also show that for the 

serrated bell, the ligament lengths and widths do not vary significantly with changes in 

flowrate, though changes in rotational speed. These results, in combination with the 

hydraulic diameter distribution data, collectively show that the serrations make ligament 

sizes more uniform for variations in flowrate. They also show that they may be creating 

an unintended bimodal distribution in ligament formation. Further investigation is needed 

into the downstream consequences of this result. 
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CHAPTER THREE: DEFECT INVESTIGATION OF ROTARY BELL ATOMIZER 

THROUGH PROPER ORTHOGONAL DECOMPOSITION OF HIGH-SPEED IMAGE 

DATA 

 

3.1 Introduction 

Proper orthogonal decomposition is a mathematical technique that reduces the order 

of the model that it is applied to. The origin of POD as a mathematical tool dates back to 

Kosambi[58], who found that various processes could be expressed in terms of a small 

number of Fourier coefficients[59]. Later, Lumley[60] would be the first to apply the 

technique to turbulent flows in a study of fluid motion.  Subsequent study would be done 

in computational fluid dynamics to reduce the order of models[61] and find coherent 

structures in turbulent flows[62]. A comprehensive explanation of the technique has been 

published many times over, and the reader is referred to Tabib and Joshi[63] for a 

thorough background on various fluid flow studies that the technique and its derivatives 

have been applied to. Additionally, Walton et al.[64] presents a detailed explanation of 

the purpose, structure, implementation and history of POD in fluid dynamics. 

This thesis will give a very brief explanation of the fundamentals of the technique as 

it relates to how it was applied in this study. Two-dimensional experimental image data 

was deconstructed by POD into spatial modes. The total solution set of modes represents 

the set of basis functions. When applied to a problem, the goal is to find the smallest 

possible set of these functions or modes which, when combined, reconstruct most of the 

flow or a specific aspect of it that is being investigated. Because the process uses singular 

value decomposition (SVD), the eigenfunctions, or modes, are pre-ordered. That is to 
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say, the modes are automatically output based on modal energy, or relative 

importance/contribution to the entire data set. This means that the most dominant aspects 

of the flow will be the first few modes. The numerical average of the image data is often 

the first mode, and due to this fact, is typically ignored unless relevant.  

Mathematically, this can be represented in the following way, from Kopp-Vaughan et al. 

[65]. Given an original temporal dataset (sequence of images), 𝑂𝑂𝐷𝐷𝑗𝑗𝑡𝑡, which denotes pixel 

intensity values at spatial location 𝑗𝑗 and time 𝑡𝑡, an SVD is performed to get an orthogonal 

bases set. This allows the dataset to be described by (4) 

𝑂𝑂𝐷𝐷𝑗𝑗𝑡𝑡 = �𝑎𝑎𝑗𝑗𝑖𝑖𝑣𝑣𝑖𝑖𝑡𝑡 + �𝑂𝑂𝐷𝐷𝑗𝑗𝑡𝑡�
𝑀𝑀

𝑖𝑖=1

 
 

(4) 

where 𝑎𝑎𝑗𝑗𝑖𝑖 represents the bases (or modes) and 𝑣𝑣𝑖𝑖𝑡𝑡 represent the eigenvectors (or constants), 

which serve as a weighting value to indicate the relative contribution of the associated 

mode to the dataset as a whole at each time step. 

The constants demonstrate how dominant a mode is in each image, and when plotted 

temporally, demonstrate the fluctuation of that mode’s importance. This information can 

be used to identify the specific points in time, assuming a mode represents a flow feature, 

that the flow is experiencing said feature. The fluctuations of the constants over time 

themselves also provide some information about the flow process. By performing a 

Fourier analysis on the constants data, dominant frequencies can present themselves and 

give information about periodicity of flow features and the modes that represent them. 

This study mainly focuses on this element of POD analysis, due to the cyclical nature of 

the rotary bell.  
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POD has often been used on less dynamical fluid systems such as the flow field of a 

plane jet[66], a liquid jet in crossflow[67], a co-axial jet[68], and even a laminar 

separation bubble[69]. POD has also been used on many swirling/rotating fluid systems 

to identify dominant features in those processes. This has been the case for swirling 

systems in the combustion field in attempts to extract data on flame dynamics that might 

be lost through other approaches[65,70,71], occasionally in combination with other 

techniques like Large Eddy Simulation (LES)[72].  In other non-combustion systems, the 

vortex dynamics of a circular cylinder[73] and the instabilities of decelerated swirling 

flows have also been investigated.  

Due to its usefulness in identifying the dominant features of a dynamic process, it was 

chosen as a method of analysis for examining changes in rotary bell atomization under 

varying conditions in the following experiment. Presumably, such a decomposition would 

be able to reveal the modal changes in the process, both near the cup and in the flow field 

(plume) during the atomization process. However, rotary bell atomization is a process 

that occurs very quickly with tens and hundreds of thousands of complete rotations of the 

bell-cup per minute. To capture time-correlated data, like that which is necessary to 

utilize proper orthogonal decomposition, equipment with the high data acquisition speed 

is necessary. In the following experiment, a high-speed camera is used to capture the 

detailed flow processes of the atomization in combination with the modal decomposition 

technique to find the dominant changes across different operational parameters and 

different types of cups. 

In order to test this, a few methods of variation were tested to see what kinds of 

differences could be captured by this technique. Two bell-cups, identical except that one 
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was given some external damage, were tested across varying rotational speeds and 

flowrates.  Doing so reveals the effectiveness of the modal decomposition to identify 

such changes in a production context.  The frequency data gained from the constants of 

the principal modes should change with changing parameters, and the investigation of 

what changes arise is the aim of this thesis. Results that reflect clear differences in the 

image data would mean that POD could be used as an effective tool to define whether or 

not a rotary cup in a paint booth is performing efficiently or has been damaged/worn to 

the point that it should be removed from production. This method is also performed very 

quickly and does not require expensive equipment, meaning that testing would also be 

fast and cheap or could even be performed on bells during their regular operation.  

3.2 Methods and Materials 

3.2.1 Experimental Setup 

A diagram of the experimental setup can be seen in Fig. 3.1. A Dürr Ecobell2 rotary 

bell atomizer was used along with water as the fluid being fed through and transported by 

the system. Two different 55 mm bell cups were utilized and interchanged throughout the 

experimentation to observe any changes in the Fourier analysis of the mode constants 

with changing parameters. The cups were identical in geometry and material, except that 

one was externally damaged, seen in Fig. 3.2. Using a hammer, external damage was 

given to both the side of the cup, as well as at the cup edge, flattening a portion of it 

somewhat, seen in the bottom right image of Fig. 3.2. The level of damage imparted was 

done such that it would be comparable to the condition that would result from someone 

accidentally dropping a cup or if the cup hit an object during operation. The variation in 
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condition was done to observe any flow differences that could be attributed to cup 

damage and show that POD analysis could be used to capture those differences. Three 

rotational speeds (20,000 RPM, 35,000 RPM, and 50,000 RPM) and two flowrates (250 

ccm and 750 ccm) were varied for each of the different cups as well. This would allow 

for differences caused by fluctuations in operational parameters to also be observed. 

Additionally, a case without the bell operating and a case with the bell rotating, but no 

fluid being sent through the system were run to identify any background frequencies, so 

that they could be discerned from meaningful data,. The no-fluid case, which was only 

run at the 20kRPM rotational rate, was run to identify vibrational mode data independent 

of flowrate, and to see if the method could be useful in identifying analyzing a cup with 

no paint running through it. 

 

 
Figure 3.1. POD experimental setup with rotary bell atomizer (A), LED illumination 
source (B), hood (C), camera and lens setup (D), and computer (E). 
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Figure 3.2. Undamaged cup from (top left) front and (top right) side view along with 
damaged cup from (bottom left) front and (bottom right) side view for comparison. 

 

As for the optical setup, two 12 VDC output LED lamps were covered with a diffuser 

and were used as the light source and a Phantom V611 CMOS camera equipped with an f 

= 105 mm Sigma lens was used to image the atomization process. Seen in Fig. 3.1, the 

camera was placed normal to the direction of the flow, since the transient characteristics 

of the flow in this direction were of interest. The acquisition rate of the camera was set to 

6022 Hz, which is a double of a prime number, so that aliasing could be more readily 

identified in the Fourier analysis.  The frame size utilized was 1200×800 pixels and the 

exposure time was 160 µs. 3011 frames, which is .5 seconds or 333-833 full cup rotations 

(depending on rotational rate) of data was captured. 
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3.2.2 Image Decomposition 

The POD analysis consisted of running a MATLAB script that utilized matrix 

reshaping and the built-in SVD script on the image data sets. The particular description of 

the formulation used in this experiment of the eigenvectors and eigenvalues derived from 

the image data is described succinctly in Kopp-Vaughan and Renfro[65]. The convention 

referenced in that article about modes being considered principal modes only where the 

energy is greater than 1%, as suggested by Berkooz et al.[61], was also utilized as a 

starting convention for this study. Some of the relevant MATLAB scripts for this process 

can be found in the Appendix. 

The data selection process influences what kinds of modes will be produced by POD. 

For example, in a multi-stage process, getting modes from each stage would produce the 

modes that describe each respective stage very well. However, taking the modes of the 

entire process may not reveal modes that describe any of the individual stages. Despite 

this possibility, what was done in this work was to take the damaged cup data in its 

entirety and find the modes for the whole data set. Likewise, the undamaged cup data was 

taken in its entirety, for each case, and modes were found for the entire data set. 

Following the acquisition of the modes for each data set, the constants were found. The 

constant data was found for not only each respective set, but across sets to the other cup. 

In other words, the relative importance of each mode (constants) in each frame of the 

damaged cup, was found for both the damaged cup data set and the undamaged cup data 

set. This was done to further investigate the differences in the modal data from each 

dataset. 
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Originally, the full frame data was used to attempt to find flow structures, however 

much of the plume mode data of the atomization process did not give distinct frequency 

content. In addition to giving unclear results, the full frame data was also computationally 

large, and would often not complete before crashing the MATLAB program if all of the 

frames were included in the data set. Some investigation into which aspects of the full 

frame data would produce more distinct frequency content was done to counter this 

problem so that the data set would not be as large. One aspect of the process that did 

produce well-defined frequency content, and that varied across cases, was some 

oscillatory behavior near the bell cup. Upon recognition of this information, the frame 

was cut to a 220×100 pixel window that included only a small area around the cup, seen 

in Fig. 3.3. Focusing on this reduced window produced modes with more distinct 

frequency spectra, seen in Fig. 3.4. Finally, the frequency spectra data was plotted as 

normalized power spectral density data, using (5) 

 𝑃𝑃𝑃𝑃𝐷𝐷 ∗ (𝑓𝑓) = �ℱ�𝑢𝑢(𝑡𝑡)��
2
 (5) 

which calculates the power spectral density given a time series 𝑢𝑢(𝑡𝑡) [74]. The data was 

then normalized by the sampling rate, 𝑃𝑃 (or 6022 Hz), the number of samples, 𝑁𝑁 (or 3011 

frames), and the signal variance,  𝜎𝜎2 so that the sum of the data in each mode’s PSD 

would be a value of one. 

 𝑃𝑃𝑃𝑃𝐷𝐷(𝑓𝑓) =
1

𝑁𝑁 ∙ 𝑃𝑃
�ℱ�𝑢𝑢(𝑡𝑡)��

2

𝜎𝜎2
 (6) 

This was done because the Fourier plots of the constant data had amplitudes 

dependent on the modal energies. This meant that the more dominant modes would have 

considerably higher amplitudes and lesser modes would be difficult to accurately 
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compare at the same scale. Normalizing this data allowed for direct comparison, 

regardless of original modal energies. 

 

 

Figure 3.3. Full-frame image (left) and its resulting near-cup image (right) after an 
imposed cut of the frame for the damaged bell, 20kRPM-750CCM case.  

 

 
Figure 3.4. Power spectral density plot for mode 1 of the damaged bell run at 35kRPM 
with a 250CCM liquid flowrate. The peak located at 1750 Hz is approximately three 
times the bell rotational rate. 
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3.3 Results and Discussion 

3.3.1 Modal Energies 

The first aspect of the POD analysis to examine is the modal energies, or relative 

importance of each mode, in the overall image data set. For the undamaged and damaged 

bells, each of the first 10 modes and their energies were plotted in Fig. 3.5 and Fig. 3.6, 

respectively. As a first comparison between the undamaged and damaged bells, it is 

noticeable from the two figures that the approximate modal energies, when compared to 

the same case from the other bell, are very similar. Additionally, the modes with the 

lowest modal energies are the cases with no flowrate (Fig. 3.5a-b and Fig. 3.6a-b). This 

should be expected since there are no translational dynamic processes occurring in the 

image data for these cases such that, with the average removed from the image, very little 

remains. The modes with the highest modal energies are the cases with the lower flowrate 

(Fig. 3.5e,g, and Fig. 3.6e,g), with the exception of the 20kRPM (Fig. 3.5c and Fig. 3.6c) 

case where the difference is negligible. This result indicates that too much flow in the 

system introduces enough turbulent data that some structures become less dominant in 

the image data. In the following section, the mode shapes are examined. However, to 

make the results more concise, a slightly different convention than the previously 

mentioned 0.01 modal energy value will be used. 

3.3.2 Mode Images 

In the following sections, only the first six modes, or modes that exceed 0.01 modal 

energy, whichever results in the fewest modes, will be considered in the interest of 

condensing the results. Using this convention, the relevant mode shapes were selected
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 Figure 3.5. Undamaged bell modal energies for the first 10 modes in the (a) Background, (b) 20kRPM without flow, (c) 20kRPM-
250CCM, (d) 20kRPM-750CCM, (e) 35kRPM-250CCM, (f) 35kRPM-750CCM, (g) 50kRPM-250CCM, and (h) 50kRPM-750CCM 
cases. 
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Figure 3.6. Damaged bell modal energies for the first 10 modes in the (a) Background, (b) 20kRPM without flow, (c) 20kRPM-
250CCM, (d) 20kRPM-750CCM, (e) 35kRPM-250CCM, (f) 35kRPM-750CCM, (g) 50kRPM-250CCM, and (h) 50kRPM-750CCM 
cases. 
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from the data for each case and can be seen in Fig. 3.7 for the damaged bell and Fig. 3.8 

for the undamaged bell. In the damaged bell data, for the background modes (Fig. 3.7a), 

the data should only have the average image data be its determining mode, and any 

additional modes may be from any innate frequencies of the illumination source. With the 

average mode subtracted, the two modes that are shown appear to indicate that such a 

background fluctuation exists, and looking into the spectral data would confirm this fact. 

The 20kRPM case with no flow (Fig. 3.7b) shows sharp contrast between black and white 

near the edges of the cup, indicating translation in the data set. Since the cup does not 

actually move, this translation can be attributed to vibration of the cup. Looking into the 

spectral data for these modes should give a clearer indication as to what exactly the 

vibration is a result of. For the 20kRPM-250CCM case (Fig. 3.7c), the modes begin to 

reflect the fluid dynamics around the edge of the cup during atomization. Modes 1 and 2 

for this case appear to show translation from the top of the cup to the bottom, as well as 

propagation of the liquid away from the cup. The frequency content of this translation 

would thus be predicted to be resonant with the rotational rate of the cup. Modes 3 and 4 

of this case just show the translation near the bottom of the cup, possibly representing the 

transition of the fluid from going in the downward direction to moving back up or some 

fluid shedding at the bottom of the cup. Modes 5 and 6 appear to show more of the 

translation/propagation, but seem to be much closer to noise in the image data. All of the  
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Figure 3.7. Damaged bell mode images for relevant modes in the (a) Background, (b) 
20kRPM without flow, (c) 20kRPM-250CCM, (d) 20kRPM-750CCM, (e) 35kRPM-
250CCM, (f) 35kRPM-750CCM, (g) 50kRPM-250CCM, and (h) 50kRPM-750CCM 
cases. 
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Figure 3.8. Undamaged bell mode images for relevant modes in the (a) Background, (b) 
20kRPM without flow, (c) 20kRPM-250CCM, (d) 20kRPM-750CCM, (e) 35kRPM-
250CCM, (f) 35kRPM-750CCM, (g) 50kRPM-250CCM, and (h) 50kRPM-750CCM 
cases. 
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modes, however, appear to show some vibration underneath of the cup. For the 20kRPM-

750CCM case (Fig. 3.7d), the modes are slightly different. The first five modes of this 

data set appear to show the translation, but less of the propagation of the fluid. The 

propagation, however, is prominently featured in the sixth mode of this case and all of the 

modes have some inclusion of cup vibration. The 35kRPM-250CCM case (Fig. 3.7e) has 

its first two modes featuring the propagation as a dominant feature, and the subsequent 

next two modes featuring the translation at the transitional point of the cup. The fifth 

mode of this case appears to just be noise and all of the modes again show some cup 

vibration. In the next mode series depicted, or the 35kRPM-750CCM case (Fig. 3.7f), the 

first two modes again show a combination of the translation and propagation of fluid. 

Modes 3-6 just reflect the translation, and the cup vibration is present throughout all of 

the modes. For the 50kRPM-250CCM case (Fig. 3.7g) and the 50kRPM-750CCM case 

(Fig. 3.7h), the modal data can abstractly be described as very similar to the 35kRPM-

750CCM case (Fig. 3.7f). 

Overall, the undamaged bell cup data is very similar to the damaged cup mode data, 

with a few subtle differences. First, the 20kRPM with no flow case (Fig. 3.8b) has fewer 

relevant modes than for the damaged case, and the damaged case relevant modes were all 

cup vibration, whereas the background mode is the dominant mode in the undamaged 

mode data. Additionally, many of the modes look very similar in the damaged and 

undamaged data sets (see Fig. 3.7e,g and Fig. 3.8e,g modes) when the flowrate is lower. 

There are several differences that can be seen, though. The modes dominated by 

translational movement near the transition point of the cup show much sharper edges of 

the translation for the damaged data set over the undamaged data sets. An example of this 
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is the difference between the modes for the 35kRPM-750CCM cases (Fig. 3.7f and Fig. 

3.8f). In the 50kRPM-750CCM case (Fig. 3.8h) for the undamaged data set, a mode 

appears (Mode 3) that appears to show background noise as it is the only mode that has 

any considerable variation underneath of the cup that is not vibration. The final 

noticeable difference in the mode shapes is that the undamaged data does not have nearly 

as much vibrational contribution. For many cases, the first two modes show no cup edge, 

indicating no contribution from cup vibration in the mode. 

Therefore, in reference to the goal of this study, there are a few preliminary 

indications that could be given just from the modal data that a cup may have experienced 

adequate damage to impair its functionality. The damaged cup in this study appears to 

show more vibrational modes around the cup, and has sharper translational modes across 

operational parameters. Additionally, if tested without any flow, the dominant modes will 

be vibrational modes for the damaged cup, but not for the undamaged cup. Due to the 

vibrational contribution to the modes, background modes will not appear in the first few 

modes for the damaged cup, but may appear for an undamaged cup. Investigation into the 

frequency data should give further preliminary indications.  

3.3.3 Power Spectral Density Data 

The corresponding power spectral density (PSD) data was calculated for the constants 

of the modes previously presented in this work. The results of the calculations are plotted 

for the damaged bell in Fig. 3.9 and the undamaged bell in Fig. 3.10 and laid out such 

that the plots can be easily compared to their modal shape counterparts for the equivalent 

cases. It is also worth noting that the y-axis is the amplitude of the normalized PSD and
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Figure 3.9. Damaged bell power spectral density plots of the constants data of relevant damaged bell modes in the (a) Background, (b) 
20kRPM without flow, (c) 20kRPM-250CCM, (d) 20kRPM-750CCM, (e) 35kRPM-250CCM, (f) 35kRPM-750CCM, (g) 50kRPM-
250CCM, and (h) 50kRPM-750CCM cases. 
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Figure 3.10. Undamaged bell power spectral density plots of the constants data of relevant undamaged bell modes in the (a) 
Background, (b) 20kRPM without flow, (c) 20kRPM-250CCM, (d) 20kRPM-750CCM, (e) 35kRPM-250CCM, (f) 35kRPM-
750CCM, (g) 50kRPM-250CCM, and (h) 50kRPM-750CCM cases. 
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the x-axis values are the frequencies (in Hz) and that all plots should be comparable 

because they are normalized by the same parameters. There are a few observations that 

can be made from this data. 

First, in the background data (Fig. 3.9a and Fig. 3.10a) a background frequency does 

show up around 2.2kHz. This frequency was found to not be consistent across different 

framerates and is therefore unlikely to be attributable to the background illumination and 

could be an artifact of the electronics of the camera. However, since it does not make a 

noticeable appearance in the other relevant modes, it can be ignored. Next, an overall 

trend of more frequencies being present in the spectral data for the damaged modes 

appears. The frequencies that show up appear to be harmonics as well, since they are 

multiples of other frequencies in the spectra. This trend is especially noticeable in the 

20kRPM no flow case (Fig. 3.9b), meaning that it can be attributed to the vibration of the 

cup. Since the damaged cup is displaying these harmonic frequencies more often, this 

could serve as a good parameter for judging whether or not a cup is damaged. If it is, 

more harmonics should appear in the vibrational mode data near the cup and to 

accentuate this fact during testing, perhaps no flow should be run through the system. 

However, it should be noted that just because a cup has been damaged, and that damage 

can be detected, that does not mean that it has sufficient impact on the droplets to be a 

problem. Another observation is that for the first two modes of the cases with flow (Fig. 

3.9c-h and Fig. 3.10c-h), the dominant frequency increases at a regular interval. 

Upon further investigation of this fact, the frequency scales with every 1/3 cup 

rotation. For the 20kRPM cases it is 1000 Hz, for the 35kRPM cases it is 1750 Hz (see 

Fig. 3.4), and for the 50kRPM cases it is 2500 Hz. Therefore, this dominant frequency is 
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scaling with rotational rate, though it curiously is scaling with every third rotation. This 

might be attributable to the cup damage, if it weren’t for the fact that both data sets 

display this frequency. The cup geometry was examined for any possible mechanisms 

that would cause this and the probable answer was found. The rotary bells send out the 

fluid over the inside of the bell through three channels as it rotates. An image of a bell 

with the center cap removed is shown in Fig. 3.11 to illustrate this finding through the 

glue residue left behind from the cap removal. 

  

 

Figure 3.11. Rotary bell with center cap removed to display fluid outlets (indicated by 
arrows) to the interior of the bell, through the glue residue of the cap. 

 

The constant data of the modes in their own image data does give some insight into 

changes between the two bells. However, comparing the modes to the other opposite 
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image data set would give even greater comparison data. With this in mind, the damaged 

bell modes were compared against the undamaged bell image data for constants of that 

data set in Fig. 3.12. In a manufacturing setting, this would serve as finding the modes for 

a bell of concern (damaged bell), and comparing it against an established healthy data set 

(undamaged bell). If certain modes show vastly different frequency content, then that 

difference could point to potential damage in the cup. The PSD results of the damaged 

bell modes substituted into the undamaged data set are displayed in Fig. 3.12. For direct 

comparison to what the PSD data should look similar to, see Fig. 3.10 for the undamaged 

bell against its own data set. If the damaged bell was identical to the undamaged bell, the 

frequency spectra should be nearly identical. While it is very similar, some higher order 

frequencies, associated with the third harmonic of bell rotational speed, appear for the 

substitution data. When compared to its old data set, where the constants were found for 

the damaged bell data set from the damaged bell modes, another interesting trend 

appears. Much of the excess harmonic activity from in the frequency data disappears. 

This is most evident in the comparison of the 20kRPM no flow cases (Fig. 3.9b and Fig. 

3.12b). Such a trend indicates that while the vibrational modes of the damaged bell do 

exist in the undamaged bell data set, they do not appear with the same frequencies.
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Figure 3.12. Damaged bell power spectral density plots of the constants data of relevant undamaged bell modes in the (a) 
Background, (b) 20kRPM without flow, (c) 20kRPM-250CCM, (d) 20kRPM-750CCM, (e) 35kRPM-250CCM, (f) 35kRPM-
750CCM, (g) 50kRPM-250CCM, and (h) 50kRPM-750CCM cases. 
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3.4 Conclusion 

POD can be a useful tool in identifying cyclical structures in a variety of flows. In 

this study, it was applied to a rotary bell atomizer at various operational parameters to see 

if differences in the flow could be identified between a damaged and undamaged bell. 

The goal of such an investigation would be to use POD in a paint booth setting as a tool 

for identifying if equipment has become faulty with a quick, simple test on typical image 

data. A high-speed camera was used to capture the image data of the cup during operation 

and some of the downstream flowfield. After examination of the flowfield yielded 

complicated results, further examination of the area near the cup was done since the 

vibrational modes present in that region yielded clearer frequency data.  

Once the modes were output for both bells across a variety of conditions, the modal 

shapes and constants data were compared. The modal shapes showed that the damaged 

bell yielded sharper translational motion lines and had more vibrational mode data 

pervading through all of its cases. The mode constants data was converted into a 

normalized power density spectrum so that fair comparison across cases could be made. 

The PSD data revealed that the damaged bell modes contained more harmonic 

frequencies in their frequency content than the undamaged bell modes. Additionally, it 

was discovered that a third harmonic of the rotational rate of the bell consistently 

dominated many of the modes and this led to the discovery of a related aspect of the cup 

geometry. The damaged bell modes were then substituted into the undamaged bell data 

set for constants data that could reveal more about the damaged bell. What was found 

from this substitution was that the increase in harmonics that the damaged bell modes 

showed in their own data set disappeared and that some higher frequency content not 
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present from the undamaged bell modes appeared in the new PSD data. This led to the 

conclusion that the PSD data could be used to show if a bell has become damaged, as it 

should exhibit harmonics. If those harmonics disappear when compared to a healthy data 

set, then it is likely to be damaged  

Overall, POD was a useful tool in gathering information about the innate frequencies 

of rotary bell atomization, but only when pointed at the most dominant cyclical feature of 

cup vibration. It was able to find distinct differentiations between the damaged and 

undamaged bells that could provide an easy diagnostic tool for equipment malfunction 

inspections after more research is done. Further investigation is needed to quantify how 

much impact this specific damage did to the effectiveness of the bell, as well as if POD 

can be used as a tool to differentiate between different types of damage or damage 

severity. 
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CHAPTER FOUR: SUMMARY AND FUTURE WORK 

4.1 Detailed Summary 

The overall theme of the work covered in this thesis is using various optical 

diagnostic tools and techniques, in conjunction with computational image processing, to 

characterize aspects of rotary bell paint atomizers. This work was mainly in the near-field 

region, where primary atomization occurs, as that was the region of interest. Study of the 

near field was lacking in contemporary literature in terms of investigation beyond taking 

still image data that some statistics were manually, and in terms of investigation with 

optical diagnostic methods common to other similar dynamic processes. 

 A method of investigating rotary bell atomization in the near field using a high-speed 

camera was developed in combination with an image processing algorithm. The high-

speed capability allowed for a preliminary study of ligament and droplet breakup near the 

cup and the effect that increasing the primary operational parameter, rotational speed, had 

on those processes. The image processing algorithm was able to capture relevant size 

statistics for fluids in the original high-speed images, and was able to separate ligament 

and droplet statistics so that their independent changes with rotational speed could be 

captured. Using a PIV system, in combination with the image processing algorithm and 

consecutive high-speed image data that was correlated in time, velocity statistics were 

also able to be captured for these processes. These velocity vectors were also separable 

for the ligaments and droplets. 

The qualitative findings from the investigation of the high-speed image data was that 

there were essentially three regimes of ligament breakup. These regimes were found to 

vary in probability of appearance as rotational speed was increased, and most certainly 



 

86 
   
 

affect the type of primary atomization that is occurring in the near field. More 

investigation is needed to gather quantitative data for comparison from this data. The 

statistical findings of the above method were in agreement with scientific literature and 

the trends were mostly expected. However, the primary notable finding from the use of 

this method was that the ligament size distributions were bimodal for a serrated bell-cup, 

which aids the claims of other research that has concluded a similar claim for the effect of 

serrations on fluid leaving the cup. A notable limitation of this method was pixel 

resolution, due to the frame size having to be attain the high acquisition rates necessary 

for the operational speeds examined.  

Due to the limitations of the pixel resolution as frame rate was increased for the high-

speed camera, a different setup was adopted to capture the ligament and droplet statistical 

changes at higher rotational speeds. Also tested with this setup was the difference 

between identical bells that only differed in that one bell was serrated, and the other 

unserrated. An Nd:YAG laser, in combination with an optical filter composed of 

Rhodamine 6G and ethanol to reduce background signal noise, was used to illuminate a 

new experimental setup. The camera of this still-image capturing setup had a much 

higher pixel resolution and, using the same image processing method as was used on the 

high-speed data with some slight alterations, much smaller fluid sizes were able to be 

captured for the near field region. Similar types of statistics were able to be captured 

regarding ligament and droplet sizes. Velocity vectors were unable to be obtained from 

this method due to the firing rate of the laser not being fast enough to allow light for two 

images that could be correlated in time. A second laser is suggested for future work to 

obtain this information. 
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The primary findings of the still-image method were that hydraulic diameters for both 

the serrated and unserrated bells increased with increasing flowrate and decreasing 

rotational speed. However, though the trend directions were similar for both bells, the 

rate of change comparisons of these trends showed that the effect of rotational speed is 

more impactful on the serrated bell cases. Additionally, ligament sizes were much more 

dependent on flowrate than droplets. Ligament lengths and widths also showed that the 

serrations of a bell limit the effect that flowrate has on ligament size. 

Finally, a statistical method used to study cyclical, turbulent processes, known as 

proper orthogonal decomposition, was utilized in an attempt to identify damage on a 

rotary bell-cup. The goal was to ascertain differences in the POD findings from the 

damaged cup data and undamaged cup data via the image data captured from a side-

profile view of the cup and flowfield during operation. This data was captured using a 

high-speed camera, and ultimately the full-frame data had to be cut to more clearly 

identify processes in the data sets. 

The findings from the use of POD were that the damaged cup produced slightly 

different modal images and frequency content from the undamaged bell. The damaged 

modal images displayed sharper translational motion indications than the slightly curved 

translational motion indications in the undamaged data. Cup vibration also pervaded 

through most, if not all, of the damaged cup modes. The undamaged cup modes did not 

consistently display the cup vibrational modes. Additionally, the frequency content of the 

modes, through power spectral density plots, displayed the fact that the vibrational modes 

scaled with a third harmonic of the bell rotational speed. This finding was attributed to 

the effect of the bell having three outlets for the liquid during the filming of the cup 



 

88 
   
 

during operation. The frequency content also showed that the damaged bell displayed 

more harmonic frequencies, in general, than the undamaged bell for vibrational motion. 

After substituting the damaged modes into the undamaged image data to find how the 

constants in the new data set might differ, it was found that the damaged modes lost the 

harmonics in the frequency content. Therefore, a way to take a known undamaged data 

set, and substitute an unknown condition data set into it to determine its possible 

condition was found. Further research needs to be done to more fully understand the 

effects of different types of damage and different levels of severity of damage and their 

effect on this frequency content. The downstream effects of the damage are also unknown 

at this point and need to be studied. 

 

4.2 Recommendations of Future Work 

As with any scientific inquiry, there remain many unanswered questions or avenues 

related to this work that could be investigated further, or were not investigated at all. One 

such avenue was a more specific, in-depth analysis of the ligament breakup mechanisms 

involved in rotary bell atomization. What was done in this work was to investigate what 

was happening at speeds up to 12kRPM with a high-speed camera. At the frame size that 

was utilized, this was the approximate limit at which high-speed imaging would be able 

to capture discernable image data before blurring would interrupt the ability to make 

accurate observations of ligament breakup. Therefore, for much higher rotational speeds, 

like 50kRPM, the following recommendations should allow for the ability to capture the 

ligament breakups. First, the optics of the setup would need to be altered slightly. A 

different lens would need to be used that could zoom in further on the cup edge. This 
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would allow for a larger image of ligament breakup to be captured, since the camera was 

previously as close as it could be without interfering with the shaping air of the bell. 

Making the ligament breakup larger in the frame would also allow for less optical 

resolution, meaning that the frame could be cut even further, and faster acquisition rates 

could be reached. This would make it possible to capture the ligament breakups at much 

higher rotational speeds. 

Additionally, in regards to ligament breakup, investigation into the effect of viscosity 

should be done. Adding glycerol or some other thickening agent to the water to increase 

the viscosity of the fluid going through the bell would be ideal to test what effects that 

viscosity and surface tension have on the breakup shape/method and breakup time. Using 

paint, ideally close to that used in actual paint booths, would also be particularly useful in 

gaining directly useable information for industrial application. 

Filming the ligament formation, as well as the film formation inside of the bell, 

during the process in front of the bell would be another area to explore further. Many 

studies have looked at this area, but without the shaping air running, and usually at lower 

rotational speeds than are applicable to industry. Finding a way to film this region with 

the inclusion of shaping air, at higher rotational speeds, and without interrupting the flow 

with the optical setup or damaging the optical equipment, should provide useful 

information about the fluid dynamics for this process. 

Finally, for ligament-related investigation suggestions, improving the ligament 

capturing method in the image-processing algorithm would prove very useful. One 

specific recommendation for this would be to improve the aspect of the algorithm that 

distinguishes between what is a ligament, and what is not, since the current method is 
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fairly rudimentary. Another specific recommendation would be to devise a way to single 

out a ligament, follow it through the breakup process, and classify that breakup, all 

automatically. Doing so would be not only useful in that it could be applied to large 

experimental data sets to see what and when specific breakup mechanisms occur, but it 

could potentially be adopted by other industries as well. 

In relation to the droplet distribution data, there are a few recommendations that 

extend from the work done here as well. First, different liquids, with varying viscosities, 

should be tested to again examine the effect of material properties on the near-field 

droplet sizes during primary atomization. Previous works, as discussed, focus on these 

distributions further downstream, during and after secondary atomization. Investigation 

of these parameters in the near field is necessary to fully understand their influence in this 

region. Additionally, varying the shaping air during the conditions already tested, as well 

as with the addition of newly introduced parameters like viscosity, and see its influence 

on primary atomization would be an interesting avenue to explore. Presumably, changing 

the shaping air would not affect the primary atomization by directly contacting the flow 

in this region. However, it is conceivable that it could have an effect on the flow through 

changing the inherent vibrational modes of the system, changing the instabilities present 

and thus the ligament breakups and droplet formations. It could also influence the 

primary atomization through the well-documented flow recirculation through 

recirculating fluid contact or some other means. There does not currently appear to be a 

lot of literature on that specific aspect of the recirculation zone for this process. 

Another improvement to the capturing of near-field droplet distribution data, would 

be the addition of another laser to the optical setup. Having two lasers, offset slightly in 
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time, involved in the optical setup described in part two of this thesis would allow for 

velocity measurements at the higher rotational speeds. This could be done using the same 

PIV technique described in part one of this thesis, where the binarized image is imposed 

on the original, and similar velocity statistics could be obtained.  

Expanding upon the POD work done, further investigation could be done into how 

different forms of damage effect the POD data, and how those changes are reflected in 

the ligament/droplet distribution data in both the near field and in the spray plume. 

Isolating the changes that specific damages make would not only improve the 

understanding of the fluid formations in this area, but would provide meaningful 

industrial data that would further justify the use of POD for equipment checks in 

automotive painting booths.  

Finally, there is much work that needs to be done looking at the effect of serrations on 

rotary bell atomization as a whole. One specific course of action that is recommended is 

to investigate the differences between a serrated and unserrated bell with POD analysis. 

Work not presented here was done in regards to this, but the preliminary results obtained 

showed minute differences that could not be explained in a satisfactory way. However, it 

is possible, that with a more in-depth analysis of different modes that appear in the flow 

or by examining different regions of areas not fully explored like the spray plume, 

quantifiable differences could be obtained. 

There likely exist more areas of possible future research related to the work 

conducted towards this thesis. The suggestions presented here merely represent those that 

had been explicitly discussed or some plans had been made for. Hopefully, individuals 

reading this work gain some ideas concerning different, undiscussed experimental 
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methods or areas of investigation that would ultimately benefit the greater scientific 

community.  
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APPENDIX 
 

A.1 CHAPTER ONE RELEVANT MATLAB SCRIPTS 
 
HS_Img_Processing.mat 
 
% This script cycles through the video image files and conducts the image 
% processing necessary to effectively binarize the images and to seperate 
% the ligaments from the droplet. It also includes outputs for the .bmp 
% files necessary to be utilized later by the Davis Lavision PIV software.  
%clear workspace 
clc; 
close all; 
clear variables;  
addpath('H:\Transferred Files\Water\Water_3-24-16\4-14-16_3\')  
%For cylcing of code through different rotational rates based on naming 
%scheme  
Case = 5:12;  
for g = 1:length(Case) 
    %Import video file and read image data 
    imgfolder = strcat('C:\Users\jewi233\Google Drive\FordProject\HS Consecutive Ligament 
Images\',num2str(Case(g)),'kRPM\'); 
    d=strcat(num2str(Case(g)),'0RPM_340k_L2.avi'); 
    case_v = strcat(num2str(Case(g)),'k'); 
    tic 
    vidObj = VideoReader(d); 
    numf = vidObj.NumberOfFrames;     
    %Preallocating blank cells for later 
        LL = {}; 
        WW = {}; 
        PL = {}; 
        AL = {}; 
        PD = {}; 
        AD = {}; 
        PB = {}; 
        AB = {};     
    %Build sequential images for velocity statistics      
    %     rr = 1:100:152000; 
    %     ss = 2:100:152000; 
    %     q = sort(horzcat(rr,ss));     
    %This is for size statistics     
    q=1:100:100000;     
    for pp=1:length(q)         
        I = read(vidObj,[q(pp) q(pp)]);         
        %Defining image 
        original_img = I; 
        [h,w]=size(I);         
        %Setting very low intensity to zero 
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        aa = find(I>3); 
        adjusted_img = zeros(h,w); 
        adjusted_img(aa) = I(aa);         
        pixpmm=25.9; %defining from calibration (pixels per mm) 
        mm=3; %mm from cup         
        %% Avg Filter         
        ones_mat = ones(5,5)/25; 
        avg_filt_img = imfilter(adjusted_img,ones_mat);         
        %% Dilation         
        structuring_elem = strel('line',10,90); 
        Dilated_img = imdilate(avg_filt_img,structuring_elem);         
        %% Inversion/Back Subtraction         
        img_compliment_1 = imcomplement(adjusted_img); 
        img_compliment_2 = imcomplement(Dilated_img); 
        Inverted_img = img_compliment_1-img_compliment_2; 
        for i = 1:h 
            for j = 1:w 
                if Inverted_img(i,j)<0 
                    Inverted_img(i,j) = 0; 
                else 
                end 
            end 
        end         
        %% Binarize and Thresholding         
        %Secondary filtering, if necessary 
        Second_filt_img=medfilt2(Inverted_img);         
        %Set threshold 
        thresh=12; 
        BW_img = Inverted_img>thresh;         
        %Filling in gaps in image 
        bridged_BW_img = bwmorph(BW_img,'bridge'); 
        BW_no_cup_img=BW_img; 
        [h,~]=size(adjusted_img); 
        for i=1:h 
            u(i)=find(adjusted_img(i,:)>0,1,'first'); 
            p(i)=u(i)+1; 
            BW_no_cup_img(i,1:p(i))=0; 
        end         
        %Optional writing raw image to file 
        % imwrite(I(:,:,1,1),strcat(imgfolder,'Raw Images\img_',num2str(pp),'.jpg'));         
        %% Identify Connected Components by Attachment to Cup         
        CC = bwconncomp(bridged_BW_img); 
        numPixels = cellfun(@numel,CC.PixelIdxList); 
        [biggest,idx] = max(numPixels); 
        lig_and_cup_img = false(size(bridged_BW_img)); 
        lig_and_cup_img(CC.PixelIdxList{idx}) = true;         
        %Eliminating cup from image 
        lig_no_cup_img = lig_and_cup_img; 
        [h,~]=size(adjusted_img); 
        for i=1:h 
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            u(i)=find(adjusted_img(i,:)>0,1,'first'); 
            p(i)=u(i)+1; 
            lig_no_cup_img(i,1:p(i))=0; 
        end         
        %% Counting Ligaments         
        %Combine close objects to get true ligament number. 
        lig_area_img = bwmorph(lig_no_cup_img,'bridge');         
        [h,w]=size(original_img); 
        for i=1:h 
            for j=1:w 
                E(i)=find(original_img(i,:)>7,1,'first'); 
                F(i)=E(i)+1; 
                lig_area_img(i,1:F(i))=0; 
            end 
        end         
        %Ligament Counts 
        CC2 = bwconncomp(lig_area_img); 
        Ligaments = CC2.NumObjects;         
        %% Impose Image Onto Original         
        %use this to check how well the process is working (with images) 
        BWM = bwmorph(BW_no_cup_img,'remove'); 
        IC = imcomplement(original_img); 
        BWC = imcomplement(BWM); 
        BWC2 = imcomplement(BW_no_cup_img); 
        IEG = immultiply(IC,BWC); 
        IEG2 = immultiply(IC,BWC2); 
        EG = imcomplement(IEG);     %This is the image that you check 
        EG2 = imcomplement(IEG2);         
        %% Determining and Displaying Ligament Properties 
        if Ligaments == 0 
        elseif Ligaments > 0 
            %Construct a struct to put data in, optional matrix data 
            %             L = ligLengths(lig_area_img); 
            %             LL(end+1:end+length(L))=L; 
            stats(pp).LL = ligLengths(lig_area_img); 
            %             W = ligWidths(lig_area_img,F); 
            %             WW(end+1:end+length(W))=W; 
            stats(pp).WW = ligWidths(lig_area_img,F);             
            %Define Droplet Only Image 
            BW_drop_only=BW_no_cup_img-lig_no_cup_img; 
            BW_drop_only=im2bw(BW_drop_only,0.0039);             
            %Both 
            BW_both = logical(BW_drop_only + lig_no_cup_img);             
            %Obtain the pixel location data of the binarized fluid in all 
            %of the images. 
            sL = regionprops('table',lig_no_cup_img,'Area','PixelIdxList'); 
            sD = regionprops('table',BW_drop_only,'Area','PixelIdxList'); 
            CC3 = bwconncomp(BW_both); 
            sB = regionprops('table',CC3,'Area','PixelIdxList');             
            %% Velocity             
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                         %Convert images to grayscale for velocity statistics 
%                         lig_vel_img = immultiply(lig_no_cup_img,I); 
%                         drop_vel_img = immultiply(BW_drop_only,I); 
%                         both_vel_img = immultiply(BW_both,I);             
            %             Output BMP images for later velocity statistics 
            %                     bmpfile = strcat('H:\HS_Data_5-19-20\8-16-
17\BMPs\',num2str(Case(g)),'k'); 
            %                     if mod(pp,2) == 0 
            %                     bmp = 
HS_bmpout(bmpfile,pp,lig_vel_img,drop_vel_img,both_vel_img,prev_lig_img,prev_drop_img,p
rev_both_img,Case); 
            %                     else 
            %                     end 
            % 
            %             prev_lig_img = lig_vel_img; 
            %             prev_drop_img = drop_vel_img; 
            %             prev_both_img = both_vel_img;             
                        for z=1:height(sL)              %Finding Ligament Areas/Perimeters 
                            IZ = zeros(h,w); 
                            [AZ]=sL.PixelIdxList{z}; 
                            IZ(AZ)=1; 
                            IZZ = cat(2, zeros(h,1), IZ, zeros(h,1)); 
                            IZZ = cat(1, zeros(1,w+2), IZZ, zeros(1,w+2)); 
                            stats(pp).PL(z)= Perim(IZZ); 
            %                 PL(end+1:end+length(Perim(IZZ))) = Perim(IZZ); 
                            stats(pp).AL(z) = sL.Area(z,1); 
            %                 AL(end+1:end+length(Area)) = sL.Area(z,1); 
                        end 
                        clearvars SL AZ IZ IZZ 
                        for z=1:height(sD)   %Finding Droplet Areas/Perimeters 
                            IZ = zeros(h,w); 
                            [AZ]=sD.PixelIdxList{z}; 
                            IZ(AZ)=1; 
                            IZZ = cat(2, zeros(h,1), IZ, zeros(h,1)); 
                            IZZ = cat(1, zeros(1,w+2), IZZ, zeros(1,w+2)); 
                            stats(pp).PD(z)= Perim(IZZ); 
            %                 PD(end+1:end+length(Perim(IZZ))) = Perim(IZZ); 
                            stats(pp).AD(z) = sD.Area(z,1); 
            %                 AD(end+1:end+length(Area)) = sD.Area(z,1); 
                        end 
                        clearvars SD AZ IZ IZZ 
                        for z=1:height(sB) %Finding  ligament and droplet combined Areas/Perimeters 
                            IZ = zeros(h,w); 
                            [AZ]=sB.PixelIdxList{z}; 
                            IZ(AZ)=1; 
                            IZZ = cat(2, zeros(h,1), IZ, zeros(h,1)); 
                            IZZ = cat(1, zeros(1,w+2), IZZ, zeros(1,w+2)); 
                            stats(pp).PB(z)= Perim(IZZ); 
            %                 PB(end+1:end+length(Perim(IZZ))) = Perim(IZZ); 
                            stats(pp).AB(z) = sB.Area(z,1); 



 

97 
   
 

            %                 AB(end+1:end+length(Area)) = sB.Area(z,1); 
                        end 
                        clearvars SB AZ IZ IZZ 
        end 
        if mod(pp,10)==0 
            pp 
            toc 
            tic 
        else 
        end         
    end     
    %Output workspace data to a file:     
    % outd = 'H:\HS_Data_5-19-20\8-16-17\'; 
    % out_filename = strcat(outd,case_v,'_workspace.mat'); 
    % save(out_filename);     
    clearvars -except Case 
    addpath('H:\Transferred Files\Water\Water_3-24-16\4-14-16_3\') 
end 
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HS_bmpout.mat 

function bmp = HS_bmpout(bmpfile,pp,lig_img,drop_img,both_img,pl,pd,pb,C) 
% 
%This function is designed to output the binarized ligament, droplet, and 
%combined images to a specified file so that they can be imported by the Lavision  
% Davis software in the correct order and in the correct orientation since Davis requires 
% that you have two consecutive images stacked vertically on top of one another during the  
% import process.  The function requires the following inputs: 
%   bmpfile  - an output file to send the images to 
%   pp       - even number frame of video 
%   lig_img  - binarized ligament image 
%   drop_img - binarized droplet image 
%   both_img - binarized combined image 
%   pl       - previous ligament image 
%   pd       - previous droplet image 
%   pb       - previous combined image  
pp = pp/2; 
LL = vertcat(pl,lig_img);   %Stacking the corresponding images vertically 
DD = vertcat(pd,drop_img); 
BB = vertcat(pb,both_img);  
%conditionally naming and outputting the images so that they are ordered  
%correctly in the file:  
if pp > 0 && pp < 10     
    imwrite(LL, strcat(bmpfile,'\',num2str(C),'k_All_Lig\image000',num2str(pp),'.bmp')); 
    imwrite(DD, strcat(bmpfile,'\',num2str(C),'k_All_Drop\image000',num2str(pp),'.bmp')); 
    imwrite(BB, strcat(bmpfile,'\',num2str(C),'k_All_Both\image000',num2str(pp),'.bmp'));     
elseif pp > 9 && pp < 100     
    imwrite(LL, strcat(bmpfile,'\',num2str(C),'k_All_Lig\image00',num2str(pp),'.bmp')); 
    imwrite(DD, strcat(bmpfile,'\',num2str(C),'k_All_Drop\image00',num2str(pp),'.bmp')); 
    imwrite(BB, strcat(bmpfile,'\',num2str(C),'k_All_Both\image00',num2str(pp),'.bmp'));     
elseif pp > 99 && pp < 1000     
    imwrite(LL, strcat(bmpfile,'\',num2str(C),'k_All_Lig\image0',num2str(pp),'.bmp')); 
    imwrite(DD, strcat(bmpfile,'\',num2str(C),'k_All_Drop\image0',num2str(pp),'.bmp')); 
    imwrite(BB, strcat(bmpfile,'\',num2str(C),'k_All_Both\image0',num2str(pp),'.bmp'));     
elseif pp > 999     
    imwrite(LL, strcat(bmpfile,'\',num2str(C),'k_All_Lig\image',num2str(pp),'.bmp')); 
    imwrite(DD, strcat(bmpfile,'\',num2str(C),'k_All_Drop\image',num2str(pp),'.bmp')); 
    imwrite(BB, strcat(bmpfile,'\',num2str(C),'k_All_Both\image',num2str(pp),'.bmp'));     
end  
bmp = 1; %arbitrary output  
end 
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ligLengths2.mat 

function [ liglengths ] = ligLengths2( img ) 
%This function finds the length of ligaments given a binarized image (img) 
comp=bwconncomp(img); 
numcomp=comp.NumObjects; 
h=comp.ImageSize; 
for q=1:numcomp 
    t=comp.PixelIdxList{q}; 
    lig=zeros(h(1),h(2)); 
    for p=1:length(t) 
       lig(t(p))=1; 
    end 
    sk=bwmorph(lig,'skel',Inf); 
[ligsh,ligsw]=find(sk>0); 
liglengths(q)=length(ligsh); 
ligss=zeros(h(1),h(2)); 
  
for i=1:length(ligsh) 
    ligss(ligsh(i),ligsw(i))=1; 
end  
L=bwlabel(ligss,4); 
LL=max(L(:)); 
                liglengths(q)=liglengths(q)+LL*(sqrt(2)-1); 
 end 
end 
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ligWidths.mat 

function [ ligwidth ] = ligWidths(img,u) 
%This function finds the ligament width given the image (img) and pixel 
%locations of the cup edge (u)  
comp=bwconncomp(img); 
numcomp=comp.NumObjects; 
h=comp.ImageSize; 
for q=1:numcomp 
    t=comp.PixelIdxList{q}; 
    lig=zeros(h(1),h(2)); 
    for p=1:length(t) 
       lig(t(p))=1; 
    end 
% sk=bwmorph(lig,'skel',Inf); 
% ligs=find(sk>0); 
% liglengths(q)=length(ligs); 
l=zeros(length(h(1))); 
for i=1:h 
    if lig(i,u(i))>0 ||lig(i,u(i)+1)>0 
       l(i)=1;  
    end 
end 
ligwidth(q)=sum(l);  
% comp2=bwconncomp(l); 
% numcomp2=comp2.NumObjects; 
% for i=1:numcomp2 
%     tt=comp.PixelIdxList{i}; 
%     ligwidth(q)=length(tt); 
% end 
% end  
% [h,~]=size(img); 
% l=zeros(length(h)); 
% for i=1:h 
%     if img(i,u(i))>0 ||img(i,u(i)+1)>0 
%        l(i)=1;  
%     end 
% end 
% comp=bwconncomp(l); 
% numcomp=comp.NumObjects; 
% for i=1:numcomp 
%     t=comp.PixelIdxList{i}; 
%     ligwidth(i)=length(t); 
% end 
end 
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Perim.mat 

function [ perimeter ] = Perim( img ) 
%Perim will output the perimeter of each object 
%img needs to be padded with zeros on outside so boundary effects are not 
%counted 
[h,w]=size(img); 
b=ones(3,3); 
img22=imdilate(img,b); 
img2=zeros(h+2,w+2); 
img2(2:end-1,2:end-1)=img22; 
img3=zeros(h+2,w+2);  
        [i,j]=find(img2==1);  
        for ii=1:length(i) 
            clear pt 
            pt(1)=img2(i(ii)-1,j(ii)); 
                pt(2)=img2(i(ii)+1,j(ii)); 
            pt(3)=img2(i(ii),j(ii)+1); 
            pt(4)=img2(i(ii),j(ii)-1); 
            if sum(pt)==2 
                if (pt(1) && (pt(3) | pt(4))==1 || pt(2) && (pt(3) | pt(4))==1) 
                    img3(i(ii),j(ii))=1; 
                end 
            end 
        end  
img4=img2-img3;  
img5=bwmorph(img4,'remove');  
ij=find(img5==1); 
perimeter=length(ij);  
for ii=1:length(i) 
if (img5(i(ii)-1,j(ii)-1) && img5(i(ii)+1,j(ii)+1))==1 || (img5(i(ii)-1,j(ii)+1) && img5(i(ii)+1,j(ii)-
1))==1  
perimeter=perimeter+(sqrt(2)-1); 
end 
end  
end 
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HS_Output_Size_Stats.mat 

%This script loops through the output size data acquired from 
%HS_Img_Processing.mat and converts it into more immediately accessible 
%data 
  
%Clear Workspace 
clear all; close all; clc; 
%% SIZE STATISTICS  
%Set Directory and Import Data 
d ='H:\HS_Data_5-19-17\8-16-17\Size\Size Statistics\'; 
addpath('C:\Users\jewi233\Google Drive\FordProject\Scripts_Functions') 
%Loop through all cases 
for i = 5:12 
    j=i-4; 
    %Input Workspace 
    wsfile = strcat(d,num2str(i),'k_workspace.mat'); 
    %Load Variables 
    load(wsfile); 
    %Specify Last Frame to Cycle Through 
    fr = 1501; 
    %Bins 
    sizebins = 0:20:600;     
    %Specify Normal Distributions 
    ND_Dist_L{j} = Norm_Sum_histL2'; 
    ND_Dist_D{j} = Norm_Sum_histD2'; 
    ND_Dist_B{j} = Norm_Sum_histB{fr}'; 
    %Specify Volume Distributions 
    VD_Dist_L{j} = Norm_Sum_VDL_hist2'; 
    VD_Dist_D{j} = Norm_Sum_VDD_hist2'; 
    VD_Dist_B{j} = Norm_Sum_VDB_hist{fr}'; 
    %Collect D32 
    if i == 7 
    D_32(1,j) = nanmean(cell2mat(Lig_D32)); 
    D_32(2,j) = nanmean(cell2mat(Drop_D32)); 
    D_32(3,j) = nanmean(cell2mat(Both_D32)); 
    else 
    D_32(1,j) = Avg_L_D32{fr}; 
    D_32(2,j) = Avg_D_D32{fr}; 
    D_32(3,j) = Avg_B_D32{fr}; 
    end 
    %Collect Spans and Ligament Lengths/Widths 
    L_Diams = []; 
    D_Diams = []; 
    B_Diams = []; 
    L_lengths = []; 
    L_widths = []; 
    for k = 1:fr-1 
       diamsL = cell2mat(diamL(k)); 
       diamsD = cell2mat(diamD(k)); 
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       diamsB = cell2mat(diamB(k)); 
       LL = Lig_L{k}/pixpmm; 
       WW = Lig_W{k}/pixpmm; 
       L_Diams(1,end+1:end+length(diamsL)) = diamsL'; 
       D_Diams(1,end+1:end+length(diamsD)) = diamsD'; 
       B_Diams(1,end+1:end+length(diamsB)) = diamsB'; 
       L_lengths(1,end+1:end+length(LL)) = LL'; 
       L_widths(1,end+1:end+length(WW)) = WW'; 
       clearvars diamsL diamsD diamsB 
    end 
    L_lengths(L_lengths==0) = []; 
    L_widths(L_widths==0) = []; 
    xLL=[0:.3:20]; 
    xWW=[0:.04:1 1:2]; 
    hist_xLL{j} = (hist(L_lengths,xLL)/sum(hist(L_lengths,xLL)))'; 
    hist_xWW{j} = (hist(L_widths,xWW)/sum(hist(L_widths,xWW)))';  
    Lig_D{j} = L_Diams'; 
    Drop_D{j} = D_Diams'; 
    Both_D{j} = B_Diams'; 
    [L_Span{j},~,~,~,~,~,~] = droplet_vspan2(Lig_D{j}); 
    [D_Span{j},~,~,~,~,~,~] = droplet_vspan2(Drop_D{j}); 
    [B_Span{j},~,~,~,~,~,~] = droplet_vspan2(Both_D{j});     
    clearvars diamsL diamsD diamsB L_Diams D_Diams B_Diams L_lengths L_widths 
end 
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HS_Output_Vel_Stats.mat 

%%This script imports te data from the Davis output files and converts the 
%data into useable velocity vector data and the workspace with all of the 
%outputs is saved. 
  
%clear workspace 
clear; 
close all; 
clc;  
%files location  
dir='H:\MyProjects\Velocity_Statistics_5_30_17\'; 
addpath('C:\Users\jewi233\Google Drive\FordProject\Scripts_Functions\') 
addpath('C:\Users\jewi233\Documents\DaVis-MATLAB\') 
RR = 5:12; 
for k = RR  
% vstats = struct([]); 
dirDP = strcat(dir,num2str(k),'k_All_Drop\PTV\'); 
disp(strcat('calculating: ',num2str(k),'k',' Droplet Statistics'))     
xc = -878.4455; 
yc = -10.7115; 
% MVD=[]; 
% Vel_D = []; 
% Mass_D = []; 
% Diam_D = []; 
% U_magD = []; 
% V_magD = []; 
% N_magD = []; 
% T_magD = []; 
pixpmm = 26.22; 
mm_pix = .0381395; 
Density = .000001; %kg/mm^3 
tic  
for idx = 1:1500 
vstats.Vel_D{idx} = []; 
vstats.Diam_D{idx}= []; 
vstats.U_magD{idx} = []; 
vstats.V_magD{idx} = []; 
vstats.N_magD{idx} = []; 
vstats.T_magD{idx} = []; 
    if idx < 10 
        name='B0000'; 
    elseif idx>=10 && idx<100 
        name = 'B000'; 
    elseif idx>=100 && idx<1000 
        name = 'B00'; 
    elseif idx>=1000 
        name = 'B0'; 
    end 
    n = [name num2str(idx)]; 
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    file=strcat(dirDP,n,'.vc7'); 
    %import file structure 
    inst1=readimx(file); 
    %extract x,y,u,v 
    [xx,yy,uinst,vinst]=showimx(inst1); 
    %extract information about the map 
   
        %find how many rows and columns there are 
    [xxx,yyy]=size(xx); %xx will be columns, yy will be rows 
    %find the spacing in mm in the x and y direction 
    xx=xx(:,1); 
    yy=yy(1,:);     
    u=uinst'; 
    v=vinst'; 
    magn = sqrt(v.^2+u.^2); 
    magn_loc = find(magn); 
close all 
[x,y]=meshgrid(xx,yy); 
%% 
dirD = strcat(dir,num2str(k),'k_All_Drop\'); 
    file=strcat(dirD,n,'.im7'); 
    %import file structure 
    inst2=readimx(file); 
    %extract x,y,u,v 
    [xx,yy,uinst]=showimx(inst2); 
    %extract information about the map   
        %find how many rows and columns there are 
    [xxx,yyy]=size(xx); %xx will be columns, yy will be rows 
  
    Int_Map = mat2gray(255*mat2gray(uinst)); 
    BW = Int_Map>0; 
    [h,w] = size(BW); 
    CC = bwconncomp(BW); 
    s = regionprops('table',BW,'Area','PixelIdxList'); 
    Objects = CC.NumObjects; 
    for component = 1:Objects 
         A = CC.PixelIdxList{1,component}; 
         B = magn_loc; 
         C = intersect(A,B,'rows'); 
         num_vectors = length(C'); 
         if num_vectors == 0 
             continue 
         elseif num_vectors == 1 
            %Finding N and T Components 
            dx = x(C) - xc; 
            dy = y(C) - yc; 
            phi1 = atan(dy/dx); 
            phi2 = atan(abs(u(C))/v(C)); 
            theta = phi1 + phi2; 
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            %Grab velocity of component 
            Velocity = magn(C); 
            U_mag = abs(u(C)); 
            V_mag = abs(v(C)); 
            N_mag = abs(Velocity*cos(theta)); 
            T_mag = abs(Velocity*sin(theta)); 
            %Get Perimeter and Area to Obtain Volume 
            IZ = zeros(h,w); 
            IZ(A) = 1; 
            Perimeter = Perim(IZ); 
            Area = s.Area(component,1); 
            %Calculate D_32 
            Diam = 4*Area/Perimeter; 
%             Volume = Diam^3; 
%             mass = Volume*Density; 
%             mv = mass*Velocity; 
%             MVD(end+1:end+length(mv)) = mv; 
%             Mass_D(end+1:end+length(mass)) = mass; 
            vstats.Vel_D{idx}(end+1:end+length(Velocity)) = Velocity; 
            vstats.U_magD{idx}(end+1:end+length(U_mag)) = U_mag; 
            vstats.V_magD{idx}(end+1:end+length(V_mag)) = V_mag; 
            vstats.N_magD{idx}(end+1:end+length(N_mag)) = N_mag; 
            vstats.T_magD{idx}(end+1:end+length(T_mag)) = T_mag;   
            vstats.Diam_D{idx}(end+1:end+length(Diam)) = Diam; 
         elseif num_vectors > 1 
            %Finding N and T Components 
            dx = mean(x(C) - xc); 
            dy = mean(y(C) - yc); 
            phi1 = atan(dy/dx); 
            phi2 = atan(mean(abs(u(C)))/mean(v(C))); 
            theta = phi1 + phi2; 
            %Grab average velocity of component 
            V = magn(C); 
            Velocity = mean(V); 
            U_comp = abs(u(C)); 
            U_mag = mean(U_comp);             
            V_comp = abs(v(C)); 
            V_mag = mean(V_comp); 
            N_mag = abs(Velocity*cos(theta)); 
            T_mag = abs(Velocity*sin(theta)); 
            %Get Perimeter and Area to Obtain Volume 
            IZ = zeros(h,w); 
            IZ(A) = 1; 
            Perimeter = Perim(IZ); 
            Area = s.Area(component,1); 
            %Calculate D_32 
            Diam = 4*Area/Perimeter; 
%             Volume = Diam^3; 
%             mass = Volume*Density; 
%             mv = mass*Velocity; 
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%             MVD(end+1:end+length(mv)) = mv; 
%             Mass_D(end+1:end+length(mass)) = mass; 
            vstats.Vel_D{idx}(end+1:end+length(Velocity)) = Velocity; 
            vstats.U_magD{idx}(end+1:end+length(U_mag)) = U_mag; 
            vstats.V_magD{idx}(end+1:end+length(V_mag)) = V_mag; 
            vstats.N_magD{idx}(end+1:end+length(N_mag)) = N_mag; 
            vstats.T_magD{idx}(end+1:end+length(T_mag)) = T_mag;   
            vstats.Diam_D{idx}(end+1:end+length(Diam)) = Diam; 
         end              
    end     
close all  
[x_lig,y_lig]=meshgrid(xx,yy); 
% handle = vfield(x,y,u,v,magn); 
end  
dx = abs((xx(1,2)-xx(1,1))/2); 
dy = abs((yy(1,2)-yy(1,1))/2); 
% mm_pix = (dx+dy); 
% MVD = MVD*(mm_pix^3); 
% Mass_D = Mass_D*(mm_pix^3); 
% sum_D = sum(MVD); 
% nMVD = MVD/sum_D; 
toc 
%% 
clearvars -except vstats xc yc k dir dx dy mm_pix Density 
% clearvars -except mm_pix k dir MVD sum_D nMVD Density Vel_D Diam_D Mass_D 
U_magD V_magD xc yc N_magD T_magD  
dirLP=strcat(dir,num2str(k),'k_All_Lig\PTV\'); 
disp(strcat('calculating: ',num2str(k),'k',' Ligament Statistics')) 
tic  
% MVL=[]; 
% Vel_L = []; 
% Diam_L = []; 
% Mass_L = []; 
% U_magL = []; 
% V_magL = []; 
% N_magL = []; 
% T_magL = [];  
for idx = 1:1500 
vstats.Vel_L{idx} = []; 
vstats.Diam_L{idx}= []; 
vstats.U_magL{idx} = []; 
vstats.V_magL{idx} = []; 
vstats.N_magL{idx} = []; 
vstats.T_magL{idx} = [];  
    if idx < 10 
        name='B0000'; 
    elseif idx>=10 && idx<100 
        name = 'B000'; 
    elseif idx>=100 && idx<1000 
        name = 'B00'; 
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    elseif idx>=1000 
        name = 'B0'; 
    end 
    n = [name num2str(idx)]; 
    file=strcat(dirLP,n,'.vc7'); 
    %import file structure 
    inst1=readimx(file); 
    %extract x,y,u,v 
    [xx,yy,uinst,vinst]=showimx(inst1); 
    %extract information about the map   
        %find how many rows and columns there are 
    [xxx,yyy]=size(xx); %xx will be columns, yy will be rows 
    %find the spacing in mm in the x and y direction 
    xx=xx(:,1); 
    yy=yy(1,:);     
    u=uinst'; 
    v=vinst'; 
    magn = sqrt(v.^2+u.^2); 
    magn_loc = find(magn); 
close all 
[x,y]=meshgrid(xx,yy); 
%% 
dirL = strcat(dir,num2str(k),'k_All_Lig\'); 
    file=strcat(dirL,n,'.im7'); 
    %import file structure 
    inst2=readimx(file); 
    %extract x,y,u,v 
    [xx,yy,uinst]=showimx(inst2); 
    %extract information about the map   
        %find how many rows and columns there are 
    [xxx,yyy]=size(xx); %xx will be columns, yy will be rows  
    Int_Map = mat2gray(255*mat2gray(uinst)); 
    BW = Int_Map>0; 
    [h,w] = size(BW); 
    CC = bwconncomp(BW); 
    s = regionprops('table',BW,'Area','PixelIdxList'); 
    Objects = CC.NumObjects; 
    for component = 1:Objects 
         A = CC.PixelIdxList{1,component}; 
         B = magn_loc; 
         C = intersect(A,B,'rows'); 
         num_vectors = length(C'); 
         if num_vectors == 0 
             continue 
         elseif num_vectors == 1 
             %Finding N and T Components 
            dx = x(C) - xc; 
            dy = y(C) - yc; 
            phi1 = atan(dy/dx); 
            phi2 = atan(abs(u(C))/v(C)); 
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            theta = phi1 + phi2; 
            %Grab velocity of component 
            Velocity = magn(C); 
            U_mag = abs(u(C)); 
            V_mag = abs(v(C)); 
            N_mag = abs(Velocity*cos(theta)); 
            T_mag = abs(Velocity*sin(theta)); 
            %Get Perimeter and Area to Obtain Volume 
            IZ = zeros(h,w); 
            IZ(A) = 1; 
            Perimeter = Perim(IZ); 
            Area = s.Area(component,1); 
            %Calculate D_32 
            Diam = 4*Area/Perimeter; 
%             Volume = Diam^3; 
%             mass = Volume*Density; 
%             mv = mass*Velocity; 
%             MVL(end+1:end+length(mv)) = mv; 
%             Mass_L(end+1:end+length(mass)) = mass; 
            vstats.Vel_L{idx}(end+1:end+length(Velocity)) = Velocity; 
            vstats.U_magL{idx}(end+1:end+length(U_mag)) = U_mag; 
            vstats.V_magL{idx}(end+1:end+length(V_mag)) = V_mag; 
            vstats.N_magL{idx}(end+1:end+length(N_mag)) = N_mag; 
            vstats.T_magL{idx}(end+1:end+length(T_mag)) = T_mag;  
            vstats.Diam_L{idx}(end+1:end+length(Diam)) = Diam; 
         elseif num_vectors > 1 
            %Finding N and T Components 
            dx = mean(x(C) - xc); 
            dy = mean(y(C) - yc); 
            phi1 = atan(dy/dx); 
            phi2 = atan(mean(abs(u(C)))/mean(v(C))); 
            theta = phi1 + phi2; 
            %Grab average velocity of component 
            V = magn(C); 
            Velocity = mean(V); 
            U_comp = abs(u(C)); 
            U_mag = mean(U_comp);             
            V_comp = abs(v(C)); 
            V_mag = mean(V_comp); 
            N_mag = abs(Velocity*cos(theta)); 
            T_mag = abs(Velocity*sin(theta)); 
            %Get Perimeter and Area to Obtain Volume 
            IZ = zeros(h,w); 
            IZ(A) = 1; 
            Perimeter = Perim(IZ); 
            Area = s.Area(component,1); 
            %Calculate D_32 
            Diam = 4*Area/Perimeter; 
%             Volume = Diam^3; 
%             mass = Volume*Density; 
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%             mv = mass*Velocity; 
%             MVL(end+1:end+length(mv)) = mv; 
%             Mass_L(end+1:end+length(mass)) = mass; 
            vstats.Vel_L{idx}(end+1:end+length(Velocity)) = Velocity; 
            vstats.U_magL{idx}(end+1:end+length(U_mag)) = U_mag; 
            vstats.V_magL{idx}(end+1:end+length(V_mag)) = V_mag; 
            vstats.N_magL{idx}(end+1:end+length(N_mag)) = N_mag; 
            vstats.T_magL{idx}(end+1:end+length(T_mag)) = T_mag;  
            vstats.Diam_L{idx}(end+1:end+length(Diam)) = Diam; 
         end              
    end     
close all  
[x_lig,y_lig]=meshgrid(xx,yy); 
% handle = vfield(x,y,u,v,magn); 
end 
dx = abs((xx(1,2)-xx(1,1))/2); 
dy = abs((yy(1,2)-yy(1,1))/2); 
% mm_pix = (dx+dy); 
% MVL = MVL*(mm_pix^3); 
% Mass_L = Mass_L*(mm_pix^3); 
% max_MVL = max(MVL); 
% sum_L = sum(MVL); 
% nMVL = MVL/sum_L; 
toc  
clearvars -except vstats xc yc k dir dx dy mm_pix Density 
%save workspace 
disp('Saving Workspace...') 
tic 
outd = 'H:\HS_Data_5-19-20\8-16-17\Velocity\Workspaces\'; 
save(strcat(outd,num2str(k),'k_All_workspace.mat')); 
toc 
clearvars -except k dir 
addpath('C:\Users\jewi233\Google Drive\FordProject\Scripts_Functions\') 
addpath('C:\Users\jewi233\Documents\DaVis-MATLAB\') 
end 
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A.2 CHAPTER TWO RELEVANT MATLAB SCRIPTS 
 

Still_Img_Serr_Unserr_Processing.mat 

%%This script takes the serrated and unserrated still images, and binarizes 
%%and determine size statistics from the ligaments and droplets in the 
%%image and outputs them into excel and workspace files.  
%clear workspace 
close all 
clear variables;  
%Establish input folder 
input_folder = 'F:\Near-Field\Serrated vs Unserrated\Images\'; 
styles{1} = cellstr('Serrated\'); styles{2} = cellstr('Unserrated\'); 
speed = cellstr(['20kRPM\';'35kRPM\';'50kRPM\']);  
for ss = 1:2 
    for s = 1:3 
        if s==3 
            cases = 250:250:500; 
        else 
            cases = 250:500:750; 
        end 
        img_idx = 0:1499; 
        for m = 1:length(cases) 
            if cases == 0 
            else 
            clearvars -except input_folder speed cases img_idx m s ss styles 
            tic 
            imgfolder = 
strcat(input_folder,char(styles{ss}),speed{s},num2str(cases(m)),'CCM_200SA\'); 
            imgname = 'img_'; 
            %Establish output folder 
            output_folder = strcat('F:\Near-Field\Serrated vs 
Unserrated\OutputData\',char(styles{ss}),speed{s},num2str(cases(m)),'CCM_200SA\'); 
            LL = 0; WW = 0; PL = 0; AL = 0; PD = 0; AD = 0; 
            for ii=1:length(img_idx) 
                if mod(ii,10)==0 
                    disp(strcat('Image Progress: ',num2str(ii),'/1500')) 
                    toc 
                    tic 
                else 
                end 
                %% Read image and Establish Custom Threshold 
                %Read-In Image 
           I = imread(strcat(imgfolder,imgname,num2str(img_idx(ii)),'.bmp')); 
                distance = 427.3; %pixels 
                cal_obj = .7112; %mm from .028 in. 
         pixpmm=distance/cal_obj; %defining from calibration (pixels per mm) 
                %Defining image 
                original_img = I; 
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                [h,w]=size(I); 
                %Image Histogram 
                img_hist = imhist(I)'; 
                Fs = 1:length(img_hist); 
                %Find Peaks and Locations of Maxima in Histogram 
                [pks{ii},locs{ii}] = findpeaks(img_hist,Fs,'MinPeakDistance',20); 
                [max_pk,max_idx] = max(pks{ii}); 
                %Selecting Largest Peak After Beginning 
                max_loc = locs{ii}(max_idx); 
                %Creating Thresholded Image 
                thresh_img = I; 
                thresh_img(I>max_loc)=max_loc; 
                % Filter, Dilate, and Binarize 
                %Averaging Filter 
                filter_size = 10; 
                ones_mat = ones(filter_size,filter_size)/(filter_size^2); 
                avg_filt_img = imfilter(thresh_img,ones_mat); 
                %Dilation 
                struct_elem = strel('square',36); 
                struct_elem_2 = strel('line',50,90); 
                dilated_img = imdilate(avg_filt_img,struct_elem); 
                dilated_img_2 = imdilate(dilated_img,struct_elem_2); 
                %Adaptive thresholding for background noise in shadowgraph 
                BW_adapt = 
imbinarize(original_img,'adaptive','ForegroundPolarity','dark','Sensitivity',.2); 
              BW_adapt = imcomplement(bwareaopen(imcomplement(BW_adapt),25)); 
                %Fill in gaps in binarized image 
                BW_fill = imfill(imcomplement(BW_adapt),'holes'); 
                holes = logical(BW_fill - BW_adapt); 
                bigholes = bwareaopen(imcomplement(holes), 200); 
                BW_fill_2 = logical(BW_fill - bigholes); 
                %Remove small objects from image 
                BW_ao_img = bwareaopen(BW_fill_2,25); 
                % Identify Connected Components by Attachment to Cup 
                %Establish connected components 
                CC = bwconncomp(BW_ao_img); 
                %Get pixel IDs of components 
                numPixels = cellfun(@numel,CC.PixelIdxList); 
                %Find largets component 
                [biggest,idx] = max(numPixels); 
                %Exclude all other information besides largest component 
                lig_and_cup_img = false(size(BW_ao_img)); 
                lig_and_cup_img(CC.PixelIdxList{idx}) = true; 
                for k = 1:h 
                    lig_edges(k) = find(lig_and_cup_img(k,:)==0,1,'first'); 
                end 
                %                 %Finding approximate cup edge 
                %                             orig_lig_edges = lig_edges; 
                %                             lig_edges(lig_edges==0) = []; 
                %                             xpix = 1:h; 
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                %                             xpix(lig_edges==0) = []; 
                %                      grad_lig_edges = gradient(lig_edges); 
                %                          lig_edges(grad_lig_edges>0) = []; 
                %                             xpix(grad_lig_edges>0) = []; 
                %                        lin_fit = polyfit(xpix,lig_edges,1); 
                %                             real_slope = lin_fit(1); 
                %                      grad_lig_edges = gradient(lig_edges); 
                %             lig_edges(grad_lig_edges<real_slope*1.5) = []; 
                %                   xpix(grad_lig_edges<real_slope*1.5) = []; 
                %             old_eqn = round(lin_fit(1)*xpix + lin_fit(2)); 
                %                          diff_vals = lig_edges - old_eqn; 
                %                             lig_edges(diff_vals>0) = []; 
                %                             xpix(diff_vals>0) = []; 
                %                     lin_fit_2 = polyfit(xpix,lig_edges,1); 
                %                   if abs(lin_fit_2(1))>abs(lin_fit(1)*1.1) 
                %                                 lin_fit_2 = lin_fit; 
                %                             else 
                %                             end 
                %                             slopes(1:2,ii) = lin_fit_2; 
                lin_fit_2 = [-.04,312]; 
                cup_edge_locs = round(polyval(lin_fit_2,1:h)) - 10; %8 is a manual correction 
                dist2edge = median(lig_edges - cup_edge_locs); 
                cup_edge_locs = cup_edge_locs + round(dist2edge); 
                BW_cup = zeros(h,w); 
                for d = 1:h 
                    BW_cup(d,1:cup_edge_locs(d)) = 1; 
                end 
                %Get image with only the ligaments,cup edge, and droplets 
                no_cup_img = BW_ao_img - BW_cup; 
                %Remove droplets from image, leaving ligaments and cup edge 
                lig_only_img = lig_and_cup_img - BW_cup; 
                lig_only_img(lig_only_img==-1)=0; 
                lig_only_img = logical(lig_only_img); 
                %The rest is just the droplets 
                drop_only_img = no_cup_img - lig_and_cup_img; 
                drop_only_img(drop_only_img==-1)=0; 
                drop_only_img = logical(drop_only_img); 
                both_no_cup_img = logical(lig_only_img + drop_only_img); 
                %% 
                %                 BWM = bwmorph(both_no_cup_img,'remove'); 
                %                 IC = imcomplement(I); 
                %                 BWC = imcomplement(BWM); 
                %                 BWC2 = imcomplement(both_no_cup_img); 
                %                 IEG = immultiply(IC,BWC); 
                %                 IEG2 = immultiply(IC,BWC2); 
                %                 EG = imcomplement(IEG); 
                %                 EG2 = imcomplement(IEG2);                 
                %% 
                % Write Processed Images to File 
%                 LigBMPfile = strcat(output_folder,'Ligament BMPs\img_',num2str(ii),'.bmp'); 
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%                 DropBMPfile = strcat(output_folder,'Droplet BMPs\img_',num2str(ii),'.bmp'); 
%                 BothBMPfile = strcat(output_folder,'Combined BMPs\img_',num2str(ii),'.bmp'); 
%                 imwrite(lig_only_img,LigBMPfile); 
%                 imwrite(drop_only_img,DropBMPfile); 
%                 imwrite(both_no_cup_img,BothBMPfile);                 
                % Counting Ligaments 
                %Identify ligament components 
                CC2 = bwconncomp(lig_only_img); 
                Ligaments = CC2.NumObjects; 
                %Determining and Displaying Ligament Properties 
                if Ligaments == 0 
                elseif Ligaments > 0 
                    %Allocating data to struct 
                    L = ligLengths2(lig_only_img); 
                    LL(end+1:end+length(L))=L; 
                    stats(ii).LL = ligLengths2(lig_only_img); 
                    W = ligWidths(lig_only_img,cup_edge_locs); 
                    WW(end+1:end+length(W))=W; 
                    stats(ii).WW = ligWidths(lig_only_img,cup_edge_locs); 
                    %Establishing region properties 
                    sL = regionprops('table',lig_only_img,'Area','PixelIdxList'); 
                    sD = regionprops('table',drop_only_img,'Area','PixelIdxList'); 
                    %Finding Ligament Areas/Perimeters 
                    for z=1:height(sL) 
                        IZ = zeros(h,w); 
                        [AZ]=sL.PixelIdxList{z}; 
                        IZ(AZ)=1; 
                        IZZ = cat(2, zeros(h,1), IZ, zeros(h,1)); 
                        IZZ = cat(1, zeros(1,w+2), IZZ, zeros(1,w+2)); 
                        stats(ii).PL(z)= Perim(IZZ); 
                        PL(end+1:end+length(Perim(IZZ))) = stats(ii).PL(z); 
                        stats(ii).AL(z) = sL.Area(z,1); 
                        AL(end+1:end+length(sL.Area(z,1))) = stats(ii).AL(z); 
                    end 
                    clearvars SL AZ IZ IZZ 
                    %Finding Droplet Areas/Perimeters 
                    for z=1:height(sD) 
                        IZ = zeros(h,w); 
                        [AZ]=sD.PixelIdxList{z}; 
                        IZ(AZ)=1; 
                        IZZ = cat(2, zeros(h,1), IZ, zeros(h,1)); 
                        IZZ = cat(1, zeros(1,w+2), IZZ, zeros(1,w+2)); 
                        stats(ii).PD(z)= Perim(IZZ); 
                        PD(end+1:end+length(Perim(IZZ))) = stats(ii).PD(z); 
                        stats(ii).AD(z) = sD.Area(z,1); 
                        AD(end+1:end+length(sD.Area(z,1))) = stats(ii).AD(z); 
                    end 
                    clearvars SD AZ IZ IZZ 
                end 
            end             
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            % Output Data to Excel Files and Save Workspace Variables   
            struct_file = strcat(output_folder,'workspace.mat'); 
            save(struct_file,'stats') 
            clearvars stats 
            Ligament Excel File 
            lig_filename = strcat(output_folder,'Ligament Data'); 
            xlswrite(lig_filename,LL','Lengths'); 
            xlswrite(lig_filename,WW','Widths'); 
            xlswrite(lig_filename,PL','Perimeters'); 
            xlswrite(lig_filename,AL','Areas'); 
            %Droplet Excel File 
            PD = PD'; 
            [prows,~] = size(PD);             
            pcols = round(prows/10000)+1; 
            PDr = vec2mat(PD,pcols); 
            AD = AD'; 
            [arows,~] = size(AD); 
            acols = round(arows/10000)+1; 
            ADr = vec2mat(AD,acols); 
            drop_filename = strcat(output_folder,'Droplet Data'); 
            xlswrite(drop_filename,PDr,'Perimeters'); 
            xlswrite(drop_filename,ADr,'Areas'); 
            toc 
            end 
        end 
    end 
end 
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