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Abstract
The regeneration blastema which forms following amputation of the mouse digit tip is composed

of undifferentiated cells bound togetherbyanorganizednetworkof fibers.Amonoclonal antibody

(ER-TR7) that identifies extracellular matrix (ECM) fibers produced by fibroblast reticular cells

during lymphoid organogenesis was used to characterize the ECM of the digit, the blastema, and

the regenerate. Digit fibroblast reticular cells produce an ER-TR7+ ECM network associated with

different tissues and represent a subset of loose connective tissue fibroblasts. During blastema

formation there is an upregulation of matrix production that returns to its pre-existing level and

anatomical pattern in the endpoint regenerate. Co-localization studies demonstrate a strong spa-

tial correlation between the ER-TR7 antigen and collagen type III (COL3) in histological sections.

ER-TR7 and COL3 are co-induced in cultured digit fibroblasts following treatment with tumor

necrosis factor alpha and a lymphotoxin beta receptor agonist. These results provide an initial

characterization of the ECM during digit regeneration and identify a subpopulation of fibroblasts

involved in producing the blastema provisional matrix that is remodeled during the regeneration

response.
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1 INTRODUCTION

The mouse digit tip consists of a diverse group of cells and extracellu-

lar components organized into tissue compartments that include the

terminal phalangeal bone (P3) with marrow, articular cartilage, ten-

don, blood vessels, and nerve surrounded by connective tissue (CT),

epidermis, and the nail rudiment. The major difference between this

structure and other similar mammalian extremities is that the digit

tip can regenerate following amputation (Borgens, 1982; Muller et al.,

1999; Neufeld, 1985). This phenomenon has been well documented

in neonatal and adult mice (Fernando et al., 2011; Han, Yang, Lee,

Allan, & Muneoka, 2008) as well as in humans, which makes it clin-

ically relevant (Allan et al., 2006; Muller et al., 1999). Similar to the

epimorphic regenerative response that occurs following amputation of

a salamander limb, mouse digit tip regeneration involves a sequence

of events that include an inflammatory cascade, histolysis of the bone

stump, formation of a wound epidermis, blastema growth, and redif-

ferentiation (Fernando et al., 2011; Simkin et al., 2015). The digit tip

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in anymedium, provided

the original work is properly cited.

c© 2017 The Authors. Regeneration published by JohnWiley & Sons Ltd.

blastema is a dense mass of proliferating, undifferentiated mesenchy-

mal cells that are derived from multiple tissue types, and many of

the regeneration-competent cell types have been shown to be lineage

restricted (Lehoczky, Robert, & Tabin, 2011; Rinkevich, Lindau, Ueno,

Longaker, &Weissman, 2011). Digit tip regeneration is an amputation-

level-specific healing event that diverges from a more typical non-

regenerative wound healing response. For example, amputation at the

level of the second phalanx (P2) results in a healing response that

also includes an inflammatory cascade, histolysis, and formation of

a wound epidermis. However, in contrast with a P3 amputation, this

wound fails to form a blastema and develops a fibrotic scar instead

(Dawson et al., 2016). Since fibroblast cells derived from this

regeneration-incompetent region are capable of participating in

blastema formation (Wu et al., 2013), it seems likely that one differ-

ence between regenerative and non-regenerative responses involves

themicroenvironment associated with blastema formation.

Many of the cells within the digit blastema appear spindle-shaped

and there is evidence that fibroblasts associated with the CT of the

Regeneration. 2017;4:69–84. wileyonlinelibrary.com/journal/reg 69
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amputated stump participate in blastema formation (Wu et al., 2013).

In salamander limb regeneration, there is considerable evidence that

CT fibroblasts of the dermis play an important role in blastema forma-

tion and patterning during a regenerative response (Bryant, Endo, &

Gardiner, 2002;Nacu et al., 2013). Fibroblasts have also been shown to

play a key role in the development, function, and repair of mammalian

lymphoid organs (e.g., lymph nodes, spleen, and thymus), where a sub-

set of cells called fibroblastic reticular cells (FRCs) form a network of

extracellularmatrix (ECM) fibers that define B-cell and T-cell compart-

ments (Fletcher, Acton, & Knoblich, 2015). Lymph node FRCs also play

a role in directing leukocyte migration and are required for antibody

generation (Heesters, Myers, & Carroll, 2014; Katakai et al., 2008).

Lymph node FRCs and the ECM network they produce can be iden-

tified by an antigen recognized by the Erasmus of Rotterdam thymic

reticulum, or ER-TR7, antibody (Van Vliet, Melis, & Van Ewijk, 1984;

Van Vliet, Melis, Foidart, & Van Ewijk, 1986). The ER-TR7 antibody

reacts against an unknown epitope that localizes to the membrane or

cytosol of FRCs, or both, and the extracellular network of fibers that

extends from these FRCs and, as such, has been used to define FRCs

(Bajenoff et al., 2006; Balogh, Horvath, & Szakal, 2004; Katakai, Hara,

Sugai, Gonda, & Shimizu, 2004b; Link et al., 2011; Nolte et al., 2003).

Current approaches to enhancing the regeneration of human limb

structures involve the use of scaffolds that can be seeded with cells ex

vivoorbecomepopulatedwith cells after implantation (Quijano, Lynch,

Allan, Badylak, & Ahsan, 2016). Scaffolds are ECM structures that can

be biological (Badylak, Freytes, & Gilbert, 2009) or synthetic (Wolf,

Dearth, Sonnenberg, Loboa, & Badylak, 2015), and can be molded into

distinct forms that approximate the target structure, or they can be

derived from the decellularization of tissues or an entire organ, such as

the heart, lung, or limb (Jank et al., 2015; Ott et al., 2008; Stabler et al.,

2015). In some respects, the use of scaffolds in regenerative engineer-

ing provides a way to bypass the developmental processes that drive

morphogenesis during regeneration. In tissue regeneration and repair,

the ECMplays a key role in regulating the injury response. For example,

it has been known for some time that in the healing of full-thickness

skin wounds a transient matrix that is high in collagen type III (COL3),

called granulation tissue, is produced by inflammatory cells and invad-

ing fibroblasts, and is later replaced by a dense fiber network made of

collagen type I (COL1) fibers that is the hallmark of scar tissue (Gay,

Vijanto, Raekallio, & Penttinen, 1978;Merkel, DiPaolo, Hallock, & Rice,

1988; Whitby & Ferguson, 1991). In bone fracture healing, a chondro-

genic callus formed by periosteal cells creates a transient matrix that

is later remodeled to form new bone that repairs the damaged bone

(Colnot, 2009). In digit tip regeneration, the bonematrix of the stump is

degraded by the activity of osteoclasts and this degradation response

is linked to the formation of a blastema that mediates the regenera-

tive response (Simkin et al., 2015). Thus, there is a biological basis that

supports the clinical potential of scaffold use in regenerativemedicine;

however, our understanding of matrices that form during regenerative

responses remains poor.

In this study, the subset of fibroblastic cells responsible for pro-

ducing a fraction of the ECM in the unamputated digit tip and the

majority of the blastema ECM of the regenerate are characterized by

reactivity to the ER-TR7 antibody and therefore denominated digit

FRCs. Various tissues of the digit tip are compartmentalized by an

ER-TR7+ component of the ECM produced by digit FRCs which out-

lines the vasculature, bone, and epidermis. Blastema formation is char-

acterized by an increase in ER-TR7 immunohistochemistry (IHC) stain-

ing which returns to pre-amputation levels after completion of the

regenerative response. A similar increase was not observed in other

fibroblastmarkers analyzed.Duringblastema formation, ER-TR7+ cells

display an enhanced proliferation index compared to ER-TR7− cells

indicating that the blastema microenvironment is specifically mito-

genic for digit FRCs. Primary cultured blastema cells maintain expres-

sion of the ER-TR7 antigen whereas cultures of fibroblasts from the

digit tip display a low level of reactivity. As has been previously shown

for lymphoid FRCs (Katakai et al., 2004a), reactivity to the ER-TR7

antibody by cultured digit fibroblasts is induced by co-treatment with

tumor necrosis factor alpha (TNF𝛼) and a lymphotoxin T beta receptor

(LT𝛽R) agonist. Induction of the ER-TR7 antigen is associated with an

increase in Col3a1 expression as well as IHC for COL3. Co-localization

analysis indicates a tight association between COL3 and the ER-TR7

antigen both in vitro and in vivo. These studies provide evidence

that digit FRCs react to amputation injury and play a role in produc-

ing a network of ECM fibers characteristic of the regenerating digit

blastema.

2 RESULTS

2.1 ER-TR7 outlines tissue compartments of the

neonatal and adult digit anlagen

The P3 of the mouse digit tip originates as a chondrogenic skeletal

element at embryonic day 14.5 (E14.5) and ossification initiates at

E18.5 (Han et al., 2008). By post-natal day 11 (PN11), the major spe-

cialized compartments of the digit tip including the P3 bone and its

marrow cavity, ventral tendon, surrounding CT, epidermis, and syn-

ovial joint that articulates with P2 are well defined and remain, aside

from growth, unaltered throughout adulthood (Fig. 1A). The digit tip

is grossly characterized by a nail organ that surrounds P3 dorsally

and laterally and a bulbous ventral pad called the “fat” pad. The nail

organ consists of a stratified epithelial layer at its proximal end which

extendsdistally to a single layerof keratinocytes, knownas thenail bed,

underlying a nail plate. The “fat” pad is mainly composed of continu-

ous epidermis, CT, and eccrine glands. In general, the CT of the digit tip

appears as a loosemesenchymeprimarily composedof fibroblastswith

blood vessels infiltrating throughout the tissue.

FRCs in lymphoid tissue have been identified by reactivity to the

ER-TR7 antibody (Van Vliet et al., 1986) but have not yet been stud-

ied in a non-lymphoid organ. ER-TR7 IHC on sections of mouse digits

was used to determinewhether there is a similar population of FRCs in

the neonatal and adult digit tips. ER-TR7 IHC identifies cells and ECM

fibers that appear to outline different anatomical compartments of the

digit (Fig. 1B). Cells that secrete the ER-TR7 antigen are identified by

cytoplasmic and membrane antigen localization (Fig. 1C), and ER-TR7

stained ECM fibers can be traced to ER-TR7+ cells but are in contact

with both ER-TR7+ and ER-TR7− cells within the CT of the digit tip.
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F IGURE 1 ER-TR7 outlines tissue compartments of the digit. (A) H&E section of PN11 mouse digit tip shows compartments including nail bed
(nb), ventral epithelium (ve), eccrine glands (eg), and a P3 rudiment composed of both cortical bone (b) and a proximal cartilaginous (c) growth plate.
P3 encloses bone marrow (bm) and ends at the P3−P2 synovial joint (jt). P3 is connected to the proximal musculature through a tendon (tn) and is
surrounded by loose dorsal and ventral CT (dct and vct). (B) Adjacent section from (A) stained against ER-TR7. (C) Representative area captured at
400× from the dct in (B) (white asterisk). The boundary landmarks of the CT (labeled nb and b) are outlined with white dotted lines. ER-TR7+ FRCs
aremarked (white+ signs on nuclei) and thesewere discriminated (C, inset) at 1000×magnification by ER-TR7 expression inmembrane extensions
(white arrows) or cytosol (white asterisk) of individual cells. Scale bars (A), (B) 50 𝜇mand (C) 25 𝜇m. Serial sectionswere also co-immunostained for
(D) ER-TR7, FVIII, and SMA (white ×marks negative cells) or (E) ER-TR7 and osteocalcin OC; scale bars (D)−(E) 10 𝜇m

Digit FRCs extend ER-TR7+ fibers that outline individual com-

ponents of the digit tip reminiscent of the boundaries they estab-

lish between the distinct zones of lymphoid organs. To observe this

arrangement, we co-stained PN11 digits with ER-TR7 and markers

specific to layers of bone and vasculature compartments. The vas-

culature forms a network within the loose CT surrounding P3, and

endothelial cells lining the lumen of these vessels can be identified

based on von Willebrand factor (FVIII) IHC. Tightly associated with
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these endothelial cells are 𝛼-smooth muscle actin (SMA)+ mural cells

in the intima that function in vascular homeostasis. In addition to

these two cell types, we also find cells in the outer adventitia layer

that react to the ER-TR7 antibody. These appear closely associated

with but distinct from FVIII+ and SMA+ cells, and are mostly absent

in the surrounding CT where vessels are absent (Fig. 1D; white ×,
merged panel). A high number of ER-TR7+ cells form a stratified layer

of fibroblasts above osteocalcin (OC)+ osteoblasts in the periosteum

of P3 (Fig. 1E). Finally, a layer of ER-TR7+ cells delineate the bound-

ary between the papillary layer of the loose CT and the stratum basale

of the epidermis, a layer that is identifiable by the arrangement of ker-

atinocytes and their nuclei in hematoxylin and eosin (H&E) prepara-

tions or with the nuclear fluorescent counterstain 4′,6-diamidino-2-

phenylindole (DAPI) on a fluorescent serial section (Fig. 1A, B). These

observations suggest that FRCs are present in the mouse digit as a

subpopulation of cells localized to the CT that appear to be housed

within the boundaries and basement layers around various types of

digit tip structures. Thus, ER-TR7 staining identifies an arrangement of

digit FRCs within the CT of the digit tip that appear analogous to FRCs

described during the organogenesis of lymphoid organs (Balogh, Fisi,

& Szakal, 2008; Katakai et al., 2004a; Link et al., 2007; Van Vliet et al.,

1986).

2.2 ER-TR7 is upregulated during digit tip

regeneration

Amputation through the digit tip of both neonates and adult mice

is followed by a healing response that forms a blastema of prolifer-

ating cells, and these cells redifferentiate to regenerate the ampu-

tated structure (Fernando et al., 2011; Han et al., 2008). To deter-

mine the anatomical differences and expression profile of ER-TR7

during the regeneration response, neonates and adult mice were

amputated at PN3 or 8 weeks (8W), respectively, and tissues were

harvested for ER-TR7 IHC at various timepoints following amputation

(Fig. 2). Subject groups were labeled throughout the study as control

unamputated (UA) and days post amputation (DPA) animals followed

by the number of days from timepoint 0 when necessary. The differ-

ence between the regeneration of neonate and adult digits starting

at DPA0 is largely one of timing. Neonate digits are immature and

regenerate at a faster rate. Therefore, in the neonate timeline, the

endpoint of regeneration is DPA16 with the peak of blastema forma-

tion occurring at DPA8 (Han et al., 2008). On the other hand, in the

adult timeline, the endpoint of regeneration is DPA35 with the peak

of blastema formation occurring around DPA12−14 (Fernando et al.,

2011).

ER-TR7 IHC during regeneration was quantified compared to

stage matched UA controls. For neonatal UA digits, ER-TR7 staining

(Fig. 2A) displays a progressive reduction in the relative amount

detected in the CT, dropping from approximately 33% of the total area

at UA0 to approximately 20% by UA16 (P= 0.0005; Fig. 2A and C) and

regenerated DPA16 (P = 0.01; Fig. 2A and D). The measured level of

ER-TR7 expression in the neonate at UA16 and DPA16 remains stable

compared to each other and to U0 of the adult timeline (Fig. 2E andH).

Digit regeneration in neonates displays no change in relative ER-TR7

staining prior to blastema formation, increases during blastema at

DPA8 (P = 0.04) and early redifferentiation stages at DPA12 (P =
0.003) compared to age-matched UA controls. ER-TR7 expression

then falls to UA16 levels when regeneration is completed by DPA16

(Fig. 2A−D). In adults, there is an initial decline in ER-TR7 levels during
stages DPA0 through DPA5 (P= 0.035) and this is followed by a 2-fold

increase in ER-TR7 staining in the blastema at DPA14 (P< 0.0001; Fig.

2F and H) which progressively declines back to the pre-amputation

level (Fig. 2E−H). These data demonstrate that ER-TR7 expression

is transiently enhanced during blastema formation, and that the

organization of ER-TR7+ fibers from digit FRCs is modified during the

regeneration process.

2.3 ER-TR7+ cells are growth responsive during

blastema formation

Regulation of the ER-TR7+ microenvironment coincides with periods

of tissue degradation, growth, and differentiation after injury. To begin

analysis of digit FRCs, a quantitative analysis of overall cell division and

apoptosis during neonatal digit tip regeneration was carried out using

IHC localization of Ki67 as a proliferation marker and C3 to identify

apoptotic cells (Fig. 3). Digits were analyzed at 4-day intervals from

DPA0 to include the early wound healing (DPA4), blastema formation

(DPA8), and redifferentiation stages (DPA12 and DPA16). Cell counts

were collected from total loose CT of UA digits and both loose and

blastema CT of the regenerating digit. Cell proliferation in UA con-

trols displays an age-related decline (Fig. 3A−C and G), while prolifer-

ation associated with regeneration is dynamic (Fig. 3D−G). The early

wound healing phase (DPA4) is associated with a decline in prolifer-

ation (P = 0.021, Fig. 3D and G) and this is followed by a period of

enhanced proliferation associatedwith blastema formation (DPA8;P=
0.014, Fig. 3E and G) and early differentiation (DPA12; P= 0.004). The

proliferation index returns to UA control levels when the regeneration

response is completed (DPA16; Fig. 3G). These data show an enhanced

proliferative response of cells associated with blastema formation and

are similar to previously published studies on regenerating adult digits

(Fernando et al., 2011;Wu et al., 2013).

Apoptosis during digit tip regeneration is largely restricted to

the early wound healing phase (DPA4; P < 0.001, Fig. 3H) and is

largely localized to the amputation wound (Fig. 3D, flanked by white

arrows). At this timepoint many C3+ cells have distinct tri-lobed

nuclei characteristic of granulocytes which link the observed apop-

tosis to the inflammatory response. There are very few apoptotic

cells found within the blastema or during redifferentiation (Fig. 3E, F,

and H).

The Ki67 proliferation index of ER-TR7+ and ER-TR7− cell popu-

lations of control and regenerating digit tips was analyzed by co-IHC

staining (Fig. 4A−D). In UA controls, the proliferation index of both

ER-TR7+ and ER-TR7− cells displayed a steady decline over the course

of this study. At all timepoints, the proliferation index of the ER-TR7−

cells was significantly higher than that of the ER-TR7+ subpopula-

tion (P < 0.01, Fig. 4B). During the regeneration response, both cell

populations display an initial drop in proliferation index at DPA4 and

both display an increase in proliferation at the DPA8 blastema stage
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F IGURE 2 ER-TR7 is upregulatedduringneonatal andadult digit tip blastema formation. ER-TR7 (red) expression followingdigit tip amputation
of PN3 neonates and 8W adult mice was detected by indirect immunofluorescence counterstained with DAPI (gray), captured at 100×magnifica-
tion (scale bar 50𝜇m), and quantified from groups of UA andDPAdigits (n= 4 animals per group). Images of select timepoints prior to and following
amputation are shown for both (A)−(C) neonates and (E)−(G) adult mouse digit tips. The amputation level for both (A) neonate and (E) adult UA0
digits is marked by a yellow line. ER-TR7 expression percentages in (D) the neonate and (H) the adult timeline were calculated from the ER-TR7+

area over total CT around each P3 segment and excluding themarrow. Data are presented asmean± SEM. Scale bars (A)−(D) and (F)−(I) 50 𝜇m

before returning to control levels at DPA16 (Fig. 4D). What is strik-

ing is that the relative increase in proliferating ER-TR7+ blastema cells

is much greater than for ER-TR7− blastema cells (Fig. 4D), indicating

that the blastema microenvironment is selectively mitogenic for digit

FRCs.

2.4 ER-TR7+ FRCs represent a subpopulation

of digit fibroblasts

ER-TR7 IHC identifies FRCs and an extracellular framework of fibers

produced by them in the digit CT and blastema of regenerates. This
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F IGURE 3 Proliferation and apoptosis in the regenerating neonatal digit tip. (A)−(C) Representative UA controls and (D)−(F) age-matched
digits amputated at PN3were analyzed at DPA0, 4, 8, 12, and 16 for Ki67 (green) and cleavedC3 (red) expression counterstainedwithDAPI (gray).
Nail bed (nb), ventral epidermis (ve), bone (b), chondrocytes (c), and bone marrow (bm) are outlined by white dotted lines; scale bar 50 𝜇m. (G), (H)
Ki67+ and C3+ cells were counted from the CT area outlined between the basal epidermis and the periosteal/perichondrial layers of P3. Data are
presented asmean± SE (n= 4 per group and timepoint)

ER-TR7+ framework is organized in a honeycomb pattern that appears

to orient along the proximodistal digit axis (Fig. 5A−C). The regen-

eration pattern appears distinct from the network present in non-

regenerating amputation wounds and an analysis of fiber organization

confirms that, in contrast to the regenerating blastema, the ER-TR7+

fibers in non-regenerating wounds are arranged perpendicular rather

than parallel to the proximodistal axis of the digit (Fig. S1A−F). Thus
the orientation of the ER-TR7+ matrix correlates with the polarity of

the regenerative response.

ER-TR7 IHC studies, especially in the discretely labeled UA adult

digit tip relative to the amount of digit tip CT cells, suggest that digit

FRCs represent a subpopulation of CT fibroblasts within the digit that

are involved in blastema formation. However, fibroblasts in general

remain a poorly characterized cell type and reliable cell-type-specific

markers are not available. To begin to characterize fibroblasts associ-

ated with digit tip regeneration, IHC studies using a number of known

fibroblast and CT markers were carried out. With the exception of

anti-COL1, antibodies of this fibroblast panel were detected by IHC

individually in adjacent tissue sections of UA8 controls and DPA8

blastemas to screen for qualitative trends for expression similar to ER-

TR7 (Fig. 5E−P). In addition, a quantitative analysis of these fibroblast
markers was performed comparing labeled regions of the dorsal CT

of UA controls and in the blastema of regenerates to screen for dif-

ferences in concentration, localization, and pattern to that observed

in matched sections stained against ER-TR7 (Fig. 5D). The IHC panel

surveyed vimentin (VIM), a general mesenchyme marker that is ubiq-

uitously expressed, fibroblast specific protein 1 (FSP-1), COL1, COL3,

and fibronectin (FN1).

VIM localizes to the cytoskeleton of all digit cells within the

UA8 CT (Fig. 5G) and blastema mesenchyme (Fig. 5H). It serves

as a control for ubiquitous expression, which does not change dur-

ing blastema formation compared to the VIM+ CT of UA controls

(Fig. 5D). FSP-1, also known as S100A4, belongs to the S100

superfamily of calcium-binding proteins (Strutz et al. 1995) and is
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F IGURE 4 Expansion of ER-TR7+ FRCs is specific to the blastema stage. A total of 500 cells were counted from random fields subsampled
from the dorsal and ventral CT (dct and vct) or the blastema of neonatal controls and regenerates, respectively. The P3 bone marrow (bm) was
excluded. In representative (A) UA8 and (C) DPA8 samples, these areas are flanked by the nail bed (nb) and the P3 bone (b) and outlined with a
dotted white line (scale bar 50 𝜇m). Proliferating (Ki67+) cells were grouped by ER-TR7+ or ER-TR7− expression. (A), (C), insets: ER-TR7+/Ki67+

cells were discriminated at 1000× magnification and are labeled with white + signs. ER-TR7−/Ki67+ cells are marked with a − sign (scale bar 10
𝜇m). (B) Measurement of the ratio of proliferating ER-TR7− cells to ER-TR7+ cells in UA controls. (D) DPA8 blastema proliferating cells relative to
ER-TR7 reactivity. Data are presented as themean± SE (n= 4 per group)

reported to be specific to fibroblasts in organs undergoing remodeling

(Lawson et al., 2005; Schneider et al., 2007; Zhang, Chen, Xiao, Wang,

&Qin, 2011). Expression of FSP-1 in the digit is localized to the cytosol

of many CT and blastema cells (Fig. 5I and J). FSP-1 expression is

higher and localized to more cells in the UA8 CT compared to the

ER-TR7 labeled UA8 CT in an adjacent section (Fig. 5D, E, and I) and

the difference between FSP-1+ UA8 CT and FSP-1+ DPA8 blastema

(Fig. 5D, I, and J) tested insignificant (P > 0.05). We therefore con-

clude that changes in the pattern and level of FSP-1 expression dur-

ing blastema formation compared to UA controls are distinct from

ER-TR7.

COL1 is a fibril-forming collagen synthesized and secreted by

fibroblasts throughout the body. In UA8 digits, anti-COL1 localizes to

the cytosol of fibroblasts and to extracellular fibrils throughout the CT

(Fig. 5K). In the blastema COL1 IHC identifies a dispersed network

of fibers and cells that appear distinct from ER-TR7 staining (Fig. 5L).

COL1 is highly expressed in both the UA8 digit CT as well as the DPA8

blastema so its expression profile is uniquely different compared to

matched ER-TR7 samples. A detailed co-IHC analysis of ER-TR7 and

COL1 expression identifies cells, based on cytosolic expression, in both

the UA8 CT and the DPA8 blastema that are COL1+/ER-TR7− and

COL1−/ER-TR7+ (Fig. 5MandN). Theseobservationsprovideevidence

of two distinct fibroblast populations present in the digit CT and digit

blastema.

FN1 is a glycoprotein secreted by fibroblasts which regulates com-

position of the CT matrix (McDonald, Kelley, & Broekelmann, 1982;

Sottile et al., 2007; Velling, Risteli, Wennerberg, Mosher, & Johansson,

2002). FN1 staining in UA8 samples is diffuse but prominent below

the stratum basale of the epidermis and associated with the perios-

teum (Fig. 5O). Between these areas of extracellular FN1 staining,

isolated FN1+ cells around the vascular adventitia can be detected.

Overall, these areas of FN1 expression roughly overlap areas where

ER-TR7+ cells are found. Following amputation, FN1 expression is

homogeneous throughout the DPA8 blastema (Fig. 5P) and, like
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F IGURE 5 Expression survey using fibroblast markers. (A)−(C) Representative blastema (from n = 10 DPA8 digits) projection deconstructed
to show grayscale channels of (A) blastema cell mass nuclei, (B) ER-TR7+ organization, and (C) merged channel with surrounding compartments
outlined (nb, nailbed; b, bone; we, wound epithelium; scale bar 50 𝜇m). (D) Various antibodies against macromolecules and cytoskeletal proteins
relevant to injury response fromfibroblastswere detected by IHC,measured, compared as a percentage of individualmarker staining over total CT
area and plotted as mean ± SEM (n = 4 per group). (E)−(L), (O)−(R) Sections were immuno-labeled in red for each marker and counterstained with
DAPI (gray) on matched dorsal regions (boundaries outlined by white dotted lines between the nb and b) of UA8 or DPA8 sections and imaged at
600×magnification (scale bar 10 𝜇m). (M), (N) Serial sections were also co-stained against ER-TR7 (red) and COL1 (green) to screen for non FRCs,
that is, COL1+ /ER-TR7− fibroblasts (white arrows)

ER-TR7, is upregulatedoverUA8controls (P<0.05; Fig. 5D). FN1stain-

ing does not localize to fibrillar structures, but the FN1 expression pat-

tern in the basal layers of the UA control digits and its increase during

blastema formation are suggestive that digit FRCs are capable of pro-

ducing FN1 or depend on its function.

COL3 is a primary component of reticular fibers and reticulin

(Montes et al., 1980) of the ECM. COL3 is known to be expressed in

the blastema (Simkin et al., 2015) and, when quantitated, displayed a

regenerationexpressionprofile thatwas similar toER-TR7 (P=0.0002;

Fig. 5D). Moreover, the general arrangement of COL3+ fibers in both
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F IGURE 6 ER-TR7 shares an expression trend with COL3. Representative (A)−(C) UA8 and (D)−(F) DPA8 samples from groups co-stained for
ER-TR7 and COL3. Shown are individual (A), (D) COL3 and (B), (E) ER-TR7 channels in grayscale with (C), (F) merged with DAPI color images (scale
bar 100 𝜇m). (C), (F), inserts: Z-stacks captured from regions of interest at 600× magnification (white-outlined rectangles on corresponding low
magnification image) in UA8 andDPA8 samples were rendered in 3D format to depict the subcellular distribution of themarkers (grid 10 𝜇m). The
trend between the two antigens in vivowasmeasured byPCC-based analysiswithmean± SE values (n=4) shownon corresponding (C), (F)merged
channel images, where+1.0 is equivalent to a perfect trend and−1.0 equivalent to an absolutely opposite trend

DPA8 and UA8 groups, confirmed by fluorescence IHC (Fig. 5Q and R)

and a modified Gridley silver stain for reticulin (Gridley, 1951), resem-

bles the ER-TR7+ expression pattern (Fig. S2).

To study a relationship between the ER-TR7 and COL3, sections of

DPA8 and UA8 digits (n = 5 per group) were co-stained against the

antigens, captured by confocal microscopy, and the resulting images

were processed with a non-bias co-localization Pearson’s correlation

coefficient (PCC or rp) test. The PCC is reported on a scale of rp val-

ues from 1 (perfect correlation) to −1 (perfect but negative correla-

tion), where 0 equals no relationship. All sample sets yielded a strong

correlation between both antigens, with mean rp values of 0.845 ±
0.024 and 0.825 ± 0.011 for UA8 (Fig. 6A−C) and DPA8 (Fig. 6D−F)
groups of digits, respectively. These data provide evidence of a link

between ER-TR7 and COL3 and a trend in their expression and pat-

tern in and around digit FRCs in both the UA CT and regeneration

blastema.

The results from this survey provide evidence of distinct fibrob-

last subpopulations in the digit CT and blastema. Moreover, the

data identify FN1 and COL3 as fibroblast related proteins that

display regulation profiles similar to ER-TR7 in the digit tip and

during blastema formation, which suggests they have a role in

the dynamics of digit FRCs and regeneration in the blastema

microenvironment.

2.5 ER-TR7 can be induced in digit fibroblasts

Cultured cells derived from neonatal DPA8 blastemas (Lee et al.,

2013) retain membranous and extracellular ER-TR7+ fibril formation

during expansion (Fig. 7A). The shape of cultured blastema cells ranged

from spindle to stellate and, following ER-TR7 immunocytochemistry

(ICC), it was apparent that many of the cells were interconnected

by ER-TR7+ filaments. In contrast, P3 fibroblasts isolated from the

digit tip (Wu et al., 2013) displayed a spindle phenotype and a low

level of ER-TR7 staining (Fig. 7B−D). Treating P3 cells with TNF𝛼 in

combination with an agonistic antibody to LT𝛽R stimulates ER-TR7+

staining similar to lymphoid FRCs (Katakai et al., 2004b). Following

induction, many of the P3 cells display a stellate morphology and

produce a robust ER-TR7+ network of fibrils (Fig. 7E−G). At the end-
point of treatment (11 days), the induced P3 culture was less cellular

than controls and the ER-TR7 staining pattern was well defined and

uniform. These studies show that, in parallel with lymphoid stromal

cells (Katakai et al., 2004b), digit derived fibroblasts can be induced to
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F IGURE 7 ER-TR7+ filament induction in P3 cells. (A) Freshly isolated blastema cells retain the intercellular ER-TR7 network in vitro (630×;
scale bar 10 𝜇m). (B)−(G) Cells isolated from digit tips harvested from eGFP transgenic mice were split into (B)−(D) untreated control and (E)−(G)
TNF𝛼 + anti-LT𝛽R induced lines (representative fields at 400×; scale bar 50 𝜇m)

produce a robust ER-TR7+ network of fibrils. These data are consistent

with the conclusion that ER-TR7 negative fibroblasts can be induced

to participate in the production of the enhanced ER-TR7 network

associated with blastema formation.

Using the induction of P3 cells to produce the ER-TR7+ network,

we employed a Real-Time polymerase chain reaction (PCR) array to

analyze expression of 84 key genes associated with mouse fibrosis in

control and induced P3 cells (Katakai et al., 2004b). P3 fibroblasts at

days 4, 7, and 10 following induction with TNF𝛼 and anti-LT𝛽R were

analyzed using themanufacturer’s recommended restrictions for anal-

ysis and a greater than 2-fold change in expression. We identified

four genes that were downregulated at all timepoints—Acta2 (smooth

muscle actin), Cav1 (caveolin 1), Cxcr4 (chemokine [C−X−C motif]

receptor 4) and Thbs1 (thrombospondin 1)—and three genes that

were upregulated at all timepoints—NFkb1, Col3a1 (collagen type III)

and Dcn (decorin). Quantitative data for transcripts with greater

than 2-fold expression at any given timepoint are provided in the

Supporting Information (Table S1). Upregulation of NFkb1 was pre-

dicted since recombinant TNF𝛼 coupled with anti-LT𝛽R stimulation of

lymphoid FRCs induces ER-TR7 in a nuclear factor 𝜅B (NF𝜅B) pathway

dependent manner (Katakai et al., 2004b). Of the remaining upregu-

latedgenes, decorin is amatrix proteoglycanassociatedwithCOL1and

Col3a1 encodes for the target antigen detected by anti-COL3 IHC in

digit sections.

To determine whether there is a relationship between ER-TR7 and

COL3 in register with our in vivo data (Fig. 6), we carried out co-IHC

localization studies on P3 cells co-treated with TNF𝛼 and anti-LT𝛽R.

Co-localization analysis based on the PCC approach over eight high

resolution photomicrographs at 400× magnification from each cul-

ture was performed (Fig. S3). Trends in localization and intensity level

for these two antigens in both uninduced (Fig. S3A−C) and treated

(Fig. S3D−F) P3 cells were almost identical gauged by our qualitative

observations and strong pixel correlation measurements with overall

mean rp values above 0.8. The qRT-PCR results complemented by the
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ICC co-localization data further support the conclusion that the ER-

TR7 antigen is linked either directly or indirectly to the expression of

COL3 by digit FRCs.

3 DISCUSSION

In this study, the ECM in the mouse digit tip blastema is character-

ized by focusing on the antigen ER-TR7 which identifies a population

of FRCs involved in compartmentalizing lymph organs during develop-

ment (Balogh et al., 2008; Katakai, 2012; Katakai et al., 2004b; Link

et al., 2007; Van Vliet et al., 1986). The CT of the digit tip is simi-

larly compartmentalized by ER-TR7+ fibers which are localized to the

periosteal boundary of the P3 phalanx, the basal boundary of the nail

epidermis, and outlining the vasculature. Compared to IHC staining

with other fibroblast markers, the evidence supports the conclusion

that ER-TR7+ cells identify a subpopulation of looseCTfibroblasts that

delineate the boundaries between different tissue types of the digit

tip. Those tissue interfaces are bone/CT, epidermis/CT, and vascula-

ture/CT. This expression pattern is suggestive of the digit FRCs play-

ing a role in establishing and/or maintaining the spatial organization of

tissue types by producing a network of ECM fibers. The evidence indi-

cates that COL3 is a primary component of this network, and that the

ER-TR7 antigen is closely associated with the network. ER-TR7 stain-

ing and COL3 production are co-induced in cultured P3 digit fibrob-

last cells following treatment with TNF𝛼 and an agonist for LT𝛽R. In

lymphoid stromal cells, the induction of ER-TR7 by a similar treatment

is dependent on activation of the NF𝜅𝛽 signal transduction pathway

(Katakai et al., 2004b); thus the available evidence suggests that this

signaling pathway in digit FRCs is instrumental for the production of

this ECMnetwork.

During neonatal and adult digit tip regeneration, ER-TR7 is upregu-

lated as the blastema forms and is downregulated as the blastema dif-

ferentiates. The changes in ER-TR7expression and its patternwere not

observed in analogous CT areas of the digit expressing COL1 or FSP-

1. The blastema is composed of a large population of ER-TR7+ digit

FRCsand these cells co-expressCOL3butnotCOL1. The cellular stain-

ing of digit FRCs by means of the ER-TR7 antibody in the blastema

coupled with the ER-TR7+ fibers which originate from these FRCs

define the blastema ECM network and provide evidence that the dis-

tinctive provisional matrix of the blastema is produced by digit FRCs.

We do not observe obvious compartmentalizationwithin the blastema

by ER-TR7+ fibers. Instead, the network appears ubiquitous but loose

and organized along the proximodistal axis of the blastema. This is in

contrast to the ER-TR7+ fibers associated with the non-regenerating

amputation wound that are tightly arranged perpendicular to the

bone stump and similar to the fibrous cap which forms following con-

ventional wound healing (Dawson et al., 2016; Turner, Johnson, &

Badylak, 2010). While the blastema is predicted to be largely com-

posed of heterogeneous populations of lineage restricted progenitor

cells (Lehoczky et al., 2011; Rinkevich et al., 2011), the blastema itself

lacks any overt organization that delineates cells derived from differ-

ent tissues of the amputated digit tip. While it is possible that ER-

TR7+ cells in the amputated digit tip have the capability of proliferating

and participating as FRCs in the blastema, testing this hypothesis will

require a lineagemarkerwhich is unavailable at this point in time. Nev-

ertheless, a link between the amputated digit tip and blastema FRCs is

supported by the significant decline in ER-TR7 staining associatedwith

the localized degradation of the amputated bone that is characteristic

of adult digit tip regeneration (Fernando et al., 2011) and the enhanced

proliferation of FRCs within the blastema. The data suggest that the

enhanced level of ER-TR7 staining associated with the blastema rep-

resents a combination of a relative increase in FRC numbers coupled

with an increase in ER-TR7+ matrix production. As regeneration pro-

ceeds, the overall level of ER-TR7 staining returns to pre-amputation

levels indicating that the ER-TR7+ fiber network is degraded or oth-

erwise remodeled as the blastema differentiates. These data indicate

that the blastema consists of a provisional ECM network produced by

digit FRCs that is re-modeled as the newly regenerated tissuesmature.

We propose that this provisional blastema network plays a critical role

in recruitment and organization of progenitor cells during a regen-

erative response and, in this regard, the character of this provisional

matrix can instruct the design of engineered biological matrices neces-

sary for successful therapies in regenerativemedicine.

In vitro studies involving lymphoid FRCs have demonstrated that

the ER-TR7+ network of fibers can be induced by treatmentwith TNF𝛼

and an LT𝛽R receptor agonist antibody (Katakai et al., 2004b). These

ligands and their receptors, both belonging to the TNF superfamily,

have been known to trigger a milieu of pro-inflammatory factors dur-

ing injury andhost defense in anNF𝜅B-dependentmanner (Hehlgans&

Pfeffer, 2005;Hehlgans,Muller, Stopfer, &Mannel, 2003;Katakai et al.,

2004b) as well as stimulating homeostasis during lymphoid organo-

genesis (Daller et al., 2011; Hehlgans et al., 2002; Kahaleh, Smith,

Soma, & LeRoy, 1988; White et al., 2007; Zeng et al., 2012). A simi-

lar treatment of fibroblasts derived from the mouse digit tip also trig-

gers ER-TR7+ fibril production that forms a fibril network similar to

cultured blastema cells. The multi-TNF receptor activation of fibrob-

last subtypes elicits progression of the canonical (RelA [p65]−p50
complex) and alternative (RelB−p52 [p100] complex) NF𝜅B cascades

(Katakai et al., 2004b), and can have a profound effect in a wide vari-

ety of physiological processes (Ghosh & Hayden, 2008). In fibroblasts,

the pleiotropic nature of TNF is portrayed by in vitro studies which

demonstrate opposite phenotypes on the synthesis and regulation of

ECMmacromolecules following activation of TNF receptor(s) suggest-

ing that these events vary in a cell- or tissue-specific manner (Dis-

tler, Schett, Gay, & Distler, 2008). The demonstration that ER-TR7+

fibers are induced in cultured digit fibroblasts by multi-TNF receptor

activation coupled with the evidence showing that ER-TR7+ fibers are

induced in vivo during blastema formation provide evidence implicat-

ing TNF signaling as critical for the production of the blastema ECM

network.

IHC co-staining for ER-TR7 and COL3 displays a high Pearson’s

coefficient indicating that the ER-TR7 antigen is tightly linked to COL3

within the regenerating blastema. During the healing of full-thickness

skin wounds, the granulation tissue that forms has a high COL3 con-

tent and is thought to promote cell migration during wound heal-

ing (Barnes, Morton, Bennett, Bailey, & Sims, 1976). COL3 levels are

reported to be higher in fetal wounds that are able to heal without
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scarring compared to scar-forming adult wounds (Leung, Cromble-

holme, & Keswani, 2012). In animals that can undergo a scar-free heal-

ing response, such as the spiny mouse (Acomys) or the FoxN1 defi-

cient (nude) mouse, studies show that COL3 upregulation correlates

with a regenerative response (Brant, Yoon, Polvadore, Barbazuk, &

Maden, 2016; Gawronska-Kozak & Kirk-Ballard, 2013; Seifert et al.,

2012). On the other hand, reducing COL3 in granulation tissue pro-

motes the differentiation of myofibroblasts, enhances wound contrac-

tion, and increases the deposition of scar tissue (Volk, Wang, Mauldin,

Liechty, & Adams, 2011). Thus, the demonstration that COL3 fibers

are a prominent component of the blastema scaffold adds to the

circumstantial evidence from multiple regenerative models that sup-

ports the conclusion that a COL3-based provisional matrix provides a

scaffold that promotes successful regeneration. It seems likely that the

ER-TR7antigen represents amodification of this regenerative scaffold;

however, its role in regenerationwill have to await the identification of

the antigen.

In a previous study, we characterized fibroblasts derived from the

regeneration-competent P3 digit region and compared them to fibrob-

lasts derived from the regeneration-incompetent P2 digit region (Wu

et al., 2013). While both P2 and P3 cells are able to participate in

blastema formation, the regeneration-competent P3 cells displayed

position-specific characteristics in their interaction with epidermal

cells in vitro and in the way they interacted with the ECM when cul-

tured under different conditions (Wu et al., 2013). In humans, fibrob-

last cells have been singled out as the primary cell type that main-

tains distinct patterns of gene expression that vary with spatial posi-

tion across the body; thus they are poised to play an essential role

in conveying spatial information to cells important for a successful

regenerative response (Chang et al., 2002; Rinn, Bondre, Gladstone,

Brown, & Chang, 2006). In amphibian limb regeneration, there is con-

siderable indirect evidence that fibroblasts of the dermis play an early

role in forming the blastema and in relaying positional information that

organizes the pattern of regenerating structures (Bryant, Gardiner, &

Muneoka, 1987; Bryant et al., 2002; Nacu et al., 2013). The ability of

P3 fibroblasts to respond to signals derived from the immune response

by producing an ER-TR7+ ECM network adds to the evidence linking

fibroblasts to the control of regeneration, and suggests a specific func-

tion in producing a provisional matrix template that dictates the struc-

ture of the regenerate. These data are also consistent with studies in

other regeneratingmodels, including liver regeneration, that implicate

signaling by the immune system as essential for a successful regener-

ative response (Sorg et al., 2016; Tumanov et al., 2009). We also note

that, during regeneration, the digit FRCs proliferate and create a pro-

visional blastema matrix that becomes populated by other cell types

(i.e., ER-TR7− cells) inmuch the sameway that lymphoid FRCs undergo

hypertrophy to create the microenvironment necessary around

ER-TR7− components of blood vessels, lymphatics, and lymphocyte

compartments for a successful adaptive immune response in the lymph

node (Chyou et al., 2011). Overall, fibroblasts play a role in positional

recognition and growth regulation that is critical for a regenerative

response. This is surprisingly similar to the role that, in addition to cell

growth andmigration, lymphoid FRCs play in regulating antigen recog-

nition and presentation in an adaptive immune response, and suggests

an evolutionary relationship between these two complex responses to

homeostatic disruption.

4 MATERIALS AND METHODS

4.1 Mice and tissue harvest

All neonate and adult subjects consisted of outbredCD1mice supplied

by Charles River Laboratories (Wilmington, MA, USA). PN3 neonates

and 8W adults were anesthetized with an intraperitoneal injection of

ketamine and xylazine at 80 and 8 mg/kg of body weight, respectively,

followed by distal amputation of digits 2 and 4 from each hind limb

using microdissection scissors (neonate) or a scalpel (adult) under a

stereomicroscope, as previously described (Fernando et al., 2011; Han

et al., 2008). For preliminary and supporting data purposes, a number

of adult mice underwent amputations midway through P2 of digits 2

and4with a scalpel, as previously described (Dawsonet al., 2016).Digit

tissues were harvested for histological and IHC analysis at DPA0, 4, 8,

12, and 16 for neonates and DPA0, 5, 10, 14, 21, 28, and 35 for adults.

Procedures for care and use of mice for this study were performed

in accordance with standard operating procedures approved by the

Institutional Animal Care andUseCommittee of TulaneUniversity and

Louisiana State University Health Sciences Center in NewOrleans, LA.

4.2 Histology and fluorescence IHC

Tissues were harvested in zinc-buffered formalin (Anatech Ltd, Battle

Creek, MI, USA) to fix no longer than 48 h and decalcified in formic-

acid-based solution for15−18h (Decal I; Surgipath, Richmond, IL,USA)

for paraffin processing and thin section histopathology and IHC. Serial

tissue sections were collected in a rotary microtome at 5 𝜇m, floated

onawater bath at 40°C,mountedonto charged, glass slides andheated

for 45min at 60°C in an oven. One set of slides was chemically treated

to stain for reticular fibers by the modified Gridley reticulin method

(Gridley, 1951) or H&E staining. The remaining slides were deparaf-

finized in xylene and rehydrated through an ethanol series to distilled

water. All washes were performed with phosphate-buffered saline

(PBS). Depending on the antigens to be detected, sections were pre-

treated with either incubation with an enzyme (Proteinase K, Dakocy-

tomation, Carpinteria, CA, USA) at 37°C for 10 min or heat induced

epitope retrieval (target retrieval buffer, pH 9.0, Dakocytomation) in

a pressure cooker followed by cooling for 20 min and washed in PBS.

This was followed by blocking for nonspecific protein binding with

5% goat serum diluted in 1% (w/v) bovine serum albumin (BSA) for

15min at room temperature. It should be noted that, if using a primary

antibody derived from mouse for subsequent tagging with an anti-

mouse secondary antibody, an additional goat anti-mouse Ig Fab frag-

ment (Jackson Immunoresearch, Westgrove, PA, USA) was added to

the protein block step at 10 𝜇g/mL for 1 h at room temperature to bind

endogenous immunoglobulins. Following washing, sections were sin-

gle or co-incubated overnight at 4°Cwith a variety of primary antibod-

ies: rat anti-ER-TR7 (clone ER-TR7; 5 𝜇g/mL; catalog #MCA2402; Abd

Serotec, Raleigh, NC, USA), mouse anti-smooth muscle actin (SMA;
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clone 1A4; 2 𝜇g/mL; catalog # M0851; Dakocytomation); rabbit anti-

von Willebrand factor (FVIII; polyclonal; 1 𝜇g/mL; catalog # A0082;

Dakocytomation); rabbit anti-osteocalcin (OC; polyclonal; 1 𝜇g/mL;

catalog # MK127; Takara, Otsu, Shiga, Japan); rat anti-Ki67 (clone

TEC-3; catalog # M7249; 5 𝜇g/mL; Dakocytomation); rabbit anti-

cleaved caspase 3 (C3; polyclonal; 5 𝜇g/mL; catalog # 9661; Cell Sig-

naling, Danvers, MA, USA); rabbit anti-VIM (clone SP20; 1 𝜇g/mL;

catalog # RM-9120-S1; Labvision, Fremont, CA, USA); rabbit anti-

COL1 (polyclonal; 1 𝜇g/mL; catalog # NB600-408; Novus Biologi-

cals, Littleton, CO, USA); rabbit anti-COL3 (polyclonal; 2 𝜇g/mL; cat-

alog # ab7778; Abcam, Cambridge, MA, USA); rabbit anti-S100A4

(FSP1; polyclonal; catalog # ab27957; 1 𝜇g/mL; Abcam); rabbit anti-

fibronectin (FN1; polyclonal; 2 𝜇g/mL; catalog # ab2413; Abcam);

and syrian hamster anti-gp38 (clone RTD4E10; 5 𝜇g/mL; catalog #

ab11936; Abcam). Labeling of bound primaries was followed by indi-

rect IHC using Alexa-conjugated goat F(ab′)2 secondary antibodies

(Molecular Probes, Eugene, OR, USA) against the primaries’ respec-

tive host species at a concentration of 4 𝜇g/mL diluted in 300 nM of

DAPI (Molecular Probes) in PBS for 1 h at room temperature. Slides

were washed in PBS andmounted under a coverslip with Prolong Gold

Antifade (MolecularProbes) for epifluorescencedeconvolutionor con-

focal microscopy.

4.3 ER-TR7 induction in P3 cells

Primary cells from the P3 digit region of adult 8W male CD1 (Charles

River) or C57BL/6-TGN(ACTB-eGFP) transgenic (Jackson Laboratory,

Bar Harbor, ME, USA) mice were collected to generate untagged

or enhanced green fluorescent protein (eGFP) tagged cell lines,

respectively, as previously described (Wu et al., 2013). These P3

cell lines were plated on fibronectin-coated chamber slides (Corning,

Corning, NY, USA) at a concentration of 1 × 105 per chamber. Cells

either remained untreated or were stimulated to produce the ER-

TR7+ network according to procedures previously described (Katakai

et al., 2004b). Briefly, cells were allowed to adhere and recover from

trypsinization for 24 h at which time they were co-treated with

100 ng/mL of recombinant TNF𝛼 (catalog # 410-MT; R&D Systems,

Minneapolis, MN, USA) and anti-LT𝛽R (catalog # AF1008; R&D Sys-

tems) at a concentration of 1 𝜇g/mL. This treatment was reapplied at

days 3, 6, and 9. At day 11, untreated and induced cells were collected

for qRT-PCR or fixed for IHC.

4.4 RNA extraction and Real-Time PCR

Total RNA was isolated from untreated control and experimental P3

cell lines using Trizol Reagent (Invitrogen, Carlsbad, CA, USA). Follow-

ing DNase treatment, RNAwas purified using theQiagen RNeasyMini

Kit (Qiagen, Valencia, CA, USA) and its quality was determined using

a Nanodrop 2000 (Thermo Fisher Scientific Inc., Waltham, MA, USA).

cDNA was synthesized by RT2 First Strand Kit (SABiosciences, Fred-

erick, MD, USA) following the manufacturer’s instructions. Expression

profile was assessed using a Mouse Fibrosis RT2 Profiler PCR Array

and labeled with RT2 qPCR SYBR green PCR Master Mix (SABio-

sciences) according to the manufacturer’s recommended protocols.

Quantitative PCR was performed with a LightCycler 480 system

(Roche Applied Sciences, Indianapolis, IN, USA) and its software was

used to determine a critical threshold, which was the cycle num-

ber where the linear phase for each sample crossed the threshold

level. Relative gene expressionwas determined using critical threshold

methods.Datawere further analyzedbySABiosciencesPCRarraydata

analysis online tools (http://pcrdataanalysis.sabiosciences.com/pcr/

arrayanalysis.php).

4.5 Immunocytochemistry (ICC)

Cell preparations on chamber slides were washed in pre-warmed PBS,

fixed in pre-warmed 4% methanol-free formaldehyde (Polysciences,

Warrington, PA,USA), andwashed inPBS. Sampleswerepermeabilized

in acetone at −20°C, washed, and treated with 5% normal goat serum

in 1% (w/v) BSA in PBS to reduce nonspecific binding. Subsequently,

cells were co-incubated for 3 h at room temperature with rat anti-ER-

TR7 (5 𝜇g/mL; Abd Serotec) and rabbit anti-COL3 (2 𝜇g/mL; Abcam)

or rabbit anti-COL1 (1 𝜇g/mL; Novus Biologicals). Primary antibodies

were detected by indirect immunofluorescence using a goat antibody

against the primary antibodies’ source species conjugated to Alexa

dyes at 4 𝜇g/mL with added DAPI at 300 mM. Samples were mounted

under coverglass with Prolong Gold Antifade.

4.5.1 Microscopy

Tissue sectionswere imaged using a LeicaDMRXAuprightmicroscope

equipped with a Sensicam QE CCD (Cooke Corporation, Romulus, MI,

USA), xyzmotorized stage (Prior Scientific, Rockland, MA, USA), an Hg

source, and filters suitable for DAPI, Alexa 488, Alexa 594, and Alexa

647 fluorophores. Additional photomicrographs from tissue sections

and ICC preparations were also captured with a Fluoview FV1000

laser scanning confocal system (Olympus of America, Center Valley,

PA, USA) equipped with Nomarski (differential interference contrast

or DIC) and visible excitation light sources including a multi-line argon

laser and diodes covering 405, 561, 592, and 635 nm wavelengths.

False positive results arising from autofluorescence mostly inherent

to areas of high keratin accumulation, elastic fibers, and porphyrins in

erythrocytes (Croce & Bottiroli, 2014) were meticulously segregated

by sequential co-registration of true positive captures in parallel with

channels in adjacent but unmixed spectral ranges. In addition, fluores-

cence of fully treated tissue sections was compared to that of corre-

sponding serial sections in which the primary antibody was replaced

by an isotype control antibody diluted to the same concentration.

No Neighbors and Constrained Iterative deconvolution algorithms

were applied to 2D and 3D sets, respectively. Post-imaging measure-

ments included protein expression profiles based on detection areas

(both in vitro and in vivo samples) and cell counts. Area measure-

ments of the expression of ER-TR7 and othermarkers were performed

with Slidebook software bymasking imageswith a binary layer encom-

passing specific minimum and maximum fluorophore detection inten-

sities. The areas were automatically calculated by the software in pixel

values and these in turn were divided over the total nuclear or tis-

sue area, which was masked using DAPI intensities and/or anatom-

ical landmarks. The anatomical landmarks confining the digit CT

analyzed are the nailbed epithelium, the periosteum, the joint

http://pcrdataanalysis.sabiosciences.com/pcr/arrayanalysis.php
http://pcrdataanalysis.sabiosciences.com/pcr/arrayanalysis.php
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(proximally) and the tendon enthesis (ventrally). For cell number analy-

ses, eventsweremanually quantifiedwith a cell counter and annotated

over total nuclei per field. Co-localization analyses using Pearson’s cor-

relation coefficients were calculated within thresholded areas of co-

stained antigens. All renderings and analyseswere driven by Slidebook

software (Intelligent Imaging Innovations, Denver, CO, USA). Support-

ing data analysis of fiber arrangements betweenadult P3 andP2ampu-

tations was performed by generating and measuring vectors in 32-bit

thresholded channels of ER-TR7+ staining using the OrientationJ plu-

gin (Fonck et al., 2009; Rezakhaniha et al., 2012) available online at

http://bigwww.epfl.ch/demo/orientation for the digital image process-

ing software ImageJ.

4.6 Statistical analysis

In all cases, quantitative data are represented as means ± standard

error of the mean (SEM). Prism (version 7.01, GraphPad Software,

La Jolla, CA, USA) was used to perform statistical analyses. The sig-

nificance between fibroblast marker stained areas of UA8 and DPA8

groups was determined via unpaired t tests with two-tailed distribu-

tions. A one-way ANOVA with Sidak corrected post hoc tests was

applied to all line graphs. In all cases, a value of P < 0.05 was deemed

statistically significant.
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