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ABSTRACT OF DISSERTATION

Bounded Point Derivations on Certain Function Spaces

Let X be a compact subset of the complex plane and denote by Rp(X) the closure of
rational functions with poles off X in the Lp(X) norm. We show that if a point x0

admits a bounded point derivation on Rp(X) for p > 2, then there is an approximate
derivative at x0. We also prove a similar result for higher order bounded point
derivations. This extends a result of Wang, which was proven for R(X), the uniform
closure of rational functions with poles off X. In addition, we show that if a point
x0 admits a bounded point derivation on R(X) and if X contains an interior cone,
then the bounded point derivation can be represented by the difference quotient if
the limit is taken over a non-tangential ray to x0. We also extend this result to
the case of higher order bounded point derivations. These results were first shown
by O’Farrell; however, we prove them constructively by explicitly using the Cauchy
integral formula.
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Chapter 1 Introduction

1.1 Capacities

A powerful tool in the study of approximation problems on the complex plane is the
notion of capacities. Much like measures, capacities provide information about the
structure of a set; however, in general the two are not comparable. Unlike measures,
which quantify the size of a set, capacities were originally motivated as a way to
measure the ability of a set to hold an electric charge. However, this physical in-
terpretation does not hold true for every kind of capacity. We now specify the two
capacities that will be used in what follows: analytic capacity and Sobolev q-capacity.

The analytic capacity of a set is a measure of how large functions that are analytic
off the set can become. Notably, the compact sets with analytic capacity zero are the
compact sets which are removable singularities for bounded analytic functions [12,
Theorem 1.10]. Let Ĉ = C ∪ {∞}, and let X be a compact subset of C. A function
f is said to be admissible for X if

1. f is analytic on Ĉ \X.

2. |f(z)| ≤ 1 on Ĉ \X.

3. f(∞) = 0.

The analytic capacity of the compact set X is defined by

γ(X) = sup |f ′(∞)|.

where the supremum is taken over all admissible functions f . Note that f ′(∞) is the
derivative at the point at infinity and not the limit as the derivative tends to infinity.
In fact, f ′(∞) = lim

z→∞
zf(z). If X is not compact, then we define the analytic capacity

of X as γ(X) = sup γ(K), where the supremum is taken over all compact subsets of
X. We review some of the properties of analytic capacity that will be used in our
proofs. More information on analytic capacity can be found in Gamelin’s book [12].

1. Let Br be a disk with radius r. Then γ(Br) = r.

2. Analytic capacity is semi-additive [30]. This means that there exists a constant
C such that for any countable collection of Borel sets En,

γ

(
∞⋃
n=1

En

)
≤ C

∞∑
n=1

γ(En).
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A powerful theorem of Mel’nikov [20, Theorem 4] (See also [19] for the special
case of an annulus) shows how the Cauchy integral of a nice-enough function can be
bounded by the analytic capacity of the set where the function is not analytic.

Theorem 1.1.1. Let Γ be a closed curve that encloses a region U . Let f be any
function continuous and bounded by M0 on U and analytic on U \K, where K is a
compact subset of U . Then there is a constant C which only depends on the curve Γ
such that ∣∣∣∣∫

Γ

f(z)dz

∣∣∣∣ ≤ CM0γ(K).

If f is analytic on U , then Theorem 1.1.1 reduces to Cauchy’s theorem. Thus
Theorem 1.1.1 gives an upper bound for the failure of Cauchy’s theorem for non-
analytic continuous functions.

We will also make use of Sobolev q-capacity. For 1 < q < 2, the q-capacity of a
compact set X, denoted by Γq(X) is defined by

Γq(X) = inf

∫
|∇u|qdA,

where dA is 2 dimensional Lebesgue (Area) measure and the infimum is taken over all
infinitely differentiable functions u with compact support such that u ≡ 1 on X. If X
is not compact then we define the q-capacity of X as Γq(X) = sup Γq(K), where the
supremum is taken over all compacts subsets of X. We review some of the properties
of q-capacity that will be used in our proofs. Proofs of these results and additional
information on q-capacity can be found in the book of Adams and Hedberg [1].

1. For 1 < q < 2, the q-capacity of a ball of radius r is equal to r2−q.

2. q-capacity is monotonic; that is, if E ⊆ F are sets then Γq(E) ≤ Γq(F ).

3. q-capacity is sub-additive. [17] This means that for any countable collection of
Borel sets En,

Γq

(
∞⋃
n=1

En

)
≤

∞∑
n=1

Γq(En).

1.2 Bounded point derivations on R(X)

A key result in the study of rational approximation is Runge’s Theorem.
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Theorem 1.2.1. Let X be a compact subset of the complex plane. If A is a set
that contains at least one point from all of the bounded connected components of the
compliment C\X and f is a function that is analytic on an open neighborhood of X,
then there exists a sequence of rational functions that converges uniformly to f such
that the poles of the rational functions lie in A.

Runge’s theorem shows that a function that is analytic in a neighborhood of a
set can always be uniformly approximated by rational functions with poles outside
the set. Motivated by this result, mathematicians considered the problem of approx-
imating other types of functions by rational functions. One notable example is the
question of when continuous functions can be approximated by rational functions. It
is useful to rephrase this question in the language of functional analysis. Let R0(X)
denote the set of all rational functions whose poles lie off X. For instance if X is the

closed unit disk, then
1

z − 2
belongs to R0(X), but

1

z
does not. Now let C(X) denote

the set of all continuous functions on X and let R(X) denote the subset of C(X)
that consists of all functions in C(X) which on X are uniformly approximable by
functions in R0(X). The question of approximating continuous functions by rational
functions is the same as asking for which sets X does R(X) = C(X). It is easy to see
that a necessary condition for R(X) = C(X) is that X must not contain any interior
points, so from now on we make this assumption. The problem of determining both
necessary and sufficient conditions for R(X) = C(X) was first solved by Vitushkin
[31], who found conditions in terms of analytic capacity.

Theorem 1.2.2. Let X be a compact subset of the complex plane. Then the following
are equivalent.

1. R(X) = C(X).

2. For all open sets U , γ(U \X) = γ(U).

3. For almost all z ∈ X, lim sup
r→0+

γ(Br(z) \X)

r2
> 0.

Vitushkin’s Theorem answers the original question of determining the sets on
which continuous functions can be approximated by rational functions; however, there
are other aspects of rational approximation that are of interest. One example is the
question of how well differentiability is preserved under convergence in the uniform
norm. All functions in R(X) are continuous, but they may not be differentiable. In
fact it is a result of Dolzhenko [10] that there is a nowhere differentiable function in
R(X) whenever X is a nowhere dense set. For this reason, we will consider weaker
notions of analyticity, such as monogenicity to answer this question. A function f
defined on a set E is said to be monogenic at a point x0 ∈ E if the following limit

3



lim
x→x0,x∈E

f(x)− f(x0)

x− x0

holds throughout the points of E. If E is an open set then a function f is monogenic
at each point of E if and only if f is analytic on E. If E is not open, then in general a
monogenic function will not be analytic; however, in many cases it will possess many of
the properties of analytic functions. As an example, Borel [3] constructed a compact
set X with no interior that contains a large dense subset E such that every function f
monogenic on X is infinitely differentiable and uniquely determined by its value and
the values of all its derivatives at any fixed point of E. Thus Borel’s construction gives
an example of a quasianalytic class of functions. There have also been constructions
that extend the uniqueness property of analytic functions to R(X). Sinanjan [28] (See
also [6, pg. 223]) credits Keldysh with the construction of a nowhere dense set X such
that the functions in R(X) are monogenic and such that if any two of them coincide
on an arbitrary portion of X, then they are identical on all of X; however, he does
not provide a specific reference. Another construction is due to Gonchar; although, it
only appears in a survery article of Mel’nikov and Sinanjan [21]. Gonchar constructed
a compact nowhere dense set X such that if any two functions coincide on a set of
positive one-dimensional Hausdorff measure, then they coincide everywhere on X.

For our present purposes of studying the differentiability of functions in R(X) we
introduce a weaker notion of the derivative known as a bounded point derivation. A
bounded point derivation on R(X) at a point x0 is a bounded linear functional, D,
such that for all pairs f, g in R(X), D(fg) = D(f)g(x0) + f(x0)D(g). Thus even
if functions in R(X) fail to be differentiable, it is still possible for them to possess
some type of analytic structure. How close the functions in R(X) can come to being
differentiable can be determined by the existence of bounded point derivations. The
next theorem gives several equivalent notions of a bounded point derivation.

Theorem 1.2.3. The following are equivalent.

1. There is a bounded point derivation on R(X) at x0.

2. The map f → f ′(x0) extends as a bounded linear functional from the rational
functions with poles off X to R(X).

3. There exists a constant C > 0 such that for every f ∈ R0(X), |f ′(x0)| ≤ C||f ||.
Here || · || denotes the sup norm on X.

Proof. (3) =⇒ (2): If f is a function inR(X) then there is a sequence {fj} of rational
functions with poles off X that converges to f uniformly. Thus |f ′j(x0) − f ′k(x0)| ≤
C||fj − fk||, which tends to 0 as j, k → ∞. So {f ′j(x0)} is a Cauchy sequence and
hence converges. Hence the map f → f ′(x0) can be extended from the space of
rational functions with poles off X to a bounded linear functional on R(X), which

4



we denote as D. Moreover, it follows that Df = lim
j→∞

f ′j(x0), where {fj} is a sequence

of rational functions which converges to f uniformly, and that the value of Df does
not depend on the choice of this sequence.

(2) =⇒ (1): Suppose f and g belong to R(X). Then there exists sequences
{fj} and {gj} of rational functions with poles off X which converge uniformly to f
and g respectively. Let D be the extension of the map f → f ′(x0). Then D(fg) =
lim
j→∞

(fjgj)
′(x0) = lim

j→∞
f ′j(x0)gj(x0) + fj(x0)g′j(x0) = D(f)g(x0) + f(x0)D(g), so there

is a bounded point derivation at x0.

(1) =⇒ (3): We will show that a bounded point derivation must send f to
a fixed constant multiple of f ′(x) for all rational functions f . First note that by
definition D(1) = D(1 · 1) = 1D(1) + D(1)1 = 2D(1). Hence D(1) = 0. Now
suppose D(x) = c. Then D(x2) = D(x)x + xD(x) = 2xD(x) = 2cx. Similarly
D(x3) = D(x2)x + x2D(x) = 2cx2 + cx2 = 3cx2. Likewise it follows that if f is

a polynomial then D(f) = cf ′(x). Now let f =
p

q
be a rational function. Then

D(p) = D

(
q · p

q

)
= D(q) · p

q
+ q · D

(
p

q

)
. Hence D

(
p

q

)
=
qD(p)− pD(q)

q2
and

thus a bounded point derivation must send a rational function f to a fixed constant
multiple of f ′(x) from which (3) follows.

These equivalent notions of a bounded point derivation can be used to extend the
definition to higher order derivations. For a non-negative integer t, we say that R(X)
has a bounded point derivation of order t at x0 if there exists a constant C > 0 such
that |f (t)(x0)| ≤ C||f || for all rational functions f with poles off X. An equivalent
definition is to say that R(X) has a bounded point derivation of order t at x0 if the
map f → f (t)(x0) extends as a bounded linear functional from R0(X) to R(X). If
t = 0, we take the 0-th order derivative to be the evaluation of the function at x0. For
this reason, a 0-th order bounded point derivation is usually called a bounded point
evaluation. Bounded point evaluations have been widely studied in both rational
approximation theory and operator theory. (See for instance [4], [11], [15], and [9,
§2.7].) From now on we will use the term bounded point derivation to refer to a first
order bounded point derivation and will specify the order if we mean to refer to a
higher order bounded point derivation.

Not every point admits a bounded point derivation, so it is of great importance to
characterize those points for which bounded point derivations exist. Some examples
show that the amount of bounded point derivations in a set can vary widely. Wermer
[33] gave an example of a nowhere dense set X with the property that R(X) admits
bounded point derivations of order 1 at almost every point of R(X). This example
was generalized by Hallstrom [13] who constructed a nowhere dense set X with the

5



property that almost every point of X admits bounded point derivation of all orders.
At the other extreme, Wermer also constructed a nowhere dense set with no bounded
point derivations in [33] and O’Farrell [24] constructed a nowhere dense set which
contains a single bounded point derivation. The following theorem summarizes some
conditions for the existence of bounded point derivations.

Theorem 1.2.4. Let X be a compact subset of the complex plane.

1. Every interior point of X admits bounded point derivations of all orders for
R(X).

2. There is a bounded point derivation of order t on R(X) at x0 if and only if there
exists a constant C > 0 such that |f (t)(x0)| ≤ C||f || for every f ∈ R0(X). Here
|| · || denotes the sup norm on X.

Proof. (1) follows since the uniform limit of a holomorphic function is holomorphic.
Thus at an interior point every function in R(X) has a derivative. (2) can be proven
in the same way as part (3) of Theorem 1.2.3.

The following example illustrates the use of Theorem 1.2.4.

Example 1.2.5. Let an =
3

2n+2
, let Bn =

{
z : |z − an| <

1

2n+2

}
, and let X =

∆ \
⋃
Bn. Let fn(z) =

1

z − an
. Then |f ′n(0)| = 1

a2
n

= 16
9
· 4n and ||fn|| = 2n+2. Hence

for every C > 0, there exists n such that |f ′n(0)| > C||fn||X . Thus there is no bounded
point derivation on R(X) at 0.

We say that a boundary point of a set is part of the outer boundary if it is a point
on a the boundary of a single connected component of the compliment of the set and
is otherwise part of the inner boundary. Notice that in the above example, 0, which
admitted a bounded point derivation on R(X), is part of the inner boundary. In fact,
in order for a boundary point to admit a bounded point derivation it must belong to
the inner boundary.

Theorem 1.2.6. Let X be a compact subset of the plane and let x0 belong to the
outer boundary of X. Then x0 does not admit a bounded point derivation for R(X).

Proof. Since x0 is on the boundary of a connected component of the compliment of
X, there exists a sequence of points xn /∈ X which converges to x0 and a constant
k > 0 such that for all z ∈ X, |xn − x0| ≤ k|xn − z|. Now let

fn(z) =
x0 − xn
z − xn

.

6



Then for each n, fn(z) ∈ R0(X) and |fn(z)| ≤ k. However f ′n(x0) =
−1

x0 − xn
which

tends to∞ as n→∞. Thus x0 does not admit a bounded point derivation for R(X).

1.3 Necessary and sufficient conditions for bounded point derivations on
R(X)

It is often quite difficult to determine whether R(X) admits bounded point derivations
using the definition alone. Fortunately there are necessary and sufficient conditions
for the existence of bounded point derivations, which are given in terms of analytic
capacity. As these conditions only depend on analytic capacity, they are geometric
rather than analytic.

Theorem 1.3.1. Let An(x0) be the annulus
{
x : 1

2n+1 < |x− x0| < 1
2n

}
and let t be

a non-negative integer. Then there is a bounded point derivation of order t on R(X)
at x0 if and only if

∞∑
n=1

2(t+1)nγ(An(x0) \X) <∞.

Theorem 1.3.1 was first proved for the case of t = 0 (bounded point evaluations)
by Mel’nikov [19]. Hallstrom [13] extended his result to the general case. In Example
1.2.5, We considered a set X such that R(X) did not have a bounded point derivation
at 0. By utilizing Theorem 1.3.1 we can attain the same conclusion.

Example 1.3.2. Let an =
3

2n+2
, let Bn =

{
z : |z − an| <

1

2n+2

}
, and let X =

∆ \
⋃
Bn. Since each Bn is entirely contained in the corresponding An it follows that

γ(An \X) = γ(Bn) =
1

2n+2
and hence

∞∑
n=1

4nγ(An(x0) \X) =
∞∑
n=1

2n−2 =∞.

Thus there is no bounded point derivation on R(X) at 0.

Hallstrom [13] also proved the following necessary condition for the existence of
bounded point derivations.

Theorem 1.3.3. Let Br(x0) be the ball {x : |x−x0| < r}. If there is a bounded point
derivation of order t on R(X) at x0 then

lim
r→0+

γ(Br(x0) \X)

rt+1
= 0.

7



Theorem 1.3.3 provides a necessary condition for the existence of bounded point
derivations. We now show that this condition is not sufficient.

Theorem 1.3.4. There exists a set X ⊆ C containing 0 such that

lim
r→0+

γ(Br(0) \X)

r2
= 0,

but 0 does not admit a bounded point derivation on R(X).

Proof. Let D denote the closed unit disk and let An = { 1
2n+1 < |z| < 1

2n
}. For each n,

let Dn be a disk entirely contained in An with radius
1

n+ 1
· 1

4n+1
. Let X = D\

⋃
Dn.

We will first show that 0 does not admit a bounded point derivation on R(X).

Note that γ(An \X) = γ(Dn) =
1

n+ 1
· 1

4n+1
. Hence

∞∑
n=1

4nγ(An \X) =
∞∑
n=1

4n
1

n+ 1
· 1

4n+1
=
∞∑
n=1

1

4
· 1

n+ 1
=∞.

Hence by Theorem 1.3.1, 0 does not admit a bounded point derivation on R(X).

Next we will show that

lim
r→0+

γ(Br(0) \X)

r2
= 0.

Choose r > 0. Then there exists N such that 1
2N

< r < 1
2N−1 . Thus Br(0) \ X

contains all of the disks Dn for n ≥ N , possibly contains part or all of the disk DN−1,

and contains none of the the disks Dn for n < N − 1. So Br(0) \X =
∞⋃
n=N

Dn

⋃
Dr

where Dr is the part of DN−1 that is contained in Br(0). Hence

γ(Br(0) \X) ≤ γ(
∞⋃

n=N−1

Dn),

and by the semi-additivity of analytic capacity we obtain

lim
r→0+

γ(Br(0) \X)

r2
≤ lim

N→∞

γ(
⋃∞
n=N−1Dn)(

1

2N

)2 ≤ lim
N→∞

C4N
∞∑
n=N

1

n
· 1

4n
.

If we expand the sum we have
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C4N
∞∑
n=N

1

n
· 1

4n
= C4N

(
1

N
· 1

4N
+

1

N + 1
· 1

4N+1
+ ...

)
= C

(
1

N
+

1

N + 1
· 1

4
+ ...

)
.

Let ~u =

(
1

N
,

1

N + 1
, ...

)
and let ~v =

(
1,

1

4
,

1

16
...

)
. Then(

1

N
+

1

N + 1
· 1

4
+ ...

)
= ~u · ~v.

Let ||~x|| = ~x · ~x. By the Cauchy-Schwarz inequality, we know that ~u · ~v ≤ ||~u|| · ||~v||.
Hence we have that

(
1

N
+

1

N + 1
· 1

4
+ ...

)
≤
(

1

N2
+

1

(N + 1)2
+ ...

)(
1 +

1

16
+

1

162
+ ...

)
=

(
∞∑
n=N

1

n2

)(
∞∑
n=0

1

16n

)
.

The second sum is bounded and the first sum tends to 0 as N → ∞. Hence we
conclude that

lim
r→0+

γ(Br(0) \X)

r2
= 0.

1.4 Rational approximation in the areal mean and bounded point deriva-
tions

We now consider rational approximation in the Lp norm where the underlying measure
is 2-dimensional Lebesgue (area) measure. We first review some important results
concerning the Lp norm and Lp spaces. Recall that the Lp norm of a function is

||f ||p =
(∫
|f |pdx

) 1
p . Given a compact set X, we define Lp(X) to be the space of

functions on X with finite Lp norm. The Lp spaces have the following containment
property: For a compact set X, if p < p′ then Lp

′
(X) ⊆ Lp(X). This follows directly

from Hölder’s inequality.

Theorem 1.4.1 (Hölder’s Inequality). Let 1 < p <∞ and let q = p
p−1

. If f ∈ Lp(X)

and g ∈ Lq(X) then

∫
X

|fg|dx ≤
(∫

X

|f |pdx
) 1

p

·
(∫

X

|g|qdx
) 1

q

.
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We now turn our focus to some of the algebraic properties of the Lp spaces.
Recall that a linear functional on a Banach space B is a map φ : B → C such that
φ(αf + g) = αφ(f) + φ(g). A linear functional φ is said to be bounded if there exists
a positive number C such that

sup
f

|φ(f)|
||f ||

< C,

where the supremum is taken over all f ∈ B and the norm || · || is the norm on B.
The dual space of a Banach space B is the space of bounded linear functionals that
act on B. It is well known that the dual space of Lp(X) for 1 < p < ∞ is Lq(X)
where q = p

p−1
. Thus we have the following theorem.

Theorem 1.4.2. Let 1 < p <∞ and let q = p
p−1

. If φ is a bounded linear functional

on Lp(X) then there exists k ∈ Lq(X) such that

φ(f) =

∫
fkdA

for all f ∈ Lp(X).

The measure kdA is called a representing measure for the linear functional.

By analogy with the uniform case, we define the space Rp(X) to be the closure of
rational functions with poles off X in the Lp norm. It follows from Hölder’s inequality
that R(X) is contained in Rp(X), thus proving results for Rp(X) also includes results
for R(X). An interesting problem in rational approximation is to determine under
what conditions on X can every function in Lp(X) be approximated in the Lp norm by
rational functions with poles off X. It is straightforward to show that Rp(X) 6= Lp(X)
unless X has empty interior, so from now on, we will make this assumption. The
full problem was solved in the case of p > 2 by Hedberg [16] who gave necessary and
sufficient conditions for Rp(X) = Lp(X) in terms of Sobolev q-capacity.

Theorem 1.4.3. Let X be a compact set and let 2 < p <∞. Then the following are
equivalent.

1. Rp(X) = Lp(X).

2. For almost every x ∈ X,

lim sup
r→0+

Γq(Br(x) \X)

r2−q > 0.
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When 1 ≤ p < 2, the situation is quite different. Sinanjan has shown that if X
has no interior and 1 ≤ p < 2, then Rp(X) = Lp(X) [28]. This leaves the case of
p = 2. As there is a noticeable difference in approximation in the case of 1 ≤ p < 2
and the case of p > 2, the transition case of p = 2 tends to exhibit properties that
differ from both of the other cases. For instance Hedberg [16] has shown that the
necessary and sufficient conditions for approximation in the L2 norm, while similar
to the ones for p > 2, are not what is expected based on Theorem 1.4.3.

Theorem 1.4.4. Let X be a compact set. Let Γ2 denote Sobolev 2-capacity, which is
defined in Section 1.2.3. Then the following are equivalent.

1. R2(X) = L2(X).

2. For almost every x ∈ X,

lim sup
r→0+

Γ2(Br(x) \X)

r2
> 0.

Our chief interest concerns how much differentiability is preserved under conver-
gence of rational functions in the Lp norm. In general functions in Rp(X) will not
even be continuous much less differentiable. Moreover, since R(X) is contained in
Rp(X), we know from Dolzhenko’s result for R(X) that Rp(X) contains a nowhere
differentiable function whenever X is a nowhere dense set. Hence, as in the case of
uniform rational approximation, we will consider weaker notions of analyticity. One
problem we mention in particular is the problem of constructing a set X so that the
functions in Rp(X) possess the uniqueness property that whenever two functions in
Rp(X) agree on some subset of X, then they are identical on all of X. In 1965, Sinan-
jan [28] constructed the first example of a set with this kind of uniqueness property.
He showed the existence of a compact nowhere dense set X with positive area measure
such that whenever two functions in Rp(X) agree on a relatively open subset of X,
then they agree almost everywhere in X. A set A is said to be relatively open in X if
there is an open set U such that X ∩ U = A. In 1973, Brennan [5] strengthened this
result by showing the existence of a compact nowhere dense set X with positive area
measure such that whenever two functions in Rp(X) agree on a set of positive mea-
sure in X then they agree almost everywhere in X. Notably Brennan’s construction
did not make any use of capacity and instead made use of bounded point derivations
defined on Rp(X).

We now define bounded point derivations on Rp(X). Note that we cannot define
then in exactly the same way that we did for R(X), by the formula D(fg) = D(f)g+
fD(g), because the product fg may not be inRp(X). Instead we make use of Theorem
1.2.3 to extend the definition from R(X) to Rp(X). We say that there is a bounded
point derivation on Rp(X) if there exists a constant C > 0 such that for every rational
function f with poles off X, |f ′(x0)| ≤ C||f ||p. Likewise, for a non-negative integer

11



t, we say that Rp(X) has a bounded point derivation of order t at x0 if there exists
a constant C > 0 such that |f (t)(x0)| ≤ C||f ||p for all rational functions f with poles
off X.

If f is a function in Rp(X) then there is a sequence {fj} of rational functions
with poles off X that converges to f in the Lp norm. If there is a bounded point
derivation at x0 then |f (t)

j (x0) − f (t)
k (x0)| ≤ C||fj − fk||p, which tends to 0 as j and

k tend to infinity. Thus {f (t)
j (x0)} is a Cauchy sequence and hence converges. Hence

the map f → f (t)(x0) can be extended from the space of rational functions with
poles off X to a bounded linear functional on Rp(X), which we denote as Dt

x0
. It

follows that Dt
x0
f = lim

j→∞
f

(t)
j (x0), where {fj} is a sequence of rational functions which

converges to f in the Lp norm, and the value of Dt
x0
f does not depend on the choice

of this sequence. Thus bounded point derivations can be used to define a derivative
for functions in Rp(X) which are not differentiable in the usual sense. In addition,
the existence of different orders of bounded point derivations shows to what extent
differentiability is preserved under convergence in the Lp norm. For these reasons, it
is important to understand the relationship between bounded point derivations and
the usual notion of the derivative. We consider these questions in Chapters 2 and 3.

1.5 Necessary and sufficient conditions for bounded point derivations on
spaces of rational functions in the areal mean

In analogy to the theorems which give necessary and sufficient conditions in terms of
analytic capacity for the existence of bounded point derivations on R(X), there are
necessary and sufficient conditions in terms of q-capacity for the existence of bounded
point derivations on Rp(X). The two theorems in this section were both discovered
by Hedberg [15].

Theorem 1.5.1. Let 2 < p < ∞ and let q = p
p−1

. Let An(x0) be the annulus{
x : 1

2n+1 < |x− x0| < 1
2n

}
. Then there is a bounded point derivation of order t on

Rp(X) at x0 if and only if

∞∑
n=0

2(t+1)nqΓq(An(x0) \X) <∞.

Theorem 1.5.2. Let 2 < p < ∞ and let q = p
p−1

. Let Br(x0) be the ball {x :

|x− x0| < r}. If there is a bounded point derivation of order t on Rp(X) at x0, then

lim
r→0+

Γq(Br(x0) \X)

rq(t+1)
= 0.

This next example demonstrates the utility of Theorem 1.5.1.
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Example 1.5.3. Let 1 < p < ∞ and let q = p
p−1

. Let an =
3

2n+2
, let Bn ={

z : |z − an| < (4−nq · n−2)
1

2−q

}
, and let X = ∆ \

⋃
Bn. Since each Bn is entirely

contained in the corresponding An(x0) it follows that Γq(An(x0) \ X) = Γq(Bn) =
4−nq · n−2 and hence

∞∑
n=1

4nqΓq(An(x0) \X) =
∞∑
n=1

n−2 <∞

Thus there is a (first order) bounded point derivation on Rp(X) at 0.

Theorem 1.5.2 provides a necessary condition for the existence of bounded point
derivations. We now show that this condition is not sufficient.

Theorem 1.5.4. There exists a plane set X containing 0 such that

lim
r→0+

Γq(Br(0) \X)

r2q
= 0

but 0 does not admit a bounded point derivation on Rp(X).

Proof. Let D denote the closed unit disk and let An = { 1
2n+1 < |z| < 1

2n
}. For each

n, let Dn be a disk entirely contained in An with radius

(
1

n+ 1
· 1

4(n+1)q

) 1
2−q

. Let

X = D \
⋃
Dn.

We will first show that 0 does not admit a bounded point derivation on R(X).

Note that Γq(An \X) = Γq(Dn) =
1

n+ 1
· 1

4(n+1)q
. Hence

∞∑
n=1

4nqΓq(An \X) =
∞∑
n=1

4nq · 1

n+ 1
· 1

4(n+1)q
=
∞∑
n=1

1

n+ 1
· 1

4q
=∞.

Hence by Theorem 1.5.1, 0 does not admit a bounded point derivation on Rp(X).

Next we will show that

lim
r→0+

Γq(Br(0) \X)

r2q
= 0.

Choose r > 0. Then there exists N such that 1
2N

< r < 1
2N−1 . Thus Br(0) \ X

contains all of the disks Dn for n ≥ N , possibly contains part or all of the disk DN−1,

and contains none of the the disks Dn for n < N − 1. So Br(0) \X =
∞⋃
n=N

Dn

⋃
Dr

where Dr is the part of DN−1 that is contained in Br(0). Hence
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Γq(Br(0) \X) ≤ Γq(
∞⋃

n=N−1

Dn),

and by the sub-additivity of q-capacity we obtain

lim
r→0+

Γq(Br(0) \X)

r2q
≤ lim

N→∞

Γq(
⋃∞
n=N−1Dn)(
1

2N

)2q ≤ lim
N→∞

C4Nq
∞∑
n=N

1

n
· 1

4nq
.

If we expand the sum we have

C4Nq
∞∑
n=N

1

n
· 1

4nq
= C4Nq

(
1

N
· 1

4Nq
+

1

N + 1
· 1

4(N+1)q
+ . . .

)
= C

(
1

N
+

1

N + 1
· 1

4q
+ . . .

)
.

Let ~u =

(
1

N
,

1

N + 1
, . . .

)
and let ~v =

(
1,

1

4q
,

1

16q
. . .

)
. Then(

1

N
+

1

N + 1
· 1

4q
+ . . .

)
= ~u · ~v.

By the Cauchy-Schwarz inequality, we know that ~u · ~v ≤ ||~u|| · ||~v||. Hence we have
that

(
1

N
+

1

N + 1
· 1

4q
+ . . .

)
≤
(

1

N2
+

1

(N + 1)2
+ . . .

)(
1 +

1

16q
+

1

162q
+ . . .

)
=

(
∞∑
n=N

1

n2

)(
∞∑
n=0

(
1

16q

)n)
.

The second sum is bounded and the first sum tends to 0 as N → ∞. Hence we
conclude that

lim
r→0+

Γq(Br(0) \X)

r2q
= 0.

Copyright© Stephen Deterding, 2018.
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Chapter 2 Difference quotient formulas and approximate derivatives

2.1 Uniform rational approximation

We now consider the relationship between bounded point derivations and the usual
notion of the derivative. In particular, if there is a bounded point derivation at x0

then we would like to know how close the functions in R(X) or Rp(X) come to being
differentiable. One way to do this would be to find a difference quotient formula that
represents the bounded point derivation. That is, given a bounded point derivation
at x0 ∈ X, can we find a set E such that

Df = lim
x→x0,x∈E

f(x)− f(x0)

x− x0

(2.1.1)

for all f in R(X)? The size of the set E tells us how close functions in R(X) come to
being differentiable. Since Dolzhenko showed that R(X) always contains a nowhere
differentiable function when X has no interior, we know that that E cannot be all of
X. The next possibility is that E is a set with full area density at x0. This means
that if we let ∆n(x0) denote the ball centered at x0 with radius 1

n
and let m denote 2

dimensional Lebesgue measure, then lim
n→∞

m(∆n(x0) \ E)

m(∆n(x0))
= 0. If the set E in (2.1.1)

has full area density at x0 then we say that f has an approximate derivative at x0.
The concept of an approximate derivative stretches back to the work of Men’shov,
although he used the term asymptotic derivative. In [22], Men’shov proved that a
function that is continuous on a domain and has an approximate derivative at almost
every point of the domain must be analytic on the domain. Wang [32] has proven
the following theorem which shows that if R(X) has a bounded point derivation at
x0 then every function in R(X) has an approximate derivative at x0.

Theorem 2.1.1. Suppose that there is a bounded point derivation on R(X) at x0

denoted by D1
x0

. Then given a function f in R(X), there exists a set E of full area
density at x0 such that

D1
x0
f = lim

x→x0,x∈E

f(x)− f(x0)

x− x0

.

We will also consider the extension of Theorem 2.1.1 to higher order bounded
point derivations. To do so we first consider how to define higher order approximate
derivatives and higher order difference quotients. Intuitively, a higher order approxi-
mate derivative at x0 should be defined in the same way as a higher order derivative
except that the limit of the difference quotient should be taken over a set with full
area density at x0. However, a function in Rp(X) may not have derivatives of any
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orders and thus we cannot define an approximate higher order derivative in terms
of any of the lower order derivatives. Hence we will use the following definition for
higher order difference quotients.

Definition 2.1.2. Let t be a positive integer, let f be a function in R(X) or Rp(X),
let x0 be a point in X, and choose h ∈ C so that f is defined at x0+sh for s = 0, 1, ..., t.
The t-th order difference quotient of f at x0 and h is denoted by ∆t

hf(x0) and
defined by

∆t
hf(x0) = h−t

t∑
s=0

(−1)t−s
(
t

s

)
f(x0 + sh).

For this definition to be reasonable, it should agree with the usual definition for
higher order derivatives when f has derivatives of all orders.

Theorem 2.1.3. Suppose that f has derivatives of all orders on a neighborhood of
x0. Then for all positive integers t, f (t)(x0) = lim

h→0
∆t
hf(x0).

Proof. The proof is by induction. Since ∆1
hf(x0) =

f(x0 + h)− f(x0)

h
the theorem

is true for t = 1. Now assume that f (t−1)(x0) = lim
h→0

∆t−1
h f(x0). Then

f (t)(x0) = lim
h→0

∆t−1
h f(x0 + h)−∆t−1

h f(x0)

h
= lim

h→0
∆1
h ◦∆t−1

h f(x0).

Thus to show that f (t)(x0) = lim
h→0

∆t
hf(x0) it is enough to prove that ∆1

h ◦
∆t−1
h f(x0) = ∆t

hf(x0). It follows from Definition 2.1.2 that

∆1
h ◦∆t−1

h f(x0)h−t =

{
t−1∑
s=0

(−1)t−1−s
(
t− 1

s

)
f(x0 + (s+ 1)h)

−
t−1∑
s=0

(−1)t−1−s
(
t− 1

s

)
f(x0 + sh)

}
.

A change of variable of s = s− 1 in the first sum yields

∆1
h ◦∆t−1

h f(x0) = h−t

{
t∑

s=1

(−1)t−s
(
t− 1

s− 1

)
f(x0 + sh)

−
t−1∑
s=0

(−1)t−1−s
(
t− 1

s

)
f(x0 + sh)

}
.
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Multiplying the second sum by (−1) changes the subtraction to addition. Then
moving the t-th term of the first sum outside the sum and doing the same to the 0-th
term of the second sum yields

∆1
h ◦∆t−1

h f(x0) = h−t

{
f(x0 + th) +

t−1∑
s=1

(−1)t−s
(
t− 1

s− 1

)
f(x0 + sh)

+
t−1∑
s=1

(−1)t−s
(
t− 1

s

)
f(x0 + sh) + (−1)tf(x0)

}
.

The two sums can be combined using the binomial identity
(
t−1
s−1

)
+
(
t−1
s

)
=
(
t
s

)
.

Hence

∆1
h ◦∆t−1

h f(x0) = h−t

{
f(x0 + th) +

t−1∑
s=1

(−1)t−s
(
t

s

)
f(x0 + sh) + (−1)tf(x0)

}
.

In addition since
(
t
0

)
=
(
t
t

)
= 1 the two terms outside the sum can be put back

into the sum and thus

∆1
h ◦∆t−1

h f(x0) = h−t
t∑

s=0

(−1)t−s
(
t

s

)
f(x0 + sh) = ∆t

hf(x0).

We now define higher order approximate derivatives using Definition 2.1.2.

Definition 2.1.4. Let t be a positive integer. A function f in R(X) or Rp(X) has
an approximate derivative of order t at x0 if there exists a set E ′ with full area
density at 0, and a number L such that

lim
h→0,h∈E′

∆t
hf(x0) = L

We say that L is the approximate derivative of order t at x0.

Thus a t-th order approximate derivative at x0, is a t-th order difference quotient
in which the limit as h→ 0 is taken over a set with full area density at 0. The reason
that the set E ′ has full area density at 0 instead of at x0 is that the limits in the
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definitions of usual higher order derivatives are taken as h → 0 and therefore, the
higher order approximate derivatives must be defined similarly.

The following higher order extension of Theorem 2.1.1 was also proven by Wang
[32].

Theorem 2.1.5. Let t be a positive integer and suppose that there exists a bounded
point derivation of order t on R(X) at x0 denoted by Dt

x0
. Then given a function f

in R(X) there exists a set E ′ with full area density at 0, such that

Dt
x0
f = lim

h→0,h∈E′
∆t
hf(x0).

2.2 Rational approximation in the areal mean

We will show that Theorems 2.1.1 and 2.1.5 can be extended from R(X) to Rp(X).
Our first result is the following theorem.

Theorem 2.2.1. For 2 < p < ∞, suppose that there is a bounded point derivation
on Rp(X) at x0 denoted by D1

x0
. Then given a function f in Rp(X), there exists a

set E of full area density at x0 such that

D1
x0
f = lim

x→x0,x∈E

f(x)− f(x0)

x− x0

.

We remark that this theorem is only valid for 2 < p < ∞. Recall that when
1 ≤ p < 2, Rp(X) = Lp(X) and thus there are no bounded point derivations on
Rp(X). In fact there are not even bounded point evaluations [4, Lemma 3.5]. This
still leaves open the case of p = 2. It is possible for bounded point derivations on
R2(X) to exist; however, we do not know whether Theorem 2.2.1 still holds for R2(X).

We will also prove the following higher order extension of Theorem 2.2.1.

Theorem 2.2.2. Let t be a positive integer. For 2 < p <∞ suppose that there exists
a bounded point derivation of order t on Rp(X) at x0 denoted by Dt

x0
. Then given a

function f in Rp(X) there exists a set E ′ with full area density at 0, such that

Dt
x0
f = lim

h→0,h∈E′
∆t
hf(x0).

2.3 Results from measure theory

In this section, we briefly review some results from measure theory to be used in our
proofs. From now on q denotes the conjugate exponent to p; that is, q = p

p−1
, and dA

denotes 2 dimensional Lebesgue (area) measure. Since a bounded point derivation is
a bounded linear functional, it follows from Theorem 1.4.2 that there exists a function
k in Lq(X) such that the measure kdA represents the bounded point derivation. If the
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representing measure for a t-th order bounded point derivation on Rp(X) is known,
then it would be useful to have a method for finding the representing measures for
bounded point derivations of lesser orders. The next lemma, which describes such a
method, is based on a theorem of Wilken [34].

Lemma 2.3.1. Let 1 ≤ p <∞. Let t be a positive integer and suppose that there is a
t-th order bounded point derivation on Rp(X) at x0 with representing measure ktdA.
For each m with 0 ≤ m ≤ t, let km = m!

t!
(z − x0)t−mkt. Then km belongs to Lq(X)

and kmdA represents an m-th order bounded point derivation on Rp(X) at x0.

Proof. Since kt belongs to Lq(X), km also belongs to Lq(X). To prove that km
represents an m-th order bounded point derivation on Rp(X) at x0, we first suppose
that f is a rational function with poles off X. Hence f(z)(z − x0)t−m is a rational
function and integrating f(z)(z − x0)t−m against the measure ktdA is the same as
evaluating the t-th derivative of f(z)(z − x0)t−m at z = x0, which can be done using
the general Leibniz rule. The only term that will not vanish is the term which puts
exactly t−m derivatives on (z − x0)t−m and m derivatives on f(z). Hence∫

f(z)(z − x0)t−mkt(z)dAz =

(
t

m

)
(t−m)!f (m)(x0) =

t!

m!
f (m)(x0),

and ∫
f(z)km(z)dAz = f (m)(x0).

Hence by Hölder’s inequality, |f (m)(x0)| ≤ ||km||q||f ||p. So there is a bounded point
derivation of order m at x0 and the measure kmdA represents the bounded point
derivation.

Lastly, we review the definitions of the Cauchy transform and Newtonian potential
of a measure.

Definition 2.3.2. Let k ∈ Lq(X).

1. The Cauchy transform of the measure kdA, which is denoted by k̂(x) is
defined by

k̂(x) =

∫
k(z)

z − x
dAz.

2. The Newtonian potential of the measure kdA, which is denoted by k̃(x) is
defined by

k̃(x) =

∫
|k(z)|
|z − x|

dAz.
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2.4 A set with full area density at a certain point

In this section a method is given to construct a set with full area density at x0

which also possesses the properties needed for the proofs of Theorems 2.2.1 and 2.2.2.
Constructing this set can be accomplished by first listing the desired properties and
then showing that the set with these desired properties has full area density at x0.

Theorem 2.4.1. Suppose 1 < q < 2. Let k ∈ Lq(X), and let 0 < δ0 < 1. Let E be
the set of x in X that satisfy the following properties.

1.

∫
X

|(x− x0)k(z)|q

|z − x|q
dA < δ0.

2. |x− x0|k̃(x) < δ0.

Then E has full area density at x0.

To prove Theorem 2.4.1, we will need a few lemmas. The first lemma is an
extension of a result of Browder [7, Lemma 1].

Lemma 2.4.2. Suppose 1 < q < 2. Let χ{x0} be the characteristic function of the
point x0 and let m denote 2 dimensional Lebesgue measure. For n positive, let ∆n =

{x : |x − x0| < 1
n
} and let wn(z) =

1

m(∆n)

∫
∆n

|x− x0|q

|z − x|q
dmx. Then wn(z) ≤ 2

2− q
for all z and all n, and wn(z)→ χ{x0} pointwise as n→∞.

Proof. We first show that wn(z) → χ{x0} pointwise as n → ∞. If z = x0, then the
integrand is identically 1 and wn(z) = 1 for all n. Now suppose that z 6= x0. If n is
sufficiently large, then |z − x0| > 1

n
and thus z need not be in ∆n for large n. Since

the measure of ∆n is π
n2 , we can rewrite wn(z) as

n2

π

∫
∆n

|x− x0|q

|z − x|q
dmx. In addition

since x belongs to ∆n, |x − x0| ≤ 1
n
. Therefore wn(z) ≤ n2−q

π

∫
∆n

1

|z − x|q
dmx. If n

is sufficiently large, it follows from the reverse triangle inequality that

|z − x| ≥
∣∣∣|z − x0| − |x0 − x|

∣∣∣ ≥ |z − x0| −
1

n
> 0.

Thus |z − x|q > (|z − x0| − 1
n
)q > 0 and

wn(z) ≤ n2−q

π(|z − x0| − 1
n
)q

∫
∆n

dmx ≤
n−q

(|z − x0| − 1
n
)q
,
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which tends to 0 as n → ∞. Thus if z 6= x0 then wn(z) → 0 pointwise as n → ∞
and hence wn(z)→ χ{x0} pointwise as n→∞.

To show that wn(z) ≤ 2

2− q
for all z and all n, we first recall the inequality

wn(z) ≤ n2−q

π

∫
∆n

1

|z − x|q
dmx

which was proved above. Now, the value of the integral would be larger if the inte-
gration was performed over B(z, 1

n
), the disk with radius 1

n
centered at z instead of

integrating over ∆n. Hence,

wn(z) ≤ n2−q

π

∫
B(z, 1

n
)

1

|z − x|q
dmx.

It follows from a calculation that

∫
B(z, 1

n
)

1

|z − x|q
dmx =

2πn−(2−q)

2− q
. Hence wn(z) ≤

2

2− q
.

We note that it is in the above lemma, that our proof breaks down for the case
of p = 2. If p = 2, then q = 2, but wn(z) is no longer bounded in this case since 1

z2
is

not locally integrable.

Lemma 2.4.3. Suppose 1 < q < 2. Let ∆n =
{
x ∈ X : |x− x0| < 1

n

}
, let k ∈ Lq(X)

and let m denote 2 dimensional Lebesgue measure. Then

1

m(∆n)

∫
∆n

{∫
X

|x− x0|q|k(z)|q

|z − x|q
dmz

}
dmx → 0

as n→∞.

Proof. Let wn(z) be as in the previous lemma. Since wn(z) is uniformly bounded for

all n,

∫
X

wn(z)|k(z)|q ≤ C

∫
X

|k(z)|q and because k(z) ∈ Lq(X), it follows that this

integral is bounded. Since wn(z) → 0 almost everywhere as n → ∞, it follows from

the dominated convergence theorem that

∫
X

wn(z)|k(z)|q → 0 as n → ∞. Recall

that wn(z) =
1

m(∆n)

∫
∆n

|x− x0|q

|z − x|q
dmx. Hence interchanging the order of integration

yields
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1

m(∆n)

∫
∆n

{∫
X

|x− x0|q|k(z)|q

|z − x|q
dmz

}
dmx → 0

as n→∞.

Lemma 2.4.4. Suppose 1 < q < 2. Choose δ > 0, let k ∈ Lq(X) and let m denote 2
dimensional Lebesgue measure. Let

Eδ =

{
x ∈ X :

∫
X

|x− x0|q|k(z)|q

|z − x|q
dmz < δ

}
.

Then Eδ has full area density at x0.

Proof. It follows immediately from the definition of Eδ that

1

m(∆n)

∫
∆n\Eδ

{∫
X

|x− x0|q|k(z)|q

|z − x|q
dmz

}
dmx ≥

δm(∆n \ Eδ)
m(∆n)

.

By Lemma 2.4.3 the left hand side tends to 0 as n→∞. Thus lim
n→∞

m(∆n \ Eδ)
m(∆n)

=

0 and Eδ has full area density at x0.

The proof of Theorem 2.4.1 now follows from Lemma 2.4.4.

Proof. (Theorem 2.4.1)

Lemma 2.4.4 immediately implies that the set of x in X where property 1 holds
has full area density at x0. To show that the set where property 2 holds also has full
area density at x0 note that by Hölder’s inequality

∫
X

|x− x0||k(z)|
|z − x|

dmz ≤
{∫

X

|x− x0|q|k(z)|q

|z − x|q
dmz

} 1
q

·m(X)
1
p .

It follows from Lemma 2.4.4 that the integral on the right is bounded. If m(X) =
0, then property 2 holds for any choice of δ0 > 0 and we are done. Thus we can

assume that m(X) 6= 0. If the integral on the right hand side is less that
δ0

m(X)
1
p

then the left hand side will be less than δ0. This can be done by choosing δ =
δ0

m(X)
1
p

in Lemma 2.4.4. Thus property 2 also holds on a set with full area density at x0 and
thus the set E has full area density at x0.
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2.5 The existence of approximate derivatives

The goal of this section is to prove Theorem 2.2.1 by showing that, for 2 < p <∞, the
existence of a bounded point derivation on Rp(X) at x0 implies that every function
in Rp(X) has an approximate derivative at x0. Choose f in Rp(X) and let g(z) =
f(z)−D0

x0
f −D1

x0
f · (x−x0). Then to show that f(z) has an approximate derivative

at x0, it suffices to show that g(z) has an approximate derivative at x0 since g(z)
differs from f(z) by a polynomial. The reason that it is more advantageous to work
with g(z) rather than f(z) is that D0

x0
(g) = D1

x0
(g) = 0.

Consider the following family of linear functionals defined for every x ∈ X:

Lx(F ) =
F (x)

x− x0

− D1
x0
F . To prove Theorem 2.2.1, it suffices to show that there

is a set E with full area density at x0 such that Lx(g) → 0 as x → 0 through the

points of E. Once this is shown, it follows that lim
x→x0

g(x)

x− x0

− D1
x0
g = 0 and since

g(x0) = 0, this shows that g has an approximate derivative at x0.

Since Rp(X) has a bounded point derivation at x0, there exists a function k1 in
Lq(X) such that the measure k1dA represents the bounded point derivation. Hence by
Lemma 2.3.1, the function k = (z−x0)k1 belongs to Lq(X) and kdA is a representing
measure for x0. Fix 0 < δ0 < 1 and let E be the set of x in X that satisfies the
following properties.

1.

∫
X

|(x− x0)k1|q

|z − x|q
dA < δ0.

2.

∫
X

|(x− x0)k|q

|z − x|q
dA < δ0.

3. |x− x0|k̃(x) < δ0.

It follows from Theorem 2.4.1 that E has full area density at x0.

To show that Lx(g) → 0 through E it is useful to consider how g(z) can be
approximated by rational functions with poles off X. Since f is in Rp(X), there is a
sequence {fj} of rational functions with poles off X which converges to f(z) in the
Lp norm. Let gj(z) = fj(z) − D0

x0
fj − D1

x0
fj · (x − x0). Then {gj} is a sequence of

rational functions with poles off X that possesses the following properties:

1. {gj} → g(z) in the Lp norm.

2. For each j, D0
x0
gj = D1

x0
gj = 0.

3. Lx(gj)→ 0 as x→ x0.
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The first two properties are easy to verify. The third property follows since gj(z) is
a rational function with poles off X and thus D1

x0
gj = g′j(x0).

It now follows from the linearity of Lx and the triangle inequality that |Lx(g)| ≤
|Lx(g − gj)| + |Lx(gj)|. Hence to show that Lx(g) → 0 as x → x0, it follows from
property 3 that it is enough to show that Lx(g − gj)→ 0 as j →∞. By property 1,
it suffices to prove that there is a constant C which does not depend on x such that
for all x in E, |Lx(g− gj)| ≤ C||g− gj||p. Moreover, since a bounded point derivation
is already a bounded linear functional, it is enough to show that there is a constant

C which does not depend on j or x such that

∣∣∣∣g(x)− gj(x)

x− x0

∣∣∣∣ ≤ C||g − gj||p. This is

done in Lemma 2.5.2.

We will first need to construct a representing measure for x in E, which allows
g(x)− gj(x)

x− x0

to be expressed by an integral, from which the desired bound can be

obtained. To do this, we borrow a technique of Bishop [2]. Bishop showed that if µ is
an annihilating measure on R(X) (i.e

∫
fdµ = 0 for all f in R(X)) and if the Cauchy

transform µ̂(x) is defined and nonzero, then the measure defined by
1

µ̂(x)

µ(z)

z − x
is a

representing measure for x. If kdA is a representing measure for x0 on Rp(X) then
(z − x0)kdA is an annihilating measure on Rp(X) and thus Bishop’s technique can
be used to construct a representing measure for x on Rp(X).

Lemma 2.5.1. Let k be a function in Lq(X) such that kdA is a representing measure

for x0. Choose x in X and suppose that |x−x0|k̃ < δ < 1, and that
(x− x0)k

z − x
belongs

to Lq(X). Let c = (z − x0)k
∧

(x) and let kx(z) =
1

c

(z − x0)k(z)

z − x
. Then there exists a

bounded point evaluation on Rp(X) at x and kxdA is a representing measure for x.

Proof. Before we begin the proof, we note a few things. First

c = (z − x0)k
∧

(x) =

∫
(z − x0)k

z − x
dAz = 1 +

∫
(x− x0)k

z − x
dAz = 1 + (x− x0)k̂(x).

Thus 1− |x− x0|k̃(x) ≤ |c| ≤ 1 + |x− x0|k̃(x) and hence, 1− δ ≤ |c| ≤ 1 + δ. Since
δ < 1, kx is well defined. Second, kx can also be written as follows:

kx(z) =
(z − x0)k(z)

(z − x)(1 + (x− x0)k̂(x))
.
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Finally,
(z − x0)k(z)

z − x
= 1 +

(x− x0)k(z)

z − x
and hence kx belongs to Lq(X).

If F is a rational function with poles off X,
[F (z)− F (x)](z − x0)

z − x
is also a

rational function with poles off X. Since kdA is a representing measure for x0,∫
[F (z)− F (x)](z − x0)

z − x
k(z)dAz = 0 and hence

∫
F (z)(z − x0)

z − x
k(z)dAz −

∫
F (x)(z − x0)

z − x
k(z)dAz = 0.

Since z − x0 = z − x+ x− x0, it follows that

∫
F (x)(z − x0)

z − x
k(z)dAz =

∫
F (x)k(z)dAz +

∫
F (x)(x− x0)k(z)

z − x
dAz

= F (x)(1 + (x− x0)k̂(x)).

Hence F (x) =

∫
F (z)(z − x0)k(z)

(z − x)(1 + (x− x0)k̂(x))
dAz. So F (x) =

∫
F (z)kx(z)dA whenever

F is a rational function with poles off X. Thus by Hölder’s inequality |F (x)| ≤
||kx||q||F ||p and since kx is an Lq function, it follows that x admits a bounded point
evaluation on Rp(X) and that kxdA is a representing measure for x.

Lemma 2.5.2. Suppose that x belongs to E and let j be a positive integer. Then

there exists a constant C which does not depend on x or j such that
|g(x)− gj(x)|
|x− x0|

≤

C||g − gj||p.

Proof. If x belongs to E, then the hypotheses of Lemma 2.5.1 are satisfied and kxdA
is a representing measure for x. Thus

|g(x)− gj(x)| = 1

|c|

∣∣∣∣∫ [g(z)− gj(z)]

(
z − x0

z − x

)
k(z)dAz

∣∣∣∣ .
Since D0

x0
[g(z)− gj(z)] = 0, it follows that

∫
[g(z)− gj(z)]k(z)dAz = 0. Now since
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∫
[g(z)− gj(z)]

(
z − x0

z − x

)
k(z)dAz =

∫
[g(z)− gj(z)]k(z)dAz

+

∫
[g(z)− gj(z)]

(
x− x0

z − x

)
k(z)dAz,

we obtain that

|g(x)− gj(x)| = |x− x0|
|c|

∣∣∣∣∫ [g(z)− gj(z)]
k(z)

z − x
dAz

∣∣∣∣ . (2.5.1)

Next, observe that
1

z − x
=

1

z − x0

+
x− x0

(z − x)(z − x0)
. Applying this observation to

(2.5.1) yields

|g(x)− gj(x)| = |x− x0|
|c|

∣∣∣∣∫ [g(z)− gj(z)]
k(z)

z − x0

dAz

+

∫
[g(z)− gj(z)]

(x− x0)k(z)

(z − x)(z − x0)
dAz

∣∣∣∣ . (2.5.2)

The first integral in (2.5.2) is the same as the bounded point derivation at x0 applied
to g(z)− gj(z) which is 0, and hence

|g(x)− gj(x)| = |x− x0|
|c|

∣∣∣∣∫ [g(z)− gj(z)]
(x− x0)k1(z)

(z − x)
dAz

∣∣∣∣ .
Finally by Hölder’s inequality,

|x− x0|
|c|

∣∣∣∣∫ [g(z)− gj(z)]
(x− x0)k1(z)

(z − x)
dAz

∣∣∣∣ ≤ |x− x0|
|c|

‖g − gj‖p

∥∥∥∥(x− x0)k1

(z − x)

∥∥∥∥
q

and since it follows from property 1 of E that

∥∥∥∥(x− x0)k1

(z − x)

∥∥∥∥
q

≤ δ0, there is a constant

C that does not depend on x or j such that

|g(x)− gj(x)| ≤ C|x− x0| · ||g − gj||p.
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2.6 Higher order bounded point derivations

The goal of this section is to prove Theorem 2.2.2 by modifying the proof of Theorem

2.2.1. Choose f in Rp(X) and let g(z) = f(z)−D0
x0
f −D1

x0
f · (z−x0)− ...− 1

t!
Dt
x0
f ·

(z−x0)t. Then Dm
x0
g = 0 for 0 ≤ m ≤ t. As before, to show that f(z) has a t-th order

approximate derivative at x0 it suffices to show that g(z) has a t-th order approximate
derivative at x0.

Consider the following family of linear functionals defined for every h in C:
Lh(F ) = ∆t

hF (x0)−Dt
x0
F . To prove Theorem 2.2.2, it suffices to show that there is

a set E ′ with full area density at 0 such that Lh(g)→ 0 as h→ 0 through the points
of E ′. Once this is shown, it follows that lim

h→0,h∈E′

∣∣∆t
hg(x0)−Dt

x0
g
∣∣ = 0 and thus g

has a t-th order approximate derivative at x0.

Since there is a t-th order bounded point derivation on Rp(X) at x0, there exists
a function kt in Lq(X) such that the measure ktdA represents this t-th order bounded

point derivation. Hence by Lemma 2.3.1, the function k =
(z − x0)kt

t!
belongs to

Lq(X) and kdA is a representing measure for x0. Fix 0 < δ0 < 1 and let E be the set
of x in X that satisfies the following properties.

1.

∫
X

|(x− x0)kt|q

|z − x|q
dA < δ0.

2.

∫
X

|(x− x0)k|q

|z − x|q
dA < δ0.

3. |x− x0|k̃(x) < δ0.

It follows from Theorem 2.4.1 that E has full area density at x0. Now, for 1 ≤

s ≤ t, let Es = {h ∈ C : x0 + sh ∈ E} and let E ′ =
t⋂

s=1

Es. Then for each s, Es has

full area density at 0 and hence E ′ also has full area density at 0.

As in the previous section, to show that Lh(g) tends to 0 through E ′ it is useful to
consider how g(z) can be approximated by rational functions with poles off X. Since
f belongs to Rp(X), there is a sequence {fj} of rational functions with poles off X
which converges to f(z) in the Lp norm. Let gj(z) = fj(z) − D0

x0
fj − D1

x0
fj · (x −

x0)− ...− 1

t!
Dt
x0
fj · (x−x0)t. Then {gj} is a sequence of rational functions with poles

off X that possesses the following properties.

1. {gj} → g(z) in the Lp norm.
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2. For each j, Dm
x0
gj = 0 for 0 ≤ m ≤ t.

3. Lh(gj)→ 0 as h→ 0.

The first two properties are easy to verify. The third property follows since gj(z) is

a rational function with poles off X and thus Dt
x0
gj = g

(t)
j (x0).

It now follows from the linearity of Lh and the triangle inequality that |Lh(g)| ≤
|Lh(g − gj)| + |Lh(gj)|. Hence to show that Lh(g) → 0 as h → 0, it follows from
property 3 that it is enough to show that Lh(g − gj) → 0 as j → ∞. By property
1 it suffices to prove that there is a constant C which does not depend on h such
that for all h in E ′, |Lh(g − gj)| ≤ C||g − gj||p. Moreover, since a bounded point
derivation is already a bounded linear functional, it is enough to show that there is a
constant C which does not depend on j such that |∆t

h(g(x0)− gj(x0))| ≤ C||g− gj||p.
Furthermore, since the difference quotient is a finite linear combination of terms of
the form g(x0 + sh) − gj(x0 + sh), it is enough to show that for each s between 0
and t, |g(x0 + sh)− gj(x0 + sh)| ≤ C||g − gj||p. This is done in Lemma 2.6.2. First,
however, we prove the following factorization lemma.

Lemma 2.6.1. Let t be a positive integer. Then

1

z − x
=

t∑
m=1

(x− x0)m−1

(z − x0)m
+

(x− x0)t

(z − x)(z − x0)t
.

Proof. The proof is by induction. For the base case, note that

1

z − x
=

1

z − x0

+
x− x0

(z − x)(z − x0)
. (2.6.1)

Now assume that we have shown that

1

z − x
=

t−1∑
m=1

(x− x0)m−1

(z − x0)m
+

(x− x0)t−1

(z − x)(z − x0)t−1
.

Then

1

z − x
=

t−1∑
m=1

(x− x0)m−1

(z − x0)m
+

1

z − x
· (x− x0)t−1

(z − x0)t−1
,

and applying (2.6.1) to the
1

z − x
term in the sum proves the lemma.
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Lemma 2.6.2. Suppose that h belongs to E ′ and let j be a positive integer. Let
0 ≤ s ≤ t. Then there exists a constant C which does not depend on h or j such that
|g(x0 + sh)− gj(x0 + sh)|

|h|t
≤ C||g − gJ ||p.

Proof. Let x = x0 + sh. Then x belongs to E and the hypotheses of Lemma 2.5.1 are
satisfied, so kxdA is a representing measure for x. Thus

|g(x)− gj(x)| = 1

|c|

∣∣∣∣∫ [g(z)− gj(z)]

(
z − x0

z − x

)
k(z)dAz

∣∣∣∣ .
Since D0

x0
[g(z)− gj(z)] = 0, it follows that

∫
[g(z)− gj(z)]k(z)dAz = 0. Now since

∫
[g(z)− gj(z)]

(
z − x0

z − x

)
k(z)dAz =

∫
[g(z)− gj(z)]k(z)dAz

+

∫
[g(z)− gj(z)]

(
x− x0

z − x

)
k(z)dAz,

we obtain that

|g(x)− gj(x)| = |x− x0|
|c|

∣∣∣∣∫ [g(z)− gj(z)]
k(z)

z − x
dAz

∣∣∣∣ . (2.6.2)

Applying Lemma 2.6.1 to the
k(z)

z − x
term in the rightmost integral in (2.6.2) shows

that

|g(x)− gj(x)|− =
|x− x0|
|c|

∣∣∣∣∣
t∑

m=1

∫
[g(z)− gj(z)]

(x− x0)m−1k(z)

(z − x0)m
dAz

+

∫
[g(z)− gj(z)]

(x− x0)tk(z)

(z − x)(z − x0)t
dAz

∣∣∣∣ .
We can factor out the powers of x−x0 from each integral since integration is with

respect to z. Thus each integral in the sum is of the form
∫

[g(z)−gj(z)]
k(z)

(z − x0)m
dA

where 1 ≤ m ≤ t. This integral simplifies to
∫

[g(z)− gj(z)]
(z − x0)t−mkt(z)

t!
dAz and

by Lemma 2.3.1, the integral reduces to a constant times the m-th order bounded
point derivation of g(z)− gj(z), which is 0 for 1 ≤ m ≤ t. Hence
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|g(x)− gj(x)| = |x− x0|
|c|t!

∣∣∣∣∫ [g(z)− gj(z)]
(x− x0)tkt(z)

(z − x)
dAz

∣∣∣∣ ,
which simplifies to

|x− x0|t

|c|t!

∣∣∣∣∫ [g(z)− gj(z)]
(x− x0)kt(z)

(z − x)
dAz

∣∣∣∣ .
Finally by Hölder’s inequality,

|x− x0|t

|c|t!

∣∣∣∣∫ [g(z)− gj(z)]
(x− x0)kt(z)

(z − x)
dAz

∣∣∣∣ ≤ |x− x0|t

|c|t!
‖g − gj‖p

∥∥∥∥(x− x0)kt
(z − x)

∥∥∥∥
q

and since it follows from property 1 of E that

∥∥∥∥ (x− x0)k

(z − x)(z − x0)t

∥∥∥∥
q

≤ δ0, there is a

constant C that does not depend on h or j such that

|g(x)− gj(x)| ≤ C|x− x0|t||g − gj||p.

Since x = x0 + sh, it follows that |g(x0 + sh)− gj(x0 + sh)| ≤ C|s|t|h|t||g − gj||p and
thus

|g(x0 + sh)− gj(x0 + sh)|
|h|t

≤ C||g − gj||p.

2.7 The set of full area density

We saw in Section 2.1.2 that if there is a bounded point derivation on R(X) at a
point x0, then there exists a set E with full area density such that

Dx0f = lim
x→x0,x∈E

f(x)− f(x0)

x− x0

, (2.7.1)

for all f in R(X), and that a similar result holds for Rp(X).

Not much can be said about the structure of E and it would be of great importance
to be able to replace this set with one that is better understood. Since Lemma 2.5.1
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shows that there is a bounded point derivation for R(X) at every x ∈ E, a reasonable
candidate to replace E is the set of x ∈ X that admit bounded point evaluations for
R(X) or Rp(X). However, we will show that this cannot occur in general by giving
an example of a set X, a point x0 ∈ X which admits a bounded point derivation for
R(X), and sequence of interior points of X which converges to x0 such that (2.7.1)
does not hold. Since interior points admit bounded point evaluations (in fact they
admit bounded point derivations of all orders) this shows that the set E cannot be
replaced with the set of bounded point evaluations on X.

We first construct the set X. For each positive integer n, let xn =
3

2n+2
∈ An(0)

and let rn = 4−n · n−2. Let Bn denote the ball centered at xn with radius rn. Now
let D denote the open unit disk, and let X = D \

⋃
nBn. It follows from Theorem

1.3.1 that R(X) admits a bounded point derivation at 0

Theorem 2.7.1. Let X be the set constructed in the above paragraph. For each

positive integer m, let ym =
3

2m+2
+ 4−m. Then there exists f ∈ R(X) such that

D0f 6= lim
m→∞

f(ym)− f(0)

ym
.

Proof. Let fN(z) =
N∑
n=1

−1

z − xn
· 4−n · n−4. If z ∈ X, then |z − xn| > 4−n · n−2. Hence

|fN(z)| ≤
N∑
n=1

n−2 and it follows from the Weierstrass M-test that fN(z) converges

uniformly to a limit function f(z) ∈ R(X).

It follows from the definition of a bounded point derivation thatD0f = lim
N→∞

f ′N(0).

Hence

D0f = lim
N→∞

N∑
n=1

1

x2
n

· 4−n · n−4

=
∞∑
n=1

16

9
· n−4

=
16

9
· π

4

90
.

We will prove the theorem by showing that
f(ym)− f(0)

ym
grows without bound as m

gets large. A computation shows that
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f(ym)− f(0)

ym
=

∞∑
n=1

−1

ym − xn
· 4−n · n−4 −

∞∑
n=1

1

xn
· 4−n · n−4

ym

=

∞∑
n=1

−ym
(ym − xn)xn

· 4−n · n−4

ym

=
∞∑
n=1

−1

(ym − xn)xn
· 4−n · n−4.

This sum is real, but has positive and negative terms. The terms are positive if n < m
and negative when n ≥ m. Note that the m-th term of this sum is

−1

(ym − xm)xm
· 4−m ·m−4 =

−2m+2

3m4
,

and this term grows without bound as m gets large. We will show that the sum of
the positive terms is bounded independent of m and hence the difference quotient
grows without bound as m gets large.

A computation shows that the m− 1 term is

−1

(4−m + 3
2m+2 − 3

2m+1 ) · 3
2m+1

· 4−(m−1) · (m− 1)−4 =
−2m+1 · 4−(m−1) · (m− 1)−4

3 · (4−m − 3
2m+2 )

=
−2−m−1 · (m− 1)−4

3 · 2−m−2 · (2−m+2 − 3)
=
−2 · (m− 1)−4

3 · (2−m+2 − 3)

Hence the m− 1 term is bounded by 1
3
. We now suppose that n < m− 1. The n-th

term of the sum is

−4−nn−4

(4−m + 3
2m+2 − 3

2n+2 ) · 3
2n+2

=
4
3
· 2−nn−4

3
2n+2 − 4−m − 3

2m+2

.

Since 4−m ≤ 3
2m+2 , it follows that
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4
3
· 2−nn−4

3
2n+2 − 4−m − 3

2m+2

≤
4
3
· 2−nn−4

3
2n+2 − 6

2m+2

≤
4
3
· 2−nn−4

3
4
(2m−1−2n

2n+m−1 )
=

16
9
· 2m−1n−4

2m−1 − 2n
.

Since 2m−1 − 2n ≥ 2m−2 when n < m− 1, it follows that

16
9
· 2m−1n−4

2m−1 − 2n
≤ 32

9
n−4

Thus the sum of the positive terms is bounded by

1

3
+
∞∑
n=1

32

9
n−4 =

1

3
+

32

9
· π

4

90
.

while the m-th term grows unboundedly as m gets large. Hence

D0f 6= lim
m→∞

f(ym)− f(0)

ym
.

Copyright© Stephen Deterding, 2018.
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Chapter 3 Difference quotient formulas and interior cones

3.1 Uniform rational approximation

In the previous chapter we saw that we could evaluate a bounded point derivation on
R(X) at x0 using the following difference quotient formula

Df = lim
x→x0,x∈E

f(x)− f(x0)

x− x0

,

where E is a set with full area density at x0. One drawback of this result is that it
doesn’t provide any information about the structure of the set E; it only shows that
such a set exists. For this reason, it would be preferable to have a formula which
provided more explicit information concerning the set that the limit is taken over.
Such a formula was discovered by O’Farrell [26, Corollary 3], who found a different
representation for a bounded point derivation on R(X) provided that X satisfies an
additional geometric condition. We say that X has an interior cone at x0 if there is
a segment J ending at x0 and a constant k > 0 such that dist(x, ∂X) ≥ k|x− x0| for
all x in J . The segment J is called a non-tangential ray to x0. O’Farrell proved the
following theorem.

Theorem 3.1.1. Suppose that there is a bounded point derivation on R(X) at x0,
which we denote by D1

x0
, and that X has an interior cone at x0 and J is a non-

tangential ray to x0. Then

D1
x0
f = lim

x→x0,x∈J

f(x)− f(x0)

x− x0

.

Although O’Farrell’s result requires an additional hypothesis compared to Theo-
rem 2.1.1, it has the advantage of being more concrete, as the set where the limit is
taken over is clearly described. However, the set that the limit is taken over does not
have full area density. Nevertheless, it is a subset of a set of full area density over
which a derivative can be computed.

If we let dx0 denote the operation of taking a limit of the difference quotient over
a non-tangential ray and suppose that {fn} is a sequence of rational functions with
poles off X that converges to f uniformly, then we can interpret the result of O’Farrell
as saying that the following diagram commutes.
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fj f

f ′j(x0) D1
x0
f

lim
j→∞

dx0 dx0lim
j→∞

3.2 A constructive proof

O’Farrell’s proof of Theorem 3.1.1 uses duality arguments and abstract measures, as
well as results from functional analysis such as the Riesz representation theorem. We
will provide a different proof of this result which is constructive in nature, making
direct use of the Cauchy integral formula.

Because of the length of the proof, it is broken into a series of smaller results.
The strategy of the proof is as follows. First, we define a family of bounded linear

functionals by Lx(f) =
f(x)− f(x0)

x− x0

−D1
x0
f where x is a fixed point in J . To prove

the theorem, it is enough to show that the linear functionals Lx(f) tend to the 0
functional as x→ x0 through the points of J . Now given a function f in R(X), there
exists a sequence {fj} of rational functions which converges to f uniformly. Thus by
linearity and the triangle inequality, |Lx(f)| ≤ |Lx(f − fj)|+ |Lx(fj)|. We claim that
for x in J , |Lx(f − fj)| ≤ C||f − fj||X where || · ||X denotes the sup norm on X and
the constant C does not depend on x. Assuming the claim for a moment, we see that
since fj → f uniformly, Lx(f − fj)→ 0 as j →∞ independent of x. Now since each
fj is a rational function with poles off X, D1

x0
fj = f ′j(x0) and thus Lx(fj) → 0 as

x→ x0. It thus follows that Lx(f) tends to the 0 functional as x→ x0.

To prove the claim, note that since a bounded point derivation is a bounded linear
functional, we only need to prove the bound for the difference quotient term of Lx(f).

Hence it is enough to show that
|f(x)− f(x0)|
|x− x0|

≤ C||f ||X for all f in R(X), where

the constant C does not depend on x or f . We will first prove this bound for rational
functions with poles off X and then extend the result to arbitrary functions in R(X).

Lemma 3.2.1. Suppose that X has an interior cone at x0 and let J be a non-
tangential ray to x0. Suppose that R(X) has a bounded point derivation at x0, and
let fj be a rational function with poles off X. Then for all x in X,

|fj(x)− fj(x0)|
|x− x0|

≤ C||fj||X , (3.2.1)

where the constant C does not depend on x or fj.
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The proof of Lemma 3.2.1 almost follows directly from the cone condition and the
definition of a bounded point derivation. For, if there is a bounded point derivation
on R(X) at x0, then there exists a constant k such that |f ′j(x0)| ≤ k||fj||X for all
rational functions fj with poles off X. Let U be an open neighborhood of x0 on which
f is analytic. Then by the Cauchy integral formula∣∣∣∣ 1

2πi

∫
∂U

fj(z)

(z − x0)2
dz

∣∣∣∣ ≤ k||fj||X . (3.2.2)

Now it also follows from the Cauchy integral formula that∣∣∣∣fj(x)− fj(x0)

(x− x0)

∣∣∣∣ ≤ 1

2π

∫
∂U

|fj(z)|
|z − x0| · |z − x|

dz.

If there is an interior cone at x0 and if x lies on a non-tangential ray to x0, then there

exists a constant k > 0 such that
|x− x0|
|z − x|

< k−1 for all x in J , which implies that

|z − x0|
|z − x|

< 1 + k−1. Thus
1

|z − x| · |z − x0|
≤ 1 + k−1

|z − x0|2
and hence,∣∣∣∣fj(x)− fj(x0)

(x− x0)

∣∣∣∣ ≤ 1 + k−1

2π

∫
∂U

|fj(z)|
|z − x0|2

dz.

So the right hand side is almost, but not quite, the same as the left hand side of
(3.2.2). If it was the same, then Lemma 3.2.1 would follow immediately, but as it is,
a different method is required.

Proof (Lemma 3.2.1). We first make a couple of preliminary observations. First,
since fj is a rational function with poles off X, there exists a neighborhood U of X
such that fj is analytic on U . Let Bn denoted the ball centered at x0 with radius 2−n.
Then there exists an integer N > 0 such that U contains BN and hence fj is analytic
inside the ball BN . In addition, there also exists an integer M < 0 such that U is
itself contained inside the ball BM . Now, we can modify fj so that it is continuous
on BM but still analytic on U and by multiplication with a cutoff function, we can
make it so that the modified function is 0 on the boundary of BM . Thus there exists
a function f̃j such that

1. f̃j is continuous on BM .

2. f̃j = fj on U .

3. f̃j = 0 on the circle |z − x0| = 2−M .

4. ||f̃j||X ≤ 2||fj||X
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x0
C BNx

x0

Dn

C BNx

Figure 3.1: The contour of integration for Theorem 3.1.1

Recall that J is a non-tangential ray to x0. Since X has an interior cone, it follows
that there is a sector in X̊ with vertex at x0 that contains J and a constant k > 0
such that dist(x, ∂X) ≥ k|x − x0| for all x ∈ J . Let C denote this sector. It follows
from the Cauchy integral formula and the construction of f̃j that

fj(x)− fj(x0)

x− x0

=
1

2πi

∫
∂(C

⋃
BN )

fj(z)

(z − x)(z − x0)
dz =

1

2πi

∫
∂(C

⋃
BN )

f̃j(z)

(z − x)(z − x0)
dz

where the boundary is oriented so that the interior of C
⋃
BN is always to the left of

the path of integration. (See Figure 3.1.) Let Dn = An \ C. Then

1

2πi

∫
∂(C

⋃
BN )

f̃j(z)

(z − x)(z − x0)
dz =

1

2πi

N∑
n=M

∫
∂Dn

f̃j(z)

(z − x)(z − x0)
dz

+
1

2πi

∫
|z−x0|=2−M

f̃j(z)

(z − x)(z − x0)
dz.

Since f̃j = 0 on |z − x0| < 2−M , the last integral vanishes and hence

fj(x)− fj(x0)

x− x0

=
1

2πi

N∑
n=M

∫
∂Dn

f̃j(z)

(z − x)(z − x0)
dz. (3.2.3)

Applying Mel’nikov’s integral estimate (Theorem 1.1.1) to the (pairwise similar) re-
gions Dn yields that there exists a constant C > 0 such that for n = 1, 2, · · · ,∣∣∣∣∫

∂Dn

g(z)dz

∣∣∣∣ ≤ C||g||Dnγ(Dn ∩K), (3.2.4)
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where g is continuous on Dn and analytic on Dn \K. (See [25] for another use of this

estimate.) Since
f̃j

(z − x)(z − x0)
is continuous on Dn, and analytic on X, the above

estimate implies that

∣∣∣∣∣
∫
∂Dn

f̃j(z)

(z − x)(z − x0)
dz

∣∣∣∣∣ ≤ C sup
z∈Dn

{
f̃j(z)

(z − x)(z − x0)

}
γ(Dn \X). (3.2.5)

Since J is a non-tangential ray to x0, there exists a constant k, such that
|x− x0|
|z − x|

≤

k−1 for all x in J and z /∈ C. Thus on Dn,
|z − x0|
|z − x|

≤ 1 +
|x− x0|
|z − x|

≤ 1 + k−1 and

1

|z − x| · |z − x0|
≤ 1 + k−1

|z − x0|2
. Hence on Dn∣∣∣∣∣ f̃j(z)

(z − x)(z − x0)

∣∣∣∣∣ ≤ (1 + k−1)|f̃j(z)|
|z − x0|2

≤ 4n||f̃j||X . (3.2.6)

It follows from (3.2.5) and (3.2.6) that∣∣∣∣∣
∫
∂Dn

f̃j(z)

(z − x)(z − x0)
dz

∣∣∣∣∣ ≤ C||f̃j||X4nγ(An \X). (3.2.7)

Applying this estimate to (3.2.3) yields

∣∣∣∣fj(x)− fj(x0)

x− x0

∣∣∣∣ ≤ C||f̃j||X
∞∑
n=1

4nγ(An \X).

Thus by Hallstrom’s Theorem (Theorem 1.3.1) we have that∣∣∣∣fj(x)− fj(x0)

x− x0

∣∣∣∣ ≤ C||f̃j||X ,

where the constant C does not depend on x. (3.2.1) then follows from the above
inequality and the fact that ||f̃j||X ≤ 2||fj||X .

Thus we have shown that (3.2.1) holds for all rational functions with poles off
X. The last step in proving Theorem 3.1.1 is to extend (3.2.1) to all functions in
R(X). This proves the claim at the beginning of section 2, and completes the proof
of Theorem 3.1.1.
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Lemma 3.2.2. Suppose that there is a bounded point derivation on R(X) at x0 and
also suppose that X has an interior cone at x0. Let J be a non-tangential ray to x0.
Then for every function f in R(X),

|f(x)− f(x0)|
|x− x0|

≤ C||f ||X .

Proof. Let {fj} be a sequence of rational functions that converges uniformly to
f . Then by Lemma 3.2.1, (3.2.1) holds. It follows from uniform convergence that
fj(x0)→ f(x0) and fj(x)→ f(x) as j →∞. Hence taking the limit of both sides of
(3.2.1) yields

|f(x)− f(x0)|
|x− x0|

≤ C||f ||X .

3.3 An example

In this section, we give a concrete example of how Theorem 3.1.1 can be used to
determine the value of a bounded point derivation evaluated at a particular function.
For each n > 1 let rn = 1

4n
· 1

2n
, and let xn = 3

2n+2 . Then Bn := Brn(xn) ⊆ An. Let ∆

denote the open unit disk and let X = ∆ \
⋃∞
n=1Bn. It follows from Theorem 1.3.1

that 0 admits a bounded point derivation for R(X).

Now let

fN(z) =
N∑
n=1

1

z − xn
· 1

4n
· 1

6n
.

If z is in X then |z − xn| ≥ rn and hence

fN(z) ≤
N∑
n=1

4n · 2n · 1

4n
· 1

6n
=

N∑
n=1

1

3n
.

Thus it follows from the Weierstrass M-test that fN(z) converges uniformly to
a limit function f(z). Thus f(z) belongs to R(X). We will use Theorem 3.1.1 to
evaluate the value of the bounded point derivation applied to f(z). First note that
since the xn all have positive real parts, X contains an interior cone whose midline,
henceforth denoted by J , is the negative real axis. J is thus a non-tangential ray to
x0 and so
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D1
0f = lim

x→0,x∈J

f(x)− f(0)

x− 0

= lim
x→0,x∈J

∞∑
n=1

1

x− xn
· 1

4n
· 1

6n
−
∞∑
n=1

1

0− xn
· 1

4n
· 1

6n

x

= lim
x→0,x∈J

∞∑
n=1

x

xn(x− xn)
· 1

4n
· 1

6n

x

= lim
x→0,x∈J

∞∑
n=1

1

xn(x− xn)
· 1

4n
· 1

6n
.

The last sum converges uniformly when x is in J and thus we can interchange the
sum and the limit. Hence

D1
0f =

∞∑
n=1

−1

x2
n

· 1

4n
· 1

6n
.

Since x2
n = 9

16
· 1

4n
, it follows that

D1
0f =

−16

9

∞∑
n=1

1

6n
,

and by applying the formula for the sum of a geometric series starting at 1, we have
that

D1
0f =

−16

9
· 1

5
=
−16

45
.

We now compute the value of D1
0f using the definition of a bounded point deriva-

tion to show that the two are the same.

D1
0f = lim

N→∞
f ′N(0) = lim

N→∞

N∑
n=1

−1

x2
n

· 1

4n
· 1

6n
,

which we saw converges to
−16

45
, so both Theorem 3.1.1 and the definition can be

used to evaluate the bounded point derivation.
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3.4 Higher order derivations

In this section, we show how our proof of Theorem 3.1.1 can be modified to apply to
the higher order case. We will show that when R(X) has a t-th order bounded point
derivation at x0 and X has an interior cone at x0, then the bounded point derivation
can be represented by a higher order difference quotient where the limit is taken over
a non-tangential ray to x0. We use the same definitions and notations for higher
order notations as in Definition 2.1.2 in this section. The higher order formulation of
Theorem 3.1.1 is as follows.

Theorem 3.4.1. Suppose that R(X) has a t-th order bounded point derivation at
x0, which we denote by Dt

x0
and that X has an interior cone at x0. Let J be a

non-tangential ray to x0. Then

Dt
x0
f = lim

h→0,x0+h∈J
∆t
hf(x0).

To prove Theorem 3.4.1, we will make use of the following lemma which provides
a Cauchy integral formula for higher order difference quotients.

Lemma 3.4.2. Let f be an analytic function on an open set U containing x. Suppose
that h is chosen so that x+ h, x+ 2h,..., x+ th all belong to U . Then

∆t
hf(x) =

t!

2πi

∫
∂U

f(z)

(z − x)(z − x− h)...(z − x− th)
dz.

Proof. The proof is by induction. When t = 0, then Theorem 3.4.2 is the usual
Cauchy integral formula. Now we assume that it is true that

∆t
hf(x) =

t!

2πi

∫
∂U

f(z)

(z − x)(z − x− h)...(z − x− th)
dz,

and we will show that

∆t+1
h f(x) =

(t+ 1)!

2πi

∫
∂U

f(z)

(z − x)(z − x− h)...(z − x− th)(z − x− (t+ 1)h)
dz.

We saw in the proof of Theorem 2.1.3 that ∆t+1
h f(x) =

∆t
hf(x+ h)−∆t

hf(x)

h
. Thus

by the induction hypothesis,
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∆t+1
h f(x) =

1

h

{
t!

2πi

∫
∂U

f(z)

(z − x− h)(z − x− 2h)...(z − x− (t+ 1)h)
dz

− t!

2πi

∫
∂U

f(z)

(z − x)(z − x− h)...(z − x− th)
dz

}
,

and hence it follows that

∆t+1
h f(x) =

(t+ 1)!

2πi

∫
∂U

f(z)

(z − x)(z − x− h)...(z − x− th)(z − x− (t+ 1)h)
dz,

which completes the proof.

The proof of Theorem 3.4.1 can then be obtained by making a few modifications
to our proof of Theorem 3.1.1. This time define a family of linear functionals by
Lh(f) = ∆t

hf(x0) − Dt
x0
f where h ∈ C. Then to prove Theorem 3.4.1, it suffices

to show that the linear functionals Lh converge to the 0 functional as h → 0. Now
given a function f in R(X), there is a sequence {fj} of rational functions such that
fj converges to f uniformly. By the linearity of Lh and the triangle inequality,
|Lh(f)| ≤ |Lh(f − fj)| + |Lh(fj)|. Since Lh(fj) → 0 as h → 0 whenever fj is a
rational function, it is enough to show that |Lh(f − fj)| ≤ C||f − fj||X , where C
does not depend on h or j. Furthermore, since Dt

x0
is a bounded linear functional,

it suffices to show that |∆t
hf(x0)| ≤ C||f ||X for all f in R(X). As in the proof of

Theorem 3.1.1, this can be done by first proving the result for rational functions with
poles off X and then taking limits on both sides of the equation to obtain the general
result.

Proving the result for rational functions is done in the same way as Lemma 3.2.1
except that one has to use Lemma 3.4.2 to obtain an integral formula for the difference
quotient. The remainder of the proof of Theorem 3.4.1 follows in the same manner
as the proofs of Lemmas 3.2.1 and 3.2.2.

3.5 Convergence in the Gleason metric

We now adapt the techniques of this chapter to give a shorter and more constructive
proof of a result of O’Farrell concerning convergence in the Gleason metric. Let || · ||
denote the sup norm on X. We define the t-th order Gleason metric on X as follows.

dt(x, y) = sup
{
|f (t)(x)− f (t)(y)| : f ∈ R0(X), ||f || ≤ 1

}
.
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The following theorem was proven by O’Farrell [26].

Theorem 3.5.1. Suppose t = 0 and x is not a peak point for R(X) or t ≥ 1 and
R(X) admits a t-th order bounded point derivation at x. Suppose there is a positive
constant k and a sequence of points {yn} ⊆ X̊, which converges to x in the Euclidean
norm, such that

dist [yn, ∂X] ≥ k|yn − x|,

for n = 1, 2, · · · . Then {yn} converges to x in the dt metric.

The original proof of Theorem 3.5.1 was rather non-constructive making use of ab-
stract representing measures. Our objective is to provide a simpler constructive proof
of this result. Instead of utilizing representing measures we will make direct use of the
Cauchy integral formula as well as necessary geometric conditions for the existence
of bounded point derivations.

Proof. The hypothesis immediately implies that for each n there exists a cone con-
tained in X with vertex at x such that yn lies on the midline of the cone and that for
all z /∈ X and n = 1, 2, · · · ,

|yn − x| ≤ k−1|z − yn|,

and by applying the triangle inequality, we also obtain

|z − x| ≤ (k−1 + 1)|z − yn|. (3.5.1)

Now choose f ∈ R0(X) and let g(z) = f(z) − f (t)(x)zt

t!
. Then g(z) ∈ R0(X),

||g|| is bounded and g(t)(yn) = f (t)(yn) − f (t)(x). Thus it is enough to show that
|g(t)(yn)| → 0 as n → ∞. Since g is a rational function with poles off X, then there
exists a neighborhood U of X such that g is analytic on U . Let Bj denoted the
ball centered at x with radius 2−j. Then there exists an integer N > 0 such that
U contains BN , and hence g is analytic inside the ball BN . Now fix yn and let Cn
denote a cone in X with vertex at x whose midline passes through yn. Let M(n)
be the smallest integer so that Cn is entirely contained in the ball BM . Now, we
can modify g so that it is continuous on BM but still analytic on U ∩ BM and by
multiplication with a cutoff function, we can make it so that the modified function is
0 on the boundary of BM . Thus for each n there exists a function gn such that

1. gn is continuous on BM .
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Figure 3.2: The contour of integration for Theorem 3.5.1

2. gn = g on U ∩BM .

3. gn = 0 on the circle |z − x| = 2−M .

4. sup
X
gn ≤ 2 sup

X
g.

It then follows from the Cauchy integral formula and the construction of gn that

g(t)(yn) =
t!

2πi

∫
∂(Cn

⋃
BN )

g(z)

(z − yn)t+1
dz =

t!

2πi

∫
∂(Cn

⋃
BN )

gn(z)

(z − yn)t+1
dz,

where the boundary is oriented so that the interior of Cn
⋃
BN is always to the

left of the path of integration. (See Figure 3.2.) We denote by Am the annulus
{z ∈ C : 1

2m+1 < |z − x| < 1
2m
} and let Dm = Am \ Cn. Then

t!

2πi

∫
∂(Cn

⋃
BN )

gn(z)

(z − yn)t+1
dz =

t!

2πi

N∑
m=M

∫
∂Dm

gn(z)

(z − yn)t+1
dz

+
t!

2πi

∫
|z−x0|=2−M

gn(z)

(z − yn)t+1
dz.

Since gn = 0 on |z − x0| < 2−M , the last integral vanishes and hence

g(t)(yn) =
t!

2πi

N∑
m=M

∫
∂Dm

gn(z)

(z − yn)t+1
dz.
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Note that the integrand is continuous on Dm and analytic on X; thus we can apply
Mel’nikov’s integral estimate for Dn (Equation 3.2.4) to obtain

|g(t)(yn)| ≤ C

N∑
m=M

sup
Dm

{
gn(z)

(z − yn)t+1

}
γ(Dm \X).

It follows from (3.5.1) that

sup
Dm

{
gn(z)

(z − yn)t+1

}
≤ ||gn|| · sup

Dm

{
1

|z − yn|t+1

}
≤ ||gn|| · sup

Dm

{
(k−1 + 1)t+1

|z − x|t+1

}
≤ ||gn|| · (k−1 + 1)t+1 · 2(t+1)n.

Hence

|g(t)(yn)| ≤ C||gn||
N∑

m=M

2(t+1)nγ(Dm \X)

≤ C||gn||
∞∑

m=M

2(t+1)nγ(Am \X).

As n → ∞, yn → x and thus M → ∞. It thus follows from Theorem 1.3.1 that the
above sum tends to 0 as n→∞. Thus {yn} → x in the dt metric.

Copyright© Stephen Deterding, 2018.
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Chapter 4 Ideas for future work

I plan on pursuing my research in several directions as there are still several inter-
esting problems that remain unsolved. First, as previously mentioned, a remarkable
outstanding problem is to determine whether Theorem 2.2.1 remains true in the case
of p = 2. Determining if this theorem holds would, along with my previous work,
completely characterize the values of p for which a bounded point derivation on Rp(X)
implies the existence of approximate derivatives. It seems to me that it would be very
difficult to show that Theorem 2.2.1 fails for p = 2 as this would require the construc-
tion of a function which must be in R2(X) but not Rp(X) for any higher values of
p. For this reason, it seems to me that it would be more fruitful to attempt to prove
the theorem true for p = 2. This could involve the creation of a brand new proof of
Theorem 2.2.1 that would remain true for p = 2. In particular, a more constructive
proof of Theorem 2.2.1 would make it easier to understand why the result is true and
could also provide more information about the structure of the set of full area density.
Currently all that is known is that the set of full area density is not, in general, the
same as the set of bounded point evaluations. (See Section 2.7.)

A natural continuation of the topics of my research would be to consider harmonic
approximation on compact subsets of the complex plane. Let H(X) denote the
uniform closure of functions that are harmonic on a neighborhood of X and let
Ch(X) denote the continuous functions on X which are harmonic on the interior
of X. The problem of harmonic approximation is to find conditions on X so that
H(X) = Ch(X) or H(X) = C(X). This problem was completely solved by Keldysh.
Shortly thereafter it came to light that Keldysh’s necessary and sufficient conditions
are equivalent to necessary and sufficient conditions for R2(X) = L2

a(X). Here L2
a(X)

denotes the spaces of L2 functions analytic on the interior of X. Thus H(X) =
Ch(X) if and only if R2(X) = L2

a(X). These conditions can be given in terms of the
fine topology, which is the weakest topology that makes all superharmonic functions
continuous.

A set X is said to be 2-thin at a point x0 if∫
0

Γ2(X ∩Br(x0))

r
dr <∞.

Alternatively, it follows from the subadditivitiy of q-capacity that a set is 2-thin at
x0 if and only if

∞∑
n=1

nΓ2(X ∩ An(x0)) <∞,
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where An(x0) = {z : 2−n−1 < |z−x0| < 2−n}. A set U is said to be a fine neighborhood
for x0 if C\U is 2-thin at x0. The fine neighborhoods of a point form the neighborhood
basis for the fine topology. A function f is said to be finely differentiable at a point
z0 if there exists a set E that is 2-thin at x0 such that the limit

f ′(z0) = lim
z→z0,z /∈E

f(z)− f(z0)

z − z0

exists. As the concept of a fine derivative is closely related to the concept of an
approximate derivative, it would be interesting to know if the existence of a bounded
point derivation on R(X) or Rp(X) also implies the existence of a fine derivative at
x0.

Another area of investigation is to consider whether Theorem 3.1.1 can be ex-
tended to the case of bounded point derivations on Rp(X). That is, given a bounded
point derivation D on Rp(X) at x0 and supposing that X has an interior cone at x0

with midline J , is it true that

Df = lim
x→x0,x∈J

f(x)− f(x0)

x− x0

?

It would seem that a proof similar to the one we gave for Theorem 3.1.1 could be
used to prove this result, but we have not yet been able to show it.

I am also interested in studying bounded point derivations defined for other func-
tion spaces. One space in particular that I would like to work with is the space of
functions analytic on a fixed open set which also satisfy a Lipschitz condition on the
entire plane. It would be interesting to know whether my results for bounded point
derivations on Rp(X) would also be valid for these new spaces of functions.

Copyright© Stephen Deterding, 2018.

47



Bibliography

[1] Adams, D. and Hedberg, L.I. Function Spaces and Potential Theory Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences], 314. Springer-Verlag, Berlin, 1996. xii+366 pp. ISBN: 3-540-57060-8

[2] Bishop, E. A minimal boundary for function algebras. Pacific J. Math. 9 (1959),
629 - 642
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[30] Tolsa, X. Painlevé’s problem and the semiadditivity of analytic capacity Acta
Math. 190 (2003), 105-149

[31] Vitushkin, A.G. Analytic capacity of sets in problems of approximation theory
Uspekhi Mat. Nauk 22 (1967), 141-199; English transl., Russian Math. Surveys
22 (1967), 139-200.

[32] Wang, J. L.-M. An approximate Taylor’s theorem for R(X). Math. Scand. 33
(1973), 343-358

[33] Wermer, J. Bounded point derivations on certain banach algebras. J. Functional
Analysis 1 (1967) 28-36

[34] Wilken, D. R. Bounded point derivations and representing measures on R(X)
Proc. Amer. Math. Soc. 24 (1970) 371 - 373

50



Vita

Stephen M. Deterding

Education

• M.A. Mathematics, University of Kentucky, 2014

• B.S. Mathematics/Applied Mathematics, Marshall University, 2012: Graduated
Magnum Cum Laude from the Honors College

Professional Positions

• Graduate Teaching Assistant, Mathematics Department, University of Ken-
tucky 2012-2018

• Math Lab Tutor, Mathematics Department, Marshall University 2011-2012

Publications

• Bounded point derivation on Rp(X) and approximate derivatives Math.
Scand. (accepted). Available at http://arxiv.org/abs/1709.02851.

• Interpolation and cubature at the Morrow-Patterson nodes gener-
ated by different Geronimus polynomials, with L. Harris. Mathematical
Proceedings of the Royal Irish Academy Vol. 117A, No. 1 (2017), pp. 5-12

Honors, Fellowships, and Awards

• Max Steckler Fellowship, University of Kentucky, 2016.

• Outstanding Math Major Award, Marshall University, 2012.

• Outstanding Applied Math Major Award, Marshall University, 2011.

51

http://arxiv.org/abs/1709.02851

	Bounded Point Derivations on Certain Function Spaces
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Figures
	1 Introduction
	1.1 Capacities
	1.2 Bounded point derivations on R(X)
	1.3 Necessary and sufficient conditions for bounded point derivations on R(X)
	1.4  Rational approximation in the areal mean and bounded point derivations
	1.5 Necessary and sufficient conditions for bounded point derivations on spaces of rational functions in the areal mean

	2 Difference quotient formulas and approximate derivatives
	2.1 Uniform rational approximation
	2.2 Rational approximation in the areal mean
	2.3 Results from measure theory
	2.4 A set with full area density at a certain point
	2.5 The existence of approximate derivatives
	2.6 Higher order bounded point derivations
	2.7 The set of full area density

	3 Difference quotient formulas and interior cones
	3.1 Uniform rational approximation
	3.2 A constructive proof
	3.3 An example
	3.4 Higher order derivations
	3.5 Convergence in the Gleason metric

	4 Ideas for future work
	Bibliography
	Vita

